xref: /llvm-project/libc/src/math/generic/exp.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
1434bf160STue Ly //===-- Double-precision e^x function -------------------------------------===//
2434bf160STue Ly //
3434bf160STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4434bf160STue Ly // See https://llvm.org/LICENSE.txt for license information.
5434bf160STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6434bf160STue Ly //
7434bf160STue Ly //===----------------------------------------------------------------------===//
8434bf160STue Ly 
9434bf160STue Ly #include "src/math/exp.h"
10434bf160STue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
118ca614aaSTue Ly #include "explogxf.h"         // ziv_test_denorm.
12434bf160STue Ly #include "src/__support/CPP/bit.h"
13434bf160STue Ly #include "src/__support/CPP/optional.h"
14434bf160STue Ly #include "src/__support/FPUtil/FEnvImpl.h"
15434bf160STue Ly #include "src/__support/FPUtil/FPBits.h"
16434bf160STue Ly #include "src/__support/FPUtil/PolyEval.h"
17434bf160STue Ly #include "src/__support/FPUtil/double_double.h"
18434bf160STue Ly #include "src/__support/FPUtil/dyadic_float.h"
19434bf160STue Ly #include "src/__support/FPUtil/multiply_add.h"
20434bf160STue Ly #include "src/__support/FPUtil/nearest_integer.h"
21434bf160STue Ly #include "src/__support/FPUtil/rounding_mode.h"
228ca614aaSTue Ly #include "src/__support/FPUtil/triple_double.h"
23434bf160STue Ly #include "src/__support/common.h"
24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h"
25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
26434bf160STue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
27434bf160STue Ly 
28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
29434bf160STue Ly 
30434bf160STue Ly using fputil::DoubleDouble;
318ca614aaSTue Ly using fputil::TripleDouble;
32434bf160STue Ly using Float128 = typename fputil::DyadicFloat<128>;
332137894aSGuillaume Chatelet 
34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128;
35434bf160STue Ly 
368ca614aaSTue Ly // log2(e)
37434bf160STue Ly constexpr double LOG2_E = 0x1.71547652b82fep+0;
38434bf160STue Ly 
39434bf160STue Ly // Error bounds:
40434bf160STue Ly // Errors when using double precision.
41434bf160STue Ly constexpr double ERR_D = 0x1.8p-63;
42434bf160STue Ly // Errors when using double-double precision.
43434bf160STue Ly constexpr double ERR_DD = 0x1.0p-99;
44434bf160STue Ly 
45434bf160STue Ly // -2^-12 * log(2)
46434bf160STue Ly // > a = -2^-12 * log(2);
47434bf160STue Ly // > b = round(a, 30, RN);
48434bf160STue Ly // > c = round(a - b, 30, RN);
49434bf160STue Ly // > d = round(a - b - c, D, RN);
50434bf160STue Ly // Errors < 1.5 * 2^-133
51434bf160STue Ly constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
52434bf160STue Ly constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
53434bf160STue Ly constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
54434bf160STue Ly constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
55434bf160STue Ly 
563caef466Slntue namespace {
573caef466Slntue 
58434bf160STue Ly // Polynomial approximations with double precision:
59434bf160STue Ly // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
60434bf160STue Ly // For |dx| < 2^-13 + 2^-30:
61434bf160STue Ly //   | output - expm1(dx) / dx | < 2^-51.
62434bf160STue Ly LIBC_INLINE double poly_approx_d(double dx) {
63434bf160STue Ly   // dx^2
64434bf160STue Ly   double dx2 = dx * dx;
65434bf160STue Ly   // c0 = 1 + dx / 2
66434bf160STue Ly   double c0 = fputil::multiply_add(dx, 0.5, 1.0);
67434bf160STue Ly   // c1 = 1/6 + dx / 24
68434bf160STue Ly   double c1 =
69434bf160STue Ly       fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
70434bf160STue Ly   // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
71434bf160STue Ly   double p = fputil::multiply_add(dx2, c1, c0);
72434bf160STue Ly   return p;
73434bf160STue Ly }
74434bf160STue Ly 
75434bf160STue Ly // Polynomial approximation with double-double precision:
76434bf160STue Ly // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720
77434bf160STue Ly // For |dx| < 2^-13 + 2^-30:
78434bf160STue Ly //   | output - exp(dx) | < 2^-101
79434bf160STue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
80434bf160STue Ly   // Taylor polynomial.
81434bf160STue Ly   constexpr DoubleDouble COEFFS[] = {
82434bf160STue Ly       {0, 0x1p0},                                      // 1
83434bf160STue Ly       {0, 0x1p0},                                      // 1
84434bf160STue Ly       {0, 0x1p-1},                                     // 1/2
85434bf160STue Ly       {0x1.5555555555555p-57, 0x1.5555555555555p-3},   // 1/6
86434bf160STue Ly       {0x1.5555555555555p-59, 0x1.5555555555555p-5},   // 1/24
87434bf160STue Ly       {0x1.1111111111111p-63, 0x1.1111111111111p-7},   // 1/120
88434bf160STue Ly       {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
89434bf160STue Ly   };
90434bf160STue Ly 
91434bf160STue Ly   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
92434bf160STue Ly                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
93434bf160STue Ly   return p;
94434bf160STue Ly }
95434bf160STue Ly 
96434bf160STue Ly // Polynomial approximation with 128-bit precision:
97434bf160STue Ly // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040
98434bf160STue Ly // For |dx| < 2^-13 + 2^-30:
99434bf160STue Ly //   | output - exp(dx) | < 2^-126.
100434bf160STue Ly Float128 poly_approx_f128(const Float128 &dx) {
101434bf160STue Ly   constexpr Float128 COEFFS_128[]{
102a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
103a80a01fcSGuillaume Chatelet       {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
104a80a01fcSGuillaume Chatelet       {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
105a80a01fcSGuillaume Chatelet       {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
106a80a01fcSGuillaume Chatelet       {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
107a80a01fcSGuillaume Chatelet       {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
108a80a01fcSGuillaume Chatelet       {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
109a80a01fcSGuillaume Chatelet       {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
110434bf160STue Ly   };
111434bf160STue Ly 
112434bf160STue Ly   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
113434bf160STue Ly                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
114434bf160STue Ly                                 COEFFS_128[6], COEFFS_128[7]);
115434bf160STue Ly   return p;
116434bf160STue Ly }
117434bf160STue Ly 
118434bf160STue Ly // Compute exp(x) using 128-bit precision.
119434bf160STue Ly // TODO(lntue): investigate triple-double precision implementation for this
120434bf160STue Ly // step.
121434bf160STue Ly Float128 exp_f128(double x, double kd, int idx1, int idx2) {
122434bf160STue Ly   // Recalculate dx:
123434bf160STue Ly 
124434bf160STue Ly   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
125434bf160STue Ly   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
126434bf160STue Ly   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-133
127434bf160STue Ly 
128434bf160STue Ly   Float128 dx = fputil::quick_add(
129434bf160STue Ly       Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
130434bf160STue Ly 
131434bf160STue Ly   // TODO: Skip recalculating exp_mid1 and exp_mid2.
132434bf160STue Ly   Float128 exp_mid1 =
1338ca614aaSTue Ly       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
1348ca614aaSTue Ly                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
1358ca614aaSTue Ly                                           Float128(EXP2_MID1[idx1].lo)));
136434bf160STue Ly 
137434bf160STue Ly   Float128 exp_mid2 =
1388ca614aaSTue Ly       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
1398ca614aaSTue Ly                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
1408ca614aaSTue Ly                                           Float128(EXP2_MID2[idx2].lo)));
141434bf160STue Ly 
142434bf160STue Ly   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
143434bf160STue Ly 
144434bf160STue Ly   Float128 p = poly_approx_f128(dx);
145434bf160STue Ly 
146434bf160STue Ly   Float128 r = fputil::quick_mul(exp_mid, p);
147434bf160STue Ly 
148434bf160STue Ly   r.exponent += static_cast<int>(kd) >> 12;
149434bf160STue Ly 
150434bf160STue Ly   return r;
151434bf160STue Ly }
152434bf160STue Ly 
153434bf160STue Ly // Compute exp(x) with double-double precision.
154434bf160STue Ly DoubleDouble exp_double_double(double x, double kd,
155434bf160STue Ly                                const DoubleDouble &exp_mid) {
156434bf160STue Ly   // Recalculate dx:
157434bf160STue Ly   //   dx = x - k * 2^-12 * log(2)
158434bf160STue Ly   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
159434bf160STue Ly   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
160434bf160STue Ly   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-130
161434bf160STue Ly 
162434bf160STue Ly   DoubleDouble dx = fputil::exact_add(t1, t2);
163434bf160STue Ly   dx.lo += t3;
164434bf160STue Ly 
165434bf160STue Ly   // Degree-6 Taylor polynomial approximation in double-double precision.
166434bf160STue Ly   // | p - exp(x) | < 2^-100.
167434bf160STue Ly   DoubleDouble p = poly_approx_dd(dx);
168434bf160STue Ly 
169434bf160STue Ly   // Error bounds: 2^-99.
170434bf160STue Ly   DoubleDouble r = fputil::quick_mult(exp_mid, p);
171434bf160STue Ly 
172434bf160STue Ly   return r;
173434bf160STue Ly }
174434bf160STue Ly 
175434bf160STue Ly // Check for exceptional cases when
1768ca614aaSTue Ly // |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9
177434bf160STue Ly double set_exceptional(double x) {
178434bf160STue Ly   using FPBits = typename fputil::FPBits<double>;
179434bf160STue Ly   FPBits xbits(x);
180434bf160STue Ly 
181434bf160STue Ly   uint64_t x_u = xbits.uintval();
182ea43c8eeSGuillaume Chatelet   uint64_t x_abs = xbits.abs().uintval();
183434bf160STue Ly 
1848ca614aaSTue Ly   // |x| <= 2^-53
185434bf160STue Ly   if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
186434bf160STue Ly     // exp(x) ~ 1 + x
187434bf160STue Ly     return 1 + x;
188434bf160STue Ly   }
189434bf160STue Ly 
190434bf160STue Ly   // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
191434bf160STue Ly 
192434bf160STue Ly   // x <= log(2^-1075) or -inf/nan
193434bf160STue Ly   if (x_u >= 0xc087'4910'd52d'3052ULL) {
194434bf160STue Ly     // exp(-Inf) = 0
195434bf160STue Ly     if (xbits.is_inf())
196434bf160STue Ly       return 0.0;
197434bf160STue Ly 
198434bf160STue Ly     // exp(nan) = nan
199434bf160STue Ly     if (xbits.is_nan())
200434bf160STue Ly       return x;
201434bf160STue Ly 
202434bf160STue Ly     if (fputil::quick_get_round() == FE_UPWARD)
2036b02d2f8SGuillaume Chatelet       return FPBits::min_subnormal().get_val();
204434bf160STue Ly     fputil::set_errno_if_required(ERANGE);
205434bf160STue Ly     fputil::raise_except_if_required(FE_UNDERFLOW);
206434bf160STue Ly     return 0.0;
207434bf160STue Ly   }
208434bf160STue Ly 
209434bf160STue Ly   // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
210434bf160STue Ly   // x is finite
211434bf160STue Ly   if (x_u < 0x7ff0'0000'0000'0000ULL) {
212434bf160STue Ly     int rounding = fputil::quick_get_round();
213434bf160STue Ly     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
2146b02d2f8SGuillaume Chatelet       return FPBits::max_normal().get_val();
215434bf160STue Ly 
216434bf160STue Ly     fputil::set_errno_if_required(ERANGE);
217434bf160STue Ly     fputil::raise_except_if_required(FE_OVERFLOW);
218434bf160STue Ly   }
219434bf160STue Ly   // x is +inf or nan
2202856db0dSGuillaume Chatelet   return x + FPBits::inf().get_val();
221434bf160STue Ly }
222434bf160STue Ly 
2233caef466Slntue } // namespace
2243caef466Slntue 
225434bf160STue Ly LLVM_LIBC_FUNCTION(double, exp, (double x)) {
226434bf160STue Ly   using FPBits = typename fputil::FPBits<double>;
227434bf160STue Ly   FPBits xbits(x);
228434bf160STue Ly 
229434bf160STue Ly   uint64_t x_u = xbits.uintval();
230434bf160STue Ly 
231434bf160STue Ly   // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
232434bf160STue Ly   // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
233434bf160STue Ly   // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
234434bf160STue Ly   // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
235434bf160STue Ly   // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
236434bf160STue Ly 
237434bf160STue Ly   // Lower bound: min denormal number / 2 = 2^-1075
238434bf160STue Ly   // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9
239434bf160STue Ly 
240434bf160STue Ly   // Another lower bound: min normal number = 2^-1022
241434bf160STue Ly   // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9
242434bf160STue Ly 
243434bf160STue Ly   // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53.
244434bf160STue Ly   if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 ||
245434bf160STue Ly                     (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
246434bf160STue Ly                     x_u < 0x3ca0000000000000)) {
247434bf160STue Ly     return set_exceptional(x);
248434bf160STue Ly   }
249434bf160STue Ly 
2508ca614aaSTue Ly   // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
251434bf160STue Ly 
252434bf160STue Ly   // Range reduction:
253434bf160STue Ly   // Let x = log(2) * (hi + mid1 + mid2) + lo
254434bf160STue Ly   // in which:
255434bf160STue Ly   //   hi is an integer
256434bf160STue Ly   //   mid1 * 2^6 is an integer
257434bf160STue Ly   //   mid2 * 2^12 is an integer
258434bf160STue Ly   // then:
259434bf160STue Ly   //   exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
260434bf160STue Ly   // With this formula:
261434bf160STue Ly   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
262434bf160STue Ly   //     field.
263434bf160STue Ly   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
264434bf160STue Ly   //   - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
265434bf160STue Ly   //
266434bf160STue Ly   // They can be defined by:
267434bf160STue Ly   //   hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
268434bf160STue Ly   // If we store L2E = round(log2(e), D, RN), then:
269434bf160STue Ly   //   log2(e) - L2E ~ 1.5 * 2^(-56)
270434bf160STue Ly   // So the errors when computing in double precision is:
271434bf160STue Ly   //   | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
272434bf160STue Ly   //  <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
273434bf160STue Ly   //     + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
274434bf160STue Ly   //  <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x))  for RN
275434bf160STue Ly   //     2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
276434bf160STue Ly   // So if:
277434bf160STue Ly   //   hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
278434bf160STue Ly   // in double precision, the reduced argument:
279434bf160STue Ly   //   lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
280434bf160STue Ly   //   |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
281434bf160STue Ly   //         < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
282434bf160STue Ly   //         < 2^-13 + 2^-41
283434bf160STue Ly   //
284434bf160STue Ly 
285434bf160STue Ly   // The following trick computes the round(x * L2E) more efficiently
286434bf160STue Ly   // than using the rounding instructions, with the tradeoff for less accuracy,
287434bf160STue Ly   // and hence a slightly larger range for the reduced argument `lo`.
288434bf160STue Ly   //
289434bf160STue Ly   // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
290434bf160STue Ly   //   |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
291434bf160STue Ly   // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
292434bf160STue Ly   // Thus, the goal is to be able to use an additional addition and fixed width
293434bf160STue Ly   // shift to get an int32_t representing round(x * 2^12 * L2E).
294434bf160STue Ly   //
295434bf160STue Ly   // Assuming int32_t using 2-complement representation, since the mantissa part
296434bf160STue Ly   // of a double precision is unsigned with the leading bit hidden, if we add an
297434bf160STue Ly   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
298434bf160STue Ly   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
299434bf160STue Ly   // considered as a proper 2-complement representations of x*2^12*L2E.
300434bf160STue Ly   //
301434bf160STue Ly   // One small problem with this approach is that the sum (x*2^12*L2E + C) in
302434bf160STue Ly   // double precision is rounded to the least significant bit of the dorminant
303434bf160STue Ly   // factor C.  In order to minimize the rounding errors from this addition, we
304434bf160STue Ly   // want to minimize e1.  Another constraint that we want is that after
305434bf160STue Ly   // shifting the mantissa so that the least significant bit of int32_t
306434bf160STue Ly   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
307434bf160STue Ly   // any adjustment.  So combining these 2 requirements, we can choose
308434bf160STue Ly   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
309434bf160STue Ly   // after right shifting the mantissa, the resulting int32_t has correct sign.
310434bf160STue Ly   // With this choice of C, the number of mantissa bits we need to shift to the
311434bf160STue Ly   // right is: 52 - 33 = 19.
312434bf160STue Ly   //
313434bf160STue Ly   // Moreover, since the integer right shifts are equivalent to rounding down,
314434bf160STue Ly   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
315434bf160STue Ly   // +infinity.  So in particular, we can compute:
316434bf160STue Ly   //   hmm = x * 2^12 * L2E + C,
317434bf160STue Ly   // where C = 2^33 + 2^32 + 2^-1, then if
318434bf160STue Ly   //   k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
319434bf160STue Ly   // the reduced argument:
320434bf160STue Ly   //   lo = x - log(2) * 2^-12 * k is bounded by:
321434bf160STue Ly   //   |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
322434bf160STue Ly   //         = 2^-13 + 2^-31 + 2^-41.
323434bf160STue Ly   //
324434bf160STue Ly   // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
325434bf160STue Ly   // exponent 2^12 is not needed.  So we can simply define
326434bf160STue Ly   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
327434bf160STue Ly   //   k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
328434bf160STue Ly 
329434bf160STue Ly   // Rounding errors <= 2^-31 + 2^-41.
330434bf160STue Ly   double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
331434bf160STue Ly   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
332434bf160STue Ly   double kd = static_cast<double>(k);
333434bf160STue Ly 
334434bf160STue Ly   uint32_t idx1 = (k >> 6) & 0x3f;
335434bf160STue Ly   uint32_t idx2 = k & 0x3f;
336434bf160STue Ly   int hi = k >> 12;
337434bf160STue Ly 
338434bf160STue Ly   bool denorm = (hi <= -1022);
339434bf160STue Ly 
3408ca614aaSTue Ly   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
3418ca614aaSTue Ly   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
342434bf160STue Ly 
343434bf160STue Ly   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
344434bf160STue Ly 
345434bf160STue Ly   // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
346434bf160STue Ly   //                                        = 2^11 * 2^-13 * 2^-52
347434bf160STue Ly   //                                        = 2^-54.
348434bf160STue Ly   // |dx| < 2^-13 + 2^-30.
349434bf160STue Ly   double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
350434bf160STue Ly   double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
351434bf160STue Ly 
352434bf160STue Ly   // We use the degree-4 Taylor polynomial to approximate exp(lo):
353434bf160STue Ly   //   exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
354434bf160STue Ly   // So that the errors are bounded by:
355434bf160STue Ly   //   |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
356434bf160STue Ly   // Let P_ be an evaluation of P where all intermediate computations are in
357434bf160STue Ly   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
358434bf160STue Ly   // errors can be bounded by:
359434bf160STue Ly   //      |P_(dx) - P(dx)| < 2^-51
360434bf160STue Ly   //   => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
361434bf160STue Ly   //   => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
362434bf160STue Ly   // Since we approximate
363434bf160STue Ly   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
364434bf160STue Ly   // We use the expression:
365434bf160STue Ly   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
366434bf160STue Ly   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
367434bf160STue Ly   // with errors bounded by 1.5 * 2^-63.
368434bf160STue Ly 
369434bf160STue Ly   double mid_lo = dx * exp_mid.hi;
370434bf160STue Ly 
371434bf160STue Ly   // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
372434bf160STue Ly   double p = poly_approx_d(dx);
373434bf160STue Ly 
374434bf160STue Ly   double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo);
375434bf160STue Ly 
376434bf160STue Ly   if (LIBC_UNLIKELY(denorm)) {
377434bf160STue Ly     if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D);
378434bf160STue Ly         LIBC_LIKELY(r.has_value()))
379434bf160STue Ly       return r.value();
380434bf160STue Ly   } else {
381434bf160STue Ly     double upper = exp_mid.hi + (lo + ERR_D);
382434bf160STue Ly     double lower = exp_mid.hi + (lo - ERR_D);
383434bf160STue Ly 
384434bf160STue Ly     if (LIBC_LIKELY(upper == lower)) {
385434bf160STue Ly       // to multiply by 2^hi, a fast way is to simply add hi to the exponent
386434bf160STue Ly       // field.
387c09e6905SGuillaume Chatelet       int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
388434bf160STue Ly       double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
389434bf160STue Ly       return r;
390434bf160STue Ly     }
391434bf160STue Ly   }
392434bf160STue Ly 
393434bf160STue Ly   // Use double-double
394434bf160STue Ly   DoubleDouble r_dd = exp_double_double(x, kd, exp_mid);
395434bf160STue Ly 
396434bf160STue Ly   if (LIBC_UNLIKELY(denorm)) {
397434bf160STue Ly     if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD);
398434bf160STue Ly         LIBC_LIKELY(r.has_value()))
399434bf160STue Ly       return r.value();
400434bf160STue Ly   } else {
401434bf160STue Ly     double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD);
402434bf160STue Ly     double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD);
403434bf160STue Ly 
404434bf160STue Ly     if (LIBC_LIKELY(upper_dd == lower_dd)) {
405c09e6905SGuillaume Chatelet       int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
406434bf160STue Ly       double r =
407434bf160STue Ly           cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
408434bf160STue Ly       return r;
409434bf160STue Ly     }
410434bf160STue Ly   }
411434bf160STue Ly 
412434bf160STue Ly   // Use 128-bit precision
413434bf160STue Ly   Float128 r_f128 = exp_f128(x, kd, idx1, idx2);
414434bf160STue Ly 
415434bf160STue Ly   return static_cast<double>(r_f128);
416434bf160STue Ly }
417434bf160STue Ly 
418*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
419