xref: /llvm-project/clang/lib/CodeGen/Targets/X86.cpp (revision cfe26358e3051755961fb1f3b46328dc2c326895)
1992cb984SSergei Barannikov //===- X86.cpp ------------------------------------------------------------===//
2992cb984SSergei Barannikov //
3992cb984SSergei Barannikov // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4992cb984SSergei Barannikov // See https://llvm.org/LICENSE.txt for license information.
5992cb984SSergei Barannikov // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6992cb984SSergei Barannikov //
7992cb984SSergei Barannikov //===----------------------------------------------------------------------===//
8992cb984SSergei Barannikov 
9992cb984SSergei Barannikov #include "ABIInfoImpl.h"
10992cb984SSergei Barannikov #include "TargetInfo.h"
11992cb984SSergei Barannikov #include "clang/Basic/DiagnosticFrontend.h"
12992cb984SSergei Barannikov #include "llvm/ADT/SmallBitVector.h"
13992cb984SSergei Barannikov 
14992cb984SSergei Barannikov using namespace clang;
15992cb984SSergei Barannikov using namespace clang::CodeGen;
16992cb984SSergei Barannikov 
17992cb984SSergei Barannikov namespace {
18992cb984SSergei Barannikov 
19992cb984SSergei Barannikov /// IsX86_MMXType - Return true if this is an MMX type.
20992cb984SSergei Barannikov bool IsX86_MMXType(llvm::Type *IRType) {
21992cb984SSergei Barannikov   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22992cb984SSergei Barannikov   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23992cb984SSergei Barannikov     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24992cb984SSergei Barannikov     IRType->getScalarSizeInBits() != 64;
25992cb984SSergei Barannikov }
26992cb984SSergei Barannikov 
27992cb984SSergei Barannikov static llvm::Type *X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28992cb984SSergei Barannikov                                           StringRef Constraint,
29992cb984SSergei Barannikov                                           llvm::Type *Ty) {
308d6e82d5SPhoebe Wang   if (Constraint == "k") {
318d6e82d5SPhoebe Wang     llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
328d6e82d5SPhoebe Wang     return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
338d6e82d5SPhoebe Wang   }
348d6e82d5SPhoebe Wang 
35992cb984SSergei Barannikov   // No operation needed
36992cb984SSergei Barannikov   return Ty;
37992cb984SSergei Barannikov }
38992cb984SSergei Barannikov 
39992cb984SSergei Barannikov /// Returns true if this type can be passed in SSE registers with the
40992cb984SSergei Barannikov /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
41992cb984SSergei Barannikov static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
42992cb984SSergei Barannikov   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
43992cb984SSergei Barannikov     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
44992cb984SSergei Barannikov       if (BT->getKind() == BuiltinType::LongDouble) {
45992cb984SSergei Barannikov         if (&Context.getTargetInfo().getLongDoubleFormat() ==
46992cb984SSergei Barannikov             &llvm::APFloat::x87DoubleExtended())
47992cb984SSergei Barannikov           return false;
48992cb984SSergei Barannikov       }
49992cb984SSergei Barannikov       return true;
50992cb984SSergei Barannikov     }
51992cb984SSergei Barannikov   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
52992cb984SSergei Barannikov     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
53992cb984SSergei Barannikov     // registers specially.
54992cb984SSergei Barannikov     unsigned VecSize = Context.getTypeSize(VT);
55992cb984SSergei Barannikov     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
56992cb984SSergei Barannikov       return true;
57992cb984SSergei Barannikov   }
58992cb984SSergei Barannikov   return false;
59992cb984SSergei Barannikov }
60992cb984SSergei Barannikov 
61992cb984SSergei Barannikov /// Returns true if this aggregate is small enough to be passed in SSE registers
62992cb984SSergei Barannikov /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
63992cb984SSergei Barannikov static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
64992cb984SSergei Barannikov   return NumMembers <= 4;
65992cb984SSergei Barannikov }
66992cb984SSergei Barannikov 
67992cb984SSergei Barannikov /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
68992cb984SSergei Barannikov static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
69992cb984SSergei Barannikov   auto AI = ABIArgInfo::getDirect(T);
70992cb984SSergei Barannikov   AI.setInReg(true);
71992cb984SSergei Barannikov   AI.setCanBeFlattened(false);
72992cb984SSergei Barannikov   return AI;
73992cb984SSergei Barannikov }
74992cb984SSergei Barannikov 
75992cb984SSergei Barannikov //===----------------------------------------------------------------------===//
76992cb984SSergei Barannikov // X86-32 ABI Implementation
77992cb984SSergei Barannikov //===----------------------------------------------------------------------===//
78992cb984SSergei Barannikov 
79992cb984SSergei Barannikov /// Similar to llvm::CCState, but for Clang.
80992cb984SSergei Barannikov struct CCState {
81992cb984SSergei Barannikov   CCState(CGFunctionInfo &FI)
82c8c075e8SReid Kleckner       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
83c8c075e8SReid Kleckner 	Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
84992cb984SSergei Barannikov 
85992cb984SSergei Barannikov   llvm::SmallBitVector IsPreassigned;
86992cb984SSergei Barannikov   unsigned CC = CallingConv::CC_C;
87992cb984SSergei Barannikov   unsigned FreeRegs = 0;
88992cb984SSergei Barannikov   unsigned FreeSSERegs = 0;
89c8c075e8SReid Kleckner   RequiredArgs Required;
90c8c075e8SReid Kleckner   bool IsDelegateCall = false;
91992cb984SSergei Barannikov };
92992cb984SSergei Barannikov 
93992cb984SSergei Barannikov /// X86_32ABIInfo - The X86-32 ABI information.
94992cb984SSergei Barannikov class X86_32ABIInfo : public ABIInfo {
95992cb984SSergei Barannikov   enum Class {
96992cb984SSergei Barannikov     Integer,
97992cb984SSergei Barannikov     Float
98992cb984SSergei Barannikov   };
99992cb984SSergei Barannikov 
100992cb984SSergei Barannikov   static const unsigned MinABIStackAlignInBytes = 4;
101992cb984SSergei Barannikov 
102992cb984SSergei Barannikov   bool IsDarwinVectorABI;
103992cb984SSergei Barannikov   bool IsRetSmallStructInRegABI;
104992cb984SSergei Barannikov   bool IsWin32StructABI;
105992cb984SSergei Barannikov   bool IsSoftFloatABI;
106992cb984SSergei Barannikov   bool IsMCUABI;
107992cb984SSergei Barannikov   bool IsLinuxABI;
108992cb984SSergei Barannikov   unsigned DefaultNumRegisterParameters;
109992cb984SSergei Barannikov 
110992cb984SSergei Barannikov   static bool isRegisterSize(unsigned Size) {
111992cb984SSergei Barannikov     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
112992cb984SSergei Barannikov   }
113992cb984SSergei Barannikov 
114992cb984SSergei Barannikov   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
115992cb984SSergei Barannikov     // FIXME: Assumes vectorcall is in use.
116992cb984SSergei Barannikov     return isX86VectorTypeForVectorCall(getContext(), Ty);
117992cb984SSergei Barannikov   }
118992cb984SSergei Barannikov 
119992cb984SSergei Barannikov   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
120992cb984SSergei Barannikov                                          uint64_t NumMembers) const override {
121992cb984SSergei Barannikov     // FIXME: Assumes vectorcall is in use.
122992cb984SSergei Barannikov     return isX86VectorCallAggregateSmallEnough(NumMembers);
123992cb984SSergei Barannikov   }
124992cb984SSergei Barannikov 
125992cb984SSergei Barannikov   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
126992cb984SSergei Barannikov 
127992cb984SSergei Barannikov   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
128992cb984SSergei Barannikov   /// such that the argument will be passed in memory.
129992cb984SSergei Barannikov   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
130992cb984SSergei Barannikov 
131992cb984SSergei Barannikov   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
132992cb984SSergei Barannikov 
133992cb984SSergei Barannikov   /// Return the alignment to use for the given type on the stack.
134992cb984SSergei Barannikov   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
135992cb984SSergei Barannikov 
136992cb984SSergei Barannikov   Class classify(QualType Ty) const;
137992cb984SSergei Barannikov   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
13827dab4d3SAmy Huang   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
139c8c075e8SReid Kleckner                                   unsigned ArgIndex) const;
140992cb984SSergei Barannikov 
141992cb984SSergei Barannikov   /// Updates the number of available free registers, returns
142992cb984SSergei Barannikov   /// true if any registers were allocated.
143992cb984SSergei Barannikov   bool updateFreeRegs(QualType Ty, CCState &State) const;
144992cb984SSergei Barannikov 
145992cb984SSergei Barannikov   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
146992cb984SSergei Barannikov                                 bool &NeedsPadding) const;
147992cb984SSergei Barannikov   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
148992cb984SSergei Barannikov 
149992cb984SSergei Barannikov   bool canExpandIndirectArgument(QualType Ty) const;
150992cb984SSergei Barannikov 
151992cb984SSergei Barannikov   /// Rewrite the function info so that all memory arguments use
152992cb984SSergei Barannikov   /// inalloca.
153992cb984SSergei Barannikov   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
154992cb984SSergei Barannikov 
155992cb984SSergei Barannikov   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
156992cb984SSergei Barannikov                            CharUnits &StackOffset, ABIArgInfo &Info,
157992cb984SSergei Barannikov                            QualType Type) const;
158992cb984SSergei Barannikov   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
159992cb984SSergei Barannikov 
160992cb984SSergei Barannikov public:
161992cb984SSergei Barannikov 
162992cb984SSergei Barannikov   void computeInfo(CGFunctionInfo &FI) const override;
1636d973b45SMariya Podchishchaeva   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1646d973b45SMariya Podchishchaeva                    AggValueSlot Slot) const override;
165992cb984SSergei Barannikov 
166992cb984SSergei Barannikov   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
167992cb984SSergei Barannikov                 bool RetSmallStructInRegABI, bool Win32StructABI,
168992cb984SSergei Barannikov                 unsigned NumRegisterParameters, bool SoftFloatABI)
169992cb984SSergei Barannikov       : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
170992cb984SSergei Barannikov         IsRetSmallStructInRegABI(RetSmallStructInRegABI),
171992cb984SSergei Barannikov         IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
172992cb984SSergei Barannikov         IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
173992cb984SSergei Barannikov         IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
174992cb984SSergei Barannikov                    CGT.getTarget().getTriple().isOSCygMing()),
175992cb984SSergei Barannikov         DefaultNumRegisterParameters(NumRegisterParameters) {}
176992cb984SSergei Barannikov };
177992cb984SSergei Barannikov 
178992cb984SSergei Barannikov class X86_32SwiftABIInfo : public SwiftABIInfo {
179992cb984SSergei Barannikov public:
180992cb984SSergei Barannikov   explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
181992cb984SSergei Barannikov       : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
182992cb984SSergei Barannikov 
183992cb984SSergei Barannikov   bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
184992cb984SSergei Barannikov                             bool AsReturnValue) const override {
185992cb984SSergei Barannikov     // LLVM's x86-32 lowering currently only assigns up to three
186992cb984SSergei Barannikov     // integer registers and three fp registers.  Oddly, it'll use up to
187992cb984SSergei Barannikov     // four vector registers for vectors, but those can overlap with the
188992cb984SSergei Barannikov     // scalar registers.
189992cb984SSergei Barannikov     return occupiesMoreThan(ComponentTys, /*total=*/3);
190992cb984SSergei Barannikov   }
191992cb984SSergei Barannikov };
192992cb984SSergei Barannikov 
193992cb984SSergei Barannikov class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
194992cb984SSergei Barannikov public:
195992cb984SSergei Barannikov   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
196992cb984SSergei Barannikov                           bool RetSmallStructInRegABI, bool Win32StructABI,
197992cb984SSergei Barannikov                           unsigned NumRegisterParameters, bool SoftFloatABI)
198992cb984SSergei Barannikov       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
199992cb984SSergei Barannikov             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
200992cb984SSergei Barannikov             NumRegisterParameters, SoftFloatABI)) {
201992cb984SSergei Barannikov     SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
202992cb984SSergei Barannikov   }
203992cb984SSergei Barannikov 
204992cb984SSergei Barannikov   static bool isStructReturnInRegABI(
205992cb984SSergei Barannikov       const llvm::Triple &Triple, const CodeGenOptions &Opts);
206992cb984SSergei Barannikov 
207992cb984SSergei Barannikov   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
208992cb984SSergei Barannikov                            CodeGen::CodeGenModule &CGM) const override;
209992cb984SSergei Barannikov 
210992cb984SSergei Barannikov   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
211992cb984SSergei Barannikov     // Darwin uses different dwarf register numbers for EH.
212992cb984SSergei Barannikov     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
213992cb984SSergei Barannikov     return 4;
214992cb984SSergei Barannikov   }
215992cb984SSergei Barannikov 
216992cb984SSergei Barannikov   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
217992cb984SSergei Barannikov                                llvm::Value *Address) const override;
218992cb984SSergei Barannikov 
219992cb984SSergei Barannikov   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
220992cb984SSergei Barannikov                                   StringRef Constraint,
221992cb984SSergei Barannikov                                   llvm::Type* Ty) const override {
222992cb984SSergei Barannikov     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
223992cb984SSergei Barannikov   }
224992cb984SSergei Barannikov 
225992cb984SSergei Barannikov   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
226992cb984SSergei Barannikov                                 std::string &Constraints,
227992cb984SSergei Barannikov                                 std::vector<llvm::Type *> &ResultRegTypes,
228992cb984SSergei Barannikov                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
229992cb984SSergei Barannikov                                 std::vector<LValue> &ResultRegDests,
230992cb984SSergei Barannikov                                 std::string &AsmString,
231992cb984SSergei Barannikov                                 unsigned NumOutputs) const override;
232992cb984SSergei Barannikov 
233992cb984SSergei Barannikov   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
234992cb984SSergei Barannikov     return "movl\t%ebp, %ebp"
235992cb984SSergei Barannikov            "\t\t// marker for objc_retainAutoreleaseReturnValue";
236992cb984SSergei Barannikov   }
237992cb984SSergei Barannikov };
238992cb984SSergei Barannikov 
239992cb984SSergei Barannikov }
240992cb984SSergei Barannikov 
241992cb984SSergei Barannikov /// Rewrite input constraint references after adding some output constraints.
242992cb984SSergei Barannikov /// In the case where there is one output and one input and we add one output,
243992cb984SSergei Barannikov /// we need to replace all operand references greater than or equal to 1:
244992cb984SSergei Barannikov ///     mov $0, $1
245992cb984SSergei Barannikov ///     mov eax, $1
246992cb984SSergei Barannikov /// The result will be:
247992cb984SSergei Barannikov ///     mov $0, $2
248992cb984SSergei Barannikov ///     mov eax, $2
249992cb984SSergei Barannikov static void rewriteInputConstraintReferences(unsigned FirstIn,
250992cb984SSergei Barannikov                                              unsigned NumNewOuts,
251992cb984SSergei Barannikov                                              std::string &AsmString) {
252992cb984SSergei Barannikov   std::string Buf;
253992cb984SSergei Barannikov   llvm::raw_string_ostream OS(Buf);
254992cb984SSergei Barannikov   size_t Pos = 0;
255992cb984SSergei Barannikov   while (Pos < AsmString.size()) {
256992cb984SSergei Barannikov     size_t DollarStart = AsmString.find('$', Pos);
257992cb984SSergei Barannikov     if (DollarStart == std::string::npos)
258992cb984SSergei Barannikov       DollarStart = AsmString.size();
259992cb984SSergei Barannikov     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
260992cb984SSergei Barannikov     if (DollarEnd == std::string::npos)
261992cb984SSergei Barannikov       DollarEnd = AsmString.size();
262992cb984SSergei Barannikov     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
263992cb984SSergei Barannikov     Pos = DollarEnd;
264992cb984SSergei Barannikov     size_t NumDollars = DollarEnd - DollarStart;
265992cb984SSergei Barannikov     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
266992cb984SSergei Barannikov       // We have an operand reference.
267992cb984SSergei Barannikov       size_t DigitStart = Pos;
268992cb984SSergei Barannikov       if (AsmString[DigitStart] == '{') {
269992cb984SSergei Barannikov         OS << '{';
270992cb984SSergei Barannikov         ++DigitStart;
271992cb984SSergei Barannikov       }
272992cb984SSergei Barannikov       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
273992cb984SSergei Barannikov       if (DigitEnd == std::string::npos)
274992cb984SSergei Barannikov         DigitEnd = AsmString.size();
275992cb984SSergei Barannikov       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
276992cb984SSergei Barannikov       unsigned OperandIndex;
277992cb984SSergei Barannikov       if (!OperandStr.getAsInteger(10, OperandIndex)) {
278992cb984SSergei Barannikov         if (OperandIndex >= FirstIn)
279992cb984SSergei Barannikov           OperandIndex += NumNewOuts;
280992cb984SSergei Barannikov         OS << OperandIndex;
281992cb984SSergei Barannikov       } else {
282992cb984SSergei Barannikov         OS << OperandStr;
283992cb984SSergei Barannikov       }
284992cb984SSergei Barannikov       Pos = DigitEnd;
285992cb984SSergei Barannikov     }
286992cb984SSergei Barannikov   }
2871b913cdeSJOE1994   AsmString = std::move(Buf);
288992cb984SSergei Barannikov }
289992cb984SSergei Barannikov 
290992cb984SSergei Barannikov /// Add output constraints for EAX:EDX because they are return registers.
291992cb984SSergei Barannikov void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
292992cb984SSergei Barannikov     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
293992cb984SSergei Barannikov     std::vector<llvm::Type *> &ResultRegTypes,
294992cb984SSergei Barannikov     std::vector<llvm::Type *> &ResultTruncRegTypes,
295992cb984SSergei Barannikov     std::vector<LValue> &ResultRegDests, std::string &AsmString,
296992cb984SSergei Barannikov     unsigned NumOutputs) const {
297992cb984SSergei Barannikov   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
298992cb984SSergei Barannikov 
299992cb984SSergei Barannikov   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
300992cb984SSergei Barannikov   // larger.
301992cb984SSergei Barannikov   if (!Constraints.empty())
302992cb984SSergei Barannikov     Constraints += ',';
303992cb984SSergei Barannikov   if (RetWidth <= 32) {
304992cb984SSergei Barannikov     Constraints += "={eax}";
305992cb984SSergei Barannikov     ResultRegTypes.push_back(CGF.Int32Ty);
306992cb984SSergei Barannikov   } else {
307992cb984SSergei Barannikov     // Use the 'A' constraint for EAX:EDX.
308992cb984SSergei Barannikov     Constraints += "=A";
309992cb984SSergei Barannikov     ResultRegTypes.push_back(CGF.Int64Ty);
310992cb984SSergei Barannikov   }
311992cb984SSergei Barannikov 
312992cb984SSergei Barannikov   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
313992cb984SSergei Barannikov   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
314992cb984SSergei Barannikov   ResultTruncRegTypes.push_back(CoerceTy);
315992cb984SSergei Barannikov 
316992cb984SSergei Barannikov   // Coerce the integer by bitcasting the return slot pointer.
3173575d23cSAhmed Bougacha   ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
318992cb984SSergei Barannikov   ResultRegDests.push_back(ReturnSlot);
319992cb984SSergei Barannikov 
320992cb984SSergei Barannikov   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
321992cb984SSergei Barannikov }
322992cb984SSergei Barannikov 
323992cb984SSergei Barannikov /// shouldReturnTypeInRegister - Determine if the given type should be
324992cb984SSergei Barannikov /// returned in a register (for the Darwin and MCU ABI).
325992cb984SSergei Barannikov bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
326992cb984SSergei Barannikov                                                ASTContext &Context) const {
327992cb984SSergei Barannikov   uint64_t Size = Context.getTypeSize(Ty);
328992cb984SSergei Barannikov 
329992cb984SSergei Barannikov   // For i386, type must be register sized.
330992cb984SSergei Barannikov   // For the MCU ABI, it only needs to be <= 8-byte
331992cb984SSergei Barannikov   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
332992cb984SSergei Barannikov    return false;
333992cb984SSergei Barannikov 
334992cb984SSergei Barannikov   if (Ty->isVectorType()) {
335992cb984SSergei Barannikov     // 64- and 128- bit vectors inside structures are not returned in
336992cb984SSergei Barannikov     // registers.
337992cb984SSergei Barannikov     if (Size == 64 || Size == 128)
338992cb984SSergei Barannikov       return false;
339992cb984SSergei Barannikov 
340992cb984SSergei Barannikov     return true;
341992cb984SSergei Barannikov   }
342992cb984SSergei Barannikov 
343992cb984SSergei Barannikov   // If this is a builtin, pointer, enum, complex type, member pointer, or
344992cb984SSergei Barannikov   // member function pointer it is ok.
345992cb984SSergei Barannikov   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
346992cb984SSergei Barannikov       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
347992cb984SSergei Barannikov       Ty->isBlockPointerType() || Ty->isMemberPointerType())
348992cb984SSergei Barannikov     return true;
349992cb984SSergei Barannikov 
350992cb984SSergei Barannikov   // Arrays are treated like records.
351992cb984SSergei Barannikov   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
352992cb984SSergei Barannikov     return shouldReturnTypeInRegister(AT->getElementType(), Context);
353992cb984SSergei Barannikov 
354992cb984SSergei Barannikov   // Otherwise, it must be a record type.
355992cb984SSergei Barannikov   const RecordType *RT = Ty->getAs<RecordType>();
356992cb984SSergei Barannikov   if (!RT) return false;
357992cb984SSergei Barannikov 
358992cb984SSergei Barannikov   // FIXME: Traverse bases here too.
359992cb984SSergei Barannikov 
360992cb984SSergei Barannikov   // Structure types are passed in register if all fields would be
361992cb984SSergei Barannikov   // passed in a register.
362992cb984SSergei Barannikov   for (const auto *FD : RT->getDecl()->fields()) {
363992cb984SSergei Barannikov     // Empty fields are ignored.
364992cb984SSergei Barannikov     if (isEmptyField(Context, FD, true))
365992cb984SSergei Barannikov       continue;
366992cb984SSergei Barannikov 
367992cb984SSergei Barannikov     // Check fields recursively.
368992cb984SSergei Barannikov     if (!shouldReturnTypeInRegister(FD->getType(), Context))
369992cb984SSergei Barannikov       return false;
370992cb984SSergei Barannikov   }
371992cb984SSergei Barannikov   return true;
372992cb984SSergei Barannikov }
373992cb984SSergei Barannikov 
374992cb984SSergei Barannikov static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
375992cb984SSergei Barannikov   // Treat complex types as the element type.
376992cb984SSergei Barannikov   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
377992cb984SSergei Barannikov     Ty = CTy->getElementType();
378992cb984SSergei Barannikov 
379992cb984SSergei Barannikov   // Check for a type which we know has a simple scalar argument-passing
380992cb984SSergei Barannikov   // convention without any padding.  (We're specifically looking for 32
381992cb984SSergei Barannikov   // and 64-bit integer and integer-equivalents, float, and double.)
382992cb984SSergei Barannikov   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
383992cb984SSergei Barannikov       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
384992cb984SSergei Barannikov     return false;
385992cb984SSergei Barannikov 
386992cb984SSergei Barannikov   uint64_t Size = Context.getTypeSize(Ty);
387992cb984SSergei Barannikov   return Size == 32 || Size == 64;
388992cb984SSergei Barannikov }
389992cb984SSergei Barannikov 
390992cb984SSergei Barannikov static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
391992cb984SSergei Barannikov                           uint64_t &Size) {
392992cb984SSergei Barannikov   for (const auto *FD : RD->fields()) {
393992cb984SSergei Barannikov     // Scalar arguments on the stack get 4 byte alignment on x86. If the
394992cb984SSergei Barannikov     // argument is smaller than 32-bits, expanding the struct will create
395992cb984SSergei Barannikov     // alignment padding.
396992cb984SSergei Barannikov     if (!is32Or64BitBasicType(FD->getType(), Context))
397992cb984SSergei Barannikov       return false;
398992cb984SSergei Barannikov 
399992cb984SSergei Barannikov     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
400992cb984SSergei Barannikov     // how to expand them yet, and the predicate for telling if a bitfield still
401992cb984SSergei Barannikov     // counts as "basic" is more complicated than what we were doing previously.
402992cb984SSergei Barannikov     if (FD->isBitField())
403992cb984SSergei Barannikov       return false;
404992cb984SSergei Barannikov 
405992cb984SSergei Barannikov     Size += Context.getTypeSize(FD->getType());
406992cb984SSergei Barannikov   }
407992cb984SSergei Barannikov   return true;
408992cb984SSergei Barannikov }
409992cb984SSergei Barannikov 
410992cb984SSergei Barannikov static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
411992cb984SSergei Barannikov                                  uint64_t &Size) {
412992cb984SSergei Barannikov   // Don't do this if there are any non-empty bases.
413992cb984SSergei Barannikov   for (const CXXBaseSpecifier &Base : RD->bases()) {
414992cb984SSergei Barannikov     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
415992cb984SSergei Barannikov                               Size))
416992cb984SSergei Barannikov       return false;
417992cb984SSergei Barannikov   }
418992cb984SSergei Barannikov   if (!addFieldSizes(Context, RD, Size))
419992cb984SSergei Barannikov     return false;
420992cb984SSergei Barannikov   return true;
421992cb984SSergei Barannikov }
422992cb984SSergei Barannikov 
423992cb984SSergei Barannikov /// Test whether an argument type which is to be passed indirectly (on the
424992cb984SSergei Barannikov /// stack) would have the equivalent layout if it was expanded into separate
425992cb984SSergei Barannikov /// arguments. If so, we prefer to do the latter to avoid inhibiting
426992cb984SSergei Barannikov /// optimizations.
427992cb984SSergei Barannikov bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
428992cb984SSergei Barannikov   // We can only expand structure types.
429992cb984SSergei Barannikov   const RecordType *RT = Ty->getAs<RecordType>();
430992cb984SSergei Barannikov   if (!RT)
431992cb984SSergei Barannikov     return false;
432992cb984SSergei Barannikov   const RecordDecl *RD = RT->getDecl();
433992cb984SSergei Barannikov   uint64_t Size = 0;
434992cb984SSergei Barannikov   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
435992cb984SSergei Barannikov     if (!IsWin32StructABI) {
436992cb984SSergei Barannikov       // On non-Windows, we have to conservatively match our old bitcode
437992cb984SSergei Barannikov       // prototypes in order to be ABI-compatible at the bitcode level.
438992cb984SSergei Barannikov       if (!CXXRD->isCLike())
439992cb984SSergei Barannikov         return false;
440992cb984SSergei Barannikov     } else {
441992cb984SSergei Barannikov       // Don't do this for dynamic classes.
442992cb984SSergei Barannikov       if (CXXRD->isDynamicClass())
443992cb984SSergei Barannikov         return false;
444992cb984SSergei Barannikov     }
445992cb984SSergei Barannikov     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
446992cb984SSergei Barannikov       return false;
447992cb984SSergei Barannikov   } else {
448992cb984SSergei Barannikov     if (!addFieldSizes(getContext(), RD, Size))
449992cb984SSergei Barannikov       return false;
450992cb984SSergei Barannikov   }
451992cb984SSergei Barannikov 
452992cb984SSergei Barannikov   // We can do this if there was no alignment padding.
453992cb984SSergei Barannikov   return Size == getContext().getTypeSize(Ty);
454992cb984SSergei Barannikov }
455992cb984SSergei Barannikov 
456992cb984SSergei Barannikov ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
457992cb984SSergei Barannikov   // If the return value is indirect, then the hidden argument is consuming one
458992cb984SSergei Barannikov   // integer register.
4597e01e647SPhoebe Wang   if (State.CC != llvm::CallingConv::X86_FastCall &&
4607e01e647SPhoebe Wang       State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
461992cb984SSergei Barannikov     --State.FreeRegs;
462992cb984SSergei Barannikov     if (!IsMCUABI)
463992cb984SSergei Barannikov       return getNaturalAlignIndirectInReg(RetTy);
464992cb984SSergei Barannikov   }
465992cb984SSergei Barannikov   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
466992cb984SSergei Barannikov }
467992cb984SSergei Barannikov 
468992cb984SSergei Barannikov ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
469992cb984SSergei Barannikov                                              CCState &State) const {
470992cb984SSergei Barannikov   if (RetTy->isVoidType())
471992cb984SSergei Barannikov     return ABIArgInfo::getIgnore();
472992cb984SSergei Barannikov 
473992cb984SSergei Barannikov   const Type *Base = nullptr;
474992cb984SSergei Barannikov   uint64_t NumElts = 0;
475992cb984SSergei Barannikov   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
476992cb984SSergei Barannikov        State.CC == llvm::CallingConv::X86_RegCall) &&
477992cb984SSergei Barannikov       isHomogeneousAggregate(RetTy, Base, NumElts)) {
478992cb984SSergei Barannikov     // The LLVM struct type for such an aggregate should lower properly.
479992cb984SSergei Barannikov     return ABIArgInfo::getDirect();
480992cb984SSergei Barannikov   }
481992cb984SSergei Barannikov 
482992cb984SSergei Barannikov   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
483992cb984SSergei Barannikov     // On Darwin, some vectors are returned in registers.
484992cb984SSergei Barannikov     if (IsDarwinVectorABI) {
485992cb984SSergei Barannikov       uint64_t Size = getContext().getTypeSize(RetTy);
486992cb984SSergei Barannikov 
487992cb984SSergei Barannikov       // 128-bit vectors are a special case; they are returned in
488992cb984SSergei Barannikov       // registers and we need to make sure to pick a type the LLVM
489992cb984SSergei Barannikov       // backend will like.
490992cb984SSergei Barannikov       if (Size == 128)
491992cb984SSergei Barannikov         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
492992cb984SSergei Barannikov             llvm::Type::getInt64Ty(getVMContext()), 2));
493992cb984SSergei Barannikov 
494992cb984SSergei Barannikov       // Always return in register if it fits in a general purpose
495992cb984SSergei Barannikov       // register, or if it is 64 bits and has a single element.
496992cb984SSergei Barannikov       if ((Size == 8 || Size == 16 || Size == 32) ||
497992cb984SSergei Barannikov           (Size == 64 && VT->getNumElements() == 1))
498992cb984SSergei Barannikov         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
499992cb984SSergei Barannikov                                                             Size));
500992cb984SSergei Barannikov 
501992cb984SSergei Barannikov       return getIndirectReturnResult(RetTy, State);
502992cb984SSergei Barannikov     }
503992cb984SSergei Barannikov 
504992cb984SSergei Barannikov     return ABIArgInfo::getDirect();
505992cb984SSergei Barannikov   }
506992cb984SSergei Barannikov 
507992cb984SSergei Barannikov   if (isAggregateTypeForABI(RetTy)) {
508992cb984SSergei Barannikov     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
509992cb984SSergei Barannikov       // Structures with flexible arrays are always indirect.
510992cb984SSergei Barannikov       if (RT->getDecl()->hasFlexibleArrayMember())
511992cb984SSergei Barannikov         return getIndirectReturnResult(RetTy, State);
512992cb984SSergei Barannikov     }
513992cb984SSergei Barannikov 
514992cb984SSergei Barannikov     // If specified, structs and unions are always indirect.
515992cb984SSergei Barannikov     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
516992cb984SSergei Barannikov       return getIndirectReturnResult(RetTy, State);
517992cb984SSergei Barannikov 
518992cb984SSergei Barannikov     // Ignore empty structs/unions.
519992cb984SSergei Barannikov     if (isEmptyRecord(getContext(), RetTy, true))
520992cb984SSergei Barannikov       return ABIArgInfo::getIgnore();
521992cb984SSergei Barannikov 
522992cb984SSergei Barannikov     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
523992cb984SSergei Barannikov     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
524992cb984SSergei Barannikov       QualType ET = getContext().getCanonicalType(CT->getElementType());
525992cb984SSergei Barannikov       if (ET->isFloat16Type())
526992cb984SSergei Barannikov         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
527992cb984SSergei Barannikov             llvm::Type::getHalfTy(getVMContext()), 2));
528992cb984SSergei Barannikov     }
529992cb984SSergei Barannikov 
530992cb984SSergei Barannikov     // Small structures which are register sized are generally returned
531992cb984SSergei Barannikov     // in a register.
532992cb984SSergei Barannikov     if (shouldReturnTypeInRegister(RetTy, getContext())) {
533992cb984SSergei Barannikov       uint64_t Size = getContext().getTypeSize(RetTy);
534992cb984SSergei Barannikov 
535992cb984SSergei Barannikov       // As a special-case, if the struct is a "single-element" struct, and
536992cb984SSergei Barannikov       // the field is of type "float" or "double", return it in a
537992cb984SSergei Barannikov       // floating-point register. (MSVC does not apply this special case.)
538992cb984SSergei Barannikov       // We apply a similar transformation for pointer types to improve the
539992cb984SSergei Barannikov       // quality of the generated IR.
540992cb984SSergei Barannikov       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
541992cb984SSergei Barannikov         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
542992cb984SSergei Barannikov             || SeltTy->hasPointerRepresentation())
543992cb984SSergei Barannikov           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
544992cb984SSergei Barannikov 
545992cb984SSergei Barannikov       // FIXME: We should be able to narrow this integer in cases with dead
546992cb984SSergei Barannikov       // padding.
547992cb984SSergei Barannikov       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
548992cb984SSergei Barannikov     }
549992cb984SSergei Barannikov 
550992cb984SSergei Barannikov     return getIndirectReturnResult(RetTy, State);
551992cb984SSergei Barannikov   }
552992cb984SSergei Barannikov 
553992cb984SSergei Barannikov   // Treat an enum type as its underlying type.
554992cb984SSergei Barannikov   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
555992cb984SSergei Barannikov     RetTy = EnumTy->getDecl()->getIntegerType();
556992cb984SSergei Barannikov 
557992cb984SSergei Barannikov   if (const auto *EIT = RetTy->getAs<BitIntType>())
558992cb984SSergei Barannikov     if (EIT->getNumBits() > 64)
559992cb984SSergei Barannikov       return getIndirectReturnResult(RetTy, State);
560992cb984SSergei Barannikov 
561992cb984SSergei Barannikov   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
562992cb984SSergei Barannikov                                                : ABIArgInfo::getDirect());
563992cb984SSergei Barannikov }
564992cb984SSergei Barannikov 
565992cb984SSergei Barannikov unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
566992cb984SSergei Barannikov                                                  unsigned Align) const {
567992cb984SSergei Barannikov   // Otherwise, if the alignment is less than or equal to the minimum ABI
568992cb984SSergei Barannikov   // alignment, just use the default; the backend will handle this.
569992cb984SSergei Barannikov   if (Align <= MinABIStackAlignInBytes)
570992cb984SSergei Barannikov     return 0; // Use default alignment.
571992cb984SSergei Barannikov 
572992cb984SSergei Barannikov   if (IsLinuxABI) {
573992cb984SSergei Barannikov     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
574992cb984SSergei Barannikov     // want to spend any effort dealing with the ramifications of ABI breaks.
575992cb984SSergei Barannikov     //
576992cb984SSergei Barannikov     // If the vector type is __m128/__m256/__m512, return the default alignment.
577992cb984SSergei Barannikov     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
578992cb984SSergei Barannikov       return Align;
579992cb984SSergei Barannikov   }
580992cb984SSergei Barannikov   // On non-Darwin, the stack type alignment is always 4.
581992cb984SSergei Barannikov   if (!IsDarwinVectorABI) {
582992cb984SSergei Barannikov     // Set explicit alignment, since we may need to realign the top.
583992cb984SSergei Barannikov     return MinABIStackAlignInBytes;
584992cb984SSergei Barannikov   }
585992cb984SSergei Barannikov 
586992cb984SSergei Barannikov   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
587992cb984SSergei Barannikov   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
588992cb984SSergei Barannikov                       isRecordWithSIMDVectorType(getContext(), Ty)))
589992cb984SSergei Barannikov     return 16;
590992cb984SSergei Barannikov 
591992cb984SSergei Barannikov   return MinABIStackAlignInBytes;
592992cb984SSergei Barannikov }
593992cb984SSergei Barannikov 
594992cb984SSergei Barannikov ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
595992cb984SSergei Barannikov                                             CCState &State) const {
596992cb984SSergei Barannikov   if (!ByVal) {
597992cb984SSergei Barannikov     if (State.FreeRegs) {
598992cb984SSergei Barannikov       --State.FreeRegs; // Non-byval indirects just use one pointer.
599992cb984SSergei Barannikov       if (!IsMCUABI)
600992cb984SSergei Barannikov         return getNaturalAlignIndirectInReg(Ty);
601992cb984SSergei Barannikov     }
602992cb984SSergei Barannikov     return getNaturalAlignIndirect(Ty, false);
603992cb984SSergei Barannikov   }
604992cb984SSergei Barannikov 
605992cb984SSergei Barannikov   // Compute the byval alignment.
606992cb984SSergei Barannikov   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
607992cb984SSergei Barannikov   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
608992cb984SSergei Barannikov   if (StackAlign == 0)
609992cb984SSergei Barannikov     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
610992cb984SSergei Barannikov 
611992cb984SSergei Barannikov   // If the stack alignment is less than the type alignment, realign the
612992cb984SSergei Barannikov   // argument.
613992cb984SSergei Barannikov   bool Realign = TypeAlign > StackAlign;
614992cb984SSergei Barannikov   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
615992cb984SSergei Barannikov                                  /*ByVal=*/true, Realign);
616992cb984SSergei Barannikov }
617992cb984SSergei Barannikov 
618992cb984SSergei Barannikov X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
619992cb984SSergei Barannikov   const Type *T = isSingleElementStruct(Ty, getContext());
620992cb984SSergei Barannikov   if (!T)
621992cb984SSergei Barannikov     T = Ty.getTypePtr();
622992cb984SSergei Barannikov 
623992cb984SSergei Barannikov   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
624992cb984SSergei Barannikov     BuiltinType::Kind K = BT->getKind();
625992cb984SSergei Barannikov     if (K == BuiltinType::Float || K == BuiltinType::Double)
626992cb984SSergei Barannikov       return Float;
627992cb984SSergei Barannikov   }
628992cb984SSergei Barannikov   return Integer;
629992cb984SSergei Barannikov }
630992cb984SSergei Barannikov 
631992cb984SSergei Barannikov bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
632992cb984SSergei Barannikov   if (!IsSoftFloatABI) {
633992cb984SSergei Barannikov     Class C = classify(Ty);
634992cb984SSergei Barannikov     if (C == Float)
635992cb984SSergei Barannikov       return false;
636992cb984SSergei Barannikov   }
637992cb984SSergei Barannikov 
638992cb984SSergei Barannikov   unsigned Size = getContext().getTypeSize(Ty);
639992cb984SSergei Barannikov   unsigned SizeInRegs = (Size + 31) / 32;
640992cb984SSergei Barannikov 
641992cb984SSergei Barannikov   if (SizeInRegs == 0)
642992cb984SSergei Barannikov     return false;
643992cb984SSergei Barannikov 
644992cb984SSergei Barannikov   if (!IsMCUABI) {
645992cb984SSergei Barannikov     if (SizeInRegs > State.FreeRegs) {
646992cb984SSergei Barannikov       State.FreeRegs = 0;
647992cb984SSergei Barannikov       return false;
648992cb984SSergei Barannikov     }
649992cb984SSergei Barannikov   } else {
650992cb984SSergei Barannikov     // The MCU psABI allows passing parameters in-reg even if there are
651992cb984SSergei Barannikov     // earlier parameters that are passed on the stack. Also,
652992cb984SSergei Barannikov     // it does not allow passing >8-byte structs in-register,
653992cb984SSergei Barannikov     // even if there are 3 free registers available.
654992cb984SSergei Barannikov     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
655992cb984SSergei Barannikov       return false;
656992cb984SSergei Barannikov   }
657992cb984SSergei Barannikov 
658992cb984SSergei Barannikov   State.FreeRegs -= SizeInRegs;
659992cb984SSergei Barannikov   return true;
660992cb984SSergei Barannikov }
661992cb984SSergei Barannikov 
662992cb984SSergei Barannikov bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
663992cb984SSergei Barannikov                                              bool &InReg,
664992cb984SSergei Barannikov                                              bool &NeedsPadding) const {
665992cb984SSergei Barannikov   // On Windows, aggregates other than HFAs are never passed in registers, and
666992cb984SSergei Barannikov   // they do not consume register slots. Homogenous floating-point aggregates
667992cb984SSergei Barannikov   // (HFAs) have already been dealt with at this point.
668992cb984SSergei Barannikov   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
669992cb984SSergei Barannikov     return false;
670992cb984SSergei Barannikov 
671992cb984SSergei Barannikov   NeedsPadding = false;
672992cb984SSergei Barannikov   InReg = !IsMCUABI;
673992cb984SSergei Barannikov 
674992cb984SSergei Barannikov   if (!updateFreeRegs(Ty, State))
675992cb984SSergei Barannikov     return false;
676992cb984SSergei Barannikov 
677992cb984SSergei Barannikov   if (IsMCUABI)
678992cb984SSergei Barannikov     return true;
679992cb984SSergei Barannikov 
680992cb984SSergei Barannikov   if (State.CC == llvm::CallingConv::X86_FastCall ||
681992cb984SSergei Barannikov       State.CC == llvm::CallingConv::X86_VectorCall ||
682992cb984SSergei Barannikov       State.CC == llvm::CallingConv::X86_RegCall) {
683992cb984SSergei Barannikov     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
684992cb984SSergei Barannikov       NeedsPadding = true;
685992cb984SSergei Barannikov 
686992cb984SSergei Barannikov     return false;
687992cb984SSergei Barannikov   }
688992cb984SSergei Barannikov 
689992cb984SSergei Barannikov   return true;
690992cb984SSergei Barannikov }
691992cb984SSergei Barannikov 
692992cb984SSergei Barannikov bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
693992cb984SSergei Barannikov   bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
694992cb984SSergei Barannikov                     (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
695992cb984SSergei Barannikov                      Ty->isReferenceType());
696992cb984SSergei Barannikov 
697992cb984SSergei Barannikov   if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
698992cb984SSergei Barannikov                       State.CC == llvm::CallingConv::X86_VectorCall))
699992cb984SSergei Barannikov     return false;
700992cb984SSergei Barannikov 
701992cb984SSergei Barannikov   if (!updateFreeRegs(Ty, State))
702992cb984SSergei Barannikov     return false;
703992cb984SSergei Barannikov 
704992cb984SSergei Barannikov   if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
705992cb984SSergei Barannikov     return false;
706992cb984SSergei Barannikov 
707992cb984SSergei Barannikov   // Return true to apply inreg to all legal parameters except for MCU targets.
708992cb984SSergei Barannikov   return !IsMCUABI;
709992cb984SSergei Barannikov }
710992cb984SSergei Barannikov 
711992cb984SSergei Barannikov void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
712992cb984SSergei Barannikov   // Vectorcall x86 works subtly different than in x64, so the format is
713992cb984SSergei Barannikov   // a bit different than the x64 version.  First, all vector types (not HVAs)
714992cb984SSergei Barannikov   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
715992cb984SSergei Barannikov   // This differs from the x64 implementation, where the first 6 by INDEX get
716992cb984SSergei Barannikov   // registers.
717992cb984SSergei Barannikov   // In the second pass over the arguments, HVAs are passed in the remaining
718992cb984SSergei Barannikov   // vector registers if possible, or indirectly by address. The address will be
719992cb984SSergei Barannikov   // passed in ECX/EDX if available. Any other arguments are passed according to
720992cb984SSergei Barannikov   // the usual fastcall rules.
721992cb984SSergei Barannikov   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
722992cb984SSergei Barannikov   for (int I = 0, E = Args.size(); I < E; ++I) {
723992cb984SSergei Barannikov     const Type *Base = nullptr;
724992cb984SSergei Barannikov     uint64_t NumElts = 0;
725992cb984SSergei Barannikov     const QualType &Ty = Args[I].type;
726992cb984SSergei Barannikov     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
727992cb984SSergei Barannikov         isHomogeneousAggregate(Ty, Base, NumElts)) {
728992cb984SSergei Barannikov       if (State.FreeSSERegs >= NumElts) {
729992cb984SSergei Barannikov         State.FreeSSERegs -= NumElts;
730992cb984SSergei Barannikov         Args[I].info = ABIArgInfo::getDirectInReg();
731992cb984SSergei Barannikov         State.IsPreassigned.set(I);
732992cb984SSergei Barannikov       }
733992cb984SSergei Barannikov     }
734992cb984SSergei Barannikov   }
735992cb984SSergei Barannikov }
736992cb984SSergei Barannikov 
73727dab4d3SAmy Huang ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
738c8c075e8SReid Kleckner                                                unsigned ArgIndex) const {
739992cb984SSergei Barannikov   // FIXME: Set alignment on indirect arguments.
740992cb984SSergei Barannikov   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
741992cb984SSergei Barannikov   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
742992cb984SSergei Barannikov   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
743992cb984SSergei Barannikov 
744992cb984SSergei Barannikov   Ty = useFirstFieldIfTransparentUnion(Ty);
745992cb984SSergei Barannikov   TypeInfo TI = getContext().getTypeInfo(Ty);
746992cb984SSergei Barannikov 
747992cb984SSergei Barannikov   // Check with the C++ ABI first.
748992cb984SSergei Barannikov   const RecordType *RT = Ty->getAs<RecordType>();
749992cb984SSergei Barannikov   if (RT) {
750992cb984SSergei Barannikov     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
7518ed7aa59SAmy Huang     if (RAA == CGCXXABI::RAA_Indirect) {
752992cb984SSergei Barannikov       return getIndirectResult(Ty, false, State);
753c8c075e8SReid Kleckner     } else if (State.IsDelegateCall) {
75427dab4d3SAmy Huang       // Avoid having different alignments on delegate call args by always
75527dab4d3SAmy Huang       // setting the alignment to 4, which is what we do for inallocas.
75627dab4d3SAmy Huang       ABIArgInfo Res = getIndirectResult(Ty, false, State);
75727dab4d3SAmy Huang       Res.setIndirectAlign(CharUnits::fromQuantity(4));
75827dab4d3SAmy Huang       return Res;
759992cb984SSergei Barannikov     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
760992cb984SSergei Barannikov       // The field index doesn't matter, we'll fix it up later.
761992cb984SSergei Barannikov       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
762992cb984SSergei Barannikov     }
763992cb984SSergei Barannikov   }
764992cb984SSergei Barannikov 
765992cb984SSergei Barannikov   // Regcall uses the concept of a homogenous vector aggregate, similar
766992cb984SSergei Barannikov   // to other targets.
767992cb984SSergei Barannikov   const Type *Base = nullptr;
768992cb984SSergei Barannikov   uint64_t NumElts = 0;
769992cb984SSergei Barannikov   if ((IsRegCall || IsVectorCall) &&
770992cb984SSergei Barannikov       isHomogeneousAggregate(Ty, Base, NumElts)) {
771992cb984SSergei Barannikov     if (State.FreeSSERegs >= NumElts) {
772992cb984SSergei Barannikov       State.FreeSSERegs -= NumElts;
773992cb984SSergei Barannikov 
774992cb984SSergei Barannikov       // Vectorcall passes HVAs directly and does not flatten them, but regcall
775992cb984SSergei Barannikov       // does.
776992cb984SSergei Barannikov       if (IsVectorCall)
777992cb984SSergei Barannikov         return getDirectX86Hva();
778992cb984SSergei Barannikov 
779992cb984SSergei Barannikov       if (Ty->isBuiltinType() || Ty->isVectorType())
780992cb984SSergei Barannikov         return ABIArgInfo::getDirect();
781992cb984SSergei Barannikov       return ABIArgInfo::getExpand();
782992cb984SSergei Barannikov     }
7835bde8017SPhoebe Wang     if (IsVectorCall && Ty->isBuiltinType())
7845bde8017SPhoebe Wang       return ABIArgInfo::getDirect();
785992cb984SSergei Barannikov     return getIndirectResult(Ty, /*ByVal=*/false, State);
786992cb984SSergei Barannikov   }
787992cb984SSergei Barannikov 
788992cb984SSergei Barannikov   if (isAggregateTypeForABI(Ty)) {
789992cb984SSergei Barannikov     // Structures with flexible arrays are always indirect.
790992cb984SSergei Barannikov     // FIXME: This should not be byval!
791992cb984SSergei Barannikov     if (RT && RT->getDecl()->hasFlexibleArrayMember())
792992cb984SSergei Barannikov       return getIndirectResult(Ty, true, State);
793992cb984SSergei Barannikov 
794992cb984SSergei Barannikov     // Ignore empty structs/unions on non-Windows.
795992cb984SSergei Barannikov     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
796992cb984SSergei Barannikov       return ABIArgInfo::getIgnore();
797992cb984SSergei Barannikov 
7984461b690SLongsheng Mou     // Ignore 0 sized structs.
7994461b690SLongsheng Mou     if (TI.Width == 0)
8004461b690SLongsheng Mou       return ABIArgInfo::getIgnore();
8014461b690SLongsheng Mou 
802992cb984SSergei Barannikov     llvm::LLVMContext &LLVMContext = getVMContext();
803992cb984SSergei Barannikov     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
804992cb984SSergei Barannikov     bool NeedsPadding = false;
805992cb984SSergei Barannikov     bool InReg;
806992cb984SSergei Barannikov     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
807992cb984SSergei Barannikov       unsigned SizeInRegs = (TI.Width + 31) / 32;
808992cb984SSergei Barannikov       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
809992cb984SSergei Barannikov       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
810992cb984SSergei Barannikov       if (InReg)
811992cb984SSergei Barannikov         return ABIArgInfo::getDirectInReg(Result);
812992cb984SSergei Barannikov       else
813992cb984SSergei Barannikov         return ABIArgInfo::getDirect(Result);
814992cb984SSergei Barannikov     }
815992cb984SSergei Barannikov     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
816992cb984SSergei Barannikov 
817c8c075e8SReid Kleckner     // Pass over-aligned aggregates to non-variadic functions on Windows
818c8c075e8SReid Kleckner     // indirectly. This behavior was added in MSVC 2015. Use the required
819c8c075e8SReid Kleckner     // alignment from the record layout, since that may be less than the
820c8c075e8SReid Kleckner     // regular type alignment, and types with required alignment of less than 4
821c8c075e8SReid Kleckner     // bytes are not passed indirectly.
822c8c075e8SReid Kleckner     if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
823992cb984SSergei Barannikov       unsigned AlignInBits = 0;
824992cb984SSergei Barannikov       if (RT) {
825992cb984SSergei Barannikov         const ASTRecordLayout &Layout =
826992cb984SSergei Barannikov           getContext().getASTRecordLayout(RT->getDecl());
827992cb984SSergei Barannikov         AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
828992cb984SSergei Barannikov       } else if (TI.isAlignRequired()) {
829992cb984SSergei Barannikov         AlignInBits = TI.Align;
830992cb984SSergei Barannikov       }
831992cb984SSergei Barannikov       if (AlignInBits > 32)
832992cb984SSergei Barannikov         return getIndirectResult(Ty, /*ByVal=*/false, State);
833992cb984SSergei Barannikov     }
834992cb984SSergei Barannikov 
835992cb984SSergei Barannikov     // Expand small (<= 128-bit) record types when we know that the stack layout
836992cb984SSergei Barannikov     // of those arguments will match the struct. This is important because the
837992cb984SSergei Barannikov     // LLVM backend isn't smart enough to remove byval, which inhibits many
838992cb984SSergei Barannikov     // optimizations.
839992cb984SSergei Barannikov     // Don't do this for the MCU if there are still free integer registers
840992cb984SSergei Barannikov     // (see X86_64 ABI for full explanation).
841992cb984SSergei Barannikov     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
842992cb984SSergei Barannikov         canExpandIndirectArgument(Ty))
843992cb984SSergei Barannikov       return ABIArgInfo::getExpandWithPadding(
844992cb984SSergei Barannikov           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
845992cb984SSergei Barannikov 
846992cb984SSergei Barannikov     return getIndirectResult(Ty, true, State);
847992cb984SSergei Barannikov   }
848992cb984SSergei Barannikov 
849992cb984SSergei Barannikov   if (const VectorType *VT = Ty->getAs<VectorType>()) {
850992cb984SSergei Barannikov     // On Windows, vectors are passed directly if registers are available, or
851992cb984SSergei Barannikov     // indirectly if not. This avoids the need to align argument memory. Pass
852992cb984SSergei Barannikov     // user-defined vector types larger than 512 bits indirectly for simplicity.
853992cb984SSergei Barannikov     if (IsWin32StructABI) {
854992cb984SSergei Barannikov       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
855992cb984SSergei Barannikov         --State.FreeSSERegs;
856992cb984SSergei Barannikov         return ABIArgInfo::getDirectInReg();
857992cb984SSergei Barannikov       }
858992cb984SSergei Barannikov       return getIndirectResult(Ty, /*ByVal=*/false, State);
859992cb984SSergei Barannikov     }
860992cb984SSergei Barannikov 
861992cb984SSergei Barannikov     // On Darwin, some vectors are passed in memory, we handle this by passing
862992cb984SSergei Barannikov     // it as an i8/i16/i32/i64.
863992cb984SSergei Barannikov     if (IsDarwinVectorABI) {
864992cb984SSergei Barannikov       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
865992cb984SSergei Barannikov           (TI.Width == 64 && VT->getNumElements() == 1))
866992cb984SSergei Barannikov         return ABIArgInfo::getDirect(
867992cb984SSergei Barannikov             llvm::IntegerType::get(getVMContext(), TI.Width));
868992cb984SSergei Barannikov     }
869992cb984SSergei Barannikov 
870992cb984SSergei Barannikov     if (IsX86_MMXType(CGT.ConvertType(Ty)))
871992cb984SSergei Barannikov       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
872992cb984SSergei Barannikov 
873992cb984SSergei Barannikov     return ABIArgInfo::getDirect();
874992cb984SSergei Barannikov   }
875992cb984SSergei Barannikov 
876992cb984SSergei Barannikov 
877992cb984SSergei Barannikov   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
878992cb984SSergei Barannikov     Ty = EnumTy->getDecl()->getIntegerType();
879992cb984SSergei Barannikov 
880992cb984SSergei Barannikov   bool InReg = shouldPrimitiveUseInReg(Ty, State);
881992cb984SSergei Barannikov 
882992cb984SSergei Barannikov   if (isPromotableIntegerTypeForABI(Ty)) {
883992cb984SSergei Barannikov     if (InReg)
884ea920450SLei Huang       return ABIArgInfo::getExtendInReg(Ty, CGT.ConvertType(Ty));
885ea920450SLei Huang     return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
886992cb984SSergei Barannikov   }
887992cb984SSergei Barannikov 
888992cb984SSergei Barannikov   if (const auto *EIT = Ty->getAs<BitIntType>()) {
889992cb984SSergei Barannikov     if (EIT->getNumBits() <= 64) {
890992cb984SSergei Barannikov       if (InReg)
891992cb984SSergei Barannikov         return ABIArgInfo::getDirectInReg();
892992cb984SSergei Barannikov       return ABIArgInfo::getDirect();
893992cb984SSergei Barannikov     }
894992cb984SSergei Barannikov     return getIndirectResult(Ty, /*ByVal=*/false, State);
895992cb984SSergei Barannikov   }
896992cb984SSergei Barannikov 
897992cb984SSergei Barannikov   if (InReg)
898992cb984SSergei Barannikov     return ABIArgInfo::getDirectInReg();
899992cb984SSergei Barannikov   return ABIArgInfo::getDirect();
900992cb984SSergei Barannikov }
901992cb984SSergei Barannikov 
902992cb984SSergei Barannikov void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
903992cb984SSergei Barannikov   CCState State(FI);
904992cb984SSergei Barannikov   if (IsMCUABI)
905992cb984SSergei Barannikov     State.FreeRegs = 3;
906992cb984SSergei Barannikov   else if (State.CC == llvm::CallingConv::X86_FastCall) {
907992cb984SSergei Barannikov     State.FreeRegs = 2;
908992cb984SSergei Barannikov     State.FreeSSERegs = 3;
909992cb984SSergei Barannikov   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
910992cb984SSergei Barannikov     State.FreeRegs = 2;
911992cb984SSergei Barannikov     State.FreeSSERegs = 6;
912992cb984SSergei Barannikov   } else if (FI.getHasRegParm())
913992cb984SSergei Barannikov     State.FreeRegs = FI.getRegParm();
914992cb984SSergei Barannikov   else if (State.CC == llvm::CallingConv::X86_RegCall) {
915992cb984SSergei Barannikov     State.FreeRegs = 5;
916992cb984SSergei Barannikov     State.FreeSSERegs = 8;
917992cb984SSergei Barannikov   } else if (IsWin32StructABI) {
918992cb984SSergei Barannikov     // Since MSVC 2015, the first three SSE vectors have been passed in
919992cb984SSergei Barannikov     // registers. The rest are passed indirectly.
920992cb984SSergei Barannikov     State.FreeRegs = DefaultNumRegisterParameters;
921992cb984SSergei Barannikov     State.FreeSSERegs = 3;
922992cb984SSergei Barannikov   } else
923992cb984SSergei Barannikov     State.FreeRegs = DefaultNumRegisterParameters;
924992cb984SSergei Barannikov 
925992cb984SSergei Barannikov   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
926992cb984SSergei Barannikov     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
927992cb984SSergei Barannikov   } else if (FI.getReturnInfo().isIndirect()) {
928992cb984SSergei Barannikov     // The C++ ABI is not aware of register usage, so we have to check if the
929992cb984SSergei Barannikov     // return value was sret and put it in a register ourselves if appropriate.
930992cb984SSergei Barannikov     if (State.FreeRegs) {
931992cb984SSergei Barannikov       --State.FreeRegs;  // The sret parameter consumes a register.
932992cb984SSergei Barannikov       if (!IsMCUABI)
933992cb984SSergei Barannikov         FI.getReturnInfo().setInReg(true);
934992cb984SSergei Barannikov     }
935992cb984SSergei Barannikov   }
936992cb984SSergei Barannikov 
937992cb984SSergei Barannikov   // The chain argument effectively gives us another free register.
938992cb984SSergei Barannikov   if (FI.isChainCall())
939992cb984SSergei Barannikov     ++State.FreeRegs;
940992cb984SSergei Barannikov 
941992cb984SSergei Barannikov   // For vectorcall, do a first pass over the arguments, assigning FP and vector
942992cb984SSergei Barannikov   // arguments to XMM registers as available.
943992cb984SSergei Barannikov   if (State.CC == llvm::CallingConv::X86_VectorCall)
944992cb984SSergei Barannikov     runVectorCallFirstPass(FI, State);
945992cb984SSergei Barannikov 
946992cb984SSergei Barannikov   bool UsedInAlloca = false;
947992cb984SSergei Barannikov   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
948c8c075e8SReid Kleckner   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
949992cb984SSergei Barannikov     // Skip arguments that have already been assigned.
950992cb984SSergei Barannikov     if (State.IsPreassigned.test(I))
951992cb984SSergei Barannikov       continue;
952992cb984SSergei Barannikov 
95327dab4d3SAmy Huang     Args[I].info =
954c8c075e8SReid Kleckner         classifyArgumentType(Args[I].type, State, I);
955992cb984SSergei Barannikov     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
956992cb984SSergei Barannikov   }
957992cb984SSergei Barannikov 
958992cb984SSergei Barannikov   // If we needed to use inalloca for any argument, do a second pass and rewrite
959992cb984SSergei Barannikov   // all the memory arguments to use inalloca.
960992cb984SSergei Barannikov   if (UsedInAlloca)
961992cb984SSergei Barannikov     rewriteWithInAlloca(FI);
962992cb984SSergei Barannikov }
963992cb984SSergei Barannikov 
964992cb984SSergei Barannikov void
965992cb984SSergei Barannikov X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
966992cb984SSergei Barannikov                                    CharUnits &StackOffset, ABIArgInfo &Info,
967992cb984SSergei Barannikov                                    QualType Type) const {
968992cb984SSergei Barannikov   // Arguments are always 4-byte-aligned.
969992cb984SSergei Barannikov   CharUnits WordSize = CharUnits::fromQuantity(4);
970992cb984SSergei Barannikov   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
971992cb984SSergei Barannikov 
972992cb984SSergei Barannikov   // sret pointers and indirect things will require an extra pointer
973992cb984SSergei Barannikov   // indirection, unless they are byval. Most things are byval, and will not
974992cb984SSergei Barannikov   // require this indirection.
975992cb984SSergei Barannikov   bool IsIndirect = false;
976992cb984SSergei Barannikov   if (Info.isIndirect() && !Info.getIndirectByVal())
977992cb984SSergei Barannikov     IsIndirect = true;
978992cb984SSergei Barannikov   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
979992cb984SSergei Barannikov   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
980992cb984SSergei Barannikov   if (IsIndirect)
981992cb984SSergei Barannikov     LLTy = llvm::PointerType::getUnqual(getVMContext());
982992cb984SSergei Barannikov   FrameFields.push_back(LLTy);
983992cb984SSergei Barannikov   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
984992cb984SSergei Barannikov 
985992cb984SSergei Barannikov   // Insert padding bytes to respect alignment.
986992cb984SSergei Barannikov   CharUnits FieldEnd = StackOffset;
987992cb984SSergei Barannikov   StackOffset = FieldEnd.alignTo(WordSize);
988992cb984SSergei Barannikov   if (StackOffset != FieldEnd) {
989992cb984SSergei Barannikov     CharUnits NumBytes = StackOffset - FieldEnd;
990992cb984SSergei Barannikov     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
991992cb984SSergei Barannikov     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
992992cb984SSergei Barannikov     FrameFields.push_back(Ty);
993992cb984SSergei Barannikov   }
994992cb984SSergei Barannikov }
995992cb984SSergei Barannikov 
996992cb984SSergei Barannikov static bool isArgInAlloca(const ABIArgInfo &Info) {
997992cb984SSergei Barannikov   // Leave ignored and inreg arguments alone.
998992cb984SSergei Barannikov   switch (Info.getKind()) {
999992cb984SSergei Barannikov   case ABIArgInfo::InAlloca:
1000992cb984SSergei Barannikov     return true;
1001992cb984SSergei Barannikov   case ABIArgInfo::Ignore:
1002992cb984SSergei Barannikov   case ABIArgInfo::IndirectAliased:
1003992cb984SSergei Barannikov     return false;
1004992cb984SSergei Barannikov   case ABIArgInfo::Indirect:
1005992cb984SSergei Barannikov   case ABIArgInfo::Direct:
1006992cb984SSergei Barannikov   case ABIArgInfo::Extend:
1007992cb984SSergei Barannikov     return !Info.getInReg();
1008992cb984SSergei Barannikov   case ABIArgInfo::Expand:
1009992cb984SSergei Barannikov   case ABIArgInfo::CoerceAndExpand:
1010992cb984SSergei Barannikov     // These are aggregate types which are never passed in registers when
1011992cb984SSergei Barannikov     // inalloca is involved.
1012992cb984SSergei Barannikov     return true;
1013992cb984SSergei Barannikov   }
1014992cb984SSergei Barannikov   llvm_unreachable("invalid enum");
1015992cb984SSergei Barannikov }
1016992cb984SSergei Barannikov 
1017992cb984SSergei Barannikov void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1018992cb984SSergei Barannikov   assert(IsWin32StructABI && "inalloca only supported on win32");
1019992cb984SSergei Barannikov 
1020992cb984SSergei Barannikov   // Build a packed struct type for all of the arguments in memory.
1021992cb984SSergei Barannikov   SmallVector<llvm::Type *, 6> FrameFields;
1022992cb984SSergei Barannikov 
1023992cb984SSergei Barannikov   // The stack alignment is always 4.
1024992cb984SSergei Barannikov   CharUnits StackAlign = CharUnits::fromQuantity(4);
1025992cb984SSergei Barannikov 
1026992cb984SSergei Barannikov   CharUnits StackOffset;
1027992cb984SSergei Barannikov   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1028992cb984SSergei Barannikov 
1029992cb984SSergei Barannikov   // Put 'this' into the struct before 'sret', if necessary.
1030992cb984SSergei Barannikov   bool IsThisCall =
1031992cb984SSergei Barannikov       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1032992cb984SSergei Barannikov   ABIArgInfo &Ret = FI.getReturnInfo();
1033992cb984SSergei Barannikov   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1034992cb984SSergei Barannikov       isArgInAlloca(I->info)) {
1035992cb984SSergei Barannikov     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1036992cb984SSergei Barannikov     ++I;
1037992cb984SSergei Barannikov   }
1038992cb984SSergei Barannikov 
1039992cb984SSergei Barannikov   // Put the sret parameter into the inalloca struct if it's in memory.
1040992cb984SSergei Barannikov   if (Ret.isIndirect() && !Ret.getInReg()) {
1041992cb984SSergei Barannikov     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1042992cb984SSergei Barannikov     // On Windows, the hidden sret parameter is always returned in eax.
1043992cb984SSergei Barannikov     Ret.setInAllocaSRet(IsWin32StructABI);
1044992cb984SSergei Barannikov   }
1045992cb984SSergei Barannikov 
1046992cb984SSergei Barannikov   // Skip the 'this' parameter in ecx.
1047992cb984SSergei Barannikov   if (IsThisCall)
1048992cb984SSergei Barannikov     ++I;
1049992cb984SSergei Barannikov 
1050992cb984SSergei Barannikov   // Put arguments passed in memory into the struct.
1051992cb984SSergei Barannikov   for (; I != E; ++I) {
1052992cb984SSergei Barannikov     if (isArgInAlloca(I->info))
1053992cb984SSergei Barannikov       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1054992cb984SSergei Barannikov   }
1055992cb984SSergei Barannikov 
1056992cb984SSergei Barannikov   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1057992cb984SSergei Barannikov                                         /*isPacked=*/true),
1058992cb984SSergei Barannikov                   StackAlign);
1059992cb984SSergei Barannikov }
1060992cb984SSergei Barannikov 
10616d973b45SMariya Podchishchaeva RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10626d973b45SMariya Podchishchaeva                                 QualType Ty, AggValueSlot Slot) const {
1063992cb984SSergei Barannikov 
1064992cb984SSergei Barannikov   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1065992cb984SSergei Barannikov 
1066956b47b4SLongsheng Mou   CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1067956b47b4SLongsheng Mou   ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1068956b47b4SLongsheng Mou   // Empty records are ignored for parameter passing purposes.
1069956b47b4SLongsheng Mou   if (AI.isIgnore())
10706d973b45SMariya Podchishchaeva     return Slot.asRValue();
1071956b47b4SLongsheng Mou 
1072992cb984SSergei Barannikov   // x86-32 changes the alignment of certain arguments on the stack.
1073992cb984SSergei Barannikov   //
1074992cb984SSergei Barannikov   // Just messing with TypeInfo like this works because we never pass
1075992cb984SSergei Barannikov   // anything indirectly.
1076992cb984SSergei Barannikov   TypeInfo.Align = CharUnits::fromQuantity(
1077992cb984SSergei Barannikov                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1078992cb984SSergei Barannikov 
10796d973b45SMariya Podchishchaeva   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
10806d973b45SMariya Podchishchaeva                           CharUnits::fromQuantity(4),
10816d973b45SMariya Podchishchaeva                           /*AllowHigherAlign*/ true, Slot);
1082992cb984SSergei Barannikov }
1083992cb984SSergei Barannikov 
1084992cb984SSergei Barannikov bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1085992cb984SSergei Barannikov     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1086992cb984SSergei Barannikov   assert(Triple.getArch() == llvm::Triple::x86);
1087992cb984SSergei Barannikov 
1088992cb984SSergei Barannikov   switch (Opts.getStructReturnConvention()) {
1089992cb984SSergei Barannikov   case CodeGenOptions::SRCK_Default:
1090992cb984SSergei Barannikov     break;
1091992cb984SSergei Barannikov   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1092992cb984SSergei Barannikov     return false;
1093992cb984SSergei Barannikov   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1094992cb984SSergei Barannikov     return true;
1095992cb984SSergei Barannikov   }
1096992cb984SSergei Barannikov 
1097992cb984SSergei Barannikov   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1098992cb984SSergei Barannikov     return true;
1099992cb984SSergei Barannikov 
1100992cb984SSergei Barannikov   switch (Triple.getOS()) {
1101992cb984SSergei Barannikov   case llvm::Triple::DragonFly:
1102992cb984SSergei Barannikov   case llvm::Triple::FreeBSD:
1103992cb984SSergei Barannikov   case llvm::Triple::OpenBSD:
1104992cb984SSergei Barannikov   case llvm::Triple::Win32:
1105992cb984SSergei Barannikov     return true;
1106992cb984SSergei Barannikov   default:
1107992cb984SSergei Barannikov     return false;
1108992cb984SSergei Barannikov   }
1109992cb984SSergei Barannikov }
1110992cb984SSergei Barannikov 
1111992cb984SSergei Barannikov static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1112992cb984SSergei Barannikov                                  CodeGen::CodeGenModule &CGM) {
1113992cb984SSergei Barannikov   if (!FD->hasAttr<AnyX86InterruptAttr>())
1114992cb984SSergei Barannikov     return;
1115992cb984SSergei Barannikov 
1116992cb984SSergei Barannikov   llvm::Function *Fn = cast<llvm::Function>(GV);
1117992cb984SSergei Barannikov   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1118992cb984SSergei Barannikov   if (FD->getNumParams() == 0)
1119992cb984SSergei Barannikov     return;
1120992cb984SSergei Barannikov 
1121992cb984SSergei Barannikov   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1122992cb984SSergei Barannikov   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1123992cb984SSergei Barannikov   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1124992cb984SSergei Barannikov     Fn->getContext(), ByValTy);
1125992cb984SSergei Barannikov   Fn->addParamAttr(0, NewAttr);
1126992cb984SSergei Barannikov }
1127992cb984SSergei Barannikov 
1128992cb984SSergei Barannikov void X86_32TargetCodeGenInfo::setTargetAttributes(
1129992cb984SSergei Barannikov     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1130992cb984SSergei Barannikov   if (GV->isDeclaration())
1131992cb984SSergei Barannikov     return;
1132992cb984SSergei Barannikov   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1133992cb984SSergei Barannikov     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1134992cb984SSergei Barannikov       llvm::Function *Fn = cast<llvm::Function>(GV);
1135992cb984SSergei Barannikov       Fn->addFnAttr("stackrealign");
1136992cb984SSergei Barannikov     }
1137992cb984SSergei Barannikov 
1138992cb984SSergei Barannikov     addX86InterruptAttrs(FD, GV, CGM);
1139992cb984SSergei Barannikov   }
1140992cb984SSergei Barannikov }
1141992cb984SSergei Barannikov 
1142992cb984SSergei Barannikov bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1143992cb984SSergei Barannikov                                                CodeGen::CodeGenFunction &CGF,
1144992cb984SSergei Barannikov                                                llvm::Value *Address) const {
1145992cb984SSergei Barannikov   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1146992cb984SSergei Barannikov 
1147992cb984SSergei Barannikov   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1148992cb984SSergei Barannikov 
1149992cb984SSergei Barannikov   // 0-7 are the eight integer registers;  the order is different
1150992cb984SSergei Barannikov   //   on Darwin (for EH), but the range is the same.
1151992cb984SSergei Barannikov   // 8 is %eip.
1152992cb984SSergei Barannikov   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1153992cb984SSergei Barannikov 
1154992cb984SSergei Barannikov   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1155992cb984SSergei Barannikov     // 12-16 are st(0..4).  Not sure why we stop at 4.
1156992cb984SSergei Barannikov     // These have size 16, which is sizeof(long double) on
1157992cb984SSergei Barannikov     // platforms with 8-byte alignment for that type.
1158992cb984SSergei Barannikov     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1159992cb984SSergei Barannikov     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1160992cb984SSergei Barannikov 
1161992cb984SSergei Barannikov   } else {
1162992cb984SSergei Barannikov     // 9 is %eflags, which doesn't get a size on Darwin for some
1163992cb984SSergei Barannikov     // reason.
1164992cb984SSergei Barannikov     Builder.CreateAlignedStore(
1165992cb984SSergei Barannikov         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1166992cb984SSergei Barannikov                                CharUnits::One());
1167992cb984SSergei Barannikov 
1168992cb984SSergei Barannikov     // 11-16 are st(0..5).  Not sure why we stop at 5.
1169992cb984SSergei Barannikov     // These have size 12, which is sizeof(long double) on
1170992cb984SSergei Barannikov     // platforms with 4-byte alignment for that type.
1171992cb984SSergei Barannikov     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1172992cb984SSergei Barannikov     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1173992cb984SSergei Barannikov   }
1174992cb984SSergei Barannikov 
1175992cb984SSergei Barannikov   return false;
1176992cb984SSergei Barannikov }
1177992cb984SSergei Barannikov 
1178992cb984SSergei Barannikov //===----------------------------------------------------------------------===//
1179992cb984SSergei Barannikov // X86-64 ABI Implementation
1180992cb984SSergei Barannikov //===----------------------------------------------------------------------===//
1181992cb984SSergei Barannikov 
1182992cb984SSergei Barannikov 
1183992cb984SSergei Barannikov namespace {
1184992cb984SSergei Barannikov 
1185992cb984SSergei Barannikov /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1186992cb984SSergei Barannikov static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1187992cb984SSergei Barannikov   switch (AVXLevel) {
1188992cb984SSergei Barannikov   case X86AVXABILevel::AVX512:
1189992cb984SSergei Barannikov     return 512;
1190992cb984SSergei Barannikov   case X86AVXABILevel::AVX:
1191992cb984SSergei Barannikov     return 256;
1192992cb984SSergei Barannikov   case X86AVXABILevel::None:
1193992cb984SSergei Barannikov     return 128;
1194992cb984SSergei Barannikov   }
1195992cb984SSergei Barannikov   llvm_unreachable("Unknown AVXLevel");
1196992cb984SSergei Barannikov }
1197992cb984SSergei Barannikov 
1198992cb984SSergei Barannikov /// X86_64ABIInfo - The X86_64 ABI information.
1199992cb984SSergei Barannikov class X86_64ABIInfo : public ABIInfo {
1200992cb984SSergei Barannikov   enum Class {
1201992cb984SSergei Barannikov     Integer = 0,
1202992cb984SSergei Barannikov     SSE,
1203992cb984SSergei Barannikov     SSEUp,
1204992cb984SSergei Barannikov     X87,
1205992cb984SSergei Barannikov     X87Up,
1206992cb984SSergei Barannikov     ComplexX87,
1207992cb984SSergei Barannikov     NoClass,
1208992cb984SSergei Barannikov     Memory
1209992cb984SSergei Barannikov   };
1210992cb984SSergei Barannikov 
1211992cb984SSergei Barannikov   /// merge - Implement the X86_64 ABI merging algorithm.
1212992cb984SSergei Barannikov   ///
1213992cb984SSergei Barannikov   /// Merge an accumulating classification \arg Accum with a field
1214992cb984SSergei Barannikov   /// classification \arg Field.
1215992cb984SSergei Barannikov   ///
1216992cb984SSergei Barannikov   /// \param Accum - The accumulating classification. This should
1217992cb984SSergei Barannikov   /// always be either NoClass or the result of a previous merge
1218992cb984SSergei Barannikov   /// call. In addition, this should never be Memory (the caller
1219992cb984SSergei Barannikov   /// should just return Memory for the aggregate).
1220992cb984SSergei Barannikov   static Class merge(Class Accum, Class Field);
1221992cb984SSergei Barannikov 
1222992cb984SSergei Barannikov   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1223992cb984SSergei Barannikov   ///
1224992cb984SSergei Barannikov   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1225992cb984SSergei Barannikov   /// final MEMORY or SSE classes when necessary.
1226992cb984SSergei Barannikov   ///
1227992cb984SSergei Barannikov   /// \param AggregateSize - The size of the current aggregate in
1228992cb984SSergei Barannikov   /// the classification process.
1229992cb984SSergei Barannikov   ///
1230992cb984SSergei Barannikov   /// \param Lo - The classification for the parts of the type
1231992cb984SSergei Barannikov   /// residing in the low word of the containing object.
1232992cb984SSergei Barannikov   ///
1233992cb984SSergei Barannikov   /// \param Hi - The classification for the parts of the type
1234992cb984SSergei Barannikov   /// residing in the higher words of the containing object.
1235992cb984SSergei Barannikov   ///
1236992cb984SSergei Barannikov   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1237992cb984SSergei Barannikov 
1238992cb984SSergei Barannikov   /// classify - Determine the x86_64 register classes in which the
1239992cb984SSergei Barannikov   /// given type T should be passed.
1240992cb984SSergei Barannikov   ///
1241992cb984SSergei Barannikov   /// \param Lo - The classification for the parts of the type
1242992cb984SSergei Barannikov   /// residing in the low word of the containing object.
1243992cb984SSergei Barannikov   ///
1244992cb984SSergei Barannikov   /// \param Hi - The classification for the parts of the type
1245992cb984SSergei Barannikov   /// residing in the high word of the containing object.
1246992cb984SSergei Barannikov   ///
1247992cb984SSergei Barannikov   /// \param OffsetBase - The bit offset of this type in the
1248992cb984SSergei Barannikov   /// containing object.  Some parameters are classified different
1249992cb984SSergei Barannikov   /// depending on whether they straddle an eightbyte boundary.
1250992cb984SSergei Barannikov   ///
1251992cb984SSergei Barannikov   /// \param isNamedArg - Whether the argument in question is a "named"
1252992cb984SSergei Barannikov   /// argument, as used in AMD64-ABI 3.5.7.
1253992cb984SSergei Barannikov   ///
1254992cb984SSergei Barannikov   /// \param IsRegCall - Whether the calling conversion is regcall.
1255992cb984SSergei Barannikov   ///
1256992cb984SSergei Barannikov   /// If a word is unused its result will be NoClass; if a type should
1257992cb984SSergei Barannikov   /// be passed in Memory then at least the classification of \arg Lo
1258992cb984SSergei Barannikov   /// will be Memory.
1259992cb984SSergei Barannikov   ///
1260992cb984SSergei Barannikov   /// The \arg Lo class will be NoClass iff the argument is ignored.
1261992cb984SSergei Barannikov   ///
1262992cb984SSergei Barannikov   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1263992cb984SSergei Barannikov   /// also be ComplexX87.
1264992cb984SSergei Barannikov   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1265992cb984SSergei Barannikov                 bool isNamedArg, bool IsRegCall = false) const;
1266992cb984SSergei Barannikov 
1267992cb984SSergei Barannikov   llvm::Type *GetByteVectorType(QualType Ty) const;
1268992cb984SSergei Barannikov   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1269992cb984SSergei Barannikov                                  unsigned IROffset, QualType SourceTy,
1270992cb984SSergei Barannikov                                  unsigned SourceOffset) const;
1271992cb984SSergei Barannikov   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1272992cb984SSergei Barannikov                                      unsigned IROffset, QualType SourceTy,
1273992cb984SSergei Barannikov                                      unsigned SourceOffset) const;
1274992cb984SSergei Barannikov 
1275992cb984SSergei Barannikov   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1276992cb984SSergei Barannikov   /// such that the argument will be returned in memory.
1277992cb984SSergei Barannikov   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1278992cb984SSergei Barannikov 
1279992cb984SSergei Barannikov   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1280992cb984SSergei Barannikov   /// such that the argument will be passed in memory.
1281992cb984SSergei Barannikov   ///
1282992cb984SSergei Barannikov   /// \param freeIntRegs - The number of free integer registers remaining
1283992cb984SSergei Barannikov   /// available.
1284992cb984SSergei Barannikov   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1285992cb984SSergei Barannikov 
1286992cb984SSergei Barannikov   ABIArgInfo classifyReturnType(QualType RetTy) const;
1287992cb984SSergei Barannikov 
1288992cb984SSergei Barannikov   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1289992cb984SSergei Barannikov                                   unsigned &neededInt, unsigned &neededSSE,
1290992cb984SSergei Barannikov                                   bool isNamedArg,
1291992cb984SSergei Barannikov                                   bool IsRegCall = false) const;
1292992cb984SSergei Barannikov 
1293992cb984SSergei Barannikov   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1294992cb984SSergei Barannikov                                        unsigned &NeededSSE,
1295992cb984SSergei Barannikov                                        unsigned &MaxVectorWidth) const;
1296992cb984SSergei Barannikov 
1297992cb984SSergei Barannikov   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1298992cb984SSergei Barannikov                                            unsigned &NeededSSE,
1299992cb984SSergei Barannikov                                            unsigned &MaxVectorWidth) const;
1300992cb984SSergei Barannikov 
1301992cb984SSergei Barannikov   bool IsIllegalVectorType(QualType Ty) const;
1302992cb984SSergei Barannikov 
1303992cb984SSergei Barannikov   /// The 0.98 ABI revision clarified a lot of ambiguities,
1304992cb984SSergei Barannikov   /// unfortunately in ways that were not always consistent with
1305992cb984SSergei Barannikov   /// certain previous compilers.  In particular, platforms which
1306992cb984SSergei Barannikov   /// required strict binary compatibility with older versions of GCC
1307992cb984SSergei Barannikov   /// may need to exempt themselves.
1308992cb984SSergei Barannikov   bool honorsRevision0_98() const {
1309992cb984SSergei Barannikov     return !getTarget().getTriple().isOSDarwin();
1310992cb984SSergei Barannikov   }
1311992cb984SSergei Barannikov 
1312992cb984SSergei Barannikov   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1313992cb984SSergei Barannikov   /// classify it as INTEGER (for compatibility with older clang compilers).
1314992cb984SSergei Barannikov   bool classifyIntegerMMXAsSSE() const {
1315992cb984SSergei Barannikov     // Clang <= 3.8 did not do this.
1316992cb984SSergei Barannikov     if (getContext().getLangOpts().getClangABICompat() <=
1317992cb984SSergei Barannikov         LangOptions::ClangABI::Ver3_8)
1318992cb984SSergei Barannikov       return false;
1319992cb984SSergei Barannikov 
1320992cb984SSergei Barannikov     const llvm::Triple &Triple = getTarget().getTriple();
1321992cb984SSergei Barannikov     if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1322992cb984SSergei Barannikov       return false;
1323992cb984SSergei Barannikov     return true;
1324992cb984SSergei Barannikov   }
1325992cb984SSergei Barannikov 
1326992cb984SSergei Barannikov   // GCC classifies vectors of __int128 as memory.
1327992cb984SSergei Barannikov   bool passInt128VectorsInMem() const {
1328992cb984SSergei Barannikov     // Clang <= 9.0 did not do this.
1329992cb984SSergei Barannikov     if (getContext().getLangOpts().getClangABICompat() <=
1330992cb984SSergei Barannikov         LangOptions::ClangABI::Ver9)
1331992cb984SSergei Barannikov       return false;
1332992cb984SSergei Barannikov 
1333992cb984SSergei Barannikov     const llvm::Triple &T = getTarget().getTriple();
1334992cb984SSergei Barannikov     return T.isOSLinux() || T.isOSNetBSD();
1335992cb984SSergei Barannikov   }
1336992cb984SSergei Barannikov 
1337992cb984SSergei Barannikov   X86AVXABILevel AVXLevel;
1338992cb984SSergei Barannikov   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1339992cb984SSergei Barannikov   // 64-bit hardware.
1340992cb984SSergei Barannikov   bool Has64BitPointers;
1341992cb984SSergei Barannikov 
1342992cb984SSergei Barannikov public:
1343992cb984SSergei Barannikov   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1344992cb984SSergei Barannikov       : ABIInfo(CGT), AVXLevel(AVXLevel),
1345992cb984SSergei Barannikov         Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1346992cb984SSergei Barannikov 
1347992cb984SSergei Barannikov   bool isPassedUsingAVXType(QualType type) const {
1348992cb984SSergei Barannikov     unsigned neededInt, neededSSE;
1349992cb984SSergei Barannikov     // The freeIntRegs argument doesn't matter here.
1350992cb984SSergei Barannikov     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1351992cb984SSergei Barannikov                                            /*isNamedArg*/true);
1352992cb984SSergei Barannikov     if (info.isDirect()) {
1353992cb984SSergei Barannikov       llvm::Type *ty = info.getCoerceToType();
1354992cb984SSergei Barannikov       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1355992cb984SSergei Barannikov         return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1356992cb984SSergei Barannikov     }
1357992cb984SSergei Barannikov     return false;
1358992cb984SSergei Barannikov   }
1359992cb984SSergei Barannikov 
1360992cb984SSergei Barannikov   void computeInfo(CGFunctionInfo &FI) const override;
1361992cb984SSergei Barannikov 
13626d973b45SMariya Podchishchaeva   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
13636d973b45SMariya Podchishchaeva                    AggValueSlot Slot) const override;
13646d973b45SMariya Podchishchaeva   RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
13656d973b45SMariya Podchishchaeva                      AggValueSlot Slot) const override;
1366992cb984SSergei Barannikov 
1367992cb984SSergei Barannikov   bool has64BitPointers() const {
1368992cb984SSergei Barannikov     return Has64BitPointers;
1369992cb984SSergei Barannikov   }
1370992cb984SSergei Barannikov };
1371992cb984SSergei Barannikov 
1372992cb984SSergei Barannikov /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1373992cb984SSergei Barannikov class WinX86_64ABIInfo : public ABIInfo {
1374992cb984SSergei Barannikov public:
1375992cb984SSergei Barannikov   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1376992cb984SSergei Barannikov       : ABIInfo(CGT), AVXLevel(AVXLevel),
1377992cb984SSergei Barannikov         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1378992cb984SSergei Barannikov 
1379992cb984SSergei Barannikov   void computeInfo(CGFunctionInfo &FI) const override;
1380992cb984SSergei Barannikov 
13816d973b45SMariya Podchishchaeva   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
13826d973b45SMariya Podchishchaeva                    AggValueSlot Slot) const override;
1383992cb984SSergei Barannikov 
1384992cb984SSergei Barannikov   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1385992cb984SSergei Barannikov     // FIXME: Assumes vectorcall is in use.
1386992cb984SSergei Barannikov     return isX86VectorTypeForVectorCall(getContext(), Ty);
1387992cb984SSergei Barannikov   }
1388992cb984SSergei Barannikov 
1389992cb984SSergei Barannikov   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1390992cb984SSergei Barannikov                                          uint64_t NumMembers) const override {
1391992cb984SSergei Barannikov     // FIXME: Assumes vectorcall is in use.
1392992cb984SSergei Barannikov     return isX86VectorCallAggregateSmallEnough(NumMembers);
1393992cb984SSergei Barannikov   }
1394992cb984SSergei Barannikov 
1395992cb984SSergei Barannikov private:
1396992cb984SSergei Barannikov   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1397992cb984SSergei Barannikov                       bool IsVectorCall, bool IsRegCall) const;
1398992cb984SSergei Barannikov   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1399992cb984SSergei Barannikov                                            const ABIArgInfo &current) const;
1400992cb984SSergei Barannikov 
1401992cb984SSergei Barannikov   X86AVXABILevel AVXLevel;
1402992cb984SSergei Barannikov 
1403992cb984SSergei Barannikov   bool IsMingw64;
1404992cb984SSergei Barannikov };
1405992cb984SSergei Barannikov 
1406992cb984SSergei Barannikov class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1407992cb984SSergei Barannikov public:
1408992cb984SSergei Barannikov   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1409992cb984SSergei Barannikov       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1410992cb984SSergei Barannikov     SwiftInfo =
1411992cb984SSergei Barannikov         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1412992cb984SSergei Barannikov   }
1413992cb984SSergei Barannikov 
1414992cb984SSergei Barannikov   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1415992cb984SSergei Barannikov   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1416992cb984SSergei Barannikov   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1417992cb984SSergei Barannikov 
1418992cb984SSergei Barannikov   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1419992cb984SSergei Barannikov     return 7;
1420992cb984SSergei Barannikov   }
1421992cb984SSergei Barannikov 
1422992cb984SSergei Barannikov   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1423992cb984SSergei Barannikov                                llvm::Value *Address) const override {
1424992cb984SSergei Barannikov     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1425992cb984SSergei Barannikov 
1426992cb984SSergei Barannikov     // 0-15 are the 16 integer registers.
1427992cb984SSergei Barannikov     // 16 is %rip.
1428992cb984SSergei Barannikov     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1429992cb984SSergei Barannikov     return false;
1430992cb984SSergei Barannikov   }
1431992cb984SSergei Barannikov 
1432992cb984SSergei Barannikov   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1433992cb984SSergei Barannikov                                   StringRef Constraint,
1434992cb984SSergei Barannikov                                   llvm::Type* Ty) const override {
1435992cb984SSergei Barannikov     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1436992cb984SSergei Barannikov   }
1437992cb984SSergei Barannikov 
1438992cb984SSergei Barannikov   bool isNoProtoCallVariadic(const CallArgList &args,
1439992cb984SSergei Barannikov                              const FunctionNoProtoType *fnType) const override {
1440992cb984SSergei Barannikov     // The default CC on x86-64 sets %al to the number of SSA
1441992cb984SSergei Barannikov     // registers used, and GCC sets this when calling an unprototyped
1442992cb984SSergei Barannikov     // function, so we override the default behavior.  However, don't do
1443992cb984SSergei Barannikov     // that when AVX types are involved: the ABI explicitly states it is
1444992cb984SSergei Barannikov     // undefined, and it doesn't work in practice because of how the ABI
1445992cb984SSergei Barannikov     // defines varargs anyway.
1446992cb984SSergei Barannikov     if (fnType->getCallConv() == CC_C) {
1447992cb984SSergei Barannikov       bool HasAVXType = false;
1448992cb984SSergei Barannikov       for (CallArgList::const_iterator
1449992cb984SSergei Barannikov              it = args.begin(), ie = args.end(); it != ie; ++it) {
1450992cb984SSergei Barannikov         if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
1451992cb984SSergei Barannikov           HasAVXType = true;
1452992cb984SSergei Barannikov           break;
1453992cb984SSergei Barannikov         }
1454992cb984SSergei Barannikov       }
1455992cb984SSergei Barannikov 
1456992cb984SSergei Barannikov       if (!HasAVXType)
1457992cb984SSergei Barannikov         return true;
1458992cb984SSergei Barannikov     }
1459992cb984SSergei Barannikov 
1460992cb984SSergei Barannikov     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1461992cb984SSergei Barannikov   }
1462992cb984SSergei Barannikov 
1463992cb984SSergei Barannikov   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1464992cb984SSergei Barannikov                            CodeGen::CodeGenModule &CGM) const override {
1465992cb984SSergei Barannikov     if (GV->isDeclaration())
1466992cb984SSergei Barannikov       return;
1467992cb984SSergei Barannikov     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1468992cb984SSergei Barannikov       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1469992cb984SSergei Barannikov         llvm::Function *Fn = cast<llvm::Function>(GV);
1470992cb984SSergei Barannikov         Fn->addFnAttr("stackrealign");
1471992cb984SSergei Barannikov       }
1472992cb984SSergei Barannikov 
1473992cb984SSergei Barannikov       addX86InterruptAttrs(FD, GV, CGM);
1474992cb984SSergei Barannikov     }
1475992cb984SSergei Barannikov   }
1476992cb984SSergei Barannikov 
1477992cb984SSergei Barannikov   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1478992cb984SSergei Barannikov                             const FunctionDecl *Caller,
14791fd196c8Sostannard                             const FunctionDecl *Callee, const CallArgList &Args,
14801fd196c8Sostannard                             QualType ReturnType) const override;
1481992cb984SSergei Barannikov };
1482992cb984SSergei Barannikov } // namespace
1483992cb984SSergei Barannikov 
1484992cb984SSergei Barannikov static void initFeatureMaps(const ASTContext &Ctx,
1485992cb984SSergei Barannikov                             llvm::StringMap<bool> &CallerMap,
1486992cb984SSergei Barannikov                             const FunctionDecl *Caller,
1487992cb984SSergei Barannikov                             llvm::StringMap<bool> &CalleeMap,
1488992cb984SSergei Barannikov                             const FunctionDecl *Callee) {
1489992cb984SSergei Barannikov   if (CalleeMap.empty() && CallerMap.empty()) {
1490992cb984SSergei Barannikov     // The caller is potentially nullptr in the case where the call isn't in a
1491992cb984SSergei Barannikov     // function.  In this case, the getFunctionFeatureMap ensures we just get
1492992cb984SSergei Barannikov     // the TU level setting (since it cannot be modified by 'target'..
1493992cb984SSergei Barannikov     Ctx.getFunctionFeatureMap(CallerMap, Caller);
1494992cb984SSergei Barannikov     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1495992cb984SSergei Barannikov   }
1496992cb984SSergei Barannikov }
1497992cb984SSergei Barannikov 
1498992cb984SSergei Barannikov static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
1499992cb984SSergei Barannikov                                  SourceLocation CallLoc,
1500992cb984SSergei Barannikov                                  const llvm::StringMap<bool> &CallerMap,
1501992cb984SSergei Barannikov                                  const llvm::StringMap<bool> &CalleeMap,
1502992cb984SSergei Barannikov                                  QualType Ty, StringRef Feature,
1503992cb984SSergei Barannikov                                  bool IsArgument) {
1504992cb984SSergei Barannikov   bool CallerHasFeat = CallerMap.lookup(Feature);
1505992cb984SSergei Barannikov   bool CalleeHasFeat = CalleeMap.lookup(Feature);
1506992cb984SSergei Barannikov   if (!CallerHasFeat && !CalleeHasFeat)
1507992cb984SSergei Barannikov     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1508992cb984SSergei Barannikov            << IsArgument << Ty << Feature;
1509992cb984SSergei Barannikov 
1510992cb984SSergei Barannikov   // Mixing calling conventions here is very clearly an error.
1511992cb984SSergei Barannikov   if (!CallerHasFeat || !CalleeHasFeat)
1512992cb984SSergei Barannikov     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1513992cb984SSergei Barannikov            << IsArgument << Ty << Feature;
1514992cb984SSergei Barannikov 
1515992cb984SSergei Barannikov   // Else, both caller and callee have the required feature, so there is no need
1516992cb984SSergei Barannikov   // to diagnose.
1517992cb984SSergei Barannikov   return false;
1518992cb984SSergei Barannikov }
1519992cb984SSergei Barannikov 
152024194090SPhoebe Wang static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
152124194090SPhoebe Wang                                     SourceLocation CallLoc,
152224194090SPhoebe Wang                                     const llvm::StringMap<bool> &CallerMap,
152324194090SPhoebe Wang                                     const llvm::StringMap<bool> &CalleeMap,
152424194090SPhoebe Wang                                     QualType Ty, bool IsArgument) {
152524194090SPhoebe Wang   bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
152624194090SPhoebe Wang   bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
152724194090SPhoebe Wang 
152824194090SPhoebe Wang   // Forbid 512-bit or larger vector pass or return when we disabled ZMM
152924194090SPhoebe Wang   // instructions.
153024194090SPhoebe Wang   if (Caller256 || Callee256)
153124194090SPhoebe Wang     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
153224194090SPhoebe Wang            << IsArgument << Ty << "evex512";
153324194090SPhoebe Wang 
153424194090SPhoebe Wang   return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
153524194090SPhoebe Wang                               "avx512f", IsArgument);
153624194090SPhoebe Wang }
153724194090SPhoebe Wang 
1538992cb984SSergei Barannikov static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
1539992cb984SSergei Barannikov                           SourceLocation CallLoc,
1540992cb984SSergei Barannikov                           const llvm::StringMap<bool> &CallerMap,
1541992cb984SSergei Barannikov                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1542992cb984SSergei Barannikov                           bool IsArgument) {
1543992cb984SSergei Barannikov   uint64_t Size = Ctx.getTypeSize(Ty);
1544992cb984SSergei Barannikov   if (Size > 256)
154524194090SPhoebe Wang     return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
154624194090SPhoebe Wang                                    IsArgument);
1547992cb984SSergei Barannikov 
1548992cb984SSergei Barannikov   if (Size > 128)
1549992cb984SSergei Barannikov     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
1550992cb984SSergei Barannikov                                 IsArgument);
1551992cb984SSergei Barannikov 
1552992cb984SSergei Barannikov   return false;
1553992cb984SSergei Barannikov }
1554992cb984SSergei Barannikov 
15551fd196c8Sostannard void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
15561fd196c8Sostannard                                                    SourceLocation CallLoc,
15571fd196c8Sostannard                                                    const FunctionDecl *Caller,
15581fd196c8Sostannard                                                    const FunctionDecl *Callee,
15591fd196c8Sostannard                                                    const CallArgList &Args,
15601fd196c8Sostannard                                                    QualType ReturnType) const {
15611fd196c8Sostannard   if (!Callee)
15621fd196c8Sostannard     return;
15631fd196c8Sostannard 
1564992cb984SSergei Barannikov   llvm::StringMap<bool> CallerMap;
1565992cb984SSergei Barannikov   llvm::StringMap<bool> CalleeMap;
1566992cb984SSergei Barannikov   unsigned ArgIndex = 0;
1567992cb984SSergei Barannikov 
1568992cb984SSergei Barannikov   // We need to loop through the actual call arguments rather than the
1569992cb984SSergei Barannikov   // function's parameters, in case this variadic.
1570992cb984SSergei Barannikov   for (const CallArg &Arg : Args) {
1571992cb984SSergei Barannikov     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1572992cb984SSergei Barannikov     // additionally changes how vectors >256 in size are passed. Like GCC, we
1573992cb984SSergei Barannikov     // warn when a function is called with an argument where this will change.
1574992cb984SSergei Barannikov     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1575992cb984SSergei Barannikov     // the caller and callee features are mismatched.
1576992cb984SSergei Barannikov     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1577992cb984SSergei Barannikov     // change its ABI with attribute-target after this call.
1578992cb984SSergei Barannikov     if (Arg.getType()->isVectorType() &&
1579992cb984SSergei Barannikov         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1580992cb984SSergei Barannikov       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1581992cb984SSergei Barannikov       QualType Ty = Arg.getType();
1582992cb984SSergei Barannikov       // The CallArg seems to have desugared the type already, so for clearer
1583992cb984SSergei Barannikov       // diagnostics, replace it with the type in the FunctionDecl if possible.
1584992cb984SSergei Barannikov       if (ArgIndex < Callee->getNumParams())
1585992cb984SSergei Barannikov         Ty = Callee->getParamDecl(ArgIndex)->getType();
1586992cb984SSergei Barannikov 
1587992cb984SSergei Barannikov       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1588992cb984SSergei Barannikov                         CalleeMap, Ty, /*IsArgument*/ true))
1589992cb984SSergei Barannikov         return;
1590992cb984SSergei Barannikov     }
1591992cb984SSergei Barannikov     ++ArgIndex;
1592992cb984SSergei Barannikov   }
1593992cb984SSergei Barannikov 
1594992cb984SSergei Barannikov   // Check return always, as we don't have a good way of knowing in codegen
1595992cb984SSergei Barannikov   // whether this value is used, tail-called, etc.
1596992cb984SSergei Barannikov   if (Callee->getReturnType()->isVectorType() &&
1597992cb984SSergei Barannikov       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1598992cb984SSergei Barannikov     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1599992cb984SSergei Barannikov     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1600992cb984SSergei Barannikov                   CalleeMap, Callee->getReturnType(),
1601992cb984SSergei Barannikov                   /*IsArgument*/ false);
1602992cb984SSergei Barannikov   }
1603992cb984SSergei Barannikov }
1604992cb984SSergei Barannikov 
1605992cb984SSergei Barannikov std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
1606992cb984SSergei Barannikov   // If the argument does not end in .lib, automatically add the suffix.
1607992cb984SSergei Barannikov   // If the argument contains a space, enclose it in quotes.
1608992cb984SSergei Barannikov   // This matches the behavior of MSVC.
1609992cb984SSergei Barannikov   bool Quote = Lib.contains(' ');
1610992cb984SSergei Barannikov   std::string ArgStr = Quote ? "\"" : "";
1611992cb984SSergei Barannikov   ArgStr += Lib;
1612992cb984SSergei Barannikov   if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1613992cb984SSergei Barannikov     ArgStr += ".lib";
1614992cb984SSergei Barannikov   ArgStr += Quote ? "\"" : "";
1615992cb984SSergei Barannikov   return ArgStr;
1616992cb984SSergei Barannikov }
1617992cb984SSergei Barannikov 
1618992cb984SSergei Barannikov namespace {
1619992cb984SSergei Barannikov class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1620992cb984SSergei Barannikov public:
1621992cb984SSergei Barannikov   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1622992cb984SSergei Barannikov         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1623992cb984SSergei Barannikov         unsigned NumRegisterParameters)
1624992cb984SSergei Barannikov     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1625992cb984SSergei Barannikov         Win32StructABI, NumRegisterParameters, false) {}
1626992cb984SSergei Barannikov 
1627992cb984SSergei Barannikov   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1628992cb984SSergei Barannikov                            CodeGen::CodeGenModule &CGM) const override;
1629992cb984SSergei Barannikov 
1630992cb984SSergei Barannikov   void getDependentLibraryOption(llvm::StringRef Lib,
1631992cb984SSergei Barannikov                                  llvm::SmallString<24> &Opt) const override {
1632992cb984SSergei Barannikov     Opt = "/DEFAULTLIB:";
1633992cb984SSergei Barannikov     Opt += qualifyWindowsLibrary(Lib);
1634992cb984SSergei Barannikov   }
1635992cb984SSergei Barannikov 
1636992cb984SSergei Barannikov   void getDetectMismatchOption(llvm::StringRef Name,
1637992cb984SSergei Barannikov                                llvm::StringRef Value,
1638992cb984SSergei Barannikov                                llvm::SmallString<32> &Opt) const override {
1639992cb984SSergei Barannikov     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1640992cb984SSergei Barannikov   }
1641992cb984SSergei Barannikov };
1642992cb984SSergei Barannikov } // namespace
1643992cb984SSergei Barannikov 
1644992cb984SSergei Barannikov void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1645992cb984SSergei Barannikov     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1646992cb984SSergei Barannikov   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1647992cb984SSergei Barannikov   if (GV->isDeclaration())
1648992cb984SSergei Barannikov     return;
1649992cb984SSergei Barannikov   addStackProbeTargetAttributes(D, GV, CGM);
1650992cb984SSergei Barannikov }
1651992cb984SSergei Barannikov 
1652992cb984SSergei Barannikov namespace {
1653992cb984SSergei Barannikov class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1654992cb984SSergei Barannikov public:
1655992cb984SSergei Barannikov   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1656992cb984SSergei Barannikov                              X86AVXABILevel AVXLevel)
1657992cb984SSergei Barannikov       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1658992cb984SSergei Barannikov     SwiftInfo =
1659992cb984SSergei Barannikov         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1660992cb984SSergei Barannikov   }
1661992cb984SSergei Barannikov 
1662992cb984SSergei Barannikov   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1663992cb984SSergei Barannikov                            CodeGen::CodeGenModule &CGM) const override;
1664992cb984SSergei Barannikov 
1665992cb984SSergei Barannikov   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1666992cb984SSergei Barannikov     return 7;
1667992cb984SSergei Barannikov   }
1668992cb984SSergei Barannikov 
1669992cb984SSergei Barannikov   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1670992cb984SSergei Barannikov                                llvm::Value *Address) const override {
1671992cb984SSergei Barannikov     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1672992cb984SSergei Barannikov 
1673992cb984SSergei Barannikov     // 0-15 are the 16 integer registers.
1674992cb984SSergei Barannikov     // 16 is %rip.
1675992cb984SSergei Barannikov     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1676992cb984SSergei Barannikov     return false;
1677992cb984SSergei Barannikov   }
1678992cb984SSergei Barannikov 
1679992cb984SSergei Barannikov   void getDependentLibraryOption(llvm::StringRef Lib,
1680992cb984SSergei Barannikov                                  llvm::SmallString<24> &Opt) const override {
1681992cb984SSergei Barannikov     Opt = "/DEFAULTLIB:";
1682992cb984SSergei Barannikov     Opt += qualifyWindowsLibrary(Lib);
1683992cb984SSergei Barannikov   }
1684992cb984SSergei Barannikov 
1685992cb984SSergei Barannikov   void getDetectMismatchOption(llvm::StringRef Name,
1686992cb984SSergei Barannikov                                llvm::StringRef Value,
1687992cb984SSergei Barannikov                                llvm::SmallString<32> &Opt) const override {
1688992cb984SSergei Barannikov     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1689992cb984SSergei Barannikov   }
1690992cb984SSergei Barannikov };
1691992cb984SSergei Barannikov } // namespace
1692992cb984SSergei Barannikov 
1693992cb984SSergei Barannikov void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1694992cb984SSergei Barannikov     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1695992cb984SSergei Barannikov   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1696992cb984SSergei Barannikov   if (GV->isDeclaration())
1697992cb984SSergei Barannikov     return;
1698992cb984SSergei Barannikov   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1699992cb984SSergei Barannikov     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1700992cb984SSergei Barannikov       llvm::Function *Fn = cast<llvm::Function>(GV);
1701992cb984SSergei Barannikov       Fn->addFnAttr("stackrealign");
1702992cb984SSergei Barannikov     }
1703992cb984SSergei Barannikov 
1704992cb984SSergei Barannikov     addX86InterruptAttrs(FD, GV, CGM);
1705992cb984SSergei Barannikov   }
1706992cb984SSergei Barannikov 
1707992cb984SSergei Barannikov   addStackProbeTargetAttributes(D, GV, CGM);
1708992cb984SSergei Barannikov }
1709992cb984SSergei Barannikov 
1710992cb984SSergei Barannikov void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1711992cb984SSergei Barannikov                               Class &Hi) const {
1712992cb984SSergei Barannikov   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1713992cb984SSergei Barannikov   //
1714992cb984SSergei Barannikov   // (a) If one of the classes is Memory, the whole argument is passed in
1715992cb984SSergei Barannikov   //     memory.
1716992cb984SSergei Barannikov   //
1717992cb984SSergei Barannikov   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1718992cb984SSergei Barannikov   //     memory.
1719992cb984SSergei Barannikov   //
1720992cb984SSergei Barannikov   // (c) If the size of the aggregate exceeds two eightbytes and the first
1721992cb984SSergei Barannikov   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1722992cb984SSergei Barannikov   //     argument is passed in memory. NOTE: This is necessary to keep the
1723992cb984SSergei Barannikov   //     ABI working for processors that don't support the __m256 type.
1724992cb984SSergei Barannikov   //
1725992cb984SSergei Barannikov   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1726992cb984SSergei Barannikov   //
1727992cb984SSergei Barannikov   // Some of these are enforced by the merging logic.  Others can arise
1728992cb984SSergei Barannikov   // only with unions; for example:
1729992cb984SSergei Barannikov   //   union { _Complex double; unsigned; }
1730992cb984SSergei Barannikov   //
1731992cb984SSergei Barannikov   // Note that clauses (b) and (c) were added in 0.98.
1732992cb984SSergei Barannikov   //
1733992cb984SSergei Barannikov   if (Hi == Memory)
1734992cb984SSergei Barannikov     Lo = Memory;
1735992cb984SSergei Barannikov   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1736992cb984SSergei Barannikov     Lo = Memory;
1737992cb984SSergei Barannikov   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1738992cb984SSergei Barannikov     Lo = Memory;
1739992cb984SSergei Barannikov   if (Hi == SSEUp && Lo != SSE)
1740992cb984SSergei Barannikov     Hi = SSE;
1741992cb984SSergei Barannikov }
1742992cb984SSergei Barannikov 
1743992cb984SSergei Barannikov X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1744992cb984SSergei Barannikov   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1745992cb984SSergei Barannikov   // classified recursively so that always two fields are
1746992cb984SSergei Barannikov   // considered. The resulting class is calculated according to
1747992cb984SSergei Barannikov   // the classes of the fields in the eightbyte:
1748992cb984SSergei Barannikov   //
1749992cb984SSergei Barannikov   // (a) If both classes are equal, this is the resulting class.
1750992cb984SSergei Barannikov   //
1751992cb984SSergei Barannikov   // (b) If one of the classes is NO_CLASS, the resulting class is
1752992cb984SSergei Barannikov   // the other class.
1753992cb984SSergei Barannikov   //
1754992cb984SSergei Barannikov   // (c) If one of the classes is MEMORY, the result is the MEMORY
1755992cb984SSergei Barannikov   // class.
1756992cb984SSergei Barannikov   //
1757992cb984SSergei Barannikov   // (d) If one of the classes is INTEGER, the result is the
1758992cb984SSergei Barannikov   // INTEGER.
1759992cb984SSergei Barannikov   //
1760992cb984SSergei Barannikov   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1761992cb984SSergei Barannikov   // MEMORY is used as class.
1762992cb984SSergei Barannikov   //
1763992cb984SSergei Barannikov   // (f) Otherwise class SSE is used.
1764992cb984SSergei Barannikov 
1765992cb984SSergei Barannikov   // Accum should never be memory (we should have returned) or
1766992cb984SSergei Barannikov   // ComplexX87 (because this cannot be passed in a structure).
1767992cb984SSergei Barannikov   assert((Accum != Memory && Accum != ComplexX87) &&
1768992cb984SSergei Barannikov          "Invalid accumulated classification during merge.");
1769992cb984SSergei Barannikov   if (Accum == Field || Field == NoClass)
1770992cb984SSergei Barannikov     return Accum;
1771992cb984SSergei Barannikov   if (Field == Memory)
1772992cb984SSergei Barannikov     return Memory;
1773992cb984SSergei Barannikov   if (Accum == NoClass)
1774992cb984SSergei Barannikov     return Field;
1775992cb984SSergei Barannikov   if (Accum == Integer || Field == Integer)
1776992cb984SSergei Barannikov     return Integer;
1777992cb984SSergei Barannikov   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1778992cb984SSergei Barannikov       Accum == X87 || Accum == X87Up)
1779992cb984SSergei Barannikov     return Memory;
1780992cb984SSergei Barannikov   return SSE;
1781992cb984SSergei Barannikov }
1782992cb984SSergei Barannikov 
1783992cb984SSergei Barannikov void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1784992cb984SSergei Barannikov                              Class &Hi, bool isNamedArg, bool IsRegCall) const {
1785992cb984SSergei Barannikov   // FIXME: This code can be simplified by introducing a simple value class for
1786992cb984SSergei Barannikov   // Class pairs with appropriate constructor methods for the various
1787992cb984SSergei Barannikov   // situations.
1788992cb984SSergei Barannikov 
1789992cb984SSergei Barannikov   // FIXME: Some of the split computations are wrong; unaligned vectors
1790992cb984SSergei Barannikov   // shouldn't be passed in registers for example, so there is no chance they
1791992cb984SSergei Barannikov   // can straddle an eightbyte. Verify & simplify.
1792992cb984SSergei Barannikov 
1793992cb984SSergei Barannikov   Lo = Hi = NoClass;
1794992cb984SSergei Barannikov 
1795992cb984SSergei Barannikov   Class &Current = OffsetBase < 64 ? Lo : Hi;
1796992cb984SSergei Barannikov   Current = Memory;
1797992cb984SSergei Barannikov 
1798992cb984SSergei Barannikov   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1799992cb984SSergei Barannikov     BuiltinType::Kind k = BT->getKind();
1800992cb984SSergei Barannikov 
1801992cb984SSergei Barannikov     if (k == BuiltinType::Void) {
1802992cb984SSergei Barannikov       Current = NoClass;
1803992cb984SSergei Barannikov     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1804992cb984SSergei Barannikov       Lo = Integer;
1805992cb984SSergei Barannikov       Hi = Integer;
1806992cb984SSergei Barannikov     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1807992cb984SSergei Barannikov       Current = Integer;
1808992cb984SSergei Barannikov     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1809992cb984SSergei Barannikov                k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1810992cb984SSergei Barannikov       Current = SSE;
1811f07aba4bSPhoebe Wang     } else if (k == BuiltinType::Float128) {
1812f07aba4bSPhoebe Wang       Lo = SSE;
1813f07aba4bSPhoebe Wang       Hi = SSEUp;
1814992cb984SSergei Barannikov     } else if (k == BuiltinType::LongDouble) {
1815992cb984SSergei Barannikov       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1816992cb984SSergei Barannikov       if (LDF == &llvm::APFloat::IEEEquad()) {
1817992cb984SSergei Barannikov         Lo = SSE;
1818992cb984SSergei Barannikov         Hi = SSEUp;
1819992cb984SSergei Barannikov       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1820992cb984SSergei Barannikov         Lo = X87;
1821992cb984SSergei Barannikov         Hi = X87Up;
1822992cb984SSergei Barannikov       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1823992cb984SSergei Barannikov         Current = SSE;
1824992cb984SSergei Barannikov       } else
1825992cb984SSergei Barannikov         llvm_unreachable("unexpected long double representation!");
1826992cb984SSergei Barannikov     }
1827992cb984SSergei Barannikov     // FIXME: _Decimal32 and _Decimal64 are SSE.
1828992cb984SSergei Barannikov     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1829992cb984SSergei Barannikov     return;
1830992cb984SSergei Barannikov   }
1831992cb984SSergei Barannikov 
1832992cb984SSergei Barannikov   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1833992cb984SSergei Barannikov     // Classify the underlying integer type.
1834992cb984SSergei Barannikov     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1835992cb984SSergei Barannikov     return;
1836992cb984SSergei Barannikov   }
1837992cb984SSergei Barannikov 
1838992cb984SSergei Barannikov   if (Ty->hasPointerRepresentation()) {
1839992cb984SSergei Barannikov     Current = Integer;
1840992cb984SSergei Barannikov     return;
1841992cb984SSergei Barannikov   }
1842992cb984SSergei Barannikov 
1843992cb984SSergei Barannikov   if (Ty->isMemberPointerType()) {
1844992cb984SSergei Barannikov     if (Ty->isMemberFunctionPointerType()) {
1845992cb984SSergei Barannikov       if (Has64BitPointers) {
1846992cb984SSergei Barannikov         // If Has64BitPointers, this is an {i64, i64}, so classify both
1847992cb984SSergei Barannikov         // Lo and Hi now.
1848992cb984SSergei Barannikov         Lo = Hi = Integer;
1849992cb984SSergei Barannikov       } else {
1850992cb984SSergei Barannikov         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1851992cb984SSergei Barannikov         // straddles an eightbyte boundary, Hi should be classified as well.
1852992cb984SSergei Barannikov         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1853992cb984SSergei Barannikov         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1854992cb984SSergei Barannikov         if (EB_FuncPtr != EB_ThisAdj) {
1855992cb984SSergei Barannikov           Lo = Hi = Integer;
1856992cb984SSergei Barannikov         } else {
1857992cb984SSergei Barannikov           Current = Integer;
1858992cb984SSergei Barannikov         }
1859992cb984SSergei Barannikov       }
1860992cb984SSergei Barannikov     } else {
1861992cb984SSergei Barannikov       Current = Integer;
1862992cb984SSergei Barannikov     }
1863992cb984SSergei Barannikov     return;
1864992cb984SSergei Barannikov   }
1865992cb984SSergei Barannikov 
1866992cb984SSergei Barannikov   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1867992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(VT);
1868992cb984SSergei Barannikov     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1869992cb984SSergei Barannikov       // gcc passes the following as integer:
1870992cb984SSergei Barannikov       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1871992cb984SSergei Barannikov       // 2 bytes - <2 x char>, <1 x short>
1872992cb984SSergei Barannikov       // 1 byte  - <1 x char>
1873992cb984SSergei Barannikov       Current = Integer;
1874992cb984SSergei Barannikov 
1875992cb984SSergei Barannikov       // If this type crosses an eightbyte boundary, it should be
1876992cb984SSergei Barannikov       // split.
1877992cb984SSergei Barannikov       uint64_t EB_Lo = (OffsetBase) / 64;
1878992cb984SSergei Barannikov       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1879992cb984SSergei Barannikov       if (EB_Lo != EB_Hi)
1880992cb984SSergei Barannikov         Hi = Lo;
1881992cb984SSergei Barannikov     } else if (Size == 64) {
1882992cb984SSergei Barannikov       QualType ElementType = VT->getElementType();
1883992cb984SSergei Barannikov 
1884992cb984SSergei Barannikov       // gcc passes <1 x double> in memory. :(
1885992cb984SSergei Barannikov       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1886992cb984SSergei Barannikov         return;
1887992cb984SSergei Barannikov 
1888992cb984SSergei Barannikov       // gcc passes <1 x long long> as SSE but clang used to unconditionally
1889992cb984SSergei Barannikov       // pass them as integer.  For platforms where clang is the de facto
1890992cb984SSergei Barannikov       // platform compiler, we must continue to use integer.
1891992cb984SSergei Barannikov       if (!classifyIntegerMMXAsSSE() &&
1892992cb984SSergei Barannikov           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1893992cb984SSergei Barannikov            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1894992cb984SSergei Barannikov            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1895992cb984SSergei Barannikov            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1896992cb984SSergei Barannikov         Current = Integer;
1897992cb984SSergei Barannikov       else
1898992cb984SSergei Barannikov         Current = SSE;
1899992cb984SSergei Barannikov 
1900992cb984SSergei Barannikov       // If this type crosses an eightbyte boundary, it should be
1901992cb984SSergei Barannikov       // split.
1902992cb984SSergei Barannikov       if (OffsetBase && OffsetBase != 64)
1903992cb984SSergei Barannikov         Hi = Lo;
1904992cb984SSergei Barannikov     } else if (Size == 128 ||
1905992cb984SSergei Barannikov                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1906992cb984SSergei Barannikov       QualType ElementType = VT->getElementType();
1907992cb984SSergei Barannikov 
1908992cb984SSergei Barannikov       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1909992cb984SSergei Barannikov       if (passInt128VectorsInMem() && Size != 128 &&
1910992cb984SSergei Barannikov           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1911992cb984SSergei Barannikov            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1912992cb984SSergei Barannikov         return;
1913992cb984SSergei Barannikov 
1914992cb984SSergei Barannikov       // Arguments of 256-bits are split into four eightbyte chunks. The
1915992cb984SSergei Barannikov       // least significant one belongs to class SSE and all the others to class
1916992cb984SSergei Barannikov       // SSEUP. The original Lo and Hi design considers that types can't be
1917992cb984SSergei Barannikov       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1918992cb984SSergei Barannikov       // This design isn't correct for 256-bits, but since there're no cases
1919992cb984SSergei Barannikov       // where the upper parts would need to be inspected, avoid adding
1920992cb984SSergei Barannikov       // complexity and just consider Hi to match the 64-256 part.
1921992cb984SSergei Barannikov       //
1922992cb984SSergei Barannikov       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1923992cb984SSergei Barannikov       // registers if they are "named", i.e. not part of the "..." of a
1924992cb984SSergei Barannikov       // variadic function.
1925992cb984SSergei Barannikov       //
1926992cb984SSergei Barannikov       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1927992cb984SSergei Barannikov       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1928992cb984SSergei Barannikov       Lo = SSE;
1929992cb984SSergei Barannikov       Hi = SSEUp;
1930992cb984SSergei Barannikov     }
1931992cb984SSergei Barannikov     return;
1932992cb984SSergei Barannikov   }
1933992cb984SSergei Barannikov 
1934992cb984SSergei Barannikov   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1935992cb984SSergei Barannikov     QualType ET = getContext().getCanonicalType(CT->getElementType());
1936992cb984SSergei Barannikov 
1937992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(Ty);
1938992cb984SSergei Barannikov     if (ET->isIntegralOrEnumerationType()) {
1939992cb984SSergei Barannikov       if (Size <= 64)
1940992cb984SSergei Barannikov         Current = Integer;
1941992cb984SSergei Barannikov       else if (Size <= 128)
1942992cb984SSergei Barannikov         Lo = Hi = Integer;
1943992cb984SSergei Barannikov     } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1944992cb984SSergei Barannikov                ET->isBFloat16Type()) {
1945992cb984SSergei Barannikov       Current = SSE;
1946992cb984SSergei Barannikov     } else if (ET == getContext().DoubleTy) {
1947992cb984SSergei Barannikov       Lo = Hi = SSE;
1948992cb984SSergei Barannikov     } else if (ET == getContext().LongDoubleTy) {
1949992cb984SSergei Barannikov       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1950992cb984SSergei Barannikov       if (LDF == &llvm::APFloat::IEEEquad())
1951992cb984SSergei Barannikov         Current = Memory;
1952992cb984SSergei Barannikov       else if (LDF == &llvm::APFloat::x87DoubleExtended())
1953992cb984SSergei Barannikov         Current = ComplexX87;
1954992cb984SSergei Barannikov       else if (LDF == &llvm::APFloat::IEEEdouble())
1955992cb984SSergei Barannikov         Lo = Hi = SSE;
1956992cb984SSergei Barannikov       else
1957992cb984SSergei Barannikov         llvm_unreachable("unexpected long double representation!");
1958992cb984SSergei Barannikov     }
1959992cb984SSergei Barannikov 
1960992cb984SSergei Barannikov     // If this complex type crosses an eightbyte boundary then it
1961992cb984SSergei Barannikov     // should be split.
1962992cb984SSergei Barannikov     uint64_t EB_Real = (OffsetBase) / 64;
1963992cb984SSergei Barannikov     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1964992cb984SSergei Barannikov     if (Hi == NoClass && EB_Real != EB_Imag)
1965992cb984SSergei Barannikov       Hi = Lo;
1966992cb984SSergei Barannikov 
1967992cb984SSergei Barannikov     return;
1968992cb984SSergei Barannikov   }
1969992cb984SSergei Barannikov 
1970992cb984SSergei Barannikov   if (const auto *EITy = Ty->getAs<BitIntType>()) {
1971992cb984SSergei Barannikov     if (EITy->getNumBits() <= 64)
1972992cb984SSergei Barannikov       Current = Integer;
1973992cb984SSergei Barannikov     else if (EITy->getNumBits() <= 128)
1974992cb984SSergei Barannikov       Lo = Hi = Integer;
1975992cb984SSergei Barannikov     // Larger values need to get passed in memory.
1976992cb984SSergei Barannikov     return;
1977992cb984SSergei Barannikov   }
1978992cb984SSergei Barannikov 
1979992cb984SSergei Barannikov   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1980992cb984SSergei Barannikov     // Arrays are treated like structures.
1981992cb984SSergei Barannikov 
1982992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(Ty);
1983992cb984SSergei Barannikov 
1984992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1985992cb984SSergei Barannikov     // than eight eightbytes, ..., it has class MEMORY.
1986992cb984SSergei Barannikov     // regcall ABI doesn't have limitation to an object. The only limitation
1987992cb984SSergei Barannikov     // is the free registers, which will be checked in computeInfo.
1988992cb984SSergei Barannikov     if (!IsRegCall && Size > 512)
1989992cb984SSergei Barannikov       return;
1990992cb984SSergei Barannikov 
1991992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1992992cb984SSergei Barannikov     // fields, it has class MEMORY.
1993992cb984SSergei Barannikov     //
1994992cb984SSergei Barannikov     // Only need to check alignment of array base.
1995992cb984SSergei Barannikov     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1996992cb984SSergei Barannikov       return;
1997992cb984SSergei Barannikov 
1998992cb984SSergei Barannikov     // Otherwise implement simplified merge. We could be smarter about
1999992cb984SSergei Barannikov     // this, but it isn't worth it and would be harder to verify.
2000992cb984SSergei Barannikov     Current = NoClass;
2001992cb984SSergei Barannikov     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
200228ddbd4aSChris B     uint64_t ArraySize = AT->getZExtSize();
2003992cb984SSergei Barannikov 
2004992cb984SSergei Barannikov     // The only case a 256-bit wide vector could be used is when the array
2005992cb984SSergei Barannikov     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2006992cb984SSergei Barannikov     // to work for sizes wider than 128, early check and fallback to memory.
2007992cb984SSergei Barannikov     //
2008992cb984SSergei Barannikov     if (Size > 128 &&
2009992cb984SSergei Barannikov         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2010992cb984SSergei Barannikov       return;
2011992cb984SSergei Barannikov 
2012992cb984SSergei Barannikov     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2013992cb984SSergei Barannikov       Class FieldLo, FieldHi;
2014992cb984SSergei Barannikov       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2015992cb984SSergei Barannikov       Lo = merge(Lo, FieldLo);
2016992cb984SSergei Barannikov       Hi = merge(Hi, FieldHi);
2017992cb984SSergei Barannikov       if (Lo == Memory || Hi == Memory)
2018992cb984SSergei Barannikov         break;
2019992cb984SSergei Barannikov     }
2020992cb984SSergei Barannikov 
2021992cb984SSergei Barannikov     postMerge(Size, Lo, Hi);
2022992cb984SSergei Barannikov     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2023992cb984SSergei Barannikov     return;
2024992cb984SSergei Barannikov   }
2025992cb984SSergei Barannikov 
2026992cb984SSergei Barannikov   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2027992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(Ty);
2028992cb984SSergei Barannikov 
2029992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2030992cb984SSergei Barannikov     // than eight eightbytes, ..., it has class MEMORY.
2031992cb984SSergei Barannikov     if (Size > 512)
2032992cb984SSergei Barannikov       return;
2033992cb984SSergei Barannikov 
2034992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2035992cb984SSergei Barannikov     // copy constructor or a non-trivial destructor, it is passed by invisible
2036992cb984SSergei Barannikov     // reference.
2037992cb984SSergei Barannikov     if (getRecordArgABI(RT, getCXXABI()))
2038992cb984SSergei Barannikov       return;
2039992cb984SSergei Barannikov 
2040992cb984SSergei Barannikov     const RecordDecl *RD = RT->getDecl();
2041992cb984SSergei Barannikov 
2042992cb984SSergei Barannikov     // Assume variable sized types are passed in memory.
2043992cb984SSergei Barannikov     if (RD->hasFlexibleArrayMember())
2044992cb984SSergei Barannikov       return;
2045992cb984SSergei Barannikov 
2046992cb984SSergei Barannikov     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2047992cb984SSergei Barannikov 
2048992cb984SSergei Barannikov     // Reset Lo class, this will be recomputed.
2049992cb984SSergei Barannikov     Current = NoClass;
2050992cb984SSergei Barannikov 
2051992cb984SSergei Barannikov     // If this is a C++ record, classify the bases first.
2052992cb984SSergei Barannikov     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2053992cb984SSergei Barannikov       for (const auto &I : CXXRD->bases()) {
2054992cb984SSergei Barannikov         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2055992cb984SSergei Barannikov                "Unexpected base class!");
2056992cb984SSergei Barannikov         const auto *Base =
2057992cb984SSergei Barannikov             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2058992cb984SSergei Barannikov 
2059992cb984SSergei Barannikov         // Classify this field.
2060992cb984SSergei Barannikov         //
2061992cb984SSergei Barannikov         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2062992cb984SSergei Barannikov         // single eightbyte, each is classified separately. Each eightbyte gets
2063992cb984SSergei Barannikov         // initialized to class NO_CLASS.
2064992cb984SSergei Barannikov         Class FieldLo, FieldHi;
2065992cb984SSergei Barannikov         uint64_t Offset =
2066992cb984SSergei Barannikov           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2067992cb984SSergei Barannikov         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2068992cb984SSergei Barannikov         Lo = merge(Lo, FieldLo);
2069992cb984SSergei Barannikov         Hi = merge(Hi, FieldHi);
2070992cb984SSergei Barannikov         if (Lo == Memory || Hi == Memory) {
2071992cb984SSergei Barannikov           postMerge(Size, Lo, Hi);
2072992cb984SSergei Barannikov           return;
2073992cb984SSergei Barannikov         }
2074992cb984SSergei Barannikov       }
2075992cb984SSergei Barannikov     }
2076992cb984SSergei Barannikov 
2077992cb984SSergei Barannikov     // Classify the fields one at a time, merging the results.
2078992cb984SSergei Barannikov     unsigned idx = 0;
2079992cb984SSergei Barannikov     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2080992cb984SSergei Barannikov                                 LangOptions::ClangABI::Ver11 ||
2081992cb984SSergei Barannikov                             getContext().getTargetInfo().getTriple().isPS();
2082992cb984SSergei Barannikov     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2083992cb984SSergei Barannikov 
2084992cb984SSergei Barannikov     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2085992cb984SSergei Barannikov            i != e; ++i, ++idx) {
2086992cb984SSergei Barannikov       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2087992cb984SSergei Barannikov       bool BitField = i->isBitField();
2088992cb984SSergei Barannikov 
2089992cb984SSergei Barannikov       // Ignore padding bit-fields.
20903d56ea05STimm Baeder       if (BitField && i->isUnnamedBitField())
2091992cb984SSergei Barannikov         continue;
2092992cb984SSergei Barannikov 
2093992cb984SSergei Barannikov       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2094992cb984SSergei Barannikov       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2095992cb984SSergei Barannikov       //
2096992cb984SSergei Barannikov       // The only case a 256-bit or a 512-bit wide vector could be used is when
2097992cb984SSergei Barannikov       // the struct contains a single 256-bit or 512-bit element. Early check
2098992cb984SSergei Barannikov       // and fallback to memory.
2099992cb984SSergei Barannikov       //
2100992cb984SSergei Barannikov       // FIXME: Extended the Lo and Hi logic properly to work for size wider
2101992cb984SSergei Barannikov       // than 128.
2102992cb984SSergei Barannikov       if (Size > 128 &&
2103992cb984SSergei Barannikov           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2104992cb984SSergei Barannikov            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2105992cb984SSergei Barannikov         Lo = Memory;
2106992cb984SSergei Barannikov         postMerge(Size, Lo, Hi);
2107992cb984SSergei Barannikov         return;
2108992cb984SSergei Barannikov       }
2109000f2b51SLongsheng Mou 
2110000f2b51SLongsheng Mou       bool IsInMemory =
2111000f2b51SLongsheng Mou           Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
2112992cb984SSergei Barannikov       // Note, skip this test for bit-fields, see below.
2113000f2b51SLongsheng Mou       if (!BitField && IsInMemory) {
2114992cb984SSergei Barannikov         Lo = Memory;
2115992cb984SSergei Barannikov         postMerge(Size, Lo, Hi);
2116992cb984SSergei Barannikov         return;
2117992cb984SSergei Barannikov       }
2118992cb984SSergei Barannikov 
2119992cb984SSergei Barannikov       // Classify this field.
2120992cb984SSergei Barannikov       //
2121992cb984SSergei Barannikov       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2122992cb984SSergei Barannikov       // exceeds a single eightbyte, each is classified
2123992cb984SSergei Barannikov       // separately. Each eightbyte gets initialized to class
2124992cb984SSergei Barannikov       // NO_CLASS.
2125992cb984SSergei Barannikov       Class FieldLo, FieldHi;
2126992cb984SSergei Barannikov 
2127992cb984SSergei Barannikov       // Bit-fields require special handling, they do not force the
2128992cb984SSergei Barannikov       // structure to be passed in memory even if unaligned, and
2129992cb984SSergei Barannikov       // therefore they can straddle an eightbyte.
2130992cb984SSergei Barannikov       if (BitField) {
21313d56ea05STimm Baeder         assert(!i->isUnnamedBitField());
2132992cb984SSergei Barannikov         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2133*cfe26358STimm Baeder         uint64_t Size = i->getBitWidthValue();
2134992cb984SSergei Barannikov 
2135992cb984SSergei Barannikov         uint64_t EB_Lo = Offset / 64;
2136992cb984SSergei Barannikov         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2137992cb984SSergei Barannikov 
2138992cb984SSergei Barannikov         if (EB_Lo) {
2139992cb984SSergei Barannikov           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2140992cb984SSergei Barannikov           FieldLo = NoClass;
2141992cb984SSergei Barannikov           FieldHi = Integer;
2142992cb984SSergei Barannikov         } else {
2143992cb984SSergei Barannikov           FieldLo = Integer;
2144992cb984SSergei Barannikov           FieldHi = EB_Hi ? Integer : NoClass;
2145992cb984SSergei Barannikov         }
2146992cb984SSergei Barannikov       } else
2147992cb984SSergei Barannikov         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2148992cb984SSergei Barannikov       Lo = merge(Lo, FieldLo);
2149992cb984SSergei Barannikov       Hi = merge(Hi, FieldHi);
2150992cb984SSergei Barannikov       if (Lo == Memory || Hi == Memory)
2151992cb984SSergei Barannikov         break;
2152992cb984SSergei Barannikov     }
2153992cb984SSergei Barannikov 
2154992cb984SSergei Barannikov     postMerge(Size, Lo, Hi);
2155992cb984SSergei Barannikov   }
2156992cb984SSergei Barannikov }
2157992cb984SSergei Barannikov 
2158992cb984SSergei Barannikov ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2159992cb984SSergei Barannikov   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2160992cb984SSergei Barannikov   // place naturally.
2161992cb984SSergei Barannikov   if (!isAggregateTypeForABI(Ty)) {
2162992cb984SSergei Barannikov     // Treat an enum type as its underlying type.
2163992cb984SSergei Barannikov     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2164992cb984SSergei Barannikov       Ty = EnumTy->getDecl()->getIntegerType();
2165992cb984SSergei Barannikov 
2166992cb984SSergei Barannikov     if (Ty->isBitIntType())
2167992cb984SSergei Barannikov       return getNaturalAlignIndirect(Ty);
2168992cb984SSergei Barannikov 
2169992cb984SSergei Barannikov     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2170992cb984SSergei Barannikov                                               : ABIArgInfo::getDirect());
2171992cb984SSergei Barannikov   }
2172992cb984SSergei Barannikov 
2173992cb984SSergei Barannikov   return getNaturalAlignIndirect(Ty);
2174992cb984SSergei Barannikov }
2175992cb984SSergei Barannikov 
2176992cb984SSergei Barannikov bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2177992cb984SSergei Barannikov   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2178992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(VecTy);
2179992cb984SSergei Barannikov     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2180992cb984SSergei Barannikov     if (Size <= 64 || Size > LargestVector)
2181992cb984SSergei Barannikov       return true;
2182992cb984SSergei Barannikov     QualType EltTy = VecTy->getElementType();
2183992cb984SSergei Barannikov     if (passInt128VectorsInMem() &&
2184992cb984SSergei Barannikov         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2185992cb984SSergei Barannikov          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2186992cb984SSergei Barannikov       return true;
2187992cb984SSergei Barannikov   }
2188992cb984SSergei Barannikov 
2189992cb984SSergei Barannikov   return false;
2190992cb984SSergei Barannikov }
2191992cb984SSergei Barannikov 
2192992cb984SSergei Barannikov ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2193992cb984SSergei Barannikov                                             unsigned freeIntRegs) const {
2194992cb984SSergei Barannikov   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2195992cb984SSergei Barannikov   // place naturally.
2196992cb984SSergei Barannikov   //
2197992cb984SSergei Barannikov   // This assumption is optimistic, as there could be free registers available
2198992cb984SSergei Barannikov   // when we need to pass this argument in memory, and LLVM could try to pass
2199992cb984SSergei Barannikov   // the argument in the free register. This does not seem to happen currently,
2200992cb984SSergei Barannikov   // but this code would be much safer if we could mark the argument with
2201992cb984SSergei Barannikov   // 'onstack'. See PR12193.
2202992cb984SSergei Barannikov   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2203992cb984SSergei Barannikov       !Ty->isBitIntType()) {
2204992cb984SSergei Barannikov     // Treat an enum type as its underlying type.
2205992cb984SSergei Barannikov     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2206992cb984SSergei Barannikov       Ty = EnumTy->getDecl()->getIntegerType();
2207992cb984SSergei Barannikov 
2208992cb984SSergei Barannikov     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2209992cb984SSergei Barannikov                                               : ABIArgInfo::getDirect());
2210992cb984SSergei Barannikov   }
2211992cb984SSergei Barannikov 
2212992cb984SSergei Barannikov   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2213992cb984SSergei Barannikov     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2214992cb984SSergei Barannikov 
2215992cb984SSergei Barannikov   // Compute the byval alignment. We specify the alignment of the byval in all
2216992cb984SSergei Barannikov   // cases so that the mid-level optimizer knows the alignment of the byval.
2217992cb984SSergei Barannikov   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2218992cb984SSergei Barannikov 
2219992cb984SSergei Barannikov   // Attempt to avoid passing indirect results using byval when possible. This
2220992cb984SSergei Barannikov   // is important for good codegen.
2221992cb984SSergei Barannikov   //
2222992cb984SSergei Barannikov   // We do this by coercing the value into a scalar type which the backend can
2223992cb984SSergei Barannikov   // handle naturally (i.e., without using byval).
2224992cb984SSergei Barannikov   //
2225992cb984SSergei Barannikov   // For simplicity, we currently only do this when we have exhausted all of the
2226992cb984SSergei Barannikov   // free integer registers. Doing this when there are free integer registers
2227992cb984SSergei Barannikov   // would require more care, as we would have to ensure that the coerced value
2228992cb984SSergei Barannikov   // did not claim the unused register. That would require either reording the
2229992cb984SSergei Barannikov   // arguments to the function (so that any subsequent inreg values came first),
2230992cb984SSergei Barannikov   // or only doing this optimization when there were no following arguments that
2231992cb984SSergei Barannikov   // might be inreg.
2232992cb984SSergei Barannikov   //
2233992cb984SSergei Barannikov   // We currently expect it to be rare (particularly in well written code) for
2234992cb984SSergei Barannikov   // arguments to be passed on the stack when there are still free integer
2235992cb984SSergei Barannikov   // registers available (this would typically imply large structs being passed
2236992cb984SSergei Barannikov   // by value), so this seems like a fair tradeoff for now.
2237992cb984SSergei Barannikov   //
2238992cb984SSergei Barannikov   // We can revisit this if the backend grows support for 'onstack' parameter
2239992cb984SSergei Barannikov   // attributes. See PR12193.
2240992cb984SSergei Barannikov   if (freeIntRegs == 0) {
2241992cb984SSergei Barannikov     uint64_t Size = getContext().getTypeSize(Ty);
2242992cb984SSergei Barannikov 
2243992cb984SSergei Barannikov     // If this type fits in an eightbyte, coerce it into the matching integral
2244992cb984SSergei Barannikov     // type, which will end up on the stack (with alignment 8).
2245992cb984SSergei Barannikov     if (Align == 8 && Size <= 64)
2246992cb984SSergei Barannikov       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2247992cb984SSergei Barannikov                                                           Size));
2248992cb984SSergei Barannikov   }
2249992cb984SSergei Barannikov 
2250992cb984SSergei Barannikov   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2251992cb984SSergei Barannikov }
2252992cb984SSergei Barannikov 
2253992cb984SSergei Barannikov /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2254992cb984SSergei Barannikov /// register. Pick an LLVM IR type that will be passed as a vector register.
2255992cb984SSergei Barannikov llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2256992cb984SSergei Barannikov   // Wrapper structs/arrays that only contain vectors are passed just like
2257992cb984SSergei Barannikov   // vectors; strip them off if present.
2258992cb984SSergei Barannikov   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2259992cb984SSergei Barannikov     Ty = QualType(InnerTy, 0);
2260992cb984SSergei Barannikov 
2261992cb984SSergei Barannikov   llvm::Type *IRType = CGT.ConvertType(Ty);
2262992cb984SSergei Barannikov   if (isa<llvm::VectorType>(IRType)) {
2263992cb984SSergei Barannikov     // Don't pass vXi128 vectors in their native type, the backend can't
2264992cb984SSergei Barannikov     // legalize them.
2265992cb984SSergei Barannikov     if (passInt128VectorsInMem() &&
2266992cb984SSergei Barannikov         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2267992cb984SSergei Barannikov       // Use a vXi64 vector.
2268992cb984SSergei Barannikov       uint64_t Size = getContext().getTypeSize(Ty);
2269992cb984SSergei Barannikov       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2270992cb984SSergei Barannikov                                         Size / 64);
2271992cb984SSergei Barannikov     }
2272992cb984SSergei Barannikov 
2273992cb984SSergei Barannikov     return IRType;
2274992cb984SSergei Barannikov   }
2275992cb984SSergei Barannikov 
2276992cb984SSergei Barannikov   if (IRType->getTypeID() == llvm::Type::FP128TyID)
2277992cb984SSergei Barannikov     return IRType;
2278992cb984SSergei Barannikov 
2279992cb984SSergei Barannikov   // We couldn't find the preferred IR vector type for 'Ty'.
2280992cb984SSergei Barannikov   uint64_t Size = getContext().getTypeSize(Ty);
2281992cb984SSergei Barannikov   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2282992cb984SSergei Barannikov 
2283992cb984SSergei Barannikov 
2284992cb984SSergei Barannikov   // Return a LLVM IR vector type based on the size of 'Ty'.
2285992cb984SSergei Barannikov   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2286992cb984SSergei Barannikov                                     Size / 64);
2287992cb984SSergei Barannikov }
2288992cb984SSergei Barannikov 
2289992cb984SSergei Barannikov /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2290992cb984SSergei Barannikov /// is known to either be off the end of the specified type or being in
2291992cb984SSergei Barannikov /// alignment padding.  The user type specified is known to be at most 128 bits
2292992cb984SSergei Barannikov /// in size, and have passed through X86_64ABIInfo::classify with a successful
2293992cb984SSergei Barannikov /// classification that put one of the two halves in the INTEGER class.
2294992cb984SSergei Barannikov ///
2295992cb984SSergei Barannikov /// It is conservatively correct to return false.
2296992cb984SSergei Barannikov static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2297992cb984SSergei Barannikov                                   unsigned EndBit, ASTContext &Context) {
2298992cb984SSergei Barannikov   // If the bytes being queried are off the end of the type, there is no user
2299992cb984SSergei Barannikov   // data hiding here.  This handles analysis of builtins, vectors and other
2300992cb984SSergei Barannikov   // types that don't contain interesting padding.
2301992cb984SSergei Barannikov   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2302992cb984SSergei Barannikov   if (TySize <= StartBit)
2303992cb984SSergei Barannikov     return true;
2304992cb984SSergei Barannikov 
2305992cb984SSergei Barannikov   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2306992cb984SSergei Barannikov     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
230728ddbd4aSChris B     unsigned NumElts = (unsigned)AT->getZExtSize();
2308992cb984SSergei Barannikov 
2309992cb984SSergei Barannikov     // Check each element to see if the element overlaps with the queried range.
2310992cb984SSergei Barannikov     for (unsigned i = 0; i != NumElts; ++i) {
2311992cb984SSergei Barannikov       // If the element is after the span we care about, then we're done..
2312992cb984SSergei Barannikov       unsigned EltOffset = i*EltSize;
2313992cb984SSergei Barannikov       if (EltOffset >= EndBit) break;
2314992cb984SSergei Barannikov 
2315992cb984SSergei Barannikov       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2316992cb984SSergei Barannikov       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2317992cb984SSergei Barannikov                                  EndBit-EltOffset, Context))
2318992cb984SSergei Barannikov         return false;
2319992cb984SSergei Barannikov     }
2320992cb984SSergei Barannikov     // If it overlaps no elements, then it is safe to process as padding.
2321992cb984SSergei Barannikov     return true;
2322992cb984SSergei Barannikov   }
2323992cb984SSergei Barannikov 
2324992cb984SSergei Barannikov   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2325992cb984SSergei Barannikov     const RecordDecl *RD = RT->getDecl();
2326992cb984SSergei Barannikov     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2327992cb984SSergei Barannikov 
2328992cb984SSergei Barannikov     // If this is a C++ record, check the bases first.
2329992cb984SSergei Barannikov     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2330992cb984SSergei Barannikov       for (const auto &I : CXXRD->bases()) {
2331992cb984SSergei Barannikov         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2332992cb984SSergei Barannikov                "Unexpected base class!");
2333992cb984SSergei Barannikov         const auto *Base =
2334992cb984SSergei Barannikov             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2335992cb984SSergei Barannikov 
2336992cb984SSergei Barannikov         // If the base is after the span we care about, ignore it.
2337992cb984SSergei Barannikov         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2338992cb984SSergei Barannikov         if (BaseOffset >= EndBit) continue;
2339992cb984SSergei Barannikov 
2340992cb984SSergei Barannikov         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2341992cb984SSergei Barannikov         if (!BitsContainNoUserData(I.getType(), BaseStart,
2342992cb984SSergei Barannikov                                    EndBit-BaseOffset, Context))
2343992cb984SSergei Barannikov           return false;
2344992cb984SSergei Barannikov       }
2345992cb984SSergei Barannikov     }
2346992cb984SSergei Barannikov 
2347992cb984SSergei Barannikov     // Verify that no field has data that overlaps the region of interest.  Yes
2348992cb984SSergei Barannikov     // this could be sped up a lot by being smarter about queried fields,
2349992cb984SSergei Barannikov     // however we're only looking at structs up to 16 bytes, so we don't care
2350992cb984SSergei Barannikov     // much.
2351992cb984SSergei Barannikov     unsigned idx = 0;
2352992cb984SSergei Barannikov     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2353992cb984SSergei Barannikov          i != e; ++i, ++idx) {
2354992cb984SSergei Barannikov       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2355992cb984SSergei Barannikov 
2356992cb984SSergei Barannikov       // If we found a field after the region we care about, then we're done.
2357992cb984SSergei Barannikov       if (FieldOffset >= EndBit) break;
2358992cb984SSergei Barannikov 
2359992cb984SSergei Barannikov       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2360992cb984SSergei Barannikov       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2361992cb984SSergei Barannikov                                  Context))
2362992cb984SSergei Barannikov         return false;
2363992cb984SSergei Barannikov     }
2364992cb984SSergei Barannikov 
2365992cb984SSergei Barannikov     // If nothing in this record overlapped the area of interest, then we're
2366992cb984SSergei Barannikov     // clean.
2367992cb984SSergei Barannikov     return true;
2368992cb984SSergei Barannikov   }
2369992cb984SSergei Barannikov 
2370992cb984SSergei Barannikov   return false;
2371992cb984SSergei Barannikov }
2372992cb984SSergei Barannikov 
2373992cb984SSergei Barannikov /// getFPTypeAtOffset - Return a floating point type at the specified offset.
2374992cb984SSergei Barannikov static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2375992cb984SSergei Barannikov                                      const llvm::DataLayout &TD) {
2376992cb984SSergei Barannikov   if (IROffset == 0 && IRType->isFloatingPointTy())
2377992cb984SSergei Barannikov     return IRType;
2378992cb984SSergei Barannikov 
2379992cb984SSergei Barannikov   // If this is a struct, recurse into the field at the specified offset.
2380992cb984SSergei Barannikov   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2381992cb984SSergei Barannikov     if (!STy->getNumContainedTypes())
2382992cb984SSergei Barannikov       return nullptr;
2383992cb984SSergei Barannikov 
2384992cb984SSergei Barannikov     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2385992cb984SSergei Barannikov     unsigned Elt = SL->getElementContainingOffset(IROffset);
2386992cb984SSergei Barannikov     IROffset -= SL->getElementOffset(Elt);
2387992cb984SSergei Barannikov     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2388992cb984SSergei Barannikov   }
2389992cb984SSergei Barannikov 
2390992cb984SSergei Barannikov   // If this is an array, recurse into the field at the specified offset.
2391992cb984SSergei Barannikov   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2392992cb984SSergei Barannikov     llvm::Type *EltTy = ATy->getElementType();
2393992cb984SSergei Barannikov     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2394992cb984SSergei Barannikov     IROffset -= IROffset / EltSize * EltSize;
2395992cb984SSergei Barannikov     return getFPTypeAtOffset(EltTy, IROffset, TD);
2396992cb984SSergei Barannikov   }
2397992cb984SSergei Barannikov 
2398992cb984SSergei Barannikov   return nullptr;
2399992cb984SSergei Barannikov }
2400992cb984SSergei Barannikov 
2401992cb984SSergei Barannikov /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2402992cb984SSergei Barannikov /// low 8 bytes of an XMM register, corresponding to the SSE class.
2403992cb984SSergei Barannikov llvm::Type *X86_64ABIInfo::
2404992cb984SSergei Barannikov GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2405992cb984SSergei Barannikov                    QualType SourceTy, unsigned SourceOffset) const {
2406992cb984SSergei Barannikov   const llvm::DataLayout &TD = getDataLayout();
2407992cb984SSergei Barannikov   unsigned SourceSize =
2408992cb984SSergei Barannikov       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2409992cb984SSergei Barannikov   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2410992cb984SSergei Barannikov   if (!T0 || T0->isDoubleTy())
2411992cb984SSergei Barannikov     return llvm::Type::getDoubleTy(getVMContext());
2412992cb984SSergei Barannikov 
2413992cb984SSergei Barannikov   // Get the adjacent FP type.
2414992cb984SSergei Barannikov   llvm::Type *T1 = nullptr;
2415992cb984SSergei Barannikov   unsigned T0Size = TD.getTypeAllocSize(T0);
2416992cb984SSergei Barannikov   if (SourceSize > T0Size)
2417992cb984SSergei Barannikov       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2418992cb984SSergei Barannikov   if (T1 == nullptr) {
2419992cb984SSergei Barannikov     // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2420992cb984SSergei Barannikov     // to its alignment.
2421992cb984SSergei Barannikov     if (T0->is16bitFPTy() && SourceSize > 4)
2422992cb984SSergei Barannikov       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2423992cb984SSergei Barannikov     // If we can't get a second FP type, return a simple half or float.
2424992cb984SSergei Barannikov     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2425992cb984SSergei Barannikov     // {float, i8} too.
2426992cb984SSergei Barannikov     if (T1 == nullptr)
2427992cb984SSergei Barannikov       return T0;
2428992cb984SSergei Barannikov   }
2429992cb984SSergei Barannikov 
2430992cb984SSergei Barannikov   if (T0->isFloatTy() && T1->isFloatTy())
2431992cb984SSergei Barannikov     return llvm::FixedVectorType::get(T0, 2);
2432992cb984SSergei Barannikov 
2433992cb984SSergei Barannikov   if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2434992cb984SSergei Barannikov     llvm::Type *T2 = nullptr;
2435992cb984SSergei Barannikov     if (SourceSize > 4)
2436992cb984SSergei Barannikov       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2437992cb984SSergei Barannikov     if (T2 == nullptr)
2438992cb984SSergei Barannikov       return llvm::FixedVectorType::get(T0, 2);
2439992cb984SSergei Barannikov     return llvm::FixedVectorType::get(T0, 4);
2440992cb984SSergei Barannikov   }
2441992cb984SSergei Barannikov 
2442992cb984SSergei Barannikov   if (T0->is16bitFPTy() || T1->is16bitFPTy())
2443992cb984SSergei Barannikov     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2444992cb984SSergei Barannikov 
2445992cb984SSergei Barannikov   return llvm::Type::getDoubleTy(getVMContext());
2446992cb984SSergei Barannikov }
2447992cb984SSergei Barannikov 
2448992cb984SSergei Barannikov 
2449992cb984SSergei Barannikov /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2450992cb984SSergei Barannikov /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2451992cb984SSergei Barannikov /// about the high or low part of an up-to-16-byte struct.  This routine picks
2452992cb984SSergei Barannikov /// the best LLVM IR type to represent this, which may be i64 or may be anything
2453992cb984SSergei Barannikov /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2454992cb984SSergei Barannikov /// etc).
2455992cb984SSergei Barannikov ///
2456992cb984SSergei Barannikov /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2457992cb984SSergei Barannikov /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2458992cb984SSergei Barannikov /// the 8-byte value references.  PrefType may be null.
2459992cb984SSergei Barannikov ///
2460992cb984SSergei Barannikov /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2461992cb984SSergei Barannikov /// an offset into this that we're processing (which is always either 0 or 8).
2462992cb984SSergei Barannikov ///
2463992cb984SSergei Barannikov llvm::Type *X86_64ABIInfo::
2464992cb984SSergei Barannikov GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2465992cb984SSergei Barannikov                        QualType SourceTy, unsigned SourceOffset) const {
2466992cb984SSergei Barannikov   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2467992cb984SSergei Barannikov   // returning an 8-byte unit starting with it.  See if we can safely use it.
2468992cb984SSergei Barannikov   if (IROffset == 0) {
2469992cb984SSergei Barannikov     // Pointers and int64's always fill the 8-byte unit.
2470992cb984SSergei Barannikov     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2471992cb984SSergei Barannikov         IRType->isIntegerTy(64))
2472992cb984SSergei Barannikov       return IRType;
2473992cb984SSergei Barannikov 
2474992cb984SSergei Barannikov     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2475992cb984SSergei Barannikov     // goodness in the source type is just tail padding.  This is allowed to
2476992cb984SSergei Barannikov     // kick in for struct {double,int} on the int, but not on
2477992cb984SSergei Barannikov     // struct{double,int,int} because we wouldn't return the second int.  We
2478992cb984SSergei Barannikov     // have to do this analysis on the source type because we can't depend on
2479992cb984SSergei Barannikov     // unions being lowered a specific way etc.
2480992cb984SSergei Barannikov     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2481992cb984SSergei Barannikov         IRType->isIntegerTy(32) ||
2482992cb984SSergei Barannikov         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2483992cb984SSergei Barannikov       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2484992cb984SSergei Barannikov           cast<llvm::IntegerType>(IRType)->getBitWidth();
2485992cb984SSergei Barannikov 
2486992cb984SSergei Barannikov       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2487992cb984SSergei Barannikov                                 SourceOffset*8+64, getContext()))
2488992cb984SSergei Barannikov         return IRType;
2489992cb984SSergei Barannikov     }
2490992cb984SSergei Barannikov   }
2491992cb984SSergei Barannikov 
2492992cb984SSergei Barannikov   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2493992cb984SSergei Barannikov     // If this is a struct, recurse into the field at the specified offset.
2494992cb984SSergei Barannikov     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2495992cb984SSergei Barannikov     if (IROffset < SL->getSizeInBytes()) {
2496992cb984SSergei Barannikov       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2497992cb984SSergei Barannikov       IROffset -= SL->getElementOffset(FieldIdx);
2498992cb984SSergei Barannikov 
2499992cb984SSergei Barannikov       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2500992cb984SSergei Barannikov                                     SourceTy, SourceOffset);
2501992cb984SSergei Barannikov     }
2502992cb984SSergei Barannikov   }
2503992cb984SSergei Barannikov 
2504992cb984SSergei Barannikov   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2505992cb984SSergei Barannikov     llvm::Type *EltTy = ATy->getElementType();
2506992cb984SSergei Barannikov     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2507992cb984SSergei Barannikov     unsigned EltOffset = IROffset/EltSize*EltSize;
2508992cb984SSergei Barannikov     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2509992cb984SSergei Barannikov                                   SourceOffset);
2510992cb984SSergei Barannikov   }
2511992cb984SSergei Barannikov 
2512992cb984SSergei Barannikov   // Okay, we don't have any better idea of what to pass, so we pass this in an
2513992cb984SSergei Barannikov   // integer register that isn't too big to fit the rest of the struct.
2514992cb984SSergei Barannikov   unsigned TySizeInBytes =
2515992cb984SSergei Barannikov     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2516992cb984SSergei Barannikov 
2517992cb984SSergei Barannikov   assert(TySizeInBytes != SourceOffset && "Empty field?");
2518992cb984SSergei Barannikov 
2519992cb984SSergei Barannikov   // It is always safe to classify this as an integer type up to i64 that
2520992cb984SSergei Barannikov   // isn't larger than the structure.
2521992cb984SSergei Barannikov   return llvm::IntegerType::get(getVMContext(),
2522992cb984SSergei Barannikov                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2523992cb984SSergei Barannikov }
2524992cb984SSergei Barannikov 
2525992cb984SSergei Barannikov 
2526992cb984SSergei Barannikov /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2527992cb984SSergei Barannikov /// be used as elements of a two register pair to pass or return, return a
2528992cb984SSergei Barannikov /// first class aggregate to represent them.  For example, if the low part of
2529992cb984SSergei Barannikov /// a by-value argument should be passed as i32* and the high part as float,
2530992cb984SSergei Barannikov /// return {i32*, float}.
2531992cb984SSergei Barannikov static llvm::Type *
2532992cb984SSergei Barannikov GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2533992cb984SSergei Barannikov                            const llvm::DataLayout &TD) {
2534992cb984SSergei Barannikov   // In order to correctly satisfy the ABI, we need to the high part to start
2535992cb984SSergei Barannikov   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2536992cb984SSergei Barannikov   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2537992cb984SSergei Barannikov   // the second element at offset 8.  Check for this:
2538992cb984SSergei Barannikov   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2539992cb984SSergei Barannikov   llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2540992cb984SSergei Barannikov   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2541992cb984SSergei Barannikov   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2542992cb984SSergei Barannikov 
2543992cb984SSergei Barannikov   // To handle this, we have to increase the size of the low part so that the
2544992cb984SSergei Barannikov   // second element will start at an 8 byte offset.  We can't increase the size
2545992cb984SSergei Barannikov   // of the second element because it might make us access off the end of the
2546992cb984SSergei Barannikov   // struct.
2547992cb984SSergei Barannikov   if (HiStart != 8) {
2548992cb984SSergei Barannikov     // There are usually two sorts of types the ABI generation code can produce
2549992cb984SSergei Barannikov     // for the low part of a pair that aren't 8 bytes in size: half, float or
2550992cb984SSergei Barannikov     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2551992cb984SSergei Barannikov     // NaCl).
2552992cb984SSergei Barannikov     // Promote these to a larger type.
2553992cb984SSergei Barannikov     if (Lo->isHalfTy() || Lo->isFloatTy())
2554992cb984SSergei Barannikov       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2555992cb984SSergei Barannikov     else {
2556992cb984SSergei Barannikov       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2557992cb984SSergei Barannikov              && "Invalid/unknown lo type");
2558992cb984SSergei Barannikov       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2559992cb984SSergei Barannikov     }
2560992cb984SSergei Barannikov   }
2561992cb984SSergei Barannikov 
2562992cb984SSergei Barannikov   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2563992cb984SSergei Barannikov 
2564992cb984SSergei Barannikov   // Verify that the second element is at an 8-byte offset.
2565992cb984SSergei Barannikov   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2566992cb984SSergei Barannikov          "Invalid x86-64 argument pair!");
2567992cb984SSergei Barannikov   return Result;
2568992cb984SSergei Barannikov }
2569992cb984SSergei Barannikov 
2570992cb984SSergei Barannikov ABIArgInfo X86_64ABIInfo::
2571992cb984SSergei Barannikov classifyReturnType(QualType RetTy) const {
2572992cb984SSergei Barannikov   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2573992cb984SSergei Barannikov   // classification algorithm.
2574992cb984SSergei Barannikov   X86_64ABIInfo::Class Lo, Hi;
2575992cb984SSergei Barannikov   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2576992cb984SSergei Barannikov 
2577992cb984SSergei Barannikov   // Check some invariants.
2578992cb984SSergei Barannikov   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2579992cb984SSergei Barannikov   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2580992cb984SSergei Barannikov 
2581992cb984SSergei Barannikov   llvm::Type *ResType = nullptr;
2582992cb984SSergei Barannikov   switch (Lo) {
2583992cb984SSergei Barannikov   case NoClass:
2584992cb984SSergei Barannikov     if (Hi == NoClass)
2585992cb984SSergei Barannikov       return ABIArgInfo::getIgnore();
2586992cb984SSergei Barannikov     // If the low part is just padding, it takes no register, leave ResType
2587992cb984SSergei Barannikov     // null.
2588992cb984SSergei Barannikov     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2589992cb984SSergei Barannikov            "Unknown missing lo part");
2590992cb984SSergei Barannikov     break;
2591992cb984SSergei Barannikov 
2592992cb984SSergei Barannikov   case SSEUp:
2593992cb984SSergei Barannikov   case X87Up:
2594992cb984SSergei Barannikov     llvm_unreachable("Invalid classification for lo word.");
2595992cb984SSergei Barannikov 
2596992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2597992cb984SSergei Barannikov     // hidden argument.
2598992cb984SSergei Barannikov   case Memory:
2599992cb984SSergei Barannikov     return getIndirectReturnResult(RetTy);
2600992cb984SSergei Barannikov 
2601992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2602992cb984SSergei Barannikov     // available register of the sequence %rax, %rdx is used.
2603992cb984SSergei Barannikov   case Integer:
2604992cb984SSergei Barannikov     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2605992cb984SSergei Barannikov 
2606992cb984SSergei Barannikov     // If we have a sign or zero extended integer, make sure to return Extend
2607992cb984SSergei Barannikov     // so that the parameter gets the right LLVM IR attributes.
2608992cb984SSergei Barannikov     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2609992cb984SSergei Barannikov       // Treat an enum type as its underlying type.
2610992cb984SSergei Barannikov       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2611992cb984SSergei Barannikov         RetTy = EnumTy->getDecl()->getIntegerType();
2612992cb984SSergei Barannikov 
2613992cb984SSergei Barannikov       if (RetTy->isIntegralOrEnumerationType() &&
2614992cb984SSergei Barannikov           isPromotableIntegerTypeForABI(RetTy))
2615992cb984SSergei Barannikov         return ABIArgInfo::getExtend(RetTy);
2616992cb984SSergei Barannikov     }
2617992cb984SSergei Barannikov     break;
2618992cb984SSergei Barannikov 
2619992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2620992cb984SSergei Barannikov     // available SSE register of the sequence %xmm0, %xmm1 is used.
2621992cb984SSergei Barannikov   case SSE:
2622992cb984SSergei Barannikov     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2623992cb984SSergei Barannikov     break;
2624992cb984SSergei Barannikov 
2625992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2626992cb984SSergei Barannikov     // returned on the X87 stack in %st0 as 80-bit x87 number.
2627992cb984SSergei Barannikov   case X87:
2628992cb984SSergei Barannikov     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2629992cb984SSergei Barannikov     break;
2630992cb984SSergei Barannikov 
2631992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2632992cb984SSergei Barannikov     // part of the value is returned in %st0 and the imaginary part in
2633992cb984SSergei Barannikov     // %st1.
2634992cb984SSergei Barannikov   case ComplexX87:
2635992cb984SSergei Barannikov     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2636992cb984SSergei Barannikov     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2637992cb984SSergei Barannikov                                     llvm::Type::getX86_FP80Ty(getVMContext()));
2638992cb984SSergei Barannikov     break;
2639992cb984SSergei Barannikov   }
2640992cb984SSergei Barannikov 
2641992cb984SSergei Barannikov   llvm::Type *HighPart = nullptr;
2642992cb984SSergei Barannikov   switch (Hi) {
2643992cb984SSergei Barannikov     // Memory was handled previously and X87 should
2644992cb984SSergei Barannikov     // never occur as a hi class.
2645992cb984SSergei Barannikov   case Memory:
2646992cb984SSergei Barannikov   case X87:
2647992cb984SSergei Barannikov     llvm_unreachable("Invalid classification for hi word.");
2648992cb984SSergei Barannikov 
2649992cb984SSergei Barannikov   case ComplexX87: // Previously handled.
2650992cb984SSergei Barannikov   case NoClass:
2651992cb984SSergei Barannikov     break;
2652992cb984SSergei Barannikov 
2653992cb984SSergei Barannikov   case Integer:
2654992cb984SSergei Barannikov     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2655992cb984SSergei Barannikov     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2656992cb984SSergei Barannikov       return ABIArgInfo::getDirect(HighPart, 8);
2657992cb984SSergei Barannikov     break;
2658992cb984SSergei Barannikov   case SSE:
2659992cb984SSergei Barannikov     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2660992cb984SSergei Barannikov     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2661992cb984SSergei Barannikov       return ABIArgInfo::getDirect(HighPart, 8);
2662992cb984SSergei Barannikov     break;
2663992cb984SSergei Barannikov 
2664992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2665992cb984SSergei Barannikov     // is passed in the next available eightbyte chunk if the last used
2666992cb984SSergei Barannikov     // vector register.
2667992cb984SSergei Barannikov     //
2668992cb984SSergei Barannikov     // SSEUP should always be preceded by SSE, just widen.
2669992cb984SSergei Barannikov   case SSEUp:
2670992cb984SSergei Barannikov     assert(Lo == SSE && "Unexpected SSEUp classification.");
2671992cb984SSergei Barannikov     ResType = GetByteVectorType(RetTy);
2672992cb984SSergei Barannikov     break;
2673992cb984SSergei Barannikov 
2674992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2675992cb984SSergei Barannikov     // returned together with the previous X87 value in %st0.
2676992cb984SSergei Barannikov   case X87Up:
2677992cb984SSergei Barannikov     // If X87Up is preceded by X87, we don't need to do
2678992cb984SSergei Barannikov     // anything. However, in some cases with unions it may not be
2679992cb984SSergei Barannikov     // preceded by X87. In such situations we follow gcc and pass the
2680992cb984SSergei Barannikov     // extra bits in an SSE reg.
2681992cb984SSergei Barannikov     if (Lo != X87) {
2682992cb984SSergei Barannikov       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2683992cb984SSergei Barannikov       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2684992cb984SSergei Barannikov         return ABIArgInfo::getDirect(HighPart, 8);
2685992cb984SSergei Barannikov     }
2686992cb984SSergei Barannikov     break;
2687992cb984SSergei Barannikov   }
2688992cb984SSergei Barannikov 
2689992cb984SSergei Barannikov   // If a high part was specified, merge it together with the low part.  It is
2690992cb984SSergei Barannikov   // known to pass in the high eightbyte of the result.  We do this by forming a
2691992cb984SSergei Barannikov   // first class struct aggregate with the high and low part: {low, high}
2692992cb984SSergei Barannikov   if (HighPart)
2693992cb984SSergei Barannikov     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2694992cb984SSergei Barannikov 
2695992cb984SSergei Barannikov   return ABIArgInfo::getDirect(ResType);
2696992cb984SSergei Barannikov }
2697992cb984SSergei Barannikov 
2698992cb984SSergei Barannikov ABIArgInfo
2699992cb984SSergei Barannikov X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2700992cb984SSergei Barannikov                                     unsigned &neededInt, unsigned &neededSSE,
2701992cb984SSergei Barannikov                                     bool isNamedArg, bool IsRegCall) const {
2702992cb984SSergei Barannikov   Ty = useFirstFieldIfTransparentUnion(Ty);
2703992cb984SSergei Barannikov 
2704992cb984SSergei Barannikov   X86_64ABIInfo::Class Lo, Hi;
2705992cb984SSergei Barannikov   classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2706992cb984SSergei Barannikov 
2707992cb984SSergei Barannikov   // Check some invariants.
2708992cb984SSergei Barannikov   // FIXME: Enforce these by construction.
2709992cb984SSergei Barannikov   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2710992cb984SSergei Barannikov   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2711992cb984SSergei Barannikov 
2712992cb984SSergei Barannikov   neededInt = 0;
2713992cb984SSergei Barannikov   neededSSE = 0;
2714992cb984SSergei Barannikov   llvm::Type *ResType = nullptr;
2715992cb984SSergei Barannikov   switch (Lo) {
2716992cb984SSergei Barannikov   case NoClass:
2717992cb984SSergei Barannikov     if (Hi == NoClass)
2718992cb984SSergei Barannikov       return ABIArgInfo::getIgnore();
2719992cb984SSergei Barannikov     // If the low part is just padding, it takes no register, leave ResType
2720992cb984SSergei Barannikov     // null.
2721992cb984SSergei Barannikov     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2722992cb984SSergei Barannikov            "Unknown missing lo part");
2723992cb984SSergei Barannikov     break;
2724992cb984SSergei Barannikov 
2725992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2726992cb984SSergei Barannikov     // on the stack.
2727992cb984SSergei Barannikov   case Memory:
2728992cb984SSergei Barannikov 
2729992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2730992cb984SSergei Barannikov     // COMPLEX_X87, it is passed in memory.
2731992cb984SSergei Barannikov   case X87:
2732992cb984SSergei Barannikov   case ComplexX87:
2733992cb984SSergei Barannikov     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2734992cb984SSergei Barannikov       ++neededInt;
2735992cb984SSergei Barannikov     return getIndirectResult(Ty, freeIntRegs);
2736992cb984SSergei Barannikov 
2737992cb984SSergei Barannikov   case SSEUp:
2738992cb984SSergei Barannikov   case X87Up:
2739992cb984SSergei Barannikov     llvm_unreachable("Invalid classification for lo word.");
2740992cb984SSergei Barannikov 
2741992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2742992cb984SSergei Barannikov     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2743992cb984SSergei Barannikov     // and %r9 is used.
2744992cb984SSergei Barannikov   case Integer:
2745992cb984SSergei Barannikov     ++neededInt;
2746992cb984SSergei Barannikov 
2747992cb984SSergei Barannikov     // Pick an 8-byte type based on the preferred type.
2748992cb984SSergei Barannikov     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2749992cb984SSergei Barannikov 
2750992cb984SSergei Barannikov     // If we have a sign or zero extended integer, make sure to return Extend
2751992cb984SSergei Barannikov     // so that the parameter gets the right LLVM IR attributes.
2752992cb984SSergei Barannikov     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2753992cb984SSergei Barannikov       // Treat an enum type as its underlying type.
2754992cb984SSergei Barannikov       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2755992cb984SSergei Barannikov         Ty = EnumTy->getDecl()->getIntegerType();
2756992cb984SSergei Barannikov 
2757992cb984SSergei Barannikov       if (Ty->isIntegralOrEnumerationType() &&
2758992cb984SSergei Barannikov           isPromotableIntegerTypeForABI(Ty))
2759ea920450SLei Huang         return ABIArgInfo::getExtend(Ty, CGT.ConvertType(Ty));
2760992cb984SSergei Barannikov     }
2761992cb984SSergei Barannikov 
2762992cb984SSergei Barannikov     break;
2763992cb984SSergei Barannikov 
2764992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2765992cb984SSergei Barannikov     // available SSE register is used, the registers are taken in the
2766992cb984SSergei Barannikov     // order from %xmm0 to %xmm7.
2767992cb984SSergei Barannikov   case SSE: {
2768992cb984SSergei Barannikov     llvm::Type *IRType = CGT.ConvertType(Ty);
2769992cb984SSergei Barannikov     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2770992cb984SSergei Barannikov     ++neededSSE;
2771992cb984SSergei Barannikov     break;
2772992cb984SSergei Barannikov   }
2773992cb984SSergei Barannikov   }
2774992cb984SSergei Barannikov 
2775992cb984SSergei Barannikov   llvm::Type *HighPart = nullptr;
2776992cb984SSergei Barannikov   switch (Hi) {
2777992cb984SSergei Barannikov     // Memory was handled previously, ComplexX87 and X87 should
2778992cb984SSergei Barannikov     // never occur as hi classes, and X87Up must be preceded by X87,
2779992cb984SSergei Barannikov     // which is passed in memory.
2780992cb984SSergei Barannikov   case Memory:
2781992cb984SSergei Barannikov   case X87:
2782992cb984SSergei Barannikov   case ComplexX87:
2783992cb984SSergei Barannikov     llvm_unreachable("Invalid classification for hi word.");
2784992cb984SSergei Barannikov 
2785992cb984SSergei Barannikov   case NoClass: break;
2786992cb984SSergei Barannikov 
2787992cb984SSergei Barannikov   case Integer:
2788992cb984SSergei Barannikov     ++neededInt;
2789992cb984SSergei Barannikov     // Pick an 8-byte type based on the preferred type.
2790992cb984SSergei Barannikov     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2791992cb984SSergei Barannikov 
2792992cb984SSergei Barannikov     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2793992cb984SSergei Barannikov       return ABIArgInfo::getDirect(HighPart, 8);
2794992cb984SSergei Barannikov     break;
2795992cb984SSergei Barannikov 
2796992cb984SSergei Barannikov     // X87Up generally doesn't occur here (long double is passed in
2797992cb984SSergei Barannikov     // memory), except in situations involving unions.
2798992cb984SSergei Barannikov   case X87Up:
2799992cb984SSergei Barannikov   case SSE:
28009c8dd5e6SLongsheng Mou     ++neededSSE;
2801992cb984SSergei Barannikov     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2802992cb984SSergei Barannikov 
2803992cb984SSergei Barannikov     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2804992cb984SSergei Barannikov       return ABIArgInfo::getDirect(HighPart, 8);
2805992cb984SSergei Barannikov     break;
2806992cb984SSergei Barannikov 
2807992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2808992cb984SSergei Barannikov     // eightbyte is passed in the upper half of the last used SSE
2809992cb984SSergei Barannikov     // register.  This only happens when 128-bit vectors are passed.
2810992cb984SSergei Barannikov   case SSEUp:
2811992cb984SSergei Barannikov     assert(Lo == SSE && "Unexpected SSEUp classification");
2812992cb984SSergei Barannikov     ResType = GetByteVectorType(Ty);
2813992cb984SSergei Barannikov     break;
2814992cb984SSergei Barannikov   }
2815992cb984SSergei Barannikov 
2816992cb984SSergei Barannikov   // If a high part was specified, merge it together with the low part.  It is
2817992cb984SSergei Barannikov   // known to pass in the high eightbyte of the result.  We do this by forming a
2818992cb984SSergei Barannikov   // first class struct aggregate with the high and low part: {low, high}
2819992cb984SSergei Barannikov   if (HighPart)
2820992cb984SSergei Barannikov     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2821992cb984SSergei Barannikov 
2822992cb984SSergei Barannikov   return ABIArgInfo::getDirect(ResType);
2823992cb984SSergei Barannikov }
2824992cb984SSergei Barannikov 
2825992cb984SSergei Barannikov ABIArgInfo
2826992cb984SSergei Barannikov X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2827992cb984SSergei Barannikov                                              unsigned &NeededSSE,
2828992cb984SSergei Barannikov                                              unsigned &MaxVectorWidth) const {
2829992cb984SSergei Barannikov   auto RT = Ty->getAs<RecordType>();
2830992cb984SSergei Barannikov   assert(RT && "classifyRegCallStructType only valid with struct types");
2831992cb984SSergei Barannikov 
2832992cb984SSergei Barannikov   if (RT->getDecl()->hasFlexibleArrayMember())
2833992cb984SSergei Barannikov     return getIndirectReturnResult(Ty);
2834992cb984SSergei Barannikov 
2835992cb984SSergei Barannikov   // Sum up bases
2836992cb984SSergei Barannikov   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2837992cb984SSergei Barannikov     if (CXXRD->isDynamicClass()) {
2838992cb984SSergei Barannikov       NeededInt = NeededSSE = 0;
2839992cb984SSergei Barannikov       return getIndirectReturnResult(Ty);
2840992cb984SSergei Barannikov     }
2841992cb984SSergei Barannikov 
2842992cb984SSergei Barannikov     for (const auto &I : CXXRD->bases())
2843992cb984SSergei Barannikov       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2844992cb984SSergei Barannikov                                         MaxVectorWidth)
2845992cb984SSergei Barannikov               .isIndirect()) {
2846992cb984SSergei Barannikov         NeededInt = NeededSSE = 0;
2847992cb984SSergei Barannikov         return getIndirectReturnResult(Ty);
2848992cb984SSergei Barannikov       }
2849992cb984SSergei Barannikov   }
2850992cb984SSergei Barannikov 
2851992cb984SSergei Barannikov   // Sum up members
2852992cb984SSergei Barannikov   for (const auto *FD : RT->getDecl()->fields()) {
2853992cb984SSergei Barannikov     QualType MTy = FD->getType();
2854992cb984SSergei Barannikov     if (MTy->isRecordType() && !MTy->isUnionType()) {
2855992cb984SSergei Barannikov       if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2856992cb984SSergei Barannikov                                         MaxVectorWidth)
2857992cb984SSergei Barannikov               .isIndirect()) {
2858992cb984SSergei Barannikov         NeededInt = NeededSSE = 0;
2859992cb984SSergei Barannikov         return getIndirectReturnResult(Ty);
2860992cb984SSergei Barannikov       }
2861992cb984SSergei Barannikov     } else {
2862992cb984SSergei Barannikov       unsigned LocalNeededInt, LocalNeededSSE;
2863992cb984SSergei Barannikov       if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2864992cb984SSergei Barannikov                                true, true)
2865992cb984SSergei Barannikov               .isIndirect()) {
2866992cb984SSergei Barannikov         NeededInt = NeededSSE = 0;
2867992cb984SSergei Barannikov         return getIndirectReturnResult(Ty);
2868992cb984SSergei Barannikov       }
2869992cb984SSergei Barannikov       if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2870992cb984SSergei Barannikov         MTy = AT->getElementType();
2871992cb984SSergei Barannikov       if (const auto *VT = MTy->getAs<VectorType>())
2872992cb984SSergei Barannikov         if (getContext().getTypeSize(VT) > MaxVectorWidth)
2873992cb984SSergei Barannikov           MaxVectorWidth = getContext().getTypeSize(VT);
2874992cb984SSergei Barannikov       NeededInt += LocalNeededInt;
2875992cb984SSergei Barannikov       NeededSSE += LocalNeededSSE;
2876992cb984SSergei Barannikov     }
2877992cb984SSergei Barannikov   }
2878992cb984SSergei Barannikov 
2879992cb984SSergei Barannikov   return ABIArgInfo::getDirect();
2880992cb984SSergei Barannikov }
2881992cb984SSergei Barannikov 
2882992cb984SSergei Barannikov ABIArgInfo
2883992cb984SSergei Barannikov X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2884992cb984SSergei Barannikov                                          unsigned &NeededSSE,
2885992cb984SSergei Barannikov                                          unsigned &MaxVectorWidth) const {
2886992cb984SSergei Barannikov 
2887992cb984SSergei Barannikov   NeededInt = 0;
2888992cb984SSergei Barannikov   NeededSSE = 0;
2889992cb984SSergei Barannikov   MaxVectorWidth = 0;
2890992cb984SSergei Barannikov 
2891992cb984SSergei Barannikov   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2892992cb984SSergei Barannikov                                        MaxVectorWidth);
2893992cb984SSergei Barannikov }
2894992cb984SSergei Barannikov 
2895992cb984SSergei Barannikov void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2896992cb984SSergei Barannikov 
2897992cb984SSergei Barannikov   const unsigned CallingConv = FI.getCallingConvention();
2898992cb984SSergei Barannikov   // It is possible to force Win64 calling convention on any x86_64 target by
2899992cb984SSergei Barannikov   // using __attribute__((ms_abi)). In such case to correctly emit Win64
2900992cb984SSergei Barannikov   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2901992cb984SSergei Barannikov   if (CallingConv == llvm::CallingConv::Win64) {
2902992cb984SSergei Barannikov     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2903992cb984SSergei Barannikov     Win64ABIInfo.computeInfo(FI);
2904992cb984SSergei Barannikov     return;
2905992cb984SSergei Barannikov   }
2906992cb984SSergei Barannikov 
2907992cb984SSergei Barannikov   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2908992cb984SSergei Barannikov 
2909992cb984SSergei Barannikov   // Keep track of the number of assigned registers.
2910992cb984SSergei Barannikov   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2911992cb984SSergei Barannikov   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2912992cb984SSergei Barannikov   unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2913992cb984SSergei Barannikov 
2914992cb984SSergei Barannikov   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2915992cb984SSergei Barannikov     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2916992cb984SSergei Barannikov         !FI.getReturnType()->getTypePtr()->isUnionType()) {
2917992cb984SSergei Barannikov       FI.getReturnInfo() = classifyRegCallStructType(
2918992cb984SSergei Barannikov           FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2919992cb984SSergei Barannikov       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2920992cb984SSergei Barannikov         FreeIntRegs -= NeededInt;
2921992cb984SSergei Barannikov         FreeSSERegs -= NeededSSE;
2922992cb984SSergei Barannikov       } else {
2923992cb984SSergei Barannikov         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2924992cb984SSergei Barannikov       }
2925992cb984SSergei Barannikov     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2926992cb984SSergei Barannikov                getContext().getCanonicalType(FI.getReturnType()
2927992cb984SSergei Barannikov                                                  ->getAs<ComplexType>()
2928992cb984SSergei Barannikov                                                  ->getElementType()) ==
2929992cb984SSergei Barannikov                    getContext().LongDoubleTy)
2930992cb984SSergei Barannikov       // Complex Long Double Type is passed in Memory when Regcall
2931992cb984SSergei Barannikov       // calling convention is used.
2932992cb984SSergei Barannikov       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2933992cb984SSergei Barannikov     else
2934992cb984SSergei Barannikov       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2935992cb984SSergei Barannikov   }
2936992cb984SSergei Barannikov 
2937992cb984SSergei Barannikov   // If the return value is indirect, then the hidden argument is consuming one
2938992cb984SSergei Barannikov   // integer register.
2939992cb984SSergei Barannikov   if (FI.getReturnInfo().isIndirect())
2940992cb984SSergei Barannikov     --FreeIntRegs;
2941992cb984SSergei Barannikov   else if (NeededSSE && MaxVectorWidth > 0)
2942992cb984SSergei Barannikov     FI.setMaxVectorWidth(MaxVectorWidth);
2943992cb984SSergei Barannikov 
2944992cb984SSergei Barannikov   // The chain argument effectively gives us another free register.
2945992cb984SSergei Barannikov   if (FI.isChainCall())
2946992cb984SSergei Barannikov     ++FreeIntRegs;
2947992cb984SSergei Barannikov 
2948992cb984SSergei Barannikov   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2949992cb984SSergei Barannikov   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2950992cb984SSergei Barannikov   // get assigned (in left-to-right order) for passing as follows...
2951992cb984SSergei Barannikov   unsigned ArgNo = 0;
2952992cb984SSergei Barannikov   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2953992cb984SSergei Barannikov        it != ie; ++it, ++ArgNo) {
2954992cb984SSergei Barannikov     bool IsNamedArg = ArgNo < NumRequiredArgs;
2955992cb984SSergei Barannikov 
2956992cb984SSergei Barannikov     if (IsRegCall && it->type->isStructureOrClassType())
2957992cb984SSergei Barannikov       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2958992cb984SSergei Barannikov                                            MaxVectorWidth);
2959992cb984SSergei Barannikov     else
2960992cb984SSergei Barannikov       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2961992cb984SSergei Barannikov                                       NeededSSE, IsNamedArg);
2962992cb984SSergei Barannikov 
2963992cb984SSergei Barannikov     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2964992cb984SSergei Barannikov     // eightbyte of an argument, the whole argument is passed on the
2965992cb984SSergei Barannikov     // stack. If registers have already been assigned for some
2966992cb984SSergei Barannikov     // eightbytes of such an argument, the assignments get reverted.
2967992cb984SSergei Barannikov     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2968992cb984SSergei Barannikov       FreeIntRegs -= NeededInt;
2969992cb984SSergei Barannikov       FreeSSERegs -= NeededSSE;
2970992cb984SSergei Barannikov       if (MaxVectorWidth > FI.getMaxVectorWidth())
2971992cb984SSergei Barannikov         FI.setMaxVectorWidth(MaxVectorWidth);
2972992cb984SSergei Barannikov     } else {
2973992cb984SSergei Barannikov       it->info = getIndirectResult(it->type, FreeIntRegs);
2974992cb984SSergei Barannikov     }
2975992cb984SSergei Barannikov   }
2976992cb984SSergei Barannikov }
2977992cb984SSergei Barannikov 
2978992cb984SSergei Barannikov static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
2979992cb984SSergei Barannikov                                          Address VAListAddr, QualType Ty) {
2980992cb984SSergei Barannikov   Address overflow_arg_area_p =
2981992cb984SSergei Barannikov       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2982992cb984SSergei Barannikov   llvm::Value *overflow_arg_area =
2983992cb984SSergei Barannikov     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2984992cb984SSergei Barannikov 
2985992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2986992cb984SSergei Barannikov   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2987992cb984SSergei Barannikov   // It isn't stated explicitly in the standard, but in practice we use
2988992cb984SSergei Barannikov   // alignment greater than 16 where necessary.
2989992cb984SSergei Barannikov   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
2990992cb984SSergei Barannikov   if (Align > CharUnits::fromQuantity(8)) {
2991992cb984SSergei Barannikov     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
2992992cb984SSergei Barannikov                                                       Align);
2993992cb984SSergei Barannikov   }
2994992cb984SSergei Barannikov 
2995992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2996992cb984SSergei Barannikov   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2997b4858c63SBjörn Pettersson   llvm::Value *Res = overflow_arg_area;
2998992cb984SSergei Barannikov 
2999992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3000992cb984SSergei Barannikov   // l->overflow_arg_area + sizeof(type).
3001992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3002992cb984SSergei Barannikov   // an 8 byte boundary.
3003992cb984SSergei Barannikov 
3004992cb984SSergei Barannikov   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3005992cb984SSergei Barannikov   llvm::Value *Offset =
3006992cb984SSergei Barannikov       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3007992cb984SSergei Barannikov   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
3008992cb984SSergei Barannikov                                             Offset, "overflow_arg_area.next");
3009992cb984SSergei Barannikov   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3010992cb984SSergei Barannikov 
3011992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3012992cb984SSergei Barannikov   return Address(Res, LTy, Align);
3013992cb984SSergei Barannikov }
3014992cb984SSergei Barannikov 
30156d973b45SMariya Podchishchaeva RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
30166d973b45SMariya Podchishchaeva                                 QualType Ty, AggValueSlot Slot) const {
3017992cb984SSergei Barannikov   // Assume that va_list type is correct; should be pointer to LLVM type:
3018992cb984SSergei Barannikov   // struct {
3019992cb984SSergei Barannikov   //   i32 gp_offset;
3020992cb984SSergei Barannikov   //   i32 fp_offset;
3021992cb984SSergei Barannikov   //   i8* overflow_arg_area;
3022992cb984SSergei Barannikov   //   i8* reg_save_area;
3023992cb984SSergei Barannikov   // };
3024992cb984SSergei Barannikov   unsigned neededInt, neededSSE;
3025992cb984SSergei Barannikov 
3026992cb984SSergei Barannikov   Ty = getContext().getCanonicalType(Ty);
3027992cb984SSergei Barannikov   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3028992cb984SSergei Barannikov                                        /*isNamedArg*/false);
3029992cb984SSergei Barannikov 
3030631248dcShstk30-hw   // Empty records are ignored for parameter passing purposes.
3031631248dcShstk30-hw   if (AI.isIgnore())
30326d973b45SMariya Podchishchaeva     return Slot.asRValue();
3033631248dcShstk30-hw 
3034992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3035992cb984SSergei Barannikov   // in the registers. If not go to step 7.
3036992cb984SSergei Barannikov   if (!neededInt && !neededSSE)
30376d973b45SMariya Podchishchaeva     return CGF.EmitLoadOfAnyValue(
30386d973b45SMariya Podchishchaeva         CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
30396d973b45SMariya Podchishchaeva         Slot);
3040992cb984SSergei Barannikov 
3041992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3042992cb984SSergei Barannikov   // general purpose registers needed to pass type and num_fp to hold
3043992cb984SSergei Barannikov   // the number of floating point registers needed.
3044992cb984SSergei Barannikov 
3045992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3046992cb984SSergei Barannikov   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3047992cb984SSergei Barannikov   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3048992cb984SSergei Barannikov   //
3049992cb984SSergei Barannikov   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3050992cb984SSergei Barannikov   // register save space).
3051992cb984SSergei Barannikov 
3052992cb984SSergei Barannikov   llvm::Value *InRegs = nullptr;
3053992cb984SSergei Barannikov   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3054992cb984SSergei Barannikov   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3055992cb984SSergei Barannikov   if (neededInt) {
3056992cb984SSergei Barannikov     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3057992cb984SSergei Barannikov     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3058992cb984SSergei Barannikov     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3059992cb984SSergei Barannikov     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3060992cb984SSergei Barannikov   }
3061992cb984SSergei Barannikov 
3062992cb984SSergei Barannikov   if (neededSSE) {
3063992cb984SSergei Barannikov     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3064992cb984SSergei Barannikov     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3065992cb984SSergei Barannikov     llvm::Value *FitsInFP =
3066992cb984SSergei Barannikov       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3067992cb984SSergei Barannikov     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3068992cb984SSergei Barannikov     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3069992cb984SSergei Barannikov   }
3070992cb984SSergei Barannikov 
3071992cb984SSergei Barannikov   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3072992cb984SSergei Barannikov   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3073992cb984SSergei Barannikov   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3074992cb984SSergei Barannikov   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3075992cb984SSergei Barannikov 
3076992cb984SSergei Barannikov   // Emit code to load the value if it was passed in registers.
3077992cb984SSergei Barannikov 
3078992cb984SSergei Barannikov   CGF.EmitBlock(InRegBlock);
3079992cb984SSergei Barannikov 
3080992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3081992cb984SSergei Barannikov   // an offset of l->gp_offset and/or l->fp_offset. This may require
3082992cb984SSergei Barannikov   // copying to a temporary location in case the parameter is passed
3083992cb984SSergei Barannikov   // in different register classes or requires an alignment greater
3084992cb984SSergei Barannikov   // than 8 for general purpose registers and 16 for XMM registers.
3085992cb984SSergei Barannikov   //
3086992cb984SSergei Barannikov   // FIXME: This really results in shameful code when we end up needing to
3087992cb984SSergei Barannikov   // collect arguments from different places; often what should result in a
3088992cb984SSergei Barannikov   // simple assembling of a structure from scattered addresses has many more
3089992cb984SSergei Barannikov   // loads than necessary. Can we clean this up?
3090992cb984SSergei Barannikov   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3091992cb984SSergei Barannikov   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3092992cb984SSergei Barannikov       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3093992cb984SSergei Barannikov 
3094992cb984SSergei Barannikov   Address RegAddr = Address::invalid();
3095992cb984SSergei Barannikov   if (neededInt && neededSSE) {
3096992cb984SSergei Barannikov     // FIXME: Cleanup.
3097992cb984SSergei Barannikov     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3098992cb984SSergei Barannikov     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3099992cb984SSergei Barannikov     Address Tmp = CGF.CreateMemTemp(Ty);
3100474ec694SYoungsuk Kim     Tmp = Tmp.withElementType(ST);
3101992cb984SSergei Barannikov     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3102992cb984SSergei Barannikov     llvm::Type *TyLo = ST->getElementType(0);
3103992cb984SSergei Barannikov     llvm::Type *TyHi = ST->getElementType(1);
3104992cb984SSergei Barannikov     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3105992cb984SSergei Barannikov            "Unexpected ABI info for mixed regs");
3106992cb984SSergei Barannikov     llvm::Value *GPAddr =
3107992cb984SSergei Barannikov         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3108992cb984SSergei Barannikov     llvm::Value *FPAddr =
3109992cb984SSergei Barannikov         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3110992cb984SSergei Barannikov     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3111992cb984SSergei Barannikov     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3112992cb984SSergei Barannikov 
3113992cb984SSergei Barannikov     // Copy the first element.
3114992cb984SSergei Barannikov     // FIXME: Our choice of alignment here and below is probably pessimistic.
3115992cb984SSergei Barannikov     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3116b4858c63SBjörn Pettersson         TyLo, RegLoAddr,
3117992cb984SSergei Barannikov         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3118992cb984SSergei Barannikov     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3119992cb984SSergei Barannikov 
3120992cb984SSergei Barannikov     // Copy the second element.
3121992cb984SSergei Barannikov     V = CGF.Builder.CreateAlignedLoad(
3122b4858c63SBjörn Pettersson         TyHi, RegHiAddr,
3123992cb984SSergei Barannikov         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3124992cb984SSergei Barannikov     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3125992cb984SSergei Barannikov 
3126474ec694SYoungsuk Kim     RegAddr = Tmp.withElementType(LTy);
3127a27f40e5SLongsheng Mou   } else if (neededInt || neededSSE == 1) {
3128992cb984SSergei Barannikov     // Copy to a temporary if necessary to ensure the appropriate alignment.
3129992cb984SSergei Barannikov     auto TInfo = getContext().getTypeInfoInChars(Ty);
3130992cb984SSergei Barannikov     uint64_t TySize = TInfo.Width.getQuantity();
3131992cb984SSergei Barannikov     CharUnits TyAlign = TInfo.Align;
3132a27f40e5SLongsheng Mou     llvm::Type *CoTy = nullptr;
3133a27f40e5SLongsheng Mou     if (AI.isDirect())
3134a27f40e5SLongsheng Mou       CoTy = AI.getCoerceToType();
3135a27f40e5SLongsheng Mou 
3136a27f40e5SLongsheng Mou     llvm::Value *GpOrFpOffset = neededInt ? gp_offset : fp_offset;
3137a27f40e5SLongsheng Mou     uint64_t Alignment = neededInt ? 8 : 16;
3138a27f40e5SLongsheng Mou     uint64_t RegSize = neededInt ? neededInt * 8 : 16;
3139a27f40e5SLongsheng Mou     // There are two cases require special handling:
3140a27f40e5SLongsheng Mou     // 1)
3141a27f40e5SLongsheng Mou     //    ```
3142a27f40e5SLongsheng Mou     //    struct {
3143a27f40e5SLongsheng Mou     //      struct {} a[8];
3144a27f40e5SLongsheng Mou     //      int b;
3145a27f40e5SLongsheng Mou     //    };
3146a27f40e5SLongsheng Mou     //    ```
3147a27f40e5SLongsheng Mou     //    The lower 8 bytes of the structure are not stored,
3148a27f40e5SLongsheng Mou     //    so an 8-byte offset is needed when accessing the structure.
3149a27f40e5SLongsheng Mou     // 2)
3150a27f40e5SLongsheng Mou     //   ```
3151a27f40e5SLongsheng Mou     //   struct {
3152a27f40e5SLongsheng Mou     //     long long a;
3153a27f40e5SLongsheng Mou     //     struct {} b;
3154a27f40e5SLongsheng Mou     //   };
3155a27f40e5SLongsheng Mou     //   ```
3156a27f40e5SLongsheng Mou     //   The stored size of this structure is smaller than its actual size,
3157a27f40e5SLongsheng Mou     //   which may lead to reading past the end of the register save area.
3158a27f40e5SLongsheng Mou     if (CoTy && (AI.getDirectOffset() == 8 || RegSize < TySize)) {
3159a27f40e5SLongsheng Mou       Address Tmp = CGF.CreateMemTemp(Ty);
3160a27f40e5SLongsheng Mou       llvm::Value *Addr =
3161a27f40e5SLongsheng Mou           CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset);
3162a27f40e5SLongsheng Mou       llvm::Value *Src = CGF.Builder.CreateAlignedLoad(CoTy, Addr, TyAlign);
3163a27f40e5SLongsheng Mou       llvm::Value *PtrOffset =
3164a27f40e5SLongsheng Mou           llvm::ConstantInt::get(CGF.Int32Ty, AI.getDirectOffset());
3165a27f40e5SLongsheng Mou       Address Dst = Address(
3166a27f40e5SLongsheng Mou           CGF.Builder.CreateGEP(CGF.Int8Ty, Tmp.getBasePointer(), PtrOffset),
3167a27f40e5SLongsheng Mou           LTy, TyAlign);
3168a27f40e5SLongsheng Mou       CGF.Builder.CreateStore(Src, Dst);
3169a27f40e5SLongsheng Mou       RegAddr = Tmp.withElementType(LTy);
3170a27f40e5SLongsheng Mou     } else {
3171a27f40e5SLongsheng Mou       RegAddr =
3172a27f40e5SLongsheng Mou           Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, GpOrFpOffset),
3173a27f40e5SLongsheng Mou                   LTy, CharUnits::fromQuantity(Alignment));
3174992cb984SSergei Barannikov 
3175992cb984SSergei Barannikov       // Copy into a temporary if the type is more aligned than the
3176992cb984SSergei Barannikov       // register save area.
3177a27f40e5SLongsheng Mou       if (neededInt && TyAlign.getQuantity() > 8) {
3178992cb984SSergei Barannikov         Address Tmp = CGF.CreateMemTemp(Ty);
3179992cb984SSergei Barannikov         CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3180992cb984SSergei Barannikov         RegAddr = Tmp;
3181992cb984SSergei Barannikov       }
3182a27f40e5SLongsheng Mou     }
3183992cb984SSergei Barannikov 
3184992cb984SSergei Barannikov   } else {
3185992cb984SSergei Barannikov     assert(neededSSE == 2 && "Invalid number of needed registers!");
3186992cb984SSergei Barannikov     // SSE registers are spaced 16 bytes apart in the register save
3187992cb984SSergei Barannikov     // area, we need to collect the two eightbytes together.
3188992cb984SSergei Barannikov     // The ABI isn't explicit about this, but it seems reasonable
3189992cb984SSergei Barannikov     // to assume that the slots are 16-byte aligned, since the stack is
3190992cb984SSergei Barannikov     // naturally 16-byte aligned and the prologue is expected to store
3191992cb984SSergei Barannikov     // all the SSE registers to the RSA.
3192992cb984SSergei Barannikov     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3193992cb984SSergei Barannikov                                                       fp_offset),
3194992cb984SSergei Barannikov                                 CGF.Int8Ty, CharUnits::fromQuantity(16));
3195992cb984SSergei Barannikov     Address RegAddrHi =
3196992cb984SSergei Barannikov       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3197992cb984SSergei Barannikov                                              CharUnits::fromQuantity(16));
3198992cb984SSergei Barannikov     llvm::Type *ST = AI.canHaveCoerceToType()
3199992cb984SSergei Barannikov                          ? AI.getCoerceToType()
3200992cb984SSergei Barannikov                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3201992cb984SSergei Barannikov     llvm::Value *V;
3202992cb984SSergei Barannikov     Address Tmp = CGF.CreateMemTemp(Ty);
3203474ec694SYoungsuk Kim     Tmp = Tmp.withElementType(ST);
3204474ec694SYoungsuk Kim     V = CGF.Builder.CreateLoad(
3205474ec694SYoungsuk Kim         RegAddrLo.withElementType(ST->getStructElementType(0)));
3206992cb984SSergei Barannikov     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3207474ec694SYoungsuk Kim     V = CGF.Builder.CreateLoad(
3208474ec694SYoungsuk Kim         RegAddrHi.withElementType(ST->getStructElementType(1)));
3209992cb984SSergei Barannikov     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3210992cb984SSergei Barannikov 
3211474ec694SYoungsuk Kim     RegAddr = Tmp.withElementType(LTy);
3212992cb984SSergei Barannikov   }
3213992cb984SSergei Barannikov 
3214992cb984SSergei Barannikov   // AMD64-ABI 3.5.7p5: Step 5. Set:
3215992cb984SSergei Barannikov   // l->gp_offset = l->gp_offset + num_gp * 8
3216992cb984SSergei Barannikov   // l->fp_offset = l->fp_offset + num_fp * 16.
3217992cb984SSergei Barannikov   if (neededInt) {
3218992cb984SSergei Barannikov     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3219992cb984SSergei Barannikov     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3220992cb984SSergei Barannikov                             gp_offset_p);
3221992cb984SSergei Barannikov   }
3222992cb984SSergei Barannikov   if (neededSSE) {
3223992cb984SSergei Barannikov     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3224992cb984SSergei Barannikov     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3225992cb984SSergei Barannikov                             fp_offset_p);
3226992cb984SSergei Barannikov   }
3227992cb984SSergei Barannikov   CGF.EmitBranch(ContBlock);
3228992cb984SSergei Barannikov 
3229992cb984SSergei Barannikov   // Emit code to load the value if it was passed in memory.
3230992cb984SSergei Barannikov 
3231992cb984SSergei Barannikov   CGF.EmitBlock(InMemBlock);
3232992cb984SSergei Barannikov   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3233992cb984SSergei Barannikov 
3234992cb984SSergei Barannikov   // Return the appropriate result.
3235992cb984SSergei Barannikov 
3236992cb984SSergei Barannikov   CGF.EmitBlock(ContBlock);
3237992cb984SSergei Barannikov   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3238992cb984SSergei Barannikov                                  "vaarg.addr");
32396d973b45SMariya Podchishchaeva   return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
3240992cb984SSergei Barannikov }
3241992cb984SSergei Barannikov 
32426d973b45SMariya Podchishchaeva RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
32436d973b45SMariya Podchishchaeva                                   QualType Ty, AggValueSlot Slot) const {
3244992cb984SSergei Barannikov   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3245992cb984SSergei Barannikov   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3246992cb984SSergei Barannikov   uint64_t Width = getContext().getTypeSize(Ty);
3247992cb984SSergei Barannikov   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3248992cb984SSergei Barannikov 
3249992cb984SSergei Barannikov   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3250992cb984SSergei Barannikov                           CGF.getContext().getTypeInfoInChars(Ty),
3251992cb984SSergei Barannikov                           CharUnits::fromQuantity(8),
32526d973b45SMariya Podchishchaeva                           /*allowHigherAlign*/ false, Slot);
3253992cb984SSergei Barannikov }
3254992cb984SSergei Barannikov 
3255992cb984SSergei Barannikov ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3256992cb984SSergei Barannikov     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3257992cb984SSergei Barannikov   const Type *Base = nullptr;
3258992cb984SSergei Barannikov   uint64_t NumElts = 0;
3259992cb984SSergei Barannikov 
3260992cb984SSergei Barannikov   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3261992cb984SSergei Barannikov       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3262992cb984SSergei Barannikov     FreeSSERegs -= NumElts;
3263992cb984SSergei Barannikov     return getDirectX86Hva();
3264992cb984SSergei Barannikov   }
3265992cb984SSergei Barannikov   return current;
3266992cb984SSergei Barannikov }
3267992cb984SSergei Barannikov 
3268992cb984SSergei Barannikov ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3269992cb984SSergei Barannikov                                       bool IsReturnType, bool IsVectorCall,
3270992cb984SSergei Barannikov                                       bool IsRegCall) const {
3271992cb984SSergei Barannikov 
3272992cb984SSergei Barannikov   if (Ty->isVoidType())
3273992cb984SSergei Barannikov     return ABIArgInfo::getIgnore();
3274992cb984SSergei Barannikov 
3275992cb984SSergei Barannikov   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3276992cb984SSergei Barannikov     Ty = EnumTy->getDecl()->getIntegerType();
3277992cb984SSergei Barannikov 
3278992cb984SSergei Barannikov   TypeInfo Info = getContext().getTypeInfo(Ty);
3279992cb984SSergei Barannikov   uint64_t Width = Info.Width;
3280992cb984SSergei Barannikov   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3281992cb984SSergei Barannikov 
3282992cb984SSergei Barannikov   const RecordType *RT = Ty->getAs<RecordType>();
3283992cb984SSergei Barannikov   if (RT) {
3284992cb984SSergei Barannikov     if (!IsReturnType) {
3285992cb984SSergei Barannikov       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3286992cb984SSergei Barannikov         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3287992cb984SSergei Barannikov     }
3288992cb984SSergei Barannikov 
3289992cb984SSergei Barannikov     if (RT->getDecl()->hasFlexibleArrayMember())
3290992cb984SSergei Barannikov       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3291992cb984SSergei Barannikov 
3292992cb984SSergei Barannikov   }
3293992cb984SSergei Barannikov 
3294992cb984SSergei Barannikov   const Type *Base = nullptr;
3295992cb984SSergei Barannikov   uint64_t NumElts = 0;
3296992cb984SSergei Barannikov   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3297992cb984SSergei Barannikov   // other targets.
3298992cb984SSergei Barannikov   if ((IsVectorCall || IsRegCall) &&
3299992cb984SSergei Barannikov       isHomogeneousAggregate(Ty, Base, NumElts)) {
3300992cb984SSergei Barannikov     if (IsRegCall) {
3301992cb984SSergei Barannikov       if (FreeSSERegs >= NumElts) {
3302992cb984SSergei Barannikov         FreeSSERegs -= NumElts;
3303992cb984SSergei Barannikov         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3304992cb984SSergei Barannikov           return ABIArgInfo::getDirect();
3305992cb984SSergei Barannikov         return ABIArgInfo::getExpand();
3306992cb984SSergei Barannikov       }
3307992cb984SSergei Barannikov       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3308992cb984SSergei Barannikov     } else if (IsVectorCall) {
3309992cb984SSergei Barannikov       if (FreeSSERegs >= NumElts &&
3310992cb984SSergei Barannikov           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3311992cb984SSergei Barannikov         FreeSSERegs -= NumElts;
3312992cb984SSergei Barannikov         return ABIArgInfo::getDirect();
3313992cb984SSergei Barannikov       } else if (IsReturnType) {
3314992cb984SSergei Barannikov         return ABIArgInfo::getExpand();
3315992cb984SSergei Barannikov       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3316992cb984SSergei Barannikov         // HVAs are delayed and reclassified in the 2nd step.
3317992cb984SSergei Barannikov         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3318992cb984SSergei Barannikov       }
3319992cb984SSergei Barannikov     }
3320992cb984SSergei Barannikov   }
3321992cb984SSergei Barannikov 
3322992cb984SSergei Barannikov   if (Ty->isMemberPointerType()) {
3323992cb984SSergei Barannikov     // If the member pointer is represented by an LLVM int or ptr, pass it
3324992cb984SSergei Barannikov     // directly.
3325992cb984SSergei Barannikov     llvm::Type *LLTy = CGT.ConvertType(Ty);
3326992cb984SSergei Barannikov     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3327992cb984SSergei Barannikov       return ABIArgInfo::getDirect();
3328992cb984SSergei Barannikov   }
3329992cb984SSergei Barannikov 
3330992cb984SSergei Barannikov   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3331992cb984SSergei Barannikov     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3332992cb984SSergei Barannikov     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3333992cb984SSergei Barannikov     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3334992cb984SSergei Barannikov       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3335992cb984SSergei Barannikov 
3336992cb984SSergei Barannikov     // Otherwise, coerce it to a small integer.
3337992cb984SSergei Barannikov     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3338992cb984SSergei Barannikov   }
3339992cb984SSergei Barannikov 
3340992cb984SSergei Barannikov   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3341992cb984SSergei Barannikov     switch (BT->getKind()) {
3342992cb984SSergei Barannikov     case BuiltinType::Bool:
3343992cb984SSergei Barannikov       // Bool type is always extended to the ABI, other builtin types are not
3344992cb984SSergei Barannikov       // extended.
3345992cb984SSergei Barannikov       return ABIArgInfo::getExtend(Ty);
3346992cb984SSergei Barannikov 
3347992cb984SSergei Barannikov     case BuiltinType::LongDouble:
3348992cb984SSergei Barannikov       // Mingw64 GCC uses the old 80 bit extended precision floating point
3349992cb984SSergei Barannikov       // unit. It passes them indirectly through memory.
3350992cb984SSergei Barannikov       if (IsMingw64) {
3351992cb984SSergei Barannikov         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3352992cb984SSergei Barannikov         if (LDF == &llvm::APFloat::x87DoubleExtended())
3353992cb984SSergei Barannikov           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3354992cb984SSergei Barannikov       }
3355992cb984SSergei Barannikov       break;
3356992cb984SSergei Barannikov 
3357992cb984SSergei Barannikov     case BuiltinType::Int128:
3358992cb984SSergei Barannikov     case BuiltinType::UInt128:
3359992cb984SSergei Barannikov       // If it's a parameter type, the normal ABI rule is that arguments larger
3360992cb984SSergei Barannikov       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3361992cb984SSergei Barannikov       // even though it isn't particularly efficient.
3362992cb984SSergei Barannikov       if (!IsReturnType)
3363992cb984SSergei Barannikov         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3364992cb984SSergei Barannikov 
3365992cb984SSergei Barannikov       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3366992cb984SSergei Barannikov       // Clang matches them for compatibility.
3367992cb984SSergei Barannikov       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3368992cb984SSergei Barannikov           llvm::Type::getInt64Ty(getVMContext()), 2));
3369992cb984SSergei Barannikov 
3370992cb984SSergei Barannikov     default:
3371992cb984SSergei Barannikov       break;
3372992cb984SSergei Barannikov     }
3373992cb984SSergei Barannikov   }
3374992cb984SSergei Barannikov 
3375992cb984SSergei Barannikov   if (Ty->isBitIntType()) {
3376992cb984SSergei Barannikov     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3377992cb984SSergei Barannikov     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3378992cb984SSergei Barannikov     // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3379992cb984SSergei Barannikov     // or 8 bytes anyway as long is it fits in them, so we don't have to check
3380992cb984SSergei Barannikov     // the power of 2.
3381992cb984SSergei Barannikov     if (Width <= 64)
3382992cb984SSergei Barannikov       return ABIArgInfo::getDirect();
3383992cb984SSergei Barannikov     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3384992cb984SSergei Barannikov   }
3385992cb984SSergei Barannikov 
3386992cb984SSergei Barannikov   return ABIArgInfo::getDirect();
3387992cb984SSergei Barannikov }
3388992cb984SSergei Barannikov 
3389992cb984SSergei Barannikov void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3390992cb984SSergei Barannikov   const unsigned CC = FI.getCallingConvention();
3391992cb984SSergei Barannikov   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3392992cb984SSergei Barannikov   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3393992cb984SSergei Barannikov 
3394992cb984SSergei Barannikov   // If __attribute__((sysv_abi)) is in use, use the SysV argument
3395992cb984SSergei Barannikov   // classification rules.
3396992cb984SSergei Barannikov   if (CC == llvm::CallingConv::X86_64_SysV) {
3397992cb984SSergei Barannikov     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3398992cb984SSergei Barannikov     SysVABIInfo.computeInfo(FI);
3399992cb984SSergei Barannikov     return;
3400992cb984SSergei Barannikov   }
3401992cb984SSergei Barannikov 
3402992cb984SSergei Barannikov   unsigned FreeSSERegs = 0;
3403992cb984SSergei Barannikov   if (IsVectorCall) {
3404992cb984SSergei Barannikov     // We can use up to 4 SSE return registers with vectorcall.
3405992cb984SSergei Barannikov     FreeSSERegs = 4;
3406992cb984SSergei Barannikov   } else if (IsRegCall) {
3407992cb984SSergei Barannikov     // RegCall gives us 16 SSE registers.
3408992cb984SSergei Barannikov     FreeSSERegs = 16;
3409992cb984SSergei Barannikov   }
3410992cb984SSergei Barannikov 
3411992cb984SSergei Barannikov   if (!getCXXABI().classifyReturnType(FI))
3412992cb984SSergei Barannikov     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3413992cb984SSergei Barannikov                                   IsVectorCall, IsRegCall);
3414992cb984SSergei Barannikov 
3415992cb984SSergei Barannikov   if (IsVectorCall) {
3416992cb984SSergei Barannikov     // We can use up to 6 SSE register parameters with vectorcall.
3417992cb984SSergei Barannikov     FreeSSERegs = 6;
3418992cb984SSergei Barannikov   } else if (IsRegCall) {
3419992cb984SSergei Barannikov     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3420992cb984SSergei Barannikov     FreeSSERegs = 16;
3421992cb984SSergei Barannikov   }
3422992cb984SSergei Barannikov 
3423992cb984SSergei Barannikov   unsigned ArgNum = 0;
3424992cb984SSergei Barannikov   unsigned ZeroSSERegs = 0;
3425992cb984SSergei Barannikov   for (auto &I : FI.arguments()) {
3426992cb984SSergei Barannikov     // Vectorcall in x64 only permits the first 6 arguments to be passed as
3427992cb984SSergei Barannikov     // XMM/YMM registers. After the sixth argument, pretend no vector
3428992cb984SSergei Barannikov     // registers are left.
3429992cb984SSergei Barannikov     unsigned *MaybeFreeSSERegs =
3430992cb984SSergei Barannikov         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3431992cb984SSergei Barannikov     I.info =
3432992cb984SSergei Barannikov         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3433992cb984SSergei Barannikov     ++ArgNum;
3434992cb984SSergei Barannikov   }
3435992cb984SSergei Barannikov 
3436992cb984SSergei Barannikov   if (IsVectorCall) {
3437992cb984SSergei Barannikov     // For vectorcall, assign aggregate HVAs to any free vector registers in a
3438992cb984SSergei Barannikov     // second pass.
3439992cb984SSergei Barannikov     for (auto &I : FI.arguments())
3440992cb984SSergei Barannikov       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3441992cb984SSergei Barannikov   }
3442992cb984SSergei Barannikov }
3443992cb984SSergei Barannikov 
34446d973b45SMariya Podchishchaeva RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
34456d973b45SMariya Podchishchaeva                                    QualType Ty, AggValueSlot Slot) const {
3446992cb984SSergei Barannikov   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3447992cb984SSergei Barannikov   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3448992cb984SSergei Barannikov   uint64_t Width = getContext().getTypeSize(Ty);
3449992cb984SSergei Barannikov   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3450992cb984SSergei Barannikov 
3451992cb984SSergei Barannikov   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3452992cb984SSergei Barannikov                           CGF.getContext().getTypeInfoInChars(Ty),
3453992cb984SSergei Barannikov                           CharUnits::fromQuantity(8),
34546d973b45SMariya Podchishchaeva                           /*allowHigherAlign*/ false, Slot);
3455992cb984SSergei Barannikov }
3456992cb984SSergei Barannikov 
3457992cb984SSergei Barannikov std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3458992cb984SSergei Barannikov     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3459992cb984SSergei Barannikov     unsigned NumRegisterParameters, bool SoftFloatABI) {
3460992cb984SSergei Barannikov   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3461992cb984SSergei Barannikov       CGM.getTriple(), CGM.getCodeGenOpts());
3462992cb984SSergei Barannikov   return std::make_unique<X86_32TargetCodeGenInfo>(
3463992cb984SSergei Barannikov       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3464992cb984SSergei Barannikov       NumRegisterParameters, SoftFloatABI);
3465992cb984SSergei Barannikov }
3466992cb984SSergei Barannikov 
3467992cb984SSergei Barannikov std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3468992cb984SSergei Barannikov     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3469992cb984SSergei Barannikov     unsigned NumRegisterParameters) {
3470992cb984SSergei Barannikov   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3471992cb984SSergei Barannikov       CGM.getTriple(), CGM.getCodeGenOpts());
3472992cb984SSergei Barannikov   return std::make_unique<WinX86_32TargetCodeGenInfo>(
3473992cb984SSergei Barannikov       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3474992cb984SSergei Barannikov       NumRegisterParameters);
3475992cb984SSergei Barannikov }
3476992cb984SSergei Barannikov 
3477992cb984SSergei Barannikov std::unique_ptr<TargetCodeGenInfo>
3478992cb984SSergei Barannikov CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3479992cb984SSergei Barannikov                                        X86AVXABILevel AVXLevel) {
3480992cb984SSergei Barannikov   return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3481992cb984SSergei Barannikov }
3482992cb984SSergei Barannikov 
3483992cb984SSergei Barannikov std::unique_ptr<TargetCodeGenInfo>
3484992cb984SSergei Barannikov CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3485992cb984SSergei Barannikov                                           X86AVXABILevel AVXLevel) {
3486992cb984SSergei Barannikov   return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3487992cb984SSergei Barannikov }
3488