1bbb75554SSiva Chandra //===-- Single-precision e^x function -------------------------------------===// 2bbb75554SSiva Chandra // 3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information. 5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6bbb75554SSiva Chandra // 7bbb75554SSiva Chandra //===----------------------------------------------------------------------===// 8bbb75554SSiva Chandra 9bbb75554SSiva Chandra #include "src/math/expf.h" 1064af346bSTue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 1138cadd90STue Ly #include "src/__support/FPUtil/BasicOperations.h" 1238cadd90STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1338cadd90STue Ly #include "src/__support/FPUtil/FPBits.h" 1438cadd90STue Ly #include "src/__support/FPUtil/PolyEval.h" 1591ee6720STue Ly #include "src/__support/FPUtil/multiply_add.h" 1691ee6720STue Ly #include "src/__support/FPUtil/nearest_integer.h" 17a9824312STue Ly #include "src/__support/FPUtil/rounding_mode.h" 18bbb75554SSiva Chandra #include "src/__support/common.h" 19*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 20737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 21bbb75554SSiva Chandra 22*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 23bbb75554SSiva Chandra 2438cadd90STue Ly LLVM_LIBC_FUNCTION(float, expf, (float x)) { 2538cadd90STue Ly using FPBits = typename fputil::FPBits<float>; 2638cadd90STue Ly FPBits xbits(x); 2738cadd90STue Ly 286168b422STue Ly uint32_t x_u = xbits.uintval(); 296168b422STue Ly uint32_t x_abs = x_u & 0x7fff'ffffU; 306168b422STue Ly 316168b422STue Ly // Exceptional values 3229f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_u == 0xc236'bd8cU)) { // x = -0x1.6d7b18p+5f 336168b422STue Ly return 0x1.108a58p-66f - x * 0x1.0p-95f; 346168b422STue Ly } 356168b422STue Ly 366168b422STue Ly // When |x| >= 89, |x| < 2^-25, or x is nan 3729f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs >= 0x42b2'0000U || x_abs <= 0x3280'0000U)) { 386168b422STue Ly // |x| < 2^-25 397b387d27SGuillaume Chatelet if (xbits.get_biased_exponent() <= 101) { 406168b422STue Ly return 1.0f + x; 416168b422STue Ly } 426168b422STue Ly 4338cadd90STue Ly // When x < log(2^-150) or nan 446168b422STue Ly if (xbits.uintval() >= 0xc2cf'f1b5U) { 4538cadd90STue Ly // exp(-Inf) = 0 4638cadd90STue Ly if (xbits.is_inf()) 47bbb75554SSiva Chandra return 0.0f; 4838cadd90STue Ly // exp(nan) = nan 4938cadd90STue Ly if (xbits.is_nan()) 5038cadd90STue Ly return x; 51a9824312STue Ly if (fputil::fenv_is_round_up()) 526b02d2f8SGuillaume Chatelet return FPBits::min_subnormal().get_val(); 530aa9593cSTue Ly fputil::set_errno_if_required(ERANGE); 540aa9593cSTue Ly fputil::raise_except_if_required(FE_UNDERFLOW); 5538cadd90STue Ly return 0.0f; 5638cadd90STue Ly } 5738cadd90STue Ly // x >= 89 or nan 5811ec512fSGuillaume Chatelet if (xbits.is_pos() && (xbits.uintval() >= 0x42b2'0000)) { 596168b422STue Ly // x is finite 6038cadd90STue Ly if (xbits.uintval() < 0x7f80'0000U) { 61a9824312STue Ly int rounding = fputil::quick_get_round(); 6238cadd90STue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 636b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 6438cadd90STue Ly 650aa9593cSTue Ly fputil::set_errno_if_required(ERANGE); 660aa9593cSTue Ly fputil::raise_except_if_required(FE_OVERFLOW); 6738cadd90STue Ly } 686168b422STue Ly // x is +inf or nan 692856db0dSGuillaume Chatelet return x + FPBits::inf().get_val(); 7038cadd90STue Ly } 71bbb75554SSiva Chandra } 7238cadd90STue Ly // For -104 < x < 89, to compute exp(x), we perform the following range 7338cadd90STue Ly // reduction: find hi, mid, lo such that: 7438cadd90STue Ly // x = hi + mid + lo, in which 7538cadd90STue Ly // hi is an integer, 7638cadd90STue Ly // mid * 2^7 is an integer 7738cadd90STue Ly // -2^(-8) <= lo < 2^-8. 7838cadd90STue Ly // In particular, 7938cadd90STue Ly // hi + mid = round(x * 2^7) * 2^(-7). 8038cadd90STue Ly // Then, 8138cadd90STue Ly // exp(x) = exp(hi + mid + lo) = exp(hi) * exp(mid) * exp(lo). 8238cadd90STue Ly // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2 836168b422STue Ly // respectively. exp(lo) is computed using a degree-4 minimax polynomial 8438cadd90STue Ly // generated by Sollya. 85bbb75554SSiva Chandra 866168b422STue Ly // x_hi = (hi + mid) * 2^7 = round(x * 2^7). 8791ee6720STue Ly float kf = fputil::nearest_integer(x * 0x1.0p7f); 8838cadd90STue Ly // Subtract (hi + mid) from x to get lo. 8991ee6720STue Ly double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x)); 9091ee6720STue Ly int x_hi = static_cast<int>(kf); 9138cadd90STue Ly x_hi += 104 << 7; 9238cadd90STue Ly // hi = x_hi >> 7 9338cadd90STue Ly double exp_hi = EXP_M1[x_hi >> 7]; 946168b422STue Ly // mid * 2^7 = x_hi & 0x0000'007fU; 9538cadd90STue Ly double exp_mid = EXP_M2[x_hi & 0x7f]; 966168b422STue Ly // Degree-4 minimax polynomial generated by Sollya with the following 9738cadd90STue Ly // commands: 9838cadd90STue Ly // > display = hexadecimal; 996168b422STue Ly // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]); 10038cadd90STue Ly // > Q; 1016168b422STue Ly double exp_lo = 1026168b422STue Ly fputil::polyeval(xd, 0x1p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1, 1036168b422STue Ly 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5); 10438cadd90STue Ly return static_cast<float>(exp_hi * exp_mid * exp_lo); 105bbb75554SSiva Chandra } 106bbb75554SSiva Chandra 107*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 108