1e2f065c2STue Ly //===-- Single-precision asin function ------------------------------------===// 2e2f065c2STue Ly // 3e2f065c2STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4e2f065c2STue Ly // See https://llvm.org/LICENSE.txt for license information. 5e2f065c2STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6e2f065c2STue Ly // 7e2f065c2STue Ly //===----------------------------------------------------------------------===// 8e2f065c2STue Ly 9e2f065c2STue Ly #include "src/math/asinf.h" 10e2f065c2STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 11e2f065c2STue Ly #include "src/__support/FPUtil/FPBits.h" 12e2f065c2STue Ly #include "src/__support/FPUtil/PolyEval.h" 13e2f065c2STue Ly #include "src/__support/FPUtil/except_value_utils.h" 14e2f065c2STue Ly #include "src/__support/FPUtil/multiply_add.h" 15e2f065c2STue Ly #include "src/__support/FPUtil/sqrt.h" 16*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 17737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 18737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 19e2f065c2STue Ly 20463dcc87STue Ly #include "inv_trigf_utils.h" 21e2f065c2STue Ly 22*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 23e2f065c2STue Ly 24e2f065c2STue Ly static constexpr size_t N_EXCEPTS = 2; 25e2f065c2STue Ly 26e2f065c2STue Ly // Exceptional values when |x| <= 0.5 27e2f065c2STue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{ 28e2f065c2STue Ly // (inputs, RZ output, RU offset, RD offset, RN offset) 29e2f065c2STue Ly // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ) 30e2f065c2STue Ly {0x3d09bf86, 0x3d09c62c, 1, 0, 1}, 31e2f065c2STue Ly // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ) 32e2f065c2STue Ly {0x3de5fa1e, 0x3de6768e, 1, 0, 0}, 33e2f065c2STue Ly }}; 34e2f065c2STue Ly 35e2f065c2STue Ly // Exceptional values when 0.5 < |x| <= 1 36e2f065c2STue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{ 37e2f065c2STue Ly // (inputs, RZ output, RU offset, RD offset, RN offset) 38e2f065c2STue Ly // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ) 39e2f065c2STue Ly {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0}, 40e2f065c2STue Ly // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ) 41e2f065c2STue Ly {0x3f7741b6, 0x3fa7832a, 1, 0, 0}, 42e2f065c2STue Ly }}; 43e2f065c2STue Ly 44e2f065c2STue Ly LLVM_LIBC_FUNCTION(float, asinf, (float x)) { 45e2f065c2STue Ly using FPBits = typename fputil::FPBits<float>; 462137894aSGuillaume Chatelet 47e2f065c2STue Ly FPBits xbits(x); 48e2f065c2STue Ly uint32_t x_uint = xbits.uintval(); 49e2f065c2STue Ly uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; 50e2f065c2STue Ly constexpr double SIGN[2] = {1.0, -1.0}; 51e2f065c2STue Ly uint32_t x_sign = x_uint >> 31; 52e2f065c2STue Ly 53e2f065c2STue Ly // |x| <= 0.5-ish 54e2f065c2STue Ly if (x_abs < 0x3f04'471dU) { 55e2f065c2STue Ly // |x| < 0x1.d12edp-12 5629f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) { 57e2f065c2STue Ly // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x 58e2f065c2STue Ly // is: 59e2f065c2STue Ly // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) 60e2f065c2STue Ly // = x^2 / 6 61e2f065c2STue Ly // < 2^-25 62e2f065c2STue Ly // < epsilon(1)/2. 63e2f065c2STue Ly // So the correctly rounded values of asin(x) are: 64e2f065c2STue Ly // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO, 65e2f065c2STue Ly // or (rounding mode = FE_UPWARD and x is 66e2f065c2STue Ly // negative), 67e2f065c2STue Ly // = x otherwise. 68e2f065c2STue Ly // To simplify the rounding decision and make it more efficient, we use 69e2f065c2STue Ly // fma(x, 2^-25, x) instead. 70e2f065c2STue Ly // An exhaustive test shows that this formula work correctly for all 71e2f065c2STue Ly // rounding modes up to |x| < 0x1.d12edp-12. 72e2f065c2STue Ly // Note: to use the formula x + 2^-25*x to decide the correct rounding, we 73e2f065c2STue Ly // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when 74e2f065c2STue Ly // |x| < 2^-125. For targets without FMA instructions, we simply use 75e2f065c2STue Ly // double for intermediate results as it is more efficient than using an 76e2f065c2STue Ly // emulated version of FMA. 77a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA) 78e2f065c2STue Ly return fputil::multiply_add(x, 0x1.0p-25f, x); 79e2f065c2STue Ly #else 80e2f065c2STue Ly double xd = static_cast<double>(x); 81e2f065c2STue Ly return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); 82a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA 83e2f065c2STue Ly } 84e2f065c2STue Ly 85e2f065c2STue Ly // Check for exceptional values 86e2f065c2STue Ly if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign); 8729f8e076SGuillaume Chatelet LIBC_UNLIKELY(r.has_value())) 88e2f065c2STue Ly return r.value(); 89e2f065c2STue Ly 90e2f065c2STue Ly // For |x| <= 0.5, we approximate asinf(x) by: 91e2f065c2STue Ly // asin(x) = x * P(x^2) 92e2f065c2STue Ly // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating 93e2f065c2STue Ly // asin(x)/x on [0, 0.5] generated by Sollya with: 94e2f065c2STue Ly // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], 95e2f065c2STue Ly // [|1, D...|], [0, 0.5]); 96e2f065c2STue Ly // An exhaustive test shows that this approximation works well up to a 97e2f065c2STue Ly // little more than 0.5. 98e2f065c2STue Ly double xd = static_cast<double>(x); 99e2f065c2STue Ly double xsq = xd * xd; 100e2f065c2STue Ly double x3 = xd * xsq; 101463dcc87STue Ly double r = asin_eval(xsq); 1027d11a592SAlex Brachet return static_cast<float>(fputil::multiply_add(x3, r, xd)); 103e2f065c2STue Ly } 104e2f065c2STue Ly 105e2f065c2STue Ly // |x| > 1, return NaNs. 10629f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) { 107e2f065c2STue Ly if (x_abs <= 0x7f80'0000U) { 1080aa9593cSTue Ly fputil::set_errno_if_required(EDOM); 1090aa9593cSTue Ly fputil::raise_except_if_required(FE_INVALID); 110e2f065c2STue Ly } 111ace383dfSGuillaume Chatelet return FPBits::quiet_nan().get_val(); 112e2f065c2STue Ly } 113e2f065c2STue Ly 114e2f065c2STue Ly // Check for exceptional values 115e2f065c2STue Ly if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign); 11629f8e076SGuillaume Chatelet LIBC_UNLIKELY(r.has_value())) 117e2f065c2STue Ly return r.value(); 118e2f065c2STue Ly 119e2f065c2STue Ly // When |x| > 0.5, we perform range reduction as follow: 120463dcc87STue Ly // 121e2f065c2STue Ly // Assume further that 0.5 < x <= 1, and let: 122e2f065c2STue Ly // y = asin(x) 123e2f065c2STue Ly // We will use the double angle formula: 124e2f065c2STue Ly // cos(2y) = 1 - 2 sin^2(y) 125e2f065c2STue Ly // and the complement angle identity: 126e2f065c2STue Ly // x = sin(y) = cos(pi/2 - y) 127e2f065c2STue Ly // = 1 - 2 sin^2 (pi/4 - y/2) 128e2f065c2STue Ly // So: 129e2f065c2STue Ly // sin(pi/4 - y/2) = sqrt( (1 - x)/2 ) 130e2f065c2STue Ly // And hence: 131e2f065c2STue Ly // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) ) 132e2f065c2STue Ly // Equivalently: 133e2f065c2STue Ly // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) ) 134463dcc87STue Ly // Let u = (1 - x)/2, then: 135463dcc87STue Ly // asin(x) = pi/2 - 2 * asin( sqrt(u) ) 136463dcc87STue Ly // Moreover, since 0.5 < x <= 1: 137e2f065c2STue Ly // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5, 138e2f065c2STue Ly // And hence we can reuse the same polynomial approximation of asin(x) when 139e2f065c2STue Ly // |x| <= 0.5: 140463dcc87STue Ly // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u), 141e2f065c2STue Ly 14211ec512fSGuillaume Chatelet xbits.set_sign(Sign::POS); 143463dcc87STue Ly double sign = SIGN[x_sign]; 144e2f065c2STue Ly double xd = static_cast<double>(xbits.get_val()); 145e2f065c2STue Ly double u = fputil::multiply_add(-0.5, xd, 0.5); 146a2393435SOverMighty double c1 = sign * (-2 * fputil::sqrt<double>(u)); 147463dcc87STue Ly double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1); 148463dcc87STue Ly double c3 = c1 * u; 149e2f065c2STue Ly 150463dcc87STue Ly double r = asin_eval(u); 1517d11a592SAlex Brachet return static_cast<float>(fputil::multiply_add(c3, r, c2)); 152e2f065c2STue Ly } 153e2f065c2STue Ly 154*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 155