xref: /llvm-project/libc/src/math/generic/cosf.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
1bbb75554SSiva Chandra //===-- Single-precision cos function -------------------------------------===//
2bbb75554SSiva Chandra //
3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information.
5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6bbb75554SSiva Chandra //
7bbb75554SSiva Chandra //===----------------------------------------------------------------------===//
8bbb75554SSiva Chandra 
9bbb75554SSiva Chandra #include "src/math/cosf.h"
10131dda9aSTue Ly #include "sincosf_utils.h"
112ff187fbSTue Ly #include "src/__support/FPUtil/BasicOperations.h"
122ff187fbSTue Ly #include "src/__support/FPUtil/FEnvImpl.h"
132ff187fbSTue Ly #include "src/__support/FPUtil/FPBits.h"
142ff187fbSTue Ly #include "src/__support/FPUtil/except_value_utils.h"
152ff187fbSTue Ly #include "src/__support/FPUtil/multiply_add.h"
16bbb75554SSiva Chandra #include "src/__support/common.h"
17*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
18737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
19737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
20bbb75554SSiva Chandra 
21*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
22bbb75554SSiva Chandra 
232ff187fbSTue Ly // Exceptional cases for cosf.
24a4d48e3bSTue Ly static constexpr size_t N_EXCEPTS = 6;
25bbb75554SSiva Chandra 
26a4d48e3bSTue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> COSF_EXCEPTS{{
27a4d48e3bSTue Ly     // (inputs, RZ output, RU offset, RD offset, RN offset)
28a4d48e3bSTue Ly     // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
29a4d48e3bSTue Ly     {0x55325019, 0x3f4ea5d2, 1, 0, 0},
30a4d48e3bSTue Ly     // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
31a4d48e3bSTue Ly     {0x5922aa80, 0x3f08aebe, 1, 0, 1},
32a4d48e3bSTue Ly     // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ)
33a4d48e3bSTue Ly     {0x5aa4542c, 0x3efa40a4, 1, 0, 0},
34a4d48e3bSTue Ly     // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
35a4d48e3bSTue Ly     {0x5f18b878, 0x3f7f14bb, 1, 0, 0},
36a4d48e3bSTue Ly     // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
37a4d48e3bSTue Ly     {0x6115cb11, 0x3f78142e, 1, 0, 1},
38a4d48e3bSTue Ly     // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
39a4d48e3bSTue Ly     {0x7beef5ef, 0x3f08a21c, 1, 0, 0},
402ff187fbSTue Ly }};
41bbb75554SSiva Chandra 
422ff187fbSTue Ly LLVM_LIBC_FUNCTION(float, cosf, (float x)) {
432ff187fbSTue Ly   using FPBits = typename fputil::FPBits<float>;
442137894aSGuillaume Chatelet 
452ff187fbSTue Ly   FPBits xbits(x);
4611ec512fSGuillaume Chatelet   xbits.set_sign(Sign::POS);
47bbb75554SSiva Chandra 
482ff187fbSTue Ly   uint32_t x_abs = xbits.uintval();
492ff187fbSTue Ly   double xd = static_cast<double>(xbits.get_val());
50bbb75554SSiva Chandra 
512ff187fbSTue Ly   // Range reduction:
522ff187fbSTue Ly   // For |x| > pi/16, we perform range reduction as follows:
532ff187fbSTue Ly   // Find k and y such that:
5442f18379STue Ly   //   x = (k + y) * pi/32
552ff187fbSTue Ly   //   k is an integer
562ff187fbSTue Ly   //   |y| < 0.5
5742f18379STue Ly   // For small range (|x| < 2^45 when FMA instructions are available, 2^22
582ff187fbSTue Ly   // otherwise), this is done by performing:
5942f18379STue Ly   //   k = round(x * 32/pi)
6042f18379STue Ly   //   y = x * 32/pi - k
612ff187fbSTue Ly   // For large range, we will omit all the higher parts of 16/pi such that the
6242f18379STue Ly   // least significant bits of their full products with x are larger than 63,
6342f18379STue Ly   // since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
642ff187fbSTue Ly   //
6542f18379STue Ly   // When FMA instructions are not available, we store the digits of 32/pi in
662ff187fbSTue Ly   // chunks of 28-bit precision.  This will make sure that the products:
6742f18379STue Ly   //   x * THIRTYTWO_OVER_PI_28[i] are all exact.
6842f18379STue Ly   // When FMA instructions are available, we simply store the digits of 32/pi in
692ff187fbSTue Ly   // chunks of doubles (53-bit of precision).
702ff187fbSTue Ly   // So when multiplying by the largest values of single precision, the
712ff187fbSTue Ly   // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80.  By the
722ff187fbSTue Ly   // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
732ff187fbSTue Ly   // us more than 40 bits of accuracy. For the worst-case estimation of range
742ff187fbSTue Ly   // reduction, see for instances:
752ff187fbSTue Ly   //   Elementary Functions by J-M. Muller, Chapter 11,
762ff187fbSTue Ly   //   Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
772ff187fbSTue Ly   //   Chapter 10.2.
782ff187fbSTue Ly   //
792ff187fbSTue Ly   // Once k and y are computed, we then deduce the answer by the cosine of sum
802ff187fbSTue Ly   // formula:
8142f18379STue Ly   //   cos(x) = cos((k + y)*pi/32)
8242f18379STue Ly   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
8342f18379STue Ly   // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
8442f18379STue Ly   // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
8542f18379STue Ly   // computed using degree-7 and degree-6 minimax polynomials generated by
862ff187fbSTue Ly   // Sollya respectively.
87bbb75554SSiva Chandra 
882ff187fbSTue Ly   // |x| < 0x1.0p-12f
8929f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) {
902ff187fbSTue Ly     // When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1
912ff187fbSTue Ly     // is:
922ff187fbSTue Ly     //   |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
932ff187fbSTue Ly     // So the correctly rounded values of cos(x) are:
942ff187fbSTue Ly     //   = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
952ff187fbSTue Ly     //   = 1 otherwise.
962ff187fbSTue Ly     // To simplify the rounding decision and make it more efficient and to
972ff187fbSTue Ly     // prevent compiler to perform constant folding, we use
982ff187fbSTue Ly     //   fma(x, -2^-25, 1) instead.
992ff187fbSTue Ly     // Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we
1002ff187fbSTue Ly     // do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when
1012ff187fbSTue Ly     // |x| < 2^-125. For targets without FMA instructions, we simply use
1022ff187fbSTue Ly     // double for intermediate results as it is more efficient than using an
1032ff187fbSTue Ly     // emulated version of FMA.
104a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA)
1052ff187fbSTue Ly     return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f);
1062ff187fbSTue Ly #else
1072ff187fbSTue Ly     return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0));
108a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA
109bbb75554SSiva Chandra   }
110bbb75554SSiva Chandra 
11129f8e076SGuillaume Chatelet   if (auto r = COSF_EXCEPTS.lookup(x_abs); LIBC_UNLIKELY(r.has_value()))
112a4d48e3bSTue Ly     return r.value();
1132ff187fbSTue Ly 
1142ff187fbSTue Ly   // x is inf or nan.
11529f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) {
1162ff187fbSTue Ly     if (x_abs == 0x7f80'0000U) {
1170aa9593cSTue Ly       fputil::set_errno_if_required(EDOM);
1180aa9593cSTue Ly       fputil::raise_except_if_required(FE_INVALID);
1192ff187fbSTue Ly     }
120ace383dfSGuillaume Chatelet     return x + FPBits::quiet_nan().get_val();
1212ff187fbSTue Ly   }
1222ff187fbSTue Ly 
1232ff187fbSTue Ly   // Combine the results with the sine of sum formula:
12442f18379STue Ly   //   cos(x) = cos((k + y)*pi/32)
12542f18379STue Ly   //          = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
1262ff187fbSTue Ly   //          = cosm1_y * cos_k + sin_y * sin_k
1272ff187fbSTue Ly   //          = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
128131dda9aSTue Ly   double sin_k, cos_k, sin_y, cosm1_y;
129131dda9aSTue Ly 
130131dda9aSTue Ly   sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y);
131131dda9aSTue Ly 
1327d11a592SAlex Brachet   return static_cast<float>(fputil::multiply_add(
1337d11a592SAlex Brachet       sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k)));
134bbb75554SSiva Chandra }
135bbb75554SSiva Chandra 
136*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
137