xref: /llvm-project/libc/src/math/generic/atan2.cpp (revision 0f4b3c409fbd756d826c89d5539d9ea22bcc56aa)
1ca8b14deSlntue //===-- Double-precision atan2 function -----------------------------------===//
2ca8b14deSlntue //
3ca8b14deSlntue // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4ca8b14deSlntue // See https://llvm.org/LICENSE.txt for license information.
5ca8b14deSlntue // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6ca8b14deSlntue //
7ca8b14deSlntue //===----------------------------------------------------------------------===//
8ca8b14deSlntue 
9ca8b14deSlntue #include "src/math/atan2.h"
10ca8b14deSlntue #include "inv_trigf_utils.h"
11ca8b14deSlntue #include "src/__support/FPUtil/FPBits.h"
12ca8b14deSlntue #include "src/__support/FPUtil/PolyEval.h"
13ca8b14deSlntue #include "src/__support/FPUtil/double_double.h"
14ca8b14deSlntue #include "src/__support/FPUtil/multiply_add.h"
15ca8b14deSlntue #include "src/__support/FPUtil/nearest_integer.h"
16ca8b14deSlntue #include "src/__support/FPUtil/rounding_mode.h"
17ca8b14deSlntue #include "src/__support/macros/config.h"
18ca8b14deSlntue #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19ca8b14deSlntue 
20ca8b14deSlntue namespace LIBC_NAMESPACE_DECL {
21ca8b14deSlntue 
22ca8b14deSlntue namespace {
23ca8b14deSlntue 
24ca8b14deSlntue using DoubleDouble = fputil::DoubleDouble;
25ca8b14deSlntue 
26ca8b14deSlntue // atan(i/64) with i = 0..64, generated by Sollya with:
27ca8b14deSlntue // > for i from 0 to 64 do {
28ca8b14deSlntue //     a = round(atan(i/64), D, RN);
29ca8b14deSlntue //     b = round(atan(i/64) - a, D, RN);
30ca8b14deSlntue //     print("{", b, ",", a, "},");
31ca8b14deSlntue //   };
32ca8b14deSlntue constexpr fputil::DoubleDouble ATAN_I[65] = {
33ca8b14deSlntue     {0.0, 0.0},
34ca8b14deSlntue     {-0x1.220c39d4dff5p-61, 0x1.fff555bbb729bp-7},
35ca8b14deSlntue     {-0x1.5ec431444912cp-60, 0x1.ffd55bba97625p-6},
36ca8b14deSlntue     {-0x1.86ef8f794f105p-63, 0x1.7fb818430da2ap-5},
37ca8b14deSlntue     {-0x1.c934d86d23f1dp-60, 0x1.ff55bb72cfdeap-5},
38ca8b14deSlntue     {0x1.ac4ce285df847p-58, 0x1.3f59f0e7c559dp-4},
39ca8b14deSlntue     {-0x1.cfb654c0c3d98p-58, 0x1.7ee182602f10fp-4},
40ca8b14deSlntue     {0x1.f7b8f29a05987p-58, 0x1.be39ebe6f07c3p-4},
41ca8b14deSlntue     {-0x1.cd37686760c17p-59, 0x1.fd5ba9aac2f6ep-4},
42ca8b14deSlntue     {-0x1.b485914dacf8cp-59, 0x1.1e1fafb043727p-3},
43ca8b14deSlntue     {0x1.61a3b0ce9281bp-57, 0x1.3d6eee8c6626cp-3},
44ca8b14deSlntue     {-0x1.054ab2c010f3dp-58, 0x1.5c9811e3ec26ap-3},
45ca8b14deSlntue     {0x1.347b0b4f881cap-58, 0x1.7b97b4bce5b02p-3},
46ca8b14deSlntue     {0x1.cf601e7b4348ep-59, 0x1.9a6a8e96c8626p-3},
47ca8b14deSlntue     {0x1.17b10d2e0e5abp-61, 0x1.b90d7529260a2p-3},
48ca8b14deSlntue     {0x1.c648d1534597ep-57, 0x1.d77d5df205736p-3},
49ca8b14deSlntue     {0x1.8ab6e3cf7afbdp-57, 0x1.f5b75f92c80ddp-3},
50ca8b14deSlntue     {0x1.62e47390cb865p-56, 0x1.09dc597d86362p-2},
51ca8b14deSlntue     {0x1.30ca4748b1bf9p-57, 0x1.18bf5a30bf178p-2},
52ca8b14deSlntue     {-0x1.077cdd36dfc81p-56, 0x1.278372057ef46p-2},
53ca8b14deSlntue     {-0x1.963a544b672d8p-57, 0x1.362773707ebccp-2},
54ca8b14deSlntue     {-0x1.5d5e43c55b3bap-56, 0x1.44aa436c2af0ap-2},
55ca8b14deSlntue     {-0x1.2566480884082p-57, 0x1.530ad9951cd4ap-2},
56ca8b14deSlntue     {-0x1.a725715711fp-56, 0x1.614840309cfe2p-2},
57ca8b14deSlntue     {-0x1.c63aae6f6e918p-56, 0x1.6f61941e4def1p-2},
58ca8b14deSlntue     {0x1.69c885c2b249ap-56, 0x1.7d5604b63b3f7p-2},
59ca8b14deSlntue     {0x1.b6d0ba3748fa8p-56, 0x1.8b24d394a1b25p-2},
60ca8b14deSlntue     {0x1.9e6c988fd0a77p-56, 0x1.98cd5454d6b18p-2},
61ca8b14deSlntue     {-0x1.24dec1b50b7ffp-56, 0x1.a64eec3cc23fdp-2},
62ca8b14deSlntue     {0x1.ae187b1ca504p-56, 0x1.b3a911da65c6cp-2},
63ca8b14deSlntue     {-0x1.cc1ce70934c34p-56, 0x1.c0db4c94ec9fp-2},
64ca8b14deSlntue     {-0x1.a2cfa4418f1adp-56, 0x1.cde53432c1351p-2},
65ca8b14deSlntue     {0x1.a2b7f222f65e2p-56, 0x1.dac670561bb4fp-2},
66ca8b14deSlntue     {0x1.0e53dc1bf3435p-56, 0x1.e77eb7f175a34p-2},
67ca8b14deSlntue     {-0x1.a3992dc382a23p-57, 0x1.f40dd0b541418p-2},
68ca8b14deSlntue     {-0x1.b32c949c9d593p-55, 0x1.0039c73c1a40cp-1},
69ca8b14deSlntue     {-0x1.d5b495f6349e6p-56, 0x1.0657e94db30dp-1},
70ca8b14deSlntue     {0x1.974fa13b5404fp-58, 0x1.0c6145b5b43dap-1},
71ca8b14deSlntue     {-0x1.2bdaee1c0ee35p-58, 0x1.1255d9bfbd2a9p-1},
72ca8b14deSlntue     {0x1.c621cec00c301p-55, 0x1.1835a88be7c13p-1},
73ca8b14deSlntue     {-0x1.928df287a668fp-58, 0x1.1e00babdefeb4p-1},
74ca8b14deSlntue     {0x1.c421c9f38224ep-57, 0x1.23b71e2cc9e6ap-1},
75ca8b14deSlntue     {-0x1.09e73b0c6c087p-56, 0x1.2958e59308e31p-1},
76ca8b14deSlntue     {0x1.c5d5e9ff0cf8dp-55, 0x1.2ee628406cbcap-1},
77ca8b14deSlntue     {0x1.1021137c71102p-55, 0x1.345f01cce37bbp-1},
78ca8b14deSlntue     {-0x1.2304331d8bf46p-55, 0x1.39c391cd4171ap-1},
79ca8b14deSlntue     {0x1.ecf8b492644fp-56, 0x1.3f13fb89e96f4p-1},
80ca8b14deSlntue     {-0x1.f76d0163f79c8p-56, 0x1.445065b795b56p-1},
81ca8b14deSlntue     {0x1.2419a87f2a458p-56, 0x1.4978fa3269ee1p-1},
82ca8b14deSlntue     {0x1.4a33dbeb3796cp-55, 0x1.4e8de5bb6ec04p-1},
83ca8b14deSlntue     {-0x1.1bb74abda520cp-55, 0x1.538f57b89061fp-1},
84ca8b14deSlntue     {-0x1.5e5c9d8c5a95p-56, 0x1.587d81f732fbbp-1},
85ca8b14deSlntue     {0x1.0028e4bc5e7cap-57, 0x1.5d58987169b18p-1},
86ca8b14deSlntue     {-0x1.2b785350ee8c1p-57, 0x1.6220d115d7b8ep-1},
87ca8b14deSlntue     {-0x1.6ea6febe8bbbap-56, 0x1.66d663923e087p-1},
88ca8b14deSlntue     {-0x1.a80386188c50ep-55, 0x1.6b798920b3d99p-1},
89ca8b14deSlntue     {-0x1.8c34d25aadef6p-56, 0x1.700a7c5784634p-1},
90ca8b14deSlntue     {0x1.7b2a6165884a1p-59, 0x1.748978fba8e0fp-1},
91ca8b14deSlntue     {0x1.406a08980374p-55, 0x1.78f6bbd5d315ep-1},
92ca8b14deSlntue     {0x1.560821e2f3aa9p-55, 0x1.7d528289fa093p-1},
93ca8b14deSlntue     {-0x1.bf76229d3b917p-56, 0x1.819d0b7158a4dp-1},
94ca8b14deSlntue     {0x1.6b66e7fc8b8c3p-57, 0x1.85d69576cc2c5p-1},
95ca8b14deSlntue     {-0x1.55b9a5e177a1bp-55, 0x1.89ff5ff57f1f8p-1},
96ca8b14deSlntue     {-0x1.ec182ab042f61p-56, 0x1.8e17aa99cc05ep-1},
97ca8b14deSlntue     {0x1.1a62633145c07p-55, 0x1.921fb54442d18p-1},
98ca8b14deSlntue };
99ca8b14deSlntue 
100ca8b14deSlntue // Approximate atan(x) for |x| <= 2^-7.
101ca8b14deSlntue // Using degree-9 Taylor polynomial:
102ca8b14deSlntue //  P = x - x^3/3 + x^5/5 -x^7/7 + x^9/9;
103ca8b14deSlntue // Then the absolute error is bounded by:
104ca8b14deSlntue //   |atan(x) - P(x)| < |x|^11/11 < 2^(-7*11) / 11 < 2^-80.
105ca8b14deSlntue // And the relative error is bounded by:
106ca8b14deSlntue //   |(atan(x) - P(x))/atan(x)| < |x|^10 / 10 < 2^-73.
107ca8b14deSlntue // For x = x_hi + x_lo, fully expand the polynomial and drop any terms less than
108ca8b14deSlntue //   ulp(x_hi^3 / 3) gives us:
109ca8b14deSlntue // P(x) ~ x_hi - x_hi^3/3 + x_hi^5/5 - x_hi^7/7 + x_hi^9/9 +
110ca8b14deSlntue //        + x_lo * (1 - x_hi^2 + x_hi^4)
111ca8b14deSlntue DoubleDouble atan_eval(const DoubleDouble &x) {
112ca8b14deSlntue   DoubleDouble p;
113ca8b14deSlntue   p.hi = x.hi;
114ca8b14deSlntue   double x_hi_sq = x.hi * x.hi;
115ca8b14deSlntue   // c0 ~ x_hi^2 * 1/5 - 1/3
116ca8b14deSlntue   double c0 = fputil::multiply_add(x_hi_sq, 0x1.999999999999ap-3,
117ca8b14deSlntue                                    -0x1.5555555555555p-2);
118ca8b14deSlntue   // c1 ~ x_hi^2 * 1/9 - 1/7
119ca8b14deSlntue   double c1 = fputil::multiply_add(x_hi_sq, 0x1.c71c71c71c71cp-4,
120ca8b14deSlntue                                    -0x1.2492492492492p-3);
121ca8b14deSlntue   // x_hi^3
122ca8b14deSlntue   double x_hi_3 = x_hi_sq * x.hi;
123ca8b14deSlntue   // x_hi^4
124ca8b14deSlntue   double x_hi_4 = x_hi_sq * x_hi_sq;
125ca8b14deSlntue   // d0 ~ 1/3 - x_hi^2 / 5 + x_hi^4 / 7 - x_hi^6 / 9
126ca8b14deSlntue   double d0 = fputil::multiply_add(x_hi_4, c1, c0);
127ca8b14deSlntue   // x_lo - x_lo * x_hi^2 + x_lo * x_hi^4
128ca8b14deSlntue   double d1 = fputil::multiply_add(x_hi_4 - x_hi_sq, x.lo, x.lo);
129ca8b14deSlntue   // p.lo ~ -x_hi^3/3 + x_hi^5/5 - x_hi^7/7 + x_hi^9/9 +
130ca8b14deSlntue   //        + x_lo * (1 - x_hi^2 + x_hi^4)
131ca8b14deSlntue   p.lo = fputil::multiply_add(x_hi_3, d0, d1);
132ca8b14deSlntue   return p;
133ca8b14deSlntue }
134ca8b14deSlntue 
135ca8b14deSlntue } // anonymous namespace
136ca8b14deSlntue 
137ca8b14deSlntue // There are several range reduction steps we can take for atan2(y, x) as
138ca8b14deSlntue // follow:
139ca8b14deSlntue 
140ca8b14deSlntue // * Range reduction 1: signness
141ca8b14deSlntue // atan2(y, x) will return a number between -PI and PI representing the angle
142ca8b14deSlntue // forming by the 0x axis and the vector (x, y) on the 0xy-plane.
143ca8b14deSlntue // In particular, we have that:
144ca8b14deSlntue //   atan2(y, x) = atan( y/x )         if x >= 0 and y >= 0 (I-quadrant)
145ca8b14deSlntue //               = pi + atan( y/x )    if x < 0 and y >= 0  (II-quadrant)
146ca8b14deSlntue //               = -pi + atan( y/x )   if x < 0 and y < 0   (III-quadrant)
147ca8b14deSlntue //               = atan( y/x )         if x >= 0 and y < 0  (IV-quadrant)
148ca8b14deSlntue // Since atan function is odd, we can use the formula:
149ca8b14deSlntue //   atan(-u) = -atan(u)
150ca8b14deSlntue // to adjust the above conditions a bit further:
151ca8b14deSlntue //   atan2(y, x) = atan( |y|/|x| )         if x >= 0 and y >= 0 (I-quadrant)
152ca8b14deSlntue //               = pi - atan( |y|/|x| )    if x < 0 and y >= 0  (II-quadrant)
153ca8b14deSlntue //               = -pi + atan( |y|/|x| )   if x < 0 and y < 0   (III-quadrant)
154ca8b14deSlntue //               = -atan( |y|/|x| )        if x >= 0 and y < 0  (IV-quadrant)
155ca8b14deSlntue // Which can be simplified to:
156ca8b14deSlntue //   atan2(y, x) = sign(y) * atan( |y|/|x| )             if x >= 0
157ca8b14deSlntue //               = sign(y) * (pi - atan( |y|/|x| ))      if x < 0
158ca8b14deSlntue 
159ca8b14deSlntue // * Range reduction 2: reciprocal
160ca8b14deSlntue // Now that the argument inside atan is positive, we can use the formula:
161ca8b14deSlntue //   atan(1/x) = pi/2 - atan(x)
162ca8b14deSlntue // to make the argument inside atan <= 1 as follow:
163ca8b14deSlntue //   atan2(y, x) = sign(y) * atan( |y|/|x|)            if 0 <= |y| <= x
164ca8b14deSlntue //               = sign(y) * (pi/2 - atan( |x|/|y| )   if 0 <= x < |y|
165ca8b14deSlntue //               = sign(y) * (pi - atan( |y|/|x| ))    if 0 <= |y| <= -x
166ca8b14deSlntue //               = sign(y) * (pi/2 + atan( |x|/|y| ))  if 0 <= -x < |y|
167ca8b14deSlntue 
168ca8b14deSlntue // * Range reduction 3: look up table.
169ca8b14deSlntue // After the previous two range reduction steps, we reduce the problem to
170ca8b14deSlntue // compute atan(u) with 0 <= u <= 1, or to be precise:
171ca8b14deSlntue //   atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
172ca8b14deSlntue // An accurate polynomial approximation for the whole [0, 1] input range will
173ca8b14deSlntue // require a very large degree.  To make it more efficient, we reduce the input
174ca8b14deSlntue // range further by finding an integer idx such that:
175ca8b14deSlntue //   | n/d - idx/64 | <= 1/128.
176ca8b14deSlntue // In particular,
177ca8b14deSlntue //   idx := round(2^6 * n/d)
178ca8b14deSlntue // Then for the fast pass, we find a polynomial approximation for:
179ca8b14deSlntue //   atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
180ca8b14deSlntue // For the accurate pass, we use the addition formula:
181ca8b14deSlntue //   atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
182ca8b14deSlntue //                                = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
183ca8b14deSlntue // And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
184ca8b14deSlntue //   atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
185ca8b14deSlntue // with absolute errors bounded by:
186ca8b14deSlntue //   |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
187ca8b14deSlntue // and relative errors bounded by:
188ca8b14deSlntue //   |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.
189ca8b14deSlntue 
190ca8b14deSlntue LLVM_LIBC_FUNCTION(double, atan2, (double y, double x)) {
191ca8b14deSlntue   using FPBits = fputil::FPBits<double>;
192ca8b14deSlntue 
193ca8b14deSlntue   constexpr double IS_NEG[2] = {1.0, -1.0};
194ca8b14deSlntue   constexpr DoubleDouble ZERO = {0.0, 0.0};
195ca8b14deSlntue   constexpr DoubleDouble MZERO = {-0.0, -0.0};
196ca8b14deSlntue   constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
197ca8b14deSlntue   constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
198ca8b14deSlntue   constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
199ca8b14deSlntue                                       0x1.921fb54442d18p0};
200ca8b14deSlntue   constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
201ca8b14deSlntue                                        -0x1.921fb54442d18p0};
202ca8b14deSlntue   constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
203ca8b14deSlntue                                       0x1.921fb54442d18p-1};
204ca8b14deSlntue   constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
205ca8b14deSlntue                                             0x1.2d97c7f3321d2p+1};
206ca8b14deSlntue   // Adjustment for constant term:
207ca8b14deSlntue   //   CONST_ADJ[x_sign][y_sign][recip]
208ca8b14deSlntue   constexpr DoubleDouble CONST_ADJ[2][2][2] = {
209ca8b14deSlntue       {{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
210ca8b14deSlntue       {{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
211ca8b14deSlntue 
212ca8b14deSlntue   FPBits x_bits(x), y_bits(y);
213ca8b14deSlntue   bool x_sign = x_bits.sign().is_neg();
214ca8b14deSlntue   bool y_sign = y_bits.sign().is_neg();
215ca8b14deSlntue   x_bits = x_bits.abs();
216ca8b14deSlntue   y_bits = y_bits.abs();
217ca8b14deSlntue   uint64_t x_abs = x_bits.uintval();
218ca8b14deSlntue   uint64_t y_abs = y_bits.uintval();
219ca8b14deSlntue   bool recip = x_abs < y_abs;
220ca8b14deSlntue   uint64_t min_abs = recip ? x_abs : y_abs;
221ca8b14deSlntue   uint64_t max_abs = !recip ? x_abs : y_abs;
222ca8b14deSlntue   unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
223ca8b14deSlntue   unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
224ca8b14deSlntue 
225ca8b14deSlntue   double num = FPBits(min_abs).get_val();
226ca8b14deSlntue   double den = FPBits(max_abs).get_val();
227ca8b14deSlntue 
228ca8b14deSlntue   // Check for exceptional cases, whether inputs are 0, inf, nan, or close to
229ca8b14deSlntue   // overflow, or close to underflow.
230ca8b14deSlntue   if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
231ca8b14deSlntue     if (x_bits.is_nan() || y_bits.is_nan())
232ca8b14deSlntue       return FPBits::quiet_nan().get_val();
233*0f4b3c40Slntue     unsigned x_except = x == 0.0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
234*0f4b3c40Slntue     unsigned y_except = y == 0.0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
235ca8b14deSlntue 
236ca8b14deSlntue     // Exceptional cases:
237ca8b14deSlntue     //   EXCEPT[y_except][x_except][x_is_neg]
238ca8b14deSlntue     // with x_except & y_except:
239ca8b14deSlntue     //   0: zero
240ca8b14deSlntue     //   1: finite, non-zero
241ca8b14deSlntue     //   2: infinity
242ca8b14deSlntue     constexpr DoubleDouble EXCEPTS[3][3][2] = {
243ca8b14deSlntue         {{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
244ca8b14deSlntue         {{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
245ca8b14deSlntue         {{PI_OVER_2, PI_OVER_2},
246ca8b14deSlntue          {PI_OVER_2, PI_OVER_2},
247ca8b14deSlntue          {PI_OVER_4, THREE_PI_OVER_4}},
248ca8b14deSlntue     };
249ca8b14deSlntue 
250ca8b14deSlntue     if ((x_except != 1) || (y_except != 1)) {
251ca8b14deSlntue       DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
252ca8b14deSlntue       return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
253ca8b14deSlntue     }
254ca8b14deSlntue     bool scale_up = min_exp < 128U;
255ca8b14deSlntue     bool scale_down = max_exp > 0x7ffU - 128U;
256ca8b14deSlntue     // At least one input is denormal, multiply both numerator and denominator
257ca8b14deSlntue     // by some large enough power of 2 to normalize denormal inputs.
258ca8b14deSlntue     if (scale_up) {
259ca8b14deSlntue       num *= 0x1.0p64;
260ca8b14deSlntue       if (!scale_down)
261ca8b14deSlntue         den *= 0x1.0p64;
262ca8b14deSlntue     } else if (scale_down) {
263ca8b14deSlntue       den *= 0x1.0p-64;
264ca8b14deSlntue       if (!scale_up)
265ca8b14deSlntue         num *= 0x1.0p-64;
266ca8b14deSlntue     }
267ca8b14deSlntue 
268ca8b14deSlntue     min_abs = FPBits(num).uintval();
269ca8b14deSlntue     max_abs = FPBits(den).uintval();
270ca8b14deSlntue     min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
271ca8b14deSlntue     max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
272ca8b14deSlntue   }
273ca8b14deSlntue 
274ca8b14deSlntue   double final_sign = IS_NEG[(x_sign != y_sign) != recip];
275ca8b14deSlntue   DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
276ca8b14deSlntue   unsigned exp_diff = max_exp - min_exp;
277ca8b14deSlntue   // We have the following bound for normalized n and d:
278ca8b14deSlntue   //   2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
279ca8b14deSlntue   if (LIBC_UNLIKELY(exp_diff > 54)) {
280ca8b14deSlntue     return fputil::multiply_add(final_sign, const_term.hi,
281ca8b14deSlntue                                 final_sign * (const_term.lo + num / den));
282ca8b14deSlntue   }
283ca8b14deSlntue 
284ca8b14deSlntue   double k = fputil::nearest_integer(64.0 * num / den);
285ca8b14deSlntue   unsigned idx = static_cast<unsigned>(k);
286ca8b14deSlntue   // k = idx / 64
287ca8b14deSlntue   k *= 0x1.0p-6;
288ca8b14deSlntue 
289ca8b14deSlntue   // Range reduction:
290ca8b14deSlntue   // atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
291ca8b14deSlntue   //                        = atan((n - d * k/64)) / (d + n * k/64))
292ca8b14deSlntue   DoubleDouble num_k = fputil::exact_mult(num, k);
293ca8b14deSlntue   DoubleDouble den_k = fputil::exact_mult(den, k);
294ca8b14deSlntue 
295ca8b14deSlntue   // num_dd = n - d * k
296ca8b14deSlntue   DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
297ca8b14deSlntue   // den_dd = d + n * k
298ca8b14deSlntue   DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
299ca8b14deSlntue   den_dd.lo += num_k.lo;
300ca8b14deSlntue 
301ca8b14deSlntue   // q = (n - d * k) / (d + n * k)
302ca8b14deSlntue   DoubleDouble q = fputil::div(num_dd, den_dd);
303ca8b14deSlntue   // p ~ atan(q)
304ca8b14deSlntue   DoubleDouble p = atan_eval(q);
305ca8b14deSlntue 
306ca8b14deSlntue   DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
307ca8b14deSlntue   r.hi *= final_sign;
308ca8b14deSlntue   r.lo *= final_sign;
309ca8b14deSlntue 
310ca8b14deSlntue   return r.hi + r.lo;
311ca8b14deSlntue }
312ca8b14deSlntue 
313ca8b14deSlntue } // namespace LIBC_NAMESPACE_DECL
314