xref: /llvm-project/libc/src/math/generic/asinf.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
1e2f065c2STue Ly //===-- Single-precision asin function ------------------------------------===//
2e2f065c2STue Ly //
3e2f065c2STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4e2f065c2STue Ly // See https://llvm.org/LICENSE.txt for license information.
5e2f065c2STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6e2f065c2STue Ly //
7e2f065c2STue Ly //===----------------------------------------------------------------------===//
8e2f065c2STue Ly 
9e2f065c2STue Ly #include "src/math/asinf.h"
10e2f065c2STue Ly #include "src/__support/FPUtil/FEnvImpl.h"
11e2f065c2STue Ly #include "src/__support/FPUtil/FPBits.h"
12e2f065c2STue Ly #include "src/__support/FPUtil/PolyEval.h"
13e2f065c2STue Ly #include "src/__support/FPUtil/except_value_utils.h"
14e2f065c2STue Ly #include "src/__support/FPUtil/multiply_add.h"
15e2f065c2STue Ly #include "src/__support/FPUtil/sqrt.h"
16*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
17737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
18737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
19e2f065c2STue Ly 
20463dcc87STue Ly #include "inv_trigf_utils.h"
21e2f065c2STue Ly 
22*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
23e2f065c2STue Ly 
24e2f065c2STue Ly static constexpr size_t N_EXCEPTS = 2;
25e2f065c2STue Ly 
26e2f065c2STue Ly // Exceptional values when |x| <= 0.5
27e2f065c2STue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{
28e2f065c2STue Ly     // (inputs, RZ output, RU offset, RD offset, RN offset)
29e2f065c2STue Ly     // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ)
30e2f065c2STue Ly     {0x3d09bf86, 0x3d09c62c, 1, 0, 1},
31e2f065c2STue Ly     // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ)
32e2f065c2STue Ly     {0x3de5fa1e, 0x3de6768e, 1, 0, 0},
33e2f065c2STue Ly }};
34e2f065c2STue Ly 
35e2f065c2STue Ly // Exceptional values when 0.5 < |x| <= 1
36e2f065c2STue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{
37e2f065c2STue Ly     // (inputs, RZ output, RU offset, RD offset, RN offset)
38e2f065c2STue Ly     // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ)
39e2f065c2STue Ly     {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0},
40e2f065c2STue Ly     // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ)
41e2f065c2STue Ly     {0x3f7741b6, 0x3fa7832a, 1, 0, 0},
42e2f065c2STue Ly }};
43e2f065c2STue Ly 
44e2f065c2STue Ly LLVM_LIBC_FUNCTION(float, asinf, (float x)) {
45e2f065c2STue Ly   using FPBits = typename fputil::FPBits<float>;
462137894aSGuillaume Chatelet 
47e2f065c2STue Ly   FPBits xbits(x);
48e2f065c2STue Ly   uint32_t x_uint = xbits.uintval();
49e2f065c2STue Ly   uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
50e2f065c2STue Ly   constexpr double SIGN[2] = {1.0, -1.0};
51e2f065c2STue Ly   uint32_t x_sign = x_uint >> 31;
52e2f065c2STue Ly 
53e2f065c2STue Ly   // |x| <= 0.5-ish
54e2f065c2STue Ly   if (x_abs < 0x3f04'471dU) {
55e2f065c2STue Ly     // |x| < 0x1.d12edp-12
5629f8e076SGuillaume Chatelet     if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) {
57e2f065c2STue Ly       // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x
58e2f065c2STue Ly       // is:
59e2f065c2STue Ly       //   |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
60e2f065c2STue Ly       //                             = x^2 / 6
61e2f065c2STue Ly       //                             < 2^-25
62e2f065c2STue Ly       //                             < epsilon(1)/2.
63e2f065c2STue Ly       // So the correctly rounded values of asin(x) are:
64e2f065c2STue Ly       //   = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
65e2f065c2STue Ly       //                        or (rounding mode = FE_UPWARD and x is
66e2f065c2STue Ly       //                        negative),
67e2f065c2STue Ly       //   = x otherwise.
68e2f065c2STue Ly       // To simplify the rounding decision and make it more efficient, we use
69e2f065c2STue Ly       //   fma(x, 2^-25, x) instead.
70e2f065c2STue Ly       // An exhaustive test shows that this formula work correctly for all
71e2f065c2STue Ly       // rounding modes up to |x| < 0x1.d12edp-12.
72e2f065c2STue Ly       // Note: to use the formula x + 2^-25*x to decide the correct rounding, we
73e2f065c2STue Ly       // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when
74e2f065c2STue Ly       // |x| < 2^-125. For targets without FMA instructions, we simply use
75e2f065c2STue Ly       // double for intermediate results as it is more efficient than using an
76e2f065c2STue Ly       // emulated version of FMA.
77a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA)
78e2f065c2STue Ly       return fputil::multiply_add(x, 0x1.0p-25f, x);
79e2f065c2STue Ly #else
80e2f065c2STue Ly       double xd = static_cast<double>(x);
81e2f065c2STue Ly       return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd));
82a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA
83e2f065c2STue Ly     }
84e2f065c2STue Ly 
85e2f065c2STue Ly     // Check for exceptional values
86e2f065c2STue Ly     if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign);
8729f8e076SGuillaume Chatelet         LIBC_UNLIKELY(r.has_value()))
88e2f065c2STue Ly       return r.value();
89e2f065c2STue Ly 
90e2f065c2STue Ly     // For |x| <= 0.5, we approximate asinf(x) by:
91e2f065c2STue Ly     //   asin(x) = x * P(x^2)
92e2f065c2STue Ly     // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating
93e2f065c2STue Ly     // asin(x)/x on [0, 0.5] generated by Sollya with:
94e2f065c2STue Ly     // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
95e2f065c2STue Ly     //                 [|1, D...|], [0, 0.5]);
96e2f065c2STue Ly     // An exhaustive test shows that this approximation works well up to a
97e2f065c2STue Ly     // little more than 0.5.
98e2f065c2STue Ly     double xd = static_cast<double>(x);
99e2f065c2STue Ly     double xsq = xd * xd;
100e2f065c2STue Ly     double x3 = xd * xsq;
101463dcc87STue Ly     double r = asin_eval(xsq);
1027d11a592SAlex Brachet     return static_cast<float>(fputil::multiply_add(x3, r, xd));
103e2f065c2STue Ly   }
104e2f065c2STue Ly 
105e2f065c2STue Ly   // |x| > 1, return NaNs.
10629f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) {
107e2f065c2STue Ly     if (x_abs <= 0x7f80'0000U) {
1080aa9593cSTue Ly       fputil::set_errno_if_required(EDOM);
1090aa9593cSTue Ly       fputil::raise_except_if_required(FE_INVALID);
110e2f065c2STue Ly     }
111ace383dfSGuillaume Chatelet     return FPBits::quiet_nan().get_val();
112e2f065c2STue Ly   }
113e2f065c2STue Ly 
114e2f065c2STue Ly   // Check for exceptional values
115e2f065c2STue Ly   if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign);
11629f8e076SGuillaume Chatelet       LIBC_UNLIKELY(r.has_value()))
117e2f065c2STue Ly     return r.value();
118e2f065c2STue Ly 
119e2f065c2STue Ly   // When |x| > 0.5, we perform range reduction as follow:
120463dcc87STue Ly   //
121e2f065c2STue Ly   // Assume further that 0.5 < x <= 1, and let:
122e2f065c2STue Ly   //   y = asin(x)
123e2f065c2STue Ly   // We will use the double angle formula:
124e2f065c2STue Ly   //   cos(2y) = 1 - 2 sin^2(y)
125e2f065c2STue Ly   // and the complement angle identity:
126e2f065c2STue Ly   //   x = sin(y) = cos(pi/2 - y)
127e2f065c2STue Ly   //              = 1 - 2 sin^2 (pi/4 - y/2)
128e2f065c2STue Ly   // So:
129e2f065c2STue Ly   //   sin(pi/4 - y/2) = sqrt( (1 - x)/2 )
130e2f065c2STue Ly   // And hence:
131e2f065c2STue Ly   //   pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) )
132e2f065c2STue Ly   // Equivalently:
133e2f065c2STue Ly   //   asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) )
134463dcc87STue Ly   // Let u = (1 - x)/2, then:
135463dcc87STue Ly   //   asin(x) = pi/2 - 2 * asin( sqrt(u) )
136463dcc87STue Ly   // Moreover, since 0.5 < x <= 1:
137e2f065c2STue Ly   //   0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
138e2f065c2STue Ly   // And hence we can reuse the same polynomial approximation of asin(x) when
139e2f065c2STue Ly   // |x| <= 0.5:
140463dcc87STue Ly   //   asin(x) ~ pi/2 - 2 * sqrt(u) * P(u),
141e2f065c2STue Ly 
14211ec512fSGuillaume Chatelet   xbits.set_sign(Sign::POS);
143463dcc87STue Ly   double sign = SIGN[x_sign];
144e2f065c2STue Ly   double xd = static_cast<double>(xbits.get_val());
145e2f065c2STue Ly   double u = fputil::multiply_add(-0.5, xd, 0.5);
146a2393435SOverMighty   double c1 = sign * (-2 * fputil::sqrt<double>(u));
147463dcc87STue Ly   double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1);
148463dcc87STue Ly   double c3 = c1 * u;
149e2f065c2STue Ly 
150463dcc87STue Ly   double r = asin_eval(u);
1517d11a592SAlex Brachet   return static_cast<float>(fputil::multiply_add(c3, r, c2));
152e2f065c2STue Ly }
153e2f065c2STue Ly 
154*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
155