xref: /llvm-project/libc/src/math/generic/exp10.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
176bb278eSTue Ly //===-- Double-precision 10^x function ------------------------------------===//
276bb278eSTue Ly //
376bb278eSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
476bb278eSTue Ly // See https://llvm.org/LICENSE.txt for license information.
576bb278eSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
676bb278eSTue Ly //
776bb278eSTue Ly //===----------------------------------------------------------------------===//
876bb278eSTue Ly 
976bb278eSTue Ly #include "src/math/exp10.h"
1076bb278eSTue Ly #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
1176bb278eSTue Ly #include "explogxf.h"         // ziv_test_denorm.
1276bb278eSTue Ly #include "src/__support/CPP/bit.h"
1376bb278eSTue Ly #include "src/__support/CPP/optional.h"
1476bb278eSTue Ly #include "src/__support/FPUtil/FEnvImpl.h"
1576bb278eSTue Ly #include "src/__support/FPUtil/FPBits.h"
1676bb278eSTue Ly #include "src/__support/FPUtil/PolyEval.h"
1776bb278eSTue Ly #include "src/__support/FPUtil/double_double.h"
1876bb278eSTue Ly #include "src/__support/FPUtil/dyadic_float.h"
1976bb278eSTue Ly #include "src/__support/FPUtil/multiply_add.h"
2076bb278eSTue Ly #include "src/__support/FPUtil/nearest_integer.h"
2176bb278eSTue Ly #include "src/__support/FPUtil/rounding_mode.h"
2276bb278eSTue Ly #include "src/__support/FPUtil/triple_double.h"
2376bb278eSTue Ly #include "src/__support/common.h"
24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h"
25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
2676bb278eSTue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
2776bb278eSTue Ly 
28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
2976bb278eSTue Ly 
3076bb278eSTue Ly using fputil::DoubleDouble;
3176bb278eSTue Ly using fputil::TripleDouble;
3276bb278eSTue Ly using Float128 = typename fputil::DyadicFloat<128>;
332137894aSGuillaume Chatelet 
34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128;
3576bb278eSTue Ly 
3676bb278eSTue Ly // log2(10)
3776bb278eSTue Ly constexpr double LOG2_10 = 0x1.a934f0979a371p+1;
3876bb278eSTue Ly 
3976bb278eSTue Ly // -2^-12 * log10(2)
4076bb278eSTue Ly // > a = -2^-12 * log10(2);
4176bb278eSTue Ly // > b = round(a, 32, RN);
4276bb278eSTue Ly // > c = round(a - b, 32, RN);
4376bb278eSTue Ly // > d = round(a - b - c, D, RN);
4476bb278eSTue Ly // Errors < 1.5 * 2^-144
4576bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14;
4676bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51;
4776bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51;
4876bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87;
4976bb278eSTue Ly 
5076bb278eSTue Ly // Error bounds:
5176bb278eSTue Ly // Errors when using double precision.
5276bb278eSTue Ly constexpr double ERR_D = 0x1.8p-63;
5376bb278eSTue Ly 
5476bb278eSTue Ly // Errors when using double-double precision.
5576bb278eSTue Ly constexpr double ERR_DD = 0x1.8p-99;
5676bb278eSTue Ly 
573caef466Slntue namespace {
583caef466Slntue 
5976bb278eSTue Ly // Polynomial approximations with double precision.  Generated by Sollya with:
6076bb278eSTue Ly // > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]);
6176bb278eSTue Ly // > P;
6276bb278eSTue Ly // Error bounds:
6376bb278eSTue Ly //   | output - (10^dx - 1) / dx | < 2^-52.
6476bb278eSTue Ly LIBC_INLINE double poly_approx_d(double dx) {
6576bb278eSTue Ly   // dx^2
6676bb278eSTue Ly   double dx2 = dx * dx;
6776bb278eSTue Ly   double c0 =
6876bb278eSTue Ly       fputil::multiply_add(dx, 0x1.53524c73cea6ap+1, 0x1.26bb1bbb55516p+1);
6976bb278eSTue Ly   double c1 =
7076bb278eSTue Ly       fputil::multiply_add(dx, 0x1.2bd75cc6afc65p+0, 0x1.0470587aa264cp+1);
7176bb278eSTue Ly   double p = fputil::multiply_add(dx2, c1, c0);
7276bb278eSTue Ly   return p;
7376bb278eSTue Ly }
7476bb278eSTue Ly 
7576bb278eSTue Ly // Polynomial approximation with double-double precision.  Generated by Solya
7676bb278eSTue Ly // with:
7776bb278eSTue Ly // > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]);
7876bb278eSTue Ly // Error bounds:
7976bb278eSTue Ly //   | output - 10^(dx) | < 2^-101
8076bb278eSTue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
8176bb278eSTue Ly   // Taylor polynomial.
8276bb278eSTue Ly   constexpr DoubleDouble COEFFS[] = {
8376bb278eSTue Ly       {0, 0x1p0},
8476bb278eSTue Ly       {-0x1.f48ad494e927bp-53, 0x1.26bb1bbb55516p1},
8576bb278eSTue Ly       {-0x1.e2bfab3191cd2p-53, 0x1.53524c73cea69p1},
8676bb278eSTue Ly       {0x1.80fb65ec3b503p-53, 0x1.0470591de2ca4p1},
8776bb278eSTue Ly       {0x1.338fc05e21e55p-54, 0x1.2bd7609fd98c4p0},
8876bb278eSTue Ly       {0x1.d4ea116818fbp-56, 0x1.1429ffd519865p-1},
8976bb278eSTue Ly       {-0x1.872a8ff352077p-57, 0x1.a7ed70847c8b3p-3},
9076bb278eSTue Ly 
9176bb278eSTue Ly   };
9276bb278eSTue Ly 
9376bb278eSTue Ly   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
9476bb278eSTue Ly                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
9576bb278eSTue Ly   return p;
9676bb278eSTue Ly }
9776bb278eSTue Ly 
9876bb278eSTue Ly // Polynomial approximation with 128-bit precision:
9976bb278eSTue Ly // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
10076bb278eSTue Ly // For |dx| < 2^-14:
10176bb278eSTue Ly //   | output - 10^dx | < 1.5 * 2^-124.
10276bb278eSTue Ly Float128 poly_approx_f128(const Float128 &dx) {
10376bb278eSTue Ly   constexpr Float128 COEFFS_128[]{
104a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
105a80a01fcSGuillaume Chatelet       {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128},
106a80a01fcSGuillaume Chatelet       {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128},
107a80a01fcSGuillaume Chatelet       {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128},
108a80a01fcSGuillaume Chatelet       {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128},
109a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128},
110a80a01fcSGuillaume Chatelet       {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128},
111a80a01fcSGuillaume Chatelet       {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128},
11276bb278eSTue Ly   };
11376bb278eSTue Ly 
11476bb278eSTue Ly   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
11576bb278eSTue Ly                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
11676bb278eSTue Ly                                 COEFFS_128[6], COEFFS_128[7]);
11776bb278eSTue Ly   return p;
11876bb278eSTue Ly }
11976bb278eSTue Ly 
12076bb278eSTue Ly // Compute 10^(x) using 128-bit precision.
12176bb278eSTue Ly // TODO(lntue): investigate triple-double precision implementation for this
12276bb278eSTue Ly // step.
12376bb278eSTue Ly Float128 exp10_f128(double x, double kd, int idx1, int idx2) {
12476bb278eSTue Ly   double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
12576bb278eSTue Ly   double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
12676bb278eSTue Ly   double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144
12776bb278eSTue Ly 
12876bb278eSTue Ly   Float128 dx = fputil::quick_add(
12976bb278eSTue Ly       Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
13076bb278eSTue Ly 
13176bb278eSTue Ly   // TODO: Skip recalculating exp_mid1 and exp_mid2.
13276bb278eSTue Ly   Float128 exp_mid1 =
13376bb278eSTue Ly       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
13476bb278eSTue Ly                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
13576bb278eSTue Ly                                           Float128(EXP2_MID1[idx1].lo)));
13676bb278eSTue Ly 
13776bb278eSTue Ly   Float128 exp_mid2 =
13876bb278eSTue Ly       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
13976bb278eSTue Ly                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
14076bb278eSTue Ly                                           Float128(EXP2_MID2[idx2].lo)));
14176bb278eSTue Ly 
14276bb278eSTue Ly   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
14376bb278eSTue Ly 
14476bb278eSTue Ly   Float128 p = poly_approx_f128(dx);
14576bb278eSTue Ly 
14676bb278eSTue Ly   Float128 r = fputil::quick_mul(exp_mid, p);
14776bb278eSTue Ly 
14876bb278eSTue Ly   r.exponent += static_cast<int>(kd) >> 12;
14976bb278eSTue Ly 
15076bb278eSTue Ly   return r;
15176bb278eSTue Ly }
15276bb278eSTue Ly 
15376bb278eSTue Ly // Compute 10^x with double-double precision.
15476bb278eSTue Ly DoubleDouble exp10_double_double(double x, double kd,
15576bb278eSTue Ly                                  const DoubleDouble &exp_mid) {
15676bb278eSTue Ly   // Recalculate dx:
15776bb278eSTue Ly   //   dx = x - k * 2^-12 * log10(2)
15876bb278eSTue Ly   double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
15976bb278eSTue Ly   double t2 = kd * MLOG10_2_EXP2_M12_MID_32;                     // exact
16076bb278eSTue Ly   double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140
16176bb278eSTue Ly 
16276bb278eSTue Ly   DoubleDouble dx = fputil::exact_add(t1, t2);
16376bb278eSTue Ly   dx.lo += t3;
16476bb278eSTue Ly 
16576bb278eSTue Ly   // Degree-6 polynomial approximation in double-double precision.
16676bb278eSTue Ly   // | p - 10^x | < 2^-103.
16776bb278eSTue Ly   DoubleDouble p = poly_approx_dd(dx);
16876bb278eSTue Ly 
16976bb278eSTue Ly   // Error bounds: 2^-102.
17076bb278eSTue Ly   DoubleDouble r = fputil::quick_mult(exp_mid, p);
17176bb278eSTue Ly 
17276bb278eSTue Ly   return r;
17376bb278eSTue Ly }
17476bb278eSTue Ly 
17576bb278eSTue Ly // When output is denormal.
17676bb278eSTue Ly double exp10_denorm(double x) {
17776bb278eSTue Ly   // Range reduction.
17876bb278eSTue Ly   double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
17976bb278eSTue Ly   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
18076bb278eSTue Ly   double kd = static_cast<double>(k);
18176bb278eSTue Ly 
18276bb278eSTue Ly   uint32_t idx1 = (k >> 6) & 0x3f;
18376bb278eSTue Ly   uint32_t idx2 = k & 0x3f;
18476bb278eSTue Ly 
18576bb278eSTue Ly   int hi = k >> 12;
18676bb278eSTue Ly 
18776bb278eSTue Ly   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
18876bb278eSTue Ly   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
18976bb278eSTue Ly   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
19076bb278eSTue Ly 
19176bb278eSTue Ly   // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
19276bb278eSTue Ly   double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
19376bb278eSTue Ly   double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
19476bb278eSTue Ly 
19576bb278eSTue Ly   double mid_lo = dx * exp_mid.hi;
19676bb278eSTue Ly 
19776bb278eSTue Ly   // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
19876bb278eSTue Ly   double p = poly_approx_d(dx);
19976bb278eSTue Ly 
20076bb278eSTue Ly   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
20176bb278eSTue Ly 
20276bb278eSTue Ly   if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
20376bb278eSTue Ly       LIBC_LIKELY(r.has_value()))
20476bb278eSTue Ly     return r.value();
20576bb278eSTue Ly 
20676bb278eSTue Ly   // Use double-double
20776bb278eSTue Ly   DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
20876bb278eSTue Ly 
20976bb278eSTue Ly   if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
21076bb278eSTue Ly       LIBC_LIKELY(r.has_value()))
21176bb278eSTue Ly     return r.value();
21276bb278eSTue Ly 
21376bb278eSTue Ly   // Use 128-bit precision
21476bb278eSTue Ly   Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
21576bb278eSTue Ly 
21676bb278eSTue Ly   return static_cast<double>(r_f128);
21776bb278eSTue Ly }
21876bb278eSTue Ly 
21976bb278eSTue Ly // Check for exceptional cases when:
22076bb278eSTue Ly //  * log10(1 - 2^-54) < x < log10(1 + 2^-53)
22176bb278eSTue Ly //  * x >= log10(2^1024)
22276bb278eSTue Ly //  * x <= log10(2^-1022)
22376bb278eSTue Ly //  * x is inf or nan
22476bb278eSTue Ly double set_exceptional(double x) {
22576bb278eSTue Ly   using FPBits = typename fputil::FPBits<double>;
22676bb278eSTue Ly   FPBits xbits(x);
22776bb278eSTue Ly 
22876bb278eSTue Ly   uint64_t x_u = xbits.uintval();
229ea43c8eeSGuillaume Chatelet   uint64_t x_abs = xbits.abs().uintval();
23076bb278eSTue Ly 
23176bb278eSTue Ly   // |x| < log10(1 + 2^-53)
23276bb278eSTue Ly   if (x_abs <= 0x3c8bcb7b1526e50e) {
23376bb278eSTue Ly     // 10^(x) ~ 1 + x/2
23476bb278eSTue Ly     return fputil::multiply_add(x, 0.5, 1.0);
23576bb278eSTue Ly   }
23676bb278eSTue Ly 
23776bb278eSTue Ly   // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan.
23876bb278eSTue Ly   if (x_u >= 0xc0733a7146f72a42) {
23976bb278eSTue Ly     // x <= log10(2^-1075) or -inf/nan
24076bb278eSTue Ly     if (x_u > 0xc07439b746e36b52) {
24176bb278eSTue Ly       // exp(-Inf) = 0
24276bb278eSTue Ly       if (xbits.is_inf())
24376bb278eSTue Ly         return 0.0;
24476bb278eSTue Ly 
24576bb278eSTue Ly       // exp(nan) = nan
24676bb278eSTue Ly       if (xbits.is_nan())
24776bb278eSTue Ly         return x;
24876bb278eSTue Ly 
24976bb278eSTue Ly       if (fputil::quick_get_round() == FE_UPWARD)
2506b02d2f8SGuillaume Chatelet         return FPBits::min_subnormal().get_val();
25176bb278eSTue Ly       fputil::set_errno_if_required(ERANGE);
25276bb278eSTue Ly       fputil::raise_except_if_required(FE_UNDERFLOW);
25376bb278eSTue Ly       return 0.0;
25476bb278eSTue Ly     }
25576bb278eSTue Ly 
25676bb278eSTue Ly     return exp10_denorm(x);
25776bb278eSTue Ly   }
25876bb278eSTue Ly 
25976bb278eSTue Ly   // x >= log10(2^1024) or +inf/nan
26076bb278eSTue Ly   // x is finite
26176bb278eSTue Ly   if (x_u < 0x7ff0'0000'0000'0000ULL) {
26276bb278eSTue Ly     int rounding = fputil::quick_get_round();
26376bb278eSTue Ly     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
2646b02d2f8SGuillaume Chatelet       return FPBits::max_normal().get_val();
26576bb278eSTue Ly 
26676bb278eSTue Ly     fputil::set_errno_if_required(ERANGE);
26776bb278eSTue Ly     fputil::raise_except_if_required(FE_OVERFLOW);
26876bb278eSTue Ly   }
26976bb278eSTue Ly   // x is +inf or nan
2702856db0dSGuillaume Chatelet   return x + FPBits::inf().get_val();
27176bb278eSTue Ly }
27276bb278eSTue Ly 
2733caef466Slntue } // namespace
2743caef466Slntue 
27576bb278eSTue Ly LLVM_LIBC_FUNCTION(double, exp10, (double x)) {
27676bb278eSTue Ly   using FPBits = typename fputil::FPBits<double>;
27776bb278eSTue Ly   FPBits xbits(x);
27876bb278eSTue Ly 
27976bb278eSTue Ly   uint64_t x_u = xbits.uintval();
28076bb278eSTue Ly 
28176bb278eSTue Ly   // x <= log10(2^-1022) or x >= log10(2^1024) or
28276bb278eSTue Ly   // log10(1 - 2^-54) < x < log10(1 + 2^-53).
28376bb278eSTue Ly   if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 ||
28476bb278eSTue Ly                     (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) ||
28576bb278eSTue Ly                     x_u < 0x3c8bcb7b1526e50e)) {
28676bb278eSTue Ly     return set_exceptional(x);
28776bb278eSTue Ly   }
28876bb278eSTue Ly 
28976bb278eSTue Ly   // Now log10(2^-1075) < x <= log10(1 - 2^-54) or
29076bb278eSTue Ly   //     log10(1 + 2^-53) < x < log10(2^1024)
29176bb278eSTue Ly 
29276bb278eSTue Ly   // Range reduction:
29376bb278eSTue Ly   // Let x = log10(2) * (hi + mid1 + mid2) + lo
29476bb278eSTue Ly   // in which:
29576bb278eSTue Ly   //   hi is an integer
29676bb278eSTue Ly   //   mid1 * 2^6 is an integer
29776bb278eSTue Ly   //   mid2 * 2^12 is an integer
29876bb278eSTue Ly   // then:
29976bb278eSTue Ly   //   10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo).
30076bb278eSTue Ly   // With this formula:
30176bb278eSTue Ly   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
30276bb278eSTue Ly   //     field.
30376bb278eSTue Ly   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
30476bb278eSTue Ly   //   - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
30576bb278eSTue Ly   //
30676bb278eSTue Ly   // We compute (hi + mid1 + mid2) together by perform the rounding on
30776bb278eSTue Ly   //   x * log2(10) * 2^12.
30876bb278eSTue Ly   // Since |x| < |log10(2^-1075)| < 2^9,
30976bb278eSTue Ly   //   |x * 2^12| < 2^9 * 2^12 < 2^21,
31076bb278eSTue Ly   // So we can fit the rounded result round(x * 2^12) in int32_t.
31176bb278eSTue Ly   // Thus, the goal is to be able to use an additional addition and fixed width
31276bb278eSTue Ly   // shift to get an int32_t representing round(x * 2^12).
31376bb278eSTue Ly   //
31476bb278eSTue Ly   // Assuming int32_t using 2-complement representation, since the mantissa part
31576bb278eSTue Ly   // of a double precision is unsigned with the leading bit hidden, if we add an
31676bb278eSTue Ly   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the
31776bb278eSTue Ly   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
31876bb278eSTue Ly   // considered as a proper 2-complement representations of x*2^12.
31976bb278eSTue Ly   //
32076bb278eSTue Ly   // One small problem with this approach is that the sum (x*2^12 + C) in
32176bb278eSTue Ly   // double precision is rounded to the least significant bit of the dorminant
32276bb278eSTue Ly   // factor C.  In order to minimize the rounding errors from this addition, we
32376bb278eSTue Ly   // want to minimize e1.  Another constraint that we want is that after
32476bb278eSTue Ly   // shifting the mantissa so that the least significant bit of int32_t
32576bb278eSTue Ly   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
32676bb278eSTue Ly   // any adjustment.  So combining these 2 requirements, we can choose
32776bb278eSTue Ly   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
32876bb278eSTue Ly   // after right shifting the mantissa, the resulting int32_t has correct sign.
32976bb278eSTue Ly   // With this choice of C, the number of mantissa bits we need to shift to the
33076bb278eSTue Ly   // right is: 52 - 33 = 19.
33176bb278eSTue Ly   //
33276bb278eSTue Ly   // Moreover, since the integer right shifts are equivalent to rounding down,
33376bb278eSTue Ly   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
33476bb278eSTue Ly   // +infinity.  So in particular, we can compute:
33576bb278eSTue Ly   //   hmm = x * 2^12 + C,
33676bb278eSTue Ly   // where C = 2^33 + 2^32 + 2^-1, then if
33776bb278eSTue Ly   //   k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
33876bb278eSTue Ly   // the reduced argument:
33976bb278eSTue Ly   //   lo = x - log10(2) * 2^-12 * k is bounded by:
34076bb278eSTue Ly   //   |lo|  = |x - log10(2) * 2^-12 * k|
34176bb278eSTue Ly   //         = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k |
34276bb278eSTue Ly   //        <= log10(2) * 2^-12 * (2^-1 + 2^-19)
34376bb278eSTue Ly   //         < 1.5 * 2^-2 * (2^-13 + 2^-31)
34476bb278eSTue Ly   //         = 1.5 * (2^-15 * 2^-31)
34576bb278eSTue Ly   //
34676bb278eSTue Ly   // Finally, notice that k only uses the mantissa of x * 2^12, so the
34776bb278eSTue Ly   // exponent 2^12 is not needed.  So we can simply define
34876bb278eSTue Ly   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
34976bb278eSTue Ly   //   k = int32_t(lower 51 bits of double(x + C) >> 19).
35076bb278eSTue Ly 
35176bb278eSTue Ly   // Rounding errors <= 2^-31.
35276bb278eSTue Ly   double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21);
35376bb278eSTue Ly   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
35476bb278eSTue Ly   double kd = static_cast<double>(k);
35576bb278eSTue Ly 
35676bb278eSTue Ly   uint32_t idx1 = (k >> 6) & 0x3f;
35776bb278eSTue Ly   uint32_t idx2 = k & 0x3f;
35876bb278eSTue Ly 
35976bb278eSTue Ly   int hi = k >> 12;
36076bb278eSTue Ly 
36176bb278eSTue Ly   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
36276bb278eSTue Ly   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
36376bb278eSTue Ly   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
36476bb278eSTue Ly 
36576bb278eSTue Ly   // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
36676bb278eSTue Ly   double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact
36776bb278eSTue Ly   double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h);
36876bb278eSTue Ly 
36976bb278eSTue Ly   // We use the degree-4 polynomial to approximate 10^(lo):
37076bb278eSTue Ly   //   10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4
37176bb278eSTue Ly   //           = 1 + lo * P(lo)
37276bb278eSTue Ly   // So that the errors are bounded by:
37376bb278eSTue Ly   //   |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
37476bb278eSTue Ly   // Let P_ be an evaluation of P where all intermediate computations are in
37576bb278eSTue Ly   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
37676bb278eSTue Ly   // errors can be bounded by:
37776bb278eSTue Ly   //      |P_(lo) - P(lo)| < 2^-51
37876bb278eSTue Ly   //   => |lo * P_(lo) - (2^lo - 1) | < 2^-65
37976bb278eSTue Ly   //   => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64.
38076bb278eSTue Ly   // Since we approximate
38176bb278eSTue Ly   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
38276bb278eSTue Ly   // We use the expression:
38376bb278eSTue Ly   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
38476bb278eSTue Ly   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
38576bb278eSTue Ly   // with errors bounded by 2^-64.
38676bb278eSTue Ly 
38776bb278eSTue Ly   double mid_lo = dx * exp_mid.hi;
38876bb278eSTue Ly 
38976bb278eSTue Ly   // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
39076bb278eSTue Ly   double p = poly_approx_d(dx);
39176bb278eSTue Ly 
39276bb278eSTue Ly   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
39376bb278eSTue Ly 
39476bb278eSTue Ly   double upper = exp_mid.hi + (lo + ERR_D);
39576bb278eSTue Ly   double lower = exp_mid.hi + (lo - ERR_D);
39676bb278eSTue Ly 
39776bb278eSTue Ly   if (LIBC_LIKELY(upper == lower)) {
39876bb278eSTue Ly     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
39976bb278eSTue Ly     // field.
400c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
40176bb278eSTue Ly     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
40276bb278eSTue Ly     return r;
40376bb278eSTue Ly   }
40476bb278eSTue Ly 
40576bb278eSTue Ly   // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23.
40676bb278eSTue Ly   // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0)
40776bb278eSTue Ly   if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) {
40876bb278eSTue Ly     switch (x_u) {
40976bb278eSTue Ly     case 0x3ff0000000000000: // x = 1.0
41076bb278eSTue Ly       return 10.0;
41176bb278eSTue Ly     case 0x4000000000000000: // x = 2.0
41276bb278eSTue Ly       return 100.0;
41376bb278eSTue Ly     case 0x4008000000000000: // x = 3.0
41476bb278eSTue Ly       return 1'000.0;
41576bb278eSTue Ly     case 0x4010000000000000: // x = 4.0
41676bb278eSTue Ly       return 10'000.0;
41776bb278eSTue Ly     case 0x4014000000000000: // x = 5.0
41876bb278eSTue Ly       return 100'000.0;
41976bb278eSTue Ly     case 0x4018000000000000: // x = 6.0
42076bb278eSTue Ly       return 1'000'000.0;
42176bb278eSTue Ly     case 0x401c000000000000: // x = 7.0
42276bb278eSTue Ly       return 10'000'000.0;
42376bb278eSTue Ly     case 0x4020000000000000: // x = 8.0
42476bb278eSTue Ly       return 100'000'000.0;
42576bb278eSTue Ly     case 0x4022000000000000: // x = 9.0
42676bb278eSTue Ly       return 1'000'000'000.0;
42776bb278eSTue Ly     case 0x4024000000000000: // x = 10.0
42876bb278eSTue Ly       return 10'000'000'000.0;
42976bb278eSTue Ly     case 0x4026000000000000: // x = 11.0
43076bb278eSTue Ly       return 100'000'000'000.0;
43176bb278eSTue Ly     case 0x4028000000000000: // x = 12.0
43276bb278eSTue Ly       return 1'000'000'000'000.0;
43376bb278eSTue Ly     case 0x402a000000000000: // x = 13.0
43476bb278eSTue Ly       return 10'000'000'000'000.0;
43576bb278eSTue Ly     case 0x402c000000000000: // x = 14.0
43676bb278eSTue Ly       return 100'000'000'000'000.0;
43776bb278eSTue Ly     case 0x402e000000000000: // x = 15.0
43876bb278eSTue Ly       return 1'000'000'000'000'000.0;
43976bb278eSTue Ly     case 0x4030000000000000: // x = 16.0
44076bb278eSTue Ly       return 10'000'000'000'000'000.0;
44176bb278eSTue Ly     case 0x4031000000000000: // x = 17.0
44276bb278eSTue Ly       return 100'000'000'000'000'000.0;
44376bb278eSTue Ly     case 0x4032000000000000: // x = 18.0
44476bb278eSTue Ly       return 1'000'000'000'000'000'000.0;
44576bb278eSTue Ly     case 0x4033000000000000: // x = 19.0
44676bb278eSTue Ly       return 10'000'000'000'000'000'000.0;
44776bb278eSTue Ly     case 0x4034000000000000: // x = 20.0
44876bb278eSTue Ly       return 100'000'000'000'000'000'000.0;
44976bb278eSTue Ly     case 0x4035000000000000: // x = 21.0
45076bb278eSTue Ly       return 1'000'000'000'000'000'000'000.0;
45176bb278eSTue Ly     case 0x4036000000000000: // x = 22.0
45276bb278eSTue Ly       return 10'000'000'000'000'000'000'000.0;
45376bb278eSTue Ly     case 0x4037000000000000: // x = 23.0
45476bb278eSTue Ly       return 0x1.52d02c7e14af6p76 + x;
45576bb278eSTue Ly     }
45676bb278eSTue Ly   }
45776bb278eSTue Ly 
45876bb278eSTue Ly   // Use double-double
45976bb278eSTue Ly   DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid);
46076bb278eSTue Ly 
46176bb278eSTue Ly   double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
46276bb278eSTue Ly   double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
46376bb278eSTue Ly 
46476bb278eSTue Ly   if (LIBC_LIKELY(upper_dd == lower_dd)) {
46576bb278eSTue Ly     // To multiply by 2^hi, a fast way is to simply add hi to the exponent
46676bb278eSTue Ly     // field.
467c09e6905SGuillaume Chatelet     int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
46876bb278eSTue Ly     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
46976bb278eSTue Ly     return r;
47076bb278eSTue Ly   }
47176bb278eSTue Ly 
47276bb278eSTue Ly   // Use 128-bit precision
47376bb278eSTue Ly   Float128 r_f128 = exp10_f128(x, kd, idx1, idx2);
47476bb278eSTue Ly 
47576bb278eSTue Ly   return static_cast<double>(r_f128);
47676bb278eSTue Ly }
47776bb278eSTue Ly 
478*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
479