1bbb75554SSiva Chandra //===-- Single-precision cos function -------------------------------------===// 2bbb75554SSiva Chandra // 3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information. 5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6bbb75554SSiva Chandra // 7bbb75554SSiva Chandra //===----------------------------------------------------------------------===// 8bbb75554SSiva Chandra 9bbb75554SSiva Chandra #include "src/math/cosf.h" 10131dda9aSTue Ly #include "sincosf_utils.h" 112ff187fbSTue Ly #include "src/__support/FPUtil/BasicOperations.h" 122ff187fbSTue Ly #include "src/__support/FPUtil/FEnvImpl.h" 132ff187fbSTue Ly #include "src/__support/FPUtil/FPBits.h" 142ff187fbSTue Ly #include "src/__support/FPUtil/except_value_utils.h" 152ff187fbSTue Ly #include "src/__support/FPUtil/multiply_add.h" 16bbb75554SSiva Chandra #include "src/__support/common.h" 17*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 18737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 19737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 20bbb75554SSiva Chandra 21*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 22bbb75554SSiva Chandra 232ff187fbSTue Ly // Exceptional cases for cosf. 24a4d48e3bSTue Ly static constexpr size_t N_EXCEPTS = 6; 25bbb75554SSiva Chandra 26a4d48e3bSTue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> COSF_EXCEPTS{{ 27a4d48e3bSTue Ly // (inputs, RZ output, RU offset, RD offset, RN offset) 28a4d48e3bSTue Ly // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ) 29a4d48e3bSTue Ly {0x55325019, 0x3f4ea5d2, 1, 0, 0}, 30a4d48e3bSTue Ly // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ) 31a4d48e3bSTue Ly {0x5922aa80, 0x3f08aebe, 1, 0, 1}, 32a4d48e3bSTue Ly // x = 0x1.48a858p54, cos(x) = 0x1.f48148p-2 (RZ) 33a4d48e3bSTue Ly {0x5aa4542c, 0x3efa40a4, 1, 0, 0}, 34a4d48e3bSTue Ly // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ) 35a4d48e3bSTue Ly {0x5f18b878, 0x3f7f14bb, 1, 0, 0}, 36a4d48e3bSTue Ly // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ) 37a4d48e3bSTue Ly {0x6115cb11, 0x3f78142e, 1, 0, 1}, 38a4d48e3bSTue Ly // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ) 39a4d48e3bSTue Ly {0x7beef5ef, 0x3f08a21c, 1, 0, 0}, 402ff187fbSTue Ly }}; 41bbb75554SSiva Chandra 422ff187fbSTue Ly LLVM_LIBC_FUNCTION(float, cosf, (float x)) { 432ff187fbSTue Ly using FPBits = typename fputil::FPBits<float>; 442137894aSGuillaume Chatelet 452ff187fbSTue Ly FPBits xbits(x); 4611ec512fSGuillaume Chatelet xbits.set_sign(Sign::POS); 47bbb75554SSiva Chandra 482ff187fbSTue Ly uint32_t x_abs = xbits.uintval(); 492ff187fbSTue Ly double xd = static_cast<double>(xbits.get_val()); 50bbb75554SSiva Chandra 512ff187fbSTue Ly // Range reduction: 522ff187fbSTue Ly // For |x| > pi/16, we perform range reduction as follows: 532ff187fbSTue Ly // Find k and y such that: 5442f18379STue Ly // x = (k + y) * pi/32 552ff187fbSTue Ly // k is an integer 562ff187fbSTue Ly // |y| < 0.5 5742f18379STue Ly // For small range (|x| < 2^45 when FMA instructions are available, 2^22 582ff187fbSTue Ly // otherwise), this is done by performing: 5942f18379STue Ly // k = round(x * 32/pi) 6042f18379STue Ly // y = x * 32/pi - k 612ff187fbSTue Ly // For large range, we will omit all the higher parts of 16/pi such that the 6242f18379STue Ly // least significant bits of their full products with x are larger than 63, 6342f18379STue Ly // since cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x). 642ff187fbSTue Ly // 6542f18379STue Ly // When FMA instructions are not available, we store the digits of 32/pi in 662ff187fbSTue Ly // chunks of 28-bit precision. This will make sure that the products: 6742f18379STue Ly // x * THIRTYTWO_OVER_PI_28[i] are all exact. 6842f18379STue Ly // When FMA instructions are available, we simply store the digits of 32/pi in 692ff187fbSTue Ly // chunks of doubles (53-bit of precision). 702ff187fbSTue Ly // So when multiplying by the largest values of single precision, the 712ff187fbSTue Ly // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the 722ff187fbSTue Ly // worst-case analysis of range reduction, |y| >= 2^-38, so this should give 732ff187fbSTue Ly // us more than 40 bits of accuracy. For the worst-case estimation of range 742ff187fbSTue Ly // reduction, see for instances: 752ff187fbSTue Ly // Elementary Functions by J-M. Muller, Chapter 11, 762ff187fbSTue Ly // Handbook of Floating-Point Arithmetic by J-M. Muller et. al., 772ff187fbSTue Ly // Chapter 10.2. 782ff187fbSTue Ly // 792ff187fbSTue Ly // Once k and y are computed, we then deduce the answer by the cosine of sum 802ff187fbSTue Ly // formula: 8142f18379STue Ly // cos(x) = cos((k + y)*pi/32) 8242f18379STue Ly // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) 8342f18379STue Ly // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed 8442f18379STue Ly // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are 8542f18379STue Ly // computed using degree-7 and degree-6 minimax polynomials generated by 862ff187fbSTue Ly // Sollya respectively. 87bbb75554SSiva Chandra 882ff187fbSTue Ly // |x| < 0x1.0p-12f 8929f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { 902ff187fbSTue Ly // When |x| < 2^-12, the relative error of the approximation cos(x) ~ 1 912ff187fbSTue Ly // is: 922ff187fbSTue Ly // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2. 932ff187fbSTue Ly // So the correctly rounded values of cos(x) are: 942ff187fbSTue Ly // = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD, 952ff187fbSTue Ly // = 1 otherwise. 962ff187fbSTue Ly // To simplify the rounding decision and make it more efficient and to 972ff187fbSTue Ly // prevent compiler to perform constant folding, we use 982ff187fbSTue Ly // fma(x, -2^-25, 1) instead. 992ff187fbSTue Ly // Note: to use the formula 1 - 2^-25*x to decide the correct rounding, we 1002ff187fbSTue Ly // do need fma(x, -2^-25, 1) to prevent underflow caused by -2^-25*x when 1012ff187fbSTue Ly // |x| < 2^-125. For targets without FMA instructions, we simply use 1022ff187fbSTue Ly // double for intermediate results as it is more efficient than using an 1032ff187fbSTue Ly // emulated version of FMA. 104a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA) 1052ff187fbSTue Ly return fputil::multiply_add(xbits.get_val(), -0x1.0p-25f, 1.0f); 1062ff187fbSTue Ly #else 1072ff187fbSTue Ly return static_cast<float>(fputil::multiply_add(xd, -0x1.0p-25, 1.0)); 108a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA 109bbb75554SSiva Chandra } 110bbb75554SSiva Chandra 11129f8e076SGuillaume Chatelet if (auto r = COSF_EXCEPTS.lookup(x_abs); LIBC_UNLIKELY(r.has_value())) 112a4d48e3bSTue Ly return r.value(); 1132ff187fbSTue Ly 1142ff187fbSTue Ly // x is inf or nan. 11529f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { 1162ff187fbSTue Ly if (x_abs == 0x7f80'0000U) { 1170aa9593cSTue Ly fputil::set_errno_if_required(EDOM); 1180aa9593cSTue Ly fputil::raise_except_if_required(FE_INVALID); 1192ff187fbSTue Ly } 120ace383dfSGuillaume Chatelet return x + FPBits::quiet_nan().get_val(); 1212ff187fbSTue Ly } 1222ff187fbSTue Ly 1232ff187fbSTue Ly // Combine the results with the sine of sum formula: 12442f18379STue Ly // cos(x) = cos((k + y)*pi/32) 12542f18379STue Ly // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32) 1262ff187fbSTue Ly // = cosm1_y * cos_k + sin_y * sin_k 1272ff187fbSTue Ly // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k 128131dda9aSTue Ly double sin_k, cos_k, sin_y, cosm1_y; 129131dda9aSTue Ly 130131dda9aSTue Ly sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); 131131dda9aSTue Ly 1327d11a592SAlex Brachet return static_cast<float>(fputil::multiply_add( 1337d11a592SAlex Brachet sin_y, -sin_k, fputil::multiply_add(cosm1_y, cos_k, cos_k))); 134bbb75554SSiva Chandra } 135bbb75554SSiva Chandra 136*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 137