xref: /llvm-project/libc/src/math/generic/atanf.cpp (revision 5ff3ff33ff930e4ec49da7910612d8a41eb068cb)
177e1d9beSKirill Okhotnikov //===-- Single-precision atan function ------------------------------------===//
277e1d9beSKirill Okhotnikov //
377e1d9beSKirill Okhotnikov // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
477e1d9beSKirill Okhotnikov // See https://llvm.org/LICENSE.txt for license information.
577e1d9beSKirill Okhotnikov // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
677e1d9beSKirill Okhotnikov //
777e1d9beSKirill Okhotnikov //===----------------------------------------------------------------------===//
877e1d9beSKirill Okhotnikov 
977e1d9beSKirill Okhotnikov #include "src/math/atanf.h"
10a6296214Slntue #include "inv_trigf_utils.h"
1177e1d9beSKirill Okhotnikov #include "src/__support/FPUtil/FPBits.h"
12a6296214Slntue #include "src/__support/FPUtil/PolyEval.h"
13a6296214Slntue #include "src/__support/FPUtil/except_value_utils.h"
14a6296214Slntue #include "src/__support/FPUtil/multiply_add.h"
15a6296214Slntue #include "src/__support/FPUtil/nearest_integer.h"
16a9824312STue Ly #include "src/__support/FPUtil/rounding_mode.h"
17*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
18737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
1977e1d9beSKirill Okhotnikov 
20*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
2177e1d9beSKirill Okhotnikov 
2277e1d9beSKirill Okhotnikov LLVM_LIBC_FUNCTION(float, atanf, (float x)) {
2377e1d9beSKirill Okhotnikov   using FPBits = typename fputil::FPBits<float>;
24f0d05bb6STue Ly 
25a6296214Slntue   constexpr double FINAL_SIGN[2] = {1.0, -1.0};
26a6296214Slntue   constexpr double SIGNED_PI_OVER_2[2] = {0x1.921fb54442d18p0,
27a6296214Slntue                                           -0x1.921fb54442d18p0};
28a6296214Slntue 
29a6296214Slntue   FPBits x_bits(x);
30a6296214Slntue   Sign sign = x_bits.sign();
31a6296214Slntue   x_bits.set_sign(Sign::POS);
32a6296214Slntue   uint32_t x_abs = x_bits.uintval();
33a6296214Slntue 
34a6296214Slntue   // x is inf or nan, |x| < 2^-4 or |x|= > 16.
35a6296214Slntue   if (LIBC_UNLIKELY(x_abs <= 0x3d80'0000U || x_abs >= 0x4180'0000U)) {
36a6296214Slntue     double x_d = static_cast<double>(x);
37a6296214Slntue     double const_term = 0.0;
38a6296214Slntue     if (LIBC_UNLIKELY(x_abs >= 0x4180'0000)) {
39a6296214Slntue       // atan(+-Inf) = +-pi/2.
40a1fb5145Slntue       if (x_bits.is_inf()) {
41a1fb5145Slntue         volatile double sign_pi_over_2 = SIGNED_PI_OVER_2[sign.is_neg()];
42a1fb5145Slntue         return static_cast<float>(sign_pi_over_2);
43a1fb5145Slntue       }
44a6296214Slntue       if (x_bits.is_nan())
45f0d05bb6STue Ly         return x;
46a6296214Slntue       // x >= 16
47a6296214Slntue       x_d = -1.0 / x_d;
48a6296214Slntue       const_term = SIGNED_PI_OVER_2[sign.is_neg()];
49a6296214Slntue     }
50a6296214Slntue     // 0 <= x < 1/16;
51a6296214Slntue     if (LIBC_UNLIKELY(x_bits.is_zero()))
5274ec4679SDominic Chen       return x;
53a6296214Slntue     // x <= 2^-12;
54a6296214Slntue     if (LIBC_UNLIKELY(x_abs < 0x3980'0000)) {
55a6296214Slntue #if defined(LIBC_TARGET_CPU_HAS_FMA)
56a6296214Slntue       return fputil::multiply_add(x, -0x1.0p-25f, x);
57a6296214Slntue #else
58a6296214Slntue       double x_d = static_cast<double>(x);
59a6296214Slntue       return static_cast<float>(fputil::multiply_add(x_d, -0x1.0p-25, x_d));
60a6296214Slntue #endif // LIBC_TARGET_CPU_HAS_FMA
6177e1d9beSKirill Okhotnikov     }
62a6296214Slntue     // Use Taylor polynomial:
63a6296214Slntue     //   atan(x) ~ x * (1 - x^2 / 3 + x^4 / 5 - x^6 / 7 + x^8 / 9 - x^10 / 11).
642be72258Slntue     constexpr double ATAN_TAYLOR[6] = {
652be72258Slntue         0x1.0000000000000p+0,  -0x1.5555555555555p-2, 0x1.999999999999ap-3,
662be72258Slntue         -0x1.2492492492492p-3, 0x1.c71c71c71c71cp-4,  -0x1.745d1745d1746p-4,
672be72258Slntue     };
68a6296214Slntue     double x2 = x_d * x_d;
69a6296214Slntue     double x4 = x2 * x2;
702be72258Slntue     double c0 = fputil::multiply_add(x2, ATAN_TAYLOR[1], ATAN_TAYLOR[0]);
712be72258Slntue     double c1 = fputil::multiply_add(x2, ATAN_TAYLOR[3], ATAN_TAYLOR[2]);
722be72258Slntue     double c2 = fputil::multiply_add(x2, ATAN_TAYLOR[5], ATAN_TAYLOR[4]);
73a6296214Slntue     double p = fputil::polyeval(x4, c0, c1, c2);
74a6296214Slntue     double r = fputil::multiply_add(x_d, p, const_term);
75a6296214Slntue     return static_cast<float>(r);
7677e1d9beSKirill Okhotnikov   }
7777e1d9beSKirill Okhotnikov 
78a6296214Slntue   // Range reduction steps:
79a6296214Slntue   // 1)  atan(x) = sign(x) * atan(|x|)
80a6296214Slntue   // 2)  If |x| > 1, atan(|x|) = pi/2 - atan(1/|x|)
81a6296214Slntue   // 3)  For 1/16 < x <= 1, we find k such that: |x - k/16| <= 1/32.
82a6296214Slntue   // 4)  Then we use polynomial approximation:
83a6296214Slntue   //   atan(x) ~ atan((k/16) + (x - (k/16)) * Q(x - k/16)
84a6296214Slntue   //           = P(x - k/16)
85a6296214Slntue   double x_d, const_term, final_sign;
86a6296214Slntue   int idx;
87a6296214Slntue 
88a6296214Slntue   if (x_abs > 0x3f80'0000U) {
89a6296214Slntue     // |x| > 1, we need to invert x, so we will perform range reduction in
90a6296214Slntue     // double precision.
91a6296214Slntue     x_d = 1.0 / static_cast<double>(x_bits.get_val());
92a6296214Slntue     double k_d = fputil::nearest_integer(x_d * 0x1.0p4);
93a6296214Slntue     x_d = fputil::multiply_add(k_d, -0x1.0p-4, x_d);
94a6296214Slntue     idx = static_cast<int>(k_d);
95a6296214Slntue     final_sign = FINAL_SIGN[sign.is_pos()];
96a6296214Slntue     // Adjust constant term of the polynomial by +- pi/2.
97a6296214Slntue     const_term = fputil::multiply_add(final_sign, ATAN_COEFFS[idx][0],
98a6296214Slntue                                       SIGNED_PI_OVER_2[sign.is_neg()]);
9977e1d9beSKirill Okhotnikov   } else {
100a6296214Slntue     // Exceptional value:
1012be72258Slntue     if (LIBC_UNLIKELY(x_abs == 0x3d8d'6b23U)) { // |x| = 0x1.1ad646p-4
1022be72258Slntue       return sign.is_pos() ? fputil::round_result_slightly_down(0x1.1a6386p-4f)
1032be72258Slntue                            : fputil::round_result_slightly_up(-0x1.1a6386p-4f);
10477e1d9beSKirill Okhotnikov     }
105a6296214Slntue     // Perform range reduction in single precision.
106a6296214Slntue     float x_f = x_bits.get_val();
107a6296214Slntue     float k_f = fputil::nearest_integer(x_f * 0x1.0p4f);
108a6296214Slntue     x_f = fputil::multiply_add(k_f, -0x1.0p-4f, x_f);
109a6296214Slntue     x_d = static_cast<double>(x_f);
110a6296214Slntue     idx = static_cast<int>(k_f);
111a6296214Slntue     final_sign = FINAL_SIGN[sign.is_neg()];
112a6296214Slntue     const_term = final_sign * ATAN_COEFFS[idx][0];
11377e1d9beSKirill Okhotnikov   }
11477e1d9beSKirill Okhotnikov 
115a6296214Slntue   double p = atan_eval(x_d, idx);
116a6296214Slntue   double r = fputil::multiply_add(final_sign * x_d, p, const_term);
117a6296214Slntue 
118a6296214Slntue   return static_cast<float>(r);
11977e1d9beSKirill Okhotnikov }
12077e1d9beSKirill Okhotnikov 
121*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
122