1da28593dSlntue //===-- Double-precision e^x - 1 function ---------------------------------===// 2da28593dSlntue // 3da28593dSlntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4da28593dSlntue // See https://llvm.org/LICENSE.txt for license information. 5da28593dSlntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6da28593dSlntue // 7da28593dSlntue //===----------------------------------------------------------------------===// 8da28593dSlntue 9da28593dSlntue #include "src/math/expm1.h" 10da28593dSlntue #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 11da28593dSlntue #include "explogxf.h" // ziv_test_denorm. 12da28593dSlntue #include "src/__support/CPP/bit.h" 13da28593dSlntue #include "src/__support/CPP/optional.h" 14da28593dSlntue #include "src/__support/FPUtil/FEnvImpl.h" 15da28593dSlntue #include "src/__support/FPUtil/FPBits.h" 16da28593dSlntue #include "src/__support/FPUtil/PolyEval.h" 17da28593dSlntue #include "src/__support/FPUtil/double_double.h" 18da28593dSlntue #include "src/__support/FPUtil/dyadic_float.h" 19da28593dSlntue #include "src/__support/FPUtil/except_value_utils.h" 20da28593dSlntue #include "src/__support/FPUtil/multiply_add.h" 21da28593dSlntue #include "src/__support/FPUtil/nearest_integer.h" 22da28593dSlntue #include "src/__support/FPUtil/rounding_mode.h" 23da28593dSlntue #include "src/__support/FPUtil/triple_double.h" 24da28593dSlntue #include "src/__support/common.h" 25a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h" 26*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 27da28593dSlntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 28da28593dSlntue 2946c7da63Slntue #if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0) 3046c7da63Slntue #define LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS 3146c7da63Slntue #endif 32da28593dSlntue 33*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 34da28593dSlntue 35da28593dSlntue using fputil::DoubleDouble; 36da28593dSlntue using fputil::TripleDouble; 37da28593dSlntue using Float128 = typename fputil::DyadicFloat<128>; 382137894aSGuillaume Chatelet 39a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128; 40da28593dSlntue 41da28593dSlntue // log2(e) 42da28593dSlntue constexpr double LOG2_E = 0x1.71547652b82fep+0; 43da28593dSlntue 44da28593dSlntue // Error bounds: 45da28593dSlntue // Errors when using double precision. 46da28593dSlntue // 0x1.8p-63; 47da28593dSlntue constexpr uint64_t ERR_D = 0x3c08000000000000; 48da28593dSlntue // Errors when using double-double precision. 49da28593dSlntue // 0x1.0p-99 5046c7da63Slntue [[maybe_unused]] constexpr uint64_t ERR_DD = 0x39c0000000000000; 51da28593dSlntue 52da28593dSlntue // -2^-12 * log(2) 53da28593dSlntue // > a = -2^-12 * log(2); 54da28593dSlntue // > b = round(a, 30, RN); 55da28593dSlntue // > c = round(a - b, 30, RN); 56da28593dSlntue // > d = round(a - b - c, D, RN); 57da28593dSlntue // Errors < 1.5 * 2^-133 58da28593dSlntue constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; 59da28593dSlntue constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; 60da28593dSlntue constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; 61da28593dSlntue constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; 62da28593dSlntue 633caef466Slntue namespace { 643caef466Slntue 65da28593dSlntue // Polynomial approximations with double precision: 66da28593dSlntue // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. 67da28593dSlntue // For |dx| < 2^-13 + 2^-30: 68da28593dSlntue // | output - expm1(dx) / dx | < 2^-51. 69da28593dSlntue LIBC_INLINE double poly_approx_d(double dx) { 70da28593dSlntue // dx^2 71da28593dSlntue double dx2 = dx * dx; 72da28593dSlntue // c0 = 1 + dx / 2 73da28593dSlntue double c0 = fputil::multiply_add(dx, 0.5, 1.0); 74da28593dSlntue // c1 = 1/6 + dx / 24 75da28593dSlntue double c1 = 76da28593dSlntue fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); 77da28593dSlntue // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 78da28593dSlntue double p = fputil::multiply_add(dx2, c1, c0); 79da28593dSlntue return p; 80da28593dSlntue } 81da28593dSlntue 82da28593dSlntue // Polynomial approximation with double-double precision: 83da28593dSlntue // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 84da28593dSlntue // For |dx| < 2^-13 + 2^-30: 85da28593dSlntue // | output - expm1(dx) | < 2^-101 86da28593dSlntue DoubleDouble poly_approx_dd(const DoubleDouble &dx) { 87da28593dSlntue // Taylor polynomial. 88da28593dSlntue constexpr DoubleDouble COEFFS[] = { 89da28593dSlntue {0, 0x1p0}, // 1 90da28593dSlntue {0, 0x1p-1}, // 1/2 91da28593dSlntue {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6 92da28593dSlntue {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24 93da28593dSlntue {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120 94da28593dSlntue {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 95da28593dSlntue {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13}, // 1/5040 96da28593dSlntue }; 97da28593dSlntue 98da28593dSlntue DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], 99da28593dSlntue COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); 100da28593dSlntue return p; 101da28593dSlntue } 102da28593dSlntue 103da28593dSlntue // Polynomial approximation with 128-bit precision: 104da28593dSlntue // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040 105da28593dSlntue // For |dx| < 2^-13 + 2^-30: 106da28593dSlntue // | output - exp(dx) | < 2^-126. 10746c7da63Slntue [[maybe_unused]] Float128 poly_approx_f128(const Float128 &dx) { 108da28593dSlntue constexpr Float128 COEFFS_128[]{ 109a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 110a80a01fcSGuillaume Chatelet {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5 111a80a01fcSGuillaume Chatelet {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6 112a80a01fcSGuillaume Chatelet {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24 113a80a01fcSGuillaume Chatelet {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120 114a80a01fcSGuillaume Chatelet {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720 115a80a01fcSGuillaume Chatelet {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040 116da28593dSlntue }; 117da28593dSlntue 118da28593dSlntue Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], 119da28593dSlntue COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], 120da28593dSlntue COEFFS_128[6]); 121da28593dSlntue return p; 122da28593dSlntue } 123da28593dSlntue 124da28593dSlntue #ifdef DEBUGDEBUG 125da28593dSlntue std::ostream &operator<<(std::ostream &OS, const Float128 &r) { 12646c7da63Slntue OS << (r.sign == Sign::NEG ? "-(" : "(") << r.mantissa.val[0] << " + " 12746c7da63Slntue << r.mantissa.val[1] << " * 2^64) * 2^" << r.exponent << "\n"; 128da28593dSlntue return OS; 129da28593dSlntue } 130da28593dSlntue 131da28593dSlntue std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) { 13246c7da63Slntue OS << std::hexfloat << "(" << r.hi << " + " << r.lo << ")" 13346c7da63Slntue << std::defaultfloat << "\n"; 134da28593dSlntue return OS; 135da28593dSlntue } 136da28593dSlntue #endif 137da28593dSlntue 138da28593dSlntue // Compute exp(x) - 1 using 128-bit precision. 139da28593dSlntue // TODO(lntue): investigate triple-double precision implementation for this 140da28593dSlntue // step. 14146c7da63Slntue [[maybe_unused]] Float128 expm1_f128(double x, double kd, int idx1, int idx2) { 142da28593dSlntue // Recalculate dx: 143da28593dSlntue 144da28593dSlntue double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 145da28593dSlntue double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact 146da28593dSlntue double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133 147da28593dSlntue 148da28593dSlntue Float128 dx = fputil::quick_add( 149da28593dSlntue Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); 150da28593dSlntue 151da28593dSlntue // TODO: Skip recalculating exp_mid1 and exp_mid2. 152da28593dSlntue Float128 exp_mid1 = 153da28593dSlntue fputil::quick_add(Float128(EXP2_MID1[idx1].hi), 154da28593dSlntue fputil::quick_add(Float128(EXP2_MID1[idx1].mid), 155da28593dSlntue Float128(EXP2_MID1[idx1].lo))); 156da28593dSlntue 157da28593dSlntue Float128 exp_mid2 = 158da28593dSlntue fputil::quick_add(Float128(EXP2_MID2[idx2].hi), 159da28593dSlntue fputil::quick_add(Float128(EXP2_MID2[idx2].mid), 160da28593dSlntue Float128(EXP2_MID2[idx2].lo))); 161da28593dSlntue 162da28593dSlntue Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); 163da28593dSlntue 164da28593dSlntue int hi = static_cast<int>(kd) >> 12; 165a80a01fcSGuillaume Chatelet Float128 minus_one{Sign::NEG, -127 - hi, 166a80a01fcSGuillaume Chatelet 0x80000000'00000000'00000000'00000000_u128}; 167da28593dSlntue 168da28593dSlntue Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one); 169da28593dSlntue 170da28593dSlntue Float128 p = poly_approx_f128(dx); 171da28593dSlntue 172da28593dSlntue // r = exp_mid * (1 + dx * P) - 1 173da28593dSlntue // = (exp_mid - 1) + (dx * exp_mid) * P 174da28593dSlntue Float128 r = 175da28593dSlntue fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1); 176da28593dSlntue 177da28593dSlntue r.exponent += hi; 178da28593dSlntue 179da28593dSlntue #ifdef DEBUGDEBUG 180da28593dSlntue std::cout << "=== VERY SLOW PASS ===\n" 181da28593dSlntue << " kd: " << kd << "\n" 18246c7da63Slntue << " hi: " << hi << "\n" 18346c7da63Slntue << " minus_one: " << minus_one << " dx: " << dx 18446c7da63Slntue << "exp_mid_m1: " << exp_mid_m1 << " exp_mid: " << exp_mid 18546c7da63Slntue << " p: " << p << " r: " << r << std::endl; 186da28593dSlntue #endif 187da28593dSlntue 188da28593dSlntue return r; 189da28593dSlntue } 190da28593dSlntue 191da28593dSlntue // Compute exp(x) - 1 with double-double precision. 192da28593dSlntue DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid, 193da28593dSlntue const DoubleDouble &hi_part) { 194da28593dSlntue // Recalculate dx: 195da28593dSlntue // dx = x - k * 2^-12 * log(2) 196da28593dSlntue double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 197da28593dSlntue double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact 198da28593dSlntue double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130 199da28593dSlntue 200da28593dSlntue DoubleDouble dx = fputil::exact_add(t1, t2); 201da28593dSlntue dx.lo += t3; 202da28593dSlntue 203da28593dSlntue // Degree-6 Taylor polynomial approximation in double-double precision. 204da28593dSlntue // | p - exp(x) | < 2^-100. 205da28593dSlntue DoubleDouble p = poly_approx_dd(dx); 206da28593dSlntue 207da28593dSlntue // Error bounds: 2^-99. 208da28593dSlntue DoubleDouble r = 209da28593dSlntue fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part); 210da28593dSlntue 211da28593dSlntue #ifdef DEBUGDEBUG 212da28593dSlntue std::cout << "=== SLOW PASS ===\n" 213da28593dSlntue << " dx: " << dx << " p: " << p << " r: " << r << std::endl; 214da28593dSlntue #endif 215da28593dSlntue 216da28593dSlntue return r; 217da28593dSlntue } 218da28593dSlntue 219da28593dSlntue // Check for exceptional cases when 220da28593dSlntue // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 221da28593dSlntue double set_exceptional(double x) { 222da28593dSlntue using FPBits = typename fputil::FPBits<double>; 223da28593dSlntue FPBits xbits(x); 224da28593dSlntue 225da28593dSlntue uint64_t x_u = xbits.uintval(); 226ea43c8eeSGuillaume Chatelet uint64_t x_abs = xbits.abs().uintval(); 227da28593dSlntue 228da28593dSlntue // |x| <= 2^-53. 229da28593dSlntue if (x_abs <= 0x3ca0'0000'0000'0000ULL) { 230da28593dSlntue // expm1(x) ~ x. 231da28593dSlntue 232da28593dSlntue if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) { 233da28593dSlntue if (LIBC_UNLIKELY(x_abs == 0)) 234da28593dSlntue return x; 235da28593dSlntue // |x| <= 2^-968, need to scale up a bit before rounding, then scale it 236da28593dSlntue // back down. 237da28593dSlntue return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022); 238da28593dSlntue } 239da28593dSlntue 240da28593dSlntue // 2^-968 < |x| <= 2^-53. 241da28593dSlntue return fputil::round_result_slightly_up(x); 242da28593dSlntue } 243da28593dSlntue 244da28593dSlntue // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. 245da28593dSlntue 246da28593dSlntue // x < log(2^-54) or -inf/nan 247da28593dSlntue if (x_u >= 0xc042'b708'8723'20e2ULL) { 248da28593dSlntue // expm1(-Inf) = -1 249da28593dSlntue if (xbits.is_inf()) 250da28593dSlntue return -1.0; 251da28593dSlntue 252da28593dSlntue // exp(nan) = nan 253da28593dSlntue if (xbits.is_nan()) 254da28593dSlntue return x; 255da28593dSlntue 256da28593dSlntue return fputil::round_result_slightly_up(-1.0); 257da28593dSlntue } 258da28593dSlntue 259da28593dSlntue // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan 260da28593dSlntue // x is finite 261da28593dSlntue if (x_u < 0x7ff0'0000'0000'0000ULL) { 262da28593dSlntue int rounding = fputil::quick_get_round(); 263da28593dSlntue if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 2646b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 265da28593dSlntue 266da28593dSlntue fputil::set_errno_if_required(ERANGE); 267da28593dSlntue fputil::raise_except_if_required(FE_OVERFLOW); 268da28593dSlntue } 269da28593dSlntue // x is +inf or nan 2706b02d2f8SGuillaume Chatelet return x + FPBits::inf().get_val(); 271da28593dSlntue } 272da28593dSlntue 2733caef466Slntue } // namespace 2743caef466Slntue 275da28593dSlntue LLVM_LIBC_FUNCTION(double, expm1, (double x)) { 276da28593dSlntue using FPBits = typename fputil::FPBits<double>; 2772137894aSGuillaume Chatelet 278da28593dSlntue FPBits xbits(x); 279da28593dSlntue 28011ec512fSGuillaume Chatelet bool x_is_neg = xbits.is_neg(); 281da28593dSlntue uint64_t x_u = xbits.uintval(); 282da28593dSlntue 283da28593dSlntue // Upper bound: max normal number = 2^1023 * (2 - 2^-52) 284da28593dSlntue // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 285da28593dSlntue // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 286da28593dSlntue // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 287da28593dSlntue // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty 288da28593dSlntue 289da28593dSlntue // Lower bound: log(2^-54) = -0x1.2b708872320e2p5 290da28593dSlntue // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5 291da28593dSlntue 292da28593dSlntue // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53. 293da28593dSlntue 294da28593dSlntue if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 || 295da28593dSlntue (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || 296da28593dSlntue x_u <= 0x3ca0000000000000)) { 297da28593dSlntue return set_exceptional(x); 298da28593dSlntue } 299da28593dSlntue 300da28593dSlntue // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) 301da28593dSlntue 302da28593dSlntue // Range reduction: 303da28593dSlntue // Let x = log(2) * (hi + mid1 + mid2) + lo 304da28593dSlntue // in which: 305da28593dSlntue // hi is an integer 306da28593dSlntue // mid1 * 2^6 is an integer 307da28593dSlntue // mid2 * 2^12 is an integer 308da28593dSlntue // then: 309da28593dSlntue // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). 310da28593dSlntue // With this formula: 311da28593dSlntue // - multiplying by 2^hi is exact and cheap, simply by adding the exponent 312da28593dSlntue // field. 313da28593dSlntue // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. 314da28593dSlntue // - exp(lo) ~ 1 + lo + a0 * lo^2 + ... 315da28593dSlntue // 316da28593dSlntue // They can be defined by: 317da28593dSlntue // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) 318da28593dSlntue // If we store L2E = round(log2(e), D, RN), then: 319da28593dSlntue // log2(e) - L2E ~ 1.5 * 2^(-56) 320da28593dSlntue // So the errors when computing in double precision is: 321da28593dSlntue // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= 322da28593dSlntue // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + 323da28593dSlntue // + | x * 2^12 * L2E - D(x * 2^12 * L2E) | 324da28593dSlntue // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN 325da28593dSlntue // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. 326da28593dSlntue // So if: 327da28593dSlntue // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely 328da28593dSlntue // in double precision, the reduced argument: 329da28593dSlntue // lo = x - log(2) * (hi + mid1 + mid2) is bounded by: 330da28593dSlntue // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) 331da28593dSlntue // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) 332da28593dSlntue // < 2^-13 + 2^-41 333da28593dSlntue // 334da28593dSlntue 335da28593dSlntue // The following trick computes the round(x * L2E) more efficiently 336da28593dSlntue // than using the rounding instructions, with the tradeoff for less accuracy, 337da28593dSlntue // and hence a slightly larger range for the reduced argument `lo`. 338da28593dSlntue // 339da28593dSlntue // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, 340da28593dSlntue // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, 341da28593dSlntue // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. 342da28593dSlntue // Thus, the goal is to be able to use an additional addition and fixed width 343da28593dSlntue // shift to get an int32_t representing round(x * 2^12 * L2E). 344da28593dSlntue // 345da28593dSlntue // Assuming int32_t using 2-complement representation, since the mantissa part 346da28593dSlntue // of a double precision is unsigned with the leading bit hidden, if we add an 347da28593dSlntue // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the 348da28593dSlntue // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be 349da28593dSlntue // considered as a proper 2-complement representations of x*2^12*L2E. 350da28593dSlntue // 351da28593dSlntue // One small problem with this approach is that the sum (x*2^12*L2E + C) in 352da28593dSlntue // double precision is rounded to the least significant bit of the dorminant 353da28593dSlntue // factor C. In order to minimize the rounding errors from this addition, we 354da28593dSlntue // want to minimize e1. Another constraint that we want is that after 355da28593dSlntue // shifting the mantissa so that the least significant bit of int32_t 356da28593dSlntue // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without 357da28593dSlntue // any adjustment. So combining these 2 requirements, we can choose 358da28593dSlntue // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence 359da28593dSlntue // after right shifting the mantissa, the resulting int32_t has correct sign. 360da28593dSlntue // With this choice of C, the number of mantissa bits we need to shift to the 361da28593dSlntue // right is: 52 - 33 = 19. 362da28593dSlntue // 363da28593dSlntue // Moreover, since the integer right shifts are equivalent to rounding down, 364da28593dSlntue // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- 365da28593dSlntue // +infinity. So in particular, we can compute: 366da28593dSlntue // hmm = x * 2^12 * L2E + C, 367da28593dSlntue // where C = 2^33 + 2^32 + 2^-1, then if 368da28593dSlntue // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), 369da28593dSlntue // the reduced argument: 370da28593dSlntue // lo = x - log(2) * 2^-12 * k is bounded by: 371da28593dSlntue // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 372da28593dSlntue // = 2^-13 + 2^-31 + 2^-41. 373da28593dSlntue // 374da28593dSlntue // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the 375da28593dSlntue // exponent 2^12 is not needed. So we can simply define 376da28593dSlntue // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and 377da28593dSlntue // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). 378da28593dSlntue 379da28593dSlntue // Rounding errors <= 2^-31 + 2^-41. 380da28593dSlntue double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); 381da28593dSlntue int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); 382da28593dSlntue double kd = static_cast<double>(k); 383da28593dSlntue 384da28593dSlntue uint32_t idx1 = (k >> 6) & 0x3f; 385da28593dSlntue uint32_t idx2 = k & 0x3f; 386da28593dSlntue int hi = k >> 12; 387da28593dSlntue 388da28593dSlntue DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 389da28593dSlntue DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 390da28593dSlntue 391da28593dSlntue DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 392da28593dSlntue 393da28593dSlntue // -2^(-hi) 394da28593dSlntue double one_scaled = 39511ec512fSGuillaume Chatelet FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val(); 396da28593dSlntue 397da28593dSlntue // 2^(mid1 + mid2) - 2^(-hi) 39811ec512fSGuillaume Chatelet DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi) 399da28593dSlntue : fputil::exact_add(exp_mid.hi, one_scaled); 400da28593dSlntue 401da28593dSlntue hi_part.lo += exp_mid.lo; 402da28593dSlntue 403da28593dSlntue // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) 404da28593dSlntue // = 2^11 * 2^-13 * 2^-52 405da28593dSlntue // = 2^-54. 406da28593dSlntue // |dx| < 2^-13 + 2^-30. 407da28593dSlntue double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 408da28593dSlntue double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); 409da28593dSlntue 410da28593dSlntue // We use the degree-4 Taylor polynomial to approximate exp(lo): 411da28593dSlntue // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) 412da28593dSlntue // So that the errors are bounded by: 413da28593dSlntue // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 414da28593dSlntue // Let P_ be an evaluation of P where all intermediate computations are in 415da28593dSlntue // double precision. Using either Horner's or Estrin's schemes, the evaluated 416da28593dSlntue // errors can be bounded by: 417da28593dSlntue // |P_(dx) - P(dx)| < 2^-51 418da28593dSlntue // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 419da28593dSlntue // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. 420da28593dSlntue // Since we approximate 421da28593dSlntue // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, 422da28593dSlntue // We use the expression: 423da28593dSlntue // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ 424da28593dSlntue // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) 425da28593dSlntue // with errors bounded by 1.5 * 2^-63. 426da28593dSlntue 427da28593dSlntue // Finally, we have the following approximation formula: 428da28593dSlntue // expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1 429da28593dSlntue // = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) ) 430da28593dSlntue // ~ 2^hi * ( (exp_mid.hi - 2^-hi) + 431da28593dSlntue // + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)) 432da28593dSlntue 433da28593dSlntue double mid_lo = dx * exp_mid.hi; 434da28593dSlntue 435da28593dSlntue // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. 436da28593dSlntue double p = poly_approx_d(dx); 437da28593dSlntue 438da28593dSlntue double lo = fputil::multiply_add(p, mid_lo, hi_part.lo); 439da28593dSlntue 44011ec512fSGuillaume Chatelet // TODO: The following line leaks encoding abstraction. Use FPBits methods 44111ec512fSGuillaume Chatelet // instead. 44211ec512fSGuillaume Chatelet uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0; 443da28593dSlntue 444da28593dSlntue double err_d = cpp::bit_cast<double>(ERR_D + err); 445da28593dSlntue 446da28593dSlntue double upper = hi_part.hi + (lo + err_d); 447da28593dSlntue double lower = hi_part.hi + (lo - err_d); 448da28593dSlntue 449da28593dSlntue #ifdef DEBUGDEBUG 450da28593dSlntue std::cout << "=== FAST PASS ===\n" 451da28593dSlntue << " x: " << std::hexfloat << x << std::defaultfloat << "\n" 452da28593dSlntue << " k: " << k << "\n" 453da28593dSlntue << " idx1: " << idx1 << "\n" 454da28593dSlntue << " idx2: " << idx2 << "\n" 455da28593dSlntue << " hi: " << hi << "\n" 456da28593dSlntue << " dx: " << std::hexfloat << dx << std::defaultfloat << "\n" 457da28593dSlntue << "exp_mid: " << exp_mid << "hi_part: " << hi_part 458da28593dSlntue << " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat 459da28593dSlntue << "\n" 460da28593dSlntue << " p: " << std::hexfloat << p << std::defaultfloat << "\n" 461da28593dSlntue << " lo: " << std::hexfloat << lo << std::defaultfloat << "\n" 462da28593dSlntue << " upper: " << std::hexfloat << upper << std::defaultfloat 463da28593dSlntue << "\n" 464da28593dSlntue << " lower: " << std::hexfloat << lower << std::defaultfloat 465da28593dSlntue << "\n" 466da28593dSlntue << std::endl; 467da28593dSlntue #endif 468da28593dSlntue 469da28593dSlntue if (LIBC_LIKELY(upper == lower)) { 470da28593dSlntue // to multiply by 2^hi, a fast way is to simply add hi to the exponent 471da28593dSlntue // field. 472c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 473da28593dSlntue double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); 474da28593dSlntue return r; 475da28593dSlntue } 476da28593dSlntue 477da28593dSlntue // Use double-double 478da28593dSlntue DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part); 479da28593dSlntue 48046c7da63Slntue #ifdef LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS 48146c7da63Slntue int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 48246c7da63Slntue double r = 48346c7da63Slntue cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(r_dd.hi + r_dd.lo)); 48446c7da63Slntue return r; 48546c7da63Slntue #else 486da28593dSlntue double err_dd = cpp::bit_cast<double>(ERR_DD + err); 487da28593dSlntue 488da28593dSlntue double upper_dd = r_dd.hi + (r_dd.lo + err_dd); 489da28593dSlntue double lower_dd = r_dd.hi + (r_dd.lo - err_dd); 490da28593dSlntue 491da28593dSlntue if (LIBC_LIKELY(upper_dd == lower_dd)) { 492c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 493da28593dSlntue double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); 494da28593dSlntue return r; 495da28593dSlntue } 496da28593dSlntue 497da28593dSlntue // Use 128-bit precision 498da28593dSlntue Float128 r_f128 = expm1_f128(x, kd, idx1, idx2); 499da28593dSlntue 500da28593dSlntue return static_cast<double>(r_f128); 50146c7da63Slntue #endif // LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS 502da28593dSlntue } 503da28593dSlntue 504*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 505