xref: /llvm-project/libc/src/math/generic/acosf.cpp (revision 46944b0cbc9a9d8daad0182c40fcd3560bc9ca35)
1463dcc87STue Ly //===-- Single-precision acos function ------------------------------------===//
2463dcc87STue Ly //
3463dcc87STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4463dcc87STue Ly // See https://llvm.org/LICENSE.txt for license information.
5463dcc87STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6463dcc87STue Ly //
7463dcc87STue Ly //===----------------------------------------------------------------------===//
8463dcc87STue Ly 
9463dcc87STue Ly #include "src/math/acosf.h"
10463dcc87STue Ly #include "src/__support/FPUtil/FEnvImpl.h"
11463dcc87STue Ly #include "src/__support/FPUtil/FPBits.h"
12463dcc87STue Ly #include "src/__support/FPUtil/PolyEval.h"
13463dcc87STue Ly #include "src/__support/FPUtil/except_value_utils.h"
14463dcc87STue Ly #include "src/__support/FPUtil/multiply_add.h"
15463dcc87STue Ly #include "src/__support/FPUtil/sqrt.h"
16*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
17737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
18463dcc87STue Ly 
19463dcc87STue Ly #include "inv_trigf_utils.h"
20463dcc87STue Ly 
21*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
22463dcc87STue Ly 
23463dcc87STue Ly static constexpr size_t N_EXCEPTS = 4;
24463dcc87STue Ly 
25463dcc87STue Ly // Exceptional values when |x| <= 0.5
26463dcc87STue Ly static constexpr fputil::ExceptValues<float, N_EXCEPTS> ACOSF_EXCEPTS = {{
27463dcc87STue Ly     // (inputs, RZ output, RU offset, RD offset, RN offset)
28463dcc87STue Ly     // x = 0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ)
29463dcc87STue Ly     {0x328885a3, 0x3fc90fda, 1, 0, 1},
30463dcc87STue Ly     // x = -0x1.110b46p-26, acosf(x) = 0x1.921fb4p0 (RZ)
31463dcc87STue Ly     {0xb28885a3, 0x3fc90fda, 1, 0, 1},
32463dcc87STue Ly     // x = 0x1.04c444p-12, acosf(x) = 0x1.920f68p0 (RZ)
33463dcc87STue Ly     {0x39826222, 0x3fc907b4, 1, 0, 1},
34463dcc87STue Ly     // x = -0x1.04c444p-12, acosf(x) = 0x1.923p0 (RZ)
35463dcc87STue Ly     {0xb9826222, 0x3fc91800, 1, 0, 1},
36463dcc87STue Ly }};
37463dcc87STue Ly 
38463dcc87STue Ly LLVM_LIBC_FUNCTION(float, acosf, (float x)) {
39463dcc87STue Ly   using FPBits = typename fputil::FPBits<float>;
402137894aSGuillaume Chatelet 
41463dcc87STue Ly   FPBits xbits(x);
42463dcc87STue Ly   uint32_t x_uint = xbits.uintval();
43463dcc87STue Ly   uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
44463dcc87STue Ly   uint32_t x_sign = x_uint >> 31;
45463dcc87STue Ly 
46463dcc87STue Ly   // |x| <= 0.5
4729f8e076SGuillaume Chatelet   if (LIBC_UNLIKELY(x_abs <= 0x3f00'0000U)) {
48463dcc87STue Ly     // |x| < 0x1p-10
4929f8e076SGuillaume Chatelet     if (LIBC_UNLIKELY(x_abs < 0x3a80'0000U)) {
50463dcc87STue Ly       // When |x| < 2^-10, we use the following approximation:
51463dcc87STue Ly       //   acos(x) = pi/2 - asin(x)
52463dcc87STue Ly       //           ~ pi/2 - x - x^3 / 6
53463dcc87STue Ly 
54463dcc87STue Ly       // Check for exceptional values
5529f8e076SGuillaume Chatelet       if (auto r = ACOSF_EXCEPTS.lookup(x_uint); LIBC_UNLIKELY(r.has_value()))
56463dcc87STue Ly         return r.value();
57463dcc87STue Ly 
58463dcc87STue Ly       double xd = static_cast<double>(x);
597d11a592SAlex Brachet       return static_cast<float>(fputil::multiply_add(
607d11a592SAlex Brachet           -0x1.5555555555555p-3 * xd, xd * xd, M_MATH_PI_2 - xd));
61463dcc87STue Ly     }
62463dcc87STue Ly 
63463dcc87STue Ly     // For |x| <= 0.5, we approximate acosf(x) by:
64463dcc87STue Ly     //   acos(x) = pi/2 - asin(x) = pi/2 - x * P(x^2)
65463dcc87STue Ly     // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating
66463dcc87STue Ly     // asin(x)/x on [0, 0.5] generated by Sollya with:
67463dcc87STue Ly     // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
68463dcc87STue Ly     //                 [|1, D...|], [0, 0.5]);
69463dcc87STue Ly     double xd = static_cast<double>(x);
70463dcc87STue Ly     double xsq = xd * xd;
71463dcc87STue Ly     double x3 = xd * xsq;
72463dcc87STue Ly     double r = asin_eval(xsq);
737d11a592SAlex Brachet     return static_cast<float>(fputil::multiply_add(-x3, r, M_MATH_PI_2 - xd));
74463dcc87STue Ly   }
75463dcc87STue Ly 
76f0d05bb6STue Ly   // |x| >= 1, return 0, 2pi, or NaNs.
77f0d05bb6STue Ly   if (LIBC_UNLIKELY(x_abs >= 0x3f80'0000U)) {
78f0d05bb6STue Ly     if (x_abs == 0x3f80'0000U)
79f0d05bb6STue Ly       return x_sign ? /* x == -1.0f */ fputil::round_result_slightly_down(
80f0d05bb6STue Ly                           0x1.921fb6p+1f)
81f0d05bb6STue Ly                     : /* x == 1.0f */ 0.0f;
82f0d05bb6STue Ly 
83463dcc87STue Ly     if (x_abs <= 0x7f80'0000U) {
840aa9593cSTue Ly       fputil::set_errno_if_required(EDOM);
850aa9593cSTue Ly       fputil::raise_except_if_required(FE_INVALID);
86463dcc87STue Ly     }
87ace383dfSGuillaume Chatelet     return x + FPBits::quiet_nan().get_val();
88463dcc87STue Ly   }
89463dcc87STue Ly 
90f0d05bb6STue Ly   // When 0.5 < |x| < 1, we perform range reduction as follow:
91463dcc87STue Ly   //
92463dcc87STue Ly   // Assume further that 0.5 < x <= 1, and let:
93463dcc87STue Ly   //   y = acos(x)
94463dcc87STue Ly   // We use the double angle formula:
95463dcc87STue Ly   //   x = cos(y) = 1 - 2 sin^2(y/2)
96463dcc87STue Ly   // So:
97463dcc87STue Ly   //   sin(y/2) = sqrt( (1 - x)/2 )
98463dcc87STue Ly   // And hence:
99463dcc87STue Ly   //   y = 2 * asin( sqrt( (1 - x)/2 ) )
100463dcc87STue Ly   // Let u = (1 - x)/2, then
101463dcc87STue Ly   //   acos(x) = 2 * asin( sqrt(u) )
102463dcc87STue Ly   // Moreover, since 0.5 < x <= 1,
103463dcc87STue Ly   //   0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
104463dcc87STue Ly   // And hence we can reuse the same polynomial approximation of asin(x) when
105463dcc87STue Ly   // |x| <= 0.5:
106463dcc87STue Ly   //   acos(x) ~ 2 * sqrt(u) * P(u).
107463dcc87STue Ly   //
108f0d05bb6STue Ly   // When -1 < x <= -0.5, we use the identity:
109463dcc87STue Ly   //   acos(x) = pi - acos(-x)
110463dcc87STue Ly   // which is reduced to the postive case.
111463dcc87STue Ly 
11211ec512fSGuillaume Chatelet   xbits.set_sign(Sign::POS);
113463dcc87STue Ly   double xd = static_cast<double>(xbits.get_val());
114463dcc87STue Ly   double u = fputil::multiply_add(-0.5, xd, 0.5);
115a2393435SOverMighty   double cv = 2 * fputil::sqrt<double>(u);
116463dcc87STue Ly 
117463dcc87STue Ly   double r3 = asin_eval(u);
118463dcc87STue Ly   double r = fputil::multiply_add(cv * u, r3, cv);
1197d11a592SAlex Brachet   return static_cast<float>(x_sign ? M_MATH_PI - r : r);
120463dcc87STue Ly }
121463dcc87STue Ly 
122*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
123