xref: /llvm-project/clang/lib/StaticAnalyzer/Checkers/NullabilityChecker.cpp (revision 4f33e7c683104ea72e013d4ddd104b711a25d620)
1 //===-- NullabilityChecker.cpp - Nullability checker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This checker tries to find nullability violations. There are several kinds of
10 // possible violations:
11 // * Null pointer is passed to a pointer which has a _Nonnull type.
12 // * Null pointer is returned from a function which has a _Nonnull return type.
13 // * Nullable pointer is passed to a pointer which has a _Nonnull type.
14 // * Nullable pointer is returned from a function which has a _Nonnull return
15 //   type.
16 // * Nullable pointer is dereferenced.
17 //
18 // This checker propagates the nullability information of the pointers and looks
19 // for the patterns that are described above. Explicit casts are trusted and are
20 // considered a way to suppress false positives for this checker. The other way
21 // to suppress warnings would be to add asserts or guarding if statements to the
22 // code. In addition to the nullability propagation this checker also uses some
23 // heuristics to suppress potential false positives.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
28 
29 #include "clang/Analysis/AnyCall.h"
30 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
31 #include "clang/StaticAnalyzer/Core/Checker.h"
32 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
36 
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/StringExtras.h"
39 #include "llvm/Support/Path.h"
40 
41 using namespace clang;
42 using namespace ento;
43 
44 namespace {
45 
46 /// Returns the most nullable nullability. This is used for message expressions
47 /// like [receiver method], where the nullability of this expression is either
48 /// the nullability of the receiver or the nullability of the return type of the
49 /// method, depending on which is more nullable. Contradicted is considered to
50 /// be the most nullable, to avoid false positive results.
51 Nullability getMostNullable(Nullability Lhs, Nullability Rhs) {
52   return static_cast<Nullability>(
53       std::min(static_cast<char>(Lhs), static_cast<char>(Rhs)));
54 }
55 
56 const char *getNullabilityString(Nullability Nullab) {
57   switch (Nullab) {
58   case Nullability::Contradicted:
59     return "contradicted";
60   case Nullability::Nullable:
61     return "nullable";
62   case Nullability::Unspecified:
63     return "unspecified";
64   case Nullability::Nonnull:
65     return "nonnull";
66   }
67   llvm_unreachable("Unexpected enumeration.");
68   return "";
69 }
70 
71 // These enums are used as an index to ErrorMessages array.
72 enum class ErrorKind : int {
73   NilAssignedToNonnull,
74   NilPassedToNonnull,
75   NilReturnedToNonnull,
76   NullableAssignedToNonnull,
77   NullableReturnedToNonnull,
78   NullableDereferenced,
79   NullablePassedToNonnull
80 };
81 
82 class NullabilityChecker
83     : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>,
84                      check::PostCall, check::PostStmt<ExplicitCastExpr>,
85                      check::PostObjCMessage, check::DeadSymbols, eval::Assume,
86                      check::Location, check::Event<ImplicitNullDerefEvent>,
87                      check::BeginFunction> {
88 
89 public:
90   // If true, the checker will not diagnose nullabilility issues for calls
91   // to system headers. This option is motivated by the observation that large
92   // projects may have many nullability warnings. These projects may
93   // find warnings about nullability annotations that they have explicitly
94   // added themselves higher priority to fix than warnings on calls to system
95   // libraries.
96   bool NoDiagnoseCallsToSystemHeaders = false;
97 
98   void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const;
99   void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const;
100   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
101   void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const;
102   void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
103   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
104   void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
105   void checkEvent(ImplicitNullDerefEvent Event) const;
106   void checkLocation(SVal Location, bool IsLoad, const Stmt *S,
107                      CheckerContext &C) const;
108   void checkBeginFunction(CheckerContext &Ctx) const;
109   ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
110                              bool Assumption) const;
111 
112   void printState(raw_ostream &Out, ProgramStateRef State, const char *NL,
113                   const char *Sep) const override;
114 
115   enum CheckKind {
116     CK_NullPassedToNonnull,
117     CK_NullReturnedFromNonnull,
118     CK_NullableDereferenced,
119     CK_NullablePassedToNonnull,
120     CK_NullableReturnedFromNonnull,
121     CK_NumCheckKinds
122   };
123 
124   bool ChecksEnabled[CK_NumCheckKinds] = {false};
125   CheckerNameRef CheckNames[CK_NumCheckKinds];
126   mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds];
127 
128   const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const {
129     if (!BTs[Kind])
130       BTs[Kind].reset(new BugType(CheckNames[Kind], "Nullability",
131                                   categories::MemoryError));
132     return BTs[Kind];
133   }
134 
135   // When set to false no nullability information will be tracked in
136   // NullabilityMap. It is possible to catch errors like passing a null pointer
137   // to a callee that expects nonnull argument without the information that is
138   // stored in the NullabilityMap. This is an optimization.
139   bool NeedTracking = false;
140 
141 private:
142   class NullabilityBugVisitor : public BugReporterVisitor {
143   public:
144     NullabilityBugVisitor(const MemRegion *M) : Region(M) {}
145 
146     void Profile(llvm::FoldingSetNodeID &ID) const override {
147       static int X = 0;
148       ID.AddPointer(&X);
149       ID.AddPointer(Region);
150     }
151 
152     PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
153                                      BugReporterContext &BRC,
154                                      PathSensitiveBugReport &BR) override;
155 
156   private:
157     // The tracked region.
158     const MemRegion *Region;
159   };
160 
161   /// When any of the nonnull arguments of the analyzed function is null, do not
162   /// report anything and turn off the check.
163   ///
164   /// When \p SuppressPath is set to true, no more bugs will be reported on this
165   /// path by this checker.
166   void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK,
167                                  ExplodedNode *N, const MemRegion *Region,
168                                  CheckerContext &C,
169                                  const Stmt *ValueExpr = nullptr,
170                                  bool SuppressPath = false) const;
171 
172   void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
173                  const MemRegion *Region, BugReporter &BR,
174                  const Stmt *ValueExpr = nullptr) const {
175     const std::unique_ptr<BugType> &BT = getBugType(CK);
176     auto R = std::make_unique<PathSensitiveBugReport>(*BT, Msg, N);
177     if (Region) {
178       R->markInteresting(Region);
179       R->addVisitor<NullabilityBugVisitor>(Region);
180     }
181     if (ValueExpr) {
182       R->addRange(ValueExpr->getSourceRange());
183       if (Error == ErrorKind::NilAssignedToNonnull ||
184           Error == ErrorKind::NilPassedToNonnull ||
185           Error == ErrorKind::NilReturnedToNonnull)
186         if (const auto *Ex = dyn_cast<Expr>(ValueExpr))
187           bugreporter::trackExpressionValue(N, Ex, *R);
188     }
189     BR.emitReport(std::move(R));
190   }
191 
192   /// If an SVal wraps a region that should be tracked, it will return a pointer
193   /// to the wrapped region. Otherwise it will return a nullptr.
194   const SymbolicRegion *getTrackRegion(SVal Val,
195                                        bool CheckSuperRegion = false) const;
196 
197   /// Returns true if the call is diagnosable in the current analyzer
198   /// configuration.
199   bool isDiagnosableCall(const CallEvent &Call) const {
200     if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader())
201       return false;
202 
203     return true;
204   }
205 };
206 
207 class NullabilityState {
208 public:
209   NullabilityState(Nullability Nullab, const Stmt *Source = nullptr)
210       : Nullab(Nullab), Source(Source) {}
211 
212   const Stmt *getNullabilitySource() const { return Source; }
213 
214   Nullability getValue() const { return Nullab; }
215 
216   void Profile(llvm::FoldingSetNodeID &ID) const {
217     ID.AddInteger(static_cast<char>(Nullab));
218     ID.AddPointer(Source);
219   }
220 
221   void print(raw_ostream &Out) const {
222     Out << getNullabilityString(Nullab) << "\n";
223   }
224 
225 private:
226   Nullability Nullab;
227   // Source is the expression which determined the nullability. For example in a
228   // message like [nullable nonnull_returning] has nullable nullability, because
229   // the receiver is nullable. Here the receiver will be the source of the
230   // nullability. This is useful information when the diagnostics are generated.
231   const Stmt *Source;
232 };
233 
234 bool operator==(NullabilityState Lhs, NullabilityState Rhs) {
235   return Lhs.getValue() == Rhs.getValue() &&
236          Lhs.getNullabilitySource() == Rhs.getNullabilitySource();
237 }
238 
239 // For the purpose of tracking historical property accesses, the key for lookup
240 // is an object pointer (could be an instance or a class) paired with the unique
241 // identifier for the property being invoked on that object.
242 using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>;
243 
244 // Metadata associated with the return value from a recorded property access.
245 struct ConstrainedPropertyVal {
246   // This will reference the conjured return SVal for some call
247   // of the form [object property]
248   DefinedOrUnknownSVal Value;
249 
250   // If the SVal has been determined to be nonnull, that is recorded here
251   bool isConstrainedNonnull;
252 
253   ConstrainedPropertyVal(DefinedOrUnknownSVal SV)
254       : Value(SV), isConstrainedNonnull(false) {}
255 
256   void Profile(llvm::FoldingSetNodeID &ID) const {
257     Value.Profile(ID);
258     ID.AddInteger(isConstrainedNonnull ? 1 : 0);
259   }
260 };
261 
262 bool operator==(const ConstrainedPropertyVal &Lhs,
263                 const ConstrainedPropertyVal &Rhs) {
264   return Lhs.Value == Rhs.Value &&
265          Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull;
266 }
267 
268 } // end anonymous namespace
269 
270 REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *,
271                                NullabilityState)
272 REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair,
273                                ConstrainedPropertyVal)
274 
275 // We say "the nullability type invariant is violated" when a location with a
276 // non-null type contains NULL or a function with a non-null return type returns
277 // NULL. Violations of the nullability type invariant can be detected either
278 // directly (for example, when NULL is passed as an argument to a nonnull
279 // parameter) or indirectly (for example, when, inside a function, the
280 // programmer defensively checks whether a nonnull parameter contains NULL and
281 // finds that it does).
282 //
283 // As a matter of policy, the nullability checker typically warns on direct
284 // violations of the nullability invariant (although it uses various
285 // heuristics to suppress warnings in some cases) but will not warn if the
286 // invariant has already been violated along the path (either directly or
287 // indirectly). As a practical matter, this prevents the analyzer from
288 // (1) warning on defensive code paths where a nullability precondition is
289 // determined to have been violated, (2) warning additional times after an
290 // initial direct violation has been discovered, and (3) warning after a direct
291 // violation that has been implicitly or explicitly suppressed (for
292 // example, with a cast of NULL to _Nonnull). In essence, once an invariant
293 // violation is detected on a path, this checker will be essentially turned off
294 // for the rest of the analysis
295 //
296 // The analyzer takes this approach (rather than generating a sink node) to
297 // ensure coverage of defensive paths, which may be important for backwards
298 // compatibility in codebases that were developed without nullability in mind.
299 REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool)
300 
301 enum class NullConstraint { IsNull, IsNotNull, Unknown };
302 
303 static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val,
304                                         ProgramStateRef State) {
305   ConditionTruthVal Nullness = State->isNull(Val);
306   if (Nullness.isConstrainedFalse())
307     return NullConstraint::IsNotNull;
308   if (Nullness.isConstrainedTrue())
309     return NullConstraint::IsNull;
310   return NullConstraint::Unknown;
311 }
312 
313 static bool isValidPointerType(QualType T) {
314   return T->isAnyPointerType() || T->isBlockPointerType();
315 }
316 
317 const SymbolicRegion *
318 NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const {
319   if (!NeedTracking)
320     return nullptr;
321 
322   auto RegionSVal = Val.getAs<loc::MemRegionVal>();
323   if (!RegionSVal)
324     return nullptr;
325 
326   const MemRegion *Region = RegionSVal->getRegion();
327 
328   if (CheckSuperRegion) {
329     if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) {
330       if (const auto *ER = dyn_cast<ElementRegion>(FieldReg->getSuperRegion()))
331         FieldReg = ER;
332       return dyn_cast<SymbolicRegion>(FieldReg->getSuperRegion());
333     }
334     if (auto ElementReg = Region->getAs<ElementRegion>())
335       return dyn_cast<SymbolicRegion>(ElementReg->getSuperRegion());
336   }
337 
338   return dyn_cast<SymbolicRegion>(Region);
339 }
340 
341 PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode(
342     const ExplodedNode *N, BugReporterContext &BRC,
343     PathSensitiveBugReport &BR) {
344   ProgramStateRef State = N->getState();
345   ProgramStateRef StatePrev = N->getFirstPred()->getState();
346 
347   const NullabilityState *TrackedNullab = State->get<NullabilityMap>(Region);
348   const NullabilityState *TrackedNullabPrev =
349       StatePrev->get<NullabilityMap>(Region);
350   if (!TrackedNullab)
351     return nullptr;
352 
353   if (TrackedNullabPrev &&
354       TrackedNullabPrev->getValue() == TrackedNullab->getValue())
355     return nullptr;
356 
357   // Retrieve the associated statement.
358   const Stmt *S = TrackedNullab->getNullabilitySource();
359   if (!S || S->getBeginLoc().isInvalid()) {
360     S = N->getStmtForDiagnostics();
361   }
362 
363   if (!S)
364     return nullptr;
365 
366   std::string InfoText =
367       (llvm::Twine("Nullability '") +
368        getNullabilityString(TrackedNullab->getValue()) + "' is inferred")
369           .str();
370 
371   // Generate the extra diagnostic.
372   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
373                              N->getLocationContext());
374   return std::make_shared<PathDiagnosticEventPiece>(Pos, InfoText, true);
375 }
376 
377 /// Returns true when the value stored at the given location has been
378 /// constrained to null after being passed through an object of nonnnull type.
379 static bool checkValueAtLValForInvariantViolation(ProgramStateRef State,
380                                                   SVal LV, QualType T) {
381   if (getNullabilityAnnotation(T) != Nullability::Nonnull)
382     return false;
383 
384   auto RegionVal = LV.getAs<loc::MemRegionVal>();
385   if (!RegionVal)
386     return false;
387 
388   // If the value was constrained to null *after* it was passed through that
389   // location, it could not have been a concrete pointer *when* it was passed.
390   // In that case we would have handled the situation when the value was
391   // bound to that location, by emitting (or not emitting) a report.
392   // Therefore we are only interested in symbolic regions that can be either
393   // null or non-null depending on the value of their respective symbol.
394   auto StoredVal = State->getSVal(*RegionVal).getAs<loc::MemRegionVal>();
395   if (!StoredVal || !isa<SymbolicRegion>(StoredVal->getRegion()))
396     return false;
397 
398   if (getNullConstraint(*StoredVal, State) == NullConstraint::IsNull)
399     return true;
400 
401   return false;
402 }
403 
404 static bool
405 checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params,
406                                     ProgramStateRef State,
407                                     const LocationContext *LocCtxt) {
408   for (const auto *ParamDecl : Params) {
409     if (ParamDecl->isParameterPack())
410       break;
411 
412     SVal LV = State->getLValue(ParamDecl, LocCtxt);
413     if (checkValueAtLValForInvariantViolation(State, LV,
414                                               ParamDecl->getType())) {
415       return true;
416     }
417   }
418   return false;
419 }
420 
421 static bool
422 checkSelfIvarsForInvariantViolation(ProgramStateRef State,
423                                     const LocationContext *LocCtxt) {
424   auto *MD = dyn_cast<ObjCMethodDecl>(LocCtxt->getDecl());
425   if (!MD || !MD->isInstanceMethod())
426     return false;
427 
428   const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl();
429   if (!SelfDecl)
430     return false;
431 
432   SVal SelfVal = State->getSVal(State->getRegion(SelfDecl, LocCtxt));
433 
434   const ObjCObjectPointerType *SelfType =
435       dyn_cast<ObjCObjectPointerType>(SelfDecl->getType());
436   if (!SelfType)
437     return false;
438 
439   const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl();
440   if (!ID)
441     return false;
442 
443   for (const auto *IvarDecl : ID->ivars()) {
444     SVal LV = State->getLValue(IvarDecl, SelfVal);
445     if (checkValueAtLValForInvariantViolation(State, LV, IvarDecl->getType())) {
446       return true;
447     }
448   }
449   return false;
450 }
451 
452 static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N,
453                                     CheckerContext &C) {
454   if (State->get<InvariantViolated>())
455     return true;
456 
457   const LocationContext *LocCtxt = C.getLocationContext();
458   const Decl *D = LocCtxt->getDecl();
459   if (!D)
460     return false;
461 
462   ArrayRef<ParmVarDecl*> Params;
463   if (const auto *BD = dyn_cast<BlockDecl>(D))
464     Params = BD->parameters();
465   else if (const auto *FD = dyn_cast<FunctionDecl>(D))
466     Params = FD->parameters();
467   else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
468     Params = MD->parameters();
469   else
470     return false;
471 
472   if (checkParamsForPreconditionViolation(Params, State, LocCtxt) ||
473       checkSelfIvarsForInvariantViolation(State, LocCtxt)) {
474     if (!N->isSink())
475       C.addTransition(State->set<InvariantViolated>(true), N);
476     return true;
477   }
478   return false;
479 }
480 
481 void NullabilityChecker::reportBugIfInvariantHolds(
482     StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N,
483     const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr,
484     bool SuppressPath) const {
485   ProgramStateRef OriginalState = N->getState();
486 
487   if (checkInvariantViolation(OriginalState, N, C))
488     return;
489   if (SuppressPath) {
490     OriginalState = OriginalState->set<InvariantViolated>(true);
491     N = C.addTransition(OriginalState, N);
492   }
493 
494   reportBug(Msg, Error, CK, N, Region, C.getBugReporter(), ValueExpr);
495 }
496 
497 /// Cleaning up the program state.
498 void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR,
499                                           CheckerContext &C) const {
500   ProgramStateRef State = C.getState();
501   NullabilityMapTy Nullabilities = State->get<NullabilityMap>();
502   for (const MemRegion *Reg : llvm::make_first_range(Nullabilities)) {
503     const auto *Region = Reg->getAs<SymbolicRegion>();
504     assert(Region && "Non-symbolic region is tracked.");
505     if (SR.isDead(Region->getSymbol())) {
506       State = State->remove<NullabilityMap>(Reg);
507     }
508   }
509 
510   // When an object goes out of scope, we can free the history associated
511   // with any property accesses on that object
512   PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
513   for (ObjectPropPair PropKey : llvm::make_first_range(PropertyAccesses)) {
514     const MemRegion *ReceiverRegion = PropKey.first;
515     if (!SR.isLiveRegion(ReceiverRegion)) {
516       State = State->remove<PropertyAccessesMap>(PropKey);
517     }
518   }
519 
520   // When one of the nonnull arguments are constrained to be null, nullability
521   // preconditions are violated. It is not enough to check this only when we
522   // actually report an error, because at that time interesting symbols might be
523   // reaped.
524   if (checkInvariantViolation(State, C.getPredecessor(), C))
525     return;
526   C.addTransition(State);
527 }
528 
529 /// This callback triggers when a pointer is dereferenced and the analyzer does
530 /// not know anything about the value of that pointer. When that pointer is
531 /// nullable, this code emits a warning.
532 void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const {
533   if (Event.SinkNode->getState()->get<InvariantViolated>())
534     return;
535 
536   const MemRegion *Region =
537       getTrackRegion(Event.Location, /*CheckSuperRegion=*/true);
538   if (!Region)
539     return;
540 
541   ProgramStateRef State = Event.SinkNode->getState();
542   const NullabilityState *TrackedNullability =
543       State->get<NullabilityMap>(Region);
544 
545   if (!TrackedNullability)
546     return;
547 
548   if (ChecksEnabled[CK_NullableDereferenced] &&
549       TrackedNullability->getValue() == Nullability::Nullable) {
550     BugReporter &BR = *Event.BR;
551     // Do not suppress errors on defensive code paths, because dereferencing
552     // a nullable pointer is always an error.
553     if (Event.IsDirectDereference)
554       reportBug("Nullable pointer is dereferenced",
555                 ErrorKind::NullableDereferenced, CK_NullableDereferenced,
556                 Event.SinkNode, Region, BR);
557     else {
558       reportBug("Nullable pointer is passed to a callee that requires a "
559                 "non-null",
560                 ErrorKind::NullablePassedToNonnull, CK_NullableDereferenced,
561                 Event.SinkNode, Region, BR);
562     }
563   }
564 }
565 
566 void NullabilityChecker::checkBeginFunction(CheckerContext &C) const {
567   if (!C.inTopFrame())
568     return;
569 
570   const LocationContext *LCtx = C.getLocationContext();
571   auto AbstractCall = AnyCall::forDecl(LCtx->getDecl());
572   if (!AbstractCall || AbstractCall->parameters().empty())
573     return;
574 
575   ProgramStateRef State = C.getState();
576   for (const ParmVarDecl *Param : AbstractCall->parameters()) {
577     if (!isValidPointerType(Param->getType()))
578       continue;
579 
580     Nullability RequiredNullability =
581         getNullabilityAnnotation(Param->getType());
582     if (RequiredNullability != Nullability::Nullable)
583       continue;
584 
585     const VarRegion *ParamRegion = State->getRegion(Param, LCtx);
586     const MemRegion *ParamPointeeRegion =
587         State->getSVal(ParamRegion).getAsRegion();
588     if (!ParamPointeeRegion)
589       continue;
590 
591     State = State->set<NullabilityMap>(ParamPointeeRegion,
592                                        NullabilityState(RequiredNullability));
593   }
594   C.addTransition(State);
595 }
596 
597 // Whenever we see a load from a typed memory region that's been annotated as
598 // 'nonnull', we want to trust the user on that and assume that it is is indeed
599 // non-null.
600 //
601 // We do so even if the value is known to have been assigned to null.
602 // The user should be warned on assigning the null value to a non-null pointer
603 // as opposed to warning on the later dereference of this pointer.
604 //
605 // \code
606 //   int * _Nonnull var = 0; // we want to warn the user here...
607 //   // . . .
608 //   *var = 42;              // ...and not here
609 // \endcode
610 void NullabilityChecker::checkLocation(SVal Location, bool IsLoad,
611                                        const Stmt *S,
612                                        CheckerContext &Context) const {
613   // We should care only about loads.
614   // The main idea is to add a constraint whenever we're loading a value from
615   // an annotated pointer type.
616   if (!IsLoad)
617     return;
618 
619   // Annotations that we want to consider make sense only for types.
620   const auto *Region =
621       dyn_cast_or_null<TypedValueRegion>(Location.getAsRegion());
622   if (!Region)
623     return;
624 
625   ProgramStateRef State = Context.getState();
626 
627   auto StoredVal = State->getSVal(Region).getAs<loc::MemRegionVal>();
628   if (!StoredVal)
629     return;
630 
631   Nullability NullabilityOfTheLoadedValue =
632       getNullabilityAnnotation(Region->getValueType());
633 
634   if (NullabilityOfTheLoadedValue == Nullability::Nonnull) {
635     // It doesn't matter what we think about this particular pointer, it should
636     // be considered non-null as annotated by the developer.
637     if (ProgramStateRef NewState = State->assume(*StoredVal, true)) {
638       Context.addTransition(NewState);
639     }
640   }
641 }
642 
643 /// Find the outermost subexpression of E that is not an implicit cast.
644 /// This looks through the implicit casts to _Nonnull that ARC adds to
645 /// return expressions of ObjC types when the return type of the function or
646 /// method is non-null but the express is not.
647 static const Expr *lookThroughImplicitCasts(const Expr *E) {
648   return E->IgnoreImpCasts();
649 }
650 
651 /// This method check when nullable pointer or null value is returned from a
652 /// function that has nonnull return type.
653 void NullabilityChecker::checkPreStmt(const ReturnStmt *S,
654                                       CheckerContext &C) const {
655   auto RetExpr = S->getRetValue();
656   if (!RetExpr)
657     return;
658 
659   if (!isValidPointerType(RetExpr->getType()))
660     return;
661 
662   ProgramStateRef State = C.getState();
663   if (State->get<InvariantViolated>())
664     return;
665 
666   auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>();
667   if (!RetSVal)
668     return;
669 
670   bool InSuppressedMethodFamily = false;
671 
672   QualType RequiredRetType;
673   AnalysisDeclContext *DeclCtxt =
674       C.getLocationContext()->getAnalysisDeclContext();
675   const Decl *D = DeclCtxt->getDecl();
676   if (auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
677     // HACK: This is a big hammer to avoid warning when there are defensive
678     // nil checks in -init and -copy methods. We should add more sophisticated
679     // logic here to suppress on common defensive idioms but still
680     // warn when there is a likely problem.
681     ObjCMethodFamily Family = MD->getMethodFamily();
682     if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family)
683       InSuppressedMethodFamily = true;
684 
685     RequiredRetType = MD->getReturnType();
686   } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
687     RequiredRetType = FD->getReturnType();
688   } else {
689     return;
690   }
691 
692   NullConstraint Nullness = getNullConstraint(*RetSVal, State);
693 
694   Nullability RequiredNullability = getNullabilityAnnotation(RequiredRetType);
695   if (const auto *FunDecl = C.getLocationContext()->getDecl();
696       FunDecl && FunDecl->getAttr<ReturnsNonNullAttr>() &&
697       (RequiredNullability == Nullability::Unspecified ||
698        RequiredNullability == Nullability::Nullable)) {
699     // If a function is marked with the returns_nonnull attribute,
700     // the return value must be non-null.
701     RequiredNullability = Nullability::Nonnull;
702   }
703 
704   // If the returned value is null but the type of the expression
705   // generating it is nonnull then we will suppress the diagnostic.
706   // This enables explicit suppression when returning a nil literal in a
707   // function with a _Nonnull return type:
708   //    return (NSString * _Nonnull)0;
709   Nullability RetExprTypeLevelNullability =
710         getNullabilityAnnotation(lookThroughImplicitCasts(RetExpr)->getType());
711 
712   bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull &&
713                                   Nullness == NullConstraint::IsNull);
714   if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull &&
715       RetExprTypeLevelNullability != Nullability::Nonnull &&
716       !InSuppressedMethodFamily) {
717     static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull");
718     ExplodedNode *N = C.generateErrorNode(State, &Tag);
719     if (!N)
720       return;
721 
722     SmallString<256> SBuf;
723     llvm::raw_svector_ostream OS(SBuf);
724     OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null");
725     OS << " returned from a " << C.getDeclDescription(D) <<
726           " that is expected to return a non-null value";
727     reportBugIfInvariantHolds(OS.str(), ErrorKind::NilReturnedToNonnull,
728                               CK_NullReturnedFromNonnull, N, nullptr, C,
729                               RetExpr);
730     return;
731   }
732 
733   // If null was returned from a non-null function, mark the nullability
734   // invariant as violated even if the diagnostic was suppressed.
735   if (NullReturnedFromNonNull) {
736     State = State->set<InvariantViolated>(true);
737     C.addTransition(State);
738     return;
739   }
740 
741   const MemRegion *Region = getTrackRegion(*RetSVal);
742   if (!Region)
743     return;
744 
745   const NullabilityState *TrackedNullability =
746       State->get<NullabilityMap>(Region);
747   if (TrackedNullability) {
748     Nullability TrackedNullabValue = TrackedNullability->getValue();
749     if (ChecksEnabled[CK_NullableReturnedFromNonnull] &&
750         Nullness != NullConstraint::IsNotNull &&
751         TrackedNullabValue == Nullability::Nullable &&
752         RequiredNullability == Nullability::Nonnull) {
753       static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull");
754       ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
755 
756       SmallString<256> SBuf;
757       llvm::raw_svector_ostream OS(SBuf);
758       OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) <<
759             " that is expected to return a non-null value";
760 
761       reportBugIfInvariantHolds(OS.str(), ErrorKind::NullableReturnedToNonnull,
762                                 CK_NullableReturnedFromNonnull, N, Region, C);
763     }
764     return;
765   }
766   if (RequiredNullability == Nullability::Nullable) {
767     State = State->set<NullabilityMap>(Region,
768                                        NullabilityState(RequiredNullability,
769                                                         S));
770     C.addTransition(State);
771   }
772 }
773 
774 /// This callback warns when a nullable pointer or a null value is passed to a
775 /// function that expects its argument to be nonnull.
776 void NullabilityChecker::checkPreCall(const CallEvent &Call,
777                                       CheckerContext &C) const {
778   if (!Call.getDecl())
779     return;
780 
781   ProgramStateRef State = C.getState();
782   if (State->get<InvariantViolated>())
783     return;
784 
785   ProgramStateRef OrigState = State;
786 
787   unsigned Idx = 0;
788   for (const ParmVarDecl *Param : Call.parameters()) {
789     if (Param->isParameterPack())
790       break;
791 
792     if (Idx >= Call.getNumArgs())
793       break;
794 
795     const Expr *ArgExpr = Call.getArgExpr(Idx);
796     auto ArgSVal = Call.getArgSVal(Idx++).getAs<DefinedOrUnknownSVal>();
797     if (!ArgSVal)
798       continue;
799 
800     if (!isValidPointerType(Param->getType()) &&
801         !Param->getType()->isReferenceType())
802       continue;
803 
804     NullConstraint Nullness = getNullConstraint(*ArgSVal, State);
805 
806     Nullability RequiredNullability =
807         getNullabilityAnnotation(Param->getType());
808     Nullability ArgExprTypeLevelNullability =
809         getNullabilityAnnotation(lookThroughImplicitCasts(ArgExpr)->getType());
810 
811     unsigned ParamIdx = Param->getFunctionScopeIndex() + 1;
812 
813     if (ChecksEnabled[CK_NullPassedToNonnull] &&
814         Nullness == NullConstraint::IsNull &&
815         ArgExprTypeLevelNullability != Nullability::Nonnull &&
816         RequiredNullability == Nullability::Nonnull &&
817         isDiagnosableCall(Call)) {
818       ExplodedNode *N = C.generateErrorNode(State);
819       if (!N)
820         return;
821 
822       SmallString<256> SBuf;
823       llvm::raw_svector_ostream OS(SBuf);
824       OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null");
825       OS << " passed to a callee that requires a non-null " << ParamIdx
826          << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
827       reportBugIfInvariantHolds(OS.str(), ErrorKind::NilPassedToNonnull,
828                                 CK_NullPassedToNonnull, N, nullptr, C, ArgExpr,
829                                 /*SuppressPath=*/false);
830       return;
831     }
832 
833     const MemRegion *Region = getTrackRegion(*ArgSVal);
834     if (!Region)
835       continue;
836 
837     const NullabilityState *TrackedNullability =
838         State->get<NullabilityMap>(Region);
839 
840     if (TrackedNullability) {
841       if (Nullness == NullConstraint::IsNotNull ||
842           TrackedNullability->getValue() != Nullability::Nullable)
843         continue;
844 
845       if (ChecksEnabled[CK_NullablePassedToNonnull] &&
846           RequiredNullability == Nullability::Nonnull &&
847           isDiagnosableCall(Call)) {
848         ExplodedNode *N = C.addTransition(State);
849         SmallString<256> SBuf;
850         llvm::raw_svector_ostream OS(SBuf);
851         OS << "Nullable pointer is passed to a callee that requires a non-null "
852            << ParamIdx << llvm::getOrdinalSuffix(ParamIdx) << " parameter";
853         reportBugIfInvariantHolds(OS.str(), ErrorKind::NullablePassedToNonnull,
854                                   CK_NullablePassedToNonnull, N, Region, C,
855                                   ArgExpr, /*SuppressPath=*/true);
856         return;
857       }
858       if (ChecksEnabled[CK_NullableDereferenced] &&
859           Param->getType()->isReferenceType()) {
860         ExplodedNode *N = C.addTransition(State);
861         reportBugIfInvariantHolds("Nullable pointer is dereferenced",
862                                   ErrorKind::NullableDereferenced,
863                                   CK_NullableDereferenced, N, Region, C,
864                                   ArgExpr, /*SuppressPath=*/true);
865         return;
866       }
867       continue;
868     }
869   }
870   if (State != OrigState)
871     C.addTransition(State);
872 }
873 
874 /// Suppress the nullability warnings for some functions.
875 void NullabilityChecker::checkPostCall(const CallEvent &Call,
876                                        CheckerContext &C) const {
877   auto Decl = Call.getDecl();
878   if (!Decl)
879     return;
880   // ObjC Messages handles in a different callback.
881   if (Call.getKind() == CE_ObjCMessage)
882     return;
883   const FunctionType *FuncType = Decl->getFunctionType();
884   if (!FuncType)
885     return;
886   QualType ReturnType = FuncType->getReturnType();
887   if (!isValidPointerType(ReturnType))
888     return;
889   ProgramStateRef State = C.getState();
890   if (State->get<InvariantViolated>())
891     return;
892 
893   const MemRegion *Region = getTrackRegion(Call.getReturnValue());
894   if (!Region)
895     return;
896 
897   // CG headers are misannotated. Do not warn for symbols that are the results
898   // of CG calls.
899   const SourceManager &SM = C.getSourceManager();
900   StringRef FilePath = SM.getFilename(SM.getSpellingLoc(Decl->getBeginLoc()));
901   if (llvm::sys::path::filename(FilePath).starts_with("CG")) {
902     State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
903     C.addTransition(State);
904     return;
905   }
906 
907   const NullabilityState *TrackedNullability =
908       State->get<NullabilityMap>(Region);
909 
910   // ObjCMessageExpr gets the actual type through
911   // Sema::getMessageSendResultType, instead of using the return type of
912   // MethodDecl directly. The final type is generated by considering the
913   // nullability of receiver and MethodDecl together. Thus, The type of
914   // ObjCMessageExpr is prefer.
915   if (const Expr *E = Call.getOriginExpr())
916     ReturnType = E->getType();
917 
918   if (!TrackedNullability &&
919       getNullabilityAnnotation(ReturnType) == Nullability::Nullable) {
920     State = State->set<NullabilityMap>(Region, Nullability::Nullable);
921     C.addTransition(State);
922   }
923 }
924 
925 static Nullability getReceiverNullability(const ObjCMethodCall &M,
926                                           ProgramStateRef State) {
927   if (M.isReceiverSelfOrSuper()) {
928     // For super and super class receivers we assume that the receiver is
929     // nonnull.
930     return Nullability::Nonnull;
931   }
932   // Otherwise look up nullability in the state.
933   SVal Receiver = M.getReceiverSVal();
934   if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) {
935     // If the receiver is constrained to be nonnull, assume that it is nonnull
936     // regardless of its type.
937     NullConstraint Nullness = getNullConstraint(*DefOrUnknown, State);
938     if (Nullness == NullConstraint::IsNotNull)
939       return Nullability::Nonnull;
940   }
941   auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>();
942   if (ValueRegionSVal) {
943     const MemRegion *SelfRegion = ValueRegionSVal->getRegion();
944     assert(SelfRegion);
945 
946     const NullabilityState *TrackedSelfNullability =
947         State->get<NullabilityMap>(SelfRegion);
948     if (TrackedSelfNullability)
949       return TrackedSelfNullability->getValue();
950   }
951   return Nullability::Unspecified;
952 }
953 
954 // The return value of a property access is typically a temporary value which
955 // will not be tracked in a persistent manner by the analyzer.  We use
956 // evalAssume() in order to immediately record constraints on those temporaries
957 // at the time they are imposed (e.g. by a nil-check conditional).
958 ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond,
959                                                bool Assumption) const {
960   PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>();
961   for (auto [PropKey, PropVal] : PropertyAccesses) {
962     if (!PropVal.isConstrainedNonnull) {
963       ConditionTruthVal IsNonNull = State->isNonNull(PropVal.Value);
964       if (IsNonNull.isConstrainedTrue()) {
965         ConstrainedPropertyVal Replacement = PropVal;
966         Replacement.isConstrainedNonnull = true;
967         State = State->set<PropertyAccessesMap>(PropKey, Replacement);
968       } else if (IsNonNull.isConstrainedFalse()) {
969         // Space optimization: no point in tracking constrained-null cases
970         State = State->remove<PropertyAccessesMap>(PropKey);
971       }
972     }
973   }
974 
975   return State;
976 }
977 
978 /// Calculate the nullability of the result of a message expr based on the
979 /// nullability of the receiver, the nullability of the return value, and the
980 /// constraints.
981 void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M,
982                                               CheckerContext &C) const {
983   auto Decl = M.getDecl();
984   if (!Decl)
985     return;
986   QualType RetType = Decl->getReturnType();
987   if (!isValidPointerType(RetType))
988     return;
989 
990   ProgramStateRef State = C.getState();
991   if (State->get<InvariantViolated>())
992     return;
993 
994   const MemRegion *ReturnRegion = getTrackRegion(M.getReturnValue());
995   if (!ReturnRegion)
996     return;
997 
998   auto Interface = Decl->getClassInterface();
999   auto Name = Interface ? Interface->getName() : "";
1000   // In order to reduce the noise in the diagnostics generated by this checker,
1001   // some framework and programming style based heuristics are used. These
1002   // heuristics are for Cocoa APIs which have NS prefix.
1003   if (Name.starts_with("NS")) {
1004     // Developers rely on dynamic invariants such as an item should be available
1005     // in a collection, or a collection is not empty often. Those invariants can
1006     // not be inferred by any static analysis tool. To not to bother the users
1007     // with too many false positives, every item retrieval function should be
1008     // ignored for collections. The instance methods of dictionaries in Cocoa
1009     // are either item retrieval related or not interesting nullability wise.
1010     // Using this fact, to keep the code easier to read just ignore the return
1011     // value of every instance method of dictionaries.
1012     if (M.isInstanceMessage() && Name.contains("Dictionary")) {
1013       State =
1014           State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
1015       C.addTransition(State);
1016       return;
1017     }
1018     // For similar reasons ignore some methods of Cocoa arrays.
1019     StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(0);
1020     if (Name.contains("Array") &&
1021         (FirstSelectorSlot == "firstObject" ||
1022          FirstSelectorSlot == "lastObject")) {
1023       State =
1024           State->set<NullabilityMap>(ReturnRegion, Nullability::Contradicted);
1025       C.addTransition(State);
1026       return;
1027     }
1028 
1029     // Encoding related methods of string should not fail when lossless
1030     // encodings are used. Using lossless encodings is so frequent that ignoring
1031     // this class of methods reduced the emitted diagnostics by about 30% on
1032     // some projects (and all of that was false positives).
1033     if (Name.contains("String")) {
1034       for (auto *Param : M.parameters()) {
1035         if (Param->getName() == "encoding") {
1036           State = State->set<NullabilityMap>(ReturnRegion,
1037                                              Nullability::Contradicted);
1038           C.addTransition(State);
1039           return;
1040         }
1041       }
1042     }
1043   }
1044 
1045   const ObjCMessageExpr *Message = M.getOriginExpr();
1046   Nullability SelfNullability = getReceiverNullability(M, State);
1047 
1048   const NullabilityState *NullabilityOfReturn =
1049       State->get<NullabilityMap>(ReturnRegion);
1050 
1051   if (NullabilityOfReturn) {
1052     // When we have a nullability tracked for the return value, the nullability
1053     // of the expression will be the most nullable of the receiver and the
1054     // return value.
1055     Nullability RetValTracked = NullabilityOfReturn->getValue();
1056     Nullability ComputedNullab =
1057         getMostNullable(RetValTracked, SelfNullability);
1058     if (ComputedNullab != RetValTracked &&
1059         ComputedNullab != Nullability::Unspecified) {
1060       const Stmt *NullabilitySource =
1061           ComputedNullab == RetValTracked
1062               ? NullabilityOfReturn->getNullabilitySource()
1063               : Message->getInstanceReceiver();
1064       State = State->set<NullabilityMap>(
1065           ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
1066       C.addTransition(State);
1067     }
1068     return;
1069   }
1070 
1071   // No tracked information. Use static type information for return value.
1072   Nullability RetNullability = getNullabilityAnnotation(Message->getType());
1073 
1074   // Properties might be computed, which means the property value could
1075   // theoretically change between calls even in commonly-observed cases like
1076   // this:
1077   //
1078   //     if (foo.prop) {    // ok, it's nonnull here...
1079   //         [bar doStuffWithNonnullVal:foo.prop];     // ...but what about
1080   //         here?
1081   //     }
1082   //
1083   // If the property is nullable-annotated, a naive analysis would lead to many
1084   // false positives despite the presence of probably-correct nil-checks.  To
1085   // reduce the false positive rate, we maintain a history of the most recently
1086   // observed property value.  For each property access, if the prior value has
1087   // been constrained to be not nil then we will conservatively assume that the
1088   // next access can be inferred as nonnull.
1089   if (RetNullability != Nullability::Nonnull &&
1090       M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) {
1091     bool LookupResolved = false;
1092     if (const MemRegion *ReceiverRegion = getTrackRegion(M.getReceiverSVal())) {
1093       if (const IdentifierInfo *Ident =
1094               M.getSelector().getIdentifierInfoForSlot(0)) {
1095         LookupResolved = true;
1096         ObjectPropPair Key = std::make_pair(ReceiverRegion, Ident);
1097         const ConstrainedPropertyVal *PrevPropVal =
1098             State->get<PropertyAccessesMap>(Key);
1099         if (PrevPropVal && PrevPropVal->isConstrainedNonnull) {
1100           RetNullability = Nullability::Nonnull;
1101         } else {
1102           // If a previous property access was constrained as nonnull, we hold
1103           // on to that constraint (effectively inferring that all subsequent
1104           // accesses on that code path can be inferred as nonnull).  If the
1105           // previous property access was *not* constrained as nonnull, then
1106           // let's throw it away in favor of keeping the SVal associated with
1107           // this more recent access.
1108           if (auto ReturnSVal =
1109                   M.getReturnValue().getAs<DefinedOrUnknownSVal>()) {
1110             State = State->set<PropertyAccessesMap>(
1111                 Key, ConstrainedPropertyVal(*ReturnSVal));
1112           }
1113         }
1114       }
1115     }
1116 
1117     if (!LookupResolved) {
1118       // Fallback: err on the side of suppressing the false positive.
1119       RetNullability = Nullability::Nonnull;
1120     }
1121   }
1122 
1123   Nullability ComputedNullab = getMostNullable(RetNullability, SelfNullability);
1124   if (ComputedNullab == Nullability::Nullable) {
1125     const Stmt *NullabilitySource = ComputedNullab == RetNullability
1126                                         ? Message
1127                                         : Message->getInstanceReceiver();
1128     State = State->set<NullabilityMap>(
1129         ReturnRegion, NullabilityState(ComputedNullab, NullabilitySource));
1130     C.addTransition(State);
1131   }
1132 }
1133 
1134 /// Explicit casts are trusted. If there is a disagreement in the nullability
1135 /// annotations in the destination and the source or '0' is casted to nonnull
1136 /// track the value as having contraditory nullability. This will allow users to
1137 /// suppress warnings.
1138 void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE,
1139                                        CheckerContext &C) const {
1140   QualType OriginType = CE->getSubExpr()->getType();
1141   QualType DestType = CE->getType();
1142   if (!isValidPointerType(OriginType))
1143     return;
1144   if (!isValidPointerType(DestType))
1145     return;
1146 
1147   ProgramStateRef State = C.getState();
1148   if (State->get<InvariantViolated>())
1149     return;
1150 
1151   Nullability DestNullability = getNullabilityAnnotation(DestType);
1152 
1153   // No explicit nullability in the destination type, so this cast does not
1154   // change the nullability.
1155   if (DestNullability == Nullability::Unspecified)
1156     return;
1157 
1158   auto RegionSVal = C.getSVal(CE).getAs<DefinedOrUnknownSVal>();
1159   const MemRegion *Region = getTrackRegion(*RegionSVal);
1160   if (!Region)
1161     return;
1162 
1163   // When 0 is converted to nonnull mark it as contradicted.
1164   if (DestNullability == Nullability::Nonnull) {
1165     NullConstraint Nullness = getNullConstraint(*RegionSVal, State);
1166     if (Nullness == NullConstraint::IsNull) {
1167       State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
1168       C.addTransition(State);
1169       return;
1170     }
1171   }
1172 
1173   const NullabilityState *TrackedNullability =
1174       State->get<NullabilityMap>(Region);
1175 
1176   if (!TrackedNullability) {
1177     if (DestNullability != Nullability::Nullable)
1178       return;
1179     State = State->set<NullabilityMap>(Region,
1180                                        NullabilityState(DestNullability, CE));
1181     C.addTransition(State);
1182     return;
1183   }
1184 
1185   if (TrackedNullability->getValue() != DestNullability &&
1186       TrackedNullability->getValue() != Nullability::Contradicted) {
1187     State = State->set<NullabilityMap>(Region, Nullability::Contradicted);
1188     C.addTransition(State);
1189   }
1190 }
1191 
1192 /// For a given statement performing a bind, attempt to syntactically
1193 /// match the expression resulting in the bound value.
1194 static const Expr * matchValueExprForBind(const Stmt *S) {
1195   // For `x = e` the value expression is the right-hand side.
1196   if (auto *BinOp = dyn_cast<BinaryOperator>(S)) {
1197     if (BinOp->getOpcode() == BO_Assign)
1198       return BinOp->getRHS();
1199   }
1200 
1201   // For `int x = e` the value expression is the initializer.
1202   if (auto *DS = dyn_cast<DeclStmt>(S))  {
1203     if (DS->isSingleDecl()) {
1204       auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1205       if (!VD)
1206         return nullptr;
1207 
1208       if (const Expr *Init = VD->getInit())
1209         return Init;
1210     }
1211   }
1212 
1213   return nullptr;
1214 }
1215 
1216 /// Returns true if \param S is a DeclStmt for a local variable that
1217 /// ObjC automated reference counting initialized with zero.
1218 static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) {
1219   // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This
1220   // prevents false positives when a _Nonnull local variable cannot be
1221   // initialized with an initialization expression:
1222   //    NSString * _Nonnull s; // no-warning
1223   //    @autoreleasepool {
1224   //      s = ...
1225   //    }
1226   //
1227   // FIXME: We should treat implicitly zero-initialized _Nonnull locals as
1228   // uninitialized in Sema's UninitializedValues analysis to warn when a use of
1229   // the zero-initialized definition will unexpectedly yield nil.
1230 
1231   // Locals are only zero-initialized when automated reference counting
1232   // is turned on.
1233   if (!C.getASTContext().getLangOpts().ObjCAutoRefCount)
1234     return false;
1235 
1236   auto *DS = dyn_cast<DeclStmt>(S);
1237   if (!DS || !DS->isSingleDecl())
1238     return false;
1239 
1240   auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1241   if (!VD)
1242     return false;
1243 
1244   // Sema only zero-initializes locals with ObjCLifetimes.
1245   if(!VD->getType().getQualifiers().hasObjCLifetime())
1246     return false;
1247 
1248   const Expr *Init = VD->getInit();
1249   assert(Init && "ObjC local under ARC without initializer");
1250 
1251   // Return false if the local is explicitly initialized (e.g., with '= nil').
1252   if (!isa<ImplicitValueInitExpr>(Init))
1253     return false;
1254 
1255   return true;
1256 }
1257 
1258 /// Propagate the nullability information through binds and warn when nullable
1259 /// pointer or null symbol is assigned to a pointer with a nonnull type.
1260 void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S,
1261                                    CheckerContext &C) const {
1262   const TypedValueRegion *TVR =
1263       dyn_cast_or_null<TypedValueRegion>(L.getAsRegion());
1264   if (!TVR)
1265     return;
1266 
1267   QualType LocType = TVR->getValueType();
1268   if (!isValidPointerType(LocType))
1269     return;
1270 
1271   ProgramStateRef State = C.getState();
1272   if (State->get<InvariantViolated>())
1273     return;
1274 
1275   auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>();
1276   if (!ValDefOrUnknown)
1277     return;
1278 
1279   NullConstraint RhsNullness = getNullConstraint(*ValDefOrUnknown, State);
1280 
1281   Nullability ValNullability = Nullability::Unspecified;
1282   if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol())
1283     ValNullability = getNullabilityAnnotation(Sym->getType());
1284 
1285   Nullability LocNullability = getNullabilityAnnotation(LocType);
1286 
1287   // If the type of the RHS expression is nonnull, don't warn. This
1288   // enables explicit suppression with a cast to nonnull.
1289   Nullability ValueExprTypeLevelNullability = Nullability::Unspecified;
1290   const Expr *ValueExpr = matchValueExprForBind(S);
1291   if (ValueExpr) {
1292     ValueExprTypeLevelNullability =
1293       getNullabilityAnnotation(lookThroughImplicitCasts(ValueExpr)->getType());
1294   }
1295 
1296   bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull &&
1297                                 RhsNullness == NullConstraint::IsNull);
1298   if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull &&
1299       ValNullability != Nullability::Nonnull &&
1300       ValueExprTypeLevelNullability != Nullability::Nonnull &&
1301       !isARCNilInitializedLocal(C, S)) {
1302     static CheckerProgramPointTag Tag(this, "NullPassedToNonnull");
1303     ExplodedNode *N = C.generateErrorNode(State, &Tag);
1304     if (!N)
1305       return;
1306 
1307 
1308     const Stmt *ValueStmt = S;
1309     if (ValueExpr)
1310       ValueStmt = ValueExpr;
1311 
1312     SmallString<256> SBuf;
1313     llvm::raw_svector_ostream OS(SBuf);
1314     OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null");
1315     OS << " assigned to a pointer which is expected to have non-null value";
1316     reportBugIfInvariantHolds(OS.str(), ErrorKind::NilAssignedToNonnull,
1317                               CK_NullPassedToNonnull, N, nullptr, C, ValueStmt);
1318     return;
1319   }
1320 
1321   // If null was returned from a non-null function, mark the nullability
1322   // invariant as violated even if the diagnostic was suppressed.
1323   if (NullAssignedToNonNull) {
1324     State = State->set<InvariantViolated>(true);
1325     C.addTransition(State);
1326     return;
1327   }
1328 
1329   // Intentionally missing case: '0' is bound to a reference. It is handled by
1330   // the DereferenceChecker.
1331 
1332   const MemRegion *ValueRegion = getTrackRegion(*ValDefOrUnknown);
1333   if (!ValueRegion)
1334     return;
1335 
1336   const NullabilityState *TrackedNullability =
1337       State->get<NullabilityMap>(ValueRegion);
1338 
1339   if (TrackedNullability) {
1340     if (RhsNullness == NullConstraint::IsNotNull ||
1341         TrackedNullability->getValue() != Nullability::Nullable)
1342       return;
1343     if (ChecksEnabled[CK_NullablePassedToNonnull] &&
1344         LocNullability == Nullability::Nonnull) {
1345       static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull");
1346       ExplodedNode *N = C.addTransition(State, C.getPredecessor(), &Tag);
1347       reportBugIfInvariantHolds("Nullable pointer is assigned to a pointer "
1348                                 "which is expected to have non-null value",
1349                                 ErrorKind::NullableAssignedToNonnull,
1350                                 CK_NullablePassedToNonnull, N, ValueRegion, C);
1351     }
1352     return;
1353   }
1354 
1355   const auto *BinOp = dyn_cast<BinaryOperator>(S);
1356 
1357   if (ValNullability == Nullability::Nullable) {
1358     // Trust the static information of the value more than the static
1359     // information on the location.
1360     const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S;
1361     State = State->set<NullabilityMap>(
1362         ValueRegion, NullabilityState(ValNullability, NullabilitySource));
1363     C.addTransition(State);
1364     return;
1365   }
1366 
1367   if (LocNullability == Nullability::Nullable) {
1368     const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S;
1369     State = State->set<NullabilityMap>(
1370         ValueRegion, NullabilityState(LocNullability, NullabilitySource));
1371     C.addTransition(State);
1372   }
1373 }
1374 
1375 void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State,
1376                                     const char *NL, const char *Sep) const {
1377 
1378   NullabilityMapTy B = State->get<NullabilityMap>();
1379 
1380   if (State->get<InvariantViolated>())
1381     Out << Sep << NL
1382         << "Nullability invariant was violated, warnings suppressed." << NL;
1383 
1384   if (B.isEmpty())
1385     return;
1386 
1387   if (!State->get<InvariantViolated>())
1388     Out << Sep << NL;
1389 
1390   for (auto [Region, State] : B) {
1391     Out << Region << " : ";
1392     State.print(Out);
1393     Out << NL;
1394   }
1395 }
1396 
1397 void ento::registerNullabilityBase(CheckerManager &mgr) {
1398   mgr.registerChecker<NullabilityChecker>();
1399 }
1400 
1401 bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) {
1402   return true;
1403 }
1404 
1405 #define REGISTER_CHECKER(name, trackingRequired)                               \
1406   void ento::register##name##Checker(CheckerManager &mgr) {                    \
1407     NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>();        \
1408     checker->ChecksEnabled[NullabilityChecker::CK_##name] = true;              \
1409     checker->CheckNames[NullabilityChecker::CK_##name] =                       \
1410         mgr.getCurrentCheckerName();                                           \
1411     checker->NeedTracking = checker->NeedTracking || trackingRequired;         \
1412     checker->NoDiagnoseCallsToSystemHeaders =                                  \
1413         checker->NoDiagnoseCallsToSystemHeaders ||                             \
1414         mgr.getAnalyzerOptions().getCheckerBooleanOption(                      \
1415             checker, "NoDiagnoseCallsToSystemHeaders", true);                  \
1416   }                                                                            \
1417                                                                                \
1418   bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) {        \
1419     return true;                                                               \
1420   }
1421 
1422 // The checks are likely to be turned on by default and it is possible to do
1423 // them without tracking any nullability related information. As an optimization
1424 // no nullability information will be tracked when only these two checks are
1425 // enables.
1426 REGISTER_CHECKER(NullPassedToNonnull, false)
1427 REGISTER_CHECKER(NullReturnedFromNonnull, false)
1428 
1429 REGISTER_CHECKER(NullableDereferenced, true)
1430 REGISTER_CHECKER(NullablePassedToNonnull, true)
1431 REGISTER_CHECKER(NullableReturnedFromNonnull, true)
1432