xref: /llvm-project/clang/lib/Sema/SemaCodeComplete.cpp (revision cabea40ea3c9b97d213080618e612eb41bcc96e5)
1 //===---------------- SemaCodeComplete.cpp - Code Completion ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the code-completion semantic actions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "Sema.h"
14 #include "clang/Sema/CodeCompleteConsumer.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include <list>
18 #include <map>
19 #include <vector>
20 
21 using namespace clang;
22 
23 /// \brief Set the code-completion consumer for semantic analysis.
24 void Sema::setCodeCompleteConsumer(CodeCompleteConsumer *CCC) {
25   assert(((CodeCompleter != 0) != (CCC != 0)) &&
26          "Already set or cleared a code-completion consumer?");
27   CodeCompleter = CCC;
28 }
29 
30 namespace {
31   /// \brief A container of code-completion results.
32   class ResultBuilder {
33   public:
34     /// \brief The type of a name-lookup filter, which can be provided to the
35     /// name-lookup routines to specify which declarations should be included in
36     /// the result set (when it returns true) and which declarations should be
37     /// filtered out (returns false).
38     typedef bool (ResultBuilder::*LookupFilter)(NamedDecl *) const;
39 
40     typedef CodeCompleteConsumer::Result Result;
41 
42   private:
43     /// \brief The actual results we have found.
44     std::vector<Result> Results;
45 
46     /// \brief A record of all of the declarations we have found and placed
47     /// into the result set, used to ensure that no declaration ever gets into
48     /// the result set twice.
49     llvm::SmallPtrSet<Decl*, 16> AllDeclsFound;
50 
51     /// \brief A mapping from declaration names to the declarations that have
52     /// this name within a particular scope and their index within the list of
53     /// results.
54     typedef std::multimap<DeclarationName,
55                           std::pair<NamedDecl *, unsigned> > ShadowMap;
56 
57     /// \brief The semantic analysis object for which results are being
58     /// produced.
59     Sema &SemaRef;
60 
61     /// \brief If non-NULL, a filter function used to remove any code-completion
62     /// results that are not desirable.
63     LookupFilter Filter;
64 
65     /// \brief A list of shadow maps, which is used to model name hiding at
66     /// different levels of, e.g., the inheritance hierarchy.
67     std::list<ShadowMap> ShadowMaps;
68 
69   public:
70     explicit ResultBuilder(Sema &SemaRef, LookupFilter Filter = 0)
71       : SemaRef(SemaRef), Filter(Filter) { }
72 
73     /// \brief Set the filter used for code-completion results.
74     void setFilter(LookupFilter Filter) {
75       this->Filter = Filter;
76     }
77 
78     typedef std::vector<Result>::iterator iterator;
79     iterator begin() { return Results.begin(); }
80     iterator end() { return Results.end(); }
81 
82     Result *data() { return Results.empty()? 0 : &Results.front(); }
83     unsigned size() const { return Results.size(); }
84     bool empty() const { return Results.empty(); }
85 
86     /// \brief Add a new result to this result set (if it isn't already in one
87     /// of the shadow maps), or replace an existing result (for, e.g., a
88     /// redeclaration).
89     ///
90     /// \param R the result to add (if it is unique).
91     ///
92     /// \param R the context in which this result will be named.
93     void MaybeAddResult(Result R, DeclContext *CurContext = 0);
94 
95     /// \brief Enter into a new scope.
96     void EnterNewScope();
97 
98     /// \brief Exit from the current scope.
99     void ExitScope();
100 
101     /// \name Name lookup predicates
102     ///
103     /// These predicates can be passed to the name lookup functions to filter the
104     /// results of name lookup. All of the predicates have the same type, so that
105     ///
106     //@{
107     bool IsOrdinaryName(NamedDecl *ND) const;
108     bool IsNestedNameSpecifier(NamedDecl *ND) const;
109     bool IsEnum(NamedDecl *ND) const;
110     bool IsClassOrStruct(NamedDecl *ND) const;
111     bool IsUnion(NamedDecl *ND) const;
112     bool IsNamespace(NamedDecl *ND) const;
113     bool IsNamespaceOrAlias(NamedDecl *ND) const;
114     bool IsType(NamedDecl *ND) const;
115     //@}
116   };
117 }
118 
119 /// \brief Determines whether the given hidden result could be found with
120 /// some extra work, e.g., by qualifying the name.
121 ///
122 /// \param Hidden the declaration that is hidden by the currenly \p Visible
123 /// declaration.
124 ///
125 /// \param Visible the declaration with the same name that is already visible.
126 ///
127 /// \returns true if the hidden result can be found by some mechanism,
128 /// false otherwise.
129 static bool canHiddenResultBeFound(const LangOptions &LangOpts,
130                                    NamedDecl *Hidden, NamedDecl *Visible) {
131   // In C, there is no way to refer to a hidden name.
132   if (!LangOpts.CPlusPlus)
133     return false;
134 
135   DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
136 
137   // There is no way to qualify a name declared in a function or method.
138   if (HiddenCtx->isFunctionOrMethod())
139     return false;
140 
141   return HiddenCtx != Visible->getDeclContext()->getLookupContext();
142 }
143 
144 /// \brief Compute the qualification required to get from the current context
145 /// (\p CurContext) to the target context (\p TargetContext).
146 ///
147 /// \param Context the AST context in which the qualification will be used.
148 ///
149 /// \param CurContext the context where an entity is being named, which is
150 /// typically based on the current scope.
151 ///
152 /// \param TargetContext the context in which the named entity actually
153 /// resides.
154 ///
155 /// \returns a nested name specifier that refers into the target context, or
156 /// NULL if no qualification is needed.
157 static NestedNameSpecifier *
158 getRequiredQualification(ASTContext &Context,
159                          DeclContext *CurContext,
160                          DeclContext *TargetContext) {
161   llvm::SmallVector<DeclContext *, 4> TargetParents;
162 
163   for (DeclContext *CommonAncestor = TargetContext;
164        CommonAncestor && !CommonAncestor->Encloses(CurContext);
165        CommonAncestor = CommonAncestor->getLookupParent()) {
166     if (CommonAncestor->isTransparentContext() ||
167         CommonAncestor->isFunctionOrMethod())
168       continue;
169 
170     TargetParents.push_back(CommonAncestor);
171   }
172 
173   NestedNameSpecifier *Result = 0;
174   while (!TargetParents.empty()) {
175     DeclContext *Parent = TargetParents.back();
176     TargetParents.pop_back();
177 
178     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Parent))
179       Result = NestedNameSpecifier::Create(Context, Result, Namespace);
180     else if (TagDecl *TD = dyn_cast<TagDecl>(Parent))
181       Result = NestedNameSpecifier::Create(Context, Result,
182                                            false,
183                                      Context.getTypeDeclType(TD).getTypePtr());
184     else
185       assert(Parent->isTranslationUnit());
186   }
187 
188   return Result;
189 }
190 
191 void ResultBuilder::MaybeAddResult(Result R, DeclContext *CurContext) {
192   if (R.Kind != Result::RK_Declaration) {
193     // For non-declaration results, just add the result.
194     Results.push_back(R);
195     return;
196   }
197 
198   // Look through using declarations.
199   if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
200     return MaybeAddResult(Result(Using->getTargetDecl(), R.Rank, R.Qualifier),
201                           CurContext);
202 
203   // Handle each declaration in an overload set separately.
204   if (OverloadedFunctionDecl *Ovl
205         = dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
206     for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
207          FEnd = Ovl->function_end();
208          F != FEnd; ++F)
209       MaybeAddResult(Result(*F, R.Rank, R.Qualifier), CurContext);
210 
211     return;
212   }
213 
214   Decl *CanonDecl = R.Declaration->getCanonicalDecl();
215   unsigned IDNS = CanonDecl->getIdentifierNamespace();
216 
217   // Friend declarations and declarations introduced due to friends are never
218   // added as results.
219   if (isa<FriendDecl>(CanonDecl) ||
220       (IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
221     return;
222 
223   if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
224     // __va_list_tag is a freak of nature. Find it and skip it.
225     if (Id->isStr("__va_list_tag") || Id->isStr("__builtin_va_list"))
226       return;
227 
228     // FIXME: Should we filter out other names in the implementation's
229     // namespace, e.g., those containing a __ or that start with _[A-Z]?
230   }
231 
232   // C++ constructors are never found by name lookup.
233   if (isa<CXXConstructorDecl>(CanonDecl))
234     return;
235 
236   // Filter out any unwanted results.
237   if (Filter && !(this->*Filter)(R.Declaration))
238     return;
239 
240   ShadowMap &SMap = ShadowMaps.back();
241   ShadowMap::iterator I, IEnd;
242   for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
243        I != IEnd; ++I) {
244     NamedDecl *ND = I->second.first;
245     unsigned Index = I->second.second;
246     if (ND->getCanonicalDecl() == CanonDecl) {
247       // This is a redeclaration. Always pick the newer declaration.
248       I->second.first = R.Declaration;
249       Results[Index].Declaration = R.Declaration;
250 
251       // Pick the best rank of the two.
252       Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
253 
254       // We're done.
255       return;
256     }
257   }
258 
259   // This is a new declaration in this scope. However, check whether this
260   // declaration name is hidden by a similarly-named declaration in an outer
261   // scope.
262   std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
263   --SMEnd;
264   for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
265     for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
266          I != IEnd; ++I) {
267       // A tag declaration does not hide a non-tag declaration.
268       if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
269           (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
270                    Decl::IDNS_ObjCProtocol)))
271         continue;
272 
273       // Protocols are in distinct namespaces from everything else.
274       if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
275            || (IDNS & Decl::IDNS_ObjCProtocol)) &&
276           I->second.first->getIdentifierNamespace() != IDNS)
277         continue;
278 
279       // The newly-added result is hidden by an entry in the shadow map.
280       if (canHiddenResultBeFound(SemaRef.getLangOptions(), R.Declaration,
281                                  I->second.first)) {
282         // Note that this result was hidden.
283         R.Hidden = true;
284 
285         if (!R.Qualifier)
286           R.Qualifier = getRequiredQualification(SemaRef.Context,
287                                                  CurContext,
288                                               R.Declaration->getDeclContext());
289       } else {
290         // This result was hidden and cannot be found; don't bother adding
291         // it.
292         return;
293       }
294 
295       break;
296     }
297   }
298 
299   // Make sure that any given declaration only shows up in the result set once.
300   if (!AllDeclsFound.insert(CanonDecl))
301     return;
302 
303   // Insert this result into the set of results and into the current shadow
304   // map.
305   SMap.insert(std::make_pair(R.Declaration->getDeclName(),
306                              std::make_pair(R.Declaration, Results.size())));
307   Results.push_back(R);
308 }
309 
310 /// \brief Enter into a new scope.
311 void ResultBuilder::EnterNewScope() {
312   ShadowMaps.push_back(ShadowMap());
313 }
314 
315 /// \brief Exit from the current scope.
316 void ResultBuilder::ExitScope() {
317   ShadowMaps.pop_back();
318 }
319 
320 /// \brief Determines whether this given declaration will be found by
321 /// ordinary name lookup.
322 bool ResultBuilder::IsOrdinaryName(NamedDecl *ND) const {
323   unsigned IDNS = Decl::IDNS_Ordinary;
324   if (SemaRef.getLangOptions().CPlusPlus)
325     IDNS |= Decl::IDNS_Tag;
326 
327   return ND->getIdentifierNamespace() & IDNS;
328 }
329 
330 /// \brief Determines whether the given declaration is suitable as the
331 /// start of a C++ nested-name-specifier, e.g., a class or namespace.
332 bool ResultBuilder::IsNestedNameSpecifier(NamedDecl *ND) const {
333   // Allow us to find class templates, too.
334   if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
335     ND = ClassTemplate->getTemplatedDecl();
336 
337   return SemaRef.isAcceptableNestedNameSpecifier(ND);
338 }
339 
340 /// \brief Determines whether the given declaration is an enumeration.
341 bool ResultBuilder::IsEnum(NamedDecl *ND) const {
342   return isa<EnumDecl>(ND);
343 }
344 
345 /// \brief Determines whether the given declaration is a class or struct.
346 bool ResultBuilder::IsClassOrStruct(NamedDecl *ND) const {
347   // Allow us to find class templates, too.
348   if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
349     ND = ClassTemplate->getTemplatedDecl();
350 
351   if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
352     return RD->getTagKind() == TagDecl::TK_class ||
353     RD->getTagKind() == TagDecl::TK_struct;
354 
355   return false;
356 }
357 
358 /// \brief Determines whether the given declaration is a union.
359 bool ResultBuilder::IsUnion(NamedDecl *ND) const {
360   // Allow us to find class templates, too.
361   if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
362     ND = ClassTemplate->getTemplatedDecl();
363 
364   if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
365     return RD->getTagKind() == TagDecl::TK_union;
366 
367   return false;
368 }
369 
370 /// \brief Determines whether the given declaration is a namespace.
371 bool ResultBuilder::IsNamespace(NamedDecl *ND) const {
372   return isa<NamespaceDecl>(ND);
373 }
374 
375 /// \brief Determines whether the given declaration is a namespace or
376 /// namespace alias.
377 bool ResultBuilder::IsNamespaceOrAlias(NamedDecl *ND) const {
378   return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
379 }
380 
381 /// \brief Brief determines whether the given declaration is a namespace or
382 /// namespace alias.
383 bool ResultBuilder::IsType(NamedDecl *ND) const {
384   return isa<TypeDecl>(ND);
385 }
386 
387 // Find the next outer declaration context corresponding to this scope.
388 static DeclContext *findOuterContext(Scope *S) {
389   for (S = S->getParent(); S; S = S->getParent())
390     if (S->getEntity())
391       return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
392 
393   return 0;
394 }
395 
396 /// \brief Collect the results of searching for members within the given
397 /// declaration context.
398 ///
399 /// \param Ctx the declaration context from which we will gather results.
400 ///
401 /// \param InitialRank the initial rank given to results in this declaration
402 /// context. Larger rank values will be used for, e.g., members found in
403 /// base classes.
404 ///
405 /// \param Visited the set of declaration contexts that have already been
406 /// visited. Declaration contexts will only be visited once.
407 ///
408 /// \param Results the result set that will be extended with any results
409 /// found within this declaration context (and, for a C++ class, its bases).
410 ///
411 /// \returns the next higher rank value, after considering all of the
412 /// names within this declaration context.
413 static unsigned CollectMemberLookupResults(DeclContext *Ctx,
414                                            unsigned InitialRank,
415                                            DeclContext *CurContext,
416                                  llvm::SmallPtrSet<DeclContext *, 16> &Visited,
417                                            ResultBuilder &Results) {
418   // Make sure we don't visit the same context twice.
419   if (!Visited.insert(Ctx->getPrimaryContext()))
420     return InitialRank;
421 
422   // Enumerate all of the results in this context.
423   Results.EnterNewScope();
424   for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
425        CurCtx = CurCtx->getNextContext()) {
426     for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
427          DEnd = CurCtx->decls_end();
428          D != DEnd; ++D) {
429       if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
430         Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, InitialRank),
431                                CurContext);
432     }
433   }
434 
435   // Traverse the contexts of inherited classes.
436   unsigned NextRank = InitialRank;
437   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
438     for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
439          BEnd = Record->bases_end();
440          B != BEnd; ++B) {
441       QualType BaseType = B->getType();
442 
443       // Don't look into dependent bases, because name lookup can't look
444       // there anyway.
445       if (BaseType->isDependentType())
446         continue;
447 
448       const RecordType *Record = BaseType->getAs<RecordType>();
449       if (!Record)
450         continue;
451 
452       // FIXME: It would be nice to be able to determine whether referencing
453       // a particular member would be ambiguous. For example, given
454       //
455       //   struct A { int member; };
456       //   struct B { int member; };
457       //   struct C : A, B { };
458       //
459       //   void f(C *c) { c->### }
460       // accessing 'member' would result in an ambiguity. However, code
461       // completion could be smart enough to qualify the member with the
462       // base class, e.g.,
463       //
464       //   c->B::member
465       //
466       // or
467       //
468       //   c->A::member
469 
470       // Collect results from this base class (and its bases).
471       NextRank = std::max(NextRank,
472                           CollectMemberLookupResults(Record->getDecl(),
473                                                      InitialRank + 1,
474                                                      CurContext,
475                                                      Visited,
476                                                      Results));
477     }
478   }
479 
480   // FIXME: Look into base classes in Objective-C!
481 
482   Results.ExitScope();
483   return NextRank;
484 }
485 
486 /// \brief Collect the results of searching for members within the given
487 /// declaration context.
488 ///
489 /// \param Ctx the declaration context from which we will gather results.
490 ///
491 /// \param InitialRank the initial rank given to results in this declaration
492 /// context. Larger rank values will be used for, e.g., members found in
493 /// base classes.
494 ///
495 /// \param Results the result set that will be extended with any results
496 /// found within this declaration context (and, for a C++ class, its bases).
497 ///
498 /// \returns the next higher rank value, after considering all of the
499 /// names within this declaration context.
500 static unsigned CollectMemberLookupResults(DeclContext *Ctx,
501                                            unsigned InitialRank,
502                                            DeclContext *CurContext,
503                                            ResultBuilder &Results) {
504   llvm::SmallPtrSet<DeclContext *, 16> Visited;
505   return CollectMemberLookupResults(Ctx, InitialRank, CurContext, Visited,
506                                     Results);
507 }
508 
509 /// \brief Collect the results of searching for declarations within the given
510 /// scope and its parent scopes.
511 ///
512 /// \param S the scope in which we will start looking for declarations.
513 ///
514 /// \param InitialRank the initial rank given to results in this scope.
515 /// Larger rank values will be used for results found in parent scopes.
516 ///
517 /// \param CurContext the context from which lookup results will be found.
518 ///
519 /// \param Results the builder object that will receive each result.
520 static unsigned CollectLookupResults(Scope *S,
521                                      TranslationUnitDecl *TranslationUnit,
522                                      unsigned InitialRank,
523                                      DeclContext *CurContext,
524                                      ResultBuilder &Results) {
525   if (!S)
526     return InitialRank;
527 
528   // FIXME: Using directives!
529 
530   unsigned NextRank = InitialRank;
531   Results.EnterNewScope();
532   if (S->getEntity() &&
533       !((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
534     // Look into this scope's declaration context, along with any of its
535     // parent lookup contexts (e.g., enclosing classes), up to the point
536     // where we hit the context stored in the next outer scope.
537     DeclContext *Ctx = (DeclContext *)S->getEntity();
538     DeclContext *OuterCtx = findOuterContext(S);
539 
540     for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
541          Ctx = Ctx->getLookupParent()) {
542       if (Ctx->isFunctionOrMethod())
543         continue;
544 
545       NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, CurContext,
546                                             Results);
547     }
548   } else if (!S->getParent()) {
549     // Look into the translation unit scope. We walk through the translation
550     // unit's declaration context, because the Scope itself won't have all of
551     // the declarations if we loaded a precompiled header.
552     // FIXME: We would like the translation unit's Scope object to point to the
553     // translation unit, so we don't need this special "if" branch. However,
554     // doing so would force the normal C++ name-lookup code to look into the
555     // translation unit decl when the IdentifierInfo chains would suffice.
556     // Once we fix that problem (which is part of a more general "don't look
557     // in DeclContexts unless we have to" optimization), we can eliminate the
558     // TranslationUnit parameter entirely.
559     NextRank = CollectMemberLookupResults(TranslationUnit, NextRank + 1,
560                                           CurContext, Results);
561   } else {
562     // Walk through the declarations in this Scope.
563     for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
564          D != DEnd; ++D) {
565       if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
566         Results.MaybeAddResult(CodeCompleteConsumer::Result(ND, NextRank),
567                                CurContext);
568     }
569 
570     NextRank = NextRank + 1;
571   }
572 
573   // Lookup names in the parent scope.
574   NextRank = CollectLookupResults(S->getParent(), TranslationUnit, NextRank,
575                                   CurContext, Results);
576   Results.ExitScope();
577 
578   return NextRank;
579 }
580 
581 /// \brief Add type specifiers for the current language as keyword results.
582 static void AddTypeSpecifierResults(const LangOptions &LangOpts, unsigned Rank,
583                                     ResultBuilder &Results) {
584   typedef CodeCompleteConsumer::Result Result;
585   Results.MaybeAddResult(Result("short", Rank));
586   Results.MaybeAddResult(Result("long", Rank));
587   Results.MaybeAddResult(Result("signed", Rank));
588   Results.MaybeAddResult(Result("unsigned", Rank));
589   Results.MaybeAddResult(Result("void", Rank));
590   Results.MaybeAddResult(Result("char", Rank));
591   Results.MaybeAddResult(Result("int", Rank));
592   Results.MaybeAddResult(Result("float", Rank));
593   Results.MaybeAddResult(Result("double", Rank));
594   Results.MaybeAddResult(Result("enum", Rank));
595   Results.MaybeAddResult(Result("struct", Rank));
596   Results.MaybeAddResult(Result("union", Rank));
597 
598   if (LangOpts.C99) {
599     // C99-specific
600     Results.MaybeAddResult(Result("_Complex", Rank));
601     Results.MaybeAddResult(Result("_Imaginary", Rank));
602     Results.MaybeAddResult(Result("_Bool", Rank));
603   }
604 
605   if (LangOpts.CPlusPlus) {
606     // C++-specific
607     Results.MaybeAddResult(Result("bool", Rank));
608     Results.MaybeAddResult(Result("class", Rank));
609     Results.MaybeAddResult(Result("typename", Rank));
610     Results.MaybeAddResult(Result("wchar_t", Rank));
611 
612     if (LangOpts.CPlusPlus0x) {
613       Results.MaybeAddResult(Result("char16_t", Rank));
614       Results.MaybeAddResult(Result("char32_t", Rank));
615       Results.MaybeAddResult(Result("decltype", Rank));
616     }
617   }
618 
619   // GNU extensions
620   if (LangOpts.GNUMode) {
621     // FIXME: Enable when we actually support decimal floating point.
622     //    Results.MaybeAddResult(Result("_Decimal32", Rank));
623     //    Results.MaybeAddResult(Result("_Decimal64", Rank));
624     //    Results.MaybeAddResult(Result("_Decimal128", Rank));
625     Results.MaybeAddResult(Result("typeof", Rank));
626   }
627 }
628 
629 /// \brief Add function parameter chunks to the given code completion string.
630 static void AddFunctionParameterChunks(ASTContext &Context,
631                                        FunctionDecl *Function,
632                                        CodeCompletionString *Result) {
633   CodeCompletionString *CCStr = Result;
634 
635   for (unsigned P = 0, N = Function->getNumParams(); P != N; ++P) {
636     ParmVarDecl *Param = Function->getParamDecl(P);
637 
638     if (Param->hasDefaultArg()) {
639       // When we see an optional default argument, put that argument and
640       // the remaining default arguments into a new, optional string.
641       CodeCompletionString *Opt = new CodeCompletionString;
642       CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
643       CCStr = Opt;
644     }
645 
646     if (P != 0)
647       CCStr->AddTextChunk(", ");
648 
649     // Format the placeholder string.
650     std::string PlaceholderStr;
651     if (Param->getIdentifier())
652       PlaceholderStr = Param->getIdentifier()->getName();
653 
654     Param->getType().getAsStringInternal(PlaceholderStr,
655                                          Context.PrintingPolicy);
656 
657     // Add the placeholder string.
658     CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
659   }
660 }
661 
662 /// \brief Add template parameter chunks to the given code completion string.
663 static void AddTemplateParameterChunks(ASTContext &Context,
664                                        TemplateDecl *Template,
665                                        CodeCompletionString *Result,
666                                        unsigned MaxParameters = 0) {
667   CodeCompletionString *CCStr = Result;
668   bool FirstParameter = true;
669 
670   TemplateParameterList *Params = Template->getTemplateParameters();
671   TemplateParameterList::iterator PEnd = Params->end();
672   if (MaxParameters)
673     PEnd = Params->begin() + MaxParameters;
674   for (TemplateParameterList::iterator P = Params->begin(); P != PEnd; ++P) {
675     bool HasDefaultArg = false;
676     std::string PlaceholderStr;
677     if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678       if (TTP->wasDeclaredWithTypename())
679         PlaceholderStr = "typename";
680       else
681         PlaceholderStr = "class";
682 
683       if (TTP->getIdentifier()) {
684         PlaceholderStr += ' ';
685         PlaceholderStr += TTP->getIdentifier()->getName();
686       }
687 
688       HasDefaultArg = TTP->hasDefaultArgument();
689     } else if (NonTypeTemplateParmDecl *NTTP
690                = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
691       if (NTTP->getIdentifier())
692         PlaceholderStr = NTTP->getIdentifier()->getName();
693       NTTP->getType().getAsStringInternal(PlaceholderStr,
694                                           Context.PrintingPolicy);
695       HasDefaultArg = NTTP->hasDefaultArgument();
696     } else {
697       assert(isa<TemplateTemplateParmDecl>(*P));
698       TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(*P);
699 
700       // Since putting the template argument list into the placeholder would
701       // be very, very long, we just use an abbreviation.
702       PlaceholderStr = "template<...> class";
703       if (TTP->getIdentifier()) {
704         PlaceholderStr += ' ';
705         PlaceholderStr += TTP->getIdentifier()->getName();
706       }
707 
708       HasDefaultArg = TTP->hasDefaultArgument();
709     }
710 
711     if (HasDefaultArg) {
712       // When we see an optional default argument, put that argument and
713       // the remaining default arguments into a new, optional string.
714       CodeCompletionString *Opt = new CodeCompletionString;
715       CCStr->AddOptionalChunk(std::auto_ptr<CodeCompletionString>(Opt));
716       CCStr = Opt;
717     }
718 
719     if (FirstParameter)
720       FirstParameter = false;
721     else
722       CCStr->AddTextChunk(", ");
723 
724     // Add the placeholder string.
725     CCStr->AddPlaceholderChunk(PlaceholderStr.c_str());
726   }
727 }
728 
729 /// \brief Add a qualifier to the given code-completion string, if the
730 /// provided nested-name-specifier is non-NULL.
731 void AddQualifierToCompletionString(CodeCompletionString *Result,
732                                     NestedNameSpecifier *Qualifier,
733                                     ASTContext &Context) {
734   if (!Qualifier)
735     return;
736 
737   std::string PrintedNNS;
738   {
739     llvm::raw_string_ostream OS(PrintedNNS);
740     Qualifier->print(OS, Context.PrintingPolicy);
741   }
742   Result->AddTextChunk(PrintedNNS.c_str());
743 }
744 
745 /// \brief If possible, create a new code completion string for the given
746 /// result.
747 ///
748 /// \returns Either a new, heap-allocated code completion string describing
749 /// how to use this result, or NULL to indicate that the string or name of the
750 /// result is all that is needed.
751 CodeCompletionString *
752 CodeCompleteConsumer::Result::CreateCodeCompletionString(Sema &S) {
753   if (Kind != RK_Declaration)
754     return 0;
755 
756   NamedDecl *ND = Declaration;
757 
758   if (FunctionDecl *Function = dyn_cast<FunctionDecl>(ND)) {
759     CodeCompletionString *Result = new CodeCompletionString;
760     AddQualifierToCompletionString(Result, Qualifier, S.Context);
761     Result->AddTextChunk(Function->getNameAsString().c_str());
762     Result->AddTextChunk("(");
763     AddFunctionParameterChunks(S.Context, Function, Result);
764     Result->AddTextChunk(")");
765     return Result;
766   }
767 
768   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(ND)) {
769     CodeCompletionString *Result = new CodeCompletionString;
770     AddQualifierToCompletionString(Result, Qualifier, S.Context);
771     FunctionDecl *Function = FunTmpl->getTemplatedDecl();
772     Result->AddTextChunk(Function->getNameAsString().c_str());
773 
774     // Figure out which template parameters are deduced (or have default
775     // arguments).
776     llvm::SmallVector<bool, 16> Deduced;
777     S.MarkDeducedTemplateParameters(FunTmpl, Deduced);
778     unsigned LastDeducibleArgument;
779     for (LastDeducibleArgument = Deduced.size(); LastDeducibleArgument > 0;
780          --LastDeducibleArgument) {
781       if (!Deduced[LastDeducibleArgument - 1]) {
782         // C++0x: Figure out if the template argument has a default. If so,
783         // the user doesn't need to type this argument.
784         // FIXME: We need to abstract template parameters better!
785         bool HasDefaultArg = false;
786         NamedDecl *Param = FunTmpl->getTemplateParameters()->getParam(
787                                                                       LastDeducibleArgument - 1);
788         if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
789           HasDefaultArg = TTP->hasDefaultArgument();
790         else if (NonTypeTemplateParmDecl *NTTP
791                  = dyn_cast<NonTypeTemplateParmDecl>(Param))
792           HasDefaultArg = NTTP->hasDefaultArgument();
793         else {
794           assert(isa<TemplateTemplateParmDecl>(Param));
795           HasDefaultArg
796           = cast<TemplateTemplateParmDecl>(Param)->hasDefaultArgument();
797         }
798 
799         if (!HasDefaultArg)
800           break;
801       }
802     }
803 
804     if (LastDeducibleArgument) {
805       // Some of the function template arguments cannot be deduced from a
806       // function call, so we introduce an explicit template argument list
807       // containing all of the arguments up to the first deducible argument.
808       Result->AddTextChunk("<");
809       AddTemplateParameterChunks(S.Context, FunTmpl, Result,
810                                  LastDeducibleArgument);
811       Result->AddTextChunk(">");
812     }
813 
814     // Add the function parameters
815     Result->AddTextChunk("(");
816     AddFunctionParameterChunks(S.Context, Function, Result);
817     Result->AddTextChunk(")");
818     return Result;
819   }
820 
821   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(ND)) {
822     CodeCompletionString *Result = new CodeCompletionString;
823     AddQualifierToCompletionString(Result, Qualifier, S.Context);
824     Result->AddTextChunk(Template->getNameAsString().c_str());
825     Result->AddTextChunk("<");
826     AddTemplateParameterChunks(S.Context, Template, Result);
827     Result->AddTextChunk(">");
828     return Result;
829   }
830 
831   if (Qualifier) {
832     CodeCompletionString *Result = new CodeCompletionString;
833     AddQualifierToCompletionString(Result, Qualifier, S.Context);
834     Result->AddTextChunk(ND->getNameAsString().c_str());
835     return Result;
836   }
837 
838   return 0;
839 }
840 
841 namespace {
842   struct SortCodeCompleteResult {
843     typedef CodeCompleteConsumer::Result Result;
844 
845     bool operator()(const Result &X, const Result &Y) const {
846       // Sort first by rank.
847       if (X.Rank < Y.Rank)
848         return true;
849       else if (X.Rank > Y.Rank)
850         return false;
851 
852       // Result kinds are ordered by decreasing importance.
853       if (X.Kind < Y.Kind)
854         return true;
855       else if (X.Kind > Y.Kind)
856         return false;
857 
858       // Non-hidden names precede hidden names.
859       if (X.Hidden != Y.Hidden)
860         return !X.Hidden;
861 
862       // Ordering depends on the kind of result.
863       switch (X.Kind) {
864         case Result::RK_Declaration:
865           // Order based on the declaration names.
866           return X.Declaration->getDeclName() < Y.Declaration->getDeclName();
867 
868         case Result::RK_Keyword:
869           return strcmp(X.Keyword, Y.Keyword) == -1;
870       }
871 
872       // Silence GCC warning.
873       return false;
874     }
875   };
876 }
877 
878 static void HandleCodeCompleteResults(CodeCompleteConsumer *CodeCompleter,
879                                       CodeCompleteConsumer::Result *Results,
880                                       unsigned NumResults) {
881   // Sort the results by rank/kind/etc.
882   std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
883 
884   if (CodeCompleter)
885     CodeCompleter->ProcessCodeCompleteResults(Results, NumResults);
886 }
887 
888 void Sema::CodeCompleteOrdinaryName(Scope *S) {
889   ResultBuilder Results(*this, &ResultBuilder::IsOrdinaryName);
890   CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
891                        Results);
892   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
893 }
894 
895 void Sema::CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *BaseE,
896                                            SourceLocation OpLoc,
897                                            bool IsArrow) {
898   if (!BaseE || !CodeCompleter)
899     return;
900 
901   typedef CodeCompleteConsumer::Result Result;
902 
903   Expr *Base = static_cast<Expr *>(BaseE);
904   QualType BaseType = Base->getType();
905 
906   if (IsArrow) {
907     if (const PointerType *Ptr = BaseType->getAs<PointerType>())
908       BaseType = Ptr->getPointeeType();
909     else if (BaseType->isObjCObjectPointerType())
910     /*Do nothing*/ ;
911     else
912       return;
913   }
914 
915   ResultBuilder Results(*this);
916   unsigned NextRank = 0;
917 
918   if (const RecordType *Record = BaseType->getAs<RecordType>()) {
919     NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank,
920                                           Record->getDecl(), Results);
921 
922     if (getLangOptions().CPlusPlus) {
923       if (!Results.empty()) {
924         // The "template" keyword can follow "->" or "." in the grammar.
925         // However, we only want to suggest the template keyword if something
926         // is dependent.
927         bool IsDependent = BaseType->isDependentType();
928         if (!IsDependent) {
929           for (Scope *DepScope = S; DepScope; DepScope = DepScope->getParent())
930             if (DeclContext *Ctx = (DeclContext *)DepScope->getEntity()) {
931               IsDependent = Ctx->isDependentContext();
932               break;
933             }
934         }
935 
936         if (IsDependent)
937           Results.MaybeAddResult(Result("template", NextRank++));
938       }
939 
940       // We could have the start of a nested-name-specifier. Add those
941       // results as well.
942       Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
943       CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
944                            CurContext, Results);
945     }
946 
947     // Hand off the results found for code completion.
948     HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
949 
950     // We're done!
951     return;
952   }
953 }
954 
955 void Sema::CodeCompleteTag(Scope *S, unsigned TagSpec) {
956   if (!CodeCompleter)
957     return;
958 
959   typedef CodeCompleteConsumer::Result Result;
960   ResultBuilder::LookupFilter Filter = 0;
961   switch ((DeclSpec::TST)TagSpec) {
962   case DeclSpec::TST_enum:
963     Filter = &ResultBuilder::IsEnum;
964     break;
965 
966   case DeclSpec::TST_union:
967     Filter = &ResultBuilder::IsUnion;
968     break;
969 
970   case DeclSpec::TST_struct:
971   case DeclSpec::TST_class:
972     Filter = &ResultBuilder::IsClassOrStruct;
973     break;
974 
975   default:
976     assert(false && "Unknown type specifier kind in CodeCompleteTag");
977     return;
978   }
979 
980   ResultBuilder Results(*this, Filter);
981   unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
982                                            0, CurContext, Results);
983 
984   if (getLangOptions().CPlusPlus) {
985     // We could have the start of a nested-name-specifier. Add those
986     // results as well.
987     Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
988     CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank,
989                          CurContext, Results);
990   }
991 
992   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
993 }
994 
995 void Sema::CodeCompleteCase(Scope *S) {
996   if (getSwitchStack().empty() || !CodeCompleter)
997     return;
998 
999   SwitchStmt *Switch = getSwitchStack().back();
1000   if (!Switch->getCond()->getType()->isEnumeralType())
1001     return;
1002 
1003   // Code-complete the cases of a switch statement over an enumeration type
1004   // by providing the list of
1005   EnumDecl *Enum = Switch->getCond()->getType()->getAs<EnumType>()->getDecl();
1006 
1007   // Determine which enumerators we have already seen in the switch statement.
1008   // FIXME: Ideally, we would also be able to look *past* the code-completion
1009   // token, in case we are code-completing in the middle of the switch and not
1010   // at the end. However, we aren't able to do so at the moment.
1011   llvm::SmallPtrSet<EnumConstantDecl *, 8> EnumeratorsSeen;
1012   NestedNameSpecifier *Qualifier = 0;
1013   for (SwitchCase *SC = Switch->getSwitchCaseList(); SC;
1014        SC = SC->getNextSwitchCase()) {
1015     CaseStmt *Case = dyn_cast<CaseStmt>(SC);
1016     if (!Case)
1017       continue;
1018 
1019     Expr *CaseVal = Case->getLHS()->IgnoreParenCasts();
1020     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseVal))
1021       if (EnumConstantDecl *Enumerator
1022             = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
1023         // We look into the AST of the case statement to determine which
1024         // enumerator was named. Alternatively, we could compute the value of
1025         // the integral constant expression, then compare it against the
1026         // values of each enumerator. However, value-based approach would not
1027         // work as well with C++ templates where enumerators declared within a
1028         // template are type- and value-dependent.
1029         EnumeratorsSeen.insert(Enumerator);
1030 
1031         // If this is a qualified-id, keep track of the nested-name-specifier
1032         // so that we can reproduce it as part of code completion, e.g.,
1033         //
1034         //   switch (TagD.getKind()) {
1035         //     case TagDecl::TK_enum:
1036         //       break;
1037         //     case XXX
1038         //
1039         // At the XXX, our completions are TagDecl::TK_union,
1040         // TagDecl::TK_struct, and TagDecl::TK_class, rather than TK_union,
1041         // TK_struct, and TK_class.
1042         if (QualifiedDeclRefExpr *QDRE = dyn_cast<QualifiedDeclRefExpr>(DRE))
1043           Qualifier = QDRE->getQualifier();
1044       }
1045   }
1046 
1047   if (getLangOptions().CPlusPlus && !Qualifier && EnumeratorsSeen.empty()) {
1048     // If there are no prior enumerators in C++, check whether we have to
1049     // qualify the names of the enumerators that we suggest, because they
1050     // may not be visible in this scope.
1051     Qualifier = getRequiredQualification(Context, CurContext,
1052                                          Enum->getDeclContext());
1053 
1054     // FIXME: Scoped enums need to start with "EnumDecl" as the context!
1055   }
1056 
1057   // Add any enumerators that have not yet been mentioned.
1058   ResultBuilder Results(*this);
1059   Results.EnterNewScope();
1060   for (EnumDecl::enumerator_iterator E = Enum->enumerator_begin(),
1061                                   EEnd = Enum->enumerator_end();
1062        E != EEnd; ++E) {
1063     if (EnumeratorsSeen.count(*E))
1064       continue;
1065 
1066     Results.MaybeAddResult(CodeCompleteConsumer::Result(*E, 0, Qualifier));
1067   }
1068   Results.ExitScope();
1069 
1070   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1071 }
1072 
1073 namespace {
1074   struct IsBetterOverloadCandidate {
1075     Sema &S;
1076 
1077   public:
1078     explicit IsBetterOverloadCandidate(Sema &S) : S(S) { }
1079 
1080     bool
1081     operator()(const OverloadCandidate &X, const OverloadCandidate &Y) const {
1082       return S.isBetterOverloadCandidate(X, Y);
1083     }
1084   };
1085 }
1086 
1087 void Sema::CodeCompleteCall(Scope *S, ExprTy *FnIn,
1088                             ExprTy **ArgsIn, unsigned NumArgs) {
1089   if (!CodeCompleter)
1090     return;
1091 
1092   Expr *Fn = (Expr *)FnIn;
1093   Expr **Args = (Expr **)ArgsIn;
1094 
1095   // Ignore type-dependent call expressions entirely.
1096   if (Fn->isTypeDependent() ||
1097       Expr::hasAnyTypeDependentArguments(Args, NumArgs))
1098     return;
1099 
1100   NamedDecl *Function;
1101   DeclarationName UnqualifiedName;
1102   NestedNameSpecifier *Qualifier;
1103   SourceRange QualifierRange;
1104   bool ArgumentDependentLookup;
1105   bool HasExplicitTemplateArgs;
1106   const TemplateArgument *ExplicitTemplateArgs;
1107   unsigned NumExplicitTemplateArgs;
1108 
1109   DeconstructCallFunction(Fn,
1110                           Function, UnqualifiedName, Qualifier, QualifierRange,
1111                           ArgumentDependentLookup, HasExplicitTemplateArgs,
1112                           ExplicitTemplateArgs, NumExplicitTemplateArgs);
1113 
1114 
1115   // FIXME: What if we're calling something that isn't a function declaration?
1116   // FIXME: What if we're calling a pseudo-destructor?
1117   // FIXME: What if we're calling a member function?
1118 
1119   // Build an overload candidate set based on the functions we find.
1120   OverloadCandidateSet CandidateSet;
1121   AddOverloadedCallCandidates(Function, UnqualifiedName,
1122                               ArgumentDependentLookup, HasExplicitTemplateArgs,
1123                               ExplicitTemplateArgs, NumExplicitTemplateArgs,
1124                               Args, NumArgs,
1125                               CandidateSet,
1126                               /*PartialOverloading=*/true);
1127 
1128   // Sort the overload candidate set by placing the best overloads first.
1129   std::stable_sort(CandidateSet.begin(), CandidateSet.end(),
1130                    IsBetterOverloadCandidate(*this));
1131 
1132   // Add the remaining viable overload candidates as code-completion reslults.
1133   typedef CodeCompleteConsumer::Result Result;
1134   ResultBuilder Results(*this);
1135   for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
1136                                    CandEnd = CandidateSet.end();
1137        Cand != CandEnd; ++Cand) {
1138     if (Cand->Viable)
1139       Results.MaybeAddResult(Result(Cand->Function, 0), 0);
1140   }
1141 
1142   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1143 }
1144 
1145 void Sema::CodeCompleteQualifiedId(Scope *S, const CXXScopeSpec &SS,
1146                                    bool EnteringContext) {
1147   if (!SS.getScopeRep() || !CodeCompleter)
1148     return;
1149 
1150   DeclContext *Ctx = computeDeclContext(SS, EnteringContext);
1151   if (!Ctx)
1152     return;
1153 
1154   ResultBuilder Results(*this);
1155   unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Ctx, Results);
1156 
1157   // The "template" keyword can follow "::" in the grammar, but only
1158   // put it into the grammar if the nested-name-specifier is dependent.
1159   NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
1160   if (!Results.empty() && NNS->isDependent())
1161     Results.MaybeAddResult(CodeCompleteConsumer::Result("template", NextRank));
1162 
1163   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1164 }
1165 
1166 void Sema::CodeCompleteUsing(Scope *S) {
1167   if (!CodeCompleter)
1168     return;
1169 
1170   ResultBuilder Results(*this, &ResultBuilder::IsNestedNameSpecifier);
1171 
1172   // If we aren't in class scope, we could see the "namespace" keyword.
1173   if (!S->isClassScope())
1174     Results.MaybeAddResult(CodeCompleteConsumer::Result("namespace", 0));
1175 
1176   // After "using", we can see anything that would start a
1177   // nested-name-specifier.
1178   CollectLookupResults(S, Context.getTranslationUnitDecl(), 0,
1179                        CurContext, Results);
1180 
1181   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1182 }
1183 
1184 void Sema::CodeCompleteUsingDirective(Scope *S) {
1185   if (!CodeCompleter)
1186     return;
1187 
1188   // After "using namespace", we expect to see a namespace name or namespace
1189   // alias.
1190   ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
1191   CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
1192                        Results);
1193   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1194 }
1195 
1196 void Sema::CodeCompleteNamespaceDecl(Scope *S)  {
1197   if (!CodeCompleter)
1198     return;
1199 
1200   ResultBuilder Results(*this, &ResultBuilder::IsNamespace);
1201   DeclContext *Ctx = (DeclContext *)S->getEntity();
1202   if (!S->getParent())
1203     Ctx = Context.getTranslationUnitDecl();
1204 
1205   if (Ctx && Ctx->isFileContext()) {
1206     // We only want to see those namespaces that have already been defined
1207     // within this scope, because its likely that the user is creating an
1208     // extended namespace declaration. Keep track of the most recent
1209     // definition of each namespace.
1210     std::map<NamespaceDecl *, NamespaceDecl *> OrigToLatest;
1211     for (DeclContext::specific_decl_iterator<NamespaceDecl>
1212          NS(Ctx->decls_begin()), NSEnd(Ctx->decls_end());
1213          NS != NSEnd; ++NS)
1214       OrigToLatest[NS->getOriginalNamespace()] = *NS;
1215 
1216     // Add the most recent definition (or extended definition) of each
1217     // namespace to the list of results.
1218     for (std::map<NamespaceDecl *, NamespaceDecl *>::iterator
1219          NS = OrigToLatest.begin(), NSEnd = OrigToLatest.end();
1220          NS != NSEnd; ++NS)
1221       Results.MaybeAddResult(CodeCompleteConsumer::Result(NS->second, 0),
1222                              CurContext);
1223   }
1224 
1225   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1226 }
1227 
1228 void Sema::CodeCompleteNamespaceAliasDecl(Scope *S)  {
1229   if (!CodeCompleter)
1230     return;
1231 
1232   // After "namespace", we expect to see a namespace or alias.
1233   ResultBuilder Results(*this, &ResultBuilder::IsNamespaceOrAlias);
1234   CollectLookupResults(S, Context.getTranslationUnitDecl(), 0, CurContext,
1235                        Results);
1236   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1237 }
1238 
1239 void Sema::CodeCompleteOperatorName(Scope *S) {
1240   if (!CodeCompleter)
1241     return;
1242 
1243   typedef CodeCompleteConsumer::Result Result;
1244   ResultBuilder Results(*this, &ResultBuilder::IsType);
1245 
1246   // Add the names of overloadable operators.
1247 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly)      \
1248   if (std::strcmp(Spelling, "?"))                                                  \
1249     Results.MaybeAddResult(Result(Spelling, 0));
1250 #include "clang/Basic/OperatorKinds.def"
1251 
1252   // Add any type names visible from the current scope
1253   unsigned NextRank = CollectLookupResults(S, Context.getTranslationUnitDecl(),
1254                                            0, CurContext, Results);
1255 
1256   // Add any type specifiers
1257   AddTypeSpecifierResults(getLangOptions(), 0, Results);
1258 
1259   // Add any nested-name-specifiers
1260   Results.setFilter(&ResultBuilder::IsNestedNameSpecifier);
1261   CollectLookupResults(S, Context.getTranslationUnitDecl(), NextRank + 1,
1262                        CurContext, Results);
1263 
1264   HandleCodeCompleteResults(CodeCompleter, Results.data(), Results.size());
1265 }
1266 
1267