13d4bba30STeresa Johnson //===-- memprof_allocator.cpp --------------------------------------------===// 23d4bba30STeresa Johnson // 33d4bba30STeresa Johnson // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 43d4bba30STeresa Johnson // See https://llvm.org/LICENSE.txt for license information. 53d4bba30STeresa Johnson // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 63d4bba30STeresa Johnson // 73d4bba30STeresa Johnson //===----------------------------------------------------------------------===// 83d4bba30STeresa Johnson // 93d4bba30STeresa Johnson // This file is a part of MemProfiler, a memory profiler. 103d4bba30STeresa Johnson // 113d4bba30STeresa Johnson // Implementation of MemProf's memory allocator, which uses the allocator 123d4bba30STeresa Johnson // from sanitizer_common. 133d4bba30STeresa Johnson // 143d4bba30STeresa Johnson //===----------------------------------------------------------------------===// 153d4bba30STeresa Johnson 163d4bba30STeresa Johnson #include "memprof_allocator.h" 173d4bba30STeresa Johnson #include "memprof_mapping.h" 181243cef2SSnehasish Kumar #include "memprof_mibmap.h" 19545866cbSSnehasish Kumar #include "memprof_rawprofile.h" 203d4bba30STeresa Johnson #include "memprof_stack.h" 213d4bba30STeresa Johnson #include "memprof_thread.h" 228306968bSSnehasish Kumar #include "profile/MemProfData.inc" 233d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_allocator_checks.h" 243d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_allocator_interface.h" 253d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_allocator_report.h" 2605181357SVitaly Buka #include "sanitizer_common/sanitizer_array_ref.h" 27a1bbf5acSSnehasish Kumar #include "sanitizer_common/sanitizer_common.h" 283d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_errno.h" 293d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_file.h" 303d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_flags.h" 313d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_internal_defs.h" 323d4bba30STeresa Johnson #include "sanitizer_common/sanitizer_stackdepot.h" 333d4bba30STeresa Johnson 343d4bba30STeresa Johnson #include <sched.h> 35ed4fbe6dSPetr Hosek #include <time.h> 363d4bba30STeresa Johnson 3730b93db5SMatthew Weingarten #define MAX_HISTOGRAM_PRINT_SIZE 32U 3830b93db5SMatthew Weingarten 3930b93db5SMatthew Weingarten extern bool __memprof_histogram; 4030b93db5SMatthew Weingarten 413d4bba30STeresa Johnson namespace __memprof { 428306968bSSnehasish Kumar namespace { 438306968bSSnehasish Kumar using ::llvm::memprof::MemInfoBlock; 448306968bSSnehasish Kumar 458306968bSSnehasish Kumar void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { 468306968bSSnehasish Kumar u64 p; 478306968bSSnehasish Kumar 488306968bSSnehasish Kumar if (print_terse) { 49f89319b8SSnehasish Kumar p = M.TotalSize * 100 / M.AllocCount; 50f89319b8SSnehasish Kumar Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, 51f89319b8SSnehasish Kumar M.MinSize, M.MaxSize); 52f89319b8SSnehasish Kumar p = M.TotalAccessCount * 100 / M.AllocCount; 53f89319b8SSnehasish Kumar Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, 54f89319b8SSnehasish Kumar M.MaxAccessCount); 55f89319b8SSnehasish Kumar p = M.TotalLifetime * 100 / M.AllocCount; 56f89319b8SSnehasish Kumar Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, 57f89319b8SSnehasish Kumar M.MaxLifetime); 58f89319b8SSnehasish Kumar Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, 59f89319b8SSnehasish Kumar M.NumSameAllocCpu, M.NumSameDeallocCpu); 608306968bSSnehasish Kumar } else { 61f89319b8SSnehasish Kumar p = M.TotalSize * 100 / M.AllocCount; 628306968bSSnehasish Kumar Printf("Memory allocation stack id = %llu\n", id); 638306968bSSnehasish Kumar Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", 64f89319b8SSnehasish Kumar M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); 65f89319b8SSnehasish Kumar p = M.TotalAccessCount * 100 / M.AllocCount; 668306968bSSnehasish Kumar Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, 67f89319b8SSnehasish Kumar p % 100, M.MinAccessCount, M.MaxAccessCount); 68f89319b8SSnehasish Kumar p = M.TotalLifetime * 100 / M.AllocCount; 698306968bSSnehasish Kumar Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, 70f89319b8SSnehasish Kumar p % 100, M.MinLifetime, M.MaxLifetime); 718306968bSSnehasish Kumar Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " 728306968bSSnehasish Kumar "cpu: %u, num same dealloc_cpu: %u\n", 73f89319b8SSnehasish Kumar M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, 74f89319b8SSnehasish Kumar M.NumSameDeallocCpu); 7530b93db5SMatthew Weingarten Printf("AccessCountHistogram[%u]: ", M.AccessHistogramSize); 7630b93db5SMatthew Weingarten uint32_t PrintSize = M.AccessHistogramSize > MAX_HISTOGRAM_PRINT_SIZE 7730b93db5SMatthew Weingarten ? MAX_HISTOGRAM_PRINT_SIZE 7830b93db5SMatthew Weingarten : M.AccessHistogramSize; 7930b93db5SMatthew Weingarten for (size_t i = 0; i < PrintSize; ++i) { 8030b93db5SMatthew Weingarten Printf("%llu ", ((uint64_t *)M.AccessHistogram)[i]); 8130b93db5SMatthew Weingarten } 8230b93db5SMatthew Weingarten Printf("\n"); 838306968bSSnehasish Kumar } 848306968bSSnehasish Kumar } 858306968bSSnehasish Kumar } // namespace 863d4bba30STeresa Johnson 873d4bba30STeresa Johnson static int GetCpuId(void) { 883d4bba30STeresa Johnson // _memprof_preinit is called via the preinit_array, which subsequently calls 893d4bba30STeresa Johnson // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu 903d4bba30STeresa Johnson // will seg fault as the address of __vdso_getcpu will be null. 9179ebb638SSnehasish Kumar if (!memprof_inited) 923d4bba30STeresa Johnson return -1; 933d4bba30STeresa Johnson return sched_getcpu(); 943d4bba30STeresa Johnson } 953d4bba30STeresa Johnson 963d4bba30STeresa Johnson // Compute the timestamp in ms. 973d4bba30STeresa Johnson static int GetTimestamp(void) { 983d4bba30STeresa Johnson // timespec_get will segfault if called from dl_init 993d4bba30STeresa Johnson if (!memprof_timestamp_inited) { 1003d4bba30STeresa Johnson // By returning 0, this will be effectively treated as being 1013d4bba30STeresa Johnson // timestamped at memprof init time (when memprof_init_timestamp_s 1023d4bba30STeresa Johnson // is initialized). 1033d4bba30STeresa Johnson return 0; 1043d4bba30STeresa Johnson } 1053d4bba30STeresa Johnson timespec ts; 106d7e71b5dSJeroen Dobbelaere clock_gettime(CLOCK_REALTIME, &ts); 1073d4bba30STeresa Johnson return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; 1083d4bba30STeresa Johnson } 1093d4bba30STeresa Johnson 1103d4bba30STeresa Johnson static MemprofAllocator &get_allocator(); 1113d4bba30STeresa Johnson 1123d4bba30STeresa Johnson // The memory chunk allocated from the underlying allocator looks like this: 1133d4bba30STeresa Johnson // H H U U U U U U 1143d4bba30STeresa Johnson // H -- ChunkHeader (32 bytes) 1153d4bba30STeresa Johnson // U -- user memory. 1163d4bba30STeresa Johnson 1173d4bba30STeresa Johnson // If there is left padding before the ChunkHeader (due to use of memalign), 1183d4bba30STeresa Johnson // we store a magic value in the first uptr word of the memory block and 1193d4bba30STeresa Johnson // store the address of ChunkHeader in the next uptr. 1203d4bba30STeresa Johnson // M B L L L L L L L L L H H U U U U U U 1213d4bba30STeresa Johnson // | ^ 1223d4bba30STeresa Johnson // ---------------------| 1233d4bba30STeresa Johnson // M -- magic value kAllocBegMagic 1243d4bba30STeresa Johnson // B -- address of ChunkHeader pointing to the first 'H' 1253d4bba30STeresa Johnson 1263d4bba30STeresa Johnson constexpr uptr kMaxAllowedMallocBits = 40; 1273d4bba30STeresa Johnson 1283d4bba30STeresa Johnson // Should be no more than 32-bytes 1293d4bba30STeresa Johnson struct ChunkHeader { 1303d4bba30STeresa Johnson // 1-st 4 bytes. 1313d4bba30STeresa Johnson u32 alloc_context_id; 1323d4bba30STeresa Johnson // 2-nd 4 bytes 1333d4bba30STeresa Johnson u32 cpu_id; 1343d4bba30STeresa Johnson // 3-rd 4 bytes 1353d4bba30STeresa Johnson u32 timestamp_ms; 1363d4bba30STeresa Johnson // 4-th 4 bytes 1373d4bba30STeresa Johnson // Note only 1 bit is needed for this flag if we need space in the future for 1383d4bba30STeresa Johnson // more fields. 1393d4bba30STeresa Johnson u32 from_memalign; 1403d4bba30STeresa Johnson // 5-th and 6-th 4 bytes 1413d4bba30STeresa Johnson // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this 1423d4bba30STeresa Johnson // could be shrunk to kMaxAllowedMallocBits if we need space in the future for 1433d4bba30STeresa Johnson // more fields. 1443d4bba30STeresa Johnson atomic_uint64_t user_requested_size; 1453d4bba30STeresa Johnson // 23 bits available 1463d4bba30STeresa Johnson // 7-th and 8-th 4 bytes 1473d4bba30STeresa Johnson u64 data_type_id; // TODO: hash of type name 1483d4bba30STeresa Johnson }; 1493d4bba30STeresa Johnson 1503d4bba30STeresa Johnson static const uptr kChunkHeaderSize = sizeof(ChunkHeader); 1513d4bba30STeresa Johnson COMPILER_CHECK(kChunkHeaderSize == 32); 1523d4bba30STeresa Johnson 1533d4bba30STeresa Johnson struct MemprofChunk : ChunkHeader { 1543d4bba30STeresa Johnson uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } 1553d4bba30STeresa Johnson uptr UsedSize() { 1563d4bba30STeresa Johnson return atomic_load(&user_requested_size, memory_order_relaxed); 1573d4bba30STeresa Johnson } 1583d4bba30STeresa Johnson void *AllocBeg() { 1593d4bba30STeresa Johnson if (from_memalign) 1603d4bba30STeresa Johnson return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); 1613d4bba30STeresa Johnson return reinterpret_cast<void *>(this); 1623d4bba30STeresa Johnson } 1633d4bba30STeresa Johnson }; 1643d4bba30STeresa Johnson 1653d4bba30STeresa Johnson class LargeChunkHeader { 1663d4bba30STeresa Johnson static constexpr uptr kAllocBegMagic = 1673d4bba30STeresa Johnson FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); 1683d4bba30STeresa Johnson atomic_uintptr_t magic; 1693d4bba30STeresa Johnson MemprofChunk *chunk_header; 1703d4bba30STeresa Johnson 1713d4bba30STeresa Johnson public: 1723d4bba30STeresa Johnson MemprofChunk *Get() const { 1733d4bba30STeresa Johnson return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic 1743d4bba30STeresa Johnson ? chunk_header 1753d4bba30STeresa Johnson : nullptr; 1763d4bba30STeresa Johnson } 1773d4bba30STeresa Johnson 1783d4bba30STeresa Johnson void Set(MemprofChunk *p) { 1793d4bba30STeresa Johnson if (p) { 1803d4bba30STeresa Johnson chunk_header = p; 1813d4bba30STeresa Johnson atomic_store(&magic, kAllocBegMagic, memory_order_release); 1823d4bba30STeresa Johnson return; 1833d4bba30STeresa Johnson } 1843d4bba30STeresa Johnson 1853d4bba30STeresa Johnson uptr old = kAllocBegMagic; 1863d4bba30STeresa Johnson if (!atomic_compare_exchange_strong(&magic, &old, 0, 1873d4bba30STeresa Johnson memory_order_release)) { 1883d4bba30STeresa Johnson CHECK_EQ(old, kAllocBegMagic); 1893d4bba30STeresa Johnson } 1903d4bba30STeresa Johnson } 1913d4bba30STeresa Johnson }; 1923d4bba30STeresa Johnson 1933d4bba30STeresa Johnson void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { 1943d4bba30STeresa Johnson // Since memprof's mapping is compacting, the shadow chunk may be 1953d4bba30STeresa Johnson // not page-aligned, so we only flush the page-aligned portion. 1963d4bba30STeresa Johnson ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); 1973d4bba30STeresa Johnson } 1983d4bba30STeresa Johnson 1993d4bba30STeresa Johnson void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { 2003d4bba30STeresa Johnson // Statistics. 2013d4bba30STeresa Johnson MemprofStats &thread_stats = GetCurrentThreadStats(); 2023d4bba30STeresa Johnson thread_stats.mmaps++; 2033d4bba30STeresa Johnson thread_stats.mmaped += size; 2043d4bba30STeresa Johnson } 20596928abbSVitaly Buka 2063d4bba30STeresa Johnson void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { 2073d4bba30STeresa Johnson // We are about to unmap a chunk of user memory. 2083d4bba30STeresa Johnson // Mark the corresponding shadow memory as not needed. 2093d4bba30STeresa Johnson FlushUnneededMemProfShadowMemory(p, size); 2103d4bba30STeresa Johnson // Statistics. 2113d4bba30STeresa Johnson MemprofStats &thread_stats = GetCurrentThreadStats(); 2123d4bba30STeresa Johnson thread_stats.munmaps++; 2133d4bba30STeresa Johnson thread_stats.munmaped += size; 2143d4bba30STeresa Johnson } 2153d4bba30STeresa Johnson 2163d4bba30STeresa Johnson AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { 2173d4bba30STeresa Johnson CHECK(ms); 2183d4bba30STeresa Johnson return &ms->allocator_cache; 2193d4bba30STeresa Johnson } 2203d4bba30STeresa Johnson 2213d4bba30STeresa Johnson // Accumulates the access count from the shadow for the given pointer and size. 2223d4bba30STeresa Johnson u64 GetShadowCount(uptr p, u32 size) { 2233d4bba30STeresa Johnson u64 *shadow = (u64 *)MEM_TO_SHADOW(p); 2243d4bba30STeresa Johnson u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); 2253d4bba30STeresa Johnson u64 count = 0; 2263d4bba30STeresa Johnson for (; shadow <= shadow_end; shadow++) 2273d4bba30STeresa Johnson count += *shadow; 2283d4bba30STeresa Johnson return count; 2293d4bba30STeresa Johnson } 2303d4bba30STeresa Johnson 23130b93db5SMatthew Weingarten // Accumulates the access count from the shadow for the given pointer and size. 23230b93db5SMatthew Weingarten // See memprof_mapping.h for an overview on histogram counters. 23330b93db5SMatthew Weingarten u64 GetShadowCountHistogram(uptr p, u32 size) { 23430b93db5SMatthew Weingarten u8 *shadow = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p); 23530b93db5SMatthew Weingarten u8 *shadow_end = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p + size); 23630b93db5SMatthew Weingarten u64 count = 0; 23730b93db5SMatthew Weingarten for (; shadow <= shadow_end; shadow++) 23830b93db5SMatthew Weingarten count += *shadow; 23930b93db5SMatthew Weingarten return count; 24030b93db5SMatthew Weingarten } 24130b93db5SMatthew Weingarten 2423d4bba30STeresa Johnson // Clears the shadow counters (when memory is allocated). 2433d4bba30STeresa Johnson void ClearShadow(uptr addr, uptr size) { 2443d4bba30STeresa Johnson CHECK(AddrIsAlignedByGranularity(addr)); 2453d4bba30STeresa Johnson CHECK(AddrIsInMem(addr)); 2463d4bba30STeresa Johnson CHECK(AddrIsAlignedByGranularity(addr + size)); 2473d4bba30STeresa Johnson CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); 2483d4bba30STeresa Johnson CHECK(REAL(memset)); 24930b93db5SMatthew Weingarten uptr shadow_beg; 25030b93db5SMatthew Weingarten uptr shadow_end; 25130b93db5SMatthew Weingarten if (__memprof_histogram) { 25230b93db5SMatthew Weingarten shadow_beg = HISTOGRAM_MEM_TO_SHADOW(addr); 25330b93db5SMatthew Weingarten shadow_end = HISTOGRAM_MEM_TO_SHADOW(addr + size); 25430b93db5SMatthew Weingarten } else { 25530b93db5SMatthew Weingarten shadow_beg = MEM_TO_SHADOW(addr); 25630b93db5SMatthew Weingarten shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; 25730b93db5SMatthew Weingarten } 25830b93db5SMatthew Weingarten 2593d4bba30STeresa Johnson if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { 2603d4bba30STeresa Johnson REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 2613d4bba30STeresa Johnson } else { 2623d4bba30STeresa Johnson uptr page_size = GetPageSizeCached(); 2633d4bba30STeresa Johnson uptr page_beg = RoundUpTo(shadow_beg, page_size); 2643d4bba30STeresa Johnson uptr page_end = RoundDownTo(shadow_end, page_size); 2653d4bba30STeresa Johnson 2663d4bba30STeresa Johnson if (page_beg >= page_end) { 2673d4bba30STeresa Johnson REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); 2683d4bba30STeresa Johnson } else { 2693d4bba30STeresa Johnson if (page_beg != shadow_beg) { 2703d4bba30STeresa Johnson REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); 2713d4bba30STeresa Johnson } 2723d4bba30STeresa Johnson if (page_end != shadow_end) { 2733d4bba30STeresa Johnson REAL(memset)((void *)page_end, 0, shadow_end - page_end); 2743d4bba30STeresa Johnson } 2753d4bba30STeresa Johnson ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); 2763d4bba30STeresa Johnson } 2773d4bba30STeresa Johnson } 2783d4bba30STeresa Johnson } 2793d4bba30STeresa Johnson 2803d4bba30STeresa Johnson struct Allocator { 2813d4bba30STeresa Johnson static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; 2823d4bba30STeresa Johnson 2833d4bba30STeresa Johnson MemprofAllocator allocator; 2843d4bba30STeresa Johnson StaticSpinMutex fallback_mutex; 2853d4bba30STeresa Johnson AllocatorCache fallback_allocator_cache; 2863d4bba30STeresa Johnson 2873d4bba30STeresa Johnson uptr max_user_defined_malloc_size; 2883d4bba30STeresa Johnson 2891243cef2SSnehasish Kumar // Holds the mapping of stack ids to MemInfoBlocks. 2901243cef2SSnehasish Kumar MIBMapTy MIBMap; 2911243cef2SSnehasish Kumar 292545866cbSSnehasish Kumar atomic_uint8_t destructing; 293545866cbSSnehasish Kumar atomic_uint8_t constructed; 294545866cbSSnehasish Kumar bool print_text; 2953d4bba30STeresa Johnson 2963d4bba30STeresa Johnson // ------------------- Initialization ------------------------ 297545866cbSSnehasish Kumar explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { 298545866cbSSnehasish Kumar atomic_store_relaxed(&destructing, 0); 299545866cbSSnehasish Kumar atomic_store_relaxed(&constructed, 1); 300545866cbSSnehasish Kumar } 301545866cbSSnehasish Kumar 302545866cbSSnehasish Kumar ~Allocator() { 303545866cbSSnehasish Kumar atomic_store_relaxed(&destructing, 1); 304*968e3b68SEllis Hoag if (flags()->dump_at_exit) 305545866cbSSnehasish Kumar FinishAndWrite(); 306545866cbSSnehasish Kumar } 3073d4bba30STeresa Johnson 3081243cef2SSnehasish Kumar static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, 3091243cef2SSnehasish Kumar void *Arg) { 310cf5c5372SSnehasish Kumar SpinMutexLock l(&Value->mutex); 3118306968bSSnehasish Kumar Print(Value->mib, Key, bool(Arg)); 3121243cef2SSnehasish Kumar } 3131243cef2SSnehasish Kumar 31430b93db5SMatthew Weingarten // See memprof_mapping.h for an overview on histogram counters. 31530b93db5SMatthew Weingarten static MemInfoBlock CreateNewMIB(uptr p, MemprofChunk *m, u64 user_size) { 31630b93db5SMatthew Weingarten if (__memprof_histogram) { 31730b93db5SMatthew Weingarten return CreateNewMIBWithHistogram(p, m, user_size); 31830b93db5SMatthew Weingarten } else { 31930b93db5SMatthew Weingarten return CreateNewMIBWithoutHistogram(p, m, user_size); 32030b93db5SMatthew Weingarten } 32130b93db5SMatthew Weingarten } 32230b93db5SMatthew Weingarten 32330b93db5SMatthew Weingarten static MemInfoBlock CreateNewMIBWithHistogram(uptr p, MemprofChunk *m, 32430b93db5SMatthew Weingarten u64 user_size) { 32530b93db5SMatthew Weingarten 32630b93db5SMatthew Weingarten u64 c = GetShadowCountHistogram(p, user_size); 32730b93db5SMatthew Weingarten long curtime = GetTimestamp(); 32830b93db5SMatthew Weingarten uint32_t HistogramSize = 32930b93db5SMatthew Weingarten RoundUpTo(user_size, HISTOGRAM_GRANULARITY) / HISTOGRAM_GRANULARITY; 33030b93db5SMatthew Weingarten uintptr_t Histogram = 33130b93db5SMatthew Weingarten (uintptr_t)InternalAlloc(HistogramSize * sizeof(uint64_t)); 33230b93db5SMatthew Weingarten memset((void *)Histogram, 0, HistogramSize * sizeof(uint64_t)); 33330b93db5SMatthew Weingarten for (size_t i = 0; i < HistogramSize; ++i) { 33430b93db5SMatthew Weingarten u8 Counter = 33530b93db5SMatthew Weingarten *((u8 *)HISTOGRAM_MEM_TO_SHADOW(p + HISTOGRAM_GRANULARITY * i)); 33630b93db5SMatthew Weingarten ((uint64_t *)Histogram)[i] = (uint64_t)Counter; 33730b93db5SMatthew Weingarten } 33830b93db5SMatthew Weingarten MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, 33930b93db5SMatthew Weingarten GetCpuId(), Histogram, HistogramSize); 34030b93db5SMatthew Weingarten return newMIB; 34130b93db5SMatthew Weingarten } 34230b93db5SMatthew Weingarten 34330b93db5SMatthew Weingarten static MemInfoBlock CreateNewMIBWithoutHistogram(uptr p, MemprofChunk *m, 34430b93db5SMatthew Weingarten u64 user_size) { 34530b93db5SMatthew Weingarten u64 c = GetShadowCount(p, user_size); 34630b93db5SMatthew Weingarten long curtime = GetTimestamp(); 34730b93db5SMatthew Weingarten MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, 34830b93db5SMatthew Weingarten GetCpuId(), 0, 0); 34930b93db5SMatthew Weingarten return newMIB; 35030b93db5SMatthew Weingarten } 35130b93db5SMatthew Weingarten 352545866cbSSnehasish Kumar void FinishAndWrite() { 353545866cbSSnehasish Kumar if (print_text && common_flags()->print_module_map) 3541243cef2SSnehasish Kumar DumpProcessMap(); 355545866cbSSnehasish Kumar 3563d4bba30STeresa Johnson allocator.ForceLock(); 357545866cbSSnehasish Kumar 358545866cbSSnehasish Kumar InsertLiveBlocks(); 359545866cbSSnehasish Kumar if (print_text) { 360a4b92d61SSnehasish Kumar if (!flags()->print_terse) 361a4b92d61SSnehasish Kumar Printf("Recorded MIBs (incl. live on exit):\n"); 362545866cbSSnehasish Kumar MIBMap.ForEach(PrintCallback, 363545866cbSSnehasish Kumar reinterpret_cast<void *>(flags()->print_terse)); 364545866cbSSnehasish Kumar StackDepotPrintAll(); 365545866cbSSnehasish Kumar } else { 366545866cbSSnehasish Kumar // Serialize the contents to a raw profile. Format documented in 367545866cbSSnehasish Kumar // memprof_rawprofile.h. 368545866cbSSnehasish Kumar char *Buffer = nullptr; 369545866cbSSnehasish Kumar 370a1bbf5acSSnehasish Kumar __sanitizer::ListOfModules List; 371a1bbf5acSSnehasish Kumar List.init(); 372a1bbf5acSSnehasish Kumar ArrayRef<LoadedModule> Modules(List.begin(), List.end()); 373a1bbf5acSSnehasish Kumar u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer); 374545866cbSSnehasish Kumar CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); 375545866cbSSnehasish Kumar report_file.Write(Buffer, BytesSerialized); 376545866cbSSnehasish Kumar } 377545866cbSSnehasish Kumar 378545866cbSSnehasish Kumar allocator.ForceUnlock(); 379545866cbSSnehasish Kumar } 380545866cbSSnehasish Kumar 381545866cbSSnehasish Kumar // Inserts any blocks which have been allocated but not yet deallocated. 382545866cbSSnehasish Kumar void InsertLiveBlocks() { 3833d4bba30STeresa Johnson allocator.ForEachChunk( 3843d4bba30STeresa Johnson [](uptr chunk, void *alloc) { 3853d4bba30STeresa Johnson u64 user_requested_size; 3861243cef2SSnehasish Kumar Allocator *A = (Allocator *)alloc; 3873d4bba30STeresa Johnson MemprofChunk *m = 3881243cef2SSnehasish Kumar A->GetMemprofChunk((void *)chunk, user_requested_size); 3893d4bba30STeresa Johnson if (!m) 3903d4bba30STeresa Johnson return; 3913d4bba30STeresa Johnson uptr user_beg = ((uptr)m) + kChunkHeaderSize; 39230b93db5SMatthew Weingarten MemInfoBlock newMIB = CreateNewMIB(user_beg, m, user_requested_size); 3931243cef2SSnehasish Kumar InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); 3943d4bba30STeresa Johnson }, 3953d4bba30STeresa Johnson this); 3963d4bba30STeresa Johnson } 3973d4bba30STeresa Johnson 3983d4bba30STeresa Johnson void InitLinkerInitialized() { 3993d4bba30STeresa Johnson SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); 4003d4bba30STeresa Johnson allocator.InitLinkerInitialized( 4013d4bba30STeresa Johnson common_flags()->allocator_release_to_os_interval_ms); 4023d4bba30STeresa Johnson max_user_defined_malloc_size = common_flags()->max_allocation_size_mb 4033d4bba30STeresa Johnson ? common_flags()->max_allocation_size_mb 4043d4bba30STeresa Johnson << 20 4053d4bba30STeresa Johnson : kMaxAllowedMallocSize; 4063d4bba30STeresa Johnson } 4073d4bba30STeresa Johnson 4083d4bba30STeresa Johnson // -------------------- Allocation/Deallocation routines --------------- 4093d4bba30STeresa Johnson void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, 4103d4bba30STeresa Johnson AllocType alloc_type) { 4113d4bba30STeresa Johnson if (UNLIKELY(!memprof_inited)) 4123d4bba30STeresa Johnson MemprofInitFromRtl(); 413d48d8670SVitaly Buka if (UNLIKELY(IsRssLimitExceeded())) { 4143d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 4153d4bba30STeresa Johnson return nullptr; 4163d4bba30STeresa Johnson ReportRssLimitExceeded(stack); 4173d4bba30STeresa Johnson } 4183d4bba30STeresa Johnson CHECK(stack); 4193d4bba30STeresa Johnson const uptr min_alignment = MEMPROF_ALIGNMENT; 4203d4bba30STeresa Johnson if (alignment < min_alignment) 4213d4bba30STeresa Johnson alignment = min_alignment; 4223d4bba30STeresa Johnson if (size == 0) { 4233d4bba30STeresa Johnson // We'd be happy to avoid allocating memory for zero-size requests, but 4243d4bba30STeresa Johnson // some programs/tests depend on this behavior and assume that malloc 4253d4bba30STeresa Johnson // would not return NULL even for zero-size allocations. Moreover, it 4263d4bba30STeresa Johnson // looks like operator new should never return NULL, and results of 4273d4bba30STeresa Johnson // consecutive "new" calls must be different even if the allocated size 4283d4bba30STeresa Johnson // is zero. 4293d4bba30STeresa Johnson size = 1; 4303d4bba30STeresa Johnson } 4313d4bba30STeresa Johnson CHECK(IsPowerOfTwo(alignment)); 4323d4bba30STeresa Johnson uptr rounded_size = RoundUpTo(size, alignment); 4333d4bba30STeresa Johnson uptr needed_size = rounded_size + kChunkHeaderSize; 4343d4bba30STeresa Johnson if (alignment > min_alignment) 4353d4bba30STeresa Johnson needed_size += alignment; 4363d4bba30STeresa Johnson CHECK(IsAligned(needed_size, min_alignment)); 4373d4bba30STeresa Johnson if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || 4383d4bba30STeresa Johnson size > max_user_defined_malloc_size) { 4393d4bba30STeresa Johnson if (AllocatorMayReturnNull()) { 44024252474STeresa Johnson Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); 4413d4bba30STeresa Johnson return nullptr; 4423d4bba30STeresa Johnson } 4433d4bba30STeresa Johnson uptr malloc_limit = 4443d4bba30STeresa Johnson Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); 4453d4bba30STeresa Johnson ReportAllocationSizeTooBig(size, malloc_limit, stack); 4463d4bba30STeresa Johnson } 4473d4bba30STeresa Johnson 4483d4bba30STeresa Johnson MemprofThread *t = GetCurrentThread(); 4493d4bba30STeresa Johnson void *allocated; 4503d4bba30STeresa Johnson if (t) { 4513d4bba30STeresa Johnson AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 4523d4bba30STeresa Johnson allocated = allocator.Allocate(cache, needed_size, 8); 4533d4bba30STeresa Johnson } else { 4543d4bba30STeresa Johnson SpinMutexLock l(&fallback_mutex); 4553d4bba30STeresa Johnson AllocatorCache *cache = &fallback_allocator_cache; 4563d4bba30STeresa Johnson allocated = allocator.Allocate(cache, needed_size, 8); 4573d4bba30STeresa Johnson } 4583d4bba30STeresa Johnson if (UNLIKELY(!allocated)) { 4593d4bba30STeresa Johnson SetAllocatorOutOfMemory(); 4603d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 4613d4bba30STeresa Johnson return nullptr; 4623d4bba30STeresa Johnson ReportOutOfMemory(size, stack); 4633d4bba30STeresa Johnson } 4643d4bba30STeresa Johnson 4653d4bba30STeresa Johnson uptr alloc_beg = reinterpret_cast<uptr>(allocated); 4663d4bba30STeresa Johnson uptr alloc_end = alloc_beg + needed_size; 4673d4bba30STeresa Johnson uptr beg_plus_header = alloc_beg + kChunkHeaderSize; 4683d4bba30STeresa Johnson uptr user_beg = beg_plus_header; 4693d4bba30STeresa Johnson if (!IsAligned(user_beg, alignment)) 4703d4bba30STeresa Johnson user_beg = RoundUpTo(user_beg, alignment); 4713d4bba30STeresa Johnson uptr user_end = user_beg + size; 4723d4bba30STeresa Johnson CHECK_LE(user_end, alloc_end); 4733d4bba30STeresa Johnson uptr chunk_beg = user_beg - kChunkHeaderSize; 4743d4bba30STeresa Johnson MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 4753d4bba30STeresa Johnson m->from_memalign = alloc_beg != chunk_beg; 4763d4bba30STeresa Johnson CHECK(size); 4773d4bba30STeresa Johnson 4783d4bba30STeresa Johnson m->cpu_id = GetCpuId(); 4793d4bba30STeresa Johnson m->timestamp_ms = GetTimestamp(); 4803d4bba30STeresa Johnson m->alloc_context_id = StackDepotPut(*stack); 4813d4bba30STeresa Johnson 4823d4bba30STeresa Johnson uptr size_rounded_down_to_granularity = 4833d4bba30STeresa Johnson RoundDownTo(size, SHADOW_GRANULARITY); 4843d4bba30STeresa Johnson if (size_rounded_down_to_granularity) 4853d4bba30STeresa Johnson ClearShadow(user_beg, size_rounded_down_to_granularity); 4863d4bba30STeresa Johnson 4873d4bba30STeresa Johnson MemprofStats &thread_stats = GetCurrentThreadStats(); 4883d4bba30STeresa Johnson thread_stats.mallocs++; 4893d4bba30STeresa Johnson thread_stats.malloced += size; 4903d4bba30STeresa Johnson thread_stats.malloced_overhead += needed_size - size; 4913d4bba30STeresa Johnson if (needed_size > SizeClassMap::kMaxSize) 4923d4bba30STeresa Johnson thread_stats.malloc_large++; 4933d4bba30STeresa Johnson else 4943d4bba30STeresa Johnson thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; 4953d4bba30STeresa Johnson 4963d4bba30STeresa Johnson void *res = reinterpret_cast<void *>(user_beg); 4973d4bba30STeresa Johnson atomic_store(&m->user_requested_size, size, memory_order_release); 4983d4bba30STeresa Johnson if (alloc_beg != chunk_beg) { 4993d4bba30STeresa Johnson CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); 5003d4bba30STeresa Johnson reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); 5013d4bba30STeresa Johnson } 502b84673b3SVitaly Buka RunMallocHooks(res, size); 5033d4bba30STeresa Johnson return res; 5043d4bba30STeresa Johnson } 5053d4bba30STeresa Johnson 5063d4bba30STeresa Johnson void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, 5073d4bba30STeresa Johnson BufferedStackTrace *stack, AllocType alloc_type) { 5083d4bba30STeresa Johnson uptr p = reinterpret_cast<uptr>(ptr); 5093d4bba30STeresa Johnson if (p == 0) 5103d4bba30STeresa Johnson return; 5113d4bba30STeresa Johnson 512b84673b3SVitaly Buka RunFreeHooks(ptr); 5133d4bba30STeresa Johnson 5143d4bba30STeresa Johnson uptr chunk_beg = p - kChunkHeaderSize; 5153d4bba30STeresa Johnson MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 5163d4bba30STeresa Johnson 5173d4bba30STeresa Johnson u64 user_requested_size = 5183d4bba30STeresa Johnson atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); 51979ebb638SSnehasish Kumar if (memprof_inited && atomic_load_relaxed(&constructed) && 520545866cbSSnehasish Kumar !atomic_load_relaxed(&destructing)) { 52130b93db5SMatthew Weingarten MemInfoBlock newMIB = this->CreateNewMIB(p, m, user_requested_size); 5221243cef2SSnehasish Kumar InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); 5233d4bba30STeresa Johnson } 5243d4bba30STeresa Johnson 5253d4bba30STeresa Johnson MemprofStats &thread_stats = GetCurrentThreadStats(); 5263d4bba30STeresa Johnson thread_stats.frees++; 5273d4bba30STeresa Johnson thread_stats.freed += user_requested_size; 5283d4bba30STeresa Johnson 5293d4bba30STeresa Johnson void *alloc_beg = m->AllocBeg(); 5303d4bba30STeresa Johnson if (alloc_beg != m) { 5313d4bba30STeresa Johnson // Clear the magic value, as allocator internals may overwrite the 5323d4bba30STeresa Johnson // contents of deallocated chunk, confusing GetMemprofChunk lookup. 5333d4bba30STeresa Johnson reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); 5343d4bba30STeresa Johnson } 5353d4bba30STeresa Johnson 5363d4bba30STeresa Johnson MemprofThread *t = GetCurrentThread(); 5373d4bba30STeresa Johnson if (t) { 5383d4bba30STeresa Johnson AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); 5393d4bba30STeresa Johnson allocator.Deallocate(cache, alloc_beg); 5403d4bba30STeresa Johnson } else { 5413d4bba30STeresa Johnson SpinMutexLock l(&fallback_mutex); 5423d4bba30STeresa Johnson AllocatorCache *cache = &fallback_allocator_cache; 5433d4bba30STeresa Johnson allocator.Deallocate(cache, alloc_beg); 5443d4bba30STeresa Johnson } 5453d4bba30STeresa Johnson } 5463d4bba30STeresa Johnson 5473d4bba30STeresa Johnson void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { 5483d4bba30STeresa Johnson CHECK(old_ptr && new_size); 5493d4bba30STeresa Johnson uptr p = reinterpret_cast<uptr>(old_ptr); 5503d4bba30STeresa Johnson uptr chunk_beg = p - kChunkHeaderSize; 5513d4bba30STeresa Johnson MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); 5523d4bba30STeresa Johnson 5533d4bba30STeresa Johnson MemprofStats &thread_stats = GetCurrentThreadStats(); 5543d4bba30STeresa Johnson thread_stats.reallocs++; 5553d4bba30STeresa Johnson thread_stats.realloced += new_size; 5563d4bba30STeresa Johnson 5573d4bba30STeresa Johnson void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); 5583d4bba30STeresa Johnson if (new_ptr) { 5593d4bba30STeresa Johnson CHECK_NE(REAL(memcpy), nullptr); 5603d4bba30STeresa Johnson uptr memcpy_size = Min(new_size, m->UsedSize()); 5613d4bba30STeresa Johnson REAL(memcpy)(new_ptr, old_ptr, memcpy_size); 5623d4bba30STeresa Johnson Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); 5633d4bba30STeresa Johnson } 5643d4bba30STeresa Johnson return new_ptr; 5653d4bba30STeresa Johnson } 5663d4bba30STeresa Johnson 5673d4bba30STeresa Johnson void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 5683d4bba30STeresa Johnson if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 5693d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 5703d4bba30STeresa Johnson return nullptr; 5713d4bba30STeresa Johnson ReportCallocOverflow(nmemb, size, stack); 5723d4bba30STeresa Johnson } 5733d4bba30STeresa Johnson void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); 5743d4bba30STeresa Johnson // If the memory comes from the secondary allocator no need to clear it 5753d4bba30STeresa Johnson // as it comes directly from mmap. 5763d4bba30STeresa Johnson if (ptr && allocator.FromPrimary(ptr)) 5773d4bba30STeresa Johnson REAL(memset)(ptr, 0, nmemb * size); 5783d4bba30STeresa Johnson return ptr; 5793d4bba30STeresa Johnson } 5803d4bba30STeresa Johnson 581bd132411SEnna1 void CommitBack(MemprofThreadLocalMallocStorage *ms) { 5823d4bba30STeresa Johnson AllocatorCache *ac = GetAllocatorCache(ms); 5833d4bba30STeresa Johnson allocator.SwallowCache(ac); 5843d4bba30STeresa Johnson } 5853d4bba30STeresa Johnson 5863d4bba30STeresa Johnson // -------------------------- Chunk lookup ---------------------- 5873d4bba30STeresa Johnson 5883d4bba30STeresa Johnson // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). 5893d4bba30STeresa Johnson MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { 5903d4bba30STeresa Johnson if (!alloc_beg) 5913d4bba30STeresa Johnson return nullptr; 5923d4bba30STeresa Johnson MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); 5933d4bba30STeresa Johnson if (!p) { 5943d4bba30STeresa Johnson if (!allocator.FromPrimary(alloc_beg)) 5953d4bba30STeresa Johnson return nullptr; 5963d4bba30STeresa Johnson p = reinterpret_cast<MemprofChunk *>(alloc_beg); 5973d4bba30STeresa Johnson } 5983d4bba30STeresa Johnson // The size is reset to 0 on deallocation (and a min of 1 on 5993d4bba30STeresa Johnson // allocation). 6003d4bba30STeresa Johnson user_requested_size = 6013d4bba30STeresa Johnson atomic_load(&p->user_requested_size, memory_order_acquire); 6023d4bba30STeresa Johnson if (user_requested_size) 6033d4bba30STeresa Johnson return p; 6043d4bba30STeresa Johnson return nullptr; 6053d4bba30STeresa Johnson } 6063d4bba30STeresa Johnson 6073d4bba30STeresa Johnson MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { 6083d4bba30STeresa Johnson void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); 6093d4bba30STeresa Johnson return GetMemprofChunk(alloc_beg, user_requested_size); 6103d4bba30STeresa Johnson } 6113d4bba30STeresa Johnson 6123d4bba30STeresa Johnson uptr AllocationSize(uptr p) { 6133d4bba30STeresa Johnson u64 user_requested_size; 6143d4bba30STeresa Johnson MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); 6153d4bba30STeresa Johnson if (!m) 6163d4bba30STeresa Johnson return 0; 6173d4bba30STeresa Johnson if (m->Beg() != p) 6183d4bba30STeresa Johnson return 0; 6193d4bba30STeresa Johnson return user_requested_size; 6203d4bba30STeresa Johnson } 6213d4bba30STeresa Johnson 6227639265aSJin Xin Ng uptr AllocationSizeFast(uptr p) { 6237639265aSJin Xin Ng return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize(); 6247639265aSJin Xin Ng } 6257639265aSJin Xin Ng 626bd132411SEnna1 void Purge() { allocator.ForceReleaseToOS(); } 6273d4bba30STeresa Johnson 6283d4bba30STeresa Johnson void PrintStats() { allocator.PrintStats(); } 6293d4bba30STeresa Johnson 630765921deSDmitry Vyukov void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 6313d4bba30STeresa Johnson allocator.ForceLock(); 6323d4bba30STeresa Johnson fallback_mutex.Lock(); 6333d4bba30STeresa Johnson } 6343d4bba30STeresa Johnson 635765921deSDmitry Vyukov void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { 6363d4bba30STeresa Johnson fallback_mutex.Unlock(); 6373d4bba30STeresa Johnson allocator.ForceUnlock(); 6383d4bba30STeresa Johnson } 6393d4bba30STeresa Johnson }; 6403d4bba30STeresa Johnson 6413d4bba30STeresa Johnson static Allocator instance(LINKER_INITIALIZED); 6423d4bba30STeresa Johnson 6433d4bba30STeresa Johnson static MemprofAllocator &get_allocator() { return instance.allocator; } 6443d4bba30STeresa Johnson 6453d4bba30STeresa Johnson void InitializeAllocator() { instance.InitLinkerInitialized(); } 6463d4bba30STeresa Johnson 6473d4bba30STeresa Johnson void MemprofThreadLocalMallocStorage::CommitBack() { 648bd132411SEnna1 instance.CommitBack(this); 6493d4bba30STeresa Johnson } 6503d4bba30STeresa Johnson 6513d4bba30STeresa Johnson void PrintInternalAllocatorStats() { instance.PrintStats(); } 6523d4bba30STeresa Johnson 6533d4bba30STeresa Johnson void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { 6543d4bba30STeresa Johnson instance.Deallocate(ptr, 0, 0, stack, alloc_type); 6553d4bba30STeresa Johnson } 6563d4bba30STeresa Johnson 6573d4bba30STeresa Johnson void memprof_delete(void *ptr, uptr size, uptr alignment, 6583d4bba30STeresa Johnson BufferedStackTrace *stack, AllocType alloc_type) { 6593d4bba30STeresa Johnson instance.Deallocate(ptr, size, alignment, stack, alloc_type); 6603d4bba30STeresa Johnson } 6613d4bba30STeresa Johnson 6623d4bba30STeresa Johnson void *memprof_malloc(uptr size, BufferedStackTrace *stack) { 6633d4bba30STeresa Johnson return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 6643d4bba30STeresa Johnson } 6653d4bba30STeresa Johnson 6663d4bba30STeresa Johnson void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { 6673d4bba30STeresa Johnson return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); 6683d4bba30STeresa Johnson } 6693d4bba30STeresa Johnson 6703d4bba30STeresa Johnson void *memprof_reallocarray(void *p, uptr nmemb, uptr size, 6713d4bba30STeresa Johnson BufferedStackTrace *stack) { 6723d4bba30STeresa Johnson if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { 6733d4bba30STeresa Johnson errno = errno_ENOMEM; 6743d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 6753d4bba30STeresa Johnson return nullptr; 6763d4bba30STeresa Johnson ReportReallocArrayOverflow(nmemb, size, stack); 6773d4bba30STeresa Johnson } 6783d4bba30STeresa Johnson return memprof_realloc(p, nmemb * size, stack); 6793d4bba30STeresa Johnson } 6803d4bba30STeresa Johnson 6813d4bba30STeresa Johnson void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { 6823d4bba30STeresa Johnson if (!p) 6833d4bba30STeresa Johnson return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); 6843d4bba30STeresa Johnson if (size == 0) { 6853d4bba30STeresa Johnson if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { 6863d4bba30STeresa Johnson instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); 6873d4bba30STeresa Johnson return nullptr; 6883d4bba30STeresa Johnson } 6893d4bba30STeresa Johnson // Allocate a size of 1 if we shouldn't free() on Realloc to 0 6903d4bba30STeresa Johnson size = 1; 6913d4bba30STeresa Johnson } 6923d4bba30STeresa Johnson return SetErrnoOnNull(instance.Reallocate(p, size, stack)); 6933d4bba30STeresa Johnson } 6943d4bba30STeresa Johnson 6953d4bba30STeresa Johnson void *memprof_valloc(uptr size, BufferedStackTrace *stack) { 6963d4bba30STeresa Johnson return SetErrnoOnNull( 6973d4bba30STeresa Johnson instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); 6983d4bba30STeresa Johnson } 6993d4bba30STeresa Johnson 7003d4bba30STeresa Johnson void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { 7013d4bba30STeresa Johnson uptr PageSize = GetPageSizeCached(); 7023d4bba30STeresa Johnson if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { 7033d4bba30STeresa Johnson errno = errno_ENOMEM; 7043d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 7053d4bba30STeresa Johnson return nullptr; 7063d4bba30STeresa Johnson ReportPvallocOverflow(size, stack); 7073d4bba30STeresa Johnson } 7083d4bba30STeresa Johnson // pvalloc(0) should allocate one page. 7093d4bba30STeresa Johnson size = size ? RoundUpTo(size, PageSize) : PageSize; 7103d4bba30STeresa Johnson return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); 7113d4bba30STeresa Johnson } 7123d4bba30STeresa Johnson 7133d4bba30STeresa Johnson void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, 7143d4bba30STeresa Johnson AllocType alloc_type) { 7153d4bba30STeresa Johnson if (UNLIKELY(!IsPowerOfTwo(alignment))) { 7163d4bba30STeresa Johnson errno = errno_EINVAL; 7173d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 7183d4bba30STeresa Johnson return nullptr; 7193d4bba30STeresa Johnson ReportInvalidAllocationAlignment(alignment, stack); 7203d4bba30STeresa Johnson } 7213d4bba30STeresa Johnson return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); 7223d4bba30STeresa Johnson } 7233d4bba30STeresa Johnson 7243d4bba30STeresa Johnson void *memprof_aligned_alloc(uptr alignment, uptr size, 7253d4bba30STeresa Johnson BufferedStackTrace *stack) { 7263d4bba30STeresa Johnson if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { 7273d4bba30STeresa Johnson errno = errno_EINVAL; 7283d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 7293d4bba30STeresa Johnson return nullptr; 7303d4bba30STeresa Johnson ReportInvalidAlignedAllocAlignment(size, alignment, stack); 7313d4bba30STeresa Johnson } 7323d4bba30STeresa Johnson return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); 7333d4bba30STeresa Johnson } 7343d4bba30STeresa Johnson 7353d4bba30STeresa Johnson int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, 7363d4bba30STeresa Johnson BufferedStackTrace *stack) { 7373d4bba30STeresa Johnson if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { 7383d4bba30STeresa Johnson if (AllocatorMayReturnNull()) 7393d4bba30STeresa Johnson return errno_EINVAL; 7403d4bba30STeresa Johnson ReportInvalidPosixMemalignAlignment(alignment, stack); 7413d4bba30STeresa Johnson } 7423d4bba30STeresa Johnson void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); 7433d4bba30STeresa Johnson if (UNLIKELY(!ptr)) 7443d4bba30STeresa Johnson // OOM error is already taken care of by Allocate. 7453d4bba30STeresa Johnson return errno_ENOMEM; 7463d4bba30STeresa Johnson CHECK(IsAligned((uptr)ptr, alignment)); 7473d4bba30STeresa Johnson *memptr = ptr; 7483d4bba30STeresa Johnson return 0; 7493d4bba30STeresa Johnson } 7503d4bba30STeresa Johnson 7518c63dc6fSFangrui Song static const void *memprof_malloc_begin(const void *p) { 752415b1cfdSThurston Dang u64 user_requested_size; 753415b1cfdSThurston Dang MemprofChunk *m = 754415b1cfdSThurston Dang instance.GetMemprofChunkByAddr((uptr)p, user_requested_size); 755415b1cfdSThurston Dang if (!m) 756415b1cfdSThurston Dang return nullptr; 757415b1cfdSThurston Dang if (user_requested_size == 0) 758415b1cfdSThurston Dang return nullptr; 759415b1cfdSThurston Dang 760d644ab02SThurston Dang return (const void *)m->Beg(); 761415b1cfdSThurston Dang } 762415b1cfdSThurston Dang 763bd132411SEnna1 uptr memprof_malloc_usable_size(const void *ptr) { 7643d4bba30STeresa Johnson if (!ptr) 7653d4bba30STeresa Johnson return 0; 7663d4bba30STeresa Johnson uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); 7673d4bba30STeresa Johnson return usable_size; 7683d4bba30STeresa Johnson } 7693d4bba30STeresa Johnson 7703d4bba30STeresa Johnson } // namespace __memprof 7713d4bba30STeresa Johnson 7723d4bba30STeresa Johnson // ---------------------- Interface ---------------- {{{1 7733d4bba30STeresa Johnson using namespace __memprof; 7743d4bba30STeresa Johnson 7753d4bba30STeresa Johnson uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } 7763d4bba30STeresa Johnson 7773d4bba30STeresa Johnson int __sanitizer_get_ownership(const void *p) { 778bd132411SEnna1 return memprof_malloc_usable_size(p) != 0; 7793d4bba30STeresa Johnson } 7803d4bba30STeresa Johnson 781d644ab02SThurston Dang const void *__sanitizer_get_allocated_begin(const void *p) { 782415b1cfdSThurston Dang return memprof_malloc_begin(p); 783415b1cfdSThurston Dang } 784415b1cfdSThurston Dang 7853d4bba30STeresa Johnson uptr __sanitizer_get_allocated_size(const void *p) { 786bd132411SEnna1 return memprof_malloc_usable_size(p); 7873d4bba30STeresa Johnson } 788a75b2e87STeresa Johnson 7897639265aSJin Xin Ng uptr __sanitizer_get_allocated_size_fast(const void *p) { 7907639265aSJin Xin Ng DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); 7917639265aSJin Xin Ng uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); 7927639265aSJin Xin Ng DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); 7937639265aSJin Xin Ng return ret; 7947639265aSJin Xin Ng } 7957639265aSJin Xin Ng 796bd132411SEnna1 void __sanitizer_purge_allocator() { instance.Purge(); } 797bd132411SEnna1 798a75b2e87STeresa Johnson int __memprof_profile_dump() { 799545866cbSSnehasish Kumar instance.FinishAndWrite(); 800a75b2e87STeresa Johnson // In the future we may want to return non-zero if there are any errors 801a75b2e87STeresa Johnson // detected during the dumping process. 802a75b2e87STeresa Johnson return 0; 803a75b2e87STeresa Johnson } 804ae86239eSTeresa Johnson 805ae86239eSTeresa Johnson void __memprof_profile_reset() { 806ae86239eSTeresa Johnson if (report_file.fd != kInvalidFd && report_file.fd != kStdoutFd && 807ae86239eSTeresa Johnson report_file.fd != kStderrFd) { 808ae86239eSTeresa Johnson CloseFile(report_file.fd); 809ae86239eSTeresa Johnson // Setting the file descriptor to kInvalidFd ensures that we will reopen the 810ae86239eSTeresa Johnson // file when invoking Write again. 811ae86239eSTeresa Johnson report_file.fd = kInvalidFd; 812ae86239eSTeresa Johnson } 813ae86239eSTeresa Johnson } 814