188f80aebSlntue //===-- Double-precision cos function -------------------------------------===// 288f80aebSlntue // 388f80aebSlntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 488f80aebSlntue // See https://llvm.org/LICENSE.txt for license information. 588f80aebSlntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 688f80aebSlntue // 788f80aebSlntue //===----------------------------------------------------------------------===// 888f80aebSlntue 988f80aebSlntue #include "src/math/cos.h" 1088f80aebSlntue #include "hdr/errno_macros.h" 1188f80aebSlntue #include "src/__support/FPUtil/FEnvImpl.h" 1288f80aebSlntue #include "src/__support/FPUtil/FPBits.h" 1388f80aebSlntue #include "src/__support/FPUtil/double_double.h" 1488f80aebSlntue #include "src/__support/FPUtil/dyadic_float.h" 1588f80aebSlntue #include "src/__support/FPUtil/except_value_utils.h" 1688f80aebSlntue #include "src/__support/common.h" 175ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 1888f80aebSlntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 1988f80aebSlntue #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 2051e9430aSlntue #include "src/math/generic/range_reduction_double_common.h" 2188f80aebSlntue #include "src/math/generic/sincos_eval.h" 2288f80aebSlntue 2351e9430aSlntue #ifdef LIBC_TARGET_CPU_HAS_FMA 2451e9430aSlntue #include "range_reduction_double_fma.h" 2551e9430aSlntue #else 2651e9430aSlntue #include "range_reduction_double_nofma.h" 2751e9430aSlntue #endif // LIBC_TARGET_CPU_HAS_FMA 2888f80aebSlntue 295ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 3088f80aebSlntue 3188f80aebSlntue using DoubleDouble = fputil::DoubleDouble; 3288f80aebSlntue using Float128 = typename fputil::DyadicFloat<128>; 3388f80aebSlntue 3488f80aebSlntue LLVM_LIBC_FUNCTION(double, cos, (double x)) { 3588f80aebSlntue using FPBits = typename fputil::FPBits<double>; 3688f80aebSlntue FPBits xbits(x); 3788f80aebSlntue 3888f80aebSlntue uint16_t x_e = xbits.get_biased_exponent(); 3988f80aebSlntue 4088f80aebSlntue DoubleDouble y; 4188f80aebSlntue unsigned k; 4251e9430aSlntue LargeRangeReduction range_reduction_large{}; 4388f80aebSlntue 4451e9430aSlntue // |x| < 2^16. 4588f80aebSlntue if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { 4651e9430aSlntue // |x| < 2^-7 4751e9430aSlntue if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 7)) { 4888f80aebSlntue // |x| < 2^-27 4988f80aebSlntue if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) { 5088f80aebSlntue // Signed zeros. 5188f80aebSlntue if (LIBC_UNLIKELY(x == 0.0)) 5288f80aebSlntue return 1.0; 5388f80aebSlntue 5488f80aebSlntue // For |x| < 2^-27, |cos(x) - 1| < |x|^2/2 < 2^-54 = ulp(1 - 2^-53)/2. 5588f80aebSlntue return fputil::round_result_slightly_down(1.0); 5688f80aebSlntue } 5751e9430aSlntue // No range reduction needed. 5851e9430aSlntue k = 0; 5951e9430aSlntue y.lo = 0.0; 6051e9430aSlntue y.hi = x; 6151e9430aSlntue } else { 6251e9430aSlntue // Small range reduction. 6388f80aebSlntue k = range_reduction_small(x, y); 6451e9430aSlntue } 6588f80aebSlntue } else { 6688f80aebSlntue // Inf or NaN 6788f80aebSlntue if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { 6888f80aebSlntue // sin(+-Inf) = NaN 6988f80aebSlntue if (xbits.get_mantissa() == 0) { 7088f80aebSlntue fputil::set_errno_if_required(EDOM); 7188f80aebSlntue fputil::raise_except_if_required(FE_INVALID); 7288f80aebSlntue } 7388f80aebSlntue return x + FPBits::quiet_nan().get_val(); 7488f80aebSlntue } 7588f80aebSlntue 7688f80aebSlntue // Large range reduction. 7751e9430aSlntue k = range_reduction_large.fast(x, y); 7888f80aebSlntue } 7988f80aebSlntue 8088f80aebSlntue DoubleDouble sin_y, cos_y; 8188f80aebSlntue 8251e9430aSlntue [[maybe_unused]] double err = generic::sincos_eval(y, sin_y, cos_y); 8388f80aebSlntue 8488f80aebSlntue // Look up sin(k * pi/128) and cos(k * pi/128) 8551e9430aSlntue #ifdef LIBC_MATH_HAS_SMALL_TABLES 8651e9430aSlntue // Memory saving versions. Use 65-entry table. 8751e9430aSlntue auto get_idx_dd = [](unsigned kk) -> DoubleDouble { 8851e9430aSlntue unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); 8951e9430aSlntue DoubleDouble ans = SIN_K_PI_OVER_128[idx]; 9051e9430aSlntue if (kk & 128) { 9151e9430aSlntue ans.hi = -ans.hi; 9251e9430aSlntue ans.lo = -ans.lo; 9351e9430aSlntue } 9451e9430aSlntue return ans; 9551e9430aSlntue }; 96*c84f7596SJoseph Huber DoubleDouble msin_k = get_idx_dd(k + 128); 9751e9430aSlntue DoubleDouble cos_k = get_idx_dd(k + 64); 9851e9430aSlntue #else 9988f80aebSlntue // Fast look up version, but needs 256-entry table. 10088f80aebSlntue // -sin(k * pi/128) = sin((k + 128) * pi/128) 10188f80aebSlntue // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). 10288f80aebSlntue DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255]; 10388f80aebSlntue DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; 10451e9430aSlntue #endif // LIBC_MATH_HAS_SMALL_TABLES 10588f80aebSlntue 10688f80aebSlntue // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). 10788f80aebSlntue // So k is an integer and -pi / 256 <= y <= pi / 256. 10888f80aebSlntue // Then cos(x) = cos((k * pi/128 + y) 10988f80aebSlntue // = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128) 11051e9430aSlntue DoubleDouble cos_k_cos_y = fputil::quick_mult(cos_y, cos_k); 11151e9430aSlntue DoubleDouble msin_k_sin_y = fputil::quick_mult(sin_y, msin_k); 11288f80aebSlntue 11388f80aebSlntue DoubleDouble rr = fputil::exact_add<false>(cos_k_cos_y.hi, msin_k_sin_y.hi); 11488f80aebSlntue rr.lo += msin_k_sin_y.lo + cos_k_cos_y.lo; 11588f80aebSlntue 11651e9430aSlntue #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS 11788f80aebSlntue return rr.hi + rr.lo; 11888f80aebSlntue #else 11988f80aebSlntue 12051e9430aSlntue double rlp = rr.lo + err; 12151e9430aSlntue double rlm = rr.lo - err; 12288f80aebSlntue 12388f80aebSlntue double r_upper = rr.hi + rlp; // (rr.lo + ERR); 12488f80aebSlntue double r_lower = rr.hi + rlm; // (rr.lo - ERR); 12588f80aebSlntue 12688f80aebSlntue // Ziv's rounding test. 12788f80aebSlntue if (LIBC_LIKELY(r_upper == r_lower)) 12888f80aebSlntue return r_upper; 12988f80aebSlntue 13088f80aebSlntue Float128 u_f128, sin_u, cos_u; 13188f80aebSlntue if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) 13251e9430aSlntue u_f128 = range_reduction_small_f128(x); 13388f80aebSlntue else 13488f80aebSlntue u_f128 = range_reduction_large.accurate(); 13588f80aebSlntue 13688f80aebSlntue generic::sincos_eval(u_f128, sin_u, cos_u); 13788f80aebSlntue 13888f80aebSlntue auto get_sin_k = [](unsigned kk) -> Float128 { 13988f80aebSlntue unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); 14051e9430aSlntue Float128 ans = SIN_K_PI_OVER_128_F128[idx]; 14188f80aebSlntue if (kk & 128) 14288f80aebSlntue ans.sign = Sign::NEG; 14388f80aebSlntue return ans; 14488f80aebSlntue }; 14588f80aebSlntue 14688f80aebSlntue // -sin(k * pi/128) = sin((k + 128) * pi/128) 14788f80aebSlntue // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). 14888f80aebSlntue Float128 msin_k_f128 = get_sin_k(k + 128); 14988f80aebSlntue Float128 cos_k_f128 = get_sin_k(k + 64); 15088f80aebSlntue 15188f80aebSlntue // cos(x) = cos((k * pi/128 + u) 15288f80aebSlntue // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) 15388f80aebSlntue Float128 r = fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u), 15488f80aebSlntue fputil::quick_mul(msin_k_f128, sin_u)); 15588f80aebSlntue 15688f80aebSlntue // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. 15788f80aebSlntue // https://github.com/llvm/llvm-project/issues/96452. 15888f80aebSlntue 15988f80aebSlntue return static_cast<double>(r); 16051e9430aSlntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS 16188f80aebSlntue } 16288f80aebSlntue 1635ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 164