1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the abstract lowering for the Swift calling convention. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/CodeGen/SwiftCallingConv.h" 15 #include "clang/Basic/TargetInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 19 using namespace clang; 20 using namespace CodeGen; 21 using namespace swiftcall; 22 23 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) { 24 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo()); 25 } 26 27 static bool isPowerOf2(unsigned n) { 28 return n == (n & -n); 29 } 30 31 /// Given two types with the same size, try to find a common type. 32 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) { 33 assert(first != second); 34 35 // Allow pointers to merge with integers, but prefer the integer type. 36 if (first->isIntegerTy()) { 37 if (second->isPointerTy()) return first; 38 } else if (first->isPointerTy()) { 39 if (second->isIntegerTy()) return second; 40 if (second->isPointerTy()) return first; 41 42 // Allow two vectors to be merged (given that they have the same size). 43 // This assumes that we never have two different vector register sets. 44 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) { 45 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) { 46 if (auto commonTy = getCommonType(firstVecTy->getElementType(), 47 secondVecTy->getElementType())) { 48 return (commonTy == firstVecTy->getElementType() ? first : second); 49 } 50 } 51 } 52 53 return nullptr; 54 } 55 56 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) { 57 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type)); 58 } 59 60 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) { 61 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type)); 62 } 63 64 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) { 65 // Deal with various aggregate types as special cases: 66 67 // Record types. 68 if (auto recType = type->getAs<RecordType>()) { 69 addTypedData(recType->getDecl(), begin); 70 71 // Array types. 72 } else if (type->isArrayType()) { 73 // Incomplete array types (flexible array members?) don't provide 74 // data to lay out, and the other cases shouldn't be possible. 75 auto arrayType = CGM.getContext().getAsConstantArrayType(type); 76 if (!arrayType) return; 77 78 QualType eltType = arrayType->getElementType(); 79 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 80 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) { 81 addTypedData(eltType, begin + i * eltSize); 82 } 83 84 // Complex types. 85 } else if (auto complexType = type->getAs<ComplexType>()) { 86 auto eltType = complexType->getElementType(); 87 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType); 88 auto eltLLVMType = CGM.getTypes().ConvertType(eltType); 89 addTypedData(eltLLVMType, begin, begin + eltSize); 90 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize); 91 92 // Member pointer types. 93 } else if (type->getAs<MemberPointerType>()) { 94 // Just add it all as opaque. 95 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type)); 96 97 // Everything else is scalar and should not convert as an LLVM aggregate. 98 } else { 99 // We intentionally convert as !ForMem because we want to preserve 100 // that a type was an i1. 101 auto llvmType = CGM.getTypes().ConvertType(type); 102 addTypedData(llvmType, begin); 103 } 104 } 105 106 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) { 107 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record)); 108 } 109 110 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin, 111 const ASTRecordLayout &layout) { 112 // Unions are a special case. 113 if (record->isUnion()) { 114 for (auto field : record->fields()) { 115 if (field->isBitField()) { 116 addBitFieldData(field, begin, 0); 117 } else { 118 addTypedData(field->getType(), begin); 119 } 120 } 121 return; 122 } 123 124 // Note that correctness does not rely on us adding things in 125 // their actual order of layout; it's just somewhat more efficient 126 // for the builder. 127 128 // With that in mind, add "early" C++ data. 129 auto cxxRecord = dyn_cast<CXXRecordDecl>(record); 130 if (cxxRecord) { 131 // - a v-table pointer, if the class adds its own 132 if (layout.hasOwnVFPtr()) { 133 addTypedData(CGM.Int8PtrTy, begin); 134 } 135 136 // - non-virtual bases 137 for (auto &baseSpecifier : cxxRecord->bases()) { 138 if (baseSpecifier.isVirtual()) continue; 139 140 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl(); 141 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord)); 142 } 143 144 // - a vbptr if the class adds its own 145 if (layout.hasOwnVBPtr()) { 146 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset()); 147 } 148 } 149 150 // Add fields. 151 for (auto field : record->fields()) { 152 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex()); 153 if (field->isBitField()) { 154 addBitFieldData(field, begin, fieldOffsetInBits); 155 } else { 156 addTypedData(field->getType(), 157 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits)); 158 } 159 } 160 161 // Add "late" C++ data: 162 if (cxxRecord) { 163 // - virtual bases 164 for (auto &vbaseSpecifier : cxxRecord->vbases()) { 165 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl(); 166 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord)); 167 } 168 } 169 } 170 171 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield, 172 CharUnits recordBegin, 173 uint64_t bitfieldBitBegin) { 174 assert(bitfield->isBitField()); 175 auto &ctx = CGM.getContext(); 176 auto width = bitfield->getBitWidthValue(ctx); 177 178 // We can ignore zero-width bit-fields. 179 if (width == 0) return; 180 181 // toCharUnitsFromBits rounds down. 182 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin); 183 184 // Find the offset of the last byte that is partially occupied by the 185 // bit-field; since we otherwise expect exclusive ends, the end is the 186 // next byte. 187 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1; 188 CharUnits bitfieldByteEnd = 189 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One(); 190 addOpaqueData(recordBegin + bitfieldByteBegin, 191 recordBegin + bitfieldByteEnd); 192 } 193 194 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) { 195 assert(type && "didn't provide type for typed data"); 196 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type)); 197 } 198 199 void SwiftAggLowering::addTypedData(llvm::Type *type, 200 CharUnits begin, CharUnits end) { 201 assert(type && "didn't provide type for typed data"); 202 assert(getTypeStoreSize(CGM, type) == end - begin); 203 204 // Legalize vector types. 205 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 206 SmallVector<llvm::Type*, 4> componentTys; 207 legalizeVectorType(CGM, end - begin, vecTy, componentTys); 208 assert(componentTys.size() >= 1); 209 210 // Walk the initial components. 211 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) { 212 llvm::Type *componentTy = componentTys[i]; 213 auto componentSize = getTypeStoreSize(CGM, componentTy); 214 assert(componentSize < end - begin); 215 addLegalTypedData(componentTy, begin, begin + componentSize); 216 begin += componentSize; 217 } 218 219 return addLegalTypedData(componentTys.back(), begin, end); 220 } 221 222 // Legalize integer types. 223 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 224 if (!isLegalIntegerType(CGM, intTy)) 225 return addOpaqueData(begin, end); 226 } 227 228 // All other types should be legal. 229 return addLegalTypedData(type, begin, end); 230 } 231 232 void SwiftAggLowering::addLegalTypedData(llvm::Type *type, 233 CharUnits begin, CharUnits end) { 234 // Require the type to be naturally aligned. 235 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) { 236 237 // Try splitting vector types. 238 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) { 239 auto split = splitLegalVectorType(CGM, end - begin, vecTy); 240 auto eltTy = split.first; 241 auto numElts = split.second; 242 243 auto eltSize = (end - begin) / numElts; 244 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 245 for (size_t i = 0, e = numElts; i != e; ++i) { 246 addLegalTypedData(eltTy, begin, begin + eltSize); 247 begin += eltSize; 248 } 249 assert(begin == end); 250 return; 251 } 252 253 return addOpaqueData(begin, end); 254 } 255 256 addEntry(type, begin, end); 257 } 258 259 void SwiftAggLowering::addEntry(llvm::Type *type, 260 CharUnits begin, CharUnits end) { 261 assert((!type || 262 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) && 263 "cannot add aggregate-typed data"); 264 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type))); 265 266 // Fast path: we can just add entries to the end. 267 if (Entries.empty() || Entries.back().End <= begin) { 268 Entries.push_back({begin, end, type}); 269 return; 270 } 271 272 // Find the first existing entry that ends after the start of the new data. 273 // TODO: do a binary search if Entries is big enough for it to matter. 274 size_t index = Entries.size() - 1; 275 while (index != 0) { 276 if (Entries[index - 1].End <= begin) break; 277 --index; 278 } 279 280 // The entry ends after the start of the new data. 281 // If the entry starts after the end of the new data, there's no conflict. 282 if (Entries[index].Begin >= end) { 283 // This insertion is potentially O(n), but the way we generally build 284 // these layouts makes that unlikely to matter: we'd need a union of 285 // several very large types. 286 Entries.insert(Entries.begin() + index, {begin, end, type}); 287 return; 288 } 289 290 // Otherwise, the ranges overlap. The new range might also overlap 291 // with later ranges. 292 restartAfterSplit: 293 294 // Simplest case: an exact overlap. 295 if (Entries[index].Begin == begin && Entries[index].End == end) { 296 // If the types match exactly, great. 297 if (Entries[index].Type == type) return; 298 299 // If either type is opaque, make the entry opaque and return. 300 if (Entries[index].Type == nullptr) { 301 return; 302 } else if (type == nullptr) { 303 Entries[index].Type = nullptr; 304 return; 305 } 306 307 // If they disagree in an ABI-agnostic way, just resolve the conflict 308 // arbitrarily. 309 if (auto entryType = getCommonType(Entries[index].Type, type)) { 310 Entries[index].Type = entryType; 311 return; 312 } 313 314 // Otherwise, make the entry opaque. 315 Entries[index].Type = nullptr; 316 return; 317 } 318 319 // Okay, we have an overlapping conflict of some sort. 320 321 // If we have a vector type, split it. 322 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) { 323 auto eltTy = vecTy->getElementType(); 324 CharUnits eltSize = (end - begin) / vecTy->getNumElements(); 325 assert(eltSize == getTypeStoreSize(CGM, eltTy)); 326 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) { 327 addEntry(eltTy, begin, begin + eltSize); 328 begin += eltSize; 329 } 330 assert(begin == end); 331 return; 332 } 333 334 // If the entry is a vector type, split it and try again. 335 if (Entries[index].Type && Entries[index].Type->isVectorTy()) { 336 splitVectorEntry(index); 337 goto restartAfterSplit; 338 } 339 340 // Okay, we have no choice but to make the existing entry opaque. 341 342 Entries[index].Type = nullptr; 343 344 // Stretch the start of the entry to the beginning of the range. 345 if (begin < Entries[index].Begin) { 346 Entries[index].Begin = begin; 347 assert(index == 0 || begin >= Entries[index - 1].End); 348 } 349 350 // Stretch the end of the entry to the end of the range; but if we run 351 // into the start of the next entry, just leave the range there and repeat. 352 while (end > Entries[index].End) { 353 assert(Entries[index].Type == nullptr); 354 355 // If the range doesn't overlap the next entry, we're done. 356 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) { 357 Entries[index].End = end; 358 break; 359 } 360 361 // Otherwise, stretch to the start of the next entry. 362 Entries[index].End = Entries[index + 1].Begin; 363 364 // Continue with the next entry. 365 index++; 366 367 // This entry needs to be made opaque if it is not already. 368 if (Entries[index].Type == nullptr) 369 continue; 370 371 // Split vector entries unless we completely subsume them. 372 if (Entries[index].Type->isVectorTy() && 373 end < Entries[index].End) { 374 splitVectorEntry(index); 375 } 376 377 // Make the entry opaque. 378 Entries[index].Type = nullptr; 379 } 380 } 381 382 /// Replace the entry of vector type at offset 'index' with a sequence 383 /// of its component vectors. 384 void SwiftAggLowering::splitVectorEntry(unsigned index) { 385 auto vecTy = cast<llvm::VectorType>(Entries[index].Type); 386 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy); 387 388 auto eltTy = split.first; 389 CharUnits eltSize = getTypeStoreSize(CGM, eltTy); 390 auto numElts = split.second; 391 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry()); 392 393 CharUnits begin = Entries[index].Begin; 394 for (unsigned i = 0; i != numElts; ++i) { 395 Entries[index].Type = eltTy; 396 Entries[index].Begin = begin; 397 Entries[index].End = begin + eltSize; 398 begin += eltSize; 399 } 400 } 401 402 /// Given a power-of-two unit size, return the offset of the aligned unit 403 /// of that size which contains the given offset. 404 /// 405 /// In other words, round down to the nearest multiple of the unit size. 406 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) { 407 assert(isPowerOf2(unitSize.getQuantity())); 408 auto unitMask = ~(unitSize.getQuantity() - 1); 409 return CharUnits::fromQuantity(offset.getQuantity() & unitMask); 410 } 411 412 static bool areBytesInSameUnit(CharUnits first, CharUnits second, 413 CharUnits chunkSize) { 414 return getOffsetAtStartOfUnit(first, chunkSize) 415 == getOffsetAtStartOfUnit(second, chunkSize); 416 } 417 418 void SwiftAggLowering::finish() { 419 if (Entries.empty()) { 420 Finished = true; 421 return; 422 } 423 424 // We logically split the layout down into a series of chunks of this size, 425 // which is generally the size of a pointer. 426 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM); 427 428 // First pass: if two entries share a chunk, make them both opaque 429 // and stretch one to meet the next. 430 bool hasOpaqueEntries = (Entries[0].Type == nullptr); 431 for (size_t i = 1, e = Entries.size(); i != e; ++i) { 432 if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(), 433 Entries[i].Begin, chunkSize)) { 434 Entries[i - 1].Type = nullptr; 435 Entries[i].Type = nullptr; 436 Entries[i - 1].End = Entries[i].Begin; 437 hasOpaqueEntries = true; 438 439 } else if (Entries[i].Type == nullptr) { 440 hasOpaqueEntries = true; 441 } 442 } 443 444 // The rest of the algorithm leaves non-opaque entries alone, so if we 445 // have no opaque entries, we're done. 446 if (!hasOpaqueEntries) { 447 Finished = true; 448 return; 449 } 450 451 // Okay, move the entries to a temporary and rebuild Entries. 452 auto orig = std::move(Entries); 453 assert(Entries.empty()); 454 455 for (size_t i = 0, e = orig.size(); i != e; ++i) { 456 // Just copy over non-opaque entries. 457 if (orig[i].Type != nullptr) { 458 Entries.push_back(orig[i]); 459 continue; 460 } 461 462 // Scan forward to determine the full extent of the next opaque range. 463 // We know from the first pass that only contiguous ranges will overlap 464 // the same aligned chunk. 465 auto begin = orig[i].Begin; 466 auto end = orig[i].End; 467 while (i + 1 != e && 468 orig[i + 1].Type == nullptr && 469 end == orig[i + 1].Begin) { 470 end = orig[i + 1].End; 471 i++; 472 } 473 474 // Add an entry per intersected chunk. 475 do { 476 // Find the smallest aligned storage unit in the maximal aligned 477 // storage unit containing 'begin' that contains all the bytes in 478 // the intersection between the range and this chunk. 479 CharUnits localBegin = begin; 480 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize); 481 CharUnits chunkEnd = chunkBegin + chunkSize; 482 CharUnits localEnd = std::min(end, chunkEnd); 483 484 // Just do a simple loop over ever-increasing unit sizes. 485 CharUnits unitSize = CharUnits::One(); 486 CharUnits unitBegin, unitEnd; 487 for (; ; unitSize *= 2) { 488 assert(unitSize <= chunkSize); 489 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize); 490 unitEnd = unitBegin + unitSize; 491 if (unitEnd >= localEnd) break; 492 } 493 494 // Add an entry for this unit. 495 auto entryTy = 496 llvm::IntegerType::get(CGM.getLLVMContext(), 497 CGM.getContext().toBits(unitSize)); 498 Entries.push_back({unitBegin, unitEnd, entryTy}); 499 500 // The next chunk starts where this chunk left off. 501 begin = localEnd; 502 } while (begin != end); 503 } 504 505 // Okay, finally finished. 506 Finished = true; 507 } 508 509 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const { 510 assert(Finished && "haven't yet finished lowering"); 511 512 for (auto &entry : Entries) { 513 callback(entry.Begin, entry.End, entry.Type); 514 } 515 } 516 517 std::pair<llvm::StructType*, llvm::Type*> 518 SwiftAggLowering::getCoerceAndExpandTypes() const { 519 assert(Finished && "haven't yet finished lowering"); 520 521 auto &ctx = CGM.getLLVMContext(); 522 523 if (Entries.empty()) { 524 auto type = llvm::StructType::get(ctx); 525 return { type, type }; 526 } 527 528 SmallVector<llvm::Type*, 8> elts; 529 CharUnits lastEnd = CharUnits::Zero(); 530 bool hasPadding = false; 531 bool packed = false; 532 for (auto &entry : Entries) { 533 if (entry.Begin != lastEnd) { 534 auto paddingSize = entry.Begin - lastEnd; 535 assert(!paddingSize.isNegative()); 536 537 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx), 538 paddingSize.getQuantity()); 539 elts.push_back(padding); 540 hasPadding = true; 541 } 542 543 if (!packed && !entry.Begin.isMultipleOf( 544 CharUnits::fromQuantity( 545 CGM.getDataLayout().getABITypeAlignment(entry.Type)))) 546 packed = true; 547 548 elts.push_back(entry.Type); 549 550 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type); 551 assert(entry.End <= lastEnd); 552 } 553 554 // We don't need to adjust 'packed' to deal with possible tail padding 555 // because we never do that kind of access through the coercion type. 556 auto coercionType = llvm::StructType::get(ctx, elts, packed); 557 558 llvm::Type *unpaddedType = coercionType; 559 if (hasPadding) { 560 elts.clear(); 561 for (auto &entry : Entries) { 562 elts.push_back(entry.Type); 563 } 564 if (elts.size() == 1) { 565 unpaddedType = elts[0]; 566 } else { 567 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false); 568 } 569 } else if (Entries.size() == 1) { 570 unpaddedType = Entries[0].Type; 571 } 572 573 return { coercionType, unpaddedType }; 574 } 575 576 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const { 577 assert(Finished && "haven't yet finished lowering"); 578 579 // Empty types don't need to be passed indirectly. 580 if (Entries.empty()) return false; 581 582 // Avoid copying the array of types when there's just a single element. 583 if (Entries.size() == 1) { 584 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift( 585 Entries.back().Type, 586 asReturnValue); 587 } 588 589 SmallVector<llvm::Type*, 8> componentTys; 590 componentTys.reserve(Entries.size()); 591 for (auto &entry : Entries) { 592 componentTys.push_back(entry.Type); 593 } 594 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, 595 asReturnValue); 596 } 597 598 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM, 599 ArrayRef<llvm::Type*> componentTys, 600 bool asReturnValue) { 601 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys, 602 asReturnValue); 603 } 604 605 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) { 606 // Currently always the size of an ordinary pointer. 607 return CGM.getContext().toCharUnitsFromBits( 608 CGM.getContext().getTargetInfo().getPointerWidth(0)); 609 } 610 611 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) { 612 // For Swift's purposes, this is always just the store size of the type 613 // rounded up to a power of 2. 614 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity(); 615 if (!isPowerOf2(size)) { 616 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1); 617 } 618 assert(size >= CGM.getDataLayout().getABITypeAlignment(type)); 619 return CharUnits::fromQuantity(size); 620 } 621 622 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM, 623 llvm::IntegerType *intTy) { 624 auto size = intTy->getBitWidth(); 625 switch (size) { 626 case 1: 627 case 8: 628 case 16: 629 case 32: 630 case 64: 631 // Just assume that the above are always legal. 632 return true; 633 634 case 128: 635 return CGM.getContext().getTargetInfo().hasInt128Type(); 636 637 default: 638 return false; 639 } 640 } 641 642 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 643 llvm::VectorType *vectorTy) { 644 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(), 645 vectorTy->getNumElements()); 646 } 647 648 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 649 llvm::Type *eltTy, unsigned numElts) { 650 assert(numElts > 1 && "illegal vector length"); 651 return getSwiftABIInfo(CGM) 652 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts); 653 } 654 655 std::pair<llvm::Type*, unsigned> 656 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, 657 llvm::VectorType *vectorTy) { 658 auto numElts = vectorTy->getNumElements(); 659 auto eltTy = vectorTy->getElementType(); 660 661 // Try to split the vector type in half. 662 if (numElts >= 4 && isPowerOf2(numElts)) { 663 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2)) 664 return {llvm::VectorType::get(eltTy, numElts / 2), 2}; 665 } 666 667 return {eltTy, numElts}; 668 } 669 670 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize, 671 llvm::VectorType *origVectorTy, 672 llvm::SmallVectorImpl<llvm::Type*> &components) { 673 // If it's already a legal vector type, use it. 674 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) { 675 components.push_back(origVectorTy); 676 return; 677 } 678 679 // Try to split the vector into legal subvectors. 680 auto numElts = origVectorTy->getNumElements(); 681 auto eltTy = origVectorTy->getElementType(); 682 assert(numElts != 1); 683 684 // The largest size that we're still considering making subvectors of. 685 // Always a power of 2. 686 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined); 687 unsigned candidateNumElts = 1U << logCandidateNumElts; 688 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts); 689 690 // Minor optimization: don't check the legality of this exact size twice. 691 if (candidateNumElts == numElts) { 692 logCandidateNumElts--; 693 candidateNumElts >>= 1; 694 } 695 696 CharUnits eltSize = (origVectorSize / numElts); 697 CharUnits candidateSize = eltSize * candidateNumElts; 698 699 // The sensibility of this algorithm relies on the fact that we never 700 // have a legal non-power-of-2 vector size without having the power of 2 701 // also be legal. 702 while (logCandidateNumElts > 0) { 703 assert(candidateNumElts == 1U << logCandidateNumElts); 704 assert(candidateNumElts <= numElts); 705 assert(candidateSize == eltSize * candidateNumElts); 706 707 // Skip illegal vector sizes. 708 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) { 709 logCandidateNumElts--; 710 candidateNumElts /= 2; 711 candidateSize /= 2; 712 continue; 713 } 714 715 // Add the right number of vectors of this size. 716 auto numVecs = numElts >> logCandidateNumElts; 717 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts)); 718 numElts -= (numVecs << logCandidateNumElts); 719 720 if (numElts == 0) return; 721 722 // It's possible that the number of elements remaining will be legal. 723 // This can happen with e.g. <7 x float> when <3 x float> is legal. 724 // This only needs to be separately checked if it's not a power of 2. 725 if (numElts > 2 && !isPowerOf2(numElts) && 726 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) { 727 components.push_back(llvm::VectorType::get(eltTy, numElts)); 728 return; 729 } 730 731 // Bring vecSize down to something no larger than numElts. 732 do { 733 logCandidateNumElts--; 734 candidateNumElts /= 2; 735 candidateSize /= 2; 736 } while (candidateNumElts > numElts); 737 } 738 739 // Otherwise, just append a bunch of individual elements. 740 components.append(numElts, eltTy); 741 } 742 743 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM, 744 const RecordDecl *record) { 745 // FIXME: should we not rely on the standard computation in Sema, just in 746 // case we want to diverge from the platform ABI (e.g. on targets where 747 // that uses the MSVC rule)? 748 return !record->canPassInRegisters(); 749 } 750 751 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, 752 bool forReturn, 753 CharUnits alignmentForIndirect) { 754 if (lowering.empty()) { 755 return ABIArgInfo::getIgnore(); 756 } else if (lowering.shouldPassIndirectly(forReturn)) { 757 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false); 758 } else { 759 auto types = lowering.getCoerceAndExpandTypes(); 760 return ABIArgInfo::getCoerceAndExpand(types.first, types.second); 761 } 762 } 763 764 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, 765 bool forReturn) { 766 if (auto recordType = dyn_cast<RecordType>(type)) { 767 auto record = recordType->getDecl(); 768 auto &layout = CGM.getContext().getASTRecordLayout(record); 769 770 if (mustPassRecordIndirectly(CGM, record)) 771 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false); 772 773 SwiftAggLowering lowering(CGM); 774 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout); 775 lowering.finish(); 776 777 return classifyExpandedType(lowering, forReturn, layout.getAlignment()); 778 } 779 780 // Just assume that all of our target ABIs can support returning at least 781 // two integer or floating-point values. 782 if (isa<ComplexType>(type)) { 783 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand()); 784 } 785 786 // Vector types may need to be legalized. 787 if (isa<VectorType>(type)) { 788 SwiftAggLowering lowering(CGM); 789 lowering.addTypedData(type, CharUnits::Zero()); 790 lowering.finish(); 791 792 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type); 793 return classifyExpandedType(lowering, forReturn, alignment); 794 } 795 796 // Member pointer types need to be expanded, but it's a simple form of 797 // expansion that 'Direct' can handle. Note that CanBeFlattened should be 798 // true for this to work. 799 800 // 'void' needs to be ignored. 801 if (type->isVoidType()) { 802 return ABIArgInfo::getIgnore(); 803 } 804 805 // Everything else can be passed directly. 806 return ABIArgInfo::getDirect(); 807 } 808 809 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) { 810 return classifyType(CGM, type, /*forReturn*/ true); 811 } 812 813 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM, 814 CanQualType type) { 815 return classifyType(CGM, type, /*forReturn*/ false); 816 } 817 818 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 819 auto &retInfo = FI.getReturnInfo(); 820 retInfo = classifyReturnType(CGM, FI.getReturnType()); 821 822 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) { 823 auto &argInfo = FI.arg_begin()[i]; 824 argInfo.info = classifyArgumentType(CGM, argInfo.type); 825 } 826 } 827 828 // Is swifterror lowered to a register by the target ABI. 829 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) { 830 return getSwiftABIInfo(CGM).isSwiftErrorInRegister(); 831 } 832