xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision feeeda70e23b5bd348d149eb2ba77c7c56d12ede)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139   const NamedDecl *ND = GD.getDecl();
140 
141   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142     return getMangledCXXCtorName(D, GD.getCtorType());
143   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144     return getMangledCXXDtorName(D, GD.getDtorType());
145 
146   return getMangledName(ND);
147 }
148 
149 /// \brief Retrieves the mangled name for the given declaration.
150 ///
151 /// If the given declaration requires a mangled name, returns an
152 /// const char* containing the mangled name.  Otherwise, returns
153 /// the unmangled name.
154 ///
155 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156   // In C, functions with no attributes never need to be mangled. Fastpath them.
157   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159     return ND->getNameAsCString();
160   }
161 
162   llvm::SmallString<256> Name;
163   llvm::raw_svector_ostream Out(Name);
164   if (!mangleName(ND, Context, Out)) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   Name += '\0';
170   return UniqueMangledName(Name.begin(), Name.end());
171 }
172 
173 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                              const char *NameEnd) {
175   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176 
177   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178 }
179 
180 /// AddGlobalCtor - Add a function to the list that will be called before
181 /// main() runs.
182 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183   // FIXME: Type coercion of void()* types.
184   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185 }
186 
187 /// AddGlobalDtor - Add a function to the list that will be called
188 /// when the module is unloaded.
189 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190   // FIXME: Type coercion of void()* types.
191   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192 }
193 
194 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195   // Ctor function type is void()*.
196   llvm::FunctionType* CtorFTy =
197     llvm::FunctionType::get(llvm::Type::VoidTy,
198                             std::vector<const llvm::Type*>(),
199                             false);
200   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201 
202   // Get the type of a ctor entry, { i32, void ()* }.
203   llvm::StructType* CtorStructTy =
204     llvm::StructType::get(llvm::Type::Int32Ty,
205                           llvm::PointerType::getUnqual(CtorFTy), NULL);
206 
207   // Construct the constructor and destructor arrays.
208   std::vector<llvm::Constant*> Ctors;
209   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210     std::vector<llvm::Constant*> S;
211     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214   }
215 
216   if (!Ctors.empty()) {
217     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218     new llvm::GlobalVariable(AT, false,
219                              llvm::GlobalValue::AppendingLinkage,
220                              llvm::ConstantArray::get(AT, Ctors),
221                              GlobalName,
222                              &TheModule);
223   }
224 }
225 
226 void CodeGenModule::EmitAnnotations() {
227   if (Annotations.empty())
228     return;
229 
230   // Create a new global variable for the ConstantStruct in the Module.
231   llvm::Constant *Array =
232   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                 Annotations.size()),
234                            Annotations);
235   llvm::GlobalValue *gv =
236   new llvm::GlobalVariable(Array->getType(), false,
237                            llvm::GlobalValue::AppendingLinkage, Array,
238                            "llvm.global.annotations", &TheModule);
239   gv->setSection("llvm.metadata");
240 }
241 
242 static CodeGenModule::GVALinkage
243 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
245     // C++ member functions defined inside the class are always inline.
246     if (MD->isInline() || !MD->isOutOfLineDefinition())
247       return CodeGenModule::GVA_CXXInline;
248 
249     return CodeGenModule::GVA_StrongExternal;
250   }
251 
252   // "static" functions get internal linkage.
253   if (FD->getStorageClass() == FunctionDecl::Static)
254     return CodeGenModule::GVA_Internal;
255 
256   if (!FD->isInline())
257     return CodeGenModule::GVA_StrongExternal;
258 
259   // If the inline function explicitly has the GNU inline attribute on it, or if
260   // this is C89 mode, we use to GNU semantics.
261   if (!Features.C99 && !Features.CPlusPlus) {
262     // extern inline in GNU mode is like C99 inline.
263     if (FD->getStorageClass() == FunctionDecl::Extern)
264       return CodeGenModule::GVA_C99Inline;
265     // Normal inline is a strong symbol.
266     return CodeGenModule::GVA_StrongExternal;
267   } else if (FD->hasActiveGNUInlineAttribute()) {
268     // GCC in C99 mode seems to use a different decision-making
269     // process for extern inline, which factors in previous
270     // declarations.
271     if (FD->isExternGNUInline())
272       return CodeGenModule::GVA_C99Inline;
273     // Normal inline is a strong symbol.
274     return CodeGenModule::GVA_StrongExternal;
275   }
276 
277   // The definition of inline changes based on the language.  Note that we
278   // have already handled "static inline" above, with the GVA_Internal case.
279   if (Features.CPlusPlus)  // inline and extern inline.
280     return CodeGenModule::GVA_CXXInline;
281 
282   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
283   if (FD->isC99InlineDefinition())
284     return CodeGenModule::GVA_C99Inline;
285 
286   return CodeGenModule::GVA_StrongExternal;
287 }
288 
289 /// SetFunctionDefinitionAttributes - Set attributes for a global.
290 ///
291 /// FIXME: This is currently only done for aliases and functions, but not for
292 /// variables (these details are set in EmitGlobalVarDefinition for variables).
293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
294                                                     llvm::GlobalValue *GV) {
295   GVALinkage Linkage = GetLinkageForFunction(D, Features);
296 
297   if (Linkage == GVA_Internal) {
298     GV->setLinkage(llvm::Function::InternalLinkage);
299   } else if (D->hasAttr<DLLExportAttr>()) {
300     GV->setLinkage(llvm::Function::DLLExportLinkage);
301   } else if (D->hasAttr<WeakAttr>()) {
302     GV->setLinkage(llvm::Function::WeakAnyLinkage);
303   } else if (Linkage == GVA_C99Inline) {
304     // In C99 mode, 'inline' functions are guaranteed to have a strong
305     // definition somewhere else, so we can use available_externally linkage.
306     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
307   } else if (Linkage == GVA_CXXInline) {
308     // In C++, the compiler has to emit a definition in every translation unit
309     // that references the function.  We should use linkonce_odr because
310     // a) if all references in this translation unit are optimized away, we
311     // don't need to codegen it.  b) if the function persists, it needs to be
312     // merged with other definitions. c) C++ has the ODR, so we know the
313     // definition is dependable.
314     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
315   } else {
316     assert(Linkage == GVA_StrongExternal);
317     // Otherwise, we have strong external linkage.
318     GV->setLinkage(llvm::Function::ExternalLinkage);
319   }
320 
321   SetCommonAttributes(D, GV);
322 }
323 
324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
325                                               const CGFunctionInfo &Info,
326                                               llvm::Function *F) {
327   AttributeListType AttributeList;
328   ConstructAttributeList(Info, D, AttributeList);
329 
330   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
331                                         AttributeList.size()));
332 
333   // Set the appropriate calling convention for the Function.
334   if (D->hasAttr<FastCallAttr>())
335     F->setCallingConv(llvm::CallingConv::X86_FastCall);
336 
337   if (D->hasAttr<StdCallAttr>())
338     F->setCallingConv(llvm::CallingConv::X86_StdCall);
339 }
340 
341 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
342                                                            llvm::Function *F) {
343   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
344     F->addFnAttr(llvm::Attribute::NoUnwind);
345 
346   if (D->hasAttr<AlwaysInlineAttr>())
347     F->addFnAttr(llvm::Attribute::AlwaysInline);
348 
349   if (D->hasAttr<NoinlineAttr>())
350     F->addFnAttr(llvm::Attribute::NoInline);
351 }
352 
353 void CodeGenModule::SetCommonAttributes(const Decl *D,
354                                         llvm::GlobalValue *GV) {
355   setGlobalVisibility(GV, D);
356 
357   if (D->hasAttr<UsedAttr>())
358     AddUsedGlobal(GV);
359 
360   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
361     GV->setSection(SA->getName());
362 }
363 
364 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
365                                                   llvm::Function *F,
366                                                   const CGFunctionInfo &FI) {
367   SetLLVMFunctionAttributes(D, FI, F);
368   SetLLVMFunctionAttributesForDefinition(D, F);
369 
370   F->setLinkage(llvm::Function::InternalLinkage);
371 
372   SetCommonAttributes(D, F);
373 }
374 
375 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
376                                           llvm::Function *F,
377                                           bool IsIncompleteFunction) {
378   if (!IsIncompleteFunction)
379     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
380 
381   // Only a few attributes are set on declarations; these may later be
382   // overridden by a definition.
383 
384   if (FD->hasAttr<DLLImportAttr>()) {
385     F->setLinkage(llvm::Function::DLLImportLinkage);
386   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
387     // "extern_weak" is overloaded in LLVM; we probably should have
388     // separate linkage types for this.
389     F->setLinkage(llvm::Function::ExternalWeakLinkage);
390   } else {
391     F->setLinkage(llvm::Function::ExternalLinkage);
392   }
393 
394   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
395     F->setSection(SA->getName());
396 }
397 
398 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
399   assert(!GV->isDeclaration() &&
400          "Only globals with definition can force usage.");
401   LLVMUsed.push_back(GV);
402 }
403 
404 void CodeGenModule::EmitLLVMUsed() {
405   // Don't create llvm.used if there is no need.
406   if (LLVMUsed.empty())
407     return;
408 
409   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
410   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
411 
412   // Convert LLVMUsed to what ConstantArray needs.
413   std::vector<llvm::Constant*> UsedArray;
414   UsedArray.resize(LLVMUsed.size());
415   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
416     UsedArray[i] =
417      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
418   }
419 
420   llvm::GlobalVariable *GV =
421     new llvm::GlobalVariable(ATy, false,
422                              llvm::GlobalValue::AppendingLinkage,
423                              llvm::ConstantArray::get(ATy, UsedArray),
424                              "llvm.used", &getModule());
425 
426   GV->setSection("llvm.metadata");
427 }
428 
429 void CodeGenModule::EmitDeferred() {
430   // Emit code for any potentially referenced deferred decls.  Since a
431   // previously unused static decl may become used during the generation of code
432   // for a static function, iterate until no  changes are made.
433   while (!DeferredDeclsToEmit.empty()) {
434     GlobalDecl D = DeferredDeclsToEmit.back();
435     DeferredDeclsToEmit.pop_back();
436 
437     // The mangled name for the decl must have been emitted in GlobalDeclMap.
438     // Look it up to see if it was defined with a stronger definition (e.g. an
439     // extern inline function with a strong function redefinition).  If so,
440     // just ignore the deferred decl.
441     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
442     assert(CGRef && "Deferred decl wasn't referenced?");
443 
444     if (!CGRef->isDeclaration())
445       continue;
446 
447     // Otherwise, emit the definition and move on to the next one.
448     EmitGlobalDefinition(D);
449   }
450 }
451 
452 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
453 /// annotation information for a given GlobalValue.  The annotation struct is
454 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
455 /// GlobalValue being annotated.  The second field is the constant string
456 /// created from the AnnotateAttr's annotation.  The third field is a constant
457 /// string containing the name of the translation unit.  The fourth field is
458 /// the line number in the file of the annotated value declaration.
459 ///
460 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
461 ///        appears to.
462 ///
463 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
464                                                 const AnnotateAttr *AA,
465                                                 unsigned LineNo) {
466   llvm::Module *M = &getModule();
467 
468   // get [N x i8] constants for the annotation string, and the filename string
469   // which are the 2nd and 3rd elements of the global annotation structure.
470   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
471   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
472   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
473                                                   true);
474 
475   // Get the two global values corresponding to the ConstantArrays we just
476   // created to hold the bytes of the strings.
477   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
478   llvm::GlobalValue *annoGV =
479   new llvm::GlobalVariable(anno->getType(), false,
480                            llvm::GlobalValue::InternalLinkage, anno,
481                            GV->getName() + StringPrefix, M);
482   // translation unit name string, emitted into the llvm.metadata section.
483   llvm::GlobalValue *unitGV =
484   new llvm::GlobalVariable(unit->getType(), false,
485                            llvm::GlobalValue::InternalLinkage, unit,
486                            StringPrefix, M);
487 
488   // Create the ConstantStruct for the global annotation.
489   llvm::Constant *Fields[4] = {
490     llvm::ConstantExpr::getBitCast(GV, SBP),
491     llvm::ConstantExpr::getBitCast(annoGV, SBP),
492     llvm::ConstantExpr::getBitCast(unitGV, SBP),
493     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
494   };
495   return llvm::ConstantStruct::get(Fields, 4, false);
496 }
497 
498 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
499   // Never defer when EmitAllDecls is specified or the decl has
500   // attribute used.
501   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
502     return false;
503 
504   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
505     // Constructors and destructors should never be deferred.
506     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
507       return false;
508 
509     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
510 
511     // static, static inline, always_inline, and extern inline functions can
512     // always be deferred.  Normal inline functions can be deferred in C99/C++.
513     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
514         Linkage == GVA_CXXInline)
515       return true;
516     return false;
517   }
518 
519   const VarDecl *VD = cast<VarDecl>(Global);
520   assert(VD->isFileVarDecl() && "Invalid decl");
521 
522   return VD->getStorageClass() == VarDecl::Static;
523 }
524 
525 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
526   const ValueDecl *Global = GD.getDecl();
527 
528   // If this is an alias definition (which otherwise looks like a declaration)
529   // emit it now.
530   if (Global->hasAttr<AliasAttr>())
531     return EmitAliasDefinition(Global);
532 
533   // Ignore declarations, they will be emitted on their first use.
534   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
535     // Forward declarations are emitted lazily on first use.
536     if (!FD->isThisDeclarationADefinition())
537       return;
538   } else {
539     const VarDecl *VD = cast<VarDecl>(Global);
540     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
541 
542     // In C++, if this is marked "extern", defer code generation.
543     if (getLangOptions().CPlusPlus && !VD->getInit() &&
544         (VD->getStorageClass() == VarDecl::Extern ||
545          VD->isExternC(getContext())))
546       return;
547 
548     // In C, if this isn't a definition, defer code generation.
549     if (!getLangOptions().CPlusPlus && !VD->getInit())
550       return;
551   }
552 
553   // Defer code generation when possible if this is a static definition, inline
554   // function etc.  These we only want to emit if they are used.
555   if (MayDeferGeneration(Global)) {
556     // If the value has already been used, add it directly to the
557     // DeferredDeclsToEmit list.
558     const char *MangledName = getMangledName(GD);
559     if (GlobalDeclMap.count(MangledName))
560       DeferredDeclsToEmit.push_back(GD);
561     else {
562       // Otherwise, remember that we saw a deferred decl with this name.  The
563       // first use of the mangled name will cause it to move into
564       // DeferredDeclsToEmit.
565       DeferredDecls[MangledName] = GD;
566     }
567     return;
568   }
569 
570   // Otherwise emit the definition.
571   EmitGlobalDefinition(GD);
572 }
573 
574 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
575   const ValueDecl *D = GD.getDecl();
576 
577   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
578     EmitCXXConstructor(CD, GD.getCtorType());
579   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
580     EmitCXXDestructor(DD, GD.getDtorType());
581   else if (isa<FunctionDecl>(D))
582     EmitGlobalFunctionDefinition(GD);
583   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
584     EmitGlobalVarDefinition(VD);
585   else {
586     assert(0 && "Invalid argument to EmitGlobalDefinition()");
587   }
588 }
589 
590 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
591 /// module, create and return an llvm Function with the specified type. If there
592 /// is something in the module with the specified name, return it potentially
593 /// bitcasted to the right type.
594 ///
595 /// If D is non-null, it specifies a decl that correspond to this.  This is used
596 /// to set the attributes on the function when it is first created.
597 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
598                                                        const llvm::Type *Ty,
599                                                        GlobalDecl D) {
600   // Lookup the entry, lazily creating it if necessary.
601   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
602   if (Entry) {
603     if (Entry->getType()->getElementType() == Ty)
604       return Entry;
605 
606     // Make sure the result is of the correct type.
607     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
608     return llvm::ConstantExpr::getBitCast(Entry, PTy);
609   }
610 
611   // This is the first use or definition of a mangled name.  If there is a
612   // deferred decl with this name, remember that we need to emit it at the end
613   // of the file.
614   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
615     DeferredDecls.find(MangledName);
616   if (DDI != DeferredDecls.end()) {
617     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
618     // list, and remove it from DeferredDecls (since we don't need it anymore).
619     DeferredDeclsToEmit.push_back(DDI->second);
620     DeferredDecls.erase(DDI);
621   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
622     // If this the first reference to a C++ inline function in a class, queue up
623     // the deferred function body for emission.  These are not seen as
624     // top-level declarations.
625     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
626       DeferredDeclsToEmit.push_back(D);
627   }
628 
629   // This function doesn't have a complete type (for example, the return
630   // type is an incomplete struct). Use a fake type instead, and make
631   // sure not to try to set attributes.
632   bool IsIncompleteFunction = false;
633   if (!isa<llvm::FunctionType>(Ty)) {
634     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
635                                  std::vector<const llvm::Type*>(), false);
636     IsIncompleteFunction = true;
637   }
638   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
639                                              llvm::Function::ExternalLinkage,
640                                              "", &getModule());
641   F->setName(MangledName);
642   if (D.getDecl())
643     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
644                           IsIncompleteFunction);
645   Entry = F;
646   return F;
647 }
648 
649 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
650 /// non-null, then this function will use the specified type if it has to
651 /// create it (this occurs when we see a definition of the function).
652 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
653                                                  const llvm::Type *Ty) {
654   // If there was no specific requested type, just convert it now.
655   if (!Ty)
656     Ty = getTypes().ConvertType(GD.getDecl()->getType());
657   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
658 }
659 
660 /// CreateRuntimeFunction - Create a new runtime function with the specified
661 /// type and name.
662 llvm::Constant *
663 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
664                                      const char *Name) {
665   // Convert Name to be a uniqued string from the IdentifierInfo table.
666   Name = getContext().Idents.get(Name).getName();
667   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
668 }
669 
670 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
671 /// create and return an llvm GlobalVariable with the specified type.  If there
672 /// is something in the module with the specified name, return it potentially
673 /// bitcasted to the right type.
674 ///
675 /// If D is non-null, it specifies a decl that correspond to this.  This is used
676 /// to set the attributes on the global when it is first created.
677 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
678                                                      const llvm::PointerType*Ty,
679                                                      const VarDecl *D) {
680   // Lookup the entry, lazily creating it if necessary.
681   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
682   if (Entry) {
683     if (Entry->getType() == Ty)
684       return Entry;
685 
686     // Make sure the result is of the correct type.
687     return llvm::ConstantExpr::getBitCast(Entry, Ty);
688   }
689 
690   // This is the first use or definition of a mangled name.  If there is a
691   // deferred decl with this name, remember that we need to emit it at the end
692   // of the file.
693   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
694     DeferredDecls.find(MangledName);
695   if (DDI != DeferredDecls.end()) {
696     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
697     // list, and remove it from DeferredDecls (since we don't need it anymore).
698     DeferredDeclsToEmit.push_back(DDI->second);
699     DeferredDecls.erase(DDI);
700   }
701 
702   llvm::GlobalVariable *GV =
703     new llvm::GlobalVariable(Ty->getElementType(), false,
704                              llvm::GlobalValue::ExternalLinkage,
705                              0, "", &getModule(),
706                              false, Ty->getAddressSpace());
707   GV->setName(MangledName);
708 
709   // Handle things which are present even on external declarations.
710   if (D) {
711     // FIXME: This code is overly simple and should be merged with other global
712     // handling.
713     GV->setConstant(D->getType().isConstant(Context));
714 
715     // FIXME: Merge with other attribute handling code.
716     if (D->getStorageClass() == VarDecl::PrivateExtern)
717       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
718 
719     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
720       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
721 
722     GV->setThreadLocal(D->isThreadSpecified());
723   }
724 
725   return Entry = GV;
726 }
727 
728 
729 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
730 /// given global variable.  If Ty is non-null and if the global doesn't exist,
731 /// then it will be greated with the specified type instead of whatever the
732 /// normal requested type would be.
733 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
734                                                   const llvm::Type *Ty) {
735   assert(D->hasGlobalStorage() && "Not a global variable");
736   QualType ASTTy = D->getType();
737   if (Ty == 0)
738     Ty = getTypes().ConvertTypeForMem(ASTTy);
739 
740   const llvm::PointerType *PTy =
741     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
742   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
743 }
744 
745 /// CreateRuntimeVariable - Create a new runtime global variable with the
746 /// specified type and name.
747 llvm::Constant *
748 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
749                                      const char *Name) {
750   // Convert Name to be a uniqued string from the IdentifierInfo table.
751   Name = getContext().Idents.get(Name).getName();
752   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
753 }
754 
755 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
756   assert(!D->getInit() && "Cannot emit definite definitions here!");
757 
758   if (MayDeferGeneration(D)) {
759     // If we have not seen a reference to this variable yet, place it
760     // into the deferred declarations table to be emitted if needed
761     // later.
762     const char *MangledName = getMangledName(D);
763     if (GlobalDeclMap.count(MangledName) == 0) {
764       DeferredDecls[MangledName] = GlobalDecl(D);
765       return;
766     }
767   }
768 
769   // The tentative definition is the only definition.
770   EmitGlobalVarDefinition(D);
771 }
772 
773 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
774   llvm::Constant *Init = 0;
775   QualType ASTTy = D->getType();
776 
777   if (D->getInit() == 0) {
778     // This is a tentative definition; tentative definitions are
779     // implicitly initialized with { 0 }.
780     //
781     // Note that tentative definitions are only emitted at the end of
782     // a translation unit, so they should never have incomplete
783     // type. In addition, EmitTentativeDefinition makes sure that we
784     // never attempt to emit a tentative definition if a real one
785     // exists. A use may still exists, however, so we still may need
786     // to do a RAUW.
787     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
788     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
789   } else {
790     Init = EmitConstantExpr(D->getInit(), D->getType());
791     if (!Init) {
792       ErrorUnsupported(D, "static initializer");
793       QualType T = D->getInit()->getType();
794       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
795     }
796   }
797 
798   const llvm::Type* InitType = Init->getType();
799   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
800 
801   // Strip off a bitcast if we got one back.
802   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
803     assert(CE->getOpcode() == llvm::Instruction::BitCast);
804     Entry = CE->getOperand(0);
805   }
806 
807   // Entry is now either a Function or GlobalVariable.
808   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
809 
810   // We have a definition after a declaration with the wrong type.
811   // We must make a new GlobalVariable* and update everything that used OldGV
812   // (a declaration or tentative definition) with the new GlobalVariable*
813   // (which will be a definition).
814   //
815   // This happens if there is a prototype for a global (e.g.
816   // "extern int x[];") and then a definition of a different type (e.g.
817   // "int x[10];"). This also happens when an initializer has a different type
818   // from the type of the global (this happens with unions).
819   if (GV == 0 ||
820       GV->getType()->getElementType() != InitType ||
821       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
822 
823     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
824     GlobalDeclMap.erase(getMangledName(D));
825 
826     // Make a new global with the correct type, this is now guaranteed to work.
827     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
828     GV->takeName(cast<llvm::GlobalValue>(Entry));
829 
830     // Replace all uses of the old global with the new global
831     llvm::Constant *NewPtrForOldDecl =
832         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
833     Entry->replaceAllUsesWith(NewPtrForOldDecl);
834 
835     // Erase the old global, since it is no longer used.
836     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
837   }
838 
839   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
840     SourceManager &SM = Context.getSourceManager();
841     AddAnnotation(EmitAnnotateAttr(GV, AA,
842                               SM.getInstantiationLineNumber(D->getLocation())));
843   }
844 
845   GV->setInitializer(Init);
846   GV->setConstant(D->getType().isConstant(Context));
847   GV->setAlignment(getContext().getDeclAlignInBytes(D));
848 
849   // Set the llvm linkage type as appropriate.
850   if (D->getStorageClass() == VarDecl::Static)
851     GV->setLinkage(llvm::Function::InternalLinkage);
852   else if (D->hasAttr<DLLImportAttr>())
853     GV->setLinkage(llvm::Function::DLLImportLinkage);
854   else if (D->hasAttr<DLLExportAttr>())
855     GV->setLinkage(llvm::Function::DLLExportLinkage);
856   else if (D->hasAttr<WeakAttr>())
857     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
858   else if (!CompileOpts.NoCommon &&
859            (!D->hasExternalStorage() && !D->getInit()))
860     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
861   else
862     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
863 
864   SetCommonAttributes(D, GV);
865 
866   // Emit global variable debug information.
867   if (CGDebugInfo *DI = getDebugInfo()) {
868     DI->setLocation(D->getLocation());
869     DI->EmitGlobalVariable(GV, D);
870   }
871 }
872 
873 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
874 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
875 /// existing call uses of the old function in the module, this adjusts them to
876 /// call the new function directly.
877 ///
878 /// This is not just a cleanup: the always_inline pass requires direct calls to
879 /// functions to be able to inline them.  If there is a bitcast in the way, it
880 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
881 /// run at -O0.
882 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
883                                                       llvm::Function *NewFn) {
884   // If we're redefining a global as a function, don't transform it.
885   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
886   if (OldFn == 0) return;
887 
888   const llvm::Type *NewRetTy = NewFn->getReturnType();
889   llvm::SmallVector<llvm::Value*, 4> ArgList;
890 
891   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
892        UI != E; ) {
893     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
894     unsigned OpNo = UI.getOperandNo();
895     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
896     if (!CI || OpNo != 0) continue;
897 
898     // If the return types don't match exactly, and if the call isn't dead, then
899     // we can't transform this call.
900     if (CI->getType() != NewRetTy && !CI->use_empty())
901       continue;
902 
903     // If the function was passed too few arguments, don't transform.  If extra
904     // arguments were passed, we silently drop them.  If any of the types
905     // mismatch, we don't transform.
906     unsigned ArgNo = 0;
907     bool DontTransform = false;
908     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
909          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
910       if (CI->getNumOperands()-1 == ArgNo ||
911           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
912         DontTransform = true;
913         break;
914       }
915     }
916     if (DontTransform)
917       continue;
918 
919     // Okay, we can transform this.  Create the new call instruction and copy
920     // over the required information.
921     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
922     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
923                                                      ArgList.end(), "", CI);
924     ArgList.clear();
925     if (NewCall->getType() != llvm::Type::VoidTy)
926       NewCall->takeName(CI);
927     NewCall->setCallingConv(CI->getCallingConv());
928     NewCall->setAttributes(CI->getAttributes());
929 
930     // Finally, remove the old call, replacing any uses with the new one.
931     if (!CI->use_empty())
932       CI->replaceAllUsesWith(NewCall);
933     CI->eraseFromParent();
934   }
935 }
936 
937 
938 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
939   const llvm::FunctionType *Ty;
940   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
941 
942   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
943     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
944 
945     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
946   } else {
947     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
948 
949     // As a special case, make sure that definitions of K&R function
950     // "type foo()" aren't declared as varargs (which forces the backend
951     // to do unnecessary work).
952     if (D->getType()->isFunctionNoProtoType()) {
953       assert(Ty->isVarArg() && "Didn't lower type as expected");
954       // Due to stret, the lowered function could have arguments.
955       // Just create the same type as was lowered by ConvertType
956       // but strip off the varargs bit.
957       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
958       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
959     }
960   }
961 
962   // Get or create the prototype for the function.
963   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
964 
965   // Strip off a bitcast if we got one back.
966   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967     assert(CE->getOpcode() == llvm::Instruction::BitCast);
968     Entry = CE->getOperand(0);
969   }
970 
971 
972   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
973     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
974 
975     // If the types mismatch then we have to rewrite the definition.
976     assert(OldFn->isDeclaration() &&
977            "Shouldn't replace non-declaration");
978 
979     // F is the Function* for the one with the wrong type, we must make a new
980     // Function* and update everything that used F (a declaration) with the new
981     // Function* (which will be a definition).
982     //
983     // This happens if there is a prototype for a function
984     // (e.g. "int f()") and then a definition of a different type
985     // (e.g. "int f(int x)").  Start by making a new function of the
986     // correct type, RAUW, then steal the name.
987     GlobalDeclMap.erase(getMangledName(D));
988     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
989     NewFn->takeName(OldFn);
990 
991     // If this is an implementation of a function without a prototype, try to
992     // replace any existing uses of the function (which may be calls) with uses
993     // of the new function
994     if (D->getType()->isFunctionNoProtoType()) {
995       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
996       OldFn->removeDeadConstantUsers();
997     }
998 
999     // Replace uses of F with the Function we will endow with a body.
1000     if (!Entry->use_empty()) {
1001       llvm::Constant *NewPtrForOldDecl =
1002         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1003       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1004     }
1005 
1006     // Ok, delete the old function now, which is dead.
1007     OldFn->eraseFromParent();
1008 
1009     Entry = NewFn;
1010   }
1011 
1012   llvm::Function *Fn = cast<llvm::Function>(Entry);
1013 
1014   CodeGenFunction(*this).GenerateCode(D, Fn);
1015 
1016   SetFunctionDefinitionAttributes(D, Fn);
1017   SetLLVMFunctionAttributesForDefinition(D, Fn);
1018 
1019   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1020     AddGlobalCtor(Fn, CA->getPriority());
1021   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1022     AddGlobalDtor(Fn, DA->getPriority());
1023 }
1024 
1025 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1026   const AliasAttr *AA = D->getAttr<AliasAttr>();
1027   assert(AA && "Not an alias?");
1028 
1029   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1030 
1031   // Unique the name through the identifier table.
1032   const char *AliaseeName = AA->getAliasee().c_str();
1033   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1034 
1035   // Create a reference to the named value.  This ensures that it is emitted
1036   // if a deferred decl.
1037   llvm::Constant *Aliasee;
1038   if (isa<llvm::FunctionType>(DeclTy))
1039     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1040   else
1041     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1042                                     llvm::PointerType::getUnqual(DeclTy), 0);
1043 
1044   // Create the new alias itself, but don't set a name yet.
1045   llvm::GlobalValue *GA =
1046     new llvm::GlobalAlias(Aliasee->getType(),
1047                           llvm::Function::ExternalLinkage,
1048                           "", Aliasee, &getModule());
1049 
1050   // See if there is already something with the alias' name in the module.
1051   const char *MangledName = getMangledName(D);
1052   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1053 
1054   if (Entry && !Entry->isDeclaration()) {
1055     // If there is a definition in the module, then it wins over the alias.
1056     // This is dubious, but allow it to be safe.  Just ignore the alias.
1057     GA->eraseFromParent();
1058     return;
1059   }
1060 
1061   if (Entry) {
1062     // If there is a declaration in the module, then we had an extern followed
1063     // by the alias, as in:
1064     //   extern int test6();
1065     //   ...
1066     //   int test6() __attribute__((alias("test7")));
1067     //
1068     // Remove it and replace uses of it with the alias.
1069 
1070     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1071                                                           Entry->getType()));
1072     Entry->eraseFromParent();
1073   }
1074 
1075   // Now we know that there is no conflict, set the name.
1076   Entry = GA;
1077   GA->setName(MangledName);
1078 
1079   // Set attributes which are particular to an alias; this is a
1080   // specialization of the attributes which may be set on a global
1081   // variable/function.
1082   if (D->hasAttr<DLLExportAttr>()) {
1083     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1084       // The dllexport attribute is ignored for undefined symbols.
1085       if (FD->getBody(getContext()))
1086         GA->setLinkage(llvm::Function::DLLExportLinkage);
1087     } else {
1088       GA->setLinkage(llvm::Function::DLLExportLinkage);
1089     }
1090   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1091     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1092   }
1093 
1094   SetCommonAttributes(D, GA);
1095 }
1096 
1097 /// getBuiltinLibFunction - Given a builtin id for a function like
1098 /// "__builtin_fabsf", return a Function* for "fabsf".
1099 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1100   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1101           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1102          "isn't a lib fn");
1103 
1104   // Get the name, skip over the __builtin_ prefix (if necessary).
1105   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1106   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1107     Name += 10;
1108 
1109   // Get the type for the builtin.
1110   Builtin::Context::GetBuiltinTypeError Error;
1111   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1112   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1113 
1114   const llvm::FunctionType *Ty =
1115     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1116 
1117   // Unique the name through the identifier table.
1118   Name = getContext().Idents.get(Name).getName();
1119   // FIXME: param attributes for sext/zext etc.
1120   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1121 }
1122 
1123 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1124                                             unsigned NumTys) {
1125   return llvm::Intrinsic::getDeclaration(&getModule(),
1126                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1127 }
1128 
1129 llvm::Function *CodeGenModule::getMemCpyFn() {
1130   if (MemCpyFn) return MemCpyFn;
1131   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1132   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1133 }
1134 
1135 llvm::Function *CodeGenModule::getMemMoveFn() {
1136   if (MemMoveFn) return MemMoveFn;
1137   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1138   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1139 }
1140 
1141 llvm::Function *CodeGenModule::getMemSetFn() {
1142   if (MemSetFn) return MemSetFn;
1143   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1144   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1145 }
1146 
1147 static void appendFieldAndPadding(CodeGenModule &CGM,
1148                                   std::vector<llvm::Constant*>& Fields,
1149                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1150                                   llvm::Constant* Field,
1151                                   RecordDecl* RD, const llvm::StructType *STy) {
1152   // Append the field.
1153   Fields.push_back(Field);
1154 
1155   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1156 
1157   int NextStructFieldNo;
1158   if (!NextFieldD) {
1159     NextStructFieldNo = STy->getNumElements();
1160   } else {
1161     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1162   }
1163 
1164   // Append padding
1165   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1166     llvm::Constant *C =
1167       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1168 
1169     Fields.push_back(C);
1170   }
1171 }
1172 
1173 llvm::Constant *CodeGenModule::
1174 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1175   std::string str;
1176   unsigned StringLength = 0;
1177 
1178   bool isUTF16 = false;
1179   if (Literal->containsNonAsciiOrNull()) {
1180     // Convert from UTF-8 to UTF-16.
1181     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1182     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1183     UTF16 *ToPtr = &ToBuf[0];
1184 
1185     ConversionResult Result;
1186     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1187                                 &ToPtr, ToPtr+Literal->getByteLength(),
1188                                 strictConversion);
1189     if (Result == conversionOK) {
1190       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1191       // without doing more surgery to this routine. Since we aren't explicitly
1192       // checking for endianness here, it's also a bug (when generating code for
1193       // a target that doesn't match the host endianness). Modeling this as an
1194       // i16 array is likely the cleanest solution.
1195       StringLength = ToPtr-&ToBuf[0];
1196       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1197       isUTF16 = true;
1198     } else if (Result == sourceIllegal) {
1199       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1200       str.assign(Literal->getStrData(), Literal->getByteLength());
1201       StringLength = str.length();
1202     } else
1203       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1204 
1205   } else {
1206     str.assign(Literal->getStrData(), Literal->getByteLength());
1207     StringLength = str.length();
1208   }
1209   llvm::StringMapEntry<llvm::Constant *> &Entry =
1210     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1211 
1212   if (llvm::Constant *C = Entry.getValue())
1213     return C;
1214 
1215   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1216   llvm::Constant *Zeros[] = { Zero, Zero };
1217 
1218   if (!CFConstantStringClassRef) {
1219     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1220     Ty = llvm::ArrayType::get(Ty, 0);
1221 
1222     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1223     // already defined, in that it will get renamed and the user will most
1224     // likely see an opaque error message. This is a general issue with relying
1225     // on particular names.
1226     llvm::GlobalVariable *GV =
1227       new llvm::GlobalVariable(Ty, false,
1228                                llvm::GlobalVariable::ExternalLinkage, 0,
1229                                "__CFConstantStringClassReference",
1230                                &getModule());
1231 
1232     // Decay array -> ptr
1233     CFConstantStringClassRef =
1234       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1235   }
1236 
1237   QualType CFTy = getContext().getCFConstantStringType();
1238   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1239 
1240   const llvm::StructType *STy =
1241     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1242 
1243   std::vector<llvm::Constant*> Fields;
1244   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1245 
1246   // Class pointer.
1247   FieldDecl *CurField = *Field++;
1248   FieldDecl *NextField = *Field++;
1249   appendFieldAndPadding(*this, Fields, CurField, NextField,
1250                         CFConstantStringClassRef, CFRD, STy);
1251 
1252   // Flags.
1253   CurField = NextField;
1254   NextField = *Field++;
1255   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1256   appendFieldAndPadding(*this, Fields, CurField, NextField,
1257                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1258                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1259                         CFRD, STy);
1260 
1261   // String pointer.
1262   CurField = NextField;
1263   NextField = *Field++;
1264   llvm::Constant *C = llvm::ConstantArray::get(str);
1265 
1266   const char *Sect, *Prefix;
1267   bool isConstant;
1268   if (isUTF16) {
1269     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1270     Sect = getContext().Target.getUnicodeStringSection();
1271     // FIXME: Why does GCC not set constant here?
1272     isConstant = false;
1273   } else {
1274     Prefix = getContext().Target.getStringSymbolPrefix(true);
1275     Sect = getContext().Target.getCFStringDataSection();
1276     // FIXME: -fwritable-strings should probably affect this, but we
1277     // are following gcc here.
1278     isConstant = true;
1279   }
1280   llvm::GlobalVariable *GV =
1281     new llvm::GlobalVariable(C->getType(), isConstant,
1282                              llvm::GlobalValue::InternalLinkage,
1283                              C, Prefix, &getModule());
1284   if (Sect)
1285     GV->setSection(Sect);
1286   if (isUTF16) {
1287     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1288     GV->setAlignment(Align);
1289   }
1290   appendFieldAndPadding(*this, Fields, CurField, NextField,
1291                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1292                         CFRD, STy);
1293 
1294   // String length.
1295   CurField = NextField;
1296   NextField = 0;
1297   Ty = getTypes().ConvertType(getContext().LongTy);
1298   appendFieldAndPadding(*this, Fields, CurField, NextField,
1299                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1300 
1301   // The struct.
1302   C = llvm::ConstantStruct::get(STy, Fields);
1303   GV = new llvm::GlobalVariable(C->getType(), true,
1304                                 llvm::GlobalVariable::InternalLinkage, C,
1305                                 getContext().Target.getCFStringSymbolPrefix(),
1306                                 &getModule());
1307   if (const char *Sect = getContext().Target.getCFStringSection())
1308     GV->setSection(Sect);
1309   Entry.setValue(GV);
1310 
1311   return GV;
1312 }
1313 
1314 /// GetStringForStringLiteral - Return the appropriate bytes for a
1315 /// string literal, properly padded to match the literal type.
1316 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1317   const char *StrData = E->getStrData();
1318   unsigned Len = E->getByteLength();
1319 
1320   const ConstantArrayType *CAT =
1321     getContext().getAsConstantArrayType(E->getType());
1322   assert(CAT && "String isn't pointer or array!");
1323 
1324   // Resize the string to the right size.
1325   std::string Str(StrData, StrData+Len);
1326   uint64_t RealLen = CAT->getSize().getZExtValue();
1327 
1328   if (E->isWide())
1329     RealLen *= getContext().Target.getWCharWidth()/8;
1330 
1331   Str.resize(RealLen, '\0');
1332 
1333   return Str;
1334 }
1335 
1336 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1337 /// constant array for the given string literal.
1338 llvm::Constant *
1339 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1340   // FIXME: This can be more efficient.
1341   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1342 }
1343 
1344 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1345 /// array for the given ObjCEncodeExpr node.
1346 llvm::Constant *
1347 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1348   std::string Str;
1349   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1350 
1351   return GetAddrOfConstantCString(Str);
1352 }
1353 
1354 
1355 /// GenerateWritableString -- Creates storage for a string literal.
1356 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1357                                              bool constant,
1358                                              CodeGenModule &CGM,
1359                                              const char *GlobalName) {
1360   // Create Constant for this string literal. Don't add a '\0'.
1361   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1362 
1363   // Create a global variable for this string
1364   return new llvm::GlobalVariable(C->getType(), constant,
1365                                   llvm::GlobalValue::InternalLinkage,
1366                                   C, GlobalName, &CGM.getModule());
1367 }
1368 
1369 /// GetAddrOfConstantString - Returns a pointer to a character array
1370 /// containing the literal. This contents are exactly that of the
1371 /// given string, i.e. it will not be null terminated automatically;
1372 /// see GetAddrOfConstantCString. Note that whether the result is
1373 /// actually a pointer to an LLVM constant depends on
1374 /// Feature.WriteableStrings.
1375 ///
1376 /// The result has pointer to array type.
1377 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1378                                                        const char *GlobalName) {
1379   bool IsConstant = !Features.WritableStrings;
1380 
1381   // Get the default prefix if a name wasn't specified.
1382   if (!GlobalName)
1383     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1384 
1385   // Don't share any string literals if strings aren't constant.
1386   if (!IsConstant)
1387     return GenerateStringLiteral(str, false, *this, GlobalName);
1388 
1389   llvm::StringMapEntry<llvm::Constant *> &Entry =
1390   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1391 
1392   if (Entry.getValue())
1393     return Entry.getValue();
1394 
1395   // Create a global variable for this.
1396   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1397   Entry.setValue(C);
1398   return C;
1399 }
1400 
1401 /// GetAddrOfConstantCString - Returns a pointer to a character
1402 /// array containing the literal and a terminating '\-'
1403 /// character. The result has pointer to array type.
1404 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1405                                                         const char *GlobalName){
1406   return GetAddrOfConstantString(str + '\0', GlobalName);
1407 }
1408 
1409 /// EmitObjCPropertyImplementations - Emit information for synthesized
1410 /// properties for an implementation.
1411 void CodeGenModule::EmitObjCPropertyImplementations(const
1412                                                     ObjCImplementationDecl *D) {
1413   for (ObjCImplementationDecl::propimpl_iterator
1414          i = D->propimpl_begin(getContext()),
1415          e = D->propimpl_end(getContext()); i != e; ++i) {
1416     ObjCPropertyImplDecl *PID = *i;
1417 
1418     // Dynamic is just for type-checking.
1419     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1420       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1421 
1422       // Determine which methods need to be implemented, some may have
1423       // been overridden. Note that ::isSynthesized is not the method
1424       // we want, that just indicates if the decl came from a
1425       // property. What we want to know is if the method is defined in
1426       // this implementation.
1427       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1428         CodeGenFunction(*this).GenerateObjCGetter(
1429                                  const_cast<ObjCImplementationDecl *>(D), PID);
1430       if (!PD->isReadOnly() &&
1431           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1432         CodeGenFunction(*this).GenerateObjCSetter(
1433                                  const_cast<ObjCImplementationDecl *>(D), PID);
1434     }
1435   }
1436 }
1437 
1438 /// EmitNamespace - Emit all declarations in a namespace.
1439 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1440   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1441          E = ND->decls_end(getContext());
1442        I != E; ++I)
1443     EmitTopLevelDecl(*I);
1444 }
1445 
1446 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1447 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1448   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1449     ErrorUnsupported(LSD, "linkage spec");
1450     return;
1451   }
1452 
1453   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1454          E = LSD->decls_end(getContext());
1455        I != E; ++I)
1456     EmitTopLevelDecl(*I);
1457 }
1458 
1459 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1460 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1461   // If an error has occurred, stop code generation, but continue
1462   // parsing and semantic analysis (to ensure all warnings and errors
1463   // are emitted).
1464   if (Diags.hasErrorOccurred())
1465     return;
1466 
1467   switch (D->getKind()) {
1468   case Decl::CXXMethod:
1469   case Decl::Function:
1470   case Decl::Var:
1471     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1472     break;
1473 
1474   // C++ Decls
1475   case Decl::Namespace:
1476     EmitNamespace(cast<NamespaceDecl>(D));
1477     break;
1478   case Decl::CXXConstructor:
1479     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1480     break;
1481   case Decl::CXXDestructor:
1482     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1483     break;
1484 
1485   // Objective-C Decls
1486 
1487   // Forward declarations, no (immediate) code generation.
1488   case Decl::ObjCClass:
1489   case Decl::ObjCForwardProtocol:
1490   case Decl::ObjCCategory:
1491   case Decl::ObjCInterface:
1492     break;
1493 
1494   case Decl::ObjCProtocol:
1495     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1496     break;
1497 
1498   case Decl::ObjCCategoryImpl:
1499     // Categories have properties but don't support synthesize so we
1500     // can ignore them here.
1501     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1502     break;
1503 
1504   case Decl::ObjCImplementation: {
1505     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1506     EmitObjCPropertyImplementations(OMD);
1507     Runtime->GenerateClass(OMD);
1508     break;
1509   }
1510   case Decl::ObjCMethod: {
1511     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1512     // If this is not a prototype, emit the body.
1513     if (OMD->getBody(getContext()))
1514       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1515     break;
1516   }
1517   case Decl::ObjCCompatibleAlias:
1518     // compatibility-alias is a directive and has no code gen.
1519     break;
1520 
1521   case Decl::LinkageSpec:
1522     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1523     break;
1524 
1525   case Decl::FileScopeAsm: {
1526     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1527     std::string AsmString(AD->getAsmString()->getStrData(),
1528                           AD->getAsmString()->getByteLength());
1529 
1530     const std::string &S = getModule().getModuleInlineAsm();
1531     if (S.empty())
1532       getModule().setModuleInlineAsm(AsmString);
1533     else
1534       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1535     break;
1536   }
1537 
1538   default:
1539     // Make sure we handled everything we should, every other kind is a
1540     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1541     // function. Need to recode Decl::Kind to do that easily.
1542     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1543   }
1544 }
1545