176bb278eSTue Ly //===-- Double-precision 10^x function ------------------------------------===// 276bb278eSTue Ly // 376bb278eSTue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 476bb278eSTue Ly // See https://llvm.org/LICENSE.txt for license information. 576bb278eSTue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 676bb278eSTue Ly // 776bb278eSTue Ly //===----------------------------------------------------------------------===// 876bb278eSTue Ly 976bb278eSTue Ly #include "src/math/exp10.h" 1076bb278eSTue Ly #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2. 1176bb278eSTue Ly #include "explogxf.h" // ziv_test_denorm. 1276bb278eSTue Ly #include "src/__support/CPP/bit.h" 1376bb278eSTue Ly #include "src/__support/CPP/optional.h" 1476bb278eSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1576bb278eSTue Ly #include "src/__support/FPUtil/FPBits.h" 1676bb278eSTue Ly #include "src/__support/FPUtil/PolyEval.h" 1776bb278eSTue Ly #include "src/__support/FPUtil/double_double.h" 1876bb278eSTue Ly #include "src/__support/FPUtil/dyadic_float.h" 1976bb278eSTue Ly #include "src/__support/FPUtil/multiply_add.h" 2076bb278eSTue Ly #include "src/__support/FPUtil/nearest_integer.h" 2176bb278eSTue Ly #include "src/__support/FPUtil/rounding_mode.h" 2276bb278eSTue Ly #include "src/__support/FPUtil/triple_double.h" 2376bb278eSTue Ly #include "src/__support/common.h" 24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h" 25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 2676bb278eSTue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 2776bb278eSTue Ly 28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 2976bb278eSTue Ly 3076bb278eSTue Ly using fputil::DoubleDouble; 3176bb278eSTue Ly using fputil::TripleDouble; 3276bb278eSTue Ly using Float128 = typename fputil::DyadicFloat<128>; 332137894aSGuillaume Chatelet 34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128; 3576bb278eSTue Ly 3676bb278eSTue Ly // log2(10) 3776bb278eSTue Ly constexpr double LOG2_10 = 0x1.a934f0979a371p+1; 3876bb278eSTue Ly 3976bb278eSTue Ly // -2^-12 * log10(2) 4076bb278eSTue Ly // > a = -2^-12 * log10(2); 4176bb278eSTue Ly // > b = round(a, 32, RN); 4276bb278eSTue Ly // > c = round(a - b, 32, RN); 4376bb278eSTue Ly // > d = round(a - b - c, D, RN); 4476bb278eSTue Ly // Errors < 1.5 * 2^-144 4576bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_HI = -0x1.3441350ap-14; 4676bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_MID = 0x1.0c0219dc1da99p-51; 4776bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_MID_32 = 0x1.0c0219dcp-51; 4876bb278eSTue Ly constexpr double MLOG10_2_EXP2_M12_LO = 0x1.da994fd20dba2p-87; 4976bb278eSTue Ly 5076bb278eSTue Ly // Error bounds: 5176bb278eSTue Ly // Errors when using double precision. 5276bb278eSTue Ly constexpr double ERR_D = 0x1.8p-63; 5376bb278eSTue Ly 5476bb278eSTue Ly // Errors when using double-double precision. 5576bb278eSTue Ly constexpr double ERR_DD = 0x1.8p-99; 5676bb278eSTue Ly 573caef466Slntue namespace { 583caef466Slntue 5976bb278eSTue Ly // Polynomial approximations with double precision. Generated by Sollya with: 6076bb278eSTue Ly // > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]); 6176bb278eSTue Ly // > P; 6276bb278eSTue Ly // Error bounds: 6376bb278eSTue Ly // | output - (10^dx - 1) / dx | < 2^-52. 6476bb278eSTue Ly LIBC_INLINE double poly_approx_d(double dx) { 6576bb278eSTue Ly // dx^2 6676bb278eSTue Ly double dx2 = dx * dx; 6776bb278eSTue Ly double c0 = 6876bb278eSTue Ly fputil::multiply_add(dx, 0x1.53524c73cea6ap+1, 0x1.26bb1bbb55516p+1); 6976bb278eSTue Ly double c1 = 7076bb278eSTue Ly fputil::multiply_add(dx, 0x1.2bd75cc6afc65p+0, 0x1.0470587aa264cp+1); 7176bb278eSTue Ly double p = fputil::multiply_add(dx2, c1, c0); 7276bb278eSTue Ly return p; 7376bb278eSTue Ly } 7476bb278eSTue Ly 7576bb278eSTue Ly // Polynomial approximation with double-double precision. Generated by Solya 7676bb278eSTue Ly // with: 7776bb278eSTue Ly // > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]); 7876bb278eSTue Ly // Error bounds: 7976bb278eSTue Ly // | output - 10^(dx) | < 2^-101 8076bb278eSTue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) { 8176bb278eSTue Ly // Taylor polynomial. 8276bb278eSTue Ly constexpr DoubleDouble COEFFS[] = { 8376bb278eSTue Ly {0, 0x1p0}, 8476bb278eSTue Ly {-0x1.f48ad494e927bp-53, 0x1.26bb1bbb55516p1}, 8576bb278eSTue Ly {-0x1.e2bfab3191cd2p-53, 0x1.53524c73cea69p1}, 8676bb278eSTue Ly {0x1.80fb65ec3b503p-53, 0x1.0470591de2ca4p1}, 8776bb278eSTue Ly {0x1.338fc05e21e55p-54, 0x1.2bd7609fd98c4p0}, 8876bb278eSTue Ly {0x1.d4ea116818fbp-56, 0x1.1429ffd519865p-1}, 8976bb278eSTue Ly {-0x1.872a8ff352077p-57, 0x1.a7ed70847c8b3p-3}, 9076bb278eSTue Ly 9176bb278eSTue Ly }; 9276bb278eSTue Ly 9376bb278eSTue Ly DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], 9476bb278eSTue Ly COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); 9576bb278eSTue Ly return p; 9676bb278eSTue Ly } 9776bb278eSTue Ly 9876bb278eSTue Ly // Polynomial approximation with 128-bit precision: 9976bb278eSTue Ly // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7 10076bb278eSTue Ly // For |dx| < 2^-14: 10176bb278eSTue Ly // | output - 10^dx | < 1.5 * 2^-124. 10276bb278eSTue Ly Float128 poly_approx_f128(const Float128 &dx) { 10376bb278eSTue Ly constexpr Float128 COEFFS_128[]{ 104a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 105a80a01fcSGuillaume Chatelet {Sign::POS, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u128}, 106a80a01fcSGuillaume Chatelet {Sign::POS, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u128}, 107a80a01fcSGuillaume Chatelet {Sign::POS, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u128}, 108a80a01fcSGuillaume Chatelet {Sign::POS, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u128}, 109a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u128}, 110a80a01fcSGuillaume Chatelet {Sign::POS, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u128}, 111a80a01fcSGuillaume Chatelet {Sign::POS, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u128}, 11276bb278eSTue Ly }; 11376bb278eSTue Ly 11476bb278eSTue Ly Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], 11576bb278eSTue Ly COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], 11676bb278eSTue Ly COEFFS_128[6], COEFFS_128[7]); 11776bb278eSTue Ly return p; 11876bb278eSTue Ly } 11976bb278eSTue Ly 12076bb278eSTue Ly // Compute 10^(x) using 128-bit precision. 12176bb278eSTue Ly // TODO(lntue): investigate triple-double precision implementation for this 12276bb278eSTue Ly // step. 12376bb278eSTue Ly Float128 exp10_f128(double x, double kd, int idx1, int idx2) { 12476bb278eSTue Ly double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact 12576bb278eSTue Ly double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact 12676bb278eSTue Ly double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-144 12776bb278eSTue Ly 12876bb278eSTue Ly Float128 dx = fputil::quick_add( 12976bb278eSTue Ly Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); 13076bb278eSTue Ly 13176bb278eSTue Ly // TODO: Skip recalculating exp_mid1 and exp_mid2. 13276bb278eSTue Ly Float128 exp_mid1 = 13376bb278eSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].hi), 13476bb278eSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].mid), 13576bb278eSTue Ly Float128(EXP2_MID1[idx1].lo))); 13676bb278eSTue Ly 13776bb278eSTue Ly Float128 exp_mid2 = 13876bb278eSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].hi), 13976bb278eSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].mid), 14076bb278eSTue Ly Float128(EXP2_MID2[idx2].lo))); 14176bb278eSTue Ly 14276bb278eSTue Ly Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); 14376bb278eSTue Ly 14476bb278eSTue Ly Float128 p = poly_approx_f128(dx); 14576bb278eSTue Ly 14676bb278eSTue Ly Float128 r = fputil::quick_mul(exp_mid, p); 14776bb278eSTue Ly 14876bb278eSTue Ly r.exponent += static_cast<int>(kd) >> 12; 14976bb278eSTue Ly 15076bb278eSTue Ly return r; 15176bb278eSTue Ly } 15276bb278eSTue Ly 15376bb278eSTue Ly // Compute 10^x with double-double precision. 15476bb278eSTue Ly DoubleDouble exp10_double_double(double x, double kd, 15576bb278eSTue Ly const DoubleDouble &exp_mid) { 15676bb278eSTue Ly // Recalculate dx: 15776bb278eSTue Ly // dx = x - k * 2^-12 * log10(2) 15876bb278eSTue Ly double t1 = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact 15976bb278eSTue Ly double t2 = kd * MLOG10_2_EXP2_M12_MID_32; // exact 16076bb278eSTue Ly double t3 = kd * MLOG10_2_EXP2_M12_LO; // Error < 2^-140 16176bb278eSTue Ly 16276bb278eSTue Ly DoubleDouble dx = fputil::exact_add(t1, t2); 16376bb278eSTue Ly dx.lo += t3; 16476bb278eSTue Ly 16576bb278eSTue Ly // Degree-6 polynomial approximation in double-double precision. 16676bb278eSTue Ly // | p - 10^x | < 2^-103. 16776bb278eSTue Ly DoubleDouble p = poly_approx_dd(dx); 16876bb278eSTue Ly 16976bb278eSTue Ly // Error bounds: 2^-102. 17076bb278eSTue Ly DoubleDouble r = fputil::quick_mult(exp_mid, p); 17176bb278eSTue Ly 17276bb278eSTue Ly return r; 17376bb278eSTue Ly } 17476bb278eSTue Ly 17576bb278eSTue Ly // When output is denormal. 17676bb278eSTue Ly double exp10_denorm(double x) { 17776bb278eSTue Ly // Range reduction. 17876bb278eSTue Ly double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21); 17976bb278eSTue Ly int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); 18076bb278eSTue Ly double kd = static_cast<double>(k); 18176bb278eSTue Ly 18276bb278eSTue Ly uint32_t idx1 = (k >> 6) & 0x3f; 18376bb278eSTue Ly uint32_t idx2 = k & 0x3f; 18476bb278eSTue Ly 18576bb278eSTue Ly int hi = k >> 12; 18676bb278eSTue Ly 18776bb278eSTue Ly DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 18876bb278eSTue Ly DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 18976bb278eSTue Ly DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 19076bb278eSTue Ly 19176bb278eSTue Ly // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 19276bb278eSTue Ly double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact 19376bb278eSTue Ly double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h); 19476bb278eSTue Ly 19576bb278eSTue Ly double mid_lo = dx * exp_mid.hi; 19676bb278eSTue Ly 19776bb278eSTue Ly // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. 19876bb278eSTue Ly double p = poly_approx_d(dx); 19976bb278eSTue Ly 20076bb278eSTue Ly double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); 20176bb278eSTue Ly 20276bb278eSTue Ly if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); 20376bb278eSTue Ly LIBC_LIKELY(r.has_value())) 20476bb278eSTue Ly return r.value(); 20576bb278eSTue Ly 20676bb278eSTue Ly // Use double-double 20776bb278eSTue Ly DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); 20876bb278eSTue Ly 20976bb278eSTue Ly if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); 21076bb278eSTue Ly LIBC_LIKELY(r.has_value())) 21176bb278eSTue Ly return r.value(); 21276bb278eSTue Ly 21376bb278eSTue Ly // Use 128-bit precision 21476bb278eSTue Ly Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); 21576bb278eSTue Ly 21676bb278eSTue Ly return static_cast<double>(r_f128); 21776bb278eSTue Ly } 21876bb278eSTue Ly 21976bb278eSTue Ly // Check for exceptional cases when: 22076bb278eSTue Ly // * log10(1 - 2^-54) < x < log10(1 + 2^-53) 22176bb278eSTue Ly // * x >= log10(2^1024) 22276bb278eSTue Ly // * x <= log10(2^-1022) 22376bb278eSTue Ly // * x is inf or nan 22476bb278eSTue Ly double set_exceptional(double x) { 22576bb278eSTue Ly using FPBits = typename fputil::FPBits<double>; 22676bb278eSTue Ly FPBits xbits(x); 22776bb278eSTue Ly 22876bb278eSTue Ly uint64_t x_u = xbits.uintval(); 229ea43c8eeSGuillaume Chatelet uint64_t x_abs = xbits.abs().uintval(); 23076bb278eSTue Ly 23176bb278eSTue Ly // |x| < log10(1 + 2^-53) 23276bb278eSTue Ly if (x_abs <= 0x3c8bcb7b1526e50e) { 23376bb278eSTue Ly // 10^(x) ~ 1 + x/2 23476bb278eSTue Ly return fputil::multiply_add(x, 0.5, 1.0); 23576bb278eSTue Ly } 23676bb278eSTue Ly 23776bb278eSTue Ly // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan. 23876bb278eSTue Ly if (x_u >= 0xc0733a7146f72a42) { 23976bb278eSTue Ly // x <= log10(2^-1075) or -inf/nan 24076bb278eSTue Ly if (x_u > 0xc07439b746e36b52) { 24176bb278eSTue Ly // exp(-Inf) = 0 24276bb278eSTue Ly if (xbits.is_inf()) 24376bb278eSTue Ly return 0.0; 24476bb278eSTue Ly 24576bb278eSTue Ly // exp(nan) = nan 24676bb278eSTue Ly if (xbits.is_nan()) 24776bb278eSTue Ly return x; 24876bb278eSTue Ly 24976bb278eSTue Ly if (fputil::quick_get_round() == FE_UPWARD) 2506b02d2f8SGuillaume Chatelet return FPBits::min_subnormal().get_val(); 25176bb278eSTue Ly fputil::set_errno_if_required(ERANGE); 25276bb278eSTue Ly fputil::raise_except_if_required(FE_UNDERFLOW); 25376bb278eSTue Ly return 0.0; 25476bb278eSTue Ly } 25576bb278eSTue Ly 25676bb278eSTue Ly return exp10_denorm(x); 25776bb278eSTue Ly } 25876bb278eSTue Ly 25976bb278eSTue Ly // x >= log10(2^1024) or +inf/nan 26076bb278eSTue Ly // x is finite 26176bb278eSTue Ly if (x_u < 0x7ff0'0000'0000'0000ULL) { 26276bb278eSTue Ly int rounding = fputil::quick_get_round(); 26376bb278eSTue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 2646b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 26576bb278eSTue Ly 26676bb278eSTue Ly fputil::set_errno_if_required(ERANGE); 26776bb278eSTue Ly fputil::raise_except_if_required(FE_OVERFLOW); 26876bb278eSTue Ly } 26976bb278eSTue Ly // x is +inf or nan 2702856db0dSGuillaume Chatelet return x + FPBits::inf().get_val(); 27176bb278eSTue Ly } 27276bb278eSTue Ly 2733caef466Slntue } // namespace 2743caef466Slntue 27576bb278eSTue Ly LLVM_LIBC_FUNCTION(double, exp10, (double x)) { 27676bb278eSTue Ly using FPBits = typename fputil::FPBits<double>; 27776bb278eSTue Ly FPBits xbits(x); 27876bb278eSTue Ly 27976bb278eSTue Ly uint64_t x_u = xbits.uintval(); 28076bb278eSTue Ly 28176bb278eSTue Ly // x <= log10(2^-1022) or x >= log10(2^1024) or 28276bb278eSTue Ly // log10(1 - 2^-54) < x < log10(1 + 2^-53). 28376bb278eSTue Ly if (LIBC_UNLIKELY(x_u >= 0xc0733a7146f72a42 || 28476bb278eSTue Ly (x_u <= 0xbc7bcb7b1526e50e && x_u >= 0x40734413509f79ff) || 28576bb278eSTue Ly x_u < 0x3c8bcb7b1526e50e)) { 28676bb278eSTue Ly return set_exceptional(x); 28776bb278eSTue Ly } 28876bb278eSTue Ly 28976bb278eSTue Ly // Now log10(2^-1075) < x <= log10(1 - 2^-54) or 29076bb278eSTue Ly // log10(1 + 2^-53) < x < log10(2^1024) 29176bb278eSTue Ly 29276bb278eSTue Ly // Range reduction: 29376bb278eSTue Ly // Let x = log10(2) * (hi + mid1 + mid2) + lo 29476bb278eSTue Ly // in which: 29576bb278eSTue Ly // hi is an integer 29676bb278eSTue Ly // mid1 * 2^6 is an integer 29776bb278eSTue Ly // mid2 * 2^12 is an integer 29876bb278eSTue Ly // then: 29976bb278eSTue Ly // 10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo). 30076bb278eSTue Ly // With this formula: 30176bb278eSTue Ly // - multiplying by 2^hi is exact and cheap, simply by adding the exponent 30276bb278eSTue Ly // field. 30376bb278eSTue Ly // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. 30476bb278eSTue Ly // - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ... 30576bb278eSTue Ly // 30676bb278eSTue Ly // We compute (hi + mid1 + mid2) together by perform the rounding on 30776bb278eSTue Ly // x * log2(10) * 2^12. 30876bb278eSTue Ly // Since |x| < |log10(2^-1075)| < 2^9, 30976bb278eSTue Ly // |x * 2^12| < 2^9 * 2^12 < 2^21, 31076bb278eSTue Ly // So we can fit the rounded result round(x * 2^12) in int32_t. 31176bb278eSTue Ly // Thus, the goal is to be able to use an additional addition and fixed width 31276bb278eSTue Ly // shift to get an int32_t representing round(x * 2^12). 31376bb278eSTue Ly // 31476bb278eSTue Ly // Assuming int32_t using 2-complement representation, since the mantissa part 31576bb278eSTue Ly // of a double precision is unsigned with the leading bit hidden, if we add an 31676bb278eSTue Ly // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the 31776bb278eSTue Ly // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be 31876bb278eSTue Ly // considered as a proper 2-complement representations of x*2^12. 31976bb278eSTue Ly // 32076bb278eSTue Ly // One small problem with this approach is that the sum (x*2^12 + C) in 32176bb278eSTue Ly // double precision is rounded to the least significant bit of the dorminant 32276bb278eSTue Ly // factor C. In order to minimize the rounding errors from this addition, we 32376bb278eSTue Ly // want to minimize e1. Another constraint that we want is that after 32476bb278eSTue Ly // shifting the mantissa so that the least significant bit of int32_t 32576bb278eSTue Ly // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without 32676bb278eSTue Ly // any adjustment. So combining these 2 requirements, we can choose 32776bb278eSTue Ly // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence 32876bb278eSTue Ly // after right shifting the mantissa, the resulting int32_t has correct sign. 32976bb278eSTue Ly // With this choice of C, the number of mantissa bits we need to shift to the 33076bb278eSTue Ly // right is: 52 - 33 = 19. 33176bb278eSTue Ly // 33276bb278eSTue Ly // Moreover, since the integer right shifts are equivalent to rounding down, 33376bb278eSTue Ly // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- 33476bb278eSTue Ly // +infinity. So in particular, we can compute: 33576bb278eSTue Ly // hmm = x * 2^12 + C, 33676bb278eSTue Ly // where C = 2^33 + 2^32 + 2^-1, then if 33776bb278eSTue Ly // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19), 33876bb278eSTue Ly // the reduced argument: 33976bb278eSTue Ly // lo = x - log10(2) * 2^-12 * k is bounded by: 34076bb278eSTue Ly // |lo| = |x - log10(2) * 2^-12 * k| 34176bb278eSTue Ly // = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k | 34276bb278eSTue Ly // <= log10(2) * 2^-12 * (2^-1 + 2^-19) 34376bb278eSTue Ly // < 1.5 * 2^-2 * (2^-13 + 2^-31) 34476bb278eSTue Ly // = 1.5 * (2^-15 * 2^-31) 34576bb278eSTue Ly // 34676bb278eSTue Ly // Finally, notice that k only uses the mantissa of x * 2^12, so the 34776bb278eSTue Ly // exponent 2^12 is not needed. So we can simply define 34876bb278eSTue Ly // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and 34976bb278eSTue Ly // k = int32_t(lower 51 bits of double(x + C) >> 19). 35076bb278eSTue Ly 35176bb278eSTue Ly // Rounding errors <= 2^-31. 35276bb278eSTue Ly double tmp = fputil::multiply_add(x, LOG2_10, 0x1.8000'0000'4p21); 35376bb278eSTue Ly int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); 35476bb278eSTue Ly double kd = static_cast<double>(k); 35576bb278eSTue Ly 35676bb278eSTue Ly uint32_t idx1 = (k >> 6) & 0x3f; 35776bb278eSTue Ly uint32_t idx2 = k & 0x3f; 35876bb278eSTue Ly 35976bb278eSTue Ly int hi = k >> 12; 36076bb278eSTue Ly 36176bb278eSTue Ly DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 36276bb278eSTue Ly DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 36376bb278eSTue Ly DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 36476bb278eSTue Ly 36576bb278eSTue Ly // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14 36676bb278eSTue Ly double lo_h = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_HI, x); // exact 36776bb278eSTue Ly double dx = fputil::multiply_add(kd, MLOG10_2_EXP2_M12_MID, lo_h); 36876bb278eSTue Ly 36976bb278eSTue Ly // We use the degree-4 polynomial to approximate 10^(lo): 37076bb278eSTue Ly // 10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4 37176bb278eSTue Ly // = 1 + lo * P(lo) 37276bb278eSTue Ly // So that the errors are bounded by: 37376bb278eSTue Ly // |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 37476bb278eSTue Ly // Let P_ be an evaluation of P where all intermediate computations are in 37576bb278eSTue Ly // double precision. Using either Horner's or Estrin's schemes, the evaluated 37676bb278eSTue Ly // errors can be bounded by: 37776bb278eSTue Ly // |P_(lo) - P(lo)| < 2^-51 37876bb278eSTue Ly // => |lo * P_(lo) - (2^lo - 1) | < 2^-65 37976bb278eSTue Ly // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64. 38076bb278eSTue Ly // Since we approximate 38176bb278eSTue Ly // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, 38276bb278eSTue Ly // We use the expression: 38376bb278eSTue Ly // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ 38476bb278eSTue Ly // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) 38576bb278eSTue Ly // with errors bounded by 2^-64. 38676bb278eSTue Ly 38776bb278eSTue Ly double mid_lo = dx * exp_mid.hi; 38876bb278eSTue Ly 38976bb278eSTue Ly // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4. 39076bb278eSTue Ly double p = poly_approx_d(dx); 39176bb278eSTue Ly 39276bb278eSTue Ly double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); 39376bb278eSTue Ly 39476bb278eSTue Ly double upper = exp_mid.hi + (lo + ERR_D); 39576bb278eSTue Ly double lower = exp_mid.hi + (lo - ERR_D); 39676bb278eSTue Ly 39776bb278eSTue Ly if (LIBC_LIKELY(upper == lower)) { 39876bb278eSTue Ly // To multiply by 2^hi, a fast way is to simply add hi to the exponent 39976bb278eSTue Ly // field. 400c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 40176bb278eSTue Ly double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); 40276bb278eSTue Ly return r; 40376bb278eSTue Ly } 40476bb278eSTue Ly 40576bb278eSTue Ly // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23. 40676bb278eSTue Ly // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0) 40776bb278eSTue Ly if (LIBC_UNLIKELY((x_u & 0x8000'ffff'ffff'ffffULL) == 0ULL)) { 40876bb278eSTue Ly switch (x_u) { 40976bb278eSTue Ly case 0x3ff0000000000000: // x = 1.0 41076bb278eSTue Ly return 10.0; 41176bb278eSTue Ly case 0x4000000000000000: // x = 2.0 41276bb278eSTue Ly return 100.0; 41376bb278eSTue Ly case 0x4008000000000000: // x = 3.0 41476bb278eSTue Ly return 1'000.0; 41576bb278eSTue Ly case 0x4010000000000000: // x = 4.0 41676bb278eSTue Ly return 10'000.0; 41776bb278eSTue Ly case 0x4014000000000000: // x = 5.0 41876bb278eSTue Ly return 100'000.0; 41976bb278eSTue Ly case 0x4018000000000000: // x = 6.0 42076bb278eSTue Ly return 1'000'000.0; 42176bb278eSTue Ly case 0x401c000000000000: // x = 7.0 42276bb278eSTue Ly return 10'000'000.0; 42376bb278eSTue Ly case 0x4020000000000000: // x = 8.0 42476bb278eSTue Ly return 100'000'000.0; 42576bb278eSTue Ly case 0x4022000000000000: // x = 9.0 42676bb278eSTue Ly return 1'000'000'000.0; 42776bb278eSTue Ly case 0x4024000000000000: // x = 10.0 42876bb278eSTue Ly return 10'000'000'000.0; 42976bb278eSTue Ly case 0x4026000000000000: // x = 11.0 43076bb278eSTue Ly return 100'000'000'000.0; 43176bb278eSTue Ly case 0x4028000000000000: // x = 12.0 43276bb278eSTue Ly return 1'000'000'000'000.0; 43376bb278eSTue Ly case 0x402a000000000000: // x = 13.0 43476bb278eSTue Ly return 10'000'000'000'000.0; 43576bb278eSTue Ly case 0x402c000000000000: // x = 14.0 43676bb278eSTue Ly return 100'000'000'000'000.0; 43776bb278eSTue Ly case 0x402e000000000000: // x = 15.0 43876bb278eSTue Ly return 1'000'000'000'000'000.0; 43976bb278eSTue Ly case 0x4030000000000000: // x = 16.0 44076bb278eSTue Ly return 10'000'000'000'000'000.0; 44176bb278eSTue Ly case 0x4031000000000000: // x = 17.0 44276bb278eSTue Ly return 100'000'000'000'000'000.0; 44376bb278eSTue Ly case 0x4032000000000000: // x = 18.0 44476bb278eSTue Ly return 1'000'000'000'000'000'000.0; 44576bb278eSTue Ly case 0x4033000000000000: // x = 19.0 44676bb278eSTue Ly return 10'000'000'000'000'000'000.0; 44776bb278eSTue Ly case 0x4034000000000000: // x = 20.0 44876bb278eSTue Ly return 100'000'000'000'000'000'000.0; 44976bb278eSTue Ly case 0x4035000000000000: // x = 21.0 45076bb278eSTue Ly return 1'000'000'000'000'000'000'000.0; 45176bb278eSTue Ly case 0x4036000000000000: // x = 22.0 45276bb278eSTue Ly return 10'000'000'000'000'000'000'000.0; 45376bb278eSTue Ly case 0x4037000000000000: // x = 23.0 45476bb278eSTue Ly return 0x1.52d02c7e14af6p76 + x; 45576bb278eSTue Ly } 45676bb278eSTue Ly } 45776bb278eSTue Ly 45876bb278eSTue Ly // Use double-double 45976bb278eSTue Ly DoubleDouble r_dd = exp10_double_double(x, kd, exp_mid); 46076bb278eSTue Ly 46176bb278eSTue Ly double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); 46276bb278eSTue Ly double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); 46376bb278eSTue Ly 46476bb278eSTue Ly if (LIBC_LIKELY(upper_dd == lower_dd)) { 46576bb278eSTue Ly // To multiply by 2^hi, a fast way is to simply add hi to the exponent 46676bb278eSTue Ly // field. 467c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 46876bb278eSTue Ly double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); 46976bb278eSTue Ly return r; 47076bb278eSTue Ly } 47176bb278eSTue Ly 47276bb278eSTue Ly // Use 128-bit precision 47376bb278eSTue Ly Float128 r_f128 = exp10_f128(x, kd, idx1, idx2); 47476bb278eSTue Ly 47576bb278eSTue Ly return static_cast<double>(r_f128); 47676bb278eSTue Ly } 47776bb278eSTue Ly 478*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 479