xref: /llvm-project/libc/src/math/generic/atan2f.cpp (revision a7da702377ef857a6b2dccf5f07f77b489be1dd1)
12be72258Slntue //===-- Single-precision atan2f function ----------------------------------===//
22be72258Slntue //
32be72258Slntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42be72258Slntue // See https://llvm.org/LICENSE.txt for license information.
52be72258Slntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
62be72258Slntue //
72be72258Slntue //===----------------------------------------------------------------------===//
82be72258Slntue 
92be72258Slntue #include "src/math/atan2f.h"
102be72258Slntue #include "inv_trigf_utils.h"
112be72258Slntue #include "src/__support/FPUtil/FPBits.h"
122be72258Slntue #include "src/__support/FPUtil/PolyEval.h"
132be72258Slntue #include "src/__support/FPUtil/double_double.h"
142be72258Slntue #include "src/__support/FPUtil/multiply_add.h"
152be72258Slntue #include "src/__support/FPUtil/nearest_integer.h"
162be72258Slntue #include "src/__support/FPUtil/rounding_mode.h"
175ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
182be72258Slntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
192be72258Slntue 
205ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
212be72258Slntue 
222be72258Slntue namespace {
232be72258Slntue 
24*a7da7023Slntue #ifndef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
25*a7da7023Slntue 
262be72258Slntue // Look up tables for accurate pass:
272be72258Slntue 
282be72258Slntue // atan(i/16) with i = 0..16, generated by Sollya with:
292be72258Slntue // > for i from 0 to 16 do {
302be72258Slntue //     a = round(atan(i/16), D, RN);
312be72258Slntue //     b = round(atan(i/16) - a, D, RN);
322be72258Slntue //     print("{", b, ",", a, "},");
332be72258Slntue //   };
342be72258Slntue constexpr fputil::DoubleDouble ATAN_I[17] = {
352be72258Slntue     {0.0, 0.0},
362be72258Slntue     {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
372be72258Slntue     {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
382be72258Slntue     {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
392be72258Slntue     {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
402be72258Slntue     {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
412be72258Slntue     {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
422be72258Slntue     {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
432be72258Slntue     {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
442be72258Slntue     {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
452be72258Slntue     {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
462be72258Slntue     {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
472be72258Slntue     {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
482be72258Slntue     {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
492be72258Slntue     {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
502be72258Slntue     {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
512be72258Slntue     {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
522be72258Slntue };
532be72258Slntue 
542be72258Slntue // Taylor polynomial, generated by Sollya with:
552be72258Slntue // > for i from 0 to 8 do {
562be72258Slntue //     j = (-1)^(i + 1)/(2*i + 1);
572be72258Slntue //     a = round(j, D, RN);
582be72258Slntue //     b = round(j - a, D, RN);
592be72258Slntue //     print("{", b, ",", a, "},");
602be72258Slntue //   };
612be72258Slntue constexpr fputil::DoubleDouble COEFFS[9] = {
622be72258Slntue     {0.0, 1.0},                                      // 1
632be72258Slntue     {-0x1.5555555555555p-56, -0x1.5555555555555p-2}, // -1/3
642be72258Slntue     {-0x1.999999999999ap-57, 0x1.999999999999ap-3},  // 1/5
652be72258Slntue     {-0x1.2492492492492p-57, -0x1.2492492492492p-3}, // -1/7
662be72258Slntue     {0x1.c71c71c71c71cp-58, 0x1.c71c71c71c71cp-4},   // 1/9
672be72258Slntue     {0x1.745d1745d1746p-59, -0x1.745d1745d1746p-4},  // -1/11
682be72258Slntue     {-0x1.3b13b13b13b14p-58, 0x1.3b13b13b13b14p-4},  // 1/13
692be72258Slntue     {-0x1.1111111111111p-60, -0x1.1111111111111p-4}, // -1/15
702be72258Slntue     {0x1.e1e1e1e1e1e1ep-61, 0x1.e1e1e1e1e1e1ep-5},   // 1/17
712be72258Slntue };
722be72258Slntue 
732be72258Slntue // Veltkamp's splitting of a double precision into hi + lo, where the hi part is
742be72258Slntue // slightly smaller than an even split, so that the product of
752be72258Slntue //   hi * (s1 * k + s2) is exact,
762be72258Slntue // where:
772be72258Slntue //   s1, s2 are single precsion,
782be72258Slntue //   1/16 <= s1/s2 <= 1
792be72258Slntue //   1/16 <= k <= 1 is an integer.
802be72258Slntue // So the maximal precision of (s1 * k + s2) is:
812be72258Slntue //   prec(s1 * k + s2) = 2 + log2(msb(s2)) - log2(lsb(k_d * s1))
822be72258Slntue //                     = 2 + log2(msb(s1)) + 4 - log2(lsb(k_d)) - log2(lsb(s1))
832be72258Slntue //                     = 2 + log2(lsb(s1)) + 23 + 4 - (-4) - log2(lsb(s1))
842be72258Slntue //                     = 33.
852be72258Slntue // Thus, the Veltkamp splitting constant is C = 2^33 + 1.
862be72258Slntue // This is used when FMA instruction is not available.
872be72258Slntue [[maybe_unused]] constexpr fputil::DoubleDouble split_d(double a) {
882be72258Slntue   fputil::DoubleDouble r{0.0, 0.0};
892be72258Slntue   constexpr double C = 0x1.0p33 + 1.0;
902be72258Slntue   double t1 = C * a;
912be72258Slntue   double t2 = a - t1;
922be72258Slntue   r.hi = t1 + t2;
932be72258Slntue   r.lo = a - r.hi;
942be72258Slntue   return r;
952be72258Slntue }
962be72258Slntue 
972be72258Slntue // Compute atan( num_d / den_d ) in double-double precision.
982be72258Slntue //   num_d      = min(|x|, |y|)
992be72258Slntue //   den_d      = max(|x|, |y|)
1002be72258Slntue //   q_d        = num_d / den_d
1012be72258Slntue //   idx, k_d   = round( 2^4 * num_d / den_d )
1022be72258Slntue //   final_sign = sign of the final result
1032be72258Slntue //   const_term = the constant term in the final expression.
1042be72258Slntue float atan2f_double_double(double num_d, double den_d, double q_d, int idx,
1052be72258Slntue                            double k_d, double final_sign,
1062be72258Slntue                            const fputil::DoubleDouble &const_term) {
1072be72258Slntue   fputil::DoubleDouble q;
1082be72258Slntue   double num_r, den_r;
1092be72258Slntue 
1102be72258Slntue   if (idx != 0) {
1112be72258Slntue     // The following range reduction is accurate even without fma for
1122be72258Slntue     //   1/16 <= n/d <= 1.
1132be72258Slntue     // atan(n/d) - atan(idx/16) = atan((n/d - idx/16) / (1 + (n/d) * (idx/16)))
1142be72258Slntue     //                          = atan((n - d*(idx/16)) / (d + n*idx/16))
1152be72258Slntue     k_d *= 0x1.0p-4;
1162be72258Slntue     num_r = fputil::multiply_add(k_d, -den_d, num_d); // Exact
1172be72258Slntue     den_r = fputil::multiply_add(k_d, num_d, den_d);  // Exact
1182be72258Slntue     q.hi = num_r / den_r;
1192be72258Slntue   } else {
1202be72258Slntue     // For 0 < n/d < 1/16, we just need to calculate the lower part of their
1212be72258Slntue     // quotient.
1222be72258Slntue     q.hi = q_d;
1232be72258Slntue     num_r = num_d;
1242be72258Slntue     den_r = den_d;
1252be72258Slntue   }
1262be72258Slntue #ifdef LIBC_TARGET_CPU_HAS_FMA
1272be72258Slntue   q.lo = fputil::multiply_add(q.hi, -den_r, num_r) / den_r;
1282be72258Slntue #else
1292be72258Slntue   // Compute `(num_r - q.hi * den_r) / den_r` accurately without FMA
1302be72258Slntue   // instructions.
1312be72258Slntue   fputil::DoubleDouble q_hi_dd = split_d(q.hi);
1322be72258Slntue   double t1 = fputil::multiply_add(q_hi_dd.hi, -den_r, num_r); // Exact
1332be72258Slntue   double t2 = fputil::multiply_add(q_hi_dd.lo, -den_r, t1);
1342be72258Slntue   q.lo = t2 / den_r;
1352be72258Slntue #endif // LIBC_TARGET_CPU_HAS_FMA
1362be72258Slntue 
1372be72258Slntue   // Taylor polynomial, evaluating using Horner's scheme:
1382be72258Slntue   //   P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
1392be72258Slntue   //       + x^17/17
1402be72258Slntue   //     = x*(1 + x^2*(-1/3 + x^2*(1/5 + x^2*(-1/7 + x^2*(1/9 + x^2*
1412be72258Slntue   //          *(-1/11 + x^2*(1/13 + x^2*(-1/15 + x^2 * 1/17))))))))
1422be72258Slntue   fputil::DoubleDouble q2 = fputil::quick_mult(q, q);
1432be72258Slntue   fputil::DoubleDouble p_dd =
1442be72258Slntue       fputil::polyeval(q2, COEFFS[0], COEFFS[1], COEFFS[2], COEFFS[3],
1452be72258Slntue                        COEFFS[4], COEFFS[5], COEFFS[6], COEFFS[7], COEFFS[8]);
1462be72258Slntue   fputil::DoubleDouble r_dd =
1472be72258Slntue       fputil::add(const_term, fputil::multiply_add(q, p_dd, ATAN_I[idx]));
1482be72258Slntue   r_dd.hi *= final_sign;
1492be72258Slntue   r_dd.lo *= final_sign;
1502be72258Slntue 
1512be72258Slntue   // Make sure the sum is normalized:
1522be72258Slntue   fputil::DoubleDouble rr = fputil::exact_add(r_dd.hi, r_dd.lo);
1532be72258Slntue   // Round to odd.
1542be72258Slntue   uint64_t rr_bits = cpp::bit_cast<uint64_t>(rr.hi);
1552be72258Slntue   if (LIBC_UNLIKELY(((rr_bits & 0xfff'ffff) == 0) && (rr.lo != 0.0))) {
1562be72258Slntue     Sign hi_sign = fputil::FPBits<double>(rr.hi).sign();
1572be72258Slntue     Sign lo_sign = fputil::FPBits<double>(rr.lo).sign();
1582be72258Slntue     if (hi_sign == lo_sign) {
1592be72258Slntue       ++rr_bits;
1602be72258Slntue     } else if ((rr_bits & fputil::FPBits<double>::FRACTION_MASK) > 0) {
1612be72258Slntue       --rr_bits;
1622be72258Slntue     }
1632be72258Slntue   }
1642be72258Slntue 
1652be72258Slntue   return static_cast<float>(cpp::bit_cast<double>(rr_bits));
1662be72258Slntue }
1672be72258Slntue 
168*a7da7023Slntue #endif // !LIBC_MATH_HAS_SKIP_ACCURATE_PASS
169*a7da7023Slntue 
1702be72258Slntue } // anonymous namespace
1712be72258Slntue 
1722be72258Slntue // There are several range reduction steps we can take for atan2(y, x) as
1732be72258Slntue // follow:
1742be72258Slntue 
1752be72258Slntue // * Range reduction 1: signness
1762be72258Slntue // atan2(y, x) will return a number between -PI and PI representing the angle
1772be72258Slntue // forming by the 0x axis and the vector (x, y) on the 0xy-plane.
1782be72258Slntue // In particular, we have that:
1792be72258Slntue //   atan2(y, x) = atan( y/x )         if x >= 0 and y >= 0 (I-quadrant)
1802be72258Slntue //               = pi + atan( y/x )    if x < 0 and y >= 0  (II-quadrant)
1812be72258Slntue //               = -pi + atan( y/x )   if x < 0 and y < 0   (III-quadrant)
1822be72258Slntue //               = atan( y/x )         if x >= 0 and y < 0  (IV-quadrant)
1832be72258Slntue // Since atan function is odd, we can use the formula:
1842be72258Slntue //   atan(-u) = -atan(u)
1852be72258Slntue // to adjust the above conditions a bit further:
1862be72258Slntue //   atan2(y, x) = atan( |y|/|x| )         if x >= 0 and y >= 0 (I-quadrant)
1872be72258Slntue //               = pi - atan( |y|/|x| )    if x < 0 and y >= 0  (II-quadrant)
1882be72258Slntue //               = -pi + atan( |y|/|x| )   if x < 0 and y < 0   (III-quadrant)
1892be72258Slntue //               = -atan( |y|/|x| )        if x >= 0 and y < 0  (IV-quadrant)
1902be72258Slntue // Which can be simplified to:
1912be72258Slntue //   atan2(y, x) = sign(y) * atan( |y|/|x| )             if x >= 0
1922be72258Slntue //               = sign(y) * (pi - atan( |y|/|x| ))      if x < 0
1932be72258Slntue 
1942be72258Slntue // * Range reduction 2: reciprocal
1952be72258Slntue // Now that the argument inside atan is positive, we can use the formula:
1962be72258Slntue //   atan(1/x) = pi/2 - atan(x)
1972be72258Slntue // to make the argument inside atan <= 1 as follow:
1982be72258Slntue //   atan2(y, x) = sign(y) * atan( |y|/|x|)            if 0 <= |y| <= x
1992be72258Slntue //               = sign(y) * (pi/2 - atan( |x|/|y| )   if 0 <= x < |y|
2002be72258Slntue //               = sign(y) * (pi - atan( |y|/|x| ))    if 0 <= |y| <= -x
2012be72258Slntue //               = sign(y) * (pi/2 + atan( |x|/|y| ))  if 0 <= -x < |y|
2022be72258Slntue 
2032be72258Slntue // * Range reduction 3: look up table.
2042be72258Slntue // After the previous two range reduction steps, we reduce the problem to
2052be72258Slntue // compute atan(u) with 0 <= u <= 1, or to be precise:
2062be72258Slntue //   atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
2072be72258Slntue // An accurate polynomial approximation for the whole [0, 1] input range will
2082be72258Slntue // require a very large degree.  To make it more efficient, we reduce the input
2092be72258Slntue // range further by finding an integer idx such that:
2102be72258Slntue //   | n/d - idx/16 | <= 1/32.
2112be72258Slntue // In particular,
2122be72258Slntue //   idx := 2^-4 * round(2^4 * n/d)
2132be72258Slntue // Then for the fast pass, we find a polynomial approximation for:
2142be72258Slntue //   atan( n/d ) ~ atan( idx/16 ) + (n/d - idx/16) * Q(n/d - idx/16)
2152be72258Slntue // For the accurate pass, we use the addition formula:
2162be72258Slntue //   atan( n/d ) - atan( idx/16 ) = atan( (n/d - idx/16)/(1 + (n*idx)/(16*d)) )
2172be72258Slntue //                                = atan( (n - d * idx/16)/(d + n * idx/16) )
2182be72258Slntue // And finally we use Taylor polynomial to compute the RHS in the accurate pass:
2192be72258Slntue //   atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9 - u^11/11 + u^13/13 -
2202be72258Slntue //                      - u^15/15 + u^17/17
2212be72258Slntue // It's error in double-double precision is estimated in Sollya to be:
2222be72258Slntue // > P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9 - x^11/11 + x^13/13 - x^15/15
2232be72258Slntue //       + x^17/17;
2242be72258Slntue // > dirtyinfnorm(atan(x) - P, [-2^-5, 2^-5]);
2252be72258Slntue // 0x1.aec6f...p-100
2262be72258Slntue // which is about rounding errors of double-double (2^-104).
2272be72258Slntue 
2282be72258Slntue LLVM_LIBC_FUNCTION(float, atan2f, (float y, float x)) {
2292be72258Slntue   using FPBits = typename fputil::FPBits<float>;
2302be72258Slntue   constexpr double IS_NEG[2] = {1.0, -1.0};
2312be72258Slntue   constexpr double PI = 0x1.921fb54442d18p1;
2322be72258Slntue   constexpr double PI_LO = 0x1.1a62633145c07p-53;
2332be72258Slntue   constexpr double PI_OVER_4 = 0x1.921fb54442d18p-1;
2342be72258Slntue   constexpr double PI_OVER_2 = 0x1.921fb54442d18p0;
2352be72258Slntue   constexpr double THREE_PI_OVER_4 = 0x1.2d97c7f3321d2p+1;
2362be72258Slntue   // Adjustment for constant term:
2372be72258Slntue   //   CONST_ADJ[x_sign][y_sign][recip]
2382be72258Slntue   constexpr fputil::DoubleDouble CONST_ADJ[2][2][2] = {
2392be72258Slntue       {{{0.0, 0.0}, {-PI_LO / 2, -PI_OVER_2}},
2402be72258Slntue        {{-0.0, -0.0}, {-PI_LO / 2, -PI_OVER_2}}},
2412be72258Slntue       {{{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}},
2422be72258Slntue        {{-PI_LO, -PI}, {PI_LO / 2, PI_OVER_2}}}};
2432be72258Slntue 
2442be72258Slntue   FPBits x_bits(x), y_bits(y);
2452be72258Slntue   bool x_sign = x_bits.sign().is_neg();
2462be72258Slntue   bool y_sign = y_bits.sign().is_neg();
2472be72258Slntue   x_bits.set_sign(Sign::POS);
2482be72258Slntue   y_bits.set_sign(Sign::POS);
2492be72258Slntue   uint32_t x_abs = x_bits.uintval();
2502be72258Slntue   uint32_t y_abs = y_bits.uintval();
2512be72258Slntue   uint32_t max_abs = x_abs > y_abs ? x_abs : y_abs;
2522be72258Slntue   uint32_t min_abs = x_abs <= y_abs ? x_abs : y_abs;
253952dafb0Slntue   float num_f = FPBits(min_abs).get_val();
254952dafb0Slntue   float den_f = FPBits(max_abs).get_val();
255952dafb0Slntue   double num_d = static_cast<double>(num_f);
256952dafb0Slntue   double den_d = static_cast<double>(den_f);
2572be72258Slntue 
258952dafb0Slntue   if (LIBC_UNLIKELY(max_abs >= 0x7f80'0000U || num_d == 0.0)) {
2592be72258Slntue     if (x_bits.is_nan() || y_bits.is_nan())
2602be72258Slntue       return FPBits::quiet_nan().get_val();
261952dafb0Slntue     double x_d = static_cast<double>(x);
262952dafb0Slntue     double y_d = static_cast<double>(y);
263952dafb0Slntue     size_t x_except = (x_d == 0.0) ? 0 : (x_abs == 0x7f80'0000 ? 2 : 1);
264952dafb0Slntue     size_t y_except = (y_d == 0.0) ? 0 : (y_abs == 0x7f80'0000 ? 2 : 1);
2652be72258Slntue 
2662be72258Slntue     // Exceptional cases:
2672be72258Slntue     //   EXCEPT[y_except][x_except][x_is_neg]
2682be72258Slntue     // with x_except & y_except:
2692be72258Slntue     //   0: zero
2702be72258Slntue     //   1: finite, non-zero
2712be72258Slntue     //   2: infinity
2722be72258Slntue     constexpr double EXCEPTS[3][3][2] = {
2732be72258Slntue         {{0.0, PI}, {0.0, PI}, {0.0, PI}},
2742be72258Slntue         {{PI_OVER_2, PI_OVER_2}, {0.0, 0.0}, {0.0, PI}},
2752be72258Slntue         {{PI_OVER_2, PI_OVER_2},
2762be72258Slntue          {PI_OVER_2, PI_OVER_2},
2772be72258Slntue          {PI_OVER_4, THREE_PI_OVER_4}},
2782be72258Slntue     };
2792be72258Slntue 
2802be72258Slntue     double r = IS_NEG[y_sign] * EXCEPTS[y_except][x_except][x_sign];
2812be72258Slntue 
2822be72258Slntue     return static_cast<float>(r);
2832be72258Slntue   }
2842be72258Slntue 
2852be72258Slntue   bool recip = x_abs < y_abs;
2862be72258Slntue   double final_sign = IS_NEG[(x_sign != y_sign) != recip];
2872be72258Slntue   fputil::DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
2882be72258Slntue   double q_d = num_d / den_d;
2892be72258Slntue 
290*a7da7023Slntue   double k_d = fputil::nearest_integer(q_d * 0x1.0p4);
2912be72258Slntue   int idx = static_cast<int>(k_d);
292*a7da7023Slntue   double r;
293*a7da7023Slntue 
294*a7da7023Slntue #ifdef LIBC_MATH_HAS_SMALL_TABLES
295*a7da7023Slntue   double p = atan_eval_no_table(num_d, den_d, k_d * 0x1.0p-4);
296*a7da7023Slntue   r = final_sign * (p + (const_term.hi + ATAN_K_OVER_16[idx]));
297*a7da7023Slntue #else
2982be72258Slntue   q_d = fputil::multiply_add(k_d, -0x1.0p-4, q_d);
2992be72258Slntue 
3002be72258Slntue   double p = atan_eval(q_d, idx);
301*a7da7023Slntue   r = final_sign *
3022be72258Slntue       fputil::multiply_add(q_d, p, const_term.hi + ATAN_COEFFS[idx][0]);
303*a7da7023Slntue #endif // LIBC_MATH_HAS_SMALL_TABLES
3042be72258Slntue 
305*a7da7023Slntue #ifdef LIBC_MATH_HAS_SKIP_ACCURATE_PASS
306*a7da7023Slntue   return static_cast<float>(r);
307*a7da7023Slntue #else
3082be72258Slntue   constexpr uint32_t LOWER_ERR = 4;
3092be72258Slntue   // Mask sticky bits in double precision before rounding to single precision.
3102be72258Slntue   constexpr uint32_t MASK =
3112be72258Slntue       mask_trailing_ones<uint32_t, fputil::FPBits<double>::SIG_LEN -
3122be72258Slntue                                        FPBits::SIG_LEN - 1>();
3132be72258Slntue   constexpr uint32_t UPPER_ERR = MASK - LOWER_ERR;
3142be72258Slntue 
3152be72258Slntue   uint32_t r_bits = static_cast<uint32_t>(cpp::bit_cast<uint64_t>(r)) & MASK;
3162be72258Slntue 
3172be72258Slntue   // Ziv's rounding test.
3182be72258Slntue   if (LIBC_LIKELY(r_bits > LOWER_ERR && r_bits < UPPER_ERR))
3192be72258Slntue     return static_cast<float>(r);
3202be72258Slntue 
3212be72258Slntue   return atan2f_double_double(num_d, den_d, q_d, idx, k_d, final_sign,
3222be72258Slntue                               const_term);
323*a7da7023Slntue #endif // LIBC_MATH_HAS_SKIP_ACCURATE_PASS
3242be72258Slntue }
3252be72258Slntue 
3265ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
327