1434bf160STue Ly //===-- Double-precision e^x function -------------------------------------===// 2434bf160STue Ly // 3434bf160STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4434bf160STue Ly // See https://llvm.org/LICENSE.txt for license information. 5434bf160STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6434bf160STue Ly // 7434bf160STue Ly //===----------------------------------------------------------------------===// 8434bf160STue Ly 9434bf160STue Ly #include "src/math/exp.h" 10434bf160STue Ly #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2. 118ca614aaSTue Ly #include "explogxf.h" // ziv_test_denorm. 12434bf160STue Ly #include "src/__support/CPP/bit.h" 13434bf160STue Ly #include "src/__support/CPP/optional.h" 14434bf160STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 15434bf160STue Ly #include "src/__support/FPUtil/FPBits.h" 16434bf160STue Ly #include "src/__support/FPUtil/PolyEval.h" 17434bf160STue Ly #include "src/__support/FPUtil/double_double.h" 18434bf160STue Ly #include "src/__support/FPUtil/dyadic_float.h" 19434bf160STue Ly #include "src/__support/FPUtil/multiply_add.h" 20434bf160STue Ly #include "src/__support/FPUtil/nearest_integer.h" 21434bf160STue Ly #include "src/__support/FPUtil/rounding_mode.h" 228ca614aaSTue Ly #include "src/__support/FPUtil/triple_double.h" 23434bf160STue Ly #include "src/__support/common.h" 24a80a01fcSGuillaume Chatelet #include "src/__support/integer_literals.h" 25*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 26434bf160STue Ly #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 27434bf160STue Ly 28*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 29434bf160STue Ly 30434bf160STue Ly using fputil::DoubleDouble; 318ca614aaSTue Ly using fputil::TripleDouble; 32434bf160STue Ly using Float128 = typename fputil::DyadicFloat<128>; 332137894aSGuillaume Chatelet 34a80a01fcSGuillaume Chatelet using LIBC_NAMESPACE::operator""_u128; 35434bf160STue Ly 368ca614aaSTue Ly // log2(e) 37434bf160STue Ly constexpr double LOG2_E = 0x1.71547652b82fep+0; 38434bf160STue Ly 39434bf160STue Ly // Error bounds: 40434bf160STue Ly // Errors when using double precision. 41434bf160STue Ly constexpr double ERR_D = 0x1.8p-63; 42434bf160STue Ly // Errors when using double-double precision. 43434bf160STue Ly constexpr double ERR_DD = 0x1.0p-99; 44434bf160STue Ly 45434bf160STue Ly // -2^-12 * log(2) 46434bf160STue Ly // > a = -2^-12 * log(2); 47434bf160STue Ly // > b = round(a, 30, RN); 48434bf160STue Ly // > c = round(a - b, 30, RN); 49434bf160STue Ly // > d = round(a - b - c, D, RN); 50434bf160STue Ly // Errors < 1.5 * 2^-133 51434bf160STue Ly constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13; 52434bf160STue Ly constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47; 53434bf160STue Ly constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47; 54434bf160STue Ly constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79; 55434bf160STue Ly 563caef466Slntue namespace { 573caef466Slntue 58434bf160STue Ly // Polynomial approximations with double precision: 59434bf160STue Ly // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. 60434bf160STue Ly // For |dx| < 2^-13 + 2^-30: 61434bf160STue Ly // | output - expm1(dx) / dx | < 2^-51. 62434bf160STue Ly LIBC_INLINE double poly_approx_d(double dx) { 63434bf160STue Ly // dx^2 64434bf160STue Ly double dx2 = dx * dx; 65434bf160STue Ly // c0 = 1 + dx / 2 66434bf160STue Ly double c0 = fputil::multiply_add(dx, 0.5, 1.0); 67434bf160STue Ly // c1 = 1/6 + dx / 24 68434bf160STue Ly double c1 = 69434bf160STue Ly fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3); 70434bf160STue Ly // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24 71434bf160STue Ly double p = fputil::multiply_add(dx2, c1, c0); 72434bf160STue Ly return p; 73434bf160STue Ly } 74434bf160STue Ly 75434bf160STue Ly // Polynomial approximation with double-double precision: 76434bf160STue Ly // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^6 / 720 77434bf160STue Ly // For |dx| < 2^-13 + 2^-30: 78434bf160STue Ly // | output - exp(dx) | < 2^-101 79434bf160STue Ly DoubleDouble poly_approx_dd(const DoubleDouble &dx) { 80434bf160STue Ly // Taylor polynomial. 81434bf160STue Ly constexpr DoubleDouble COEFFS[] = { 82434bf160STue Ly {0, 0x1p0}, // 1 83434bf160STue Ly {0, 0x1p0}, // 1 84434bf160STue Ly {0, 0x1p-1}, // 1/2 85434bf160STue Ly {0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6 86434bf160STue Ly {0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24 87434bf160STue Ly {0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120 88434bf160STue Ly {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720 89434bf160STue Ly }; 90434bf160STue Ly 91434bf160STue Ly DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2], 92434bf160STue Ly COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]); 93434bf160STue Ly return p; 94434bf160STue Ly } 95434bf160STue Ly 96434bf160STue Ly // Polynomial approximation with 128-bit precision: 97434bf160STue Ly // Return exp(dx) ~ 1 + dx + dx^2 / 2 + ... + dx^7 / 5040 98434bf160STue Ly // For |dx| < 2^-13 + 2^-30: 99434bf160STue Ly // | output - exp(dx) | < 2^-126. 100434bf160STue Ly Float128 poly_approx_f128(const Float128 &dx) { 101434bf160STue Ly constexpr Float128 COEFFS_128[]{ 102a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 103a80a01fcSGuillaume Chatelet {Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0 104a80a01fcSGuillaume Chatelet {Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5 105a80a01fcSGuillaume Chatelet {Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6 106a80a01fcSGuillaume Chatelet {Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24 107a80a01fcSGuillaume Chatelet {Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120 108a80a01fcSGuillaume Chatelet {Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720 109a80a01fcSGuillaume Chatelet {Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040 110434bf160STue Ly }; 111434bf160STue Ly 112434bf160STue Ly Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2], 113434bf160STue Ly COEFFS_128[3], COEFFS_128[4], COEFFS_128[5], 114434bf160STue Ly COEFFS_128[6], COEFFS_128[7]); 115434bf160STue Ly return p; 116434bf160STue Ly } 117434bf160STue Ly 118434bf160STue Ly // Compute exp(x) using 128-bit precision. 119434bf160STue Ly // TODO(lntue): investigate triple-double precision implementation for this 120434bf160STue Ly // step. 121434bf160STue Ly Float128 exp_f128(double x, double kd, int idx1, int idx2) { 122434bf160STue Ly // Recalculate dx: 123434bf160STue Ly 124434bf160STue Ly double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 125434bf160STue Ly double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact 126434bf160STue Ly double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133 127434bf160STue Ly 128434bf160STue Ly Float128 dx = fputil::quick_add( 129434bf160STue Ly Float128(t1), fputil::quick_add(Float128(t2), Float128(t3))); 130434bf160STue Ly 131434bf160STue Ly // TODO: Skip recalculating exp_mid1 and exp_mid2. 132434bf160STue Ly Float128 exp_mid1 = 1338ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].hi), 1348ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID1[idx1].mid), 1358ca614aaSTue Ly Float128(EXP2_MID1[idx1].lo))); 136434bf160STue Ly 137434bf160STue Ly Float128 exp_mid2 = 1388ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].hi), 1398ca614aaSTue Ly fputil::quick_add(Float128(EXP2_MID2[idx2].mid), 1408ca614aaSTue Ly Float128(EXP2_MID2[idx2].lo))); 141434bf160STue Ly 142434bf160STue Ly Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2); 143434bf160STue Ly 144434bf160STue Ly Float128 p = poly_approx_f128(dx); 145434bf160STue Ly 146434bf160STue Ly Float128 r = fputil::quick_mul(exp_mid, p); 147434bf160STue Ly 148434bf160STue Ly r.exponent += static_cast<int>(kd) >> 12; 149434bf160STue Ly 150434bf160STue Ly return r; 151434bf160STue Ly } 152434bf160STue Ly 153434bf160STue Ly // Compute exp(x) with double-double precision. 154434bf160STue Ly DoubleDouble exp_double_double(double x, double kd, 155434bf160STue Ly const DoubleDouble &exp_mid) { 156434bf160STue Ly // Recalculate dx: 157434bf160STue Ly // dx = x - k * 2^-12 * log(2) 158434bf160STue Ly double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 159434bf160STue Ly double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact 160434bf160STue Ly double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130 161434bf160STue Ly 162434bf160STue Ly DoubleDouble dx = fputil::exact_add(t1, t2); 163434bf160STue Ly dx.lo += t3; 164434bf160STue Ly 165434bf160STue Ly // Degree-6 Taylor polynomial approximation in double-double precision. 166434bf160STue Ly // | p - exp(x) | < 2^-100. 167434bf160STue Ly DoubleDouble p = poly_approx_dd(dx); 168434bf160STue Ly 169434bf160STue Ly // Error bounds: 2^-99. 170434bf160STue Ly DoubleDouble r = fputil::quick_mult(exp_mid, p); 171434bf160STue Ly 172434bf160STue Ly return r; 173434bf160STue Ly } 174434bf160STue Ly 175434bf160STue Ly // Check for exceptional cases when 1768ca614aaSTue Ly // |x| <= 2^-53 or x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 177434bf160STue Ly double set_exceptional(double x) { 178434bf160STue Ly using FPBits = typename fputil::FPBits<double>; 179434bf160STue Ly FPBits xbits(x); 180434bf160STue Ly 181434bf160STue Ly uint64_t x_u = xbits.uintval(); 182ea43c8eeSGuillaume Chatelet uint64_t x_abs = xbits.abs().uintval(); 183434bf160STue Ly 1848ca614aaSTue Ly // |x| <= 2^-53 185434bf160STue Ly if (x_abs <= 0x3ca0'0000'0000'0000ULL) { 186434bf160STue Ly // exp(x) ~ 1 + x 187434bf160STue Ly return 1 + x; 188434bf160STue Ly } 189434bf160STue Ly 190434bf160STue Ly // x <= log(2^-1075) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan. 191434bf160STue Ly 192434bf160STue Ly // x <= log(2^-1075) or -inf/nan 193434bf160STue Ly if (x_u >= 0xc087'4910'd52d'3052ULL) { 194434bf160STue Ly // exp(-Inf) = 0 195434bf160STue Ly if (xbits.is_inf()) 196434bf160STue Ly return 0.0; 197434bf160STue Ly 198434bf160STue Ly // exp(nan) = nan 199434bf160STue Ly if (xbits.is_nan()) 200434bf160STue Ly return x; 201434bf160STue Ly 202434bf160STue Ly if (fputil::quick_get_round() == FE_UPWARD) 2036b02d2f8SGuillaume Chatelet return FPBits::min_subnormal().get_val(); 204434bf160STue Ly fputil::set_errno_if_required(ERANGE); 205434bf160STue Ly fputil::raise_except_if_required(FE_UNDERFLOW); 206434bf160STue Ly return 0.0; 207434bf160STue Ly } 208434bf160STue Ly 209434bf160STue Ly // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan 210434bf160STue Ly // x is finite 211434bf160STue Ly if (x_u < 0x7ff0'0000'0000'0000ULL) { 212434bf160STue Ly int rounding = fputil::quick_get_round(); 213434bf160STue Ly if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) 2146b02d2f8SGuillaume Chatelet return FPBits::max_normal().get_val(); 215434bf160STue Ly 216434bf160STue Ly fputil::set_errno_if_required(ERANGE); 217434bf160STue Ly fputil::raise_except_if_required(FE_OVERFLOW); 218434bf160STue Ly } 219434bf160STue Ly // x is +inf or nan 2202856db0dSGuillaume Chatelet return x + FPBits::inf().get_val(); 221434bf160STue Ly } 222434bf160STue Ly 2233caef466Slntue } // namespace 2243caef466Slntue 225434bf160STue Ly LLVM_LIBC_FUNCTION(double, exp, (double x)) { 226434bf160STue Ly using FPBits = typename fputil::FPBits<double>; 227434bf160STue Ly FPBits xbits(x); 228434bf160STue Ly 229434bf160STue Ly uint64_t x_u = xbits.uintval(); 230434bf160STue Ly 231434bf160STue Ly // Upper bound: max normal number = 2^1023 * (2 - 2^-52) 232434bf160STue Ly // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9 233434bf160STue Ly // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9 234434bf160STue Ly // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9 235434bf160STue Ly // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty 236434bf160STue Ly 237434bf160STue Ly // Lower bound: min denormal number / 2 = 2^-1075 238434bf160STue Ly // > round(log(2^-1075), D, RN) = -0x1.74910d52d3052p9 239434bf160STue Ly 240434bf160STue Ly // Another lower bound: min normal number = 2^-1022 241434bf160STue Ly // > round(log(2^-1022), D, RN) = -0x1.6232bdd7abcd2p9 242434bf160STue Ly 243434bf160STue Ly // x < log(2^-1075) or x >= 0x1.6232bdd7abcd3p+9 or |x| < 2^-53. 244434bf160STue Ly if (LIBC_UNLIKELY(x_u >= 0xc0874910d52d3052 || 245434bf160STue Ly (x_u < 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) || 246434bf160STue Ly x_u < 0x3ca0000000000000)) { 247434bf160STue Ly return set_exceptional(x); 248434bf160STue Ly } 249434bf160STue Ly 2508ca614aaSTue Ly // Now log(2^-1075) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52)) 251434bf160STue Ly 252434bf160STue Ly // Range reduction: 253434bf160STue Ly // Let x = log(2) * (hi + mid1 + mid2) + lo 254434bf160STue Ly // in which: 255434bf160STue Ly // hi is an integer 256434bf160STue Ly // mid1 * 2^6 is an integer 257434bf160STue Ly // mid2 * 2^12 is an integer 258434bf160STue Ly // then: 259434bf160STue Ly // exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo). 260434bf160STue Ly // With this formula: 261434bf160STue Ly // - multiplying by 2^hi is exact and cheap, simply by adding the exponent 262434bf160STue Ly // field. 263434bf160STue Ly // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables. 264434bf160STue Ly // - exp(lo) ~ 1 + lo + a0 * lo^2 + ... 265434bf160STue Ly // 266434bf160STue Ly // They can be defined by: 267434bf160STue Ly // hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x) 268434bf160STue Ly // If we store L2E = round(log2(e), D, RN), then: 269434bf160STue Ly // log2(e) - L2E ~ 1.5 * 2^(-56) 270434bf160STue Ly // So the errors when computing in double precision is: 271434bf160STue Ly // | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <= 272434bf160STue Ly // <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | + 273434bf160STue Ly // + | x * 2^12 * L2E - D(x * 2^12 * L2E) | 274434bf160STue Ly // <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN 275434bf160STue Ly // 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes. 276434bf160STue Ly // So if: 277434bf160STue Ly // hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely 278434bf160STue Ly // in double precision, the reduced argument: 279434bf160STue Ly // lo = x - log(2) * (hi + mid1 + mid2) is bounded by: 280434bf160STue Ly // |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x)) 281434bf160STue Ly // < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52)) 282434bf160STue Ly // < 2^-13 + 2^-41 283434bf160STue Ly // 284434bf160STue Ly 285434bf160STue Ly // The following trick computes the round(x * L2E) more efficiently 286434bf160STue Ly // than using the rounding instructions, with the tradeoff for less accuracy, 287434bf160STue Ly // and hence a slightly larger range for the reduced argument `lo`. 288434bf160STue Ly // 289434bf160STue Ly // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9, 290434bf160STue Ly // |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23, 291434bf160STue Ly // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t. 292434bf160STue Ly // Thus, the goal is to be able to use an additional addition and fixed width 293434bf160STue Ly // shift to get an int32_t representing round(x * 2^12 * L2E). 294434bf160STue Ly // 295434bf160STue Ly // Assuming int32_t using 2-complement representation, since the mantissa part 296434bf160STue Ly // of a double precision is unsigned with the leading bit hidden, if we add an 297434bf160STue Ly // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the 298434bf160STue Ly // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be 299434bf160STue Ly // considered as a proper 2-complement representations of x*2^12*L2E. 300434bf160STue Ly // 301434bf160STue Ly // One small problem with this approach is that the sum (x*2^12*L2E + C) in 302434bf160STue Ly // double precision is rounded to the least significant bit of the dorminant 303434bf160STue Ly // factor C. In order to minimize the rounding errors from this addition, we 304434bf160STue Ly // want to minimize e1. Another constraint that we want is that after 305434bf160STue Ly // shifting the mantissa so that the least significant bit of int32_t 306434bf160STue Ly // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without 307434bf160STue Ly // any adjustment. So combining these 2 requirements, we can choose 308434bf160STue Ly // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence 309434bf160STue Ly // after right shifting the mantissa, the resulting int32_t has correct sign. 310434bf160STue Ly // With this choice of C, the number of mantissa bits we need to shift to the 311434bf160STue Ly // right is: 52 - 33 = 19. 312434bf160STue Ly // 313434bf160STue Ly // Moreover, since the integer right shifts are equivalent to rounding down, 314434bf160STue Ly // we can add an extra 0.5 so that it will become round-to-nearest, tie-to- 315434bf160STue Ly // +infinity. So in particular, we can compute: 316434bf160STue Ly // hmm = x * 2^12 * L2E + C, 317434bf160STue Ly // where C = 2^33 + 2^32 + 2^-1, then if 318434bf160STue Ly // k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19), 319434bf160STue Ly // the reduced argument: 320434bf160STue Ly // lo = x - log(2) * 2^-12 * k is bounded by: 321434bf160STue Ly // |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19 322434bf160STue Ly // = 2^-13 + 2^-31 + 2^-41. 323434bf160STue Ly // 324434bf160STue Ly // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the 325434bf160STue Ly // exponent 2^12 is not needed. So we can simply define 326434bf160STue Ly // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and 327434bf160STue Ly // k = int32_t(lower 51 bits of double(x * L2E + C) >> 19). 328434bf160STue Ly 329434bf160STue Ly // Rounding errors <= 2^-31 + 2^-41. 330434bf160STue Ly double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21); 331434bf160STue Ly int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19); 332434bf160STue Ly double kd = static_cast<double>(k); 333434bf160STue Ly 334434bf160STue Ly uint32_t idx1 = (k >> 6) & 0x3f; 335434bf160STue Ly uint32_t idx2 = k & 0x3f; 336434bf160STue Ly int hi = k >> 12; 337434bf160STue Ly 338434bf160STue Ly bool denorm = (hi <= -1022); 339434bf160STue Ly 3408ca614aaSTue Ly DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi}; 3418ca614aaSTue Ly DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi}; 342434bf160STue Ly 343434bf160STue Ly DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2); 344434bf160STue Ly 345434bf160STue Ly // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo) 346434bf160STue Ly // = 2^11 * 2^-13 * 2^-52 347434bf160STue Ly // = 2^-54. 348434bf160STue Ly // |dx| < 2^-13 + 2^-30. 349434bf160STue Ly double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact 350434bf160STue Ly double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h); 351434bf160STue Ly 352434bf160STue Ly // We use the degree-4 Taylor polynomial to approximate exp(lo): 353434bf160STue Ly // exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo) 354434bf160STue Ly // So that the errors are bounded by: 355434bf160STue Ly // |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58 356434bf160STue Ly // Let P_ be an evaluation of P where all intermediate computations are in 357434bf160STue Ly // double precision. Using either Horner's or Estrin's schemes, the evaluated 358434bf160STue Ly // errors can be bounded by: 359434bf160STue Ly // |P_(dx) - P(dx)| < 2^-51 360434bf160STue Ly // => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64 361434bf160STue Ly // => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63. 362434bf160STue Ly // Since we approximate 363434bf160STue Ly // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo, 364434bf160STue Ly // We use the expression: 365434bf160STue Ly // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~ 366434bf160STue Ly // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo) 367434bf160STue Ly // with errors bounded by 1.5 * 2^-63. 368434bf160STue Ly 369434bf160STue Ly double mid_lo = dx * exp_mid.hi; 370434bf160STue Ly 371434bf160STue Ly // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24. 372434bf160STue Ly double p = poly_approx_d(dx); 373434bf160STue Ly 374434bf160STue Ly double lo = fputil::multiply_add(p, mid_lo, exp_mid.lo); 375434bf160STue Ly 376434bf160STue Ly if (LIBC_UNLIKELY(denorm)) { 377434bf160STue Ly if (auto r = ziv_test_denorm(hi, exp_mid.hi, lo, ERR_D); 378434bf160STue Ly LIBC_LIKELY(r.has_value())) 379434bf160STue Ly return r.value(); 380434bf160STue Ly } else { 381434bf160STue Ly double upper = exp_mid.hi + (lo + ERR_D); 382434bf160STue Ly double lower = exp_mid.hi + (lo - ERR_D); 383434bf160STue Ly 384434bf160STue Ly if (LIBC_LIKELY(upper == lower)) { 385434bf160STue Ly // to multiply by 2^hi, a fast way is to simply add hi to the exponent 386434bf160STue Ly // field. 387c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 388434bf160STue Ly double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper)); 389434bf160STue Ly return r; 390434bf160STue Ly } 391434bf160STue Ly } 392434bf160STue Ly 393434bf160STue Ly // Use double-double 394434bf160STue Ly DoubleDouble r_dd = exp_double_double(x, kd, exp_mid); 395434bf160STue Ly 396434bf160STue Ly if (LIBC_UNLIKELY(denorm)) { 397434bf160STue Ly if (auto r = ziv_test_denorm(hi, r_dd.hi, r_dd.lo, ERR_DD); 398434bf160STue Ly LIBC_LIKELY(r.has_value())) 399434bf160STue Ly return r.value(); 400434bf160STue Ly } else { 401434bf160STue Ly double upper_dd = r_dd.hi + (r_dd.lo + ERR_DD); 402434bf160STue Ly double lower_dd = r_dd.hi + (r_dd.lo - ERR_DD); 403434bf160STue Ly 404434bf160STue Ly if (LIBC_LIKELY(upper_dd == lower_dd)) { 405c09e6905SGuillaume Chatelet int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN; 406434bf160STue Ly double r = 407434bf160STue Ly cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd)); 408434bf160STue Ly return r; 409434bf160STue Ly } 410434bf160STue Ly } 411434bf160STue Ly 412434bf160STue Ly // Use 128-bit precision 413434bf160STue Ly Float128 r_f128 = exp_f128(x, kd, idx1, idx2); 414434bf160STue Ly 415434bf160STue Ly return static_cast<double>(r_f128); 416434bf160STue Ly } 417434bf160STue Ly 418*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 419