164af346bSTue Ly //===-- Single-precision e^x - 1 function ---------------------------------===// 24e5f8b4dSTue Ly // 34e5f8b4dSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 44e5f8b4dSTue Ly // See https://llvm.org/LICENSE.txt for license information. 54e5f8b4dSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 64e5f8b4dSTue Ly // 74e5f8b4dSTue Ly //===----------------------------------------------------------------------===// 84e5f8b4dSTue Ly 94e5f8b4dSTue Ly #include "src/math/expm1f.h" 1064af346bSTue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 11c120edc7SMichael Jones #include "src/__support/FPUtil/BasicOperations.h" 1264af346bSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1364af346bSTue Ly #include "src/__support/FPUtil/FMA.h" 1464af346bSTue Ly #include "src/__support/FPUtil/FPBits.h" 15c120edc7SMichael Jones #include "src/__support/FPUtil/PolyEval.h" 16628fbbefSTue Ly #include "src/__support/FPUtil/multiply_add.h" 17628fbbefSTue Ly #include "src/__support/FPUtil/nearest_integer.h" 18a9824312STue Ly #include "src/__support/FPUtil/rounding_mode.h" 194e5f8b4dSTue Ly #include "src/__support/common.h" 20*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 21737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 22737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 2364af346bSTue Ly 24*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 254e5f8b4dSTue Ly 264e5f8b4dSTue Ly LLVM_LIBC_FUNCTION(float, expm1f, (float x)) { 2764af346bSTue Ly using FPBits = typename fputil::FPBits<float>; 2864af346bSTue Ly FPBits xbits(x); 294e5f8b4dSTue Ly 30a5466f04STue Ly uint32_t x_u = xbits.uintval(); 31a5466f04STue Ly uint32_t x_abs = x_u & 0x7fff'ffffU; 32a5466f04STue Ly 33a5466f04STue Ly // Exceptional value 3429f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_u == 0x3e35'bec5U)) { // x = 0x1.6b7d8ap-3f 35a9824312STue Ly int round_mode = fputil::quick_get_round(); 36a5466f04STue Ly if (round_mode == FE_TONEAREST || round_mode == FE_UPWARD) 37a5466f04STue Ly return 0x1.8dbe64p-3f; 38a5466f04STue Ly return 0x1.8dbe62p-3f; 39a5466f04STue Ly } 40a5466f04STue Ly 41a2569a76SGuillaume Chatelet #if !defined(LIBC_TARGET_CPU_HAS_FMA) 4229f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_u == 0xbdc1'c6cbU)) { // x = -0x1.838d96p-4f 43a9824312STue Ly int round_mode = fputil::quick_get_round(); 44484319f4STue Ly if (round_mode == FE_TONEAREST || round_mode == FE_DOWNWARD) 45484319f4STue Ly return -0x1.71c884p-4f; 46484319f4STue Ly return -0x1.71c882p-4f; 47484319f4STue Ly } 48a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA 49484319f4STue Ly 50a5466f04STue Ly // When |x| > 25*log(2), or nan 5129f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs >= 0x418a'a123U)) { 52a5466f04STue Ly // x < log(2^-25) 5311ec512fSGuillaume Chatelet if (xbits.is_neg()) { 5464af346bSTue Ly // exp(-Inf) = 0 5564af346bSTue Ly if (xbits.is_inf()) 5664af346bSTue Ly return -1.0f; 5764af346bSTue Ly // exp(nan) = nan 5864af346bSTue Ly if (xbits.is_nan()) 5964af346bSTue Ly return x; 60a9824312STue Ly int round_mode = fputil::quick_get_round(); 6164af346bSTue Ly if (round_mode == FE_UPWARD || round_mode == FE_TOWARDZERO) 6264af346bSTue Ly return -0x1.ffff'fep-1f; // -1.0f + 0x1.0p-24f 6364af346bSTue Ly return -1.0f; 64a5466f04STue Ly } else { 6564af346bSTue Ly // x >= 89 or nan 66a5466f04STue Ly if (xbits.uintval() >= 0x42b2'0000) { 6764af346bSTue Ly if (xbits.uintval() < 0x7f80'0000U) { 68a9824312STue Ly int rounding = fputil::quick_get_round(); 6964af346bSTue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 706b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 7164af346bSTue Ly 720aa9593cSTue Ly fputil::set_errno_if_required(ERANGE); 730aa9593cSTue Ly fputil::raise_except_if_required(FE_OVERFLOW); 744e5f8b4dSTue Ly } 756b02d2f8SGuillaume Chatelet return x + FPBits::inf().get_val(); 764e5f8b4dSTue Ly } 77a5466f04STue Ly } 78a5466f04STue Ly } 7964af346bSTue Ly 8064af346bSTue Ly // |x| < 2^-4 81a5466f04STue Ly if (x_abs < 0x3d80'0000U) { 8264af346bSTue Ly // |x| < 2^-25 83a5466f04STue Ly if (x_abs < 0x3300'0000U) { 8464af346bSTue Ly // x = -0.0f 8529f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(xbits.uintval() == 0x8000'0000U)) 8664af346bSTue Ly return x; 87a5466f04STue Ly // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x 88a5466f04STue Ly // is: 89a5466f04STue Ly // |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x| 90a5466f04STue Ly // = |x| 91a5466f04STue Ly // < 2^-25 92a5466f04STue Ly // < epsilon(1)/2. 9364af346bSTue Ly // So the correctly rounded values of expm1(x) are: 9464af346bSTue Ly // = x + eps(x) if rounding mode = FE_UPWARD, 95484319f4STue Ly // or (rounding mode = FE_TOWARDZERO and x is 96484319f4STue Ly // negative), 9764af346bSTue Ly // = x otherwise. 9864af346bSTue Ly // To simplify the rounding decision and make it more efficient, we use 9964af346bSTue Ly // fma(x, x, x) ~ x + x^2 instead. 100484319f4STue Ly // Note: to use the formula x + x^2 to decide the correct rounding, we 101484319f4STue Ly // do need fma(x, x, x) to prevent underflow caused by x*x when |x| < 102484319f4STue Ly // 2^-76. For targets without FMA instructions, we simply use double for 103484319f4STue Ly // intermediate results as it is more efficient than using an emulated 104484319f4STue Ly // version of FMA. 105a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA) 106f3aceeeeSOverMighty return fputil::fma<float>(x, x, x); 107484319f4STue Ly #else 108484319f4STue Ly double xd = x; 109484319f4STue Ly return static_cast<float>(fputil::multiply_add(xd, xd, xd)); 110a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA 11164af346bSTue Ly } 112a5466f04STue Ly 113da28593dSlntue constexpr double COEFFS[] = {0x1p-1, 114da28593dSlntue 0x1.55555555557ddp-3, 115da28593dSlntue 0x1.55555555552fap-5, 116da28593dSlntue 0x1.111110fcd58b7p-7, 117da28593dSlntue 0x1.6c16c1717660bp-10, 118da28593dSlntue 0x1.a0241f0006d62p-13, 119da28593dSlntue 0x1.a01e3f8d3c06p-16}; 120da28593dSlntue 12164af346bSTue Ly // 2^-25 <= |x| < 2^-4 12264af346bSTue Ly double xd = static_cast<double>(x); 12364af346bSTue Ly double xsq = xd * xd; 12464af346bSTue Ly // Degree-8 minimax polynomial generated by Sollya with: 12564af346bSTue Ly // > display = hexadecimal; 126a5466f04STue Ly // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]); 127da28593dSlntue 128da28593dSlntue double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); 129da28593dSlntue double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); 130da28593dSlntue double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); 131da28593dSlntue 132da28593dSlntue double r = fputil::polyeval(xsq, c0, c1, c2, COEFFS[6]); 133c5f8a0a1STue Ly return static_cast<float>(fputil::multiply_add(r, xsq, xd)); 13464af346bSTue Ly } 13564af346bSTue Ly 136a5466f04STue Ly // For -18 < x < 89, to compute expm1(x), we perform the following range 13764af346bSTue Ly // reduction: find hi, mid, lo such that: 13864af346bSTue Ly // x = hi + mid + lo, in which 13964af346bSTue Ly // hi is an integer, 14064af346bSTue Ly // mid * 2^7 is an integer 14164af346bSTue Ly // -2^(-8) <= lo < 2^-8. 14264af346bSTue Ly // In particular, 14364af346bSTue Ly // hi + mid = round(x * 2^7) * 2^(-7). 14464af346bSTue Ly // Then, 145a5466f04STue Ly // expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1. 14664af346bSTue Ly // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2 147a5466f04STue Ly // respectively. exp(lo) is computed using a degree-4 minimax polynomial 14864af346bSTue Ly // generated by Sollya. 14964af346bSTue Ly 15064af346bSTue Ly // x_hi = hi + mid. 151628fbbefSTue Ly float kf = fputil::nearest_integer(x * 0x1.0p7f); 152628fbbefSTue Ly int x_hi = static_cast<int>(kf); 15364af346bSTue Ly // Subtract (hi + mid) from x to get lo. 154628fbbefSTue Ly double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x)); 15564af346bSTue Ly x_hi += 104 << 7; 15664af346bSTue Ly // hi = x_hi >> 7 15764af346bSTue Ly double exp_hi = EXP_M1[x_hi >> 7]; 15864af346bSTue Ly // lo = x_hi & 0x0000'007fU; 15964af346bSTue Ly double exp_mid = EXP_M2[x_hi & 0x7f]; 16064af346bSTue Ly double exp_hi_mid = exp_hi * exp_mid; 161a5466f04STue Ly // Degree-4 minimax polynomial generated by Sollya with the following 16264af346bSTue Ly // commands: 16364af346bSTue Ly // > display = hexadecimal; 164a5466f04STue Ly // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]); 16564af346bSTue Ly // > Q; 166a5466f04STue Ly double exp_lo = 167a5466f04STue Ly fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1, 168a5466f04STue Ly 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5); 169c5f8a0a1STue Ly return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0)); 1704e5f8b4dSTue Ly } 1714e5f8b4dSTue Ly 172*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 173