1f8834ed2SHendrik Hübner //===-- Single-precision cospi function -----------------------------------===// 2f8834ed2SHendrik Hübner // 3f8834ed2SHendrik Hübner // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4f8834ed2SHendrik Hübner // See https://llvm.org/LICENSE.txt for license information. 5f8834ed2SHendrik Hübner // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f8834ed2SHendrik Hübner // 7f8834ed2SHendrik Hübner //===----------------------------------------------------------------------===// 8f8834ed2SHendrik Hübner 9f8834ed2SHendrik Hübner #include "src/math/cospif.h" 10f8834ed2SHendrik Hübner #include "sincosf_utils.h" 11f8834ed2SHendrik Hübner #include "src/__support/FPUtil/FEnvImpl.h" 12f8834ed2SHendrik Hübner #include "src/__support/FPUtil/FPBits.h" 13f8834ed2SHendrik Hübner #include "src/__support/FPUtil/multiply_add.h" 14f8834ed2SHendrik Hübner #include "src/__support/common.h" 15*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 16f8834ed2SHendrik Hübner #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 17f8834ed2SHendrik Hübner #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 18f8834ed2SHendrik Hübner 19*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 20f8834ed2SHendrik Hübner 21f8834ed2SHendrik Hübner LLVM_LIBC_FUNCTION(float, cospif, (float x)) { 22f8834ed2SHendrik Hübner using FPBits = typename fputil::FPBits<float>; 23f8834ed2SHendrik Hübner 24f8834ed2SHendrik Hübner FPBits xbits(x); 25f8834ed2SHendrik Hübner xbits.set_sign(Sign::POS); 26f8834ed2SHendrik Hübner 27f8834ed2SHendrik Hübner uint32_t x_abs = xbits.uintval(); 28f8834ed2SHendrik Hübner double xd = static_cast<double>(xbits.get_val()); 29f8834ed2SHendrik Hübner 30f8834ed2SHendrik Hübner // Range reduction: 31f8834ed2SHendrik Hübner // For |x| > 1/32, we perform range reduction as follows: 32f8834ed2SHendrik Hübner // Find k and y such that: 33f8834ed2SHendrik Hübner // x = (k + y) * 1/32 34f8834ed2SHendrik Hübner // k is an integer 35f8834ed2SHendrik Hübner // |y| < 0.5 36f8834ed2SHendrik Hübner // 37f8834ed2SHendrik Hübner // This is done by performing: 38f8834ed2SHendrik Hübner // k = round(x * 32) 39f8834ed2SHendrik Hübner // y = x * 32 - k 40f8834ed2SHendrik Hübner // 41f8834ed2SHendrik Hübner // Once k and y are computed, we then deduce the answer by the cosine of sum 42f8834ed2SHendrik Hübner // formula: 43f8834ed2SHendrik Hübner // cospi(x) = cos((k + y)*pi/32) 44f8834ed2SHendrik Hübner // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) 45f8834ed2SHendrik Hübner // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed 46f8834ed2SHendrik Hübner // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are 47f8834ed2SHendrik Hübner // computed using degree-7 and degree-6 minimax polynomials generated by 48f8834ed2SHendrik Hübner // Sollya respectively. 49f8834ed2SHendrik Hübner 50f8834ed2SHendrik Hübner // The exhautive test passes for smaller values 51f8834ed2SHendrik Hübner if (LIBC_UNLIKELY(x_abs < 0x38A2'F984U)) { 52f8834ed2SHendrik Hübner 53f8834ed2SHendrik Hübner #if defined(LIBC_TARGET_CPU_HAS_FMA) 54f8834ed2SHendrik Hübner return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f); 55f8834ed2SHendrik Hübner #else 56f8834ed2SHendrik Hübner return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0)); 57f8834ed2SHendrik Hübner #endif // LIBC_TARGET_CPU_HAS_FMA 58f8834ed2SHendrik Hübner } 59f8834ed2SHendrik Hübner 60f8834ed2SHendrik Hübner // Numbers greater or equal to 2^23 are always integers or NaN 61f8834ed2SHendrik Hübner if (LIBC_UNLIKELY(x_abs >= 0x4B00'0000)) { 62f8834ed2SHendrik Hübner 63f8834ed2SHendrik Hübner if (LIBC_UNLIKELY(x_abs < 0x4B80'0000)) { 64f8834ed2SHendrik Hübner return (x_abs & 0x1) ? -1.0f : 1.0f; 65f8834ed2SHendrik Hübner } 66f8834ed2SHendrik Hübner 67f8834ed2SHendrik Hübner // x is inf or nan. 68f8834ed2SHendrik Hübner if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { 69f8834ed2SHendrik Hübner if (x_abs == 0x7f80'0000U) { 70f8834ed2SHendrik Hübner fputil::set_errno_if_required(EDOM); 71f8834ed2SHendrik Hübner fputil::raise_except_if_required(FE_INVALID); 72f8834ed2SHendrik Hübner } 73f8834ed2SHendrik Hübner return x + FPBits::quiet_nan().get_val(); 74f8834ed2SHendrik Hübner } 75f8834ed2SHendrik Hübner 76f8834ed2SHendrik Hübner return 1.0f; 77f8834ed2SHendrik Hübner } 78f8834ed2SHendrik Hübner 79f8834ed2SHendrik Hübner // Combine the results with the sine of sum formula: 80f8834ed2SHendrik Hübner // cos(pi * x) = cos((k + y)*pi/32) 81f8834ed2SHendrik Hübner // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) 82f8834ed2SHendrik Hübner // = (cosm1_y + 1) * cos_k - sin_y * sin_k 83f8834ed2SHendrik Hübner // = (cosm1_y * cos_k + cos_k) - sin_y * sin_k 84f8834ed2SHendrik Hübner double sin_k, cos_k, sin_y, cosm1_y; 85f8834ed2SHendrik Hübner 86f8834ed2SHendrik Hübner sincospif_eval(xd, sin_k, cos_k, sin_y, cosm1_y); 87f8834ed2SHendrik Hübner 88f8834ed2SHendrik Hübner if (LIBC_UNLIKELY(sin_y == 0 && cos_k == 0)) { 8972ccdd81SHendrik Hübner return 0.0f; 90f8834ed2SHendrik Hübner } 91f8834ed2SHendrik Hübner 92f8834ed2SHendrik Hübner return static_cast<float>(fputil::multiply_add( 93f8834ed2SHendrik Hübner sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k))); 94f8834ed2SHendrik Hübner } 95f8834ed2SHendrik Hübner 96*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 97