18ca614aaSTue Ly //===-- Double-precision 2^x function -------------------------------------===// 28ca614aaSTue Ly // 38ca614aaSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48ca614aaSTue Ly // See https://llvm.org/LICENSE.txt for license information. 58ca614aaSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68ca614aaSTue Ly // 78ca614aaSTue Ly //===----------------------------------------------------------------------===// 88ca614aaSTue Ly 98ca614aaSTue Ly #include "src/math/exp2.h" 108ca614aaSTue Ly #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. 118ca614aaSTue Ly #include "explogxf.h" // ziv_test_denorm. 128ca614aaSTue Ly #include "src/__support/CPP/bit.h" 138ca614aaSTue Ly #include "src/__support/CPP/optional.h" 148ca614aaSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 158ca614aaSTue Ly #include "src/__support/FPUtil/FPBits.h" 168ca614aaSTue Ly #include "src/__support/FPUtil/PolyEval.h" 178ca614aaSTue Ly #include "src/__support/FPUtil/double_double.h" 188ca614aaSTue Ly #include "src/__support/FPUtil/dyadic_float.h" 198ca614aaSTue Ly #include "src/__support/FPUtil/multiply_add.h" 208ca614aaSTue Ly #include "src/__support/FPUtil/nearest_integer.h" 218ca614aaSTue Ly #include "src/__support/FPUtil/rounding_mode.h" 228ca614aaSTue Ly #include "src/__support/FPUtil/triple_double.h" 238ca614aaSTue Ly #include "src/__support/common.h" 24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h" 25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 268ca614aaSTue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 278ca614aaSTue Ly 28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 298ca614aaSTue Ly 308ca614aaSTue Ly using fputil::DoubleDouble; 318ca614aaSTue Ly using fputil::TripleDouble; 328ca614aaSTue Ly using Float128 = typename fputil::DyadicFloat<128>; 332137894aSGuillaume Chatelet 34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128; 358ca614aaSTue Ly 368ca614aaSTue Ly // Error bounds: 378ca614aaSTue Ly // Errors when using double precision. 388ca614aaSTue Ly #ifdef LIBC_TARGET_CPU_HAS_FMA 398ca614aaSTue Ly constexpr double ERR_D = 0x1.0p-63; 408ca614aaSTue Ly #else 418ca614aaSTue Ly constexpr double ERR_D = 0x1.8p-63; 428ca614aaSTue Ly #endif // LIBC_TARGET_CPU_HAS_FMA 438ca614aaSTue Ly 448ca614aaSTue Ly // Errors when using double-double precision. 458ca614aaSTue Ly constexpr double ERR_DD = 0x1.0p-100; 468ca614aaSTue Ly 473caef466Slntue namespace { 483caef466Slntue 498ca614aaSTue Ly // Polynomial approximations with double precision. Generated by Sollya with: 508ca614aaSTue Ly // > P = fpminimax((2^x - 1)/x, 3, [|D...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); 518ca614aaSTue Ly // > P; 528ca614aaSTue Ly // Error bounds: 538ca614aaSTue Ly // | output - (2^dx - 1) / dx | < 1.5 * 2^-52. 548ca614aaSTue Ly LIBC_INLINE double poly_approx_d(double dx) { 558ca614aaSTue Ly // dx^2 568ca614aaSTue Ly double dx2 = dx * dx; 578ca614aaSTue Ly double c0 = 588ca614aaSTue Ly fputil::multiply_add(dx, 0x1.ebfbdff82c58ep-3, 0x1.62e42fefa39efp-1); 598ca614aaSTue Ly double c1 = 608ca614aaSTue Ly fputil::multiply_add(dx, 0x1.3b2aba7a95a89p-7, 0x1.c6b08e8fc0c0ep-5); 618ca614aaSTue Ly double p = fputil::multiply_add(dx2, c1, c0); 628ca614aaSTue Ly return p; 638ca614aaSTue Ly } 648ca614aaSTue Ly 658ca614aaSTue Ly // Polynomial approximation with double-double precision. Generated by Solya 668ca614aaSTue Ly // with: 678ca614aaSTue Ly // > P = fpminimax((2^x - 1)/x, 5, [|DD...|], [-2^-13 - 2^-30, 2^-13 + 2^-30]); 688ca614aaSTue Ly // Error bounds: 698ca614aaSTue Ly // | output - 2^(dx) | < 2^-101 708ca614aaSTue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) { 718ca614aaSTue Ly // Taylor polynomial. 728ca614aaSTue Ly constexpr DoubleDouble COEFFS[] = { 738ca614aaSTue Ly {0, 0x1p0}, 748ca614aaSTue Ly {0x1.abc9e3b39824p-56, 0x1.62e42fefa39efp-1}, 758ca614aaSTue Ly {-0x1.5e43a53e4527bp-57, 0x1.ebfbdff82c58fp-3}, 768ca614aaSTue Ly {-0x1.d37963a9444eep-59, 0x1.c6b08d704a0cp-5}, 778ca614aaSTue Ly {0x1.4eda1a81133dap-62, 0x1.3b2ab6fba4e77p-7}, 788ca614aaSTue Ly {-0x1.c53fd1ba85d14p-64, 0x1.5d87fe7a265a5p-10}, 798ca614aaSTue Ly {0x1.d89250b013eb8p-70, 0x1.430912f86cb8ep-13}, 808ca614aaSTue Ly }; 818ca614aaSTue Ly 828ca614aaSTue Ly DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], 838ca614aaSTue Ly COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); 848ca614aaSTue Ly return p; 858ca614aaSTue Ly } 868ca614aaSTue Ly 878ca614aaSTue Ly // Polynomial approximation with 128-bit precision: 888ca614aaSTue Ly // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 898ca614aaSTue Ly // For |dx| < 2^-13 + 2^-30: 908ca614aaSTue Ly // | output - exp(dx) | < 2^-126. 918ca614aaSTue Ly Float128 poly_approx_f128(const Float128 &dx) { 928ca614aaSTue Ly constexpr Float128 COEFFS_128[]{ 93a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 94a80a01fcSGuillaume Chatelet {Sign::POS, -128, 0xb17217f7'd1cf79ab'c9e3b398'03f2f6af_u128}, 95a80a01fcSGuillaume Chatelet {Sign::POS, -128, 0x3d7f7bff'058b1d50'de2d60dd'9c9a1d9f_u128}, 96a80a01fcSGuillaume Chatelet {Sign::POS, -132, 0xe35846b8'2505fc59'9d3b15d9'e7fb6897_u128}, 97a80a01fcSGuillaume Chatelet {Sign::POS, -134, 0x9d955b7d'd273b94e'184462f6'bcd2b9e7_u128}, 98a80a01fcSGuillaume Chatelet {Sign::POS, -137, 0xaec3ff3c'53398883'39ea1bb9'64c51a89_u128}, 99a80a01fcSGuillaume Chatelet {Sign::POS, -138, 0x2861225f'345c396a'842c5341'8fa8ae61_u128}, 100a80a01fcSGuillaume Chatelet {Sign::POS, -144, 0xffe5fe2d'109a319d'7abeb5ab'd5ad2079_u128}, 1018ca614aaSTue Ly }; 1028ca614aaSTue Ly 1038ca614aaSTue Ly Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], 1048ca614aaSTue Ly COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], 1058ca614aaSTue Ly COEFFS_128[6], COEFFS_128[7]); 1068ca614aaSTue Ly return p; 1078ca614aaSTue Ly } 1088ca614aaSTue Ly 10976bb278eSTue Ly // Compute 2^(x) using 128-bit precision. 1108ca614aaSTue Ly // TODO(lntue): investigate triple-double precision implementation for this 1118ca614aaSTue Ly // step. 1128ca614aaSTue Ly Float128 exp2_f128(double x, int hi, int idx1, int idx2) { 1138ca614aaSTue Ly Float128 dx = Float128(x); 1148ca614aaSTue Ly 1158ca614aaSTue Ly // TODO: Skip recalculating exp_mid1 and exp_mid2. 1168ca614aaSTue Ly Float128 exp_mid1 = 1178ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].hi), 1188ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].mid), 1198ca614aaSTue Ly Float128(EXP2_MID1[idx1].lo))); 1208ca614aaSTue Ly 1218ca614aaSTue Ly Float128 exp_mid2 = 1228ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].hi), 1238ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].mid), 1248ca614aaSTue Ly Float128(EXP2_MID2[idx2].lo))); 1258ca614aaSTue Ly 1268ca614aaSTue Ly Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); 1278ca614aaSTue Ly 1288ca614aaSTue Ly Float128 p = poly_approx_f128(dx); 1298ca614aaSTue Ly 1308ca614aaSTue Ly Float128 r = fputil::quick_mul(exp_mid, p); 1318ca614aaSTue Ly 1328ca614aaSTue Ly r.exponent += hi; 1338ca614aaSTue Ly 1348ca614aaSTue Ly return r; 1358ca614aaSTue Ly } 1368ca614aaSTue Ly 1378ca614aaSTue Ly // Compute 2^x with double-double precision. 1388ca614aaSTue Ly DoubleDouble exp2_double_double(double x, const DoubleDouble &exp_mid) { 1398ca614aaSTue Ly DoubleDouble dx({0, x}); 1408ca614aaSTue Ly 1418ca614aaSTue Ly // Degree-6 polynomial approximation in double-double precision. 1428ca614aaSTue Ly // | p - 2^x | < 2^-103. 1438ca614aaSTue Ly DoubleDouble p = poly_approx_dd(dx); 1448ca614aaSTue Ly 1458ca614aaSTue Ly // Error bounds: 2^-102. 1468ca614aaSTue Ly DoubleDouble r = fputil::quick_mult(exp_mid, p); 1478ca614aaSTue Ly 1488ca614aaSTue Ly return r; 1498ca614aaSTue Ly } 1508ca614aaSTue Ly 1518ca614aaSTue Ly // When output is denormal. 1528ca614aaSTue Ly double exp2_denorm(double x) { 1538ca614aaSTue Ly // Range reduction. 1548ca614aaSTue Ly int k = 1558ca614aaSTue Ly static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19); 1568ca614aaSTue Ly double kd = static_cast<double>(k); 1578ca614aaSTue Ly 1588ca614aaSTue Ly uint32_t idx1 = (k >> 6) & 0x3f; 1598ca614aaSTue Ly uint32_t idx2 = k & 0x3f; 1608ca614aaSTue Ly 1618ca614aaSTue Ly int hi = k >> 12; 1628ca614aaSTue Ly 1638ca614aaSTue Ly DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 1648ca614aaSTue Ly DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 1658ca614aaSTue Ly DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 1668ca614aaSTue Ly 1678ca614aaSTue Ly // |dx| < 2^-13 + 2^-30. 1688ca614aaSTue Ly double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact 1698ca614aaSTue Ly 1708ca614aaSTue Ly double mid_lo = dx * exp_mid.hi; 1718ca614aaSTue Ly 1728ca614aaSTue Ly // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. 1738ca614aaSTue Ly double p = poly_approx_d(dx); 1748ca614aaSTue Ly 1758ca614aaSTue Ly double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); 1768ca614aaSTue Ly 1778ca614aaSTue Ly if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); 1788ca614aaSTue Ly LIBC_LIKELY(r.has_value())) 1798ca614aaSTue Ly return r.value(); 1808ca614aaSTue Ly 1818ca614aaSTue Ly // Use double-double 1828ca614aaSTue Ly DoubleDouble r_dd = exp2_double_double(dx, exp_mid); 1838ca614aaSTue Ly 1848ca614aaSTue Ly if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); 1858ca614aaSTue Ly LIBC_LIKELY(r.has_value())) 1868ca614aaSTue Ly return r.value(); 1878ca614aaSTue Ly 1888ca614aaSTue Ly // Use 128-bit precision 1898ca614aaSTue Ly Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); 1908ca614aaSTue Ly 1918ca614aaSTue Ly return static_cast<double>(r_f128); 1928ca614aaSTue Ly } 1938ca614aaSTue Ly 1948ca614aaSTue Ly // Check for exceptional cases when: 1958ca614aaSTue Ly // * log2(1 - 2^-54) < x < log2(1 + 2^-53) 1968ca614aaSTue Ly // * x >= 1024 19776bb278eSTue Ly // * x <= -1022 1988ca614aaSTue Ly // * x is inf or nan 1998ca614aaSTue Ly double set_exceptional(double x) { 2008ca614aaSTue Ly using FPBits = typename fputil::FPBits<double>; 2018ca614aaSTue Ly FPBits xbits(x); 2028ca614aaSTue Ly 2038ca614aaSTue Ly uint64_t x_u = xbits.uintval(); 204ea43c8eeSGuillaume Chatelet uint64_t x_abs = xbits.abs().uintval(); 2058ca614aaSTue Ly 2068ca614aaSTue Ly // |x| < log2(1 + 2^-53) 2078ca614aaSTue Ly if (x_abs <= 0x3ca71547652b82fd) { 2088ca614aaSTue Ly // 2^(x) ~ 1 + x/2 2098ca614aaSTue Ly return fputil::multiply_add(x, 0.5, 1.0); 2108ca614aaSTue Ly } 2118ca614aaSTue Ly 21276bb278eSTue Ly // x <= -1022 || x >= 1024 or inf/nan. 2138ca614aaSTue Ly if (x_u > 0xc08ff00000000000) { 21476bb278eSTue Ly // x <= -1075 or -inf/nan 2158ca614aaSTue Ly if (x_u >= 0xc090cc0000000000) { 2168ca614aaSTue Ly // exp(-Inf) = 0 2178ca614aaSTue Ly if (xbits.is_inf()) 2188ca614aaSTue Ly return 0.0; 2198ca614aaSTue Ly 2208ca614aaSTue Ly // exp(nan) = nan 2218ca614aaSTue Ly if (xbits.is_nan()) 2228ca614aaSTue Ly return x; 2238ca614aaSTue Ly 2248ca614aaSTue Ly if (fputil::quick_get_round() == FE_UPWARD) 2256b02d2f8SGuillaume Chatelet return FPBits::min_subnormal().get_val(); 2268ca614aaSTue Ly fputil::set_errno_if_required(ERANGE); 2278ca614aaSTue Ly fputil::raise_except_if_required(FE_UNDERFLOW); 2288ca614aaSTue Ly return 0.0; 2298ca614aaSTue Ly } 2308ca614aaSTue Ly 2318ca614aaSTue Ly return exp2_denorm(x); 2328ca614aaSTue Ly } 2338ca614aaSTue Ly 2348ca614aaSTue Ly // x >= 1024 or +inf/nan 2358ca614aaSTue Ly // x is finite 2368ca614aaSTue Ly if (x_u < 0x7ff0'0000'0000'0000ULL) { 2378ca614aaSTue Ly int rounding = fputil::quick_get_round(); 2388ca614aaSTue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 2396b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 2408ca614aaSTue Ly 2418ca614aaSTue Ly fputil::set_errno_if_required(ERANGE); 2428ca614aaSTue Ly fputil::raise_except_if_required(FE_OVERFLOW); 2438ca614aaSTue Ly } 2448ca614aaSTue Ly // x is +inf or nan 2452856db0dSGuillaume Chatelet return x + FPBits::inf().get_val(); 2468ca614aaSTue Ly } 2478ca614aaSTue Ly 2483caef466Slntue } // namespace 2493caef466Slntue 2508ca614aaSTue Ly LLVM_LIBC_FUNCTION(double, exp2, (double x)) { 2518ca614aaSTue Ly using FPBits = typename fputil::FPBits<double>; 2528ca614aaSTue Ly FPBits xbits(x); 2538ca614aaSTue Ly 2548ca614aaSTue Ly uint64_t x_u = xbits.uintval(); 2558ca614aaSTue Ly 2568ca614aaSTue Ly // x < -1022 or x >= 1024 or log2(1 - 2^-54) < x < log2(1 + 2^-53). 2578ca614aaSTue Ly if (LIBC_UNLIKELY(x_u > 0xc08ff00000000000 || 2588ca614aaSTue Ly (x_u <= 0xbc971547652b82fe && x_u >= 0x4090000000000000) || 2598ca614aaSTue Ly x_u <= 0x3ca71547652b82fd)) { 2608ca614aaSTue Ly return set_exceptional(x); 2618ca614aaSTue Ly } 2628ca614aaSTue Ly 2638ca614aaSTue Ly // Now -1075 < x <= log2(1 - 2^-54) or log2(1 + 2^-53) < x < 1024 2648ca614aaSTue Ly 2658ca614aaSTue Ly // Range reduction: 2668ca614aaSTue Ly // Let x = (hi + mid1 + mid2) + lo 2678ca614aaSTue Ly // in which: 2688ca614aaSTue Ly // hi is an integer 2698ca614aaSTue Ly // mid1 * 2^6 is an integer 2708ca614aaSTue Ly // mid2 * 2^12 is an integer 2718ca614aaSTue Ly // then: 2728ca614aaSTue Ly // 2^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 2^(lo). 2738ca614aaSTue Ly // With this formula: 2748ca614aaSTue Ly // - multiplying by 2^hi is exact and cheap, simply by adding the exponent 2758ca614aaSTue Ly // field. 2768ca614aaSTue Ly // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. 2778ca614aaSTue Ly // - 2^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... 2788ca614aaSTue Ly // 2798ca614aaSTue Ly // We compute (hi + mid1 + mid2) together by perform the rounding on x * 2^12. 2808ca614aaSTue Ly // Since |x| < |-1075)| < 2^11, 2818ca614aaSTue Ly // |x * 2^12| < 2^11 * 2^12 < 2^23, 2828ca614aaSTue Ly // So we can fit the rounded result round(x * 2^12) in int32_t. 2838ca614aaSTue Ly // Thus, the goal is to be able to use an additional addition and fixed width 2848ca614aaSTue Ly // shift to get an int32_t representing round(x * 2^12). 2858ca614aaSTue Ly // 2868ca614aaSTue Ly // Assuming int32_t using 2-complement representation, since the mantissa part 2878ca614aaSTue Ly // of a double precision is unsigned with the leading bit hidden, if we add an 2888ca614aaSTue Ly // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the 2898ca614aaSTue Ly // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be 2908ca614aaSTue Ly // considered as a proper 2-complement representations of x*2^12. 2918ca614aaSTue Ly // 2928ca614aaSTue Ly // One small problem with this approach is that the sum (x*2^12 + C) in 2938ca614aaSTue Ly // double precision is rounded to the least significant bit of the dorminant 2948ca614aaSTue Ly // factor C. In order to minimize the rounding errors from this addition, we 2958ca614aaSTue Ly // want to minimize e1. Another constraint that we want is that after 2968ca614aaSTue Ly // shifting the mantissa so that the least significant bit of int32_t 2978ca614aaSTue Ly // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without 2988ca614aaSTue Ly // any adjustment. So combining these 2 requirements, we can choose 2998ca614aaSTue Ly // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence 3008ca614aaSTue Ly // after right shifting the mantissa, the resulting int32_t has correct sign. 3018ca614aaSTue Ly // With this choice of C, the number of mantissa bits we need to shift to the 3028ca614aaSTue Ly // right is: 52 - 33 = 19. 3038ca614aaSTue Ly // 3048ca614aaSTue Ly // Moreover, since the integer right shifts are equivalent to rounding down, 3058ca614aaSTue Ly // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- 3068ca614aaSTue Ly // +infinity. So in particular, we can compute: 3078ca614aaSTue Ly // hmm = x * 2^12 + C, 3088ca614aaSTue Ly // where C = 2^33 + 2^32 + 2^-1, then if 3098ca614aaSTue Ly // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), 3108ca614aaSTue Ly // the reduced argument: 3118ca614aaSTue Ly // lo = x - 2^-12 * k is bounded by: 3128ca614aaSTue Ly // |lo| <= 2^-13 + 2^-12*2^-19 3138ca614aaSTue Ly // = 2^-13 + 2^-31. 3148ca614aaSTue Ly // 3158ca614aaSTue Ly // Finally, notice that k only uses the mantissa of x * 2^12, so the 3168ca614aaSTue Ly // exponent 2^12 is not needed. So we can simply define 3178ca614aaSTue Ly // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and 3188ca614aaSTue Ly // k = int32_t(lower 51 bits of double(x + C) >> 19). 3198ca614aaSTue Ly 3208ca614aaSTue Ly // Rounding errors <= 2^-31. 3218ca614aaSTue Ly int k = 3228ca614aaSTue Ly static_cast<int>(cpp::bit_cast<uint64_t>(x + 0x1.8000'0000'4p21) >> 19); 3238ca614aaSTue Ly double kd = static_cast<double>(k); 3248ca614aaSTue Ly 3258ca614aaSTue Ly uint32_t idx1 = (k >> 6) & 0x3f; 3268ca614aaSTue Ly uint32_t idx2 = k & 0x3f; 3278ca614aaSTue Ly 3288ca614aaSTue Ly int hi = k >> 12; 3298ca614aaSTue Ly 3308ca614aaSTue Ly DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 3318ca614aaSTue Ly DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 3328ca614aaSTue Ly DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 3338ca614aaSTue Ly 3348ca614aaSTue Ly // |dx| < 2^-13 + 2^-30. 3358ca614aaSTue Ly double dx = fputil::multiply_add(kd, -0x1.0p-12, x); // exact 3368ca614aaSTue Ly 3378ca614aaSTue Ly // We use the degree-4 polynomial to approximate 2^(lo): 3388ca614aaSTue Ly // 2^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 = 1 + lo * P(lo) 3398ca614aaSTue Ly // So that the errors are bounded by: 3408ca614aaSTue Ly // |P(lo) - (2^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 3418ca614aaSTue Ly // Let P_ be an evaluation of P where all intermediate computations are in 3428ca614aaSTue Ly // double precision. Using either Horner's or Estrin's schemes, the evaluated 3438ca614aaSTue Ly // errors can be bounded by: 3448ca614aaSTue Ly // |P_(lo) - P(lo)| < 2^-51 3458ca614aaSTue Ly // => |lo * P_(lo) - (2^lo - 1) | < 2^-64 3468ca614aaSTue Ly // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-63. 3478ca614aaSTue Ly // Since we approximate 3488ca614aaSTue Ly // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, 3498ca614aaSTue Ly // We use the expression: 3508ca614aaSTue Ly // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ 3518ca614aaSTue Ly // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) 3528ca614aaSTue Ly // with errors bounded by 2^-63. 3538ca614aaSTue Ly 3548ca614aaSTue Ly double mid_lo = dx * exp_mid.hi; 3558ca614aaSTue Ly 3568ca614aaSTue Ly // Approximate (2^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. 3578ca614aaSTue Ly double p = poly_approx_d(dx); 3588ca614aaSTue Ly 3598ca614aaSTue Ly double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); 3608ca614aaSTue Ly 3618ca614aaSTue Ly double upper = exp_mid.hi + (lo + ERR_D); 3628ca614aaSTue Ly double lower = exp_mid.hi + (lo - ERR_D); 3638ca614aaSTue Ly 3648ca614aaSTue Ly if (LIBC_LIKELY(upper == lower)) { 3658ca614aaSTue Ly // To multiply by 2^hi, a fast way is to simply add hi to the exponent 3668ca614aaSTue Ly // field. 367c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 3688ca614aaSTue Ly double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); 3698ca614aaSTue Ly return r; 3708ca614aaSTue Ly } 3718ca614aaSTue Ly 3728ca614aaSTue Ly // Use double-double 3738ca614aaSTue Ly DoubleDouble r_dd = exp2_double_double(dx, exp_mid); 3748ca614aaSTue Ly 3758ca614aaSTue Ly double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); 3768ca614aaSTue Ly double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); 3778ca614aaSTue Ly 3788ca614aaSTue Ly if (LIBC_LIKELY(upper_dd == lower_dd)) { 3798ca614aaSTue Ly // To multiply by 2^hi, a fast way is to simply add hi to the exponent 3808ca614aaSTue Ly // field. 381c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 3828ca614aaSTue Ly double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); 3838ca614aaSTue Ly return r; 3848ca614aaSTue Ly } 3858ca614aaSTue Ly 3868ca614aaSTue Ly // Use 128-bit precision 3878ca614aaSTue Ly Float128 r_f128 = exp2_f128(dx, hi, idx1, idx2); 3888ca614aaSTue Ly 3898ca614aaSTue Ly return static_cast<double>(r_f128); 3908ca614aaSTue Ly } 3918ca614aaSTue Ly 392*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 393