xref: /llvm-project/libc/src/math/generic/expf.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
1bbb75554SSiva Chandra //===-- Single-precision e^x function -------------------------------------===//
2bbb75554SSiva Chandra //
3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information.
5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6bbb75554SSiva Chandra //
7bbb75554SSiva Chandra //===----------------------------------------------------------------------===//
8bbb75554SSiva Chandra 
9bbb75554SSiva Chandra #include "src/math/expf.h"
1064af346bSTue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
1138cadd90STue Ly #include "src/__support/FPUtil/BasicOperations.h"
1238cadd90STue Ly #include "src/__support/FPUtil/FEnvImpl.h"
1338cadd90STue Ly #include "src/__support/FPUtil/FPBits.h"
1438cadd90STue Ly #include "src/__support/FPUtil/PolyEval.h"
1591ee6720STue Ly #include "src/__support/FPUtil/multiply_add.h"
1691ee6720STue Ly #include "src/__support/FPUtil/nearest_integer.h"
17a9824312STue Ly #include "src/__support/FPUtil/rounding_mode.h"
18bbb75554SSiva Chandra #include "src/__support/common.h"
19*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
20737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
21bbb75554SSiva Chandra 
22*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
23bbb75554SSiva Chandra 
2438cadd90STue Ly LLVM_LIBC_FUNCTION(float, expf, (float x)) {
2538cadd90STue Ly   using FPBits = typename fputil::FPBits<float>;
2638cadd90STue Ly   FPBits xbits(x);
2738cadd90STue Ly 
286168b422STue Ly   uint32_t x_u = xbits.uintval();
296168b422STue Ly   uint32_t x_abs = x_u & 0x7fff'ffffU;
306168b422STue Ly 
316168b422STue Ly   // Exceptional values
3229f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_u == 0xc236'bd8cU)) { // x = -0x1.6d7b18p+5f
336168b422STue Ly     return 0x1.108a58p-66f - x * 0x1.0p-95f;
346168b422STue Ly   }
356168b422STue Ly 
366168b422STue Ly   // When |x| >= 89, |x| < 2^-25, or x is nan
3729f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_abs >= 0x42b2'0000U || x_abs <= 0x3280'0000U)) {
386168b422STue Ly     // |x| < 2^-25
397b387d27SGuillaume Chatelet     if (xbits.get_biased_exponent() <= 101) {
406168b422STue Ly       return 1.0f + x;
416168b422STue Ly     }
426168b422STue Ly 
4338cadd90STue Ly     // When x < log(2^-150) or nan
446168b422STue Ly     if (xbits.uintval() >= 0xc2cf'f1b5U) {
4538cadd90STue Ly       // exp(-Inf) = 0
4638cadd90STue Ly       if (xbits.is_inf())
47bbb75554SSiva Chandra         return 0.0f;
4838cadd90STue Ly       // exp(nan) = nan
4938cadd90STue Ly       if (xbits.is_nan())
5038cadd90STue Ly         return x;
51a9824312STue Ly       if (fputil::fenv_is_round_up())
526b02d2f8SGuillaume Chatelet         return FPBits::min_subnormal().get_val();
530aa9593cSTue Ly       fputil::set_errno_if_required(ERANGE);
540aa9593cSTue Ly       fputil::raise_except_if_required(FE_UNDERFLOW);
5538cadd90STue Ly       return 0.0f;
5638cadd90STue Ly     }
5738cadd90STue Ly     // x >= 89 or nan
5811ec512fSGuillaume Chatelet     if (xbits.is_pos() && (xbits.uintval() >= 0x42b2'0000)) {
596168b422STue Ly       // x is finite
6038cadd90STue Ly       if (xbits.uintval() < 0x7f80'0000U) {
61a9824312STue Ly         int rounding = fputil::quick_get_round();
6238cadd90STue Ly         if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
636b02d2f8SGuillaume Chatelet           return FPBits::max_normal().get_val();
6438cadd90STue Ly 
650aa9593cSTue Ly         fputil::set_errno_if_required(ERANGE);
660aa9593cSTue Ly         fputil::raise_except_if_required(FE_OVERFLOW);
6738cadd90STue Ly       }
686168b422STue Ly       // x is +inf or nan
692856db0dSGuillaume Chatelet       return x + FPBits::inf().get_val();
7038cadd90STue Ly     }
71bbb75554SSiva Chandra   }
7238cadd90STue Ly   // For -104 < x < 89, to compute exp(x), we perform the following range
7338cadd90STue Ly   // reduction: find hi, mid, lo such that:
7438cadd90STue Ly   //   x = hi + mid + lo, in which
7538cadd90STue Ly   //     hi is an integer,
7638cadd90STue Ly   //     mid * 2^7 is an integer
7738cadd90STue Ly   //     -2^(-8) <= lo < 2^-8.
7838cadd90STue Ly   // In particular,
7938cadd90STue Ly   //   hi + mid = round(x * 2^7) * 2^(-7).
8038cadd90STue Ly   // Then,
8138cadd90STue Ly   //   exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo).
8238cadd90STue Ly   // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
836168b422STue Ly   // respectively.  exp(lo) is computed using a degree-4 minimax polynomial
8438cadd90STue Ly   // generated by Sollya.
85bbb75554SSiva Chandra 
866168b422STue Ly   // x_hi = (hi + mid) * 2^7 = round(x * 2^7).
8791ee6720STue Ly   float kf = fputil::nearest_integer(x * 0x1.0p7f);
8838cadd90STue Ly   // Subtract (hi + mid) from x to get lo.
8991ee6720STue Ly   double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
9091ee6720STue Ly   int x_hi = static_cast<int>(kf);
9138cadd90STue Ly   x_hi += 104 << 7;
9238cadd90STue Ly   // hi = x_hi >> 7
9338cadd90STue Ly   double exp_hi = EXP_M1[x_hi >> 7];
946168b422STue Ly   // mid * 2^7 = x_hi & 0x0000'007fU;
9538cadd90STue Ly   double exp_mid = EXP_M2[x_hi & 0x7f];
966168b422STue Ly   // Degree-4 minimax polynomial generated by Sollya with the following
9738cadd90STue Ly   // commands:
9838cadd90STue Ly   //   > display = hexadecimal;
996168b422STue Ly   //   > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
10038cadd90STue Ly   //   > Q;
1016168b422STue Ly   double exp_lo =
1026168b422STue Ly       fputil::polyeval(xd, 0x1p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
1036168b422STue Ly                        0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
10438cadd90STue Ly   return static_cast<float>(exp_hi * exp_mid * exp_lo);
105bbb75554SSiva Chandra }
106bbb75554SSiva Chandra 
107*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
108