xref: /llvm-project/libc/src/math/generic/exp2.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
18ca614aaSTue Ly //===-- Double-precision 2^x function -------------------------------------===//
28ca614aaSTue Ly //
38ca614aaSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
48ca614aaSTue Ly // See https://llvm.org/LICENSE.txt for license information.
58ca614aaSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
68ca614aaSTue Ly //
78ca614aaSTue Ly //===----------------------------------------------------------------------===//
88ca614aaSTue Ly 
98ca614aaSTue Ly #include "src/math/exp2.h"
108ca614aaSTue Ly #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
118ca614aaSTue Ly #include "explogxf.h"         // ziv_test_denorm.
128ca614aaSTue Ly #include "src/__support/CPP/bit.h"
138ca614aaSTue Ly #include "src/__support/CPP/optional.h"
148ca614aaSTue Ly #include "src/__support/FPUtil/FEnvImpl.h"
158ca614aaSTue Ly #include "src/__support/FPUtil/FPBits.h"
168ca614aaSTue Ly #include "src/__support/FPUtil/PolyEval.h"
178ca614aaSTue Ly #include "src/__support/FPUtil/double_double.h"
188ca614aaSTue Ly #include "src/__support/FPUtil/dyadic_float.h"
198ca614aaSTue Ly #include "src/__support/FPUtil/multiply_add.h"
208ca614aaSTue Ly #include "src/__support/FPUtil/nearest_integer.h"
218ca614aaSTue Ly #include "src/__support/FPUtil/rounding_mode.h"
228ca614aaSTue Ly #include "src/__support/FPUtil/triple_double.h"
238ca614aaSTue Ly #include "src/__support/common.h"
24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h"
25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
268ca614aaSTue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
278ca614aaSTue Ly 
28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
298ca614aaSTue Ly 
308ca614aaSTue Ly using fputil::DoubleDouble;
318ca614aaSTue Ly using fputil::TripleDouble;
328ca614aaSTue Ly using Float128 = typename fputil::DyadicFloat<128>;
332137894aSGuillaume Chatelet 
34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128;
358ca614aaSTue Ly 
368ca614aaSTue Ly // Error bounds:
378ca614aaSTue Ly // Errors when using double precision.
388ca614aaSTue Ly #ifdef LIBC_TARGET_CPU_HAS_FMA
398ca614aaSTue Ly constexpr double ERR_D = 0x1.0p-63;
408ca614aaSTue Ly #else
418ca614aaSTue Ly constexpr double ERR_D = 0x1.8p-63;
428ca614aaSTue Ly #endif // LIBC_TARGET_CPU_HAS_FMA
438ca614aaSTue Ly 
448ca614aaSTue Ly // Errors when using double-double precision.
458ca614aaSTue Ly constexpr double ERR_DD = 0x1.0p-100;
468ca614aaSTue Ly 
473caef466Slntue namespace {
483caef466Slntue 
498ca614aaSTue Ly // Polynomial approximations with double precision.  Generated by Sollya with:
508ca614aaSTue Ly // > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
518ca614aaSTue Ly // > P;
528ca614aaSTue Ly // Error bounds:
538ca614aaSTue Ly //   | output - (2^dx - 1) / dx | < 1.5 * 2^-52.
548ca614aaSTue Ly LIBC_INLINE double poly_approx_d(double dx) {
558ca614aaSTue Ly   // dx^2
568ca614aaSTue Ly   double dx2 = dx * dx;
578ca614aaSTue Ly   double c0 =
588ca614aaSTue Ly       fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1);
598ca614aaSTue Ly   double c1 =
608ca614aaSTue Ly       fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5);
618ca614aaSTue Ly   double p = fputil::multiply_add(dx2, c1, c0);
628ca614aaSTue Ly   return p;
638ca614aaSTue Ly }
648ca614aaSTue Ly 
658ca614aaSTue Ly // Polynomial approximation with double-double precision.  Generated by Solya
668ca614aaSTue Ly // with:
678ca614aaSTue Ly // > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]);
688ca614aaSTue Ly // Error bounds:
698ca614aaSTue Ly //   | output - 2^(dx) | < 2^-101
708ca614aaSTue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
718ca614aaSTue Ly   // Taylor polynomial.
728ca614aaSTue Ly   constexpr DoubleDouble COEFFS[] = {
738ca614aaSTue Ly       {0, 0x1p0},
748ca614aaSTue Ly       {0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1},
758ca614aaSTue Ly       {-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3},
768ca614aaSTue Ly       {-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5},
778ca614aaSTue Ly       {0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7},
788ca614aaSTue Ly       {-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10},
798ca614aaSTue Ly       {0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13},
808ca614aaSTue Ly   };
818ca614aaSTue Ly 
828ca614aaSTue Ly   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
838ca614aaSTue Ly                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
848ca614aaSTue Ly   return p;
858ca614aaSTue Ly }
868ca614aaSTue Ly 
878ca614aaSTue Ly // Polynomial approximation with 128-bit precision:
888ca614aaSTue Ly // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
898ca614aaSTue Ly // For |dx| < 2^-13 + 2^-30:
908ca614aaSTue Ly //   | output - exp(dx) | < 2^-126.
918ca614aaSTue Ly Float128 poly_approx_f128(const Float128 &dx) {
928ca614aaSTue Ly   constexpr Float128 COEFFS_128[]{
93a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
94a80a01fcSGuillaume Chatelet       {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128},
95a80a01fcSGuillaume Chatelet       {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128},
96a80a01fcSGuillaume Chatelet       {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128},
97a80a01fcSGuillaume Chatelet       {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128},
98a80a01fcSGuillaume Chatelet       {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128},
99a80a01fcSGuillaume Chatelet       {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128},
100a80a01fcSGuillaume Chatelet       {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128},
1018ca614aaSTue Ly   };
1028ca614aaSTue Ly 
1038ca614aaSTue Ly   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
1048ca614aaSTue Ly                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
1058ca614aaSTue Ly                                 COEFFS_128[6], COEFFS_128[7]);
1068ca614aaSTue Ly   return p;
1078ca614aaSTue Ly }
1088ca614aaSTue Ly 
10976bb278eSTue Ly // Compute 2^(x) using 128-bit precision.
1108ca614aaSTue Ly // TODO(lntue): investigate triple-double precision implementation for this
1118ca614aaSTue Ly // step.
1128ca614aaSTue Ly Float128 exp2_f128(double x, int hi, int idx1, int idx2) {
1138ca614aaSTue Ly   Float128 dx = Float128(x);
1148ca614aaSTue Ly 
1158ca614aaSTue Ly   // TODO: Skip recalculating exp_mid1 and exp_mid2.
1168ca614aaSTue Ly   Float128 exp_mid1 =
1178ca614aaSTue Ly       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
1188ca614aaSTue Ly                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
1198ca614aaSTue Ly                                           Float128(EXP2_MID1[idx1].lo)));
1208ca614aaSTue Ly 
1218ca614aaSTue Ly   Float128 exp_mid2 =
1228ca614aaSTue Ly       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
1238ca614aaSTue Ly                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
1248ca614aaSTue Ly                                           Float128(EXP2_MID2[idx2].lo)));
1258ca614aaSTue Ly 
1268ca614aaSTue Ly   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
1278ca614aaSTue Ly 
1288ca614aaSTue Ly   Float128 p = poly_approx_f128(dx);
1298ca614aaSTue Ly 
1308ca614aaSTue Ly   Float128 r = fputil::quick_mul(exp_mid, p);
1318ca614aaSTue Ly 
1328ca614aaSTue Ly   r.exponent += hi;
1338ca614aaSTue Ly 
1348ca614aaSTue Ly   return r;
1358ca614aaSTue Ly }
1368ca614aaSTue Ly 
1378ca614aaSTue Ly // Compute 2^x with double-double precision.
1388ca614aaSTue Ly DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) {
1398ca614aaSTue Ly   DoubleDouble dx({0, x});
1408ca614aaSTue Ly 
1418ca614aaSTue Ly   // Degree-6 polynomial approximation in double-double precision.
1428ca614aaSTue Ly   // | p - 2^x | < 2^-103.
1438ca614aaSTue Ly   DoubleDouble p = poly_approx_dd(dx);
1448ca614aaSTue Ly 
1458ca614aaSTue Ly   // Error bounds: 2^-102.
1468ca614aaSTue Ly   DoubleDouble r = fputil::quick_mult(exp_mid, p);
1478ca614aaSTue Ly 
1488ca614aaSTue Ly   return r;
1498ca614aaSTue Ly }
1508ca614aaSTue Ly 
1518ca614aaSTue Ly // When output is denormal.
1528ca614aaSTue Ly double exp2_denorm(double x) {
1538ca614aaSTue Ly   // Range reduction.
1548ca614aaSTue Ly   int k =
1558ca614aaSTue Ly       static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
1568ca614aaSTue Ly   double kd = static_cast<double>(k);
1578ca614aaSTue Ly 
1588ca614aaSTue Ly   uint32_t idx1 = (k >> 6) & 0x3f;
1598ca614aaSTue Ly   uint32_t idx2 = k & 0x3f;
1608ca614aaSTue Ly 
1618ca614aaSTue Ly   int hi = k >> 12;
1628ca614aaSTue Ly 
1638ca614aaSTue Ly   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
1648ca614aaSTue Ly   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
1658ca614aaSTue Ly   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
1668ca614aaSTue Ly 
1678ca614aaSTue Ly   // |dx| < 2^-13 + 2^-30.
1688ca614aaSTue Ly   double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
1698ca614aaSTue Ly 
1708ca614aaSTue Ly   double mid_lo = dx * exp_mid.hi;
1718ca614aaSTue Ly 
1728ca614aaSTue Ly   // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
1738ca614aaSTue Ly   double p = poly_approx_d(dx);
1748ca614aaSTue Ly 
1758ca614aaSTue Ly   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
1768ca614aaSTue Ly 
1778ca614aaSTue Ly   if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
1788ca614aaSTue Ly       LIBC_LIKELY(r.has_value()))
1798ca614aaSTue Ly     return r.value();
1808ca614aaSTue Ly 
1818ca614aaSTue Ly   // Use double-double
1828ca614aaSTue Ly   DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
1838ca614aaSTue Ly 
1848ca614aaSTue Ly   if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
1858ca614aaSTue Ly       LIBC_LIKELY(r.has_value()))
1868ca614aaSTue Ly     return r.value();
1878ca614aaSTue Ly 
1888ca614aaSTue Ly   // Use 128-bit precision
1898ca614aaSTue Ly   Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
1908ca614aaSTue Ly 
1918ca614aaSTue Ly   return static_cast<double>(r_f128);
1928ca614aaSTue Ly }
1938ca614aaSTue Ly 
1948ca614aaSTue Ly // Check for exceptional cases when:
1958ca614aaSTue Ly //  * log2(1 - 2^-54) < x < log2(1 + 2^-53)
1968ca614aaSTue Ly //  * x >= 1024
19776bb278eSTue Ly //  * x <= -1022
1988ca614aaSTue Ly //  * x is inf or nan
1998ca614aaSTue Ly double set_exceptional(double x) {
2008ca614aaSTue Ly   using FPBits = typename fputil::FPBits<double>;
2018ca614aaSTue Ly   FPBits xbits(x);
2028ca614aaSTue Ly 
2038ca614aaSTue Ly   uint64_t x_u = xbits.uintval();
204ea43c8eeSGuillaume Chatelet   uint64_t x_abs = xbits.abs().uintval();
2058ca614aaSTue Ly 
2068ca614aaSTue Ly   // |x| < log2(1 + 2^-53)
2078ca614aaSTue Ly   if (x_abs <= 0x3ca71547652b82fd) {
2088ca614aaSTue Ly     // 2^(x) ~ 1 + x/2
2098ca614aaSTue Ly     return fputil::multiply_add(x, 0.5, 1.0);
2108ca614aaSTue Ly   }
2118ca614aaSTue Ly 
21276bb278eSTue Ly   // x <= -1022 || x >= 1024 or inf/nan.
2138ca614aaSTue Ly   if (x_u > 0xc08ff00000000000) {
21476bb278eSTue Ly     // x <= -1075 or -inf/nan
2158ca614aaSTue Ly     if (x_u >= 0xc090cc0000000000) {
2168ca614aaSTue Ly       // exp(-Inf) = 0
2178ca614aaSTue Ly       if (xbits.is_inf())
2188ca614aaSTue Ly         return 0.0;
2198ca614aaSTue Ly 
2208ca614aaSTue Ly       // exp(nan) = nan
2218ca614aaSTue Ly       if (xbits.is_nan())
2228ca614aaSTue Ly         return x;
2238ca614aaSTue Ly 
2248ca614aaSTue Ly       if (fputil::quick_get_round() == FE_UPWARD)
2256b02d2f8SGuillaume Chatelet         return FPBits::min_subnormal().get_val();
2268ca614aaSTue Ly       fputil::set_errno_if_required(ERANGE);
2278ca614aaSTue Ly       fputil::raise_except_if_required(FE_UNDERFLOW);
2288ca614aaSTue Ly       return 0.0;
2298ca614aaSTue Ly     }
2308ca614aaSTue Ly 
2318ca614aaSTue Ly     return exp2_denorm(x);
2328ca614aaSTue Ly   }
2338ca614aaSTue Ly 
2348ca614aaSTue Ly   // x >= 1024 or +inf/nan
2358ca614aaSTue Ly   // x is finite
2368ca614aaSTue Ly   if (x_u < 0x7ff0'0000'0000'0000ULL) {
2378ca614aaSTue Ly     int rounding = fputil::quick_get_round();
2388ca614aaSTue Ly     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
2396b02d2f8SGuillaume Chatelet       return FPBits::max_normal().get_val();
2408ca614aaSTue Ly 
2418ca614aaSTue Ly     fputil::set_errno_if_required(ERANGE);
2428ca614aaSTue Ly     fputil::raise_except_if_required(FE_OVERFLOW);
2438ca614aaSTue Ly   }
2448ca614aaSTue Ly   // x is +inf or nan
2452856db0dSGuillaume Chatelet   return x + FPBits::inf().get_val();
2468ca614aaSTue Ly }
2478ca614aaSTue Ly 
2483caef466Slntue } // namespace
2493caef466Slntue 
2508ca614aaSTue Ly LLVM_LIBC_FUNCTION(double, exp2, (double x)) {
2518ca614aaSTue Ly   using FPBits = typename fputil::FPBits<double>;
2528ca614aaSTue Ly   FPBits xbits(x);
2538ca614aaSTue Ly 
2548ca614aaSTue Ly   uint64_t x_u = xbits.uintval();
2558ca614aaSTue Ly 
2568ca614aaSTue Ly   // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53).
2578ca614aaSTue Ly   if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 ||
2588ca614aaSTue Ly                     (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) ||
2598ca614aaSTue Ly                     x_u <= 0x3ca71547652b82fd)) {
2608ca614aaSTue Ly     return set_exceptional(x);
2618ca614aaSTue Ly   }
2628ca614aaSTue Ly 
2638ca614aaSTue Ly   // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024
2648ca614aaSTue Ly 
2658ca614aaSTue Ly   // Range reduction:
2668ca614aaSTue Ly   // Let x = (hi + mid1 + mid2) + lo
2678ca614aaSTue Ly   // in which:
2688ca614aaSTue Ly   //   hi is an integer
2698ca614aaSTue Ly   //   mid1 * 2^6 is an integer
2708ca614aaSTue Ly   //   mid2 * 2^12 is an integer
2718ca614aaSTue Ly   // then:
2728ca614aaSTue Ly   //   2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo).
2738ca614aaSTue Ly   // With this formula:
2748ca614aaSTue Ly   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
2758ca614aaSTue Ly   //     field.
2768ca614aaSTue Ly   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
2778ca614aaSTue Ly   //   - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
2788ca614aaSTue Ly   //
2798ca614aaSTue Ly   // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12.
2808ca614aaSTue Ly   // Since |x| < |-1075)| < 2^11,
2818ca614aaSTue Ly   //   |x * 2^12| < 2^11 * 2^12 < 2^23,
2828ca614aaSTue Ly   // So we can fit the rounded result round(x * 2^12) in int32_t.
2838ca614aaSTue Ly   // Thus, the goal is to be able to use an additional addition and fixed width
2848ca614aaSTue Ly   // shift to get an int32_t representing round(x * 2^12).
2858ca614aaSTue Ly   //
2868ca614aaSTue Ly   // Assuming int32_t using 2-complement representation, since the mantissa part
2878ca614aaSTue Ly   // of a double precision is unsigned with the leading bit hidden, if we add an
2888ca614aaSTue Ly   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
2898ca614aaSTue Ly   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
2908ca614aaSTue Ly   // considered as a proper 2-complement representations of x*2^12.
2918ca614aaSTue Ly   //
2928ca614aaSTue Ly   // One small problem with this approach is that the sum (x*2^12 + C) in
2938ca614aaSTue Ly   // double precision is rounded to the least significant bit of the dorminant
2948ca614aaSTue Ly   // factor C.  In order to minimize the rounding errors from this addition, we
2958ca614aaSTue Ly   // want to minimize e1.  Another constraint that we want is that after
2968ca614aaSTue Ly   // shifting the mantissa so that the least significant bit of int32_t
2978ca614aaSTue Ly   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
2988ca614aaSTue Ly   // any adjustment.  So combining these 2 requirements, we can choose
2998ca614aaSTue Ly   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
3008ca614aaSTue Ly   // after right shifting the mantissa, the resulting int32_t has correct sign.
3018ca614aaSTue Ly   // With this choice of C, the number of mantissa bits we need to shift to the
3028ca614aaSTue Ly   // right is: 52 - 33 = 19.
3038ca614aaSTue Ly   //
3048ca614aaSTue Ly   // Moreover, since the integer right shifts are equivalent to rounding down,
3058ca614aaSTue Ly   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
3068ca614aaSTue Ly   // +infinity.  So in particular, we can compute:
3078ca614aaSTue Ly   //   hmm = x * 2^12 + C,
3088ca614aaSTue Ly   // where C = 2^33 + 2^32 + 2^-1, then if
3098ca614aaSTue Ly   //   k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
3108ca614aaSTue Ly   // the reduced argument:
3118ca614aaSTue Ly   //   lo = x - 2^-12 * k is bounded by:
3128ca614aaSTue Ly   //   |lo| <= 2^-13 + 2^-12*2^-19
3138ca614aaSTue Ly   //         = 2^-13 + 2^-31.
3148ca614aaSTue Ly   //
3158ca614aaSTue Ly   // Finally, notice that k only uses the mantissa of x * 2^12, so the
3168ca614aaSTue Ly   // exponent 2^12 is not needed.  So we can simply define
3178ca614aaSTue Ly   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
3188ca614aaSTue Ly   //   k = int32_t(lower 51 bits of double(x + C) >> 19).
3198ca614aaSTue Ly 
3208ca614aaSTue Ly   // Rounding errors <= 2^-31.
3218ca614aaSTue Ly   int k =
3228ca614aaSTue Ly       static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19);
3238ca614aaSTue Ly   double kd = static_cast<double>(k);
3248ca614aaSTue Ly 
3258ca614aaSTue Ly   uint32_t idx1 = (k >> 6) & 0x3f;
3268ca614aaSTue Ly   uint32_t idx2 = k & 0x3f;
3278ca614aaSTue Ly 
3288ca614aaSTue Ly   int hi = k >> 12;
3298ca614aaSTue Ly 
3308ca614aaSTue Ly   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
3318ca614aaSTue Ly   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
3328ca614aaSTue Ly   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
3338ca614aaSTue Ly 
3348ca614aaSTue Ly   // |dx| < 2^-13 + 2^-30.
3358ca614aaSTue Ly   double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact
3368ca614aaSTue Ly 
3378ca614aaSTue Ly   // We use the degree-4 polynomial to approximate 2^(lo):
3388ca614aaSTue Ly   //   2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo)
3398ca614aaSTue Ly   // So that the errors are bounded by:
3408ca614aaSTue Ly   //   |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
3418ca614aaSTue Ly   // Let P_ be an evaluation of P where all intermediate computations are in
3428ca614aaSTue Ly   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
3438ca614aaSTue Ly   // errors can be bounded by:
3448ca614aaSTue Ly   //      |P_(lo) - P(lo)| < 2^-51
3458ca614aaSTue Ly   //   => |lo * P_(lo) - (2^lo - 1) | < 2^-64
3468ca614aaSTue Ly   //   => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63.
3478ca614aaSTue Ly   // Since we approximate
3488ca614aaSTue Ly   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
3498ca614aaSTue Ly   // We use the expression:
3508ca614aaSTue Ly   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
3518ca614aaSTue Ly   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
3528ca614aaSTue Ly   // with errors bounded by 2^-63.
3538ca614aaSTue Ly 
3548ca614aaSTue Ly   double mid_lo = dx * exp_mid.hi;
3558ca614aaSTue Ly 
3568ca614aaSTue Ly   // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
3578ca614aaSTue Ly   double p = poly_approx_d(dx);
3588ca614aaSTue Ly 
3598ca614aaSTue Ly   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
3608ca614aaSTue Ly 
3618ca614aaSTue Ly   double upper = exp_mid.hi + (lo + ERR_D);
3628ca614aaSTue Ly   double lower = exp_mid.hi + (lo - ERR_D);
3638ca614aaSTue Ly 
3648ca614aaSTue Ly   if (LIBC_LIKELY(upper == lower)) {
3658ca614aaSTue Ly     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
3668ca614aaSTue Ly     // field.
367c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
3688ca614aaSTue Ly     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
3698ca614aaSTue Ly     return r;
3708ca614aaSTue Ly   }
3718ca614aaSTue Ly 
3728ca614aaSTue Ly   // Use double-double
3738ca614aaSTue Ly   DoubleDouble r_dd = exp2_double_double(dx, exp_mid);
3748ca614aaSTue Ly 
3758ca614aaSTue Ly   double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
3768ca614aaSTue Ly   double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
3778ca614aaSTue Ly 
3788ca614aaSTue Ly   if (LIBC_LIKELY(upper_dd == lower_dd)) {
3798ca614aaSTue Ly     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
3808ca614aaSTue Ly     // field.
381c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
3828ca614aaSTue Ly     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
3838ca614aaSTue Ly     return r;
3848ca614aaSTue Ly   }
3858ca614aaSTue Ly 
3868ca614aaSTue Ly   // Use 128-bit precision
3878ca614aaSTue Ly   Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2);
3888ca614aaSTue Ly 
3898ca614aaSTue Ly   return static_cast<double>(r_f128);
3908ca614aaSTue Ly }
3918ca614aaSTue Ly 
392*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
393