xref: /llvm-project/libc/src/math/generic/expm1.cpp (revision 9da087147a6be2053365e3bb30f0864456efaea0)
1da28593dSlntue //===-- Double-precision e^x - 1 function ---------------------------------===//
2da28593dSlntue //
3da28593dSlntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4da28593dSlntue // See https://llvm.org/LICENSE.txt for license information.
5da28593dSlntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6da28593dSlntue //
7da28593dSlntue //===----------------------------------------------------------------------===//
8da28593dSlntue 
9da28593dSlntue #include "src/math/expm1.h"
10da28593dSlntue #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11da28593dSlntue #include "explogxf.h"         // ziv_test_denorm.
12da28593dSlntue #include "src/__support/CPP/bit.h"
13da28593dSlntue #include "src/__support/CPP/optional.h"
14da28593dSlntue #include "src/__support/FPUtil/FEnvImpl.h"
15da28593dSlntue #include "src/__support/FPUtil/FPBits.h"
16da28593dSlntue #include "src/__support/FPUtil/PolyEval.h"
17da28593dSlntue #include "src/__support/FPUtil/double_double.h"
18da28593dSlntue #include "src/__support/FPUtil/dyadic_float.h"
19da28593dSlntue #include "src/__support/FPUtil/except_value_utils.h"
20da28593dSlntue #include "src/__support/FPUtil/multiply_add.h"
21da28593dSlntue #include "src/__support/FPUtil/nearest_integer.h"
22da28593dSlntue #include "src/__support/FPUtil/rounding_mode.h"
23da28593dSlntue #include "src/__support/FPUtil/triple_double.h"
24da28593dSlntue #include "src/__support/common.h"
25a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h"
26*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
27da28593dSlntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
28da28593dSlntue 
2946c7da63Slntue #if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
3046c7da63Slntue #define LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
3146c7da63Slntue #endif
32da28593dSlntue 
33*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
34da28593dSlntue 
35da28593dSlntue using fputil::DoubleDouble;
36da28593dSlntue using fputil::TripleDouble;
37da28593dSlntue using Float128 = typename fputil::DyadicFloat<128>;
382137894aSGuillaume Chatelet 
39a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128;
40da28593dSlntue 
41da28593dSlntue // log2(e)
42da28593dSlntue constexpr double LOG2_E = 0x1.71547652b82fep+0;
43da28593dSlntue 
44da28593dSlntue // Error bounds:
45da28593dSlntue // Errors when using double precision.
46da28593dSlntue // 0x1.8p-63;
47da28593dSlntue constexpr uint64_t ERR_D = 0x3c08000000000000;
48da28593dSlntue // Errors when using double-double precision.
49da28593dSlntue // 0x1.0p-99
5046c7da63Slntue [[maybe_unused]] constexpr uint64_t ERR_DD = 0x39c0000000000000;
51da28593dSlntue 
52da28593dSlntue // -2^-12 * log(2)
53da28593dSlntue // > a = -2^-12 * log(2);
54da28593dSlntue // > b = round(a, 30, RN);
55da28593dSlntue // > c = round(a - b, 30, RN);
56da28593dSlntue // > d = round(a - b - c, D, RN);
57da28593dSlntue // Errors < 1.5 * 2^-133
58da28593dSlntue constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
59da28593dSlntue constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
60da28593dSlntue constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
61da28593dSlntue constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
62da28593dSlntue 
633caef466Slntue namespace {
643caef466Slntue 
65da28593dSlntue // Polynomial approximations with double precision:
66da28593dSlntue // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
67da28593dSlntue // For |dx| < 2^-13 + 2^-30:
68da28593dSlntue //   | output - expm1(dx) / dx | < 2^-51.
69da28593dSlntue LIBC_INLINE double poly_approx_d(double dx) {
70da28593dSlntue   // dx^2
71da28593dSlntue   double dx2 = dx * dx;
72da28593dSlntue   // c0 = 1 + dx / 2
73da28593dSlntue   double c0 = fputil::multiply_add(dx, 0.5, 1.0);
74da28593dSlntue   // c1 = 1/6 + dx / 24
75da28593dSlntue   double c1 =
76da28593dSlntue       fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
77da28593dSlntue   // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
78da28593dSlntue   double p = fputil::multiply_add(dx2, c1, c0);
79da28593dSlntue   return p;
80da28593dSlntue }
81da28593dSlntue 
82da28593dSlntue // Polynomial approximation with double-double precision:
83da28593dSlntue // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
84da28593dSlntue // For |dx| < 2^-13 + 2^-30:
85da28593dSlntue //   | output - expm1(dx) | < 2^-101
86da28593dSlntue DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
87da28593dSlntue   // Taylor polynomial.
88da28593dSlntue   constexpr DoubleDouble COEFFS[] = {
89da28593dSlntue       {0, 0x1p0},                                      // 1
90da28593dSlntue       {0, 0x1p-1},                                     // 1/2
91da28593dSlntue       {0x1.5555555555555p-57, 0x1.5555555555555p-3},   // 1/6
92da28593dSlntue       {0x1.5555555555555p-59, 0x1.5555555555555p-5},   // 1/24
93da28593dSlntue       {0x1.1111111111111p-63, 0x1.1111111111111p-7},   // 1/120
94da28593dSlntue       {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
95da28593dSlntue       {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13},  // 1/5040
96da28593dSlntue   };
97da28593dSlntue 
98da28593dSlntue   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
99da28593dSlntue                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
100da28593dSlntue   return p;
101da28593dSlntue }
102da28593dSlntue 
103da28593dSlntue // Polynomial approximation with 128-bit precision:
104da28593dSlntue // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
105da28593dSlntue // For |dx| < 2^-13 + 2^-30:
106da28593dSlntue //   | output - exp(dx) | < 2^-126.
10746c7da63Slntue [[maybe_unused]] Float128 poly_approx_f128(const Float128 &dx) {
108da28593dSlntue   constexpr Float128 COEFFS_128[]{
109a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
110a80a01fcSGuillaume Chatelet       {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
111a80a01fcSGuillaume Chatelet       {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
112a80a01fcSGuillaume Chatelet       {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
113a80a01fcSGuillaume Chatelet       {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
114a80a01fcSGuillaume Chatelet       {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
115a80a01fcSGuillaume Chatelet       {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
116da28593dSlntue   };
117da28593dSlntue 
118da28593dSlntue   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
119da28593dSlntue                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
120da28593dSlntue                                 COEFFS_128[6]);
121da28593dSlntue   return p;
122da28593dSlntue }
123da28593dSlntue 
124da28593dSlntue #ifdef DEBUGDEBUG
125da28593dSlntue std::ostream &operator<<(std::ostream &OS, const Float128 &r) {
12646c7da63Slntue   OS << (r.sign == Sign::NEG ? "-(" : "(") << r.mantissa.val[0] << " + "
12746c7da63Slntue      << r.mantissa.val[1] << " * 2^64) * 2^" << r.exponent << "\n";
128da28593dSlntue   return OS;
129da28593dSlntue }
130da28593dSlntue 
131da28593dSlntue std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) {
13246c7da63Slntue   OS << std::hexfloat << "(" << r.hi << " + " << r.lo << ")"
13346c7da63Slntue      << std::defaultfloat << "\n";
134da28593dSlntue   return OS;
135da28593dSlntue }
136da28593dSlntue #endif
137da28593dSlntue 
138da28593dSlntue // Compute exp(x) - 1 using 128-bit precision.
139da28593dSlntue // TODO(lntue): investigate triple-double precision implementation for this
140da28593dSlntue // step.
14146c7da63Slntue [[maybe_unused]] Float128 expm1_f128(double x, double kd, int idx1, int idx2) {
142da28593dSlntue   // Recalculate dx:
143da28593dSlntue 
144da28593dSlntue   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
145da28593dSlntue   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
146da28593dSlntue   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-133
147da28593dSlntue 
148da28593dSlntue   Float128 dx = fputil::quick_add(
149da28593dSlntue       Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
150da28593dSlntue 
151da28593dSlntue   // TODO: Skip recalculating exp_mid1 and exp_mid2.
152da28593dSlntue   Float128 exp_mid1 =
153da28593dSlntue       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
154da28593dSlntue                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
155da28593dSlntue                                           Float128(EXP2_MID1[idx1].lo)));
156da28593dSlntue 
157da28593dSlntue   Float128 exp_mid2 =
158da28593dSlntue       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
159da28593dSlntue                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
160da28593dSlntue                                           Float128(EXP2_MID2[idx2].lo)));
161da28593dSlntue 
162da28593dSlntue   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
163da28593dSlntue 
164da28593dSlntue   int hi = static_cast<int>(kd) >> 12;
165a80a01fcSGuillaume Chatelet   Float128 minus_one{Sign::NEG, -127 - hi,
166a80a01fcSGuillaume Chatelet                      0x80000000'00000000'00000000'00000000_u128};
167da28593dSlntue 
168da28593dSlntue   Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one);
169da28593dSlntue 
170da28593dSlntue   Float128 p = poly_approx_f128(dx);
171da28593dSlntue 
172da28593dSlntue   // r = exp_mid * (1 + dx * P) - 1
173da28593dSlntue   //   = (exp_mid - 1) + (dx * exp_mid) * P
174da28593dSlntue   Float128 r =
175da28593dSlntue       fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1);
176da28593dSlntue 
177da28593dSlntue   r.exponent += hi;
178da28593dSlntue 
179da28593dSlntue #ifdef DEBUGDEBUG
180da28593dSlntue   std::cout << "=== VERY SLOW PASS ===\n"
181da28593dSlntue             << "        kd: " << kd << "\n"
18246c7da63Slntue             << "        hi: " << hi << "\n"
18346c7da63Slntue             << " minus_one: " << minus_one << "        dx: " << dx
18446c7da63Slntue             << "exp_mid_m1: " << exp_mid_m1 << "   exp_mid: " << exp_mid
18546c7da63Slntue             << "         p: " << p << "         r: " << r << std::endl;
186da28593dSlntue #endif
187da28593dSlntue 
188da28593dSlntue   return r;
189da28593dSlntue }
190da28593dSlntue 
191da28593dSlntue // Compute exp(x) - 1 with double-double precision.
192da28593dSlntue DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid,
193da28593dSlntue                                const DoubleDouble &hi_part) {
194da28593dSlntue   // Recalculate dx:
195da28593dSlntue   //   dx = x - k * 2^-12 * log(2)
196da28593dSlntue   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
197da28593dSlntue   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
198da28593dSlntue   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-130
199da28593dSlntue 
200da28593dSlntue   DoubleDouble dx = fputil::exact_add(t1, t2);
201da28593dSlntue   dx.lo += t3;
202da28593dSlntue 
203da28593dSlntue   // Degree-6 Taylor polynomial approximation in double-double precision.
204da28593dSlntue   // | p - exp(x) | < 2^-100.
205da28593dSlntue   DoubleDouble p = poly_approx_dd(dx);
206da28593dSlntue 
207da28593dSlntue   // Error bounds: 2^-99.
208da28593dSlntue   DoubleDouble r =
209da28593dSlntue       fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part);
210da28593dSlntue 
211da28593dSlntue #ifdef DEBUGDEBUG
212da28593dSlntue   std::cout << "=== SLOW PASS ===\n"
213da28593dSlntue             << "   dx: " << dx << "    p: " << p << "    r: " << r << std::endl;
214da28593dSlntue #endif
215da28593dSlntue 
216da28593dSlntue   return r;
217da28593dSlntue }
218da28593dSlntue 
219da28593dSlntue // Check for exceptional cases when
220da28593dSlntue // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9
221da28593dSlntue double set_exceptional(double x) {
222da28593dSlntue   using FPBits = typename fputil::FPBits<double>;
223da28593dSlntue   FPBits xbits(x);
224da28593dSlntue 
225da28593dSlntue   uint64_t x_u = xbits.uintval();
226ea43c8eeSGuillaume Chatelet   uint64_t x_abs = xbits.abs().uintval();
227da28593dSlntue 
228da28593dSlntue   // |x| <= 2^-53.
229da28593dSlntue   if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
230da28593dSlntue     // expm1(x) ~ x.
231da28593dSlntue 
232da28593dSlntue     if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) {
233da28593dSlntue       if (LIBC_UNLIKELY(x_abs == 0))
234da28593dSlntue         return x;
235da28593dSlntue       // |x| <= 2^-968, need to scale up a bit before rounding, then scale it
236da28593dSlntue       // back down.
237da28593dSlntue       return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022);
238da28593dSlntue     }
239da28593dSlntue 
240da28593dSlntue     // 2^-968 < |x| <= 2^-53.
241da28593dSlntue     return fputil::round_result_slightly_up(x);
242da28593dSlntue   }
243da28593dSlntue 
244da28593dSlntue   // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
245da28593dSlntue 
246da28593dSlntue   // x < log(2^-54) or -inf/nan
247da28593dSlntue   if (x_u >= 0xc042'b708'8723'20e2ULL) {
248da28593dSlntue     // expm1(-Inf) = -1
249da28593dSlntue     if (xbits.is_inf())
250da28593dSlntue       return -1.0;
251da28593dSlntue 
252da28593dSlntue     // exp(nan) = nan
253da28593dSlntue     if (xbits.is_nan())
254da28593dSlntue       return x;
255da28593dSlntue 
256da28593dSlntue     return fputil::round_result_slightly_up(-1.0);
257da28593dSlntue   }
258da28593dSlntue 
259da28593dSlntue   // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
260da28593dSlntue   // x is finite
261da28593dSlntue   if (x_u < 0x7ff0'0000'0000'0000ULL) {
262da28593dSlntue     int rounding = fputil::quick_get_round();
263da28593dSlntue     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
2646b02d2f8SGuillaume Chatelet       return FPBits::max_normal().get_val();
265da28593dSlntue 
266da28593dSlntue     fputil::set_errno_if_required(ERANGE);
267da28593dSlntue     fputil::raise_except_if_required(FE_OVERFLOW);
268da28593dSlntue   }
269da28593dSlntue   // x is +inf or nan
2706b02d2f8SGuillaume Chatelet   return x + FPBits::inf().get_val();
271da28593dSlntue }
272da28593dSlntue 
2733caef466Slntue } // namespace
2743caef466Slntue 
275da28593dSlntue LLVM_LIBC_FUNCTION(double, expm1, (double x)) {
276da28593dSlntue   using FPBits = typename fputil::FPBits<double>;
2772137894aSGuillaume Chatelet 
278da28593dSlntue   FPBits xbits(x);
279da28593dSlntue 
28011ec512fSGuillaume Chatelet   bool x_is_neg = xbits.is_neg();
281da28593dSlntue   uint64_t x_u = xbits.uintval();
282da28593dSlntue 
283da28593dSlntue   // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
284da28593dSlntue   // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
285da28593dSlntue   // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
286da28593dSlntue   // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
287da28593dSlntue   // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
288da28593dSlntue 
289da28593dSlntue   // Lower bound: log(2^-54) = -0x1.2b708872320e2p5
290da28593dSlntue   // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5
291da28593dSlntue 
292da28593dSlntue   // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53.
293da28593dSlntue 
294da28593dSlntue   if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 ||
295da28593dSlntue                     (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
296da28593dSlntue                     x_u <= 0x3ca0000000000000)) {
297da28593dSlntue     return set_exceptional(x);
298da28593dSlntue   }
299da28593dSlntue 
300da28593dSlntue   // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
301da28593dSlntue 
302da28593dSlntue   // Range reduction:
303da28593dSlntue   // Let x = log(2) * (hi + mid1 + mid2) + lo
304da28593dSlntue   // in which:
305da28593dSlntue   //   hi is an integer
306da28593dSlntue   //   mid1 * 2^6 is an integer
307da28593dSlntue   //   mid2 * 2^12 is an integer
308da28593dSlntue   // then:
309da28593dSlntue   //   exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
310da28593dSlntue   // With this formula:
311da28593dSlntue   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
312da28593dSlntue   //     field.
313da28593dSlntue   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
314da28593dSlntue   //   - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
315da28593dSlntue   //
316da28593dSlntue   // They can be defined by:
317da28593dSlntue   //   hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
318da28593dSlntue   // If we store L2E = round(log2(e), D, RN), then:
319da28593dSlntue   //   log2(e) - L2E ~ 1.5 * 2^(-56)
320da28593dSlntue   // So the errors when computing in double precision is:
321da28593dSlntue   //   | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
322da28593dSlntue   //  <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
323da28593dSlntue   //     + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
324da28593dSlntue   //  <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x))  for RN
325da28593dSlntue   //     2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
326da28593dSlntue   // So if:
327da28593dSlntue   //   hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
328da28593dSlntue   // in double precision, the reduced argument:
329da28593dSlntue   //   lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
330da28593dSlntue   //   |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
331da28593dSlntue   //         < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
332da28593dSlntue   //         < 2^-13 + 2^-41
333da28593dSlntue   //
334da28593dSlntue 
335da28593dSlntue   // The following trick computes the round(x * L2E) more efficiently
336da28593dSlntue   // than using the rounding instructions, with the tradeoff for less accuracy,
337da28593dSlntue   // and hence a slightly larger range for the reduced argument `lo`.
338da28593dSlntue   //
339da28593dSlntue   // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
340da28593dSlntue   //   |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
341da28593dSlntue   // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
342da28593dSlntue   // Thus, the goal is to be able to use an additional addition and fixed width
343da28593dSlntue   // shift to get an int32_t representing round(x * 2^12 * L2E).
344da28593dSlntue   //
345da28593dSlntue   // Assuming int32_t using 2-complement representation, since the mantissa part
346da28593dSlntue   // of a double precision is unsigned with the leading bit hidden, if we add an
347da28593dSlntue   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
348da28593dSlntue   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
349da28593dSlntue   // considered as a proper 2-complement representations of x*2^12*L2E.
350da28593dSlntue   //
351da28593dSlntue   // One small problem with this approach is that the sum (x*2^12*L2E + C) in
352da28593dSlntue   // double precision is rounded to the least significant bit of the dorminant
353da28593dSlntue   // factor C.  In order to minimize the rounding errors from this addition, we
354da28593dSlntue   // want to minimize e1.  Another constraint that we want is that after
355da28593dSlntue   // shifting the mantissa so that the least significant bit of int32_t
356da28593dSlntue   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
357da28593dSlntue   // any adjustment.  So combining these 2 requirements, we can choose
358da28593dSlntue   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
359da28593dSlntue   // after right shifting the mantissa, the resulting int32_t has correct sign.
360da28593dSlntue   // With this choice of C, the number of mantissa bits we need to shift to the
361da28593dSlntue   // right is: 52 - 33 = 19.
362da28593dSlntue   //
363da28593dSlntue   // Moreover, since the integer right shifts are equivalent to rounding down,
364da28593dSlntue   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
365da28593dSlntue   // +infinity.  So in particular, we can compute:
366da28593dSlntue   //   hmm = x * 2^12 * L2E + C,
367da28593dSlntue   // where C = 2^33 + 2^32 + 2^-1, then if
368da28593dSlntue   //   k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
369da28593dSlntue   // the reduced argument:
370da28593dSlntue   //   lo = x - log(2) * 2^-12 * k is bounded by:
371da28593dSlntue   //   |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
372da28593dSlntue   //         = 2^-13 + 2^-31 + 2^-41.
373da28593dSlntue   //
374da28593dSlntue   // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
375da28593dSlntue   // exponent 2^12 is not needed.  So we can simply define
376da28593dSlntue   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
377da28593dSlntue   //   k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
378da28593dSlntue 
379da28593dSlntue   // Rounding errors <= 2^-31 + 2^-41.
380da28593dSlntue   double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
381da28593dSlntue   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
382da28593dSlntue   double kd = static_cast<double>(k);
383da28593dSlntue 
384da28593dSlntue   uint32_t idx1 = (k >> 6) & 0x3f;
385da28593dSlntue   uint32_t idx2 = k & 0x3f;
386da28593dSlntue   int hi = k >> 12;
387da28593dSlntue 
388da28593dSlntue   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
389da28593dSlntue   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
390da28593dSlntue 
391da28593dSlntue   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
392da28593dSlntue 
393da28593dSlntue   // -2^(-hi)
394da28593dSlntue   double one_scaled =
39511ec512fSGuillaume Chatelet       FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val();
396da28593dSlntue 
397da28593dSlntue   // 2^(mid1 + mid2) - 2^(-hi)
39811ec512fSGuillaume Chatelet   DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi)
399da28593dSlntue                                   : fputil::exact_add(exp_mid.hi, one_scaled);
400da28593dSlntue 
401da28593dSlntue   hi_part.lo += exp_mid.lo;
402da28593dSlntue 
403da28593dSlntue   // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
404da28593dSlntue   //                                        = 2^11 * 2^-13 * 2^-52
405da28593dSlntue   //                                        = 2^-54.
406da28593dSlntue   // |dx| < 2^-13 + 2^-30.
407da28593dSlntue   double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
408da28593dSlntue   double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
409da28593dSlntue 
410da28593dSlntue   // We use the degree-4 Taylor polynomial to approximate exp(lo):
411da28593dSlntue   //   exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
412da28593dSlntue   // So that the errors are bounded by:
413da28593dSlntue   //   |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
414da28593dSlntue   // Let P_ be an evaluation of P where all intermediate computations are in
415da28593dSlntue   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
416da28593dSlntue   // errors can be bounded by:
417da28593dSlntue   //      |P_(dx) - P(dx)| < 2^-51
418da28593dSlntue   //   => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
419da28593dSlntue   //   => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
420da28593dSlntue   // Since we approximate
421da28593dSlntue   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
422da28593dSlntue   // We use the expression:
423da28593dSlntue   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
424da28593dSlntue   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
425da28593dSlntue   // with errors bounded by 1.5 * 2^-63.
426da28593dSlntue 
427da28593dSlntue   // Finally, we have the following approximation formula:
428da28593dSlntue   //   expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1
429da28593dSlntue   //            = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) )
430da28593dSlntue   //            ~ 2^hi * ( (exp_mid.hi - 2^-hi) +
431da28593dSlntue   //                       + (exp_mid.hi * dx * P_(dx) + exp_mid.lo))
432da28593dSlntue 
433da28593dSlntue   double mid_lo = dx * exp_mid.hi;
434da28593dSlntue 
435da28593dSlntue   // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
436da28593dSlntue   double p = poly_approx_d(dx);
437da28593dSlntue 
438da28593dSlntue   double lo = fputil::multiply_add(p, mid_lo, hi_part.lo);
439da28593dSlntue 
44011ec512fSGuillaume Chatelet   // TODO: The following line leaks encoding abstraction. Use FPBits methods
44111ec512fSGuillaume Chatelet   // instead.
44211ec512fSGuillaume Chatelet   uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0;
443da28593dSlntue 
444da28593dSlntue   double err_d = cpp::bit_cast<double>(ERR_D + err);
445da28593dSlntue 
446da28593dSlntue   double upper = hi_part.hi + (lo + err_d);
447da28593dSlntue   double lower = hi_part.hi + (lo - err_d);
448da28593dSlntue 
449da28593dSlntue #ifdef DEBUGDEBUG
450da28593dSlntue   std::cout << "=== FAST PASS ===\n"
451da28593dSlntue             << "      x: " << std::hexfloat << x << std::defaultfloat << "\n"
452da28593dSlntue             << "      k: " << k << "\n"
453da28593dSlntue             << "   idx1: " << idx1 << "\n"
454da28593dSlntue             << "   idx2: " << idx2 << "\n"
455da28593dSlntue             << "     hi: " << hi << "\n"
456da28593dSlntue             << "     dx: " << std::hexfloat << dx << std::defaultfloat << "\n"
457da28593dSlntue             << "exp_mid: " << exp_mid << "hi_part: " << hi_part
458da28593dSlntue             << " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat
459da28593dSlntue             << "\n"
460da28593dSlntue             << "      p: " << std::hexfloat << p << std::defaultfloat << "\n"
461da28593dSlntue             << "     lo: " << std::hexfloat << lo << std::defaultfloat << "\n"
462da28593dSlntue             << "  upper: " << std::hexfloat << upper << std::defaultfloat
463da28593dSlntue             << "\n"
464da28593dSlntue             << "  lower: " << std::hexfloat << lower << std::defaultfloat
465da28593dSlntue             << "\n"
466da28593dSlntue             << std::endl;
467da28593dSlntue #endif
468da28593dSlntue 
469da28593dSlntue   if (LIBC_LIKELY(upper == lower)) {
470da28593dSlntue     // to multiply by 2^hi, a fast way is to simply add hi to the exponent
471da28593dSlntue     // field.
472c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
473da28593dSlntue     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
474da28593dSlntue     return r;
475da28593dSlntue   }
476da28593dSlntue 
477da28593dSlntue   // Use double-double
478da28593dSlntue   DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part);
479da28593dSlntue 
48046c7da63Slntue #ifdef LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
48146c7da63Slntue   int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
48246c7da63Slntue   double r =
48346c7da63Slntue       cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(r_dd.hi + r_dd.lo));
48446c7da63Slntue   return r;
48546c7da63Slntue #else
486da28593dSlntue   double err_dd = cpp::bit_cast<double>(ERR_DD + err);
487da28593dSlntue 
488da28593dSlntue   double upper_dd = r_dd.hi + (r_dd.lo + err_dd);
489da28593dSlntue   double lower_dd = r_dd.hi + (r_dd.lo - err_dd);
490da28593dSlntue 
491da28593dSlntue   if (LIBC_LIKELY(upper_dd == lower_dd)) {
492c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
493da28593dSlntue     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
494da28593dSlntue     return r;
495da28593dSlntue   }
496da28593dSlntue 
497da28593dSlntue   // Use 128-bit precision
498da28593dSlntue   Float128 r_f128 = expm1_f128(x, kd, idx1, idx2);
499da28593dSlntue 
500da28593dSlntue   return static_cast<double>(r_f128);
50146c7da63Slntue #endif // LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
502da28593dSlntue }
503da28593dSlntue 
504*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
505