1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 538 // Allow dso_local on applicable targets. 539 getModule().setSemanticInterposition(0); 540 541 if (CodeGenOpts.EmitCodeView) { 542 // Indicate that we want CodeView in the metadata. 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 544 } 545 if (CodeGenOpts.CodeViewGHash) { 546 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 547 } 548 if (CodeGenOpts.ControlFlowGuard) { 549 // Function ID tables and checks for Control Flow Guard (cfguard=2). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 551 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 552 // Function ID tables for Control Flow Guard (cfguard=1). 553 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 554 } 555 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 556 // We don't support LTO with 2 with different StrictVTablePointers 557 // FIXME: we could support it by stripping all the information introduced 558 // by StrictVTablePointers. 559 560 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 561 562 llvm::Metadata *Ops[2] = { 563 llvm::MDString::get(VMContext, "StrictVTablePointers"), 564 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 565 llvm::Type::getInt32Ty(VMContext), 1))}; 566 567 getModule().addModuleFlag(llvm::Module::Require, 568 "StrictVTablePointersRequirement", 569 llvm::MDNode::get(VMContext, Ops)); 570 } 571 if (getModuleDebugInfo()) 572 // We support a single version in the linked module. The LLVM 573 // parser will drop debug info with a different version number 574 // (and warn about it, too). 575 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 576 llvm::DEBUG_METADATA_VERSION); 577 578 // We need to record the widths of enums and wchar_t, so that we can generate 579 // the correct build attributes in the ARM backend. wchar_size is also used by 580 // TargetLibraryInfo. 581 uint64_t WCharWidth = 582 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 583 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 584 585 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 586 if ( Arch == llvm::Triple::arm 587 || Arch == llvm::Triple::armeb 588 || Arch == llvm::Triple::thumb 589 || Arch == llvm::Triple::thumbeb) { 590 // The minimum width of an enum in bytes 591 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 592 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 593 } 594 595 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 596 StringRef ABIStr = Target.getABI(); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 599 llvm::MDString::get(Ctx, ABIStr)); 600 } 601 602 if (CodeGenOpts.SanitizeCfiCrossDso) { 603 // Indicate that we want cross-DSO control flow integrity checks. 604 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 605 } 606 607 if (CodeGenOpts.WholeProgramVTables) { 608 // Indicate whether VFE was enabled for this module, so that the 609 // vcall_visibility metadata added under whole program vtables is handled 610 // appropriately in the optimizer. 611 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 612 CodeGenOpts.VirtualFunctionElimination); 613 } 614 615 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 616 getModule().addModuleFlag(llvm::Module::Override, 617 "CFI Canonical Jump Tables", 618 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 619 } 620 621 if (CodeGenOpts.CFProtectionReturn && 622 Target.checkCFProtectionReturnSupported(getDiags())) { 623 // Indicate that we want to instrument return control flow protection. 624 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 625 1); 626 } 627 628 if (CodeGenOpts.CFProtectionBranch && 629 Target.checkCFProtectionBranchSupported(getDiags())) { 630 // Indicate that we want to instrument branch control flow protection. 631 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 632 1); 633 } 634 635 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 636 Arch == llvm::Triple::aarch64_be) { 637 getModule().addModuleFlag(llvm::Module::Error, 638 "branch-target-enforcement", 639 LangOpts.BranchTargetEnforcement); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 642 LangOpts.hasSignReturnAddress()); 643 644 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 645 LangOpts.isSignReturnAddressScopeAll()); 646 647 getModule().addModuleFlag(llvm::Module::Error, 648 "sign-return-address-with-bkey", 649 !LangOpts.isSignReturnAddressWithAKey()); 650 } 651 652 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag( 655 llvm::Module::Error, "MemProfProfileFilename", 656 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 657 } 658 659 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 660 // Indicate whether __nvvm_reflect should be configured to flush denormal 661 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 662 // property.) 663 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 664 CodeGenOpts.FP32DenormalMode.Output != 665 llvm::DenormalMode::IEEE); 666 } 667 668 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 669 if (LangOpts.OpenCL) { 670 EmitOpenCLMetadata(); 671 // Emit SPIR version. 672 if (getTriple().isSPIR()) { 673 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 674 // opencl.spir.version named metadata. 675 // C++ is backwards compatible with OpenCL v2.0. 676 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 677 llvm::Metadata *SPIRVerElts[] = { 678 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 679 Int32Ty, Version / 100)), 680 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 681 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 682 llvm::NamedMDNode *SPIRVerMD = 683 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 684 llvm::LLVMContext &Ctx = TheModule.getContext(); 685 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 686 } 687 } 688 689 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 690 assert(PLevel < 3 && "Invalid PIC Level"); 691 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 692 if (Context.getLangOpts().PIE) 693 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 694 } 695 696 if (getCodeGenOpts().CodeModel.size() > 0) { 697 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 698 .Case("tiny", llvm::CodeModel::Tiny) 699 .Case("small", llvm::CodeModel::Small) 700 .Case("kernel", llvm::CodeModel::Kernel) 701 .Case("medium", llvm::CodeModel::Medium) 702 .Case("large", llvm::CodeModel::Large) 703 .Default(~0u); 704 if (CM != ~0u) { 705 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 706 getModule().setCodeModel(codeModel); 707 } 708 } 709 710 if (CodeGenOpts.NoPLT) 711 getModule().setRtLibUseGOT(); 712 713 SimplifyPersonality(); 714 715 if (getCodeGenOpts().EmitDeclMetadata) 716 EmitDeclMetadata(); 717 718 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 719 EmitCoverageFile(); 720 721 if (CGDebugInfo *DI = getModuleDebugInfo()) 722 DI->finalize(); 723 724 if (getCodeGenOpts().EmitVersionIdentMetadata) 725 EmitVersionIdentMetadata(); 726 727 if (!getCodeGenOpts().RecordCommandLine.empty()) 728 EmitCommandLineMetadata(); 729 730 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 731 732 EmitBackendOptionsMetadata(getCodeGenOpts()); 733 734 // Set visibility from DLL storage class 735 // We do this at the end of LLVM IR generation; after any operation 736 // that might affect the DLL storage class or the visibility, and 737 // before anything that might act on these. 738 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 739 } 740 741 void CodeGenModule::EmitOpenCLMetadata() { 742 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 743 // opencl.ocl.version named metadata node. 744 // C++ is backwards compatible with OpenCL v2.0. 745 // FIXME: We might need to add CXX version at some point too? 746 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 747 llvm::Metadata *OCLVerElts[] = { 748 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 749 Int32Ty, Version / 100)), 750 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 751 Int32Ty, (Version % 100) / 10))}; 752 llvm::NamedMDNode *OCLVerMD = 753 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 754 llvm::LLVMContext &Ctx = TheModule.getContext(); 755 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 756 } 757 758 void CodeGenModule::EmitBackendOptionsMetadata( 759 const CodeGenOptions CodeGenOpts) { 760 switch (getTriple().getArch()) { 761 default: 762 break; 763 case llvm::Triple::riscv32: 764 case llvm::Triple::riscv64: 765 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 766 CodeGenOpts.SmallDataLimit); 767 break; 768 } 769 } 770 771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 772 // Make sure that this type is translated. 773 Types.UpdateCompletedType(TD); 774 } 775 776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 777 // Make sure that this type is translated. 778 Types.RefreshTypeCacheForClass(RD); 779 } 780 781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 782 if (!TBAA) 783 return nullptr; 784 return TBAA->getTypeInfo(QTy); 785 } 786 787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 788 if (!TBAA) 789 return TBAAAccessInfo(); 790 if (getLangOpts().CUDAIsDevice) { 791 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 792 // access info. 793 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 794 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 795 nullptr) 796 return TBAAAccessInfo(); 797 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 798 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 799 nullptr) 800 return TBAAAccessInfo(); 801 } 802 } 803 return TBAA->getAccessInfo(AccessType); 804 } 805 806 TBAAAccessInfo 807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 808 if (!TBAA) 809 return TBAAAccessInfo(); 810 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 811 } 812 813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 814 if (!TBAA) 815 return nullptr; 816 return TBAA->getTBAAStructInfo(QTy); 817 } 818 819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 820 if (!TBAA) 821 return nullptr; 822 return TBAA->getBaseTypeInfo(QTy); 823 } 824 825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 826 if (!TBAA) 827 return nullptr; 828 return TBAA->getAccessTagInfo(Info); 829 } 830 831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 832 TBAAAccessInfo TargetInfo) { 833 if (!TBAA) 834 return TBAAAccessInfo(); 835 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 836 } 837 838 TBAAAccessInfo 839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 840 TBAAAccessInfo InfoB) { 841 if (!TBAA) 842 return TBAAAccessInfo(); 843 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 844 } 845 846 TBAAAccessInfo 847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 848 TBAAAccessInfo SrcInfo) { 849 if (!TBAA) 850 return TBAAAccessInfo(); 851 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 852 } 853 854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 855 TBAAAccessInfo TBAAInfo) { 856 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 857 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 858 } 859 860 void CodeGenModule::DecorateInstructionWithInvariantGroup( 861 llvm::Instruction *I, const CXXRecordDecl *RD) { 862 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 863 llvm::MDNode::get(getLLVMContext(), {})); 864 } 865 866 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 867 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 868 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 869 } 870 871 /// ErrorUnsupported - Print out an error that codegen doesn't support the 872 /// specified stmt yet. 873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 874 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 875 "cannot compile this %0 yet"); 876 std::string Msg = Type; 877 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 878 << Msg << S->getSourceRange(); 879 } 880 881 /// ErrorUnsupported - Print out an error that codegen doesn't support the 882 /// specified decl yet. 883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 884 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 885 "cannot compile this %0 yet"); 886 std::string Msg = Type; 887 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 888 } 889 890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 891 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 892 } 893 894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 895 const NamedDecl *D) const { 896 if (GV->hasDLLImportStorageClass()) 897 return; 898 // Internal definitions always have default visibility. 899 if (GV->hasLocalLinkage()) { 900 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 901 return; 902 } 903 if (!D) 904 return; 905 // Set visibility for definitions, and for declarations if requested globally 906 // or set explicitly. 907 LinkageInfo LV = D->getLinkageAndVisibility(); 908 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 909 !GV->isDeclarationForLinker()) 910 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 911 } 912 913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 914 llvm::GlobalValue *GV) { 915 if (GV->hasLocalLinkage()) 916 return true; 917 918 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 919 return true; 920 921 // DLLImport explicitly marks the GV as external. 922 if (GV->hasDLLImportStorageClass()) 923 return false; 924 925 const llvm::Triple &TT = CGM.getTriple(); 926 if (TT.isWindowsGNUEnvironment()) { 927 // In MinGW, variables without DLLImport can still be automatically 928 // imported from a DLL by the linker; don't mark variables that 929 // potentially could come from another DLL as DSO local. 930 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 931 !GV->isThreadLocal()) 932 return false; 933 } 934 935 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 936 // remain unresolved in the link, they can be resolved to zero, which is 937 // outside the current DSO. 938 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 939 return false; 940 941 // Every other GV is local on COFF. 942 // Make an exception for windows OS in the triple: Some firmware builds use 943 // *-win32-macho triples. This (accidentally?) produced windows relocations 944 // without GOT tables in older clang versions; Keep this behaviour. 945 // FIXME: even thread local variables? 946 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 947 return true; 948 949 // Only handle COFF and ELF for now. 950 if (!TT.isOSBinFormatELF()) 951 return false; 952 953 // If this is not an executable, don't assume anything is local. 954 const auto &CGOpts = CGM.getCodeGenOpts(); 955 llvm::Reloc::Model RM = CGOpts.RelocationModel; 956 const auto &LOpts = CGM.getLangOpts(); 957 if (RM != llvm::Reloc::Static && !LOpts.PIE) 958 return false; 959 960 // A definition cannot be preempted from an executable. 961 if (!GV->isDeclarationForLinker()) 962 return true; 963 964 // Most PIC code sequences that assume that a symbol is local cannot produce a 965 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 966 // depended, it seems worth it to handle it here. 967 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 968 return false; 969 970 // PowerPC64 prefers TOC indirection to avoid copy relocations. 971 if (TT.isPPC64()) 972 return false; 973 974 // If we can use copy relocations we can assume it is local. 975 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 976 if (!Var->isThreadLocal() && 977 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 978 return true; 979 980 // If we can use a plt entry as the symbol address we can assume it 981 // is local. 982 // FIXME: This should work for PIE, but the gold linker doesn't support it. 983 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 984 return true; 985 986 // Otherwise don't assume it is local. 987 return false; 988 } 989 990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 991 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 992 } 993 994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 995 GlobalDecl GD) const { 996 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 997 // C++ destructors have a few C++ ABI specific special cases. 998 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 999 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1000 return; 1001 } 1002 setDLLImportDLLExport(GV, D); 1003 } 1004 1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1006 const NamedDecl *D) const { 1007 if (D && D->isExternallyVisible()) { 1008 if (D->hasAttr<DLLImportAttr>()) 1009 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1010 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1011 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1012 } 1013 } 1014 1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1016 GlobalDecl GD) const { 1017 setDLLImportDLLExport(GV, GD); 1018 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1019 } 1020 1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1022 const NamedDecl *D) const { 1023 setDLLImportDLLExport(GV, D); 1024 setGVPropertiesAux(GV, D); 1025 } 1026 1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1028 const NamedDecl *D) const { 1029 setGlobalVisibility(GV, D); 1030 setDSOLocal(GV); 1031 GV->setPartition(CodeGenOpts.SymbolPartition); 1032 } 1033 1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1035 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1036 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1037 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1038 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1039 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1040 } 1041 1042 llvm::GlobalVariable::ThreadLocalMode 1043 CodeGenModule::GetDefaultLLVMTLSModel() const { 1044 switch (CodeGenOpts.getDefaultTLSModel()) { 1045 case CodeGenOptions::GeneralDynamicTLSModel: 1046 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1047 case CodeGenOptions::LocalDynamicTLSModel: 1048 return llvm::GlobalVariable::LocalDynamicTLSModel; 1049 case CodeGenOptions::InitialExecTLSModel: 1050 return llvm::GlobalVariable::InitialExecTLSModel; 1051 case CodeGenOptions::LocalExecTLSModel: 1052 return llvm::GlobalVariable::LocalExecTLSModel; 1053 } 1054 llvm_unreachable("Invalid TLS model!"); 1055 } 1056 1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1058 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1059 1060 llvm::GlobalValue::ThreadLocalMode TLM; 1061 TLM = GetDefaultLLVMTLSModel(); 1062 1063 // Override the TLS model if it is explicitly specified. 1064 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1065 TLM = GetLLVMTLSModel(Attr->getModel()); 1066 } 1067 1068 GV->setThreadLocalMode(TLM); 1069 } 1070 1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1072 StringRef Name) { 1073 const TargetInfo &Target = CGM.getTarget(); 1074 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1075 } 1076 1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1078 const CPUSpecificAttr *Attr, 1079 unsigned CPUIndex, 1080 raw_ostream &Out) { 1081 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1082 // supported. 1083 if (Attr) 1084 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1085 else if (CGM.getTarget().supportsIFunc()) 1086 Out << ".resolver"; 1087 } 1088 1089 static void AppendTargetMangling(const CodeGenModule &CGM, 1090 const TargetAttr *Attr, raw_ostream &Out) { 1091 if (Attr->isDefaultVersion()) 1092 return; 1093 1094 Out << '.'; 1095 const TargetInfo &Target = CGM.getTarget(); 1096 ParsedTargetAttr Info = 1097 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1098 // Multiversioning doesn't allow "no-${feature}", so we can 1099 // only have "+" prefixes here. 1100 assert(LHS.startswith("+") && RHS.startswith("+") && 1101 "Features should always have a prefix."); 1102 return Target.multiVersionSortPriority(LHS.substr(1)) > 1103 Target.multiVersionSortPriority(RHS.substr(1)); 1104 }); 1105 1106 bool IsFirst = true; 1107 1108 if (!Info.Architecture.empty()) { 1109 IsFirst = false; 1110 Out << "arch_" << Info.Architecture; 1111 } 1112 1113 for (StringRef Feat : Info.Features) { 1114 if (!IsFirst) 1115 Out << '_'; 1116 IsFirst = false; 1117 Out << Feat.substr(1); 1118 } 1119 } 1120 1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1122 const NamedDecl *ND, 1123 bool OmitMultiVersionMangling = false) { 1124 SmallString<256> Buffer; 1125 llvm::raw_svector_ostream Out(Buffer); 1126 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1127 if (MC.shouldMangleDeclName(ND)) 1128 MC.mangleName(GD.getWithDecl(ND), Out); 1129 else { 1130 IdentifierInfo *II = ND->getIdentifier(); 1131 assert(II && "Attempt to mangle unnamed decl."); 1132 const auto *FD = dyn_cast<FunctionDecl>(ND); 1133 1134 if (FD && 1135 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1136 Out << "__regcall3__" << II->getName(); 1137 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1138 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1139 Out << "__device_stub__" << II->getName(); 1140 } else { 1141 Out << II->getName(); 1142 } 1143 } 1144 1145 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1146 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1147 switch (FD->getMultiVersionKind()) { 1148 case MultiVersionKind::CPUDispatch: 1149 case MultiVersionKind::CPUSpecific: 1150 AppendCPUSpecificCPUDispatchMangling(CGM, 1151 FD->getAttr<CPUSpecificAttr>(), 1152 GD.getMultiVersionIndex(), Out); 1153 break; 1154 case MultiVersionKind::Target: 1155 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1156 break; 1157 case MultiVersionKind::None: 1158 llvm_unreachable("None multiversion type isn't valid here"); 1159 } 1160 } 1161 1162 return std::string(Out.str()); 1163 } 1164 1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1166 const FunctionDecl *FD) { 1167 if (!FD->isMultiVersion()) 1168 return; 1169 1170 // Get the name of what this would be without the 'target' attribute. This 1171 // allows us to lookup the version that was emitted when this wasn't a 1172 // multiversion function. 1173 std::string NonTargetName = 1174 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1175 GlobalDecl OtherGD; 1176 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1177 assert(OtherGD.getCanonicalDecl() 1178 .getDecl() 1179 ->getAsFunction() 1180 ->isMultiVersion() && 1181 "Other GD should now be a multiversioned function"); 1182 // OtherFD is the version of this function that was mangled BEFORE 1183 // becoming a MultiVersion function. It potentially needs to be updated. 1184 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1185 .getDecl() 1186 ->getAsFunction() 1187 ->getMostRecentDecl(); 1188 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1189 // This is so that if the initial version was already the 'default' 1190 // version, we don't try to update it. 1191 if (OtherName != NonTargetName) { 1192 // Remove instead of erase, since others may have stored the StringRef 1193 // to this. 1194 const auto ExistingRecord = Manglings.find(NonTargetName); 1195 if (ExistingRecord != std::end(Manglings)) 1196 Manglings.remove(&(*ExistingRecord)); 1197 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1198 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1199 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1200 Entry->setName(OtherName); 1201 } 1202 } 1203 } 1204 1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1206 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1207 1208 // Some ABIs don't have constructor variants. Make sure that base and 1209 // complete constructors get mangled the same. 1210 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1211 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1212 CXXCtorType OrigCtorType = GD.getCtorType(); 1213 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1214 if (OrigCtorType == Ctor_Base) 1215 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1216 } 1217 } 1218 1219 auto FoundName = MangledDeclNames.find(CanonicalGD); 1220 if (FoundName != MangledDeclNames.end()) 1221 return FoundName->second; 1222 1223 // Keep the first result in the case of a mangling collision. 1224 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1225 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1226 1227 // Ensure either we have different ABIs between host and device compilations, 1228 // says host compilation following MSVC ABI but device compilation follows 1229 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1230 // mangling should be the same after name stubbing. The later checking is 1231 // very important as the device kernel name being mangled in host-compilation 1232 // is used to resolve the device binaries to be executed. Inconsistent naming 1233 // result in undefined behavior. Even though we cannot check that naming 1234 // directly between host- and device-compilations, the host- and 1235 // device-mangling in host compilation could help catching certain ones. 1236 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1237 getLangOpts().CUDAIsDevice || 1238 (getContext().getAuxTargetInfo() && 1239 (getContext().getAuxTargetInfo()->getCXXABI() != 1240 getContext().getTargetInfo().getCXXABI())) || 1241 getCUDARuntime().getDeviceSideName(ND) == 1242 getMangledNameImpl( 1243 *this, 1244 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1245 ND)); 1246 1247 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1248 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1249 } 1250 1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1252 const BlockDecl *BD) { 1253 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1254 const Decl *D = GD.getDecl(); 1255 1256 SmallString<256> Buffer; 1257 llvm::raw_svector_ostream Out(Buffer); 1258 if (!D) 1259 MangleCtx.mangleGlobalBlock(BD, 1260 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1261 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1262 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1263 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1264 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1265 else 1266 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1267 1268 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1269 return Result.first->first(); 1270 } 1271 1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1273 return getModule().getNamedValue(Name); 1274 } 1275 1276 /// AddGlobalCtor - Add a function to the list that will be called before 1277 /// main() runs. 1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1279 llvm::Constant *AssociatedData) { 1280 // FIXME: Type coercion of void()* types. 1281 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1282 } 1283 1284 /// AddGlobalDtor - Add a function to the list that will be called 1285 /// when the module is unloaded. 1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1287 bool IsDtorAttrFunc) { 1288 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1289 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1290 DtorsUsingAtExit[Priority].push_back(Dtor); 1291 return; 1292 } 1293 1294 // FIXME: Type coercion of void()* types. 1295 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1296 } 1297 1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1299 if (Fns.empty()) return; 1300 1301 // Ctor function type is void()*. 1302 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1303 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1304 TheModule.getDataLayout().getProgramAddressSpace()); 1305 1306 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1307 llvm::StructType *CtorStructTy = llvm::StructType::get( 1308 Int32Ty, CtorPFTy, VoidPtrTy); 1309 1310 // Construct the constructor and destructor arrays. 1311 ConstantInitBuilder builder(*this); 1312 auto ctors = builder.beginArray(CtorStructTy); 1313 for (const auto &I : Fns) { 1314 auto ctor = ctors.beginStruct(CtorStructTy); 1315 ctor.addInt(Int32Ty, I.Priority); 1316 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1317 if (I.AssociatedData) 1318 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1319 else 1320 ctor.addNullPointer(VoidPtrTy); 1321 ctor.finishAndAddTo(ctors); 1322 } 1323 1324 auto list = 1325 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1326 /*constant*/ false, 1327 llvm::GlobalValue::AppendingLinkage); 1328 1329 // The LTO linker doesn't seem to like it when we set an alignment 1330 // on appending variables. Take it off as a workaround. 1331 list->setAlignment(llvm::None); 1332 1333 Fns.clear(); 1334 } 1335 1336 llvm::GlobalValue::LinkageTypes 1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1338 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1339 1340 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1341 1342 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1343 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1344 1345 if (isa<CXXConstructorDecl>(D) && 1346 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1347 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1348 // Our approach to inheriting constructors is fundamentally different from 1349 // that used by the MS ABI, so keep our inheriting constructor thunks 1350 // internal rather than trying to pick an unambiguous mangling for them. 1351 return llvm::GlobalValue::InternalLinkage; 1352 } 1353 1354 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1355 } 1356 1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1358 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1359 if (!MDS) return nullptr; 1360 1361 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1362 } 1363 1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1365 const CGFunctionInfo &Info, 1366 llvm::Function *F) { 1367 unsigned CallingConv; 1368 llvm::AttributeList PAL; 1369 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1370 F->setAttributes(PAL); 1371 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1372 } 1373 1374 static void removeImageAccessQualifier(std::string& TyName) { 1375 std::string ReadOnlyQual("__read_only"); 1376 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1377 if (ReadOnlyPos != std::string::npos) 1378 // "+ 1" for the space after access qualifier. 1379 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1380 else { 1381 std::string WriteOnlyQual("__write_only"); 1382 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1383 if (WriteOnlyPos != std::string::npos) 1384 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1385 else { 1386 std::string ReadWriteQual("__read_write"); 1387 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1388 if (ReadWritePos != std::string::npos) 1389 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1390 } 1391 } 1392 } 1393 1394 // Returns the address space id that should be produced to the 1395 // kernel_arg_addr_space metadata. This is always fixed to the ids 1396 // as specified in the SPIR 2.0 specification in order to differentiate 1397 // for example in clGetKernelArgInfo() implementation between the address 1398 // spaces with targets without unique mapping to the OpenCL address spaces 1399 // (basically all single AS CPUs). 1400 static unsigned ArgInfoAddressSpace(LangAS AS) { 1401 switch (AS) { 1402 case LangAS::opencl_global: 1403 return 1; 1404 case LangAS::opencl_constant: 1405 return 2; 1406 case LangAS::opencl_local: 1407 return 3; 1408 case LangAS::opencl_generic: 1409 return 4; // Not in SPIR 2.0 specs. 1410 case LangAS::opencl_global_device: 1411 return 5; 1412 case LangAS::opencl_global_host: 1413 return 6; 1414 default: 1415 return 0; // Assume private. 1416 } 1417 } 1418 1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1420 const FunctionDecl *FD, 1421 CodeGenFunction *CGF) { 1422 assert(((FD && CGF) || (!FD && !CGF)) && 1423 "Incorrect use - FD and CGF should either be both null or not!"); 1424 // Create MDNodes that represent the kernel arg metadata. 1425 // Each MDNode is a list in the form of "key", N number of values which is 1426 // the same number of values as their are kernel arguments. 1427 1428 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1429 1430 // MDNode for the kernel argument address space qualifiers. 1431 SmallVector<llvm::Metadata *, 8> addressQuals; 1432 1433 // MDNode for the kernel argument access qualifiers (images only). 1434 SmallVector<llvm::Metadata *, 8> accessQuals; 1435 1436 // MDNode for the kernel argument type names. 1437 SmallVector<llvm::Metadata *, 8> argTypeNames; 1438 1439 // MDNode for the kernel argument base type names. 1440 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1441 1442 // MDNode for the kernel argument type qualifiers. 1443 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1444 1445 // MDNode for the kernel argument names. 1446 SmallVector<llvm::Metadata *, 8> argNames; 1447 1448 if (FD && CGF) 1449 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1450 const ParmVarDecl *parm = FD->getParamDecl(i); 1451 QualType ty = parm->getType(); 1452 std::string typeQuals; 1453 1454 if (ty->isPointerType()) { 1455 QualType pointeeTy = ty->getPointeeType(); 1456 1457 // Get address qualifier. 1458 addressQuals.push_back( 1459 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1460 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1461 1462 // Get argument type name. 1463 std::string typeName = 1464 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1465 1466 // Turn "unsigned type" to "utype" 1467 std::string::size_type pos = typeName.find("unsigned"); 1468 if (pointeeTy.isCanonical() && pos != std::string::npos) 1469 typeName.erase(pos + 1, 8); 1470 1471 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1472 1473 std::string baseTypeName = 1474 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1475 Policy) + 1476 "*"; 1477 1478 // Turn "unsigned type" to "utype" 1479 pos = baseTypeName.find("unsigned"); 1480 if (pos != std::string::npos) 1481 baseTypeName.erase(pos + 1, 8); 1482 1483 argBaseTypeNames.push_back( 1484 llvm::MDString::get(VMContext, baseTypeName)); 1485 1486 // Get argument type qualifiers: 1487 if (ty.isRestrictQualified()) 1488 typeQuals = "restrict"; 1489 if (pointeeTy.isConstQualified() || 1490 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1491 typeQuals += typeQuals.empty() ? "const" : " const"; 1492 if (pointeeTy.isVolatileQualified()) 1493 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1494 } else { 1495 uint32_t AddrSpc = 0; 1496 bool isPipe = ty->isPipeType(); 1497 if (ty->isImageType() || isPipe) 1498 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1499 1500 addressQuals.push_back( 1501 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1502 1503 // Get argument type name. 1504 std::string typeName; 1505 if (isPipe) 1506 typeName = ty.getCanonicalType() 1507 ->castAs<PipeType>() 1508 ->getElementType() 1509 .getAsString(Policy); 1510 else 1511 typeName = ty.getUnqualifiedType().getAsString(Policy); 1512 1513 // Turn "unsigned type" to "utype" 1514 std::string::size_type pos = typeName.find("unsigned"); 1515 if (ty.isCanonical() && pos != std::string::npos) 1516 typeName.erase(pos + 1, 8); 1517 1518 std::string baseTypeName; 1519 if (isPipe) 1520 baseTypeName = ty.getCanonicalType() 1521 ->castAs<PipeType>() 1522 ->getElementType() 1523 .getCanonicalType() 1524 .getAsString(Policy); 1525 else 1526 baseTypeName = 1527 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1528 1529 // Remove access qualifiers on images 1530 // (as they are inseparable from type in clang implementation, 1531 // but OpenCL spec provides a special query to get access qualifier 1532 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1533 if (ty->isImageType()) { 1534 removeImageAccessQualifier(typeName); 1535 removeImageAccessQualifier(baseTypeName); 1536 } 1537 1538 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1539 1540 // Turn "unsigned type" to "utype" 1541 pos = baseTypeName.find("unsigned"); 1542 if (pos != std::string::npos) 1543 baseTypeName.erase(pos + 1, 8); 1544 1545 argBaseTypeNames.push_back( 1546 llvm::MDString::get(VMContext, baseTypeName)); 1547 1548 if (isPipe) 1549 typeQuals = "pipe"; 1550 } 1551 1552 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1553 1554 // Get image and pipe access qualifier: 1555 if (ty->isImageType() || ty->isPipeType()) { 1556 const Decl *PDecl = parm; 1557 if (auto *TD = dyn_cast<TypedefType>(ty)) 1558 PDecl = TD->getDecl(); 1559 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1560 if (A && A->isWriteOnly()) 1561 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1562 else if (A && A->isReadWrite()) 1563 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1564 else 1565 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1566 } else 1567 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1568 1569 // Get argument name. 1570 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1571 } 1572 1573 Fn->setMetadata("kernel_arg_addr_space", 1574 llvm::MDNode::get(VMContext, addressQuals)); 1575 Fn->setMetadata("kernel_arg_access_qual", 1576 llvm::MDNode::get(VMContext, accessQuals)); 1577 Fn->setMetadata("kernel_arg_type", 1578 llvm::MDNode::get(VMContext, argTypeNames)); 1579 Fn->setMetadata("kernel_arg_base_type", 1580 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1581 Fn->setMetadata("kernel_arg_type_qual", 1582 llvm::MDNode::get(VMContext, argTypeQuals)); 1583 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1584 Fn->setMetadata("kernel_arg_name", 1585 llvm::MDNode::get(VMContext, argNames)); 1586 } 1587 1588 /// Determines whether the language options require us to model 1589 /// unwind exceptions. We treat -fexceptions as mandating this 1590 /// except under the fragile ObjC ABI with only ObjC exceptions 1591 /// enabled. This means, for example, that C with -fexceptions 1592 /// enables this. 1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1594 // If exceptions are completely disabled, obviously this is false. 1595 if (!LangOpts.Exceptions) return false; 1596 1597 // If C++ exceptions are enabled, this is true. 1598 if (LangOpts.CXXExceptions) return true; 1599 1600 // If ObjC exceptions are enabled, this depends on the ABI. 1601 if (LangOpts.ObjCExceptions) { 1602 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1603 } 1604 1605 return true; 1606 } 1607 1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1609 const CXXMethodDecl *MD) { 1610 // Check that the type metadata can ever actually be used by a call. 1611 if (!CGM.getCodeGenOpts().LTOUnit || 1612 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1613 return false; 1614 1615 // Only functions whose address can be taken with a member function pointer 1616 // need this sort of type metadata. 1617 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1618 !isa<CXXDestructorDecl>(MD); 1619 } 1620 1621 std::vector<const CXXRecordDecl *> 1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1623 llvm::SetVector<const CXXRecordDecl *> MostBases; 1624 1625 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1626 CollectMostBases = [&](const CXXRecordDecl *RD) { 1627 if (RD->getNumBases() == 0) 1628 MostBases.insert(RD); 1629 for (const CXXBaseSpecifier &B : RD->bases()) 1630 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1631 }; 1632 CollectMostBases(RD); 1633 return MostBases.takeVector(); 1634 } 1635 1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1637 llvm::Function *F) { 1638 llvm::AttrBuilder B; 1639 1640 if (CodeGenOpts.UnwindTables) 1641 B.addAttribute(llvm::Attribute::UWTable); 1642 1643 if (CodeGenOpts.StackClashProtector) 1644 B.addAttribute("probe-stack", "inline-asm"); 1645 1646 if (!hasUnwindExceptions(LangOpts)) 1647 B.addAttribute(llvm::Attribute::NoUnwind); 1648 1649 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1650 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1651 B.addAttribute(llvm::Attribute::StackProtect); 1652 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1653 B.addAttribute(llvm::Attribute::StackProtectStrong); 1654 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1655 B.addAttribute(llvm::Attribute::StackProtectReq); 1656 } 1657 1658 if (!D) { 1659 // If we don't have a declaration to control inlining, the function isn't 1660 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1661 // disabled, mark the function as noinline. 1662 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1663 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1664 B.addAttribute(llvm::Attribute::NoInline); 1665 1666 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1667 return; 1668 } 1669 1670 // Track whether we need to add the optnone LLVM attribute, 1671 // starting with the default for this optimization level. 1672 bool ShouldAddOptNone = 1673 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1674 // We can't add optnone in the following cases, it won't pass the verifier. 1675 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1676 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1677 1678 // Add optnone, but do so only if the function isn't always_inline. 1679 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1680 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1681 B.addAttribute(llvm::Attribute::OptimizeNone); 1682 1683 // OptimizeNone implies noinline; we should not be inlining such functions. 1684 B.addAttribute(llvm::Attribute::NoInline); 1685 1686 // We still need to handle naked functions even though optnone subsumes 1687 // much of their semantics. 1688 if (D->hasAttr<NakedAttr>()) 1689 B.addAttribute(llvm::Attribute::Naked); 1690 1691 // OptimizeNone wins over OptimizeForSize and MinSize. 1692 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1693 F->removeFnAttr(llvm::Attribute::MinSize); 1694 } else if (D->hasAttr<NakedAttr>()) { 1695 // Naked implies noinline: we should not be inlining such functions. 1696 B.addAttribute(llvm::Attribute::Naked); 1697 B.addAttribute(llvm::Attribute::NoInline); 1698 } else if (D->hasAttr<NoDuplicateAttr>()) { 1699 B.addAttribute(llvm::Attribute::NoDuplicate); 1700 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1701 // Add noinline if the function isn't always_inline. 1702 B.addAttribute(llvm::Attribute::NoInline); 1703 } else if (D->hasAttr<AlwaysInlineAttr>() && 1704 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1705 // (noinline wins over always_inline, and we can't specify both in IR) 1706 B.addAttribute(llvm::Attribute::AlwaysInline); 1707 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1708 // If we're not inlining, then force everything that isn't always_inline to 1709 // carry an explicit noinline attribute. 1710 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1711 B.addAttribute(llvm::Attribute::NoInline); 1712 } else { 1713 // Otherwise, propagate the inline hint attribute and potentially use its 1714 // absence to mark things as noinline. 1715 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1716 // Search function and template pattern redeclarations for inline. 1717 auto CheckForInline = [](const FunctionDecl *FD) { 1718 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1719 return Redecl->isInlineSpecified(); 1720 }; 1721 if (any_of(FD->redecls(), CheckRedeclForInline)) 1722 return true; 1723 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1724 if (!Pattern) 1725 return false; 1726 return any_of(Pattern->redecls(), CheckRedeclForInline); 1727 }; 1728 if (CheckForInline(FD)) { 1729 B.addAttribute(llvm::Attribute::InlineHint); 1730 } else if (CodeGenOpts.getInlining() == 1731 CodeGenOptions::OnlyHintInlining && 1732 !FD->isInlined() && 1733 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1734 B.addAttribute(llvm::Attribute::NoInline); 1735 } 1736 } 1737 } 1738 1739 // Add other optimization related attributes if we are optimizing this 1740 // function. 1741 if (!D->hasAttr<OptimizeNoneAttr>()) { 1742 if (D->hasAttr<ColdAttr>()) { 1743 if (!ShouldAddOptNone) 1744 B.addAttribute(llvm::Attribute::OptimizeForSize); 1745 B.addAttribute(llvm::Attribute::Cold); 1746 } 1747 1748 if (D->hasAttr<MinSizeAttr>()) 1749 B.addAttribute(llvm::Attribute::MinSize); 1750 } 1751 1752 if (D->hasAttr<NoMergeAttr>()) 1753 B.addAttribute(llvm::Attribute::NoMerge); 1754 1755 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1756 1757 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1758 if (alignment) 1759 F->setAlignment(llvm::Align(alignment)); 1760 1761 if (!D->hasAttr<AlignedAttr>()) 1762 if (LangOpts.FunctionAlignment) 1763 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1764 1765 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1766 // reserve a bit for differentiating between virtual and non-virtual member 1767 // functions. If the current target's C++ ABI requires this and this is a 1768 // member function, set its alignment accordingly. 1769 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1770 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1771 F->setAlignment(llvm::Align(2)); 1772 } 1773 1774 // In the cross-dso CFI mode with canonical jump tables, we want !type 1775 // attributes on definitions only. 1776 if (CodeGenOpts.SanitizeCfiCrossDso && 1777 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1778 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1779 // Skip available_externally functions. They won't be codegen'ed in the 1780 // current module anyway. 1781 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1782 CreateFunctionTypeMetadataForIcall(FD, F); 1783 } 1784 } 1785 1786 // Emit type metadata on member functions for member function pointer checks. 1787 // These are only ever necessary on definitions; we're guaranteed that the 1788 // definition will be present in the LTO unit as a result of LTO visibility. 1789 auto *MD = dyn_cast<CXXMethodDecl>(D); 1790 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1791 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1792 llvm::Metadata *Id = 1793 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1794 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1795 F->addTypeMetadata(0, Id); 1796 } 1797 } 1798 } 1799 1800 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1801 llvm::Function *F) { 1802 if (D->hasAttr<StrictFPAttr>()) { 1803 llvm::AttrBuilder FuncAttrs; 1804 FuncAttrs.addAttribute("strictfp"); 1805 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1806 } 1807 } 1808 1809 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1810 const Decl *D = GD.getDecl(); 1811 if (dyn_cast_or_null<NamedDecl>(D)) 1812 setGVProperties(GV, GD); 1813 else 1814 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1815 1816 if (D && D->hasAttr<UsedAttr>()) 1817 addUsedGlobal(GV); 1818 1819 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1820 const auto *VD = cast<VarDecl>(D); 1821 if (VD->getType().isConstQualified() && 1822 VD->getStorageDuration() == SD_Static) 1823 addUsedGlobal(GV); 1824 } 1825 } 1826 1827 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1828 llvm::AttrBuilder &Attrs) { 1829 // Add target-cpu and target-features attributes to functions. If 1830 // we have a decl for the function and it has a target attribute then 1831 // parse that and add it to the feature set. 1832 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1833 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1834 std::vector<std::string> Features; 1835 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1836 FD = FD ? FD->getMostRecentDecl() : FD; 1837 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1838 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1839 bool AddedAttr = false; 1840 if (TD || SD) { 1841 llvm::StringMap<bool> FeatureMap; 1842 getContext().getFunctionFeatureMap(FeatureMap, GD); 1843 1844 // Produce the canonical string for this set of features. 1845 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1846 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1847 1848 // Now add the target-cpu and target-features to the function. 1849 // While we populated the feature map above, we still need to 1850 // get and parse the target attribute so we can get the cpu for 1851 // the function. 1852 if (TD) { 1853 ParsedTargetAttr ParsedAttr = TD->parse(); 1854 if (!ParsedAttr.Architecture.empty() && 1855 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1856 TargetCPU = ParsedAttr.Architecture; 1857 TuneCPU = ""; // Clear the tune CPU. 1858 } 1859 if (!ParsedAttr.Tune.empty() && 1860 getTarget().isValidCPUName(ParsedAttr.Tune)) 1861 TuneCPU = ParsedAttr.Tune; 1862 } 1863 } else { 1864 // Otherwise just add the existing target cpu and target features to the 1865 // function. 1866 Features = getTarget().getTargetOpts().Features; 1867 } 1868 1869 if (!TargetCPU.empty()) { 1870 Attrs.addAttribute("target-cpu", TargetCPU); 1871 AddedAttr = true; 1872 } 1873 if (!TuneCPU.empty()) { 1874 Attrs.addAttribute("tune-cpu", TuneCPU); 1875 AddedAttr = true; 1876 } 1877 if (!Features.empty()) { 1878 llvm::sort(Features); 1879 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1880 AddedAttr = true; 1881 } 1882 1883 return AddedAttr; 1884 } 1885 1886 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1887 llvm::GlobalObject *GO) { 1888 const Decl *D = GD.getDecl(); 1889 SetCommonAttributes(GD, GO); 1890 1891 if (D) { 1892 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1893 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1894 GV->addAttribute("bss-section", SA->getName()); 1895 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1896 GV->addAttribute("data-section", SA->getName()); 1897 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1898 GV->addAttribute("rodata-section", SA->getName()); 1899 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1900 GV->addAttribute("relro-section", SA->getName()); 1901 } 1902 1903 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1904 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1905 if (!D->getAttr<SectionAttr>()) 1906 F->addFnAttr("implicit-section-name", SA->getName()); 1907 1908 llvm::AttrBuilder Attrs; 1909 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1910 // We know that GetCPUAndFeaturesAttributes will always have the 1911 // newest set, since it has the newest possible FunctionDecl, so the 1912 // new ones should replace the old. 1913 llvm::AttrBuilder RemoveAttrs; 1914 RemoveAttrs.addAttribute("target-cpu"); 1915 RemoveAttrs.addAttribute("target-features"); 1916 RemoveAttrs.addAttribute("tune-cpu"); 1917 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1918 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1919 } 1920 } 1921 1922 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1923 GO->setSection(CSA->getName()); 1924 else if (const auto *SA = D->getAttr<SectionAttr>()) 1925 GO->setSection(SA->getName()); 1926 } 1927 1928 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1929 } 1930 1931 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1932 llvm::Function *F, 1933 const CGFunctionInfo &FI) { 1934 const Decl *D = GD.getDecl(); 1935 SetLLVMFunctionAttributes(GD, FI, F); 1936 SetLLVMFunctionAttributesForDefinition(D, F); 1937 1938 F->setLinkage(llvm::Function::InternalLinkage); 1939 1940 setNonAliasAttributes(GD, F); 1941 } 1942 1943 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1944 // Set linkage and visibility in case we never see a definition. 1945 LinkageInfo LV = ND->getLinkageAndVisibility(); 1946 // Don't set internal linkage on declarations. 1947 // "extern_weak" is overloaded in LLVM; we probably should have 1948 // separate linkage types for this. 1949 if (isExternallyVisible(LV.getLinkage()) && 1950 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1951 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1952 } 1953 1954 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1955 llvm::Function *F) { 1956 // Only if we are checking indirect calls. 1957 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1958 return; 1959 1960 // Non-static class methods are handled via vtable or member function pointer 1961 // checks elsewhere. 1962 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1963 return; 1964 1965 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1966 F->addTypeMetadata(0, MD); 1967 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1968 1969 // Emit a hash-based bit set entry for cross-DSO calls. 1970 if (CodeGenOpts.SanitizeCfiCrossDso) 1971 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1972 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1973 } 1974 1975 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1976 bool IsIncompleteFunction, 1977 bool IsThunk) { 1978 1979 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1980 // If this is an intrinsic function, set the function's attributes 1981 // to the intrinsic's attributes. 1982 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1983 return; 1984 } 1985 1986 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1987 1988 if (!IsIncompleteFunction) 1989 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1990 1991 // Add the Returned attribute for "this", except for iOS 5 and earlier 1992 // where substantial code, including the libstdc++ dylib, was compiled with 1993 // GCC and does not actually return "this". 1994 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1995 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1996 assert(!F->arg_empty() && 1997 F->arg_begin()->getType() 1998 ->canLosslesslyBitCastTo(F->getReturnType()) && 1999 "unexpected this return"); 2000 F->addAttribute(1, llvm::Attribute::Returned); 2001 } 2002 2003 // Only a few attributes are set on declarations; these may later be 2004 // overridden by a definition. 2005 2006 setLinkageForGV(F, FD); 2007 setGVProperties(F, FD); 2008 2009 // Setup target-specific attributes. 2010 if (!IsIncompleteFunction && F->isDeclaration()) 2011 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2012 2013 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2014 F->setSection(CSA->getName()); 2015 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2016 F->setSection(SA->getName()); 2017 2018 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2019 if (FD->isInlineBuiltinDeclaration()) { 2020 const FunctionDecl *FDBody; 2021 bool HasBody = FD->hasBody(FDBody); 2022 (void)HasBody; 2023 assert(HasBody && "Inline builtin declarations should always have an " 2024 "available body!"); 2025 if (shouldEmitFunction(FDBody)) 2026 F->addAttribute(llvm::AttributeList::FunctionIndex, 2027 llvm::Attribute::NoBuiltin); 2028 } 2029 2030 if (FD->isReplaceableGlobalAllocationFunction()) { 2031 // A replaceable global allocation function does not act like a builtin by 2032 // default, only if it is invoked by a new-expression or delete-expression. 2033 F->addAttribute(llvm::AttributeList::FunctionIndex, 2034 llvm::Attribute::NoBuiltin); 2035 } 2036 2037 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2038 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2039 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2040 if (MD->isVirtual()) 2041 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2042 2043 // Don't emit entries for function declarations in the cross-DSO mode. This 2044 // is handled with better precision by the receiving DSO. But if jump tables 2045 // are non-canonical then we need type metadata in order to produce the local 2046 // jump table. 2047 if (!CodeGenOpts.SanitizeCfiCrossDso || 2048 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2049 CreateFunctionTypeMetadataForIcall(FD, F); 2050 2051 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2052 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2053 2054 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2055 // Annotate the callback behavior as metadata: 2056 // - The callback callee (as argument number). 2057 // - The callback payloads (as argument numbers). 2058 llvm::LLVMContext &Ctx = F->getContext(); 2059 llvm::MDBuilder MDB(Ctx); 2060 2061 // The payload indices are all but the first one in the encoding. The first 2062 // identifies the callback callee. 2063 int CalleeIdx = *CB->encoding_begin(); 2064 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2065 F->addMetadata(llvm::LLVMContext::MD_callback, 2066 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2067 CalleeIdx, PayloadIndices, 2068 /* VarArgsArePassed */ false)})); 2069 } 2070 } 2071 2072 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2073 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2074 "Only globals with definition can force usage."); 2075 LLVMUsed.emplace_back(GV); 2076 } 2077 2078 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2079 assert(!GV->isDeclaration() && 2080 "Only globals with definition can force usage."); 2081 LLVMCompilerUsed.emplace_back(GV); 2082 } 2083 2084 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2085 std::vector<llvm::WeakTrackingVH> &List) { 2086 // Don't create llvm.used if there is no need. 2087 if (List.empty()) 2088 return; 2089 2090 // Convert List to what ConstantArray needs. 2091 SmallVector<llvm::Constant*, 8> UsedArray; 2092 UsedArray.resize(List.size()); 2093 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2094 UsedArray[i] = 2095 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2096 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2097 } 2098 2099 if (UsedArray.empty()) 2100 return; 2101 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2102 2103 auto *GV = new llvm::GlobalVariable( 2104 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2105 llvm::ConstantArray::get(ATy, UsedArray), Name); 2106 2107 GV->setSection("llvm.metadata"); 2108 } 2109 2110 void CodeGenModule::emitLLVMUsed() { 2111 emitUsed(*this, "llvm.used", LLVMUsed); 2112 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2113 } 2114 2115 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2116 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2117 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2118 } 2119 2120 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2121 llvm::SmallString<32> Opt; 2122 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2123 if (Opt.empty()) 2124 return; 2125 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2126 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2127 } 2128 2129 void CodeGenModule::AddDependentLib(StringRef Lib) { 2130 auto &C = getLLVMContext(); 2131 if (getTarget().getTriple().isOSBinFormatELF()) { 2132 ELFDependentLibraries.push_back( 2133 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2134 return; 2135 } 2136 2137 llvm::SmallString<24> Opt; 2138 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2139 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2140 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2141 } 2142 2143 /// Add link options implied by the given module, including modules 2144 /// it depends on, using a postorder walk. 2145 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2146 SmallVectorImpl<llvm::MDNode *> &Metadata, 2147 llvm::SmallPtrSet<Module *, 16> &Visited) { 2148 // Import this module's parent. 2149 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2150 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2151 } 2152 2153 // Import this module's dependencies. 2154 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2155 if (Visited.insert(Mod->Imports[I - 1]).second) 2156 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2157 } 2158 2159 // Add linker options to link against the libraries/frameworks 2160 // described by this module. 2161 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2162 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2163 2164 // For modules that use export_as for linking, use that module 2165 // name instead. 2166 if (Mod->UseExportAsModuleLinkName) 2167 return; 2168 2169 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2170 // Link against a framework. Frameworks are currently Darwin only, so we 2171 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2172 if (Mod->LinkLibraries[I-1].IsFramework) { 2173 llvm::Metadata *Args[2] = { 2174 llvm::MDString::get(Context, "-framework"), 2175 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2176 2177 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2178 continue; 2179 } 2180 2181 // Link against a library. 2182 if (IsELF) { 2183 llvm::Metadata *Args[2] = { 2184 llvm::MDString::get(Context, "lib"), 2185 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2186 }; 2187 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2188 } else { 2189 llvm::SmallString<24> Opt; 2190 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2191 Mod->LinkLibraries[I - 1].Library, Opt); 2192 auto *OptString = llvm::MDString::get(Context, Opt); 2193 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2194 } 2195 } 2196 } 2197 2198 void CodeGenModule::EmitModuleLinkOptions() { 2199 // Collect the set of all of the modules we want to visit to emit link 2200 // options, which is essentially the imported modules and all of their 2201 // non-explicit child modules. 2202 llvm::SetVector<clang::Module *> LinkModules; 2203 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2204 SmallVector<clang::Module *, 16> Stack; 2205 2206 // Seed the stack with imported modules. 2207 for (Module *M : ImportedModules) { 2208 // Do not add any link flags when an implementation TU of a module imports 2209 // a header of that same module. 2210 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2211 !getLangOpts().isCompilingModule()) 2212 continue; 2213 if (Visited.insert(M).second) 2214 Stack.push_back(M); 2215 } 2216 2217 // Find all of the modules to import, making a little effort to prune 2218 // non-leaf modules. 2219 while (!Stack.empty()) { 2220 clang::Module *Mod = Stack.pop_back_val(); 2221 2222 bool AnyChildren = false; 2223 2224 // Visit the submodules of this module. 2225 for (const auto &SM : Mod->submodules()) { 2226 // Skip explicit children; they need to be explicitly imported to be 2227 // linked against. 2228 if (SM->IsExplicit) 2229 continue; 2230 2231 if (Visited.insert(SM).second) { 2232 Stack.push_back(SM); 2233 AnyChildren = true; 2234 } 2235 } 2236 2237 // We didn't find any children, so add this module to the list of 2238 // modules to link against. 2239 if (!AnyChildren) { 2240 LinkModules.insert(Mod); 2241 } 2242 } 2243 2244 // Add link options for all of the imported modules in reverse topological 2245 // order. We don't do anything to try to order import link flags with respect 2246 // to linker options inserted by things like #pragma comment(). 2247 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2248 Visited.clear(); 2249 for (Module *M : LinkModules) 2250 if (Visited.insert(M).second) 2251 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2252 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2253 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2254 2255 // Add the linker options metadata flag. 2256 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2257 for (auto *MD : LinkerOptionsMetadata) 2258 NMD->addOperand(MD); 2259 } 2260 2261 void CodeGenModule::EmitDeferred() { 2262 // Emit deferred declare target declarations. 2263 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2264 getOpenMPRuntime().emitDeferredTargetDecls(); 2265 2266 // Emit code for any potentially referenced deferred decls. Since a 2267 // previously unused static decl may become used during the generation of code 2268 // for a static function, iterate until no changes are made. 2269 2270 if (!DeferredVTables.empty()) { 2271 EmitDeferredVTables(); 2272 2273 // Emitting a vtable doesn't directly cause more vtables to 2274 // become deferred, although it can cause functions to be 2275 // emitted that then need those vtables. 2276 assert(DeferredVTables.empty()); 2277 } 2278 2279 // Emit CUDA/HIP static device variables referenced by host code only. 2280 if (getLangOpts().CUDA) 2281 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2282 DeferredDeclsToEmit.push_back(V); 2283 2284 // Stop if we're out of both deferred vtables and deferred declarations. 2285 if (DeferredDeclsToEmit.empty()) 2286 return; 2287 2288 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2289 // work, it will not interfere with this. 2290 std::vector<GlobalDecl> CurDeclsToEmit; 2291 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2292 2293 for (GlobalDecl &D : CurDeclsToEmit) { 2294 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2295 // to get GlobalValue with exactly the type we need, not something that 2296 // might had been created for another decl with the same mangled name but 2297 // different type. 2298 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2299 GetAddrOfGlobal(D, ForDefinition)); 2300 2301 // In case of different address spaces, we may still get a cast, even with 2302 // IsForDefinition equal to true. Query mangled names table to get 2303 // GlobalValue. 2304 if (!GV) 2305 GV = GetGlobalValue(getMangledName(D)); 2306 2307 // Make sure GetGlobalValue returned non-null. 2308 assert(GV); 2309 2310 // Check to see if we've already emitted this. This is necessary 2311 // for a couple of reasons: first, decls can end up in the 2312 // deferred-decls queue multiple times, and second, decls can end 2313 // up with definitions in unusual ways (e.g. by an extern inline 2314 // function acquiring a strong function redefinition). Just 2315 // ignore these cases. 2316 if (!GV->isDeclaration()) 2317 continue; 2318 2319 // If this is OpenMP, check if it is legal to emit this global normally. 2320 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2321 continue; 2322 2323 // Otherwise, emit the definition and move on to the next one. 2324 EmitGlobalDefinition(D, GV); 2325 2326 // If we found out that we need to emit more decls, do that recursively. 2327 // This has the advantage that the decls are emitted in a DFS and related 2328 // ones are close together, which is convenient for testing. 2329 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2330 EmitDeferred(); 2331 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2332 } 2333 } 2334 } 2335 2336 void CodeGenModule::EmitVTablesOpportunistically() { 2337 // Try to emit external vtables as available_externally if they have emitted 2338 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2339 // is not allowed to create new references to things that need to be emitted 2340 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2341 2342 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2343 && "Only emit opportunistic vtables with optimizations"); 2344 2345 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2346 assert(getVTables().isVTableExternal(RD) && 2347 "This queue should only contain external vtables"); 2348 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2349 VTables.GenerateClassData(RD); 2350 } 2351 OpportunisticVTables.clear(); 2352 } 2353 2354 void CodeGenModule::EmitGlobalAnnotations() { 2355 if (Annotations.empty()) 2356 return; 2357 2358 // Create a new global variable for the ConstantStruct in the Module. 2359 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2360 Annotations[0]->getType(), Annotations.size()), Annotations); 2361 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2362 llvm::GlobalValue::AppendingLinkage, 2363 Array, "llvm.global.annotations"); 2364 gv->setSection(AnnotationSection); 2365 } 2366 2367 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2368 llvm::Constant *&AStr = AnnotationStrings[Str]; 2369 if (AStr) 2370 return AStr; 2371 2372 // Not found yet, create a new global. 2373 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2374 auto *gv = 2375 new llvm::GlobalVariable(getModule(), s->getType(), true, 2376 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2377 gv->setSection(AnnotationSection); 2378 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2379 AStr = gv; 2380 return gv; 2381 } 2382 2383 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2384 SourceManager &SM = getContext().getSourceManager(); 2385 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2386 if (PLoc.isValid()) 2387 return EmitAnnotationString(PLoc.getFilename()); 2388 return EmitAnnotationString(SM.getBufferName(Loc)); 2389 } 2390 2391 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2392 SourceManager &SM = getContext().getSourceManager(); 2393 PresumedLoc PLoc = SM.getPresumedLoc(L); 2394 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2395 SM.getExpansionLineNumber(L); 2396 return llvm::ConstantInt::get(Int32Ty, LineNo); 2397 } 2398 2399 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2400 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2401 if (Exprs.empty()) 2402 return llvm::ConstantPointerNull::get(Int8PtrTy); 2403 2404 llvm::FoldingSetNodeID ID; 2405 for (Expr *E : Exprs) { 2406 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2407 } 2408 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2409 if (Lookup) 2410 return Lookup; 2411 2412 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2413 LLVMArgs.reserve(Exprs.size()); 2414 ConstantEmitter ConstEmiter(*this); 2415 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2416 const auto *CE = cast<clang::ConstantExpr>(E); 2417 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2418 CE->getType()); 2419 }); 2420 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2421 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2422 llvm::GlobalValue::PrivateLinkage, Struct, 2423 ".args"); 2424 GV->setSection(AnnotationSection); 2425 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2426 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2427 2428 Lookup = Bitcasted; 2429 return Bitcasted; 2430 } 2431 2432 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2433 const AnnotateAttr *AA, 2434 SourceLocation L) { 2435 // Get the globals for file name, annotation, and the line number. 2436 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2437 *UnitGV = EmitAnnotationUnit(L), 2438 *LineNoCst = EmitAnnotationLineNo(L), 2439 *Args = EmitAnnotationArgs(AA); 2440 2441 llvm::Constant *ASZeroGV = GV; 2442 if (GV->getAddressSpace() != 0) { 2443 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2444 GV, GV->getValueType()->getPointerTo(0)); 2445 } 2446 2447 // Create the ConstantStruct for the global annotation. 2448 llvm::Constant *Fields[] = { 2449 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2450 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2451 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2452 LineNoCst, 2453 Args, 2454 }; 2455 return llvm::ConstantStruct::getAnon(Fields); 2456 } 2457 2458 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2459 llvm::GlobalValue *GV) { 2460 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2461 // Get the struct elements for these annotations. 2462 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2463 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2464 } 2465 2466 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2467 llvm::Function *Fn, 2468 SourceLocation Loc) const { 2469 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2470 // Blacklist by function name. 2471 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2472 return true; 2473 // Blacklist by location. 2474 if (Loc.isValid()) 2475 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2476 // If location is unknown, this may be a compiler-generated function. Assume 2477 // it's located in the main file. 2478 auto &SM = Context.getSourceManager(); 2479 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2480 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2481 } 2482 return false; 2483 } 2484 2485 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2486 SourceLocation Loc, QualType Ty, 2487 StringRef Category) const { 2488 // For now globals can be blacklisted only in ASan and KASan. 2489 const SanitizerMask EnabledAsanMask = 2490 LangOpts.Sanitize.Mask & 2491 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2492 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2493 SanitizerKind::MemTag); 2494 if (!EnabledAsanMask) 2495 return false; 2496 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2497 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2498 return true; 2499 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2500 return true; 2501 // Check global type. 2502 if (!Ty.isNull()) { 2503 // Drill down the array types: if global variable of a fixed type is 2504 // blacklisted, we also don't instrument arrays of them. 2505 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2506 Ty = AT->getElementType(); 2507 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2508 // We allow to blacklist only record types (classes, structs etc.) 2509 if (Ty->isRecordType()) { 2510 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2511 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2512 return true; 2513 } 2514 } 2515 return false; 2516 } 2517 2518 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2519 StringRef Category) const { 2520 const auto &XRayFilter = getContext().getXRayFilter(); 2521 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2522 auto Attr = ImbueAttr::NONE; 2523 if (Loc.isValid()) 2524 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2525 if (Attr == ImbueAttr::NONE) 2526 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2527 switch (Attr) { 2528 case ImbueAttr::NONE: 2529 return false; 2530 case ImbueAttr::ALWAYS: 2531 Fn->addFnAttr("function-instrument", "xray-always"); 2532 break; 2533 case ImbueAttr::ALWAYS_ARG1: 2534 Fn->addFnAttr("function-instrument", "xray-always"); 2535 Fn->addFnAttr("xray-log-args", "1"); 2536 break; 2537 case ImbueAttr::NEVER: 2538 Fn->addFnAttr("function-instrument", "xray-never"); 2539 break; 2540 } 2541 return true; 2542 } 2543 2544 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2545 // Never defer when EmitAllDecls is specified. 2546 if (LangOpts.EmitAllDecls) 2547 return true; 2548 2549 if (CodeGenOpts.KeepStaticConsts) { 2550 const auto *VD = dyn_cast<VarDecl>(Global); 2551 if (VD && VD->getType().isConstQualified() && 2552 VD->getStorageDuration() == SD_Static) 2553 return true; 2554 } 2555 2556 return getContext().DeclMustBeEmitted(Global); 2557 } 2558 2559 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2560 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2561 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2562 // Implicit template instantiations may change linkage if they are later 2563 // explicitly instantiated, so they should not be emitted eagerly. 2564 return false; 2565 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2566 // not emit them eagerly unless we sure that the function must be emitted on 2567 // the host. 2568 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2569 !LangOpts.OpenMPIsDevice && 2570 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2571 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2572 return false; 2573 } 2574 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2575 if (Context.getInlineVariableDefinitionKind(VD) == 2576 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2577 // A definition of an inline constexpr static data member may change 2578 // linkage later if it's redeclared outside the class. 2579 return false; 2580 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2581 // codegen for global variables, because they may be marked as threadprivate. 2582 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2583 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2584 !isTypeConstant(Global->getType(), false) && 2585 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2586 return false; 2587 2588 return true; 2589 } 2590 2591 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2592 StringRef Name = getMangledName(GD); 2593 2594 // The UUID descriptor should be pointer aligned. 2595 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2596 2597 // Look for an existing global. 2598 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2599 return ConstantAddress(GV, Alignment); 2600 2601 ConstantEmitter Emitter(*this); 2602 llvm::Constant *Init; 2603 2604 APValue &V = GD->getAsAPValue(); 2605 if (!V.isAbsent()) { 2606 // If possible, emit the APValue version of the initializer. In particular, 2607 // this gets the type of the constant right. 2608 Init = Emitter.emitForInitializer( 2609 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2610 } else { 2611 // As a fallback, directly construct the constant. 2612 // FIXME: This may get padding wrong under esoteric struct layout rules. 2613 // MSVC appears to create a complete type 'struct __s_GUID' that it 2614 // presumably uses to represent these constants. 2615 MSGuidDecl::Parts Parts = GD->getParts(); 2616 llvm::Constant *Fields[4] = { 2617 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2618 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2619 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2620 llvm::ConstantDataArray::getRaw( 2621 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2622 Int8Ty)}; 2623 Init = llvm::ConstantStruct::getAnon(Fields); 2624 } 2625 2626 auto *GV = new llvm::GlobalVariable( 2627 getModule(), Init->getType(), 2628 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2629 if (supportsCOMDAT()) 2630 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2631 setDSOLocal(GV); 2632 2633 llvm::Constant *Addr = GV; 2634 if (!V.isAbsent()) { 2635 Emitter.finalize(GV); 2636 } else { 2637 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2638 Addr = llvm::ConstantExpr::getBitCast( 2639 GV, Ty->getPointerTo(GV->getAddressSpace())); 2640 } 2641 return ConstantAddress(Addr, Alignment); 2642 } 2643 2644 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2645 const TemplateParamObjectDecl *TPO) { 2646 StringRef Name = getMangledName(TPO); 2647 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2648 2649 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2650 return ConstantAddress(GV, Alignment); 2651 2652 ConstantEmitter Emitter(*this); 2653 llvm::Constant *Init = Emitter.emitForInitializer( 2654 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2655 2656 if (!Init) { 2657 ErrorUnsupported(TPO, "template parameter object"); 2658 return ConstantAddress::invalid(); 2659 } 2660 2661 auto *GV = new llvm::GlobalVariable( 2662 getModule(), Init->getType(), 2663 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2664 if (supportsCOMDAT()) 2665 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2666 Emitter.finalize(GV); 2667 2668 return ConstantAddress(GV, Alignment); 2669 } 2670 2671 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2672 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2673 assert(AA && "No alias?"); 2674 2675 CharUnits Alignment = getContext().getDeclAlign(VD); 2676 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2677 2678 // See if there is already something with the target's name in the module. 2679 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2680 if (Entry) { 2681 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2682 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2683 return ConstantAddress(Ptr, Alignment); 2684 } 2685 2686 llvm::Constant *Aliasee; 2687 if (isa<llvm::FunctionType>(DeclTy)) 2688 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2689 GlobalDecl(cast<FunctionDecl>(VD)), 2690 /*ForVTable=*/false); 2691 else 2692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2693 llvm::PointerType::getUnqual(DeclTy), 2694 nullptr); 2695 2696 auto *F = cast<llvm::GlobalValue>(Aliasee); 2697 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2698 WeakRefReferences.insert(F); 2699 2700 return ConstantAddress(Aliasee, Alignment); 2701 } 2702 2703 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2704 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2705 2706 // Weak references don't produce any output by themselves. 2707 if (Global->hasAttr<WeakRefAttr>()) 2708 return; 2709 2710 // If this is an alias definition (which otherwise looks like a declaration) 2711 // emit it now. 2712 if (Global->hasAttr<AliasAttr>()) 2713 return EmitAliasDefinition(GD); 2714 2715 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2716 if (Global->hasAttr<IFuncAttr>()) 2717 return emitIFuncDefinition(GD); 2718 2719 // If this is a cpu_dispatch multiversion function, emit the resolver. 2720 if (Global->hasAttr<CPUDispatchAttr>()) 2721 return emitCPUDispatchDefinition(GD); 2722 2723 // If this is CUDA, be selective about which declarations we emit. 2724 if (LangOpts.CUDA) { 2725 if (LangOpts.CUDAIsDevice) { 2726 if (!Global->hasAttr<CUDADeviceAttr>() && 2727 !Global->hasAttr<CUDAGlobalAttr>() && 2728 !Global->hasAttr<CUDAConstantAttr>() && 2729 !Global->hasAttr<CUDASharedAttr>() && 2730 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2731 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2732 return; 2733 } else { 2734 // We need to emit host-side 'shadows' for all global 2735 // device-side variables because the CUDA runtime needs their 2736 // size and host-side address in order to provide access to 2737 // their device-side incarnations. 2738 2739 // So device-only functions are the only things we skip. 2740 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2741 Global->hasAttr<CUDADeviceAttr>()) 2742 return; 2743 2744 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2745 "Expected Variable or Function"); 2746 } 2747 } 2748 2749 if (LangOpts.OpenMP) { 2750 // If this is OpenMP, check if it is legal to emit this global normally. 2751 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2752 return; 2753 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2754 if (MustBeEmitted(Global)) 2755 EmitOMPDeclareReduction(DRD); 2756 return; 2757 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2758 if (MustBeEmitted(Global)) 2759 EmitOMPDeclareMapper(DMD); 2760 return; 2761 } 2762 } 2763 2764 // Ignore declarations, they will be emitted on their first use. 2765 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2766 // Forward declarations are emitted lazily on first use. 2767 if (!FD->doesThisDeclarationHaveABody()) { 2768 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2769 return; 2770 2771 StringRef MangledName = getMangledName(GD); 2772 2773 // Compute the function info and LLVM type. 2774 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2775 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2776 2777 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2778 /*DontDefer=*/false); 2779 return; 2780 } 2781 } else { 2782 const auto *VD = cast<VarDecl>(Global); 2783 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2785 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2786 if (LangOpts.OpenMP) { 2787 // Emit declaration of the must-be-emitted declare target variable. 2788 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2789 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2790 bool UnifiedMemoryEnabled = 2791 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2792 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2793 !UnifiedMemoryEnabled) { 2794 (void)GetAddrOfGlobalVar(VD); 2795 } else { 2796 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2797 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2798 UnifiedMemoryEnabled)) && 2799 "Link clause or to clause with unified memory expected."); 2800 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2801 } 2802 2803 return; 2804 } 2805 } 2806 // If this declaration may have caused an inline variable definition to 2807 // change linkage, make sure that it's emitted. 2808 if (Context.getInlineVariableDefinitionKind(VD) == 2809 ASTContext::InlineVariableDefinitionKind::Strong) 2810 GetAddrOfGlobalVar(VD); 2811 return; 2812 } 2813 } 2814 2815 // Defer code generation to first use when possible, e.g. if this is an inline 2816 // function. If the global must always be emitted, do it eagerly if possible 2817 // to benefit from cache locality. 2818 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2819 // Emit the definition if it can't be deferred. 2820 EmitGlobalDefinition(GD); 2821 return; 2822 } 2823 2824 // If we're deferring emission of a C++ variable with an 2825 // initializer, remember the order in which it appeared in the file. 2826 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2827 cast<VarDecl>(Global)->hasInit()) { 2828 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2829 CXXGlobalInits.push_back(nullptr); 2830 } 2831 2832 StringRef MangledName = getMangledName(GD); 2833 if (GetGlobalValue(MangledName) != nullptr) { 2834 // The value has already been used and should therefore be emitted. 2835 addDeferredDeclToEmit(GD); 2836 } else if (MustBeEmitted(Global)) { 2837 // The value must be emitted, but cannot be emitted eagerly. 2838 assert(!MayBeEmittedEagerly(Global)); 2839 addDeferredDeclToEmit(GD); 2840 } else { 2841 // Otherwise, remember that we saw a deferred decl with this name. The 2842 // first use of the mangled name will cause it to move into 2843 // DeferredDeclsToEmit. 2844 DeferredDecls[MangledName] = GD; 2845 } 2846 } 2847 2848 // Check if T is a class type with a destructor that's not dllimport. 2849 static bool HasNonDllImportDtor(QualType T) { 2850 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2851 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2852 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2853 return true; 2854 2855 return false; 2856 } 2857 2858 namespace { 2859 struct FunctionIsDirectlyRecursive 2860 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2861 const StringRef Name; 2862 const Builtin::Context &BI; 2863 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2864 : Name(N), BI(C) {} 2865 2866 bool VisitCallExpr(const CallExpr *E) { 2867 const FunctionDecl *FD = E->getDirectCallee(); 2868 if (!FD) 2869 return false; 2870 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2871 if (Attr && Name == Attr->getLabel()) 2872 return true; 2873 unsigned BuiltinID = FD->getBuiltinID(); 2874 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2875 return false; 2876 StringRef BuiltinName = BI.getName(BuiltinID); 2877 if (BuiltinName.startswith("__builtin_") && 2878 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2879 return true; 2880 } 2881 return false; 2882 } 2883 2884 bool VisitStmt(const Stmt *S) { 2885 for (const Stmt *Child : S->children()) 2886 if (Child && this->Visit(Child)) 2887 return true; 2888 return false; 2889 } 2890 }; 2891 2892 // Make sure we're not referencing non-imported vars or functions. 2893 struct DLLImportFunctionVisitor 2894 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2895 bool SafeToInline = true; 2896 2897 bool shouldVisitImplicitCode() const { return true; } 2898 2899 bool VisitVarDecl(VarDecl *VD) { 2900 if (VD->getTLSKind()) { 2901 // A thread-local variable cannot be imported. 2902 SafeToInline = false; 2903 return SafeToInline; 2904 } 2905 2906 // A variable definition might imply a destructor call. 2907 if (VD->isThisDeclarationADefinition()) 2908 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2909 2910 return SafeToInline; 2911 } 2912 2913 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2914 if (const auto *D = E->getTemporary()->getDestructor()) 2915 SafeToInline = D->hasAttr<DLLImportAttr>(); 2916 return SafeToInline; 2917 } 2918 2919 bool VisitDeclRefExpr(DeclRefExpr *E) { 2920 ValueDecl *VD = E->getDecl(); 2921 if (isa<FunctionDecl>(VD)) 2922 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2923 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2924 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2925 return SafeToInline; 2926 } 2927 2928 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2929 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2930 return SafeToInline; 2931 } 2932 2933 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2934 CXXMethodDecl *M = E->getMethodDecl(); 2935 if (!M) { 2936 // Call through a pointer to member function. This is safe to inline. 2937 SafeToInline = true; 2938 } else { 2939 SafeToInline = M->hasAttr<DLLImportAttr>(); 2940 } 2941 return SafeToInline; 2942 } 2943 2944 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2945 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2946 return SafeToInline; 2947 } 2948 2949 bool VisitCXXNewExpr(CXXNewExpr *E) { 2950 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2951 return SafeToInline; 2952 } 2953 }; 2954 } 2955 2956 // isTriviallyRecursive - Check if this function calls another 2957 // decl that, because of the asm attribute or the other decl being a builtin, 2958 // ends up pointing to itself. 2959 bool 2960 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2961 StringRef Name; 2962 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2963 // asm labels are a special kind of mangling we have to support. 2964 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2965 if (!Attr) 2966 return false; 2967 Name = Attr->getLabel(); 2968 } else { 2969 Name = FD->getName(); 2970 } 2971 2972 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2973 const Stmt *Body = FD->getBody(); 2974 return Body ? Walker.Visit(Body) : false; 2975 } 2976 2977 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2978 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2979 return true; 2980 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2981 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2982 return false; 2983 2984 if (F->hasAttr<DLLImportAttr>()) { 2985 // Check whether it would be safe to inline this dllimport function. 2986 DLLImportFunctionVisitor Visitor; 2987 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2988 if (!Visitor.SafeToInline) 2989 return false; 2990 2991 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2992 // Implicit destructor invocations aren't captured in the AST, so the 2993 // check above can't see them. Check for them manually here. 2994 for (const Decl *Member : Dtor->getParent()->decls()) 2995 if (isa<FieldDecl>(Member)) 2996 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2997 return false; 2998 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2999 if (HasNonDllImportDtor(B.getType())) 3000 return false; 3001 } 3002 } 3003 3004 // PR9614. Avoid cases where the source code is lying to us. An available 3005 // externally function should have an equivalent function somewhere else, 3006 // but a function that calls itself through asm label/`__builtin_` trickery is 3007 // clearly not equivalent to the real implementation. 3008 // This happens in glibc's btowc and in some configure checks. 3009 return !isTriviallyRecursive(F); 3010 } 3011 3012 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3013 return CodeGenOpts.OptimizationLevel > 0; 3014 } 3015 3016 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3017 llvm::GlobalValue *GV) { 3018 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3019 3020 if (FD->isCPUSpecificMultiVersion()) { 3021 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3022 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3023 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3024 // Requires multiple emits. 3025 } else 3026 EmitGlobalFunctionDefinition(GD, GV); 3027 } 3028 3029 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3030 const auto *D = cast<ValueDecl>(GD.getDecl()); 3031 3032 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3033 Context.getSourceManager(), 3034 "Generating code for declaration"); 3035 3036 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3037 // At -O0, don't generate IR for functions with available_externally 3038 // linkage. 3039 if (!shouldEmitFunction(GD)) 3040 return; 3041 3042 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3043 std::string Name; 3044 llvm::raw_string_ostream OS(Name); 3045 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3046 /*Qualified=*/true); 3047 return Name; 3048 }); 3049 3050 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3051 // Make sure to emit the definition(s) before we emit the thunks. 3052 // This is necessary for the generation of certain thunks. 3053 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3054 ABI->emitCXXStructor(GD); 3055 else if (FD->isMultiVersion()) 3056 EmitMultiVersionFunctionDefinition(GD, GV); 3057 else 3058 EmitGlobalFunctionDefinition(GD, GV); 3059 3060 if (Method->isVirtual()) 3061 getVTables().EmitThunks(GD); 3062 3063 return; 3064 } 3065 3066 if (FD->isMultiVersion()) 3067 return EmitMultiVersionFunctionDefinition(GD, GV); 3068 return EmitGlobalFunctionDefinition(GD, GV); 3069 } 3070 3071 if (const auto *VD = dyn_cast<VarDecl>(D)) 3072 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3073 3074 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3075 } 3076 3077 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3078 llvm::Function *NewFn); 3079 3080 static unsigned 3081 TargetMVPriority(const TargetInfo &TI, 3082 const CodeGenFunction::MultiVersionResolverOption &RO) { 3083 unsigned Priority = 0; 3084 for (StringRef Feat : RO.Conditions.Features) 3085 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3086 3087 if (!RO.Conditions.Architecture.empty()) 3088 Priority = std::max( 3089 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3090 return Priority; 3091 } 3092 3093 void CodeGenModule::emitMultiVersionFunctions() { 3094 for (GlobalDecl GD : MultiVersionFuncs) { 3095 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3096 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3097 getContext().forEachMultiversionedFunctionVersion( 3098 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3099 GlobalDecl CurGD{ 3100 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3101 StringRef MangledName = getMangledName(CurGD); 3102 llvm::Constant *Func = GetGlobalValue(MangledName); 3103 if (!Func) { 3104 if (CurFD->isDefined()) { 3105 EmitGlobalFunctionDefinition(CurGD, nullptr); 3106 Func = GetGlobalValue(MangledName); 3107 } else { 3108 const CGFunctionInfo &FI = 3109 getTypes().arrangeGlobalDeclaration(GD); 3110 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3111 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3112 /*DontDefer=*/false, ForDefinition); 3113 } 3114 assert(Func && "This should have just been created"); 3115 } 3116 3117 const auto *TA = CurFD->getAttr<TargetAttr>(); 3118 llvm::SmallVector<StringRef, 8> Feats; 3119 TA->getAddedFeatures(Feats); 3120 3121 Options.emplace_back(cast<llvm::Function>(Func), 3122 TA->getArchitecture(), Feats); 3123 }); 3124 3125 llvm::Function *ResolverFunc; 3126 const TargetInfo &TI = getTarget(); 3127 3128 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3129 ResolverFunc = cast<llvm::Function>( 3130 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3131 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3132 } else { 3133 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3134 } 3135 3136 if (supportsCOMDAT()) 3137 ResolverFunc->setComdat( 3138 getModule().getOrInsertComdat(ResolverFunc->getName())); 3139 3140 llvm::stable_sort( 3141 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3142 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3143 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3144 }); 3145 CodeGenFunction CGF(*this); 3146 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3147 } 3148 } 3149 3150 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3151 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3152 assert(FD && "Not a FunctionDecl?"); 3153 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3154 assert(DD && "Not a cpu_dispatch Function?"); 3155 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3156 3157 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3158 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3159 DeclTy = getTypes().GetFunctionType(FInfo); 3160 } 3161 3162 StringRef ResolverName = getMangledName(GD); 3163 3164 llvm::Type *ResolverType; 3165 GlobalDecl ResolverGD; 3166 if (getTarget().supportsIFunc()) 3167 ResolverType = llvm::FunctionType::get( 3168 llvm::PointerType::get(DeclTy, 3169 Context.getTargetAddressSpace(FD->getType())), 3170 false); 3171 else { 3172 ResolverType = DeclTy; 3173 ResolverGD = GD; 3174 } 3175 3176 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3177 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3178 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3179 if (supportsCOMDAT()) 3180 ResolverFunc->setComdat( 3181 getModule().getOrInsertComdat(ResolverFunc->getName())); 3182 3183 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3184 const TargetInfo &Target = getTarget(); 3185 unsigned Index = 0; 3186 for (const IdentifierInfo *II : DD->cpus()) { 3187 // Get the name of the target function so we can look it up/create it. 3188 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3189 getCPUSpecificMangling(*this, II->getName()); 3190 3191 llvm::Constant *Func = GetGlobalValue(MangledName); 3192 3193 if (!Func) { 3194 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3195 if (ExistingDecl.getDecl() && 3196 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3197 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3198 Func = GetGlobalValue(MangledName); 3199 } else { 3200 if (!ExistingDecl.getDecl()) 3201 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3202 3203 Func = GetOrCreateLLVMFunction( 3204 MangledName, DeclTy, ExistingDecl, 3205 /*ForVTable=*/false, /*DontDefer=*/true, 3206 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3207 } 3208 } 3209 3210 llvm::SmallVector<StringRef, 32> Features; 3211 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3212 llvm::transform(Features, Features.begin(), 3213 [](StringRef Str) { return Str.substr(1); }); 3214 Features.erase(std::remove_if( 3215 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3216 return !Target.validateCpuSupports(Feat); 3217 }), Features.end()); 3218 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3219 ++Index; 3220 } 3221 3222 llvm::sort( 3223 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3224 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3225 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3226 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3227 }); 3228 3229 // If the list contains multiple 'default' versions, such as when it contains 3230 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3231 // always run on at least a 'pentium'). We do this by deleting the 'least 3232 // advanced' (read, lowest mangling letter). 3233 while (Options.size() > 1 && 3234 CodeGenFunction::GetX86CpuSupportsMask( 3235 (Options.end() - 2)->Conditions.Features) == 0) { 3236 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3237 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3238 if (LHSName.compare(RHSName) < 0) 3239 Options.erase(Options.end() - 2); 3240 else 3241 Options.erase(Options.end() - 1); 3242 } 3243 3244 CodeGenFunction CGF(*this); 3245 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3246 3247 if (getTarget().supportsIFunc()) { 3248 std::string AliasName = getMangledNameImpl( 3249 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3250 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3251 if (!AliasFunc) { 3252 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3253 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3254 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3255 auto *GA = llvm::GlobalAlias::create( 3256 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3257 GA->setLinkage(llvm::Function::WeakODRLinkage); 3258 SetCommonAttributes(GD, GA); 3259 } 3260 } 3261 } 3262 3263 /// If a dispatcher for the specified mangled name is not in the module, create 3264 /// and return an llvm Function with the specified type. 3265 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3266 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3267 std::string MangledName = 3268 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3269 3270 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3271 // a separate resolver). 3272 std::string ResolverName = MangledName; 3273 if (getTarget().supportsIFunc()) 3274 ResolverName += ".ifunc"; 3275 else if (FD->isTargetMultiVersion()) 3276 ResolverName += ".resolver"; 3277 3278 // If this already exists, just return that one. 3279 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3280 return ResolverGV; 3281 3282 // Since this is the first time we've created this IFunc, make sure 3283 // that we put this multiversioned function into the list to be 3284 // replaced later if necessary (target multiversioning only). 3285 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3286 MultiVersionFuncs.push_back(GD); 3287 3288 if (getTarget().supportsIFunc()) { 3289 llvm::Type *ResolverType = llvm::FunctionType::get( 3290 llvm::PointerType::get( 3291 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3292 false); 3293 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3294 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3295 /*ForVTable=*/false); 3296 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3297 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3298 GIF->setName(ResolverName); 3299 SetCommonAttributes(FD, GIF); 3300 3301 return GIF; 3302 } 3303 3304 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3305 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3306 assert(isa<llvm::GlobalValue>(Resolver) && 3307 "Resolver should be created for the first time"); 3308 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3309 return Resolver; 3310 } 3311 3312 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3313 /// module, create and return an llvm Function with the specified type. If there 3314 /// is something in the module with the specified name, return it potentially 3315 /// bitcasted to the right type. 3316 /// 3317 /// If D is non-null, it specifies a decl that correspond to this. This is used 3318 /// to set the attributes on the function when it is first created. 3319 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3320 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3321 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3322 ForDefinition_t IsForDefinition) { 3323 const Decl *D = GD.getDecl(); 3324 3325 // Any attempts to use a MultiVersion function should result in retrieving 3326 // the iFunc instead. Name Mangling will handle the rest of the changes. 3327 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3328 // For the device mark the function as one that should be emitted. 3329 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3330 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3331 !DontDefer && !IsForDefinition) { 3332 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3333 GlobalDecl GDDef; 3334 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3335 GDDef = GlobalDecl(CD, GD.getCtorType()); 3336 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3337 GDDef = GlobalDecl(DD, GD.getDtorType()); 3338 else 3339 GDDef = GlobalDecl(FDDef); 3340 EmitGlobal(GDDef); 3341 } 3342 } 3343 3344 if (FD->isMultiVersion()) { 3345 if (FD->hasAttr<TargetAttr>()) 3346 UpdateMultiVersionNames(GD, FD); 3347 if (!IsForDefinition) 3348 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3349 } 3350 } 3351 3352 // Lookup the entry, lazily creating it if necessary. 3353 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3354 if (Entry) { 3355 if (WeakRefReferences.erase(Entry)) { 3356 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3357 if (FD && !FD->hasAttr<WeakAttr>()) 3358 Entry->setLinkage(llvm::Function::ExternalLinkage); 3359 } 3360 3361 // Handle dropped DLL attributes. 3362 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3363 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3364 setDSOLocal(Entry); 3365 } 3366 3367 // If there are two attempts to define the same mangled name, issue an 3368 // error. 3369 if (IsForDefinition && !Entry->isDeclaration()) { 3370 GlobalDecl OtherGD; 3371 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3372 // to make sure that we issue an error only once. 3373 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3374 (GD.getCanonicalDecl().getDecl() != 3375 OtherGD.getCanonicalDecl().getDecl()) && 3376 DiagnosedConflictingDefinitions.insert(GD).second) { 3377 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3378 << MangledName; 3379 getDiags().Report(OtherGD.getDecl()->getLocation(), 3380 diag::note_previous_definition); 3381 } 3382 } 3383 3384 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3385 (Entry->getValueType() == Ty)) { 3386 return Entry; 3387 } 3388 3389 // Make sure the result is of the correct type. 3390 // (If function is requested for a definition, we always need to create a new 3391 // function, not just return a bitcast.) 3392 if (!IsForDefinition) 3393 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3394 } 3395 3396 // This function doesn't have a complete type (for example, the return 3397 // type is an incomplete struct). Use a fake type instead, and make 3398 // sure not to try to set attributes. 3399 bool IsIncompleteFunction = false; 3400 3401 llvm::FunctionType *FTy; 3402 if (isa<llvm::FunctionType>(Ty)) { 3403 FTy = cast<llvm::FunctionType>(Ty); 3404 } else { 3405 FTy = llvm::FunctionType::get(VoidTy, false); 3406 IsIncompleteFunction = true; 3407 } 3408 3409 llvm::Function *F = 3410 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3411 Entry ? StringRef() : MangledName, &getModule()); 3412 3413 // If we already created a function with the same mangled name (but different 3414 // type) before, take its name and add it to the list of functions to be 3415 // replaced with F at the end of CodeGen. 3416 // 3417 // This happens if there is a prototype for a function (e.g. "int f()") and 3418 // then a definition of a different type (e.g. "int f(int x)"). 3419 if (Entry) { 3420 F->takeName(Entry); 3421 3422 // This might be an implementation of a function without a prototype, in 3423 // which case, try to do special replacement of calls which match the new 3424 // prototype. The really key thing here is that we also potentially drop 3425 // arguments from the call site so as to make a direct call, which makes the 3426 // inliner happier and suppresses a number of optimizer warnings (!) about 3427 // dropping arguments. 3428 if (!Entry->use_empty()) { 3429 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3430 Entry->removeDeadConstantUsers(); 3431 } 3432 3433 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3434 F, Entry->getValueType()->getPointerTo()); 3435 addGlobalValReplacement(Entry, BC); 3436 } 3437 3438 assert(F->getName() == MangledName && "name was uniqued!"); 3439 if (D) 3440 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3441 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3442 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3443 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3444 } 3445 3446 if (!DontDefer) { 3447 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3448 // each other bottoming out with the base dtor. Therefore we emit non-base 3449 // dtors on usage, even if there is no dtor definition in the TU. 3450 if (D && isa<CXXDestructorDecl>(D) && 3451 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3452 GD.getDtorType())) 3453 addDeferredDeclToEmit(GD); 3454 3455 // This is the first use or definition of a mangled name. If there is a 3456 // deferred decl with this name, remember that we need to emit it at the end 3457 // of the file. 3458 auto DDI = DeferredDecls.find(MangledName); 3459 if (DDI != DeferredDecls.end()) { 3460 // Move the potentially referenced deferred decl to the 3461 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3462 // don't need it anymore). 3463 addDeferredDeclToEmit(DDI->second); 3464 DeferredDecls.erase(DDI); 3465 3466 // Otherwise, there are cases we have to worry about where we're 3467 // using a declaration for which we must emit a definition but where 3468 // we might not find a top-level definition: 3469 // - member functions defined inline in their classes 3470 // - friend functions defined inline in some class 3471 // - special member functions with implicit definitions 3472 // If we ever change our AST traversal to walk into class methods, 3473 // this will be unnecessary. 3474 // 3475 // We also don't emit a definition for a function if it's going to be an 3476 // entry in a vtable, unless it's already marked as used. 3477 } else if (getLangOpts().CPlusPlus && D) { 3478 // Look for a declaration that's lexically in a record. 3479 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3480 FD = FD->getPreviousDecl()) { 3481 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3482 if (FD->doesThisDeclarationHaveABody()) { 3483 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3484 break; 3485 } 3486 } 3487 } 3488 } 3489 } 3490 3491 // Make sure the result is of the requested type. 3492 if (!IsIncompleteFunction) { 3493 assert(F->getFunctionType() == Ty); 3494 return F; 3495 } 3496 3497 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3498 return llvm::ConstantExpr::getBitCast(F, PTy); 3499 } 3500 3501 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3502 /// non-null, then this function will use the specified type if it has to 3503 /// create it (this occurs when we see a definition of the function). 3504 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3505 llvm::Type *Ty, 3506 bool ForVTable, 3507 bool DontDefer, 3508 ForDefinition_t IsForDefinition) { 3509 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3510 "consteval function should never be emitted"); 3511 // If there was no specific requested type, just convert it now. 3512 if (!Ty) { 3513 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3514 Ty = getTypes().ConvertType(FD->getType()); 3515 } 3516 3517 // Devirtualized destructor calls may come through here instead of via 3518 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3519 // of the complete destructor when necessary. 3520 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3521 if (getTarget().getCXXABI().isMicrosoft() && 3522 GD.getDtorType() == Dtor_Complete && 3523 DD->getParent()->getNumVBases() == 0) 3524 GD = GlobalDecl(DD, Dtor_Base); 3525 } 3526 3527 StringRef MangledName = getMangledName(GD); 3528 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3529 /*IsThunk=*/false, llvm::AttributeList(), 3530 IsForDefinition); 3531 } 3532 3533 static const FunctionDecl * 3534 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3535 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3536 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3537 3538 IdentifierInfo &CII = C.Idents.get(Name); 3539 for (const auto &Result : DC->lookup(&CII)) 3540 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3541 return FD; 3542 3543 if (!C.getLangOpts().CPlusPlus) 3544 return nullptr; 3545 3546 // Demangle the premangled name from getTerminateFn() 3547 IdentifierInfo &CXXII = 3548 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3549 ? C.Idents.get("terminate") 3550 : C.Idents.get(Name); 3551 3552 for (const auto &N : {"__cxxabiv1", "std"}) { 3553 IdentifierInfo &NS = C.Idents.get(N); 3554 for (const auto &Result : DC->lookup(&NS)) { 3555 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3556 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3557 for (const auto &Result : LSD->lookup(&NS)) 3558 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3559 break; 3560 3561 if (ND) 3562 for (const auto &Result : ND->lookup(&CXXII)) 3563 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3564 return FD; 3565 } 3566 } 3567 3568 return nullptr; 3569 } 3570 3571 /// CreateRuntimeFunction - Create a new runtime function with the specified 3572 /// type and name. 3573 llvm::FunctionCallee 3574 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3575 llvm::AttributeList ExtraAttrs, bool Local, 3576 bool AssumeConvergent) { 3577 if (AssumeConvergent) { 3578 ExtraAttrs = 3579 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3580 llvm::Attribute::Convergent); 3581 } 3582 3583 llvm::Constant *C = 3584 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3585 /*DontDefer=*/false, /*IsThunk=*/false, 3586 ExtraAttrs); 3587 3588 if (auto *F = dyn_cast<llvm::Function>(C)) { 3589 if (F->empty()) { 3590 F->setCallingConv(getRuntimeCC()); 3591 3592 // In Windows Itanium environments, try to mark runtime functions 3593 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3594 // will link their standard library statically or dynamically. Marking 3595 // functions imported when they are not imported can cause linker errors 3596 // and warnings. 3597 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3598 !getCodeGenOpts().LTOVisibilityPublicStd) { 3599 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3600 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3601 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3602 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3603 } 3604 } 3605 setDSOLocal(F); 3606 } 3607 } 3608 3609 return {FTy, C}; 3610 } 3611 3612 /// isTypeConstant - Determine whether an object of this type can be emitted 3613 /// as a constant. 3614 /// 3615 /// If ExcludeCtor is true, the duration when the object's constructor runs 3616 /// will not be considered. The caller will need to verify that the object is 3617 /// not written to during its construction. 3618 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3619 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3620 return false; 3621 3622 if (Context.getLangOpts().CPlusPlus) { 3623 if (const CXXRecordDecl *Record 3624 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3625 return ExcludeCtor && !Record->hasMutableFields() && 3626 Record->hasTrivialDestructor(); 3627 } 3628 3629 return true; 3630 } 3631 3632 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3633 /// create and return an llvm GlobalVariable with the specified type. If there 3634 /// is something in the module with the specified name, return it potentially 3635 /// bitcasted to the right type. 3636 /// 3637 /// If D is non-null, it specifies a decl that correspond to this. This is used 3638 /// to set the attributes on the global when it is first created. 3639 /// 3640 /// If IsForDefinition is true, it is guaranteed that an actual global with 3641 /// type Ty will be returned, not conversion of a variable with the same 3642 /// mangled name but some other type. 3643 llvm::Constant * 3644 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3645 llvm::PointerType *Ty, 3646 const VarDecl *D, 3647 ForDefinition_t IsForDefinition) { 3648 // Lookup the entry, lazily creating it if necessary. 3649 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3650 if (Entry) { 3651 if (WeakRefReferences.erase(Entry)) { 3652 if (D && !D->hasAttr<WeakAttr>()) 3653 Entry->setLinkage(llvm::Function::ExternalLinkage); 3654 } 3655 3656 // Handle dropped DLL attributes. 3657 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3658 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3659 3660 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3661 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3662 3663 if (Entry->getType() == Ty) 3664 return Entry; 3665 3666 // If there are two attempts to define the same mangled name, issue an 3667 // error. 3668 if (IsForDefinition && !Entry->isDeclaration()) { 3669 GlobalDecl OtherGD; 3670 const VarDecl *OtherD; 3671 3672 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3673 // to make sure that we issue an error only once. 3674 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3675 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3676 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3677 OtherD->hasInit() && 3678 DiagnosedConflictingDefinitions.insert(D).second) { 3679 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3680 << MangledName; 3681 getDiags().Report(OtherGD.getDecl()->getLocation(), 3682 diag::note_previous_definition); 3683 } 3684 } 3685 3686 // Make sure the result is of the correct type. 3687 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3688 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3689 3690 // (If global is requested for a definition, we always need to create a new 3691 // global, not just return a bitcast.) 3692 if (!IsForDefinition) 3693 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3694 } 3695 3696 auto AddrSpace = GetGlobalVarAddressSpace(D); 3697 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3698 3699 auto *GV = new llvm::GlobalVariable( 3700 getModule(), Ty->getElementType(), false, 3701 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3702 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3703 3704 // If we already created a global with the same mangled name (but different 3705 // type) before, take its name and remove it from its parent. 3706 if (Entry) { 3707 GV->takeName(Entry); 3708 3709 if (!Entry->use_empty()) { 3710 llvm::Constant *NewPtrForOldDecl = 3711 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3712 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3713 } 3714 3715 Entry->eraseFromParent(); 3716 } 3717 3718 // This is the first use or definition of a mangled name. If there is a 3719 // deferred decl with this name, remember that we need to emit it at the end 3720 // of the file. 3721 auto DDI = DeferredDecls.find(MangledName); 3722 if (DDI != DeferredDecls.end()) { 3723 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3724 // list, and remove it from DeferredDecls (since we don't need it anymore). 3725 addDeferredDeclToEmit(DDI->second); 3726 DeferredDecls.erase(DDI); 3727 } 3728 3729 // Handle things which are present even on external declarations. 3730 if (D) { 3731 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3732 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3733 3734 // FIXME: This code is overly simple and should be merged with other global 3735 // handling. 3736 GV->setConstant(isTypeConstant(D->getType(), false)); 3737 3738 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3739 3740 setLinkageForGV(GV, D); 3741 3742 if (D->getTLSKind()) { 3743 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3744 CXXThreadLocals.push_back(D); 3745 setTLSMode(GV, *D); 3746 } 3747 3748 setGVProperties(GV, D); 3749 3750 // If required by the ABI, treat declarations of static data members with 3751 // inline initializers as definitions. 3752 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3753 EmitGlobalVarDefinition(D); 3754 } 3755 3756 // Emit section information for extern variables. 3757 if (D->hasExternalStorage()) { 3758 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3759 GV->setSection(SA->getName()); 3760 } 3761 3762 // Handle XCore specific ABI requirements. 3763 if (getTriple().getArch() == llvm::Triple::xcore && 3764 D->getLanguageLinkage() == CLanguageLinkage && 3765 D->getType().isConstant(Context) && 3766 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3767 GV->setSection(".cp.rodata"); 3768 3769 // Check if we a have a const declaration with an initializer, we may be 3770 // able to emit it as available_externally to expose it's value to the 3771 // optimizer. 3772 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3773 D->getType().isConstQualified() && !GV->hasInitializer() && 3774 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3775 const auto *Record = 3776 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3777 bool HasMutableFields = Record && Record->hasMutableFields(); 3778 if (!HasMutableFields) { 3779 const VarDecl *InitDecl; 3780 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3781 if (InitExpr) { 3782 ConstantEmitter emitter(*this); 3783 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3784 if (Init) { 3785 auto *InitType = Init->getType(); 3786 if (GV->getValueType() != InitType) { 3787 // The type of the initializer does not match the definition. 3788 // This happens when an initializer has a different type from 3789 // the type of the global (because of padding at the end of a 3790 // structure for instance). 3791 GV->setName(StringRef()); 3792 // Make a new global with the correct type, this is now guaranteed 3793 // to work. 3794 auto *NewGV = cast<llvm::GlobalVariable>( 3795 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3796 ->stripPointerCasts()); 3797 3798 // Erase the old global, since it is no longer used. 3799 GV->eraseFromParent(); 3800 GV = NewGV; 3801 } else { 3802 GV->setInitializer(Init); 3803 GV->setConstant(true); 3804 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3805 } 3806 emitter.finalize(GV); 3807 } 3808 } 3809 } 3810 } 3811 } 3812 3813 if (GV->isDeclaration()) 3814 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3815 3816 LangAS ExpectedAS = 3817 D ? D->getType().getAddressSpace() 3818 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3819 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3820 Ty->getPointerAddressSpace()); 3821 if (AddrSpace != ExpectedAS) 3822 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3823 ExpectedAS, Ty); 3824 3825 return GV; 3826 } 3827 3828 llvm::Constant * 3829 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3830 const Decl *D = GD.getDecl(); 3831 3832 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3833 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3834 /*DontDefer=*/false, IsForDefinition); 3835 3836 if (isa<CXXMethodDecl>(D)) { 3837 auto FInfo = 3838 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3839 auto Ty = getTypes().GetFunctionType(*FInfo); 3840 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3841 IsForDefinition); 3842 } 3843 3844 if (isa<FunctionDecl>(D)) { 3845 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3846 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3847 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3848 IsForDefinition); 3849 } 3850 3851 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3852 } 3853 3854 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3855 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3856 unsigned Alignment) { 3857 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3858 llvm::GlobalVariable *OldGV = nullptr; 3859 3860 if (GV) { 3861 // Check if the variable has the right type. 3862 if (GV->getValueType() == Ty) 3863 return GV; 3864 3865 // Because C++ name mangling, the only way we can end up with an already 3866 // existing global with the same name is if it has been declared extern "C". 3867 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3868 OldGV = GV; 3869 } 3870 3871 // Create a new variable. 3872 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3873 Linkage, nullptr, Name); 3874 3875 if (OldGV) { 3876 // Replace occurrences of the old variable if needed. 3877 GV->takeName(OldGV); 3878 3879 if (!OldGV->use_empty()) { 3880 llvm::Constant *NewPtrForOldDecl = 3881 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3882 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3883 } 3884 3885 OldGV->eraseFromParent(); 3886 } 3887 3888 if (supportsCOMDAT() && GV->isWeakForLinker() && 3889 !GV->hasAvailableExternallyLinkage()) 3890 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3891 3892 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3893 3894 return GV; 3895 } 3896 3897 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3898 /// given global variable. If Ty is non-null and if the global doesn't exist, 3899 /// then it will be created with the specified type instead of whatever the 3900 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3901 /// that an actual global with type Ty will be returned, not conversion of a 3902 /// variable with the same mangled name but some other type. 3903 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3904 llvm::Type *Ty, 3905 ForDefinition_t IsForDefinition) { 3906 assert(D->hasGlobalStorage() && "Not a global variable"); 3907 QualType ASTTy = D->getType(); 3908 if (!Ty) 3909 Ty = getTypes().ConvertTypeForMem(ASTTy); 3910 3911 llvm::PointerType *PTy = 3912 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3913 3914 StringRef MangledName = getMangledName(D); 3915 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3916 } 3917 3918 /// CreateRuntimeVariable - Create a new runtime global variable with the 3919 /// specified type and name. 3920 llvm::Constant * 3921 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3922 StringRef Name) { 3923 auto PtrTy = 3924 getContext().getLangOpts().OpenCL 3925 ? llvm::PointerType::get( 3926 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3927 : llvm::PointerType::getUnqual(Ty); 3928 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3929 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3930 return Ret; 3931 } 3932 3933 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3934 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3935 3936 StringRef MangledName = getMangledName(D); 3937 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3938 3939 // We already have a definition, not declaration, with the same mangled name. 3940 // Emitting of declaration is not required (and actually overwrites emitted 3941 // definition). 3942 if (GV && !GV->isDeclaration()) 3943 return; 3944 3945 // If we have not seen a reference to this variable yet, place it into the 3946 // deferred declarations table to be emitted if needed later. 3947 if (!MustBeEmitted(D) && !GV) { 3948 DeferredDecls[MangledName] = D; 3949 return; 3950 } 3951 3952 // The tentative definition is the only definition. 3953 EmitGlobalVarDefinition(D); 3954 } 3955 3956 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3957 EmitExternalVarDeclaration(D); 3958 } 3959 3960 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3961 return Context.toCharUnitsFromBits( 3962 getDataLayout().getTypeStoreSizeInBits(Ty)); 3963 } 3964 3965 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3966 LangAS AddrSpace = LangAS::Default; 3967 if (LangOpts.OpenCL) { 3968 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3969 assert(AddrSpace == LangAS::opencl_global || 3970 AddrSpace == LangAS::opencl_global_device || 3971 AddrSpace == LangAS::opencl_global_host || 3972 AddrSpace == LangAS::opencl_constant || 3973 AddrSpace == LangAS::opencl_local || 3974 AddrSpace >= LangAS::FirstTargetAddressSpace); 3975 return AddrSpace; 3976 } 3977 3978 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3979 if (D && D->hasAttr<CUDAConstantAttr>()) 3980 return LangAS::cuda_constant; 3981 else if (D && D->hasAttr<CUDASharedAttr>()) 3982 return LangAS::cuda_shared; 3983 else if (D && D->hasAttr<CUDADeviceAttr>()) 3984 return LangAS::cuda_device; 3985 else if (D && D->getType().isConstQualified()) 3986 return LangAS::cuda_constant; 3987 else 3988 return LangAS::cuda_device; 3989 } 3990 3991 if (LangOpts.OpenMP) { 3992 LangAS AS; 3993 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3994 return AS; 3995 } 3996 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3997 } 3998 3999 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4000 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4001 if (LangOpts.OpenCL) 4002 return LangAS::opencl_constant; 4003 if (auto AS = getTarget().getConstantAddressSpace()) 4004 return AS.getValue(); 4005 return LangAS::Default; 4006 } 4007 4008 // In address space agnostic languages, string literals are in default address 4009 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4010 // emitted in constant address space in LLVM IR. To be consistent with other 4011 // parts of AST, string literal global variables in constant address space 4012 // need to be casted to default address space before being put into address 4013 // map and referenced by other part of CodeGen. 4014 // In OpenCL, string literals are in constant address space in AST, therefore 4015 // they should not be casted to default address space. 4016 static llvm::Constant * 4017 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4018 llvm::GlobalVariable *GV) { 4019 llvm::Constant *Cast = GV; 4020 if (!CGM.getLangOpts().OpenCL) { 4021 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4022 if (AS != LangAS::Default) 4023 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4024 CGM, GV, AS.getValue(), LangAS::Default, 4025 GV->getValueType()->getPointerTo( 4026 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4027 } 4028 } 4029 return Cast; 4030 } 4031 4032 template<typename SomeDecl> 4033 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4034 llvm::GlobalValue *GV) { 4035 if (!getLangOpts().CPlusPlus) 4036 return; 4037 4038 // Must have 'used' attribute, or else inline assembly can't rely on 4039 // the name existing. 4040 if (!D->template hasAttr<UsedAttr>()) 4041 return; 4042 4043 // Must have internal linkage and an ordinary name. 4044 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4045 return; 4046 4047 // Must be in an extern "C" context. Entities declared directly within 4048 // a record are not extern "C" even if the record is in such a context. 4049 const SomeDecl *First = D->getFirstDecl(); 4050 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4051 return; 4052 4053 // OK, this is an internal linkage entity inside an extern "C" linkage 4054 // specification. Make a note of that so we can give it the "expected" 4055 // mangled name if nothing else is using that name. 4056 std::pair<StaticExternCMap::iterator, bool> R = 4057 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4058 4059 // If we have multiple internal linkage entities with the same name 4060 // in extern "C" regions, none of them gets that name. 4061 if (!R.second) 4062 R.first->second = nullptr; 4063 } 4064 4065 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4066 if (!CGM.supportsCOMDAT()) 4067 return false; 4068 4069 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4070 // them being "merged" by the COMDAT Folding linker optimization. 4071 if (D.hasAttr<CUDAGlobalAttr>()) 4072 return false; 4073 4074 if (D.hasAttr<SelectAnyAttr>()) 4075 return true; 4076 4077 GVALinkage Linkage; 4078 if (auto *VD = dyn_cast<VarDecl>(&D)) 4079 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4080 else 4081 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4082 4083 switch (Linkage) { 4084 case GVA_Internal: 4085 case GVA_AvailableExternally: 4086 case GVA_StrongExternal: 4087 return false; 4088 case GVA_DiscardableODR: 4089 case GVA_StrongODR: 4090 return true; 4091 } 4092 llvm_unreachable("No such linkage"); 4093 } 4094 4095 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4096 llvm::GlobalObject &GO) { 4097 if (!shouldBeInCOMDAT(*this, D)) 4098 return; 4099 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4100 } 4101 4102 /// Pass IsTentative as true if you want to create a tentative definition. 4103 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4104 bool IsTentative) { 4105 // OpenCL global variables of sampler type are translated to function calls, 4106 // therefore no need to be translated. 4107 QualType ASTTy = D->getType(); 4108 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4109 return; 4110 4111 // If this is OpenMP device, check if it is legal to emit this global 4112 // normally. 4113 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4114 OpenMPRuntime->emitTargetGlobalVariable(D)) 4115 return; 4116 4117 llvm::Constant *Init = nullptr; 4118 bool NeedsGlobalCtor = false; 4119 bool NeedsGlobalDtor = 4120 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4121 4122 const VarDecl *InitDecl; 4123 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4124 4125 Optional<ConstantEmitter> emitter; 4126 4127 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4128 // as part of their declaration." Sema has already checked for 4129 // error cases, so we just need to set Init to UndefValue. 4130 bool IsCUDASharedVar = 4131 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4132 // Shadows of initialized device-side global variables are also left 4133 // undefined. 4134 bool IsCUDAShadowVar = 4135 !getLangOpts().CUDAIsDevice && 4136 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4137 D->hasAttr<CUDASharedAttr>()); 4138 bool IsCUDADeviceShadowVar = 4139 getLangOpts().CUDAIsDevice && 4140 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4141 D->getType()->isCUDADeviceBuiltinTextureType()); 4142 // HIP pinned shadow of initialized host-side global variables are also 4143 // left undefined. 4144 if (getLangOpts().CUDA && 4145 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4146 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4147 else if (D->hasAttr<LoaderUninitializedAttr>()) 4148 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4149 else if (!InitExpr) { 4150 // This is a tentative definition; tentative definitions are 4151 // implicitly initialized with { 0 }. 4152 // 4153 // Note that tentative definitions are only emitted at the end of 4154 // a translation unit, so they should never have incomplete 4155 // type. In addition, EmitTentativeDefinition makes sure that we 4156 // never attempt to emit a tentative definition if a real one 4157 // exists. A use may still exists, however, so we still may need 4158 // to do a RAUW. 4159 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4160 Init = EmitNullConstant(D->getType()); 4161 } else { 4162 initializedGlobalDecl = GlobalDecl(D); 4163 emitter.emplace(*this); 4164 Init = emitter->tryEmitForInitializer(*InitDecl); 4165 4166 if (!Init) { 4167 QualType T = InitExpr->getType(); 4168 if (D->getType()->isReferenceType()) 4169 T = D->getType(); 4170 4171 if (getLangOpts().CPlusPlus) { 4172 Init = EmitNullConstant(T); 4173 NeedsGlobalCtor = true; 4174 } else { 4175 ErrorUnsupported(D, "static initializer"); 4176 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4177 } 4178 } else { 4179 // We don't need an initializer, so remove the entry for the delayed 4180 // initializer position (just in case this entry was delayed) if we 4181 // also don't need to register a destructor. 4182 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4183 DelayedCXXInitPosition.erase(D); 4184 } 4185 } 4186 4187 llvm::Type* InitType = Init->getType(); 4188 llvm::Constant *Entry = 4189 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4190 4191 // Strip off pointer casts if we got them. 4192 Entry = Entry->stripPointerCasts(); 4193 4194 // Entry is now either a Function or GlobalVariable. 4195 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4196 4197 // We have a definition after a declaration with the wrong type. 4198 // We must make a new GlobalVariable* and update everything that used OldGV 4199 // (a declaration or tentative definition) with the new GlobalVariable* 4200 // (which will be a definition). 4201 // 4202 // This happens if there is a prototype for a global (e.g. 4203 // "extern int x[];") and then a definition of a different type (e.g. 4204 // "int x[10];"). This also happens when an initializer has a different type 4205 // from the type of the global (this happens with unions). 4206 if (!GV || GV->getValueType() != InitType || 4207 GV->getType()->getAddressSpace() != 4208 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4209 4210 // Move the old entry aside so that we'll create a new one. 4211 Entry->setName(StringRef()); 4212 4213 // Make a new global with the correct type, this is now guaranteed to work. 4214 GV = cast<llvm::GlobalVariable>( 4215 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4216 ->stripPointerCasts()); 4217 4218 // Replace all uses of the old global with the new global 4219 llvm::Constant *NewPtrForOldDecl = 4220 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4221 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4222 4223 // Erase the old global, since it is no longer used. 4224 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4225 } 4226 4227 MaybeHandleStaticInExternC(D, GV); 4228 4229 if (D->hasAttr<AnnotateAttr>()) 4230 AddGlobalAnnotations(D, GV); 4231 4232 // Set the llvm linkage type as appropriate. 4233 llvm::GlobalValue::LinkageTypes Linkage = 4234 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4235 4236 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4237 // the device. [...]" 4238 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4239 // __device__, declares a variable that: [...] 4240 // Is accessible from all the threads within the grid and from the host 4241 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4242 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4243 if (GV && LangOpts.CUDA) { 4244 if (LangOpts.CUDAIsDevice) { 4245 if (Linkage != llvm::GlobalValue::InternalLinkage && 4246 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4247 GV->setExternallyInitialized(true); 4248 } else { 4249 // Host-side shadows of external declarations of device-side 4250 // global variables become internal definitions. These have to 4251 // be internal in order to prevent name conflicts with global 4252 // host variables with the same name in a different TUs. 4253 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4254 Linkage = llvm::GlobalValue::InternalLinkage; 4255 // Shadow variables and their properties must be registered with CUDA 4256 // runtime. Skip Extern global variables, which will be registered in 4257 // the TU where they are defined. 4258 // 4259 // Don't register a C++17 inline variable. The local symbol can be 4260 // discarded and referencing a discarded local symbol from outside the 4261 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4262 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4263 if (!D->hasExternalStorage() && !D->isInline()) 4264 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4265 D->hasAttr<CUDAConstantAttr>()); 4266 } else if (D->hasAttr<CUDASharedAttr>()) { 4267 // __shared__ variables are odd. Shadows do get created, but 4268 // they are not registered with the CUDA runtime, so they 4269 // can't really be used to access their device-side 4270 // counterparts. It's not clear yet whether it's nvcc's bug or 4271 // a feature, but we've got to do the same for compatibility. 4272 Linkage = llvm::GlobalValue::InternalLinkage; 4273 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4274 D->getType()->isCUDADeviceBuiltinTextureType()) { 4275 // Builtin surfaces and textures and their template arguments are 4276 // also registered with CUDA runtime. 4277 Linkage = llvm::GlobalValue::InternalLinkage; 4278 const ClassTemplateSpecializationDecl *TD = 4279 cast<ClassTemplateSpecializationDecl>( 4280 D->getType()->getAs<RecordType>()->getDecl()); 4281 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4282 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4283 assert(Args.size() == 2 && 4284 "Unexpected number of template arguments of CUDA device " 4285 "builtin surface type."); 4286 auto SurfType = Args[1].getAsIntegral(); 4287 if (!D->hasExternalStorage()) 4288 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4289 SurfType.getSExtValue()); 4290 } else { 4291 assert(Args.size() == 3 && 4292 "Unexpected number of template arguments of CUDA device " 4293 "builtin texture type."); 4294 auto TexType = Args[1].getAsIntegral(); 4295 auto Normalized = Args[2].getAsIntegral(); 4296 if (!D->hasExternalStorage()) 4297 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4298 TexType.getSExtValue(), 4299 Normalized.getZExtValue()); 4300 } 4301 } 4302 } 4303 } 4304 4305 GV->setInitializer(Init); 4306 if (emitter) 4307 emitter->finalize(GV); 4308 4309 // If it is safe to mark the global 'constant', do so now. 4310 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4311 isTypeConstant(D->getType(), true)); 4312 4313 // If it is in a read-only section, mark it 'constant'. 4314 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4315 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4316 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4317 GV->setConstant(true); 4318 } 4319 4320 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4321 4322 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4323 // function is only defined alongside the variable, not also alongside 4324 // callers. Normally, all accesses to a thread_local go through the 4325 // thread-wrapper in order to ensure initialization has occurred, underlying 4326 // variable will never be used other than the thread-wrapper, so it can be 4327 // converted to internal linkage. 4328 // 4329 // However, if the variable has the 'constinit' attribute, it _can_ be 4330 // referenced directly, without calling the thread-wrapper, so the linkage 4331 // must not be changed. 4332 // 4333 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4334 // weak or linkonce, the de-duplication semantics are important to preserve, 4335 // so we don't change the linkage. 4336 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4337 Linkage == llvm::GlobalValue::ExternalLinkage && 4338 Context.getTargetInfo().getTriple().isOSDarwin() && 4339 !D->hasAttr<ConstInitAttr>()) 4340 Linkage = llvm::GlobalValue::InternalLinkage; 4341 4342 GV->setLinkage(Linkage); 4343 if (D->hasAttr<DLLImportAttr>()) 4344 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4345 else if (D->hasAttr<DLLExportAttr>()) 4346 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4347 else 4348 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4349 4350 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4351 // common vars aren't constant even if declared const. 4352 GV->setConstant(false); 4353 // Tentative definition of global variables may be initialized with 4354 // non-zero null pointers. In this case they should have weak linkage 4355 // since common linkage must have zero initializer and must not have 4356 // explicit section therefore cannot have non-zero initial value. 4357 if (!GV->getInitializer()->isNullValue()) 4358 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4359 } 4360 4361 setNonAliasAttributes(D, GV); 4362 4363 if (D->getTLSKind() && !GV->isThreadLocal()) { 4364 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4365 CXXThreadLocals.push_back(D); 4366 setTLSMode(GV, *D); 4367 } 4368 4369 maybeSetTrivialComdat(*D, *GV); 4370 4371 // Emit the initializer function if necessary. 4372 if (NeedsGlobalCtor || NeedsGlobalDtor) 4373 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4374 4375 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4376 4377 // Emit global variable debug information. 4378 if (CGDebugInfo *DI = getModuleDebugInfo()) 4379 if (getCodeGenOpts().hasReducedDebugInfo()) 4380 DI->EmitGlobalVariable(GV, D); 4381 } 4382 4383 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4384 if (CGDebugInfo *DI = getModuleDebugInfo()) 4385 if (getCodeGenOpts().hasReducedDebugInfo()) { 4386 QualType ASTTy = D->getType(); 4387 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4388 llvm::PointerType *PTy = 4389 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4390 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4391 DI->EmitExternalVariable( 4392 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4393 } 4394 } 4395 4396 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4397 CodeGenModule &CGM, const VarDecl *D, 4398 bool NoCommon) { 4399 // Don't give variables common linkage if -fno-common was specified unless it 4400 // was overridden by a NoCommon attribute. 4401 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4402 return true; 4403 4404 // C11 6.9.2/2: 4405 // A declaration of an identifier for an object that has file scope without 4406 // an initializer, and without a storage-class specifier or with the 4407 // storage-class specifier static, constitutes a tentative definition. 4408 if (D->getInit() || D->hasExternalStorage()) 4409 return true; 4410 4411 // A variable cannot be both common and exist in a section. 4412 if (D->hasAttr<SectionAttr>()) 4413 return true; 4414 4415 // A variable cannot be both common and exist in a section. 4416 // We don't try to determine which is the right section in the front-end. 4417 // If no specialized section name is applicable, it will resort to default. 4418 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4419 D->hasAttr<PragmaClangDataSectionAttr>() || 4420 D->hasAttr<PragmaClangRelroSectionAttr>() || 4421 D->hasAttr<PragmaClangRodataSectionAttr>()) 4422 return true; 4423 4424 // Thread local vars aren't considered common linkage. 4425 if (D->getTLSKind()) 4426 return true; 4427 4428 // Tentative definitions marked with WeakImportAttr are true definitions. 4429 if (D->hasAttr<WeakImportAttr>()) 4430 return true; 4431 4432 // A variable cannot be both common and exist in a comdat. 4433 if (shouldBeInCOMDAT(CGM, *D)) 4434 return true; 4435 4436 // Declarations with a required alignment do not have common linkage in MSVC 4437 // mode. 4438 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4439 if (D->hasAttr<AlignedAttr>()) 4440 return true; 4441 QualType VarType = D->getType(); 4442 if (Context.isAlignmentRequired(VarType)) 4443 return true; 4444 4445 if (const auto *RT = VarType->getAs<RecordType>()) { 4446 const RecordDecl *RD = RT->getDecl(); 4447 for (const FieldDecl *FD : RD->fields()) { 4448 if (FD->isBitField()) 4449 continue; 4450 if (FD->hasAttr<AlignedAttr>()) 4451 return true; 4452 if (Context.isAlignmentRequired(FD->getType())) 4453 return true; 4454 } 4455 } 4456 } 4457 4458 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4459 // common symbols, so symbols with greater alignment requirements cannot be 4460 // common. 4461 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4462 // alignments for common symbols via the aligncomm directive, so this 4463 // restriction only applies to MSVC environments. 4464 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4465 Context.getTypeAlignIfKnown(D->getType()) > 4466 Context.toBits(CharUnits::fromQuantity(32))) 4467 return true; 4468 4469 return false; 4470 } 4471 4472 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4473 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4474 if (Linkage == GVA_Internal) 4475 return llvm::Function::InternalLinkage; 4476 4477 if (D->hasAttr<WeakAttr>()) { 4478 if (IsConstantVariable) 4479 return llvm::GlobalVariable::WeakODRLinkage; 4480 else 4481 return llvm::GlobalVariable::WeakAnyLinkage; 4482 } 4483 4484 if (const auto *FD = D->getAsFunction()) 4485 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4486 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4487 4488 // We are guaranteed to have a strong definition somewhere else, 4489 // so we can use available_externally linkage. 4490 if (Linkage == GVA_AvailableExternally) 4491 return llvm::GlobalValue::AvailableExternallyLinkage; 4492 4493 // Note that Apple's kernel linker doesn't support symbol 4494 // coalescing, so we need to avoid linkonce and weak linkages there. 4495 // Normally, this means we just map to internal, but for explicit 4496 // instantiations we'll map to external. 4497 4498 // In C++, the compiler has to emit a definition in every translation unit 4499 // that references the function. We should use linkonce_odr because 4500 // a) if all references in this translation unit are optimized away, we 4501 // don't need to codegen it. b) if the function persists, it needs to be 4502 // merged with other definitions. c) C++ has the ODR, so we know the 4503 // definition is dependable. 4504 if (Linkage == GVA_DiscardableODR) 4505 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4506 : llvm::Function::InternalLinkage; 4507 4508 // An explicit instantiation of a template has weak linkage, since 4509 // explicit instantiations can occur in multiple translation units 4510 // and must all be equivalent. However, we are not allowed to 4511 // throw away these explicit instantiations. 4512 // 4513 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4514 // so say that CUDA templates are either external (for kernels) or internal. 4515 // This lets llvm perform aggressive inter-procedural optimizations. For 4516 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4517 // therefore we need to follow the normal linkage paradigm. 4518 if (Linkage == GVA_StrongODR) { 4519 if (getLangOpts().AppleKext) 4520 return llvm::Function::ExternalLinkage; 4521 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4522 !getLangOpts().GPURelocatableDeviceCode) 4523 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4524 : llvm::Function::InternalLinkage; 4525 return llvm::Function::WeakODRLinkage; 4526 } 4527 4528 // C++ doesn't have tentative definitions and thus cannot have common 4529 // linkage. 4530 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4531 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4532 CodeGenOpts.NoCommon)) 4533 return llvm::GlobalVariable::CommonLinkage; 4534 4535 // selectany symbols are externally visible, so use weak instead of 4536 // linkonce. MSVC optimizes away references to const selectany globals, so 4537 // all definitions should be the same and ODR linkage should be used. 4538 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4539 if (D->hasAttr<SelectAnyAttr>()) 4540 return llvm::GlobalVariable::WeakODRLinkage; 4541 4542 // Otherwise, we have strong external linkage. 4543 assert(Linkage == GVA_StrongExternal); 4544 return llvm::GlobalVariable::ExternalLinkage; 4545 } 4546 4547 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4548 const VarDecl *VD, bool IsConstant) { 4549 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4550 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4551 } 4552 4553 /// Replace the uses of a function that was declared with a non-proto type. 4554 /// We want to silently drop extra arguments from call sites 4555 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4556 llvm::Function *newFn) { 4557 // Fast path. 4558 if (old->use_empty()) return; 4559 4560 llvm::Type *newRetTy = newFn->getReturnType(); 4561 SmallVector<llvm::Value*, 4> newArgs; 4562 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4563 4564 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4565 ui != ue; ) { 4566 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4567 llvm::User *user = use->getUser(); 4568 4569 // Recognize and replace uses of bitcasts. Most calls to 4570 // unprototyped functions will use bitcasts. 4571 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4572 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4573 replaceUsesOfNonProtoConstant(bitcast, newFn); 4574 continue; 4575 } 4576 4577 // Recognize calls to the function. 4578 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4579 if (!callSite) continue; 4580 if (!callSite->isCallee(&*use)) 4581 continue; 4582 4583 // If the return types don't match exactly, then we can't 4584 // transform this call unless it's dead. 4585 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4586 continue; 4587 4588 // Get the call site's attribute list. 4589 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4590 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4591 4592 // If the function was passed too few arguments, don't transform. 4593 unsigned newNumArgs = newFn->arg_size(); 4594 if (callSite->arg_size() < newNumArgs) 4595 continue; 4596 4597 // If extra arguments were passed, we silently drop them. 4598 // If any of the types mismatch, we don't transform. 4599 unsigned argNo = 0; 4600 bool dontTransform = false; 4601 for (llvm::Argument &A : newFn->args()) { 4602 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4603 dontTransform = true; 4604 break; 4605 } 4606 4607 // Add any parameter attributes. 4608 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4609 argNo++; 4610 } 4611 if (dontTransform) 4612 continue; 4613 4614 // Okay, we can transform this. Create the new call instruction and copy 4615 // over the required information. 4616 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4617 4618 // Copy over any operand bundles. 4619 callSite->getOperandBundlesAsDefs(newBundles); 4620 4621 llvm::CallBase *newCall; 4622 if (dyn_cast<llvm::CallInst>(callSite)) { 4623 newCall = 4624 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4625 } else { 4626 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4627 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4628 oldInvoke->getUnwindDest(), newArgs, 4629 newBundles, "", callSite); 4630 } 4631 newArgs.clear(); // for the next iteration 4632 4633 if (!newCall->getType()->isVoidTy()) 4634 newCall->takeName(callSite); 4635 newCall->setAttributes(llvm::AttributeList::get( 4636 newFn->getContext(), oldAttrs.getFnAttributes(), 4637 oldAttrs.getRetAttributes(), newArgAttrs)); 4638 newCall->setCallingConv(callSite->getCallingConv()); 4639 4640 // Finally, remove the old call, replacing any uses with the new one. 4641 if (!callSite->use_empty()) 4642 callSite->replaceAllUsesWith(newCall); 4643 4644 // Copy debug location attached to CI. 4645 if (callSite->getDebugLoc()) 4646 newCall->setDebugLoc(callSite->getDebugLoc()); 4647 4648 callSite->eraseFromParent(); 4649 } 4650 } 4651 4652 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4653 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4654 /// existing call uses of the old function in the module, this adjusts them to 4655 /// call the new function directly. 4656 /// 4657 /// This is not just a cleanup: the always_inline pass requires direct calls to 4658 /// functions to be able to inline them. If there is a bitcast in the way, it 4659 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4660 /// run at -O0. 4661 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4662 llvm::Function *NewFn) { 4663 // If we're redefining a global as a function, don't transform it. 4664 if (!isa<llvm::Function>(Old)) return; 4665 4666 replaceUsesOfNonProtoConstant(Old, NewFn); 4667 } 4668 4669 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4670 auto DK = VD->isThisDeclarationADefinition(); 4671 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4672 return; 4673 4674 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4675 // If we have a definition, this might be a deferred decl. If the 4676 // instantiation is explicit, make sure we emit it at the end. 4677 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4678 GetAddrOfGlobalVar(VD); 4679 4680 EmitTopLevelDecl(VD); 4681 } 4682 4683 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4684 llvm::GlobalValue *GV) { 4685 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4686 4687 // Compute the function info and LLVM type. 4688 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4689 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4690 4691 // Get or create the prototype for the function. 4692 if (!GV || (GV->getValueType() != Ty)) 4693 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4694 /*DontDefer=*/true, 4695 ForDefinition)); 4696 4697 // Already emitted. 4698 if (!GV->isDeclaration()) 4699 return; 4700 4701 // We need to set linkage and visibility on the function before 4702 // generating code for it because various parts of IR generation 4703 // want to propagate this information down (e.g. to local static 4704 // declarations). 4705 auto *Fn = cast<llvm::Function>(GV); 4706 setFunctionLinkage(GD, Fn); 4707 4708 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4709 setGVProperties(Fn, GD); 4710 4711 MaybeHandleStaticInExternC(D, Fn); 4712 4713 maybeSetTrivialComdat(*D, *Fn); 4714 4715 // Set CodeGen attributes that represent floating point environment. 4716 setLLVMFunctionFEnvAttributes(D, Fn); 4717 4718 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4719 4720 setNonAliasAttributes(GD, Fn); 4721 SetLLVMFunctionAttributesForDefinition(D, Fn); 4722 4723 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4724 AddGlobalCtor(Fn, CA->getPriority()); 4725 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4726 AddGlobalDtor(Fn, DA->getPriority(), true); 4727 if (D->hasAttr<AnnotateAttr>()) 4728 AddGlobalAnnotations(D, Fn); 4729 } 4730 4731 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4732 const auto *D = cast<ValueDecl>(GD.getDecl()); 4733 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4734 assert(AA && "Not an alias?"); 4735 4736 StringRef MangledName = getMangledName(GD); 4737 4738 if (AA->getAliasee() == MangledName) { 4739 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4740 return; 4741 } 4742 4743 // If there is a definition in the module, then it wins over the alias. 4744 // This is dubious, but allow it to be safe. Just ignore the alias. 4745 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4746 if (Entry && !Entry->isDeclaration()) 4747 return; 4748 4749 Aliases.push_back(GD); 4750 4751 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4752 4753 // Create a reference to the named value. This ensures that it is emitted 4754 // if a deferred decl. 4755 llvm::Constant *Aliasee; 4756 llvm::GlobalValue::LinkageTypes LT; 4757 if (isa<llvm::FunctionType>(DeclTy)) { 4758 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4759 /*ForVTable=*/false); 4760 LT = getFunctionLinkage(GD); 4761 } else { 4762 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4763 llvm::PointerType::getUnqual(DeclTy), 4764 /*D=*/nullptr); 4765 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4766 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4767 else 4768 LT = getFunctionLinkage(GD); 4769 } 4770 4771 // Create the new alias itself, but don't set a name yet. 4772 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4773 auto *GA = 4774 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4775 4776 if (Entry) { 4777 if (GA->getAliasee() == Entry) { 4778 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4779 return; 4780 } 4781 4782 assert(Entry->isDeclaration()); 4783 4784 // If there is a declaration in the module, then we had an extern followed 4785 // by the alias, as in: 4786 // extern int test6(); 4787 // ... 4788 // int test6() __attribute__((alias("test7"))); 4789 // 4790 // Remove it and replace uses of it with the alias. 4791 GA->takeName(Entry); 4792 4793 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4794 Entry->getType())); 4795 Entry->eraseFromParent(); 4796 } else { 4797 GA->setName(MangledName); 4798 } 4799 4800 // Set attributes which are particular to an alias; this is a 4801 // specialization of the attributes which may be set on a global 4802 // variable/function. 4803 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4804 D->isWeakImported()) { 4805 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4806 } 4807 4808 if (const auto *VD = dyn_cast<VarDecl>(D)) 4809 if (VD->getTLSKind()) 4810 setTLSMode(GA, *VD); 4811 4812 SetCommonAttributes(GD, GA); 4813 } 4814 4815 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4816 const auto *D = cast<ValueDecl>(GD.getDecl()); 4817 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4818 assert(IFA && "Not an ifunc?"); 4819 4820 StringRef MangledName = getMangledName(GD); 4821 4822 if (IFA->getResolver() == MangledName) { 4823 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4824 return; 4825 } 4826 4827 // Report an error if some definition overrides ifunc. 4828 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4829 if (Entry && !Entry->isDeclaration()) { 4830 GlobalDecl OtherGD; 4831 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4832 DiagnosedConflictingDefinitions.insert(GD).second) { 4833 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4834 << MangledName; 4835 Diags.Report(OtherGD.getDecl()->getLocation(), 4836 diag::note_previous_definition); 4837 } 4838 return; 4839 } 4840 4841 Aliases.push_back(GD); 4842 4843 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4844 llvm::Constant *Resolver = 4845 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4846 /*ForVTable=*/false); 4847 llvm::GlobalIFunc *GIF = 4848 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4849 "", Resolver, &getModule()); 4850 if (Entry) { 4851 if (GIF->getResolver() == Entry) { 4852 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4853 return; 4854 } 4855 assert(Entry->isDeclaration()); 4856 4857 // If there is a declaration in the module, then we had an extern followed 4858 // by the ifunc, as in: 4859 // extern int test(); 4860 // ... 4861 // int test() __attribute__((ifunc("resolver"))); 4862 // 4863 // Remove it and replace uses of it with the ifunc. 4864 GIF->takeName(Entry); 4865 4866 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4867 Entry->getType())); 4868 Entry->eraseFromParent(); 4869 } else 4870 GIF->setName(MangledName); 4871 4872 SetCommonAttributes(GD, GIF); 4873 } 4874 4875 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4876 ArrayRef<llvm::Type*> Tys) { 4877 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4878 Tys); 4879 } 4880 4881 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4882 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4883 const StringLiteral *Literal, bool TargetIsLSB, 4884 bool &IsUTF16, unsigned &StringLength) { 4885 StringRef String = Literal->getString(); 4886 unsigned NumBytes = String.size(); 4887 4888 // Check for simple case. 4889 if (!Literal->containsNonAsciiOrNull()) { 4890 StringLength = NumBytes; 4891 return *Map.insert(std::make_pair(String, nullptr)).first; 4892 } 4893 4894 // Otherwise, convert the UTF8 literals into a string of shorts. 4895 IsUTF16 = true; 4896 4897 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4898 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4899 llvm::UTF16 *ToPtr = &ToBuf[0]; 4900 4901 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4902 ToPtr + NumBytes, llvm::strictConversion); 4903 4904 // ConvertUTF8toUTF16 returns the length in ToPtr. 4905 StringLength = ToPtr - &ToBuf[0]; 4906 4907 // Add an explicit null. 4908 *ToPtr = 0; 4909 return *Map.insert(std::make_pair( 4910 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4911 (StringLength + 1) * 2), 4912 nullptr)).first; 4913 } 4914 4915 ConstantAddress 4916 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4917 unsigned StringLength = 0; 4918 bool isUTF16 = false; 4919 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4920 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4921 getDataLayout().isLittleEndian(), isUTF16, 4922 StringLength); 4923 4924 if (auto *C = Entry.second) 4925 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4926 4927 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4928 llvm::Constant *Zeros[] = { Zero, Zero }; 4929 4930 const ASTContext &Context = getContext(); 4931 const llvm::Triple &Triple = getTriple(); 4932 4933 const auto CFRuntime = getLangOpts().CFRuntime; 4934 const bool IsSwiftABI = 4935 static_cast<unsigned>(CFRuntime) >= 4936 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4937 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4938 4939 // If we don't already have it, get __CFConstantStringClassReference. 4940 if (!CFConstantStringClassRef) { 4941 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4942 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4943 Ty = llvm::ArrayType::get(Ty, 0); 4944 4945 switch (CFRuntime) { 4946 default: break; 4947 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4948 case LangOptions::CoreFoundationABI::Swift5_0: 4949 CFConstantStringClassName = 4950 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4951 : "$s10Foundation19_NSCFConstantStringCN"; 4952 Ty = IntPtrTy; 4953 break; 4954 case LangOptions::CoreFoundationABI::Swift4_2: 4955 CFConstantStringClassName = 4956 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4957 : "$S10Foundation19_NSCFConstantStringCN"; 4958 Ty = IntPtrTy; 4959 break; 4960 case LangOptions::CoreFoundationABI::Swift4_1: 4961 CFConstantStringClassName = 4962 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4963 : "__T010Foundation19_NSCFConstantStringCN"; 4964 Ty = IntPtrTy; 4965 break; 4966 } 4967 4968 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4969 4970 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4971 llvm::GlobalValue *GV = nullptr; 4972 4973 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4974 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4975 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4976 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4977 4978 const VarDecl *VD = nullptr; 4979 for (const auto &Result : DC->lookup(&II)) 4980 if ((VD = dyn_cast<VarDecl>(Result))) 4981 break; 4982 4983 if (Triple.isOSBinFormatELF()) { 4984 if (!VD) 4985 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4986 } else { 4987 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4988 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4989 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4990 else 4991 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4992 } 4993 4994 setDSOLocal(GV); 4995 } 4996 } 4997 4998 // Decay array -> ptr 4999 CFConstantStringClassRef = 5000 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5001 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5002 } 5003 5004 QualType CFTy = Context.getCFConstantStringType(); 5005 5006 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5007 5008 ConstantInitBuilder Builder(*this); 5009 auto Fields = Builder.beginStruct(STy); 5010 5011 // Class pointer. 5012 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5013 5014 // Flags. 5015 if (IsSwiftABI) { 5016 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5017 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5018 } else { 5019 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5020 } 5021 5022 // String pointer. 5023 llvm::Constant *C = nullptr; 5024 if (isUTF16) { 5025 auto Arr = llvm::makeArrayRef( 5026 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5027 Entry.first().size() / 2); 5028 C = llvm::ConstantDataArray::get(VMContext, Arr); 5029 } else { 5030 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5031 } 5032 5033 // Note: -fwritable-strings doesn't make the backing store strings of 5034 // CFStrings writable. (See <rdar://problem/10657500>) 5035 auto *GV = 5036 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5037 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5038 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5039 // Don't enforce the target's minimum global alignment, since the only use 5040 // of the string is via this class initializer. 5041 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5042 : Context.getTypeAlignInChars(Context.CharTy); 5043 GV->setAlignment(Align.getAsAlign()); 5044 5045 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5046 // Without it LLVM can merge the string with a non unnamed_addr one during 5047 // LTO. Doing that changes the section it ends in, which surprises ld64. 5048 if (Triple.isOSBinFormatMachO()) 5049 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5050 : "__TEXT,__cstring,cstring_literals"); 5051 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5052 // the static linker to adjust permissions to read-only later on. 5053 else if (Triple.isOSBinFormatELF()) 5054 GV->setSection(".rodata"); 5055 5056 // String. 5057 llvm::Constant *Str = 5058 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5059 5060 if (isUTF16) 5061 // Cast the UTF16 string to the correct type. 5062 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5063 Fields.add(Str); 5064 5065 // String length. 5066 llvm::IntegerType *LengthTy = 5067 llvm::IntegerType::get(getModule().getContext(), 5068 Context.getTargetInfo().getLongWidth()); 5069 if (IsSwiftABI) { 5070 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5071 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5072 LengthTy = Int32Ty; 5073 else 5074 LengthTy = IntPtrTy; 5075 } 5076 Fields.addInt(LengthTy, StringLength); 5077 5078 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5079 // properly aligned on 32-bit platforms. 5080 CharUnits Alignment = 5081 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5082 5083 // The struct. 5084 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5085 /*isConstant=*/false, 5086 llvm::GlobalVariable::PrivateLinkage); 5087 GV->addAttribute("objc_arc_inert"); 5088 switch (Triple.getObjectFormat()) { 5089 case llvm::Triple::UnknownObjectFormat: 5090 llvm_unreachable("unknown file format"); 5091 case llvm::Triple::GOFF: 5092 llvm_unreachable("GOFF is not yet implemented"); 5093 case llvm::Triple::XCOFF: 5094 llvm_unreachable("XCOFF is not yet implemented"); 5095 case llvm::Triple::COFF: 5096 case llvm::Triple::ELF: 5097 case llvm::Triple::Wasm: 5098 GV->setSection("cfstring"); 5099 break; 5100 case llvm::Triple::MachO: 5101 GV->setSection("__DATA,__cfstring"); 5102 break; 5103 } 5104 Entry.second = GV; 5105 5106 return ConstantAddress(GV, Alignment); 5107 } 5108 5109 bool CodeGenModule::getExpressionLocationsEnabled() const { 5110 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5111 } 5112 5113 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5114 if (ObjCFastEnumerationStateType.isNull()) { 5115 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5116 D->startDefinition(); 5117 5118 QualType FieldTypes[] = { 5119 Context.UnsignedLongTy, 5120 Context.getPointerType(Context.getObjCIdType()), 5121 Context.getPointerType(Context.UnsignedLongTy), 5122 Context.getConstantArrayType(Context.UnsignedLongTy, 5123 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5124 }; 5125 5126 for (size_t i = 0; i < 4; ++i) { 5127 FieldDecl *Field = FieldDecl::Create(Context, 5128 D, 5129 SourceLocation(), 5130 SourceLocation(), nullptr, 5131 FieldTypes[i], /*TInfo=*/nullptr, 5132 /*BitWidth=*/nullptr, 5133 /*Mutable=*/false, 5134 ICIS_NoInit); 5135 Field->setAccess(AS_public); 5136 D->addDecl(Field); 5137 } 5138 5139 D->completeDefinition(); 5140 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5141 } 5142 5143 return ObjCFastEnumerationStateType; 5144 } 5145 5146 llvm::Constant * 5147 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5148 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5149 5150 // Don't emit it as the address of the string, emit the string data itself 5151 // as an inline array. 5152 if (E->getCharByteWidth() == 1) { 5153 SmallString<64> Str(E->getString()); 5154 5155 // Resize the string to the right size, which is indicated by its type. 5156 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5157 Str.resize(CAT->getSize().getZExtValue()); 5158 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5159 } 5160 5161 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5162 llvm::Type *ElemTy = AType->getElementType(); 5163 unsigned NumElements = AType->getNumElements(); 5164 5165 // Wide strings have either 2-byte or 4-byte elements. 5166 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5167 SmallVector<uint16_t, 32> Elements; 5168 Elements.reserve(NumElements); 5169 5170 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5171 Elements.push_back(E->getCodeUnit(i)); 5172 Elements.resize(NumElements); 5173 return llvm::ConstantDataArray::get(VMContext, Elements); 5174 } 5175 5176 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5177 SmallVector<uint32_t, 32> Elements; 5178 Elements.reserve(NumElements); 5179 5180 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5181 Elements.push_back(E->getCodeUnit(i)); 5182 Elements.resize(NumElements); 5183 return llvm::ConstantDataArray::get(VMContext, Elements); 5184 } 5185 5186 static llvm::GlobalVariable * 5187 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5188 CodeGenModule &CGM, StringRef GlobalName, 5189 CharUnits Alignment) { 5190 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5191 CGM.getStringLiteralAddressSpace()); 5192 5193 llvm::Module &M = CGM.getModule(); 5194 // Create a global variable for this string 5195 auto *GV = new llvm::GlobalVariable( 5196 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5197 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5198 GV->setAlignment(Alignment.getAsAlign()); 5199 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5200 if (GV->isWeakForLinker()) { 5201 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5202 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5203 } 5204 CGM.setDSOLocal(GV); 5205 5206 return GV; 5207 } 5208 5209 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5210 /// constant array for the given string literal. 5211 ConstantAddress 5212 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5213 StringRef Name) { 5214 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5215 5216 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5217 llvm::GlobalVariable **Entry = nullptr; 5218 if (!LangOpts.WritableStrings) { 5219 Entry = &ConstantStringMap[C]; 5220 if (auto GV = *Entry) { 5221 if (Alignment.getQuantity() > GV->getAlignment()) 5222 GV->setAlignment(Alignment.getAsAlign()); 5223 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5224 Alignment); 5225 } 5226 } 5227 5228 SmallString<256> MangledNameBuffer; 5229 StringRef GlobalVariableName; 5230 llvm::GlobalValue::LinkageTypes LT; 5231 5232 // Mangle the string literal if that's how the ABI merges duplicate strings. 5233 // Don't do it if they are writable, since we don't want writes in one TU to 5234 // affect strings in another. 5235 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5236 !LangOpts.WritableStrings) { 5237 llvm::raw_svector_ostream Out(MangledNameBuffer); 5238 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5239 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5240 GlobalVariableName = MangledNameBuffer; 5241 } else { 5242 LT = llvm::GlobalValue::PrivateLinkage; 5243 GlobalVariableName = Name; 5244 } 5245 5246 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5247 if (Entry) 5248 *Entry = GV; 5249 5250 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5251 QualType()); 5252 5253 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5254 Alignment); 5255 } 5256 5257 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5258 /// array for the given ObjCEncodeExpr node. 5259 ConstantAddress 5260 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5261 std::string Str; 5262 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5263 5264 return GetAddrOfConstantCString(Str); 5265 } 5266 5267 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5268 /// the literal and a terminating '\0' character. 5269 /// The result has pointer to array type. 5270 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5271 const std::string &Str, const char *GlobalName) { 5272 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5273 CharUnits Alignment = 5274 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5275 5276 llvm::Constant *C = 5277 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5278 5279 // Don't share any string literals if strings aren't constant. 5280 llvm::GlobalVariable **Entry = nullptr; 5281 if (!LangOpts.WritableStrings) { 5282 Entry = &ConstantStringMap[C]; 5283 if (auto GV = *Entry) { 5284 if (Alignment.getQuantity() > GV->getAlignment()) 5285 GV->setAlignment(Alignment.getAsAlign()); 5286 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5287 Alignment); 5288 } 5289 } 5290 5291 // Get the default prefix if a name wasn't specified. 5292 if (!GlobalName) 5293 GlobalName = ".str"; 5294 // Create a global variable for this. 5295 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5296 GlobalName, Alignment); 5297 if (Entry) 5298 *Entry = GV; 5299 5300 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5301 Alignment); 5302 } 5303 5304 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5305 const MaterializeTemporaryExpr *E, const Expr *Init) { 5306 assert((E->getStorageDuration() == SD_Static || 5307 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5308 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5309 5310 // If we're not materializing a subobject of the temporary, keep the 5311 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5312 QualType MaterializedType = Init->getType(); 5313 if (Init == E->getSubExpr()) 5314 MaterializedType = E->getType(); 5315 5316 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5317 5318 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5319 return ConstantAddress(Slot, Align); 5320 5321 // FIXME: If an externally-visible declaration extends multiple temporaries, 5322 // we need to give each temporary the same name in every translation unit (and 5323 // we also need to make the temporaries externally-visible). 5324 SmallString<256> Name; 5325 llvm::raw_svector_ostream Out(Name); 5326 getCXXABI().getMangleContext().mangleReferenceTemporary( 5327 VD, E->getManglingNumber(), Out); 5328 5329 APValue *Value = nullptr; 5330 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5331 // If the initializer of the extending declaration is a constant 5332 // initializer, we should have a cached constant initializer for this 5333 // temporary. Note that this might have a different value from the value 5334 // computed by evaluating the initializer if the surrounding constant 5335 // expression modifies the temporary. 5336 Value = E->getOrCreateValue(false); 5337 } 5338 5339 // Try evaluating it now, it might have a constant initializer. 5340 Expr::EvalResult EvalResult; 5341 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5342 !EvalResult.hasSideEffects()) 5343 Value = &EvalResult.Val; 5344 5345 LangAS AddrSpace = 5346 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5347 5348 Optional<ConstantEmitter> emitter; 5349 llvm::Constant *InitialValue = nullptr; 5350 bool Constant = false; 5351 llvm::Type *Type; 5352 if (Value) { 5353 // The temporary has a constant initializer, use it. 5354 emitter.emplace(*this); 5355 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5356 MaterializedType); 5357 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5358 Type = InitialValue->getType(); 5359 } else { 5360 // No initializer, the initialization will be provided when we 5361 // initialize the declaration which performed lifetime extension. 5362 Type = getTypes().ConvertTypeForMem(MaterializedType); 5363 } 5364 5365 // Create a global variable for this lifetime-extended temporary. 5366 llvm::GlobalValue::LinkageTypes Linkage = 5367 getLLVMLinkageVarDefinition(VD, Constant); 5368 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5369 const VarDecl *InitVD; 5370 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5371 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5372 // Temporaries defined inside a class get linkonce_odr linkage because the 5373 // class can be defined in multiple translation units. 5374 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5375 } else { 5376 // There is no need for this temporary to have external linkage if the 5377 // VarDecl has external linkage. 5378 Linkage = llvm::GlobalVariable::InternalLinkage; 5379 } 5380 } 5381 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5382 auto *GV = new llvm::GlobalVariable( 5383 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5384 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5385 if (emitter) emitter->finalize(GV); 5386 setGVProperties(GV, VD); 5387 GV->setAlignment(Align.getAsAlign()); 5388 if (supportsCOMDAT() && GV->isWeakForLinker()) 5389 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5390 if (VD->getTLSKind()) 5391 setTLSMode(GV, *VD); 5392 llvm::Constant *CV = GV; 5393 if (AddrSpace != LangAS::Default) 5394 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5395 *this, GV, AddrSpace, LangAS::Default, 5396 Type->getPointerTo( 5397 getContext().getTargetAddressSpace(LangAS::Default))); 5398 MaterializedGlobalTemporaryMap[E] = CV; 5399 return ConstantAddress(CV, Align); 5400 } 5401 5402 /// EmitObjCPropertyImplementations - Emit information for synthesized 5403 /// properties for an implementation. 5404 void CodeGenModule::EmitObjCPropertyImplementations(const 5405 ObjCImplementationDecl *D) { 5406 for (const auto *PID : D->property_impls()) { 5407 // Dynamic is just for type-checking. 5408 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5409 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5410 5411 // Determine which methods need to be implemented, some may have 5412 // been overridden. Note that ::isPropertyAccessor is not the method 5413 // we want, that just indicates if the decl came from a 5414 // property. What we want to know is if the method is defined in 5415 // this implementation. 5416 auto *Getter = PID->getGetterMethodDecl(); 5417 if (!Getter || Getter->isSynthesizedAccessorStub()) 5418 CodeGenFunction(*this).GenerateObjCGetter( 5419 const_cast<ObjCImplementationDecl *>(D), PID); 5420 auto *Setter = PID->getSetterMethodDecl(); 5421 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5422 CodeGenFunction(*this).GenerateObjCSetter( 5423 const_cast<ObjCImplementationDecl *>(D), PID); 5424 } 5425 } 5426 } 5427 5428 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5429 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5430 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5431 ivar; ivar = ivar->getNextIvar()) 5432 if (ivar->getType().isDestructedType()) 5433 return true; 5434 5435 return false; 5436 } 5437 5438 static bool AllTrivialInitializers(CodeGenModule &CGM, 5439 ObjCImplementationDecl *D) { 5440 CodeGenFunction CGF(CGM); 5441 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5442 E = D->init_end(); B != E; ++B) { 5443 CXXCtorInitializer *CtorInitExp = *B; 5444 Expr *Init = CtorInitExp->getInit(); 5445 if (!CGF.isTrivialInitializer(Init)) 5446 return false; 5447 } 5448 return true; 5449 } 5450 5451 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5452 /// for an implementation. 5453 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5454 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5455 if (needsDestructMethod(D)) { 5456 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5457 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5458 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5459 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5460 getContext().VoidTy, nullptr, D, 5461 /*isInstance=*/true, /*isVariadic=*/false, 5462 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5463 /*isImplicitlyDeclared=*/true, 5464 /*isDefined=*/false, ObjCMethodDecl::Required); 5465 D->addInstanceMethod(DTORMethod); 5466 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5467 D->setHasDestructors(true); 5468 } 5469 5470 // If the implementation doesn't have any ivar initializers, we don't need 5471 // a .cxx_construct. 5472 if (D->getNumIvarInitializers() == 0 || 5473 AllTrivialInitializers(*this, D)) 5474 return; 5475 5476 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5477 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5478 // The constructor returns 'self'. 5479 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5480 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5481 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5482 /*isVariadic=*/false, 5483 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5484 /*isImplicitlyDeclared=*/true, 5485 /*isDefined=*/false, ObjCMethodDecl::Required); 5486 D->addInstanceMethod(CTORMethod); 5487 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5488 D->setHasNonZeroConstructors(true); 5489 } 5490 5491 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5492 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5493 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5494 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5495 ErrorUnsupported(LSD, "linkage spec"); 5496 return; 5497 } 5498 5499 EmitDeclContext(LSD); 5500 } 5501 5502 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5503 for (auto *I : DC->decls()) { 5504 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5505 // are themselves considered "top-level", so EmitTopLevelDecl on an 5506 // ObjCImplDecl does not recursively visit them. We need to do that in 5507 // case they're nested inside another construct (LinkageSpecDecl / 5508 // ExportDecl) that does stop them from being considered "top-level". 5509 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5510 for (auto *M : OID->methods()) 5511 EmitTopLevelDecl(M); 5512 } 5513 5514 EmitTopLevelDecl(I); 5515 } 5516 } 5517 5518 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5519 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5520 // Ignore dependent declarations. 5521 if (D->isTemplated()) 5522 return; 5523 5524 // Consteval function shouldn't be emitted. 5525 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5526 if (FD->isConsteval()) 5527 return; 5528 5529 switch (D->getKind()) { 5530 case Decl::CXXConversion: 5531 case Decl::CXXMethod: 5532 case Decl::Function: 5533 EmitGlobal(cast<FunctionDecl>(D)); 5534 // Always provide some coverage mapping 5535 // even for the functions that aren't emitted. 5536 AddDeferredUnusedCoverageMapping(D); 5537 break; 5538 5539 case Decl::CXXDeductionGuide: 5540 // Function-like, but does not result in code emission. 5541 break; 5542 5543 case Decl::Var: 5544 case Decl::Decomposition: 5545 case Decl::VarTemplateSpecialization: 5546 EmitGlobal(cast<VarDecl>(D)); 5547 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5548 for (auto *B : DD->bindings()) 5549 if (auto *HD = B->getHoldingVar()) 5550 EmitGlobal(HD); 5551 break; 5552 5553 // Indirect fields from global anonymous structs and unions can be 5554 // ignored; only the actual variable requires IR gen support. 5555 case Decl::IndirectField: 5556 break; 5557 5558 // C++ Decls 5559 case Decl::Namespace: 5560 EmitDeclContext(cast<NamespaceDecl>(D)); 5561 break; 5562 case Decl::ClassTemplateSpecialization: { 5563 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5564 if (CGDebugInfo *DI = getModuleDebugInfo()) 5565 if (Spec->getSpecializationKind() == 5566 TSK_ExplicitInstantiationDefinition && 5567 Spec->hasDefinition()) 5568 DI->completeTemplateDefinition(*Spec); 5569 } LLVM_FALLTHROUGH; 5570 case Decl::CXXRecord: { 5571 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5572 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5573 if (CRD->hasDefinition()) 5574 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5575 if (auto *ES = D->getASTContext().getExternalSource()) 5576 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5577 DI->completeUnusedClass(*CRD); 5578 } 5579 // Emit any static data members, they may be definitions. 5580 for (auto *I : CRD->decls()) 5581 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5582 EmitTopLevelDecl(I); 5583 break; 5584 } 5585 // No code generation needed. 5586 case Decl::UsingShadow: 5587 case Decl::ClassTemplate: 5588 case Decl::VarTemplate: 5589 case Decl::Concept: 5590 case Decl::VarTemplatePartialSpecialization: 5591 case Decl::FunctionTemplate: 5592 case Decl::TypeAliasTemplate: 5593 case Decl::Block: 5594 case Decl::Empty: 5595 case Decl::Binding: 5596 break; 5597 case Decl::Using: // using X; [C++] 5598 if (CGDebugInfo *DI = getModuleDebugInfo()) 5599 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5600 break; 5601 case Decl::NamespaceAlias: 5602 if (CGDebugInfo *DI = getModuleDebugInfo()) 5603 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5604 break; 5605 case Decl::UsingDirective: // using namespace X; [C++] 5606 if (CGDebugInfo *DI = getModuleDebugInfo()) 5607 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5608 break; 5609 case Decl::CXXConstructor: 5610 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5611 break; 5612 case Decl::CXXDestructor: 5613 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5614 break; 5615 5616 case Decl::StaticAssert: 5617 // Nothing to do. 5618 break; 5619 5620 // Objective-C Decls 5621 5622 // Forward declarations, no (immediate) code generation. 5623 case Decl::ObjCInterface: 5624 case Decl::ObjCCategory: 5625 break; 5626 5627 case Decl::ObjCProtocol: { 5628 auto *Proto = cast<ObjCProtocolDecl>(D); 5629 if (Proto->isThisDeclarationADefinition()) 5630 ObjCRuntime->GenerateProtocol(Proto); 5631 break; 5632 } 5633 5634 case Decl::ObjCCategoryImpl: 5635 // Categories have properties but don't support synthesize so we 5636 // can ignore them here. 5637 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5638 break; 5639 5640 case Decl::ObjCImplementation: { 5641 auto *OMD = cast<ObjCImplementationDecl>(D); 5642 EmitObjCPropertyImplementations(OMD); 5643 EmitObjCIvarInitializations(OMD); 5644 ObjCRuntime->GenerateClass(OMD); 5645 // Emit global variable debug information. 5646 if (CGDebugInfo *DI = getModuleDebugInfo()) 5647 if (getCodeGenOpts().hasReducedDebugInfo()) 5648 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5649 OMD->getClassInterface()), OMD->getLocation()); 5650 break; 5651 } 5652 case Decl::ObjCMethod: { 5653 auto *OMD = cast<ObjCMethodDecl>(D); 5654 // If this is not a prototype, emit the body. 5655 if (OMD->getBody()) 5656 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5657 break; 5658 } 5659 case Decl::ObjCCompatibleAlias: 5660 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5661 break; 5662 5663 case Decl::PragmaComment: { 5664 const auto *PCD = cast<PragmaCommentDecl>(D); 5665 switch (PCD->getCommentKind()) { 5666 case PCK_Unknown: 5667 llvm_unreachable("unexpected pragma comment kind"); 5668 case PCK_Linker: 5669 AppendLinkerOptions(PCD->getArg()); 5670 break; 5671 case PCK_Lib: 5672 AddDependentLib(PCD->getArg()); 5673 break; 5674 case PCK_Compiler: 5675 case PCK_ExeStr: 5676 case PCK_User: 5677 break; // We ignore all of these. 5678 } 5679 break; 5680 } 5681 5682 case Decl::PragmaDetectMismatch: { 5683 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5684 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5685 break; 5686 } 5687 5688 case Decl::LinkageSpec: 5689 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5690 break; 5691 5692 case Decl::FileScopeAsm: { 5693 // File-scope asm is ignored during device-side CUDA compilation. 5694 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5695 break; 5696 // File-scope asm is ignored during device-side OpenMP compilation. 5697 if (LangOpts.OpenMPIsDevice) 5698 break; 5699 auto *AD = cast<FileScopeAsmDecl>(D); 5700 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5701 break; 5702 } 5703 5704 case Decl::Import: { 5705 auto *Import = cast<ImportDecl>(D); 5706 5707 // If we've already imported this module, we're done. 5708 if (!ImportedModules.insert(Import->getImportedModule())) 5709 break; 5710 5711 // Emit debug information for direct imports. 5712 if (!Import->getImportedOwningModule()) { 5713 if (CGDebugInfo *DI = getModuleDebugInfo()) 5714 DI->EmitImportDecl(*Import); 5715 } 5716 5717 // Find all of the submodules and emit the module initializers. 5718 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5719 SmallVector<clang::Module *, 16> Stack; 5720 Visited.insert(Import->getImportedModule()); 5721 Stack.push_back(Import->getImportedModule()); 5722 5723 while (!Stack.empty()) { 5724 clang::Module *Mod = Stack.pop_back_val(); 5725 if (!EmittedModuleInitializers.insert(Mod).second) 5726 continue; 5727 5728 for (auto *D : Context.getModuleInitializers(Mod)) 5729 EmitTopLevelDecl(D); 5730 5731 // Visit the submodules of this module. 5732 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5733 SubEnd = Mod->submodule_end(); 5734 Sub != SubEnd; ++Sub) { 5735 // Skip explicit children; they need to be explicitly imported to emit 5736 // the initializers. 5737 if ((*Sub)->IsExplicit) 5738 continue; 5739 5740 if (Visited.insert(*Sub).second) 5741 Stack.push_back(*Sub); 5742 } 5743 } 5744 break; 5745 } 5746 5747 case Decl::Export: 5748 EmitDeclContext(cast<ExportDecl>(D)); 5749 break; 5750 5751 case Decl::OMPThreadPrivate: 5752 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5753 break; 5754 5755 case Decl::OMPAllocate: 5756 break; 5757 5758 case Decl::OMPDeclareReduction: 5759 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5760 break; 5761 5762 case Decl::OMPDeclareMapper: 5763 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5764 break; 5765 5766 case Decl::OMPRequires: 5767 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5768 break; 5769 5770 case Decl::Typedef: 5771 case Decl::TypeAlias: // using foo = bar; [C++11] 5772 if (CGDebugInfo *DI = getModuleDebugInfo()) 5773 DI->EmitAndRetainType( 5774 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5775 break; 5776 5777 case Decl::Record: 5778 if (CGDebugInfo *DI = getModuleDebugInfo()) 5779 if (cast<RecordDecl>(D)->getDefinition()) 5780 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5781 break; 5782 5783 case Decl::Enum: 5784 if (CGDebugInfo *DI = getModuleDebugInfo()) 5785 if (cast<EnumDecl>(D)->getDefinition()) 5786 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5787 break; 5788 5789 default: 5790 // Make sure we handled everything we should, every other kind is a 5791 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5792 // function. Need to recode Decl::Kind to do that easily. 5793 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5794 break; 5795 } 5796 } 5797 5798 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5799 // Do we need to generate coverage mapping? 5800 if (!CodeGenOpts.CoverageMapping) 5801 return; 5802 switch (D->getKind()) { 5803 case Decl::CXXConversion: 5804 case Decl::CXXMethod: 5805 case Decl::Function: 5806 case Decl::ObjCMethod: 5807 case Decl::CXXConstructor: 5808 case Decl::CXXDestructor: { 5809 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5810 break; 5811 SourceManager &SM = getContext().getSourceManager(); 5812 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5813 break; 5814 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5815 if (I == DeferredEmptyCoverageMappingDecls.end()) 5816 DeferredEmptyCoverageMappingDecls[D] = true; 5817 break; 5818 } 5819 default: 5820 break; 5821 }; 5822 } 5823 5824 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5825 // Do we need to generate coverage mapping? 5826 if (!CodeGenOpts.CoverageMapping) 5827 return; 5828 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5829 if (Fn->isTemplateInstantiation()) 5830 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5831 } 5832 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5833 if (I == DeferredEmptyCoverageMappingDecls.end()) 5834 DeferredEmptyCoverageMappingDecls[D] = false; 5835 else 5836 I->second = false; 5837 } 5838 5839 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5840 // We call takeVector() here to avoid use-after-free. 5841 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5842 // we deserialize function bodies to emit coverage info for them, and that 5843 // deserializes more declarations. How should we handle that case? 5844 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5845 if (!Entry.second) 5846 continue; 5847 const Decl *D = Entry.first; 5848 switch (D->getKind()) { 5849 case Decl::CXXConversion: 5850 case Decl::CXXMethod: 5851 case Decl::Function: 5852 case Decl::ObjCMethod: { 5853 CodeGenPGO PGO(*this); 5854 GlobalDecl GD(cast<FunctionDecl>(D)); 5855 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5856 getFunctionLinkage(GD)); 5857 break; 5858 } 5859 case Decl::CXXConstructor: { 5860 CodeGenPGO PGO(*this); 5861 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5862 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5863 getFunctionLinkage(GD)); 5864 break; 5865 } 5866 case Decl::CXXDestructor: { 5867 CodeGenPGO PGO(*this); 5868 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5869 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5870 getFunctionLinkage(GD)); 5871 break; 5872 } 5873 default: 5874 break; 5875 }; 5876 } 5877 } 5878 5879 void CodeGenModule::EmitMainVoidAlias() { 5880 // In order to transition away from "__original_main" gracefully, emit an 5881 // alias for "main" in the no-argument case so that libc can detect when 5882 // new-style no-argument main is in used. 5883 if (llvm::Function *F = getModule().getFunction("main")) { 5884 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5885 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5886 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5887 } 5888 } 5889 5890 /// Turns the given pointer into a constant. 5891 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5892 const void *Ptr) { 5893 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5894 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5895 return llvm::ConstantInt::get(i64, PtrInt); 5896 } 5897 5898 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5899 llvm::NamedMDNode *&GlobalMetadata, 5900 GlobalDecl D, 5901 llvm::GlobalValue *Addr) { 5902 if (!GlobalMetadata) 5903 GlobalMetadata = 5904 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5905 5906 // TODO: should we report variant information for ctors/dtors? 5907 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5908 llvm::ConstantAsMetadata::get(GetPointerConstant( 5909 CGM.getLLVMContext(), D.getDecl()))}; 5910 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5911 } 5912 5913 /// For each function which is declared within an extern "C" region and marked 5914 /// as 'used', but has internal linkage, create an alias from the unmangled 5915 /// name to the mangled name if possible. People expect to be able to refer 5916 /// to such functions with an unmangled name from inline assembly within the 5917 /// same translation unit. 5918 void CodeGenModule::EmitStaticExternCAliases() { 5919 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5920 return; 5921 for (auto &I : StaticExternCValues) { 5922 IdentifierInfo *Name = I.first; 5923 llvm::GlobalValue *Val = I.second; 5924 if (Val && !getModule().getNamedValue(Name->getName())) 5925 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5926 } 5927 } 5928 5929 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5930 GlobalDecl &Result) const { 5931 auto Res = Manglings.find(MangledName); 5932 if (Res == Manglings.end()) 5933 return false; 5934 Result = Res->getValue(); 5935 return true; 5936 } 5937 5938 /// Emits metadata nodes associating all the global values in the 5939 /// current module with the Decls they came from. This is useful for 5940 /// projects using IR gen as a subroutine. 5941 /// 5942 /// Since there's currently no way to associate an MDNode directly 5943 /// with an llvm::GlobalValue, we create a global named metadata 5944 /// with the name 'clang.global.decl.ptrs'. 5945 void CodeGenModule::EmitDeclMetadata() { 5946 llvm::NamedMDNode *GlobalMetadata = nullptr; 5947 5948 for (auto &I : MangledDeclNames) { 5949 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5950 // Some mangled names don't necessarily have an associated GlobalValue 5951 // in this module, e.g. if we mangled it for DebugInfo. 5952 if (Addr) 5953 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5954 } 5955 } 5956 5957 /// Emits metadata nodes for all the local variables in the current 5958 /// function. 5959 void CodeGenFunction::EmitDeclMetadata() { 5960 if (LocalDeclMap.empty()) return; 5961 5962 llvm::LLVMContext &Context = getLLVMContext(); 5963 5964 // Find the unique metadata ID for this name. 5965 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5966 5967 llvm::NamedMDNode *GlobalMetadata = nullptr; 5968 5969 for (auto &I : LocalDeclMap) { 5970 const Decl *D = I.first; 5971 llvm::Value *Addr = I.second.getPointer(); 5972 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5973 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5974 Alloca->setMetadata( 5975 DeclPtrKind, llvm::MDNode::get( 5976 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5977 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5978 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5979 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5980 } 5981 } 5982 } 5983 5984 void CodeGenModule::EmitVersionIdentMetadata() { 5985 llvm::NamedMDNode *IdentMetadata = 5986 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5987 std::string Version = getClangFullVersion(); 5988 llvm::LLVMContext &Ctx = TheModule.getContext(); 5989 5990 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5991 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5992 } 5993 5994 void CodeGenModule::EmitCommandLineMetadata() { 5995 llvm::NamedMDNode *CommandLineMetadata = 5996 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5997 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5998 llvm::LLVMContext &Ctx = TheModule.getContext(); 5999 6000 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6001 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6002 } 6003 6004 void CodeGenModule::EmitCoverageFile() { 6005 if (getCodeGenOpts().CoverageDataFile.empty() && 6006 getCodeGenOpts().CoverageNotesFile.empty()) 6007 return; 6008 6009 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6010 if (!CUNode) 6011 return; 6012 6013 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6014 llvm::LLVMContext &Ctx = TheModule.getContext(); 6015 auto *CoverageDataFile = 6016 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6017 auto *CoverageNotesFile = 6018 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6019 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6020 llvm::MDNode *CU = CUNode->getOperand(i); 6021 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6022 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6023 } 6024 } 6025 6026 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6027 bool ForEH) { 6028 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6029 // FIXME: should we even be calling this method if RTTI is disabled 6030 // and it's not for EH? 6031 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6032 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6033 getTriple().isNVPTX())) 6034 return llvm::Constant::getNullValue(Int8PtrTy); 6035 6036 if (ForEH && Ty->isObjCObjectPointerType() && 6037 LangOpts.ObjCRuntime.isGNUFamily()) 6038 return ObjCRuntime->GetEHType(Ty); 6039 6040 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6041 } 6042 6043 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6044 // Do not emit threadprivates in simd-only mode. 6045 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6046 return; 6047 for (auto RefExpr : D->varlists()) { 6048 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6049 bool PerformInit = 6050 VD->getAnyInitializer() && 6051 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6052 /*ForRef=*/false); 6053 6054 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6055 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6056 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6057 CXXGlobalInits.push_back(InitFunction); 6058 } 6059 } 6060 6061 llvm::Metadata * 6062 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6063 StringRef Suffix) { 6064 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6065 if (InternalId) 6066 return InternalId; 6067 6068 if (isExternallyVisible(T->getLinkage())) { 6069 std::string OutName; 6070 llvm::raw_string_ostream Out(OutName); 6071 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6072 Out << Suffix; 6073 6074 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6075 } else { 6076 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6077 llvm::ArrayRef<llvm::Metadata *>()); 6078 } 6079 6080 return InternalId; 6081 } 6082 6083 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6084 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6085 } 6086 6087 llvm::Metadata * 6088 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6089 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6090 } 6091 6092 // Generalize pointer types to a void pointer with the qualifiers of the 6093 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6094 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6095 // 'void *'. 6096 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6097 if (!Ty->isPointerType()) 6098 return Ty; 6099 6100 return Ctx.getPointerType( 6101 QualType(Ctx.VoidTy).withCVRQualifiers( 6102 Ty->getPointeeType().getCVRQualifiers())); 6103 } 6104 6105 // Apply type generalization to a FunctionType's return and argument types 6106 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6107 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6108 SmallVector<QualType, 8> GeneralizedParams; 6109 for (auto &Param : FnType->param_types()) 6110 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6111 6112 return Ctx.getFunctionType( 6113 GeneralizeType(Ctx, FnType->getReturnType()), 6114 GeneralizedParams, FnType->getExtProtoInfo()); 6115 } 6116 6117 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6118 return Ctx.getFunctionNoProtoType( 6119 GeneralizeType(Ctx, FnType->getReturnType())); 6120 6121 llvm_unreachable("Encountered unknown FunctionType"); 6122 } 6123 6124 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6125 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6126 GeneralizedMetadataIdMap, ".generalized"); 6127 } 6128 6129 /// Returns whether this module needs the "all-vtables" type identifier. 6130 bool CodeGenModule::NeedAllVtablesTypeId() const { 6131 // Returns true if at least one of vtable-based CFI checkers is enabled and 6132 // is not in the trapping mode. 6133 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6134 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6135 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6136 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6137 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6138 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6139 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6140 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6141 } 6142 6143 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6144 CharUnits Offset, 6145 const CXXRecordDecl *RD) { 6146 llvm::Metadata *MD = 6147 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6148 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6149 6150 if (CodeGenOpts.SanitizeCfiCrossDso) 6151 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6152 VTable->addTypeMetadata(Offset.getQuantity(), 6153 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6154 6155 if (NeedAllVtablesTypeId()) { 6156 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6157 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6158 } 6159 } 6160 6161 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6162 if (!SanStats) 6163 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6164 6165 return *SanStats; 6166 } 6167 llvm::Value * 6168 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6169 CodeGenFunction &CGF) { 6170 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6171 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6172 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6173 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6174 "__translate_sampler_initializer"), 6175 {C}); 6176 } 6177 6178 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6179 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6180 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6181 /* forPointeeType= */ true); 6182 } 6183 6184 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6185 LValueBaseInfo *BaseInfo, 6186 TBAAAccessInfo *TBAAInfo, 6187 bool forPointeeType) { 6188 if (TBAAInfo) 6189 *TBAAInfo = getTBAAAccessInfo(T); 6190 6191 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6192 // that doesn't return the information we need to compute BaseInfo. 6193 6194 // Honor alignment typedef attributes even on incomplete types. 6195 // We also honor them straight for C++ class types, even as pointees; 6196 // there's an expressivity gap here. 6197 if (auto TT = T->getAs<TypedefType>()) { 6198 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6199 if (BaseInfo) 6200 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6201 return getContext().toCharUnitsFromBits(Align); 6202 } 6203 } 6204 6205 bool AlignForArray = T->isArrayType(); 6206 6207 // Analyze the base element type, so we don't get confused by incomplete 6208 // array types. 6209 T = getContext().getBaseElementType(T); 6210 6211 if (T->isIncompleteType()) { 6212 // We could try to replicate the logic from 6213 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6214 // type is incomplete, so it's impossible to test. We could try to reuse 6215 // getTypeAlignIfKnown, but that doesn't return the information we need 6216 // to set BaseInfo. So just ignore the possibility that the alignment is 6217 // greater than one. 6218 if (BaseInfo) 6219 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6220 return CharUnits::One(); 6221 } 6222 6223 if (BaseInfo) 6224 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6225 6226 CharUnits Alignment; 6227 const CXXRecordDecl *RD; 6228 if (T.getQualifiers().hasUnaligned()) { 6229 Alignment = CharUnits::One(); 6230 } else if (forPointeeType && !AlignForArray && 6231 (RD = T->getAsCXXRecordDecl())) { 6232 // For C++ class pointees, we don't know whether we're pointing at a 6233 // base or a complete object, so we generally need to use the 6234 // non-virtual alignment. 6235 Alignment = getClassPointerAlignment(RD); 6236 } else { 6237 Alignment = getContext().getTypeAlignInChars(T); 6238 } 6239 6240 // Cap to the global maximum type alignment unless the alignment 6241 // was somehow explicit on the type. 6242 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6243 if (Alignment.getQuantity() > MaxAlign && 6244 !getContext().isAlignmentRequired(T)) 6245 Alignment = CharUnits::fromQuantity(MaxAlign); 6246 } 6247 return Alignment; 6248 } 6249 6250 bool CodeGenModule::stopAutoInit() { 6251 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6252 if (StopAfter) { 6253 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6254 // used 6255 if (NumAutoVarInit >= StopAfter) { 6256 return true; 6257 } 6258 if (!NumAutoVarInit) { 6259 unsigned DiagID = getDiags().getCustomDiagID( 6260 DiagnosticsEngine::Warning, 6261 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6262 "number of times ftrivial-auto-var-init=%1 gets applied."); 6263 getDiags().Report(DiagID) 6264 << StopAfter 6265 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6266 LangOptions::TrivialAutoVarInitKind::Zero 6267 ? "zero" 6268 : "pattern"); 6269 } 6270 ++NumAutoVarInit; 6271 } 6272 return false; 6273 } 6274