xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision fb0f7288051eb2745bb9211306f53ff9aa6f73e2)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405                                              llvm::Module &M) {
406   if (!LO.VisibilityFromDLLStorageClass)
407     return;
408 
409   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416       CodeGenModule::GetLLVMVisibility(
417           LO.getExternDeclNoDLLStorageClassVisibility());
418 
419   for (llvm::GlobalValue &GV : M.global_values()) {
420     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421       continue;
422 
423     // Reset DSO locality before setting the visibility. This removes
424     // any effects that visibility options and annotations may have
425     // had on the DSO locality. Setting the visibility will implicitly set
426     // appropriate globals to DSO Local; however, this will be pessimistic
427     // w.r.t. to the normal compiler IRGen.
428     GV.setDSOLocal(false);
429 
430     if (GV.isDeclarationForLinker()) {
431       GV.setVisibility(GV.getDLLStorageClass() ==
432                                llvm::GlobalValue::DLLImportStorageClass
433                            ? ExternDeclDLLImportVisibility
434                            : ExternDeclNoDLLStorageClassVisibility);
435     } else {
436       GV.setVisibility(GV.getDLLStorageClass() ==
437                                llvm::GlobalValue::DLLExportStorageClass
438                            ? DLLExportVisibility
439                            : NoDLLStorageClassVisibility);
440     }
441 
442     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443   }
444 }
445 
446 void CodeGenModule::Release() {
447   EmitDeferred();
448   EmitVTablesOpportunistically();
449   applyGlobalValReplacements();
450   applyReplacements();
451   checkAliases();
452   emitMultiVersionFunctions();
453   EmitCXXGlobalInitFunc();
454   EmitCXXGlobalCleanUpFunc();
455   registerGlobalDtorsWithAtExit();
456   EmitCXXThreadLocalInitFunc();
457   if (ObjCRuntime)
458     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459       AddGlobalCtor(ObjCInitFunction);
460   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461       CUDARuntime) {
462     if (llvm::Function *CudaCtorFunction =
463             CUDARuntime->makeModuleCtorFunction())
464       AddGlobalCtor(CudaCtorFunction);
465   }
466   if (OpenMPRuntime) {
467     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470     }
471     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472     OpenMPRuntime->clear();
473   }
474   if (PGOReader) {
475     getModule().setProfileSummary(
476         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477         llvm::ProfileSummary::PSK_Instr);
478     if (PGOStats.hasDiagnostics())
479       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480   }
481   EmitCtorList(GlobalCtors, "llvm.global_ctors");
482   EmitCtorList(GlobalDtors, "llvm.global_dtors");
483   EmitGlobalAnnotations();
484   EmitStaticExternCAliases();
485   EmitDeferredUnusedCoverageMappings();
486   if (CoverageMapping)
487     CoverageMapping->emit();
488   if (CodeGenOpts.SanitizeCfiCrossDso) {
489     CodeGenFunction(*this).EmitCfiCheckFail();
490     CodeGenFunction(*this).EmitCfiCheckStub();
491   }
492   emitAtAvailableLinkGuard();
493   if (Context.getTargetInfo().getTriple().isWasm() &&
494       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495     EmitMainVoidAlias();
496   }
497   emitLLVMUsed();
498   if (SanStats)
499     SanStats->finish();
500 
501   if (CodeGenOpts.Autolink &&
502       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503     EmitModuleLinkOptions();
504   }
505 
506   // On ELF we pass the dependent library specifiers directly to the linker
507   // without manipulating them. This is in contrast to other platforms where
508   // they are mapped to a specific linker option by the compiler. This
509   // difference is a result of the greater variety of ELF linkers and the fact
510   // that ELF linkers tend to handle libraries in a more complicated fashion
511   // than on other platforms. This forces us to defer handling the dependent
512   // libs to the linker.
513   //
514   // CUDA/HIP device and host libraries are different. Currently there is no
515   // way to differentiate dependent libraries for host or device. Existing
516   // usage of #pragma comment(lib, *) is intended for host libraries on
517   // Windows. Therefore emit llvm.dependent-libraries only for host.
518   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520     for (auto *MD : ELFDependentLibraries)
521       NMD->addOperand(MD);
522   }
523 
524   // Record mregparm value now so it is visible through rest of codegen.
525   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527                               CodeGenOpts.NumRegisterParameters);
528 
529   if (CodeGenOpts.DwarfVersion) {
530     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531                               CodeGenOpts.DwarfVersion);
532   }
533 
534   if (Context.getLangOpts().SemanticInterposition)
535     // Require various optimization to respect semantic interposition.
536     getModule().setSemanticInterposition(1);
537   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538     // Allow dso_local on applicable targets.
539     getModule().setSemanticInterposition(0);
540 
541   if (CodeGenOpts.EmitCodeView) {
542     // Indicate that we want CodeView in the metadata.
543     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544   }
545   if (CodeGenOpts.CodeViewGHash) {
546     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547   }
548   if (CodeGenOpts.ControlFlowGuard) {
549     // Function ID tables and checks for Control Flow Guard (cfguard=2).
550     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552     // Function ID tables for Control Flow Guard (cfguard=1).
553     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554   }
555   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556     // We don't support LTO with 2 with different StrictVTablePointers
557     // FIXME: we could support it by stripping all the information introduced
558     // by StrictVTablePointers.
559 
560     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561 
562     llvm::Metadata *Ops[2] = {
563               llvm::MDString::get(VMContext, "StrictVTablePointers"),
564               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565                   llvm::Type::getInt32Ty(VMContext), 1))};
566 
567     getModule().addModuleFlag(llvm::Module::Require,
568                               "StrictVTablePointersRequirement",
569                               llvm::MDNode::get(VMContext, Ops));
570   }
571   if (getModuleDebugInfo())
572     // We support a single version in the linked module. The LLVM
573     // parser will drop debug info with a different version number
574     // (and warn about it, too).
575     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576                               llvm::DEBUG_METADATA_VERSION);
577 
578   // We need to record the widths of enums and wchar_t, so that we can generate
579   // the correct build attributes in the ARM backend. wchar_size is also used by
580   // TargetLibraryInfo.
581   uint64_t WCharWidth =
582       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584 
585   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586   if (   Arch == llvm::Triple::arm
587       || Arch == llvm::Triple::armeb
588       || Arch == llvm::Triple::thumb
589       || Arch == llvm::Triple::thumbeb) {
590     // The minimum width of an enum in bytes
591     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593   }
594 
595   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596     StringRef ABIStr = Target.getABI();
597     llvm::LLVMContext &Ctx = TheModule.getContext();
598     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599                               llvm::MDString::get(Ctx, ABIStr));
600   }
601 
602   if (CodeGenOpts.SanitizeCfiCrossDso) {
603     // Indicate that we want cross-DSO control flow integrity checks.
604     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605   }
606 
607   if (CodeGenOpts.WholeProgramVTables) {
608     // Indicate whether VFE was enabled for this module, so that the
609     // vcall_visibility metadata added under whole program vtables is handled
610     // appropriately in the optimizer.
611     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612                               CodeGenOpts.VirtualFunctionElimination);
613   }
614 
615   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616     getModule().addModuleFlag(llvm::Module::Override,
617                               "CFI Canonical Jump Tables",
618                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619   }
620 
621   if (CodeGenOpts.CFProtectionReturn &&
622       Target.checkCFProtectionReturnSupported(getDiags())) {
623     // Indicate that we want to instrument return control flow protection.
624     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625                               1);
626   }
627 
628   if (CodeGenOpts.CFProtectionBranch &&
629       Target.checkCFProtectionBranchSupported(getDiags())) {
630     // Indicate that we want to instrument branch control flow protection.
631     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632                               1);
633   }
634 
635   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636       Arch == llvm::Triple::aarch64_be) {
637     getModule().addModuleFlag(llvm::Module::Error,
638                               "branch-target-enforcement",
639                               LangOpts.BranchTargetEnforcement);
640 
641     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642                               LangOpts.hasSignReturnAddress());
643 
644     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645                               LangOpts.isSignReturnAddressScopeAll());
646 
647     getModule().addModuleFlag(llvm::Module::Error,
648                               "sign-return-address-with-bkey",
649                               !LangOpts.isSignReturnAddressWithAKey());
650   }
651 
652   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653     llvm::LLVMContext &Ctx = TheModule.getContext();
654     getModule().addModuleFlag(
655         llvm::Module::Error, "MemProfProfileFilename",
656         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657   }
658 
659   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660     // Indicate whether __nvvm_reflect should be configured to flush denormal
661     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
662     // property.)
663     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664                               CodeGenOpts.FP32DenormalMode.Output !=
665                                   llvm::DenormalMode::IEEE);
666   }
667 
668   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669   if (LangOpts.OpenCL) {
670     EmitOpenCLMetadata();
671     // Emit SPIR version.
672     if (getTriple().isSPIR()) {
673       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674       // opencl.spir.version named metadata.
675       // C++ is backwards compatible with OpenCL v2.0.
676       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677       llvm::Metadata *SPIRVerElts[] = {
678           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679               Int32Ty, Version / 100)),
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682       llvm::NamedMDNode *SPIRVerMD =
683           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684       llvm::LLVMContext &Ctx = TheModule.getContext();
685       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686     }
687   }
688 
689   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690     assert(PLevel < 3 && "Invalid PIC Level");
691     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692     if (Context.getLangOpts().PIE)
693       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694   }
695 
696   if (getCodeGenOpts().CodeModel.size() > 0) {
697     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698                   .Case("tiny", llvm::CodeModel::Tiny)
699                   .Case("small", llvm::CodeModel::Small)
700                   .Case("kernel", llvm::CodeModel::Kernel)
701                   .Case("medium", llvm::CodeModel::Medium)
702                   .Case("large", llvm::CodeModel::Large)
703                   .Default(~0u);
704     if (CM != ~0u) {
705       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706       getModule().setCodeModel(codeModel);
707     }
708   }
709 
710   if (CodeGenOpts.NoPLT)
711     getModule().setRtLibUseGOT();
712 
713   SimplifyPersonality();
714 
715   if (getCodeGenOpts().EmitDeclMetadata)
716     EmitDeclMetadata();
717 
718   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719     EmitCoverageFile();
720 
721   if (CGDebugInfo *DI = getModuleDebugInfo())
722     DI->finalize();
723 
724   if (getCodeGenOpts().EmitVersionIdentMetadata)
725     EmitVersionIdentMetadata();
726 
727   if (!getCodeGenOpts().RecordCommandLine.empty())
728     EmitCommandLineMetadata();
729 
730   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731 
732   EmitBackendOptionsMetadata(getCodeGenOpts());
733 
734   // Set visibility from DLL storage class
735   // We do this at the end of LLVM IR generation; after any operation
736   // that might affect the DLL storage class or the visibility, and
737   // before anything that might act on these.
738   setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740 
741 void CodeGenModule::EmitOpenCLMetadata() {
742   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743   // opencl.ocl.version named metadata node.
744   // C++ is backwards compatible with OpenCL v2.0.
745   // FIXME: We might need to add CXX version at some point too?
746   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747   llvm::Metadata *OCLVerElts[] = {
748       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749           Int32Ty, Version / 100)),
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, (Version % 100) / 10))};
752   llvm::NamedMDNode *OCLVerMD =
753       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754   llvm::LLVMContext &Ctx = TheModule.getContext();
755   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757 
758 void CodeGenModule::EmitBackendOptionsMetadata(
759     const CodeGenOptions CodeGenOpts) {
760   switch (getTriple().getArch()) {
761   default:
762     break;
763   case llvm::Triple::riscv32:
764   case llvm::Triple::riscv64:
765     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766                               CodeGenOpts.SmallDataLimit);
767     break;
768   }
769 }
770 
771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772   // Make sure that this type is translated.
773   Types.UpdateCompletedType(TD);
774 }
775 
776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777   // Make sure that this type is translated.
778   Types.RefreshTypeCacheForClass(RD);
779 }
780 
781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782   if (!TBAA)
783     return nullptr;
784   return TBAA->getTypeInfo(QTy);
785 }
786 
787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788   if (!TBAA)
789     return TBAAAccessInfo();
790   if (getLangOpts().CUDAIsDevice) {
791     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792     // access info.
793     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795           nullptr)
796         return TBAAAccessInfo();
797     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799           nullptr)
800         return TBAAAccessInfo();
801     }
802   }
803   return TBAA->getAccessInfo(AccessType);
804 }
805 
806 TBAAAccessInfo
807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808   if (!TBAA)
809     return TBAAAccessInfo();
810   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTBAAStructInfo(QTy);
817 }
818 
819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820   if (!TBAA)
821     return nullptr;
822   return TBAA->getBaseTypeInfo(QTy);
823 }
824 
825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826   if (!TBAA)
827     return nullptr;
828   return TBAA->getAccessTagInfo(Info);
829 }
830 
831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832                                                    TBAAAccessInfo TargetInfo) {
833   if (!TBAA)
834     return TBAAAccessInfo();
835   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840                                                    TBAAAccessInfo InfoB) {
841   if (!TBAA)
842     return TBAAAccessInfo();
843   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845 
846 TBAAAccessInfo
847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848                                               TBAAAccessInfo SrcInfo) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853 
854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855                                                 TBAAAccessInfo TBAAInfo) {
856   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859 
860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861     llvm::Instruction *I, const CXXRecordDecl *RD) {
862   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863                  llvm::MDNode::get(getLLVMContext(), {}));
864 }
865 
866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870 
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875                                                "cannot compile this %0 yet");
876   std::string Msg = Type;
877   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878       << Msg << S->getSourceRange();
879 }
880 
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885                                                "cannot compile this %0 yet");
886   std::string Msg = Type;
887   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889 
890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893 
894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895                                         const NamedDecl *D) const {
896   if (GV->hasDLLImportStorageClass())
897     return;
898   // Internal definitions always have default visibility.
899   if (GV->hasLocalLinkage()) {
900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901     return;
902   }
903   if (!D)
904     return;
905   // Set visibility for definitions, and for declarations if requested globally
906   // or set explicitly.
907   LinkageInfo LV = D->getLinkageAndVisibility();
908   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909       !GV->isDeclarationForLinker())
910     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912 
913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914                                  llvm::GlobalValue *GV) {
915   if (GV->hasLocalLinkage())
916     return true;
917 
918   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919     return true;
920 
921   // DLLImport explicitly marks the GV as external.
922   if (GV->hasDLLImportStorageClass())
923     return false;
924 
925   const llvm::Triple &TT = CGM.getTriple();
926   if (TT.isWindowsGNUEnvironment()) {
927     // In MinGW, variables without DLLImport can still be automatically
928     // imported from a DLL by the linker; don't mark variables that
929     // potentially could come from another DLL as DSO local.
930     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931         !GV->isThreadLocal())
932       return false;
933   }
934 
935   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936   // remain unresolved in the link, they can be resolved to zero, which is
937   // outside the current DSO.
938   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939     return false;
940 
941   // Every other GV is local on COFF.
942   // Make an exception for windows OS in the triple: Some firmware builds use
943   // *-win32-macho triples. This (accidentally?) produced windows relocations
944   // without GOT tables in older clang versions; Keep this behaviour.
945   // FIXME: even thread local variables?
946   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947     return true;
948 
949   // Only handle COFF and ELF for now.
950   if (!TT.isOSBinFormatELF())
951     return false;
952 
953   // If this is not an executable, don't assume anything is local.
954   const auto &CGOpts = CGM.getCodeGenOpts();
955   llvm::Reloc::Model RM = CGOpts.RelocationModel;
956   const auto &LOpts = CGM.getLangOpts();
957   if (RM != llvm::Reloc::Static && !LOpts.PIE)
958     return false;
959 
960   // A definition cannot be preempted from an executable.
961   if (!GV->isDeclarationForLinker())
962     return true;
963 
964   // Most PIC code sequences that assume that a symbol is local cannot produce a
965   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
966   // depended, it seems worth it to handle it here.
967   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
968     return false;
969 
970   // PowerPC64 prefers TOC indirection to avoid copy relocations.
971   if (TT.isPPC64())
972     return false;
973 
974   // If we can use copy relocations we can assume it is local.
975   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
976     if (!Var->isThreadLocal() &&
977         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
978       return true;
979 
980   // If we can use a plt entry as the symbol address we can assume it
981   // is local.
982   // FIXME: This should work for PIE, but the gold linker doesn't support it.
983   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
984     return true;
985 
986   // Otherwise don't assume it is local.
987   return false;
988 }
989 
990 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
991   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
992 }
993 
994 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
995                                           GlobalDecl GD) const {
996   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
997   // C++ destructors have a few C++ ABI specific special cases.
998   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
999     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1000     return;
1001   }
1002   setDLLImportDLLExport(GV, D);
1003 }
1004 
1005 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1006                                           const NamedDecl *D) const {
1007   if (D && D->isExternallyVisible()) {
1008     if (D->hasAttr<DLLImportAttr>())
1009       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1010     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1011       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1012   }
1013 }
1014 
1015 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1016                                     GlobalDecl GD) const {
1017   setDLLImportDLLExport(GV, GD);
1018   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1019 }
1020 
1021 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1022                                     const NamedDecl *D) const {
1023   setDLLImportDLLExport(GV, D);
1024   setGVPropertiesAux(GV, D);
1025 }
1026 
1027 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1028                                        const NamedDecl *D) const {
1029   setGlobalVisibility(GV, D);
1030   setDSOLocal(GV);
1031   GV->setPartition(CodeGenOpts.SymbolPartition);
1032 }
1033 
1034 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1035   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1036       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1037       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1038       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1039       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1040 }
1041 
1042 llvm::GlobalVariable::ThreadLocalMode
1043 CodeGenModule::GetDefaultLLVMTLSModel() const {
1044   switch (CodeGenOpts.getDefaultTLSModel()) {
1045   case CodeGenOptions::GeneralDynamicTLSModel:
1046     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1047   case CodeGenOptions::LocalDynamicTLSModel:
1048     return llvm::GlobalVariable::LocalDynamicTLSModel;
1049   case CodeGenOptions::InitialExecTLSModel:
1050     return llvm::GlobalVariable::InitialExecTLSModel;
1051   case CodeGenOptions::LocalExecTLSModel:
1052     return llvm::GlobalVariable::LocalExecTLSModel;
1053   }
1054   llvm_unreachable("Invalid TLS model!");
1055 }
1056 
1057 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1058   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1059 
1060   llvm::GlobalValue::ThreadLocalMode TLM;
1061   TLM = GetDefaultLLVMTLSModel();
1062 
1063   // Override the TLS model if it is explicitly specified.
1064   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1065     TLM = GetLLVMTLSModel(Attr->getModel());
1066   }
1067 
1068   GV->setThreadLocalMode(TLM);
1069 }
1070 
1071 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1072                                           StringRef Name) {
1073   const TargetInfo &Target = CGM.getTarget();
1074   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1075 }
1076 
1077 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1078                                                  const CPUSpecificAttr *Attr,
1079                                                  unsigned CPUIndex,
1080                                                  raw_ostream &Out) {
1081   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1082   // supported.
1083   if (Attr)
1084     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1085   else if (CGM.getTarget().supportsIFunc())
1086     Out << ".resolver";
1087 }
1088 
1089 static void AppendTargetMangling(const CodeGenModule &CGM,
1090                                  const TargetAttr *Attr, raw_ostream &Out) {
1091   if (Attr->isDefaultVersion())
1092     return;
1093 
1094   Out << '.';
1095   const TargetInfo &Target = CGM.getTarget();
1096   ParsedTargetAttr Info =
1097       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1098         // Multiversioning doesn't allow "no-${feature}", so we can
1099         // only have "+" prefixes here.
1100         assert(LHS.startswith("+") && RHS.startswith("+") &&
1101                "Features should always have a prefix.");
1102         return Target.multiVersionSortPriority(LHS.substr(1)) >
1103                Target.multiVersionSortPriority(RHS.substr(1));
1104       });
1105 
1106   bool IsFirst = true;
1107 
1108   if (!Info.Architecture.empty()) {
1109     IsFirst = false;
1110     Out << "arch_" << Info.Architecture;
1111   }
1112 
1113   for (StringRef Feat : Info.Features) {
1114     if (!IsFirst)
1115       Out << '_';
1116     IsFirst = false;
1117     Out << Feat.substr(1);
1118   }
1119 }
1120 
1121 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1122                                       const NamedDecl *ND,
1123                                       bool OmitMultiVersionMangling = false) {
1124   SmallString<256> Buffer;
1125   llvm::raw_svector_ostream Out(Buffer);
1126   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1127   if (MC.shouldMangleDeclName(ND))
1128     MC.mangleName(GD.getWithDecl(ND), Out);
1129   else {
1130     IdentifierInfo *II = ND->getIdentifier();
1131     assert(II && "Attempt to mangle unnamed decl.");
1132     const auto *FD = dyn_cast<FunctionDecl>(ND);
1133 
1134     if (FD &&
1135         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1136       Out << "__regcall3__" << II->getName();
1137     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1138                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1139       Out << "__device_stub__" << II->getName();
1140     } else {
1141       Out << II->getName();
1142     }
1143   }
1144 
1145   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1146     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1147       switch (FD->getMultiVersionKind()) {
1148       case MultiVersionKind::CPUDispatch:
1149       case MultiVersionKind::CPUSpecific:
1150         AppendCPUSpecificCPUDispatchMangling(CGM,
1151                                              FD->getAttr<CPUSpecificAttr>(),
1152                                              GD.getMultiVersionIndex(), Out);
1153         break;
1154       case MultiVersionKind::Target:
1155         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1156         break;
1157       case MultiVersionKind::None:
1158         llvm_unreachable("None multiversion type isn't valid here");
1159       }
1160     }
1161 
1162   return std::string(Out.str());
1163 }
1164 
1165 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1166                                             const FunctionDecl *FD) {
1167   if (!FD->isMultiVersion())
1168     return;
1169 
1170   // Get the name of what this would be without the 'target' attribute.  This
1171   // allows us to lookup the version that was emitted when this wasn't a
1172   // multiversion function.
1173   std::string NonTargetName =
1174       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1175   GlobalDecl OtherGD;
1176   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1177     assert(OtherGD.getCanonicalDecl()
1178                .getDecl()
1179                ->getAsFunction()
1180                ->isMultiVersion() &&
1181            "Other GD should now be a multiversioned function");
1182     // OtherFD is the version of this function that was mangled BEFORE
1183     // becoming a MultiVersion function.  It potentially needs to be updated.
1184     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1185                                       .getDecl()
1186                                       ->getAsFunction()
1187                                       ->getMostRecentDecl();
1188     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1189     // This is so that if the initial version was already the 'default'
1190     // version, we don't try to update it.
1191     if (OtherName != NonTargetName) {
1192       // Remove instead of erase, since others may have stored the StringRef
1193       // to this.
1194       const auto ExistingRecord = Manglings.find(NonTargetName);
1195       if (ExistingRecord != std::end(Manglings))
1196         Manglings.remove(&(*ExistingRecord));
1197       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1198       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1199       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1200         Entry->setName(OtherName);
1201     }
1202   }
1203 }
1204 
1205 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1206   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1207 
1208   // Some ABIs don't have constructor variants.  Make sure that base and
1209   // complete constructors get mangled the same.
1210   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1211     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1212       CXXCtorType OrigCtorType = GD.getCtorType();
1213       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1214       if (OrigCtorType == Ctor_Base)
1215         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1216     }
1217   }
1218 
1219   auto FoundName = MangledDeclNames.find(CanonicalGD);
1220   if (FoundName != MangledDeclNames.end())
1221     return FoundName->second;
1222 
1223   // Keep the first result in the case of a mangling collision.
1224   const auto *ND = cast<NamedDecl>(GD.getDecl());
1225   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1226 
1227   // Ensure either we have different ABIs between host and device compilations,
1228   // says host compilation following MSVC ABI but device compilation follows
1229   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1230   // mangling should be the same after name stubbing. The later checking is
1231   // very important as the device kernel name being mangled in host-compilation
1232   // is used to resolve the device binaries to be executed. Inconsistent naming
1233   // result in undefined behavior. Even though we cannot check that naming
1234   // directly between host- and device-compilations, the host- and
1235   // device-mangling in host compilation could help catching certain ones.
1236   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1237          getLangOpts().CUDAIsDevice ||
1238          (getContext().getAuxTargetInfo() &&
1239           (getContext().getAuxTargetInfo()->getCXXABI() !=
1240            getContext().getTargetInfo().getCXXABI())) ||
1241          getCUDARuntime().getDeviceSideName(ND) ==
1242              getMangledNameImpl(
1243                  *this,
1244                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1245                  ND));
1246 
1247   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1248   return MangledDeclNames[CanonicalGD] = Result.first->first();
1249 }
1250 
1251 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1252                                              const BlockDecl *BD) {
1253   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1254   const Decl *D = GD.getDecl();
1255 
1256   SmallString<256> Buffer;
1257   llvm::raw_svector_ostream Out(Buffer);
1258   if (!D)
1259     MangleCtx.mangleGlobalBlock(BD,
1260       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1261   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1262     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1263   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1264     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1265   else
1266     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1267 
1268   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1269   return Result.first->first();
1270 }
1271 
1272 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1273   return getModule().getNamedValue(Name);
1274 }
1275 
1276 /// AddGlobalCtor - Add a function to the list that will be called before
1277 /// main() runs.
1278 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1279                                   llvm::Constant *AssociatedData) {
1280   // FIXME: Type coercion of void()* types.
1281   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1282 }
1283 
1284 /// AddGlobalDtor - Add a function to the list that will be called
1285 /// when the module is unloaded.
1286 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1287                                   bool IsDtorAttrFunc) {
1288   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1289       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1290     DtorsUsingAtExit[Priority].push_back(Dtor);
1291     return;
1292   }
1293 
1294   // FIXME: Type coercion of void()* types.
1295   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1296 }
1297 
1298 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1299   if (Fns.empty()) return;
1300 
1301   // Ctor function type is void()*.
1302   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1303   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1304       TheModule.getDataLayout().getProgramAddressSpace());
1305 
1306   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1307   llvm::StructType *CtorStructTy = llvm::StructType::get(
1308       Int32Ty, CtorPFTy, VoidPtrTy);
1309 
1310   // Construct the constructor and destructor arrays.
1311   ConstantInitBuilder builder(*this);
1312   auto ctors = builder.beginArray(CtorStructTy);
1313   for (const auto &I : Fns) {
1314     auto ctor = ctors.beginStruct(CtorStructTy);
1315     ctor.addInt(Int32Ty, I.Priority);
1316     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1317     if (I.AssociatedData)
1318       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1319     else
1320       ctor.addNullPointer(VoidPtrTy);
1321     ctor.finishAndAddTo(ctors);
1322   }
1323 
1324   auto list =
1325     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1326                                 /*constant*/ false,
1327                                 llvm::GlobalValue::AppendingLinkage);
1328 
1329   // The LTO linker doesn't seem to like it when we set an alignment
1330   // on appending variables.  Take it off as a workaround.
1331   list->setAlignment(llvm::None);
1332 
1333   Fns.clear();
1334 }
1335 
1336 llvm::GlobalValue::LinkageTypes
1337 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1338   const auto *D = cast<FunctionDecl>(GD.getDecl());
1339 
1340   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1341 
1342   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1343     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1344 
1345   if (isa<CXXConstructorDecl>(D) &&
1346       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1347       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1348     // Our approach to inheriting constructors is fundamentally different from
1349     // that used by the MS ABI, so keep our inheriting constructor thunks
1350     // internal rather than trying to pick an unambiguous mangling for them.
1351     return llvm::GlobalValue::InternalLinkage;
1352   }
1353 
1354   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1355 }
1356 
1357 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1358   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1359   if (!MDS) return nullptr;
1360 
1361   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1362 }
1363 
1364 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1365                                               const CGFunctionInfo &Info,
1366                                               llvm::Function *F) {
1367   unsigned CallingConv;
1368   llvm::AttributeList PAL;
1369   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1370   F->setAttributes(PAL);
1371   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1372 }
1373 
1374 static void removeImageAccessQualifier(std::string& TyName) {
1375   std::string ReadOnlyQual("__read_only");
1376   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1377   if (ReadOnlyPos != std::string::npos)
1378     // "+ 1" for the space after access qualifier.
1379     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1380   else {
1381     std::string WriteOnlyQual("__write_only");
1382     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1383     if (WriteOnlyPos != std::string::npos)
1384       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1385     else {
1386       std::string ReadWriteQual("__read_write");
1387       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1388       if (ReadWritePos != std::string::npos)
1389         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1390     }
1391   }
1392 }
1393 
1394 // Returns the address space id that should be produced to the
1395 // kernel_arg_addr_space metadata. This is always fixed to the ids
1396 // as specified in the SPIR 2.0 specification in order to differentiate
1397 // for example in clGetKernelArgInfo() implementation between the address
1398 // spaces with targets without unique mapping to the OpenCL address spaces
1399 // (basically all single AS CPUs).
1400 static unsigned ArgInfoAddressSpace(LangAS AS) {
1401   switch (AS) {
1402   case LangAS::opencl_global:
1403     return 1;
1404   case LangAS::opencl_constant:
1405     return 2;
1406   case LangAS::opencl_local:
1407     return 3;
1408   case LangAS::opencl_generic:
1409     return 4; // Not in SPIR 2.0 specs.
1410   case LangAS::opencl_global_device:
1411     return 5;
1412   case LangAS::opencl_global_host:
1413     return 6;
1414   default:
1415     return 0; // Assume private.
1416   }
1417 }
1418 
1419 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1420                                          const FunctionDecl *FD,
1421                                          CodeGenFunction *CGF) {
1422   assert(((FD && CGF) || (!FD && !CGF)) &&
1423          "Incorrect use - FD and CGF should either be both null or not!");
1424   // Create MDNodes that represent the kernel arg metadata.
1425   // Each MDNode is a list in the form of "key", N number of values which is
1426   // the same number of values as their are kernel arguments.
1427 
1428   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1429 
1430   // MDNode for the kernel argument address space qualifiers.
1431   SmallVector<llvm::Metadata *, 8> addressQuals;
1432 
1433   // MDNode for the kernel argument access qualifiers (images only).
1434   SmallVector<llvm::Metadata *, 8> accessQuals;
1435 
1436   // MDNode for the kernel argument type names.
1437   SmallVector<llvm::Metadata *, 8> argTypeNames;
1438 
1439   // MDNode for the kernel argument base type names.
1440   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1441 
1442   // MDNode for the kernel argument type qualifiers.
1443   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1444 
1445   // MDNode for the kernel argument names.
1446   SmallVector<llvm::Metadata *, 8> argNames;
1447 
1448   if (FD && CGF)
1449     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1450       const ParmVarDecl *parm = FD->getParamDecl(i);
1451       QualType ty = parm->getType();
1452       std::string typeQuals;
1453 
1454       if (ty->isPointerType()) {
1455         QualType pointeeTy = ty->getPointeeType();
1456 
1457         // Get address qualifier.
1458         addressQuals.push_back(
1459             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1460                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1461 
1462         // Get argument type name.
1463         std::string typeName =
1464             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1465 
1466         // Turn "unsigned type" to "utype"
1467         std::string::size_type pos = typeName.find("unsigned");
1468         if (pointeeTy.isCanonical() && pos != std::string::npos)
1469           typeName.erase(pos + 1, 8);
1470 
1471         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1472 
1473         std::string baseTypeName =
1474             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1475                 Policy) +
1476             "*";
1477 
1478         // Turn "unsigned type" to "utype"
1479         pos = baseTypeName.find("unsigned");
1480         if (pos != std::string::npos)
1481           baseTypeName.erase(pos + 1, 8);
1482 
1483         argBaseTypeNames.push_back(
1484             llvm::MDString::get(VMContext, baseTypeName));
1485 
1486         // Get argument type qualifiers:
1487         if (ty.isRestrictQualified())
1488           typeQuals = "restrict";
1489         if (pointeeTy.isConstQualified() ||
1490             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1491           typeQuals += typeQuals.empty() ? "const" : " const";
1492         if (pointeeTy.isVolatileQualified())
1493           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1494       } else {
1495         uint32_t AddrSpc = 0;
1496         bool isPipe = ty->isPipeType();
1497         if (ty->isImageType() || isPipe)
1498           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1499 
1500         addressQuals.push_back(
1501             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1502 
1503         // Get argument type name.
1504         std::string typeName;
1505         if (isPipe)
1506           typeName = ty.getCanonicalType()
1507                          ->castAs<PipeType>()
1508                          ->getElementType()
1509                          .getAsString(Policy);
1510         else
1511           typeName = ty.getUnqualifiedType().getAsString(Policy);
1512 
1513         // Turn "unsigned type" to "utype"
1514         std::string::size_type pos = typeName.find("unsigned");
1515         if (ty.isCanonical() && pos != std::string::npos)
1516           typeName.erase(pos + 1, 8);
1517 
1518         std::string baseTypeName;
1519         if (isPipe)
1520           baseTypeName = ty.getCanonicalType()
1521                              ->castAs<PipeType>()
1522                              ->getElementType()
1523                              .getCanonicalType()
1524                              .getAsString(Policy);
1525         else
1526           baseTypeName =
1527               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1528 
1529         // Remove access qualifiers on images
1530         // (as they are inseparable from type in clang implementation,
1531         // but OpenCL spec provides a special query to get access qualifier
1532         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1533         if (ty->isImageType()) {
1534           removeImageAccessQualifier(typeName);
1535           removeImageAccessQualifier(baseTypeName);
1536         }
1537 
1538         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1539 
1540         // Turn "unsigned type" to "utype"
1541         pos = baseTypeName.find("unsigned");
1542         if (pos != std::string::npos)
1543           baseTypeName.erase(pos + 1, 8);
1544 
1545         argBaseTypeNames.push_back(
1546             llvm::MDString::get(VMContext, baseTypeName));
1547 
1548         if (isPipe)
1549           typeQuals = "pipe";
1550       }
1551 
1552       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1553 
1554       // Get image and pipe access qualifier:
1555       if (ty->isImageType() || ty->isPipeType()) {
1556         const Decl *PDecl = parm;
1557         if (auto *TD = dyn_cast<TypedefType>(ty))
1558           PDecl = TD->getDecl();
1559         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1560         if (A && A->isWriteOnly())
1561           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1562         else if (A && A->isReadWrite())
1563           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1564         else
1565           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1566       } else
1567         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1568 
1569       // Get argument name.
1570       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1571     }
1572 
1573   Fn->setMetadata("kernel_arg_addr_space",
1574                   llvm::MDNode::get(VMContext, addressQuals));
1575   Fn->setMetadata("kernel_arg_access_qual",
1576                   llvm::MDNode::get(VMContext, accessQuals));
1577   Fn->setMetadata("kernel_arg_type",
1578                   llvm::MDNode::get(VMContext, argTypeNames));
1579   Fn->setMetadata("kernel_arg_base_type",
1580                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1581   Fn->setMetadata("kernel_arg_type_qual",
1582                   llvm::MDNode::get(VMContext, argTypeQuals));
1583   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1584     Fn->setMetadata("kernel_arg_name",
1585                     llvm::MDNode::get(VMContext, argNames));
1586 }
1587 
1588 /// Determines whether the language options require us to model
1589 /// unwind exceptions.  We treat -fexceptions as mandating this
1590 /// except under the fragile ObjC ABI with only ObjC exceptions
1591 /// enabled.  This means, for example, that C with -fexceptions
1592 /// enables this.
1593 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1594   // If exceptions are completely disabled, obviously this is false.
1595   if (!LangOpts.Exceptions) return false;
1596 
1597   // If C++ exceptions are enabled, this is true.
1598   if (LangOpts.CXXExceptions) return true;
1599 
1600   // If ObjC exceptions are enabled, this depends on the ABI.
1601   if (LangOpts.ObjCExceptions) {
1602     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1603   }
1604 
1605   return true;
1606 }
1607 
1608 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1609                                                       const CXXMethodDecl *MD) {
1610   // Check that the type metadata can ever actually be used by a call.
1611   if (!CGM.getCodeGenOpts().LTOUnit ||
1612       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1613     return false;
1614 
1615   // Only functions whose address can be taken with a member function pointer
1616   // need this sort of type metadata.
1617   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1618          !isa<CXXDestructorDecl>(MD);
1619 }
1620 
1621 std::vector<const CXXRecordDecl *>
1622 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1623   llvm::SetVector<const CXXRecordDecl *> MostBases;
1624 
1625   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1626   CollectMostBases = [&](const CXXRecordDecl *RD) {
1627     if (RD->getNumBases() == 0)
1628       MostBases.insert(RD);
1629     for (const CXXBaseSpecifier &B : RD->bases())
1630       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1631   };
1632   CollectMostBases(RD);
1633   return MostBases.takeVector();
1634 }
1635 
1636 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1637                                                            llvm::Function *F) {
1638   llvm::AttrBuilder B;
1639 
1640   if (CodeGenOpts.UnwindTables)
1641     B.addAttribute(llvm::Attribute::UWTable);
1642 
1643   if (CodeGenOpts.StackClashProtector)
1644     B.addAttribute("probe-stack", "inline-asm");
1645 
1646   if (!hasUnwindExceptions(LangOpts))
1647     B.addAttribute(llvm::Attribute::NoUnwind);
1648 
1649   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1650     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1651       B.addAttribute(llvm::Attribute::StackProtect);
1652     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1653       B.addAttribute(llvm::Attribute::StackProtectStrong);
1654     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1655       B.addAttribute(llvm::Attribute::StackProtectReq);
1656   }
1657 
1658   if (!D) {
1659     // If we don't have a declaration to control inlining, the function isn't
1660     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1661     // disabled, mark the function as noinline.
1662     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1663         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1664       B.addAttribute(llvm::Attribute::NoInline);
1665 
1666     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1667     return;
1668   }
1669 
1670   // Track whether we need to add the optnone LLVM attribute,
1671   // starting with the default for this optimization level.
1672   bool ShouldAddOptNone =
1673       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1674   // We can't add optnone in the following cases, it won't pass the verifier.
1675   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1676   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1677 
1678   // Add optnone, but do so only if the function isn't always_inline.
1679   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1680       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1681     B.addAttribute(llvm::Attribute::OptimizeNone);
1682 
1683     // OptimizeNone implies noinline; we should not be inlining such functions.
1684     B.addAttribute(llvm::Attribute::NoInline);
1685 
1686     // We still need to handle naked functions even though optnone subsumes
1687     // much of their semantics.
1688     if (D->hasAttr<NakedAttr>())
1689       B.addAttribute(llvm::Attribute::Naked);
1690 
1691     // OptimizeNone wins over OptimizeForSize and MinSize.
1692     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1693     F->removeFnAttr(llvm::Attribute::MinSize);
1694   } else if (D->hasAttr<NakedAttr>()) {
1695     // Naked implies noinline: we should not be inlining such functions.
1696     B.addAttribute(llvm::Attribute::Naked);
1697     B.addAttribute(llvm::Attribute::NoInline);
1698   } else if (D->hasAttr<NoDuplicateAttr>()) {
1699     B.addAttribute(llvm::Attribute::NoDuplicate);
1700   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1701     // Add noinline if the function isn't always_inline.
1702     B.addAttribute(llvm::Attribute::NoInline);
1703   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1704              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1705     // (noinline wins over always_inline, and we can't specify both in IR)
1706     B.addAttribute(llvm::Attribute::AlwaysInline);
1707   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1708     // If we're not inlining, then force everything that isn't always_inline to
1709     // carry an explicit noinline attribute.
1710     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1711       B.addAttribute(llvm::Attribute::NoInline);
1712   } else {
1713     // Otherwise, propagate the inline hint attribute and potentially use its
1714     // absence to mark things as noinline.
1715     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1716       // Search function and template pattern redeclarations for inline.
1717       auto CheckForInline = [](const FunctionDecl *FD) {
1718         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1719           return Redecl->isInlineSpecified();
1720         };
1721         if (any_of(FD->redecls(), CheckRedeclForInline))
1722           return true;
1723         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1724         if (!Pattern)
1725           return false;
1726         return any_of(Pattern->redecls(), CheckRedeclForInline);
1727       };
1728       if (CheckForInline(FD)) {
1729         B.addAttribute(llvm::Attribute::InlineHint);
1730       } else if (CodeGenOpts.getInlining() ==
1731                      CodeGenOptions::OnlyHintInlining &&
1732                  !FD->isInlined() &&
1733                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1734         B.addAttribute(llvm::Attribute::NoInline);
1735       }
1736     }
1737   }
1738 
1739   // Add other optimization related attributes if we are optimizing this
1740   // function.
1741   if (!D->hasAttr<OptimizeNoneAttr>()) {
1742     if (D->hasAttr<ColdAttr>()) {
1743       if (!ShouldAddOptNone)
1744         B.addAttribute(llvm::Attribute::OptimizeForSize);
1745       B.addAttribute(llvm::Attribute::Cold);
1746     }
1747 
1748     if (D->hasAttr<MinSizeAttr>())
1749       B.addAttribute(llvm::Attribute::MinSize);
1750   }
1751 
1752   if (D->hasAttr<NoMergeAttr>())
1753     B.addAttribute(llvm::Attribute::NoMerge);
1754 
1755   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1756 
1757   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1758   if (alignment)
1759     F->setAlignment(llvm::Align(alignment));
1760 
1761   if (!D->hasAttr<AlignedAttr>())
1762     if (LangOpts.FunctionAlignment)
1763       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1764 
1765   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1766   // reserve a bit for differentiating between virtual and non-virtual member
1767   // functions. If the current target's C++ ABI requires this and this is a
1768   // member function, set its alignment accordingly.
1769   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1770     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1771       F->setAlignment(llvm::Align(2));
1772   }
1773 
1774   // In the cross-dso CFI mode with canonical jump tables, we want !type
1775   // attributes on definitions only.
1776   if (CodeGenOpts.SanitizeCfiCrossDso &&
1777       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1778     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1779       // Skip available_externally functions. They won't be codegen'ed in the
1780       // current module anyway.
1781       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1782         CreateFunctionTypeMetadataForIcall(FD, F);
1783     }
1784   }
1785 
1786   // Emit type metadata on member functions for member function pointer checks.
1787   // These are only ever necessary on definitions; we're guaranteed that the
1788   // definition will be present in the LTO unit as a result of LTO visibility.
1789   auto *MD = dyn_cast<CXXMethodDecl>(D);
1790   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1791     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1792       llvm::Metadata *Id =
1793           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1794               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1795       F->addTypeMetadata(0, Id);
1796     }
1797   }
1798 }
1799 
1800 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1801                                                   llvm::Function *F) {
1802   if (D->hasAttr<StrictFPAttr>()) {
1803     llvm::AttrBuilder FuncAttrs;
1804     FuncAttrs.addAttribute("strictfp");
1805     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1806   }
1807 }
1808 
1809 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1810   const Decl *D = GD.getDecl();
1811   if (dyn_cast_or_null<NamedDecl>(D))
1812     setGVProperties(GV, GD);
1813   else
1814     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1815 
1816   if (D && D->hasAttr<UsedAttr>())
1817     addUsedGlobal(GV);
1818 
1819   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1820     const auto *VD = cast<VarDecl>(D);
1821     if (VD->getType().isConstQualified() &&
1822         VD->getStorageDuration() == SD_Static)
1823       addUsedGlobal(GV);
1824   }
1825 }
1826 
1827 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1828                                                 llvm::AttrBuilder &Attrs) {
1829   // Add target-cpu and target-features attributes to functions. If
1830   // we have a decl for the function and it has a target attribute then
1831   // parse that and add it to the feature set.
1832   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1833   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1834   std::vector<std::string> Features;
1835   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1836   FD = FD ? FD->getMostRecentDecl() : FD;
1837   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1838   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1839   bool AddedAttr = false;
1840   if (TD || SD) {
1841     llvm::StringMap<bool> FeatureMap;
1842     getContext().getFunctionFeatureMap(FeatureMap, GD);
1843 
1844     // Produce the canonical string for this set of features.
1845     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1846       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1847 
1848     // Now add the target-cpu and target-features to the function.
1849     // While we populated the feature map above, we still need to
1850     // get and parse the target attribute so we can get the cpu for
1851     // the function.
1852     if (TD) {
1853       ParsedTargetAttr ParsedAttr = TD->parse();
1854       if (!ParsedAttr.Architecture.empty() &&
1855           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1856         TargetCPU = ParsedAttr.Architecture;
1857         TuneCPU = ""; // Clear the tune CPU.
1858       }
1859       if (!ParsedAttr.Tune.empty() &&
1860           getTarget().isValidCPUName(ParsedAttr.Tune))
1861         TuneCPU = ParsedAttr.Tune;
1862     }
1863   } else {
1864     // Otherwise just add the existing target cpu and target features to the
1865     // function.
1866     Features = getTarget().getTargetOpts().Features;
1867   }
1868 
1869   if (!TargetCPU.empty()) {
1870     Attrs.addAttribute("target-cpu", TargetCPU);
1871     AddedAttr = true;
1872   }
1873   if (!TuneCPU.empty()) {
1874     Attrs.addAttribute("tune-cpu", TuneCPU);
1875     AddedAttr = true;
1876   }
1877   if (!Features.empty()) {
1878     llvm::sort(Features);
1879     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1880     AddedAttr = true;
1881   }
1882 
1883   return AddedAttr;
1884 }
1885 
1886 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1887                                           llvm::GlobalObject *GO) {
1888   const Decl *D = GD.getDecl();
1889   SetCommonAttributes(GD, GO);
1890 
1891   if (D) {
1892     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1893       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1894         GV->addAttribute("bss-section", SA->getName());
1895       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1896         GV->addAttribute("data-section", SA->getName());
1897       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1898         GV->addAttribute("rodata-section", SA->getName());
1899       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1900         GV->addAttribute("relro-section", SA->getName());
1901     }
1902 
1903     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1904       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1905         if (!D->getAttr<SectionAttr>())
1906           F->addFnAttr("implicit-section-name", SA->getName());
1907 
1908       llvm::AttrBuilder Attrs;
1909       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1910         // We know that GetCPUAndFeaturesAttributes will always have the
1911         // newest set, since it has the newest possible FunctionDecl, so the
1912         // new ones should replace the old.
1913         llvm::AttrBuilder RemoveAttrs;
1914         RemoveAttrs.addAttribute("target-cpu");
1915         RemoveAttrs.addAttribute("target-features");
1916         RemoveAttrs.addAttribute("tune-cpu");
1917         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1918         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1919       }
1920     }
1921 
1922     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1923       GO->setSection(CSA->getName());
1924     else if (const auto *SA = D->getAttr<SectionAttr>())
1925       GO->setSection(SA->getName());
1926   }
1927 
1928   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1929 }
1930 
1931 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1932                                                   llvm::Function *F,
1933                                                   const CGFunctionInfo &FI) {
1934   const Decl *D = GD.getDecl();
1935   SetLLVMFunctionAttributes(GD, FI, F);
1936   SetLLVMFunctionAttributesForDefinition(D, F);
1937 
1938   F->setLinkage(llvm::Function::InternalLinkage);
1939 
1940   setNonAliasAttributes(GD, F);
1941 }
1942 
1943 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1944   // Set linkage and visibility in case we never see a definition.
1945   LinkageInfo LV = ND->getLinkageAndVisibility();
1946   // Don't set internal linkage on declarations.
1947   // "extern_weak" is overloaded in LLVM; we probably should have
1948   // separate linkage types for this.
1949   if (isExternallyVisible(LV.getLinkage()) &&
1950       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1951     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1952 }
1953 
1954 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1955                                                        llvm::Function *F) {
1956   // Only if we are checking indirect calls.
1957   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1958     return;
1959 
1960   // Non-static class methods are handled via vtable or member function pointer
1961   // checks elsewhere.
1962   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1963     return;
1964 
1965   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1966   F->addTypeMetadata(0, MD);
1967   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1968 
1969   // Emit a hash-based bit set entry for cross-DSO calls.
1970   if (CodeGenOpts.SanitizeCfiCrossDso)
1971     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1972       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1973 }
1974 
1975 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1976                                           bool IsIncompleteFunction,
1977                                           bool IsThunk) {
1978 
1979   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1980     // If this is an intrinsic function, set the function's attributes
1981     // to the intrinsic's attributes.
1982     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1983     return;
1984   }
1985 
1986   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1987 
1988   if (!IsIncompleteFunction)
1989     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1990 
1991   // Add the Returned attribute for "this", except for iOS 5 and earlier
1992   // where substantial code, including the libstdc++ dylib, was compiled with
1993   // GCC and does not actually return "this".
1994   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1995       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1996     assert(!F->arg_empty() &&
1997            F->arg_begin()->getType()
1998              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1999            "unexpected this return");
2000     F->addAttribute(1, llvm::Attribute::Returned);
2001   }
2002 
2003   // Only a few attributes are set on declarations; these may later be
2004   // overridden by a definition.
2005 
2006   setLinkageForGV(F, FD);
2007   setGVProperties(F, FD);
2008 
2009   // Setup target-specific attributes.
2010   if (!IsIncompleteFunction && F->isDeclaration())
2011     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2012 
2013   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2014     F->setSection(CSA->getName());
2015   else if (const auto *SA = FD->getAttr<SectionAttr>())
2016      F->setSection(SA->getName());
2017 
2018   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2019   if (FD->isInlineBuiltinDeclaration()) {
2020     const FunctionDecl *FDBody;
2021     bool HasBody = FD->hasBody(FDBody);
2022     (void)HasBody;
2023     assert(HasBody && "Inline builtin declarations should always have an "
2024                       "available body!");
2025     if (shouldEmitFunction(FDBody))
2026       F->addAttribute(llvm::AttributeList::FunctionIndex,
2027                       llvm::Attribute::NoBuiltin);
2028   }
2029 
2030   if (FD->isReplaceableGlobalAllocationFunction()) {
2031     // A replaceable global allocation function does not act like a builtin by
2032     // default, only if it is invoked by a new-expression or delete-expression.
2033     F->addAttribute(llvm::AttributeList::FunctionIndex,
2034                     llvm::Attribute::NoBuiltin);
2035   }
2036 
2037   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2038     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2039   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2040     if (MD->isVirtual())
2041       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2042 
2043   // Don't emit entries for function declarations in the cross-DSO mode. This
2044   // is handled with better precision by the receiving DSO. But if jump tables
2045   // are non-canonical then we need type metadata in order to produce the local
2046   // jump table.
2047   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2048       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2049     CreateFunctionTypeMetadataForIcall(FD, F);
2050 
2051   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2052     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2053 
2054   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2055     // Annotate the callback behavior as metadata:
2056     //  - The callback callee (as argument number).
2057     //  - The callback payloads (as argument numbers).
2058     llvm::LLVMContext &Ctx = F->getContext();
2059     llvm::MDBuilder MDB(Ctx);
2060 
2061     // The payload indices are all but the first one in the encoding. The first
2062     // identifies the callback callee.
2063     int CalleeIdx = *CB->encoding_begin();
2064     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2065     F->addMetadata(llvm::LLVMContext::MD_callback,
2066                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2067                                                CalleeIdx, PayloadIndices,
2068                                                /* VarArgsArePassed */ false)}));
2069   }
2070 }
2071 
2072 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2073   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2074          "Only globals with definition can force usage.");
2075   LLVMUsed.emplace_back(GV);
2076 }
2077 
2078 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2079   assert(!GV->isDeclaration() &&
2080          "Only globals with definition can force usage.");
2081   LLVMCompilerUsed.emplace_back(GV);
2082 }
2083 
2084 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2085                      std::vector<llvm::WeakTrackingVH> &List) {
2086   // Don't create llvm.used if there is no need.
2087   if (List.empty())
2088     return;
2089 
2090   // Convert List to what ConstantArray needs.
2091   SmallVector<llvm::Constant*, 8> UsedArray;
2092   UsedArray.resize(List.size());
2093   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2094     UsedArray[i] =
2095         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2096             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2097   }
2098 
2099   if (UsedArray.empty())
2100     return;
2101   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2102 
2103   auto *GV = new llvm::GlobalVariable(
2104       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2105       llvm::ConstantArray::get(ATy, UsedArray), Name);
2106 
2107   GV->setSection("llvm.metadata");
2108 }
2109 
2110 void CodeGenModule::emitLLVMUsed() {
2111   emitUsed(*this, "llvm.used", LLVMUsed);
2112   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2113 }
2114 
2115 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2116   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2117   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2118 }
2119 
2120 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2121   llvm::SmallString<32> Opt;
2122   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2123   if (Opt.empty())
2124     return;
2125   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2126   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2127 }
2128 
2129 void CodeGenModule::AddDependentLib(StringRef Lib) {
2130   auto &C = getLLVMContext();
2131   if (getTarget().getTriple().isOSBinFormatELF()) {
2132       ELFDependentLibraries.push_back(
2133         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2134     return;
2135   }
2136 
2137   llvm::SmallString<24> Opt;
2138   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2139   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2140   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2141 }
2142 
2143 /// Add link options implied by the given module, including modules
2144 /// it depends on, using a postorder walk.
2145 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2146                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2147                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2148   // Import this module's parent.
2149   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2150     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2151   }
2152 
2153   // Import this module's dependencies.
2154   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2155     if (Visited.insert(Mod->Imports[I - 1]).second)
2156       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2157   }
2158 
2159   // Add linker options to link against the libraries/frameworks
2160   // described by this module.
2161   llvm::LLVMContext &Context = CGM.getLLVMContext();
2162   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2163 
2164   // For modules that use export_as for linking, use that module
2165   // name instead.
2166   if (Mod->UseExportAsModuleLinkName)
2167     return;
2168 
2169   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2170     // Link against a framework.  Frameworks are currently Darwin only, so we
2171     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2172     if (Mod->LinkLibraries[I-1].IsFramework) {
2173       llvm::Metadata *Args[2] = {
2174           llvm::MDString::get(Context, "-framework"),
2175           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2176 
2177       Metadata.push_back(llvm::MDNode::get(Context, Args));
2178       continue;
2179     }
2180 
2181     // Link against a library.
2182     if (IsELF) {
2183       llvm::Metadata *Args[2] = {
2184           llvm::MDString::get(Context, "lib"),
2185           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2186       };
2187       Metadata.push_back(llvm::MDNode::get(Context, Args));
2188     } else {
2189       llvm::SmallString<24> Opt;
2190       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2191           Mod->LinkLibraries[I - 1].Library, Opt);
2192       auto *OptString = llvm::MDString::get(Context, Opt);
2193       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2194     }
2195   }
2196 }
2197 
2198 void CodeGenModule::EmitModuleLinkOptions() {
2199   // Collect the set of all of the modules we want to visit to emit link
2200   // options, which is essentially the imported modules and all of their
2201   // non-explicit child modules.
2202   llvm::SetVector<clang::Module *> LinkModules;
2203   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2204   SmallVector<clang::Module *, 16> Stack;
2205 
2206   // Seed the stack with imported modules.
2207   for (Module *M : ImportedModules) {
2208     // Do not add any link flags when an implementation TU of a module imports
2209     // a header of that same module.
2210     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2211         !getLangOpts().isCompilingModule())
2212       continue;
2213     if (Visited.insert(M).second)
2214       Stack.push_back(M);
2215   }
2216 
2217   // Find all of the modules to import, making a little effort to prune
2218   // non-leaf modules.
2219   while (!Stack.empty()) {
2220     clang::Module *Mod = Stack.pop_back_val();
2221 
2222     bool AnyChildren = false;
2223 
2224     // Visit the submodules of this module.
2225     for (const auto &SM : Mod->submodules()) {
2226       // Skip explicit children; they need to be explicitly imported to be
2227       // linked against.
2228       if (SM->IsExplicit)
2229         continue;
2230 
2231       if (Visited.insert(SM).second) {
2232         Stack.push_back(SM);
2233         AnyChildren = true;
2234       }
2235     }
2236 
2237     // We didn't find any children, so add this module to the list of
2238     // modules to link against.
2239     if (!AnyChildren) {
2240       LinkModules.insert(Mod);
2241     }
2242   }
2243 
2244   // Add link options for all of the imported modules in reverse topological
2245   // order.  We don't do anything to try to order import link flags with respect
2246   // to linker options inserted by things like #pragma comment().
2247   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2248   Visited.clear();
2249   for (Module *M : LinkModules)
2250     if (Visited.insert(M).second)
2251       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2252   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2253   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2254 
2255   // Add the linker options metadata flag.
2256   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2257   for (auto *MD : LinkerOptionsMetadata)
2258     NMD->addOperand(MD);
2259 }
2260 
2261 void CodeGenModule::EmitDeferred() {
2262   // Emit deferred declare target declarations.
2263   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2264     getOpenMPRuntime().emitDeferredTargetDecls();
2265 
2266   // Emit code for any potentially referenced deferred decls.  Since a
2267   // previously unused static decl may become used during the generation of code
2268   // for a static function, iterate until no changes are made.
2269 
2270   if (!DeferredVTables.empty()) {
2271     EmitDeferredVTables();
2272 
2273     // Emitting a vtable doesn't directly cause more vtables to
2274     // become deferred, although it can cause functions to be
2275     // emitted that then need those vtables.
2276     assert(DeferredVTables.empty());
2277   }
2278 
2279   // Emit CUDA/HIP static device variables referenced by host code only.
2280   if (getLangOpts().CUDA)
2281     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2282       DeferredDeclsToEmit.push_back(V);
2283 
2284   // Stop if we're out of both deferred vtables and deferred declarations.
2285   if (DeferredDeclsToEmit.empty())
2286     return;
2287 
2288   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2289   // work, it will not interfere with this.
2290   std::vector<GlobalDecl> CurDeclsToEmit;
2291   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2292 
2293   for (GlobalDecl &D : CurDeclsToEmit) {
2294     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2295     // to get GlobalValue with exactly the type we need, not something that
2296     // might had been created for another decl with the same mangled name but
2297     // different type.
2298     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2299         GetAddrOfGlobal(D, ForDefinition));
2300 
2301     // In case of different address spaces, we may still get a cast, even with
2302     // IsForDefinition equal to true. Query mangled names table to get
2303     // GlobalValue.
2304     if (!GV)
2305       GV = GetGlobalValue(getMangledName(D));
2306 
2307     // Make sure GetGlobalValue returned non-null.
2308     assert(GV);
2309 
2310     // Check to see if we've already emitted this.  This is necessary
2311     // for a couple of reasons: first, decls can end up in the
2312     // deferred-decls queue multiple times, and second, decls can end
2313     // up with definitions in unusual ways (e.g. by an extern inline
2314     // function acquiring a strong function redefinition).  Just
2315     // ignore these cases.
2316     if (!GV->isDeclaration())
2317       continue;
2318 
2319     // If this is OpenMP, check if it is legal to emit this global normally.
2320     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2321       continue;
2322 
2323     // Otherwise, emit the definition and move on to the next one.
2324     EmitGlobalDefinition(D, GV);
2325 
2326     // If we found out that we need to emit more decls, do that recursively.
2327     // This has the advantage that the decls are emitted in a DFS and related
2328     // ones are close together, which is convenient for testing.
2329     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2330       EmitDeferred();
2331       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2332     }
2333   }
2334 }
2335 
2336 void CodeGenModule::EmitVTablesOpportunistically() {
2337   // Try to emit external vtables as available_externally if they have emitted
2338   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2339   // is not allowed to create new references to things that need to be emitted
2340   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2341 
2342   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2343          && "Only emit opportunistic vtables with optimizations");
2344 
2345   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2346     assert(getVTables().isVTableExternal(RD) &&
2347            "This queue should only contain external vtables");
2348     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2349       VTables.GenerateClassData(RD);
2350   }
2351   OpportunisticVTables.clear();
2352 }
2353 
2354 void CodeGenModule::EmitGlobalAnnotations() {
2355   if (Annotations.empty())
2356     return;
2357 
2358   // Create a new global variable for the ConstantStruct in the Module.
2359   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2360     Annotations[0]->getType(), Annotations.size()), Annotations);
2361   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2362                                       llvm::GlobalValue::AppendingLinkage,
2363                                       Array, "llvm.global.annotations");
2364   gv->setSection(AnnotationSection);
2365 }
2366 
2367 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2368   llvm::Constant *&AStr = AnnotationStrings[Str];
2369   if (AStr)
2370     return AStr;
2371 
2372   // Not found yet, create a new global.
2373   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2374   auto *gv =
2375       new llvm::GlobalVariable(getModule(), s->getType(), true,
2376                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2377   gv->setSection(AnnotationSection);
2378   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2379   AStr = gv;
2380   return gv;
2381 }
2382 
2383 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2384   SourceManager &SM = getContext().getSourceManager();
2385   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2386   if (PLoc.isValid())
2387     return EmitAnnotationString(PLoc.getFilename());
2388   return EmitAnnotationString(SM.getBufferName(Loc));
2389 }
2390 
2391 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2392   SourceManager &SM = getContext().getSourceManager();
2393   PresumedLoc PLoc = SM.getPresumedLoc(L);
2394   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2395     SM.getExpansionLineNumber(L);
2396   return llvm::ConstantInt::get(Int32Ty, LineNo);
2397 }
2398 
2399 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2400   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2401   if (Exprs.empty())
2402     return llvm::ConstantPointerNull::get(Int8PtrTy);
2403 
2404   llvm::FoldingSetNodeID ID;
2405   for (Expr *E : Exprs) {
2406     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2407   }
2408   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2409   if (Lookup)
2410     return Lookup;
2411 
2412   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2413   LLVMArgs.reserve(Exprs.size());
2414   ConstantEmitter ConstEmiter(*this);
2415   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2416     const auto *CE = cast<clang::ConstantExpr>(E);
2417     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2418                                     CE->getType());
2419   });
2420   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2421   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2422                                       llvm::GlobalValue::PrivateLinkage, Struct,
2423                                       ".args");
2424   GV->setSection(AnnotationSection);
2425   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2426   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2427 
2428   Lookup = Bitcasted;
2429   return Bitcasted;
2430 }
2431 
2432 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2433                                                 const AnnotateAttr *AA,
2434                                                 SourceLocation L) {
2435   // Get the globals for file name, annotation, and the line number.
2436   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2437                  *UnitGV = EmitAnnotationUnit(L),
2438                  *LineNoCst = EmitAnnotationLineNo(L),
2439                  *Args = EmitAnnotationArgs(AA);
2440 
2441   llvm::Constant *ASZeroGV = GV;
2442   if (GV->getAddressSpace() != 0) {
2443     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2444                    GV, GV->getValueType()->getPointerTo(0));
2445   }
2446 
2447   // Create the ConstantStruct for the global annotation.
2448   llvm::Constant *Fields[] = {
2449       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2450       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2451       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2452       LineNoCst,
2453       Args,
2454   };
2455   return llvm::ConstantStruct::getAnon(Fields);
2456 }
2457 
2458 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2459                                          llvm::GlobalValue *GV) {
2460   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2461   // Get the struct elements for these annotations.
2462   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2463     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2464 }
2465 
2466 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2467                                            llvm::Function *Fn,
2468                                            SourceLocation Loc) const {
2469   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2470   // Blacklist by function name.
2471   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2472     return true;
2473   // Blacklist by location.
2474   if (Loc.isValid())
2475     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2476   // If location is unknown, this may be a compiler-generated function. Assume
2477   // it's located in the main file.
2478   auto &SM = Context.getSourceManager();
2479   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2480     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2481   }
2482   return false;
2483 }
2484 
2485 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2486                                            SourceLocation Loc, QualType Ty,
2487                                            StringRef Category) const {
2488   // For now globals can be blacklisted only in ASan and KASan.
2489   const SanitizerMask EnabledAsanMask =
2490       LangOpts.Sanitize.Mask &
2491       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2492        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2493        SanitizerKind::MemTag);
2494   if (!EnabledAsanMask)
2495     return false;
2496   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2497   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2498     return true;
2499   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2500     return true;
2501   // Check global type.
2502   if (!Ty.isNull()) {
2503     // Drill down the array types: if global variable of a fixed type is
2504     // blacklisted, we also don't instrument arrays of them.
2505     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2506       Ty = AT->getElementType();
2507     Ty = Ty.getCanonicalType().getUnqualifiedType();
2508     // We allow to blacklist only record types (classes, structs etc.)
2509     if (Ty->isRecordType()) {
2510       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2511       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2512         return true;
2513     }
2514   }
2515   return false;
2516 }
2517 
2518 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2519                                    StringRef Category) const {
2520   const auto &XRayFilter = getContext().getXRayFilter();
2521   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2522   auto Attr = ImbueAttr::NONE;
2523   if (Loc.isValid())
2524     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2525   if (Attr == ImbueAttr::NONE)
2526     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2527   switch (Attr) {
2528   case ImbueAttr::NONE:
2529     return false;
2530   case ImbueAttr::ALWAYS:
2531     Fn->addFnAttr("function-instrument", "xray-always");
2532     break;
2533   case ImbueAttr::ALWAYS_ARG1:
2534     Fn->addFnAttr("function-instrument", "xray-always");
2535     Fn->addFnAttr("xray-log-args", "1");
2536     break;
2537   case ImbueAttr::NEVER:
2538     Fn->addFnAttr("function-instrument", "xray-never");
2539     break;
2540   }
2541   return true;
2542 }
2543 
2544 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2545   // Never defer when EmitAllDecls is specified.
2546   if (LangOpts.EmitAllDecls)
2547     return true;
2548 
2549   if (CodeGenOpts.KeepStaticConsts) {
2550     const auto *VD = dyn_cast<VarDecl>(Global);
2551     if (VD && VD->getType().isConstQualified() &&
2552         VD->getStorageDuration() == SD_Static)
2553       return true;
2554   }
2555 
2556   return getContext().DeclMustBeEmitted(Global);
2557 }
2558 
2559 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2560   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2561     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2562       // Implicit template instantiations may change linkage if they are later
2563       // explicitly instantiated, so they should not be emitted eagerly.
2564       return false;
2565     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2566     // not emit them eagerly unless we sure that the function must be emitted on
2567     // the host.
2568     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2569         !LangOpts.OpenMPIsDevice &&
2570         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2571         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2572       return false;
2573   }
2574   if (const auto *VD = dyn_cast<VarDecl>(Global))
2575     if (Context.getInlineVariableDefinitionKind(VD) ==
2576         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2577       // A definition of an inline constexpr static data member may change
2578       // linkage later if it's redeclared outside the class.
2579       return false;
2580   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2581   // codegen for global variables, because they may be marked as threadprivate.
2582   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2583       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2584       !isTypeConstant(Global->getType(), false) &&
2585       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2586     return false;
2587 
2588   return true;
2589 }
2590 
2591 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2592   StringRef Name = getMangledName(GD);
2593 
2594   // The UUID descriptor should be pointer aligned.
2595   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2596 
2597   // Look for an existing global.
2598   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2599     return ConstantAddress(GV, Alignment);
2600 
2601   ConstantEmitter Emitter(*this);
2602   llvm::Constant *Init;
2603 
2604   APValue &V = GD->getAsAPValue();
2605   if (!V.isAbsent()) {
2606     // If possible, emit the APValue version of the initializer. In particular,
2607     // this gets the type of the constant right.
2608     Init = Emitter.emitForInitializer(
2609         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2610   } else {
2611     // As a fallback, directly construct the constant.
2612     // FIXME: This may get padding wrong under esoteric struct layout rules.
2613     // MSVC appears to create a complete type 'struct __s_GUID' that it
2614     // presumably uses to represent these constants.
2615     MSGuidDecl::Parts Parts = GD->getParts();
2616     llvm::Constant *Fields[4] = {
2617         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2618         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2619         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2620         llvm::ConstantDataArray::getRaw(
2621             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2622             Int8Ty)};
2623     Init = llvm::ConstantStruct::getAnon(Fields);
2624   }
2625 
2626   auto *GV = new llvm::GlobalVariable(
2627       getModule(), Init->getType(),
2628       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2629   if (supportsCOMDAT())
2630     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2631   setDSOLocal(GV);
2632 
2633   llvm::Constant *Addr = GV;
2634   if (!V.isAbsent()) {
2635     Emitter.finalize(GV);
2636   } else {
2637     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2638     Addr = llvm::ConstantExpr::getBitCast(
2639         GV, Ty->getPointerTo(GV->getAddressSpace()));
2640   }
2641   return ConstantAddress(Addr, Alignment);
2642 }
2643 
2644 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2645     const TemplateParamObjectDecl *TPO) {
2646   StringRef Name = getMangledName(TPO);
2647   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2648 
2649   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2650     return ConstantAddress(GV, Alignment);
2651 
2652   ConstantEmitter Emitter(*this);
2653   llvm::Constant *Init = Emitter.emitForInitializer(
2654         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2655 
2656   if (!Init) {
2657     ErrorUnsupported(TPO, "template parameter object");
2658     return ConstantAddress::invalid();
2659   }
2660 
2661   auto *GV = new llvm::GlobalVariable(
2662       getModule(), Init->getType(),
2663       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2664   if (supportsCOMDAT())
2665     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2666   Emitter.finalize(GV);
2667 
2668   return ConstantAddress(GV, Alignment);
2669 }
2670 
2671 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2672   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2673   assert(AA && "No alias?");
2674 
2675   CharUnits Alignment = getContext().getDeclAlign(VD);
2676   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2677 
2678   // See if there is already something with the target's name in the module.
2679   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2680   if (Entry) {
2681     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2682     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2683     return ConstantAddress(Ptr, Alignment);
2684   }
2685 
2686   llvm::Constant *Aliasee;
2687   if (isa<llvm::FunctionType>(DeclTy))
2688     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2689                                       GlobalDecl(cast<FunctionDecl>(VD)),
2690                                       /*ForVTable=*/false);
2691   else
2692     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2693                                     llvm::PointerType::getUnqual(DeclTy),
2694                                     nullptr);
2695 
2696   auto *F = cast<llvm::GlobalValue>(Aliasee);
2697   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2698   WeakRefReferences.insert(F);
2699 
2700   return ConstantAddress(Aliasee, Alignment);
2701 }
2702 
2703 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2704   const auto *Global = cast<ValueDecl>(GD.getDecl());
2705 
2706   // Weak references don't produce any output by themselves.
2707   if (Global->hasAttr<WeakRefAttr>())
2708     return;
2709 
2710   // If this is an alias definition (which otherwise looks like a declaration)
2711   // emit it now.
2712   if (Global->hasAttr<AliasAttr>())
2713     return EmitAliasDefinition(GD);
2714 
2715   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2716   if (Global->hasAttr<IFuncAttr>())
2717     return emitIFuncDefinition(GD);
2718 
2719   // If this is a cpu_dispatch multiversion function, emit the resolver.
2720   if (Global->hasAttr<CPUDispatchAttr>())
2721     return emitCPUDispatchDefinition(GD);
2722 
2723   // If this is CUDA, be selective about which declarations we emit.
2724   if (LangOpts.CUDA) {
2725     if (LangOpts.CUDAIsDevice) {
2726       if (!Global->hasAttr<CUDADeviceAttr>() &&
2727           !Global->hasAttr<CUDAGlobalAttr>() &&
2728           !Global->hasAttr<CUDAConstantAttr>() &&
2729           !Global->hasAttr<CUDASharedAttr>() &&
2730           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2731           !Global->getType()->isCUDADeviceBuiltinTextureType())
2732         return;
2733     } else {
2734       // We need to emit host-side 'shadows' for all global
2735       // device-side variables because the CUDA runtime needs their
2736       // size and host-side address in order to provide access to
2737       // their device-side incarnations.
2738 
2739       // So device-only functions are the only things we skip.
2740       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2741           Global->hasAttr<CUDADeviceAttr>())
2742         return;
2743 
2744       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2745              "Expected Variable or Function");
2746     }
2747   }
2748 
2749   if (LangOpts.OpenMP) {
2750     // If this is OpenMP, check if it is legal to emit this global normally.
2751     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2752       return;
2753     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2754       if (MustBeEmitted(Global))
2755         EmitOMPDeclareReduction(DRD);
2756       return;
2757     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2758       if (MustBeEmitted(Global))
2759         EmitOMPDeclareMapper(DMD);
2760       return;
2761     }
2762   }
2763 
2764   // Ignore declarations, they will be emitted on their first use.
2765   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2766     // Forward declarations are emitted lazily on first use.
2767     if (!FD->doesThisDeclarationHaveABody()) {
2768       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2769         return;
2770 
2771       StringRef MangledName = getMangledName(GD);
2772 
2773       // Compute the function info and LLVM type.
2774       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2775       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2776 
2777       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2778                               /*DontDefer=*/false);
2779       return;
2780     }
2781   } else {
2782     const auto *VD = cast<VarDecl>(Global);
2783     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2784     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2785         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2786       if (LangOpts.OpenMP) {
2787         // Emit declaration of the must-be-emitted declare target variable.
2788         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2789                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2790           bool UnifiedMemoryEnabled =
2791               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2792           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2793               !UnifiedMemoryEnabled) {
2794             (void)GetAddrOfGlobalVar(VD);
2795           } else {
2796             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2797                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2798                      UnifiedMemoryEnabled)) &&
2799                    "Link clause or to clause with unified memory expected.");
2800             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2801           }
2802 
2803           return;
2804         }
2805       }
2806       // If this declaration may have caused an inline variable definition to
2807       // change linkage, make sure that it's emitted.
2808       if (Context.getInlineVariableDefinitionKind(VD) ==
2809           ASTContext::InlineVariableDefinitionKind::Strong)
2810         GetAddrOfGlobalVar(VD);
2811       return;
2812     }
2813   }
2814 
2815   // Defer code generation to first use when possible, e.g. if this is an inline
2816   // function. If the global must always be emitted, do it eagerly if possible
2817   // to benefit from cache locality.
2818   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2819     // Emit the definition if it can't be deferred.
2820     EmitGlobalDefinition(GD);
2821     return;
2822   }
2823 
2824   // If we're deferring emission of a C++ variable with an
2825   // initializer, remember the order in which it appeared in the file.
2826   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2827       cast<VarDecl>(Global)->hasInit()) {
2828     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2829     CXXGlobalInits.push_back(nullptr);
2830   }
2831 
2832   StringRef MangledName = getMangledName(GD);
2833   if (GetGlobalValue(MangledName) != nullptr) {
2834     // The value has already been used and should therefore be emitted.
2835     addDeferredDeclToEmit(GD);
2836   } else if (MustBeEmitted(Global)) {
2837     // The value must be emitted, but cannot be emitted eagerly.
2838     assert(!MayBeEmittedEagerly(Global));
2839     addDeferredDeclToEmit(GD);
2840   } else {
2841     // Otherwise, remember that we saw a deferred decl with this name.  The
2842     // first use of the mangled name will cause it to move into
2843     // DeferredDeclsToEmit.
2844     DeferredDecls[MangledName] = GD;
2845   }
2846 }
2847 
2848 // Check if T is a class type with a destructor that's not dllimport.
2849 static bool HasNonDllImportDtor(QualType T) {
2850   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2851     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2852       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2853         return true;
2854 
2855   return false;
2856 }
2857 
2858 namespace {
2859   struct FunctionIsDirectlyRecursive
2860       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2861     const StringRef Name;
2862     const Builtin::Context &BI;
2863     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2864         : Name(N), BI(C) {}
2865 
2866     bool VisitCallExpr(const CallExpr *E) {
2867       const FunctionDecl *FD = E->getDirectCallee();
2868       if (!FD)
2869         return false;
2870       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2871       if (Attr && Name == Attr->getLabel())
2872         return true;
2873       unsigned BuiltinID = FD->getBuiltinID();
2874       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2875         return false;
2876       StringRef BuiltinName = BI.getName(BuiltinID);
2877       if (BuiltinName.startswith("__builtin_") &&
2878           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2879         return true;
2880       }
2881       return false;
2882     }
2883 
2884     bool VisitStmt(const Stmt *S) {
2885       for (const Stmt *Child : S->children())
2886         if (Child && this->Visit(Child))
2887           return true;
2888       return false;
2889     }
2890   };
2891 
2892   // Make sure we're not referencing non-imported vars or functions.
2893   struct DLLImportFunctionVisitor
2894       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2895     bool SafeToInline = true;
2896 
2897     bool shouldVisitImplicitCode() const { return true; }
2898 
2899     bool VisitVarDecl(VarDecl *VD) {
2900       if (VD->getTLSKind()) {
2901         // A thread-local variable cannot be imported.
2902         SafeToInline = false;
2903         return SafeToInline;
2904       }
2905 
2906       // A variable definition might imply a destructor call.
2907       if (VD->isThisDeclarationADefinition())
2908         SafeToInline = !HasNonDllImportDtor(VD->getType());
2909 
2910       return SafeToInline;
2911     }
2912 
2913     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2914       if (const auto *D = E->getTemporary()->getDestructor())
2915         SafeToInline = D->hasAttr<DLLImportAttr>();
2916       return SafeToInline;
2917     }
2918 
2919     bool VisitDeclRefExpr(DeclRefExpr *E) {
2920       ValueDecl *VD = E->getDecl();
2921       if (isa<FunctionDecl>(VD))
2922         SafeToInline = VD->hasAttr<DLLImportAttr>();
2923       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2924         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2925       return SafeToInline;
2926     }
2927 
2928     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2929       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2930       return SafeToInline;
2931     }
2932 
2933     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2934       CXXMethodDecl *M = E->getMethodDecl();
2935       if (!M) {
2936         // Call through a pointer to member function. This is safe to inline.
2937         SafeToInline = true;
2938       } else {
2939         SafeToInline = M->hasAttr<DLLImportAttr>();
2940       }
2941       return SafeToInline;
2942     }
2943 
2944     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2945       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2946       return SafeToInline;
2947     }
2948 
2949     bool VisitCXXNewExpr(CXXNewExpr *E) {
2950       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2951       return SafeToInline;
2952     }
2953   };
2954 }
2955 
2956 // isTriviallyRecursive - Check if this function calls another
2957 // decl that, because of the asm attribute or the other decl being a builtin,
2958 // ends up pointing to itself.
2959 bool
2960 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2961   StringRef Name;
2962   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2963     // asm labels are a special kind of mangling we have to support.
2964     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2965     if (!Attr)
2966       return false;
2967     Name = Attr->getLabel();
2968   } else {
2969     Name = FD->getName();
2970   }
2971 
2972   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2973   const Stmt *Body = FD->getBody();
2974   return Body ? Walker.Visit(Body) : false;
2975 }
2976 
2977 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2978   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2979     return true;
2980   const auto *F = cast<FunctionDecl>(GD.getDecl());
2981   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2982     return false;
2983 
2984   if (F->hasAttr<DLLImportAttr>()) {
2985     // Check whether it would be safe to inline this dllimport function.
2986     DLLImportFunctionVisitor Visitor;
2987     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2988     if (!Visitor.SafeToInline)
2989       return false;
2990 
2991     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2992       // Implicit destructor invocations aren't captured in the AST, so the
2993       // check above can't see them. Check for them manually here.
2994       for (const Decl *Member : Dtor->getParent()->decls())
2995         if (isa<FieldDecl>(Member))
2996           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2997             return false;
2998       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2999         if (HasNonDllImportDtor(B.getType()))
3000           return false;
3001     }
3002   }
3003 
3004   // PR9614. Avoid cases where the source code is lying to us. An available
3005   // externally function should have an equivalent function somewhere else,
3006   // but a function that calls itself through asm label/`__builtin_` trickery is
3007   // clearly not equivalent to the real implementation.
3008   // This happens in glibc's btowc and in some configure checks.
3009   return !isTriviallyRecursive(F);
3010 }
3011 
3012 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3013   return CodeGenOpts.OptimizationLevel > 0;
3014 }
3015 
3016 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3017                                                        llvm::GlobalValue *GV) {
3018   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3019 
3020   if (FD->isCPUSpecificMultiVersion()) {
3021     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3022     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3023       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3024     // Requires multiple emits.
3025   } else
3026     EmitGlobalFunctionDefinition(GD, GV);
3027 }
3028 
3029 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3030   const auto *D = cast<ValueDecl>(GD.getDecl());
3031 
3032   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3033                                  Context.getSourceManager(),
3034                                  "Generating code for declaration");
3035 
3036   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3037     // At -O0, don't generate IR for functions with available_externally
3038     // linkage.
3039     if (!shouldEmitFunction(GD))
3040       return;
3041 
3042     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3043       std::string Name;
3044       llvm::raw_string_ostream OS(Name);
3045       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3046                                /*Qualified=*/true);
3047       return Name;
3048     });
3049 
3050     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3051       // Make sure to emit the definition(s) before we emit the thunks.
3052       // This is necessary for the generation of certain thunks.
3053       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3054         ABI->emitCXXStructor(GD);
3055       else if (FD->isMultiVersion())
3056         EmitMultiVersionFunctionDefinition(GD, GV);
3057       else
3058         EmitGlobalFunctionDefinition(GD, GV);
3059 
3060       if (Method->isVirtual())
3061         getVTables().EmitThunks(GD);
3062 
3063       return;
3064     }
3065 
3066     if (FD->isMultiVersion())
3067       return EmitMultiVersionFunctionDefinition(GD, GV);
3068     return EmitGlobalFunctionDefinition(GD, GV);
3069   }
3070 
3071   if (const auto *VD = dyn_cast<VarDecl>(D))
3072     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3073 
3074   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3075 }
3076 
3077 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3078                                                       llvm::Function *NewFn);
3079 
3080 static unsigned
3081 TargetMVPriority(const TargetInfo &TI,
3082                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3083   unsigned Priority = 0;
3084   for (StringRef Feat : RO.Conditions.Features)
3085     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3086 
3087   if (!RO.Conditions.Architecture.empty())
3088     Priority = std::max(
3089         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3090   return Priority;
3091 }
3092 
3093 void CodeGenModule::emitMultiVersionFunctions() {
3094   for (GlobalDecl GD : MultiVersionFuncs) {
3095     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3096     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3097     getContext().forEachMultiversionedFunctionVersion(
3098         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3099           GlobalDecl CurGD{
3100               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3101           StringRef MangledName = getMangledName(CurGD);
3102           llvm::Constant *Func = GetGlobalValue(MangledName);
3103           if (!Func) {
3104             if (CurFD->isDefined()) {
3105               EmitGlobalFunctionDefinition(CurGD, nullptr);
3106               Func = GetGlobalValue(MangledName);
3107             } else {
3108               const CGFunctionInfo &FI =
3109                   getTypes().arrangeGlobalDeclaration(GD);
3110               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3111               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3112                                        /*DontDefer=*/false, ForDefinition);
3113             }
3114             assert(Func && "This should have just been created");
3115           }
3116 
3117           const auto *TA = CurFD->getAttr<TargetAttr>();
3118           llvm::SmallVector<StringRef, 8> Feats;
3119           TA->getAddedFeatures(Feats);
3120 
3121           Options.emplace_back(cast<llvm::Function>(Func),
3122                                TA->getArchitecture(), Feats);
3123         });
3124 
3125     llvm::Function *ResolverFunc;
3126     const TargetInfo &TI = getTarget();
3127 
3128     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3129       ResolverFunc = cast<llvm::Function>(
3130           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3131       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3132     } else {
3133       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3134     }
3135 
3136     if (supportsCOMDAT())
3137       ResolverFunc->setComdat(
3138           getModule().getOrInsertComdat(ResolverFunc->getName()));
3139 
3140     llvm::stable_sort(
3141         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3142                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3143           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3144         });
3145     CodeGenFunction CGF(*this);
3146     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3147   }
3148 }
3149 
3150 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3151   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3152   assert(FD && "Not a FunctionDecl?");
3153   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3154   assert(DD && "Not a cpu_dispatch Function?");
3155   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3156 
3157   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3158     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3159     DeclTy = getTypes().GetFunctionType(FInfo);
3160   }
3161 
3162   StringRef ResolverName = getMangledName(GD);
3163 
3164   llvm::Type *ResolverType;
3165   GlobalDecl ResolverGD;
3166   if (getTarget().supportsIFunc())
3167     ResolverType = llvm::FunctionType::get(
3168         llvm::PointerType::get(DeclTy,
3169                                Context.getTargetAddressSpace(FD->getType())),
3170         false);
3171   else {
3172     ResolverType = DeclTy;
3173     ResolverGD = GD;
3174   }
3175 
3176   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3177       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3178   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3179   if (supportsCOMDAT())
3180     ResolverFunc->setComdat(
3181         getModule().getOrInsertComdat(ResolverFunc->getName()));
3182 
3183   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3184   const TargetInfo &Target = getTarget();
3185   unsigned Index = 0;
3186   for (const IdentifierInfo *II : DD->cpus()) {
3187     // Get the name of the target function so we can look it up/create it.
3188     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3189                               getCPUSpecificMangling(*this, II->getName());
3190 
3191     llvm::Constant *Func = GetGlobalValue(MangledName);
3192 
3193     if (!Func) {
3194       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3195       if (ExistingDecl.getDecl() &&
3196           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3197         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3198         Func = GetGlobalValue(MangledName);
3199       } else {
3200         if (!ExistingDecl.getDecl())
3201           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3202 
3203       Func = GetOrCreateLLVMFunction(
3204           MangledName, DeclTy, ExistingDecl,
3205           /*ForVTable=*/false, /*DontDefer=*/true,
3206           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3207       }
3208     }
3209 
3210     llvm::SmallVector<StringRef, 32> Features;
3211     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3212     llvm::transform(Features, Features.begin(),
3213                     [](StringRef Str) { return Str.substr(1); });
3214     Features.erase(std::remove_if(
3215         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3216           return !Target.validateCpuSupports(Feat);
3217         }), Features.end());
3218     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3219     ++Index;
3220   }
3221 
3222   llvm::sort(
3223       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3224                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3225         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3226                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3227       });
3228 
3229   // If the list contains multiple 'default' versions, such as when it contains
3230   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3231   // always run on at least a 'pentium'). We do this by deleting the 'least
3232   // advanced' (read, lowest mangling letter).
3233   while (Options.size() > 1 &&
3234          CodeGenFunction::GetX86CpuSupportsMask(
3235              (Options.end() - 2)->Conditions.Features) == 0) {
3236     StringRef LHSName = (Options.end() - 2)->Function->getName();
3237     StringRef RHSName = (Options.end() - 1)->Function->getName();
3238     if (LHSName.compare(RHSName) < 0)
3239       Options.erase(Options.end() - 2);
3240     else
3241       Options.erase(Options.end() - 1);
3242   }
3243 
3244   CodeGenFunction CGF(*this);
3245   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3246 
3247   if (getTarget().supportsIFunc()) {
3248     std::string AliasName = getMangledNameImpl(
3249         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3250     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3251     if (!AliasFunc) {
3252       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3253           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3254           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3255       auto *GA = llvm::GlobalAlias::create(
3256          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3257       GA->setLinkage(llvm::Function::WeakODRLinkage);
3258       SetCommonAttributes(GD, GA);
3259     }
3260   }
3261 }
3262 
3263 /// If a dispatcher for the specified mangled name is not in the module, create
3264 /// and return an llvm Function with the specified type.
3265 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3266     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3267   std::string MangledName =
3268       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3269 
3270   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3271   // a separate resolver).
3272   std::string ResolverName = MangledName;
3273   if (getTarget().supportsIFunc())
3274     ResolverName += ".ifunc";
3275   else if (FD->isTargetMultiVersion())
3276     ResolverName += ".resolver";
3277 
3278   // If this already exists, just return that one.
3279   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3280     return ResolverGV;
3281 
3282   // Since this is the first time we've created this IFunc, make sure
3283   // that we put this multiversioned function into the list to be
3284   // replaced later if necessary (target multiversioning only).
3285   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3286     MultiVersionFuncs.push_back(GD);
3287 
3288   if (getTarget().supportsIFunc()) {
3289     llvm::Type *ResolverType = llvm::FunctionType::get(
3290         llvm::PointerType::get(
3291             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3292         false);
3293     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3294         MangledName + ".resolver", ResolverType, GlobalDecl{},
3295         /*ForVTable=*/false);
3296     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3297         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3298     GIF->setName(ResolverName);
3299     SetCommonAttributes(FD, GIF);
3300 
3301     return GIF;
3302   }
3303 
3304   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3305       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3306   assert(isa<llvm::GlobalValue>(Resolver) &&
3307          "Resolver should be created for the first time");
3308   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3309   return Resolver;
3310 }
3311 
3312 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3313 /// module, create and return an llvm Function with the specified type. If there
3314 /// is something in the module with the specified name, return it potentially
3315 /// bitcasted to the right type.
3316 ///
3317 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3318 /// to set the attributes on the function when it is first created.
3319 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3320     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3321     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3322     ForDefinition_t IsForDefinition) {
3323   const Decl *D = GD.getDecl();
3324 
3325   // Any attempts to use a MultiVersion function should result in retrieving
3326   // the iFunc instead. Name Mangling will handle the rest of the changes.
3327   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3328     // For the device mark the function as one that should be emitted.
3329     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3330         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3331         !DontDefer && !IsForDefinition) {
3332       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3333         GlobalDecl GDDef;
3334         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3335           GDDef = GlobalDecl(CD, GD.getCtorType());
3336         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3337           GDDef = GlobalDecl(DD, GD.getDtorType());
3338         else
3339           GDDef = GlobalDecl(FDDef);
3340         EmitGlobal(GDDef);
3341       }
3342     }
3343 
3344     if (FD->isMultiVersion()) {
3345       if (FD->hasAttr<TargetAttr>())
3346         UpdateMultiVersionNames(GD, FD);
3347       if (!IsForDefinition)
3348         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3349     }
3350   }
3351 
3352   // Lookup the entry, lazily creating it if necessary.
3353   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3354   if (Entry) {
3355     if (WeakRefReferences.erase(Entry)) {
3356       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3357       if (FD && !FD->hasAttr<WeakAttr>())
3358         Entry->setLinkage(llvm::Function::ExternalLinkage);
3359     }
3360 
3361     // Handle dropped DLL attributes.
3362     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3363       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3364       setDSOLocal(Entry);
3365     }
3366 
3367     // If there are two attempts to define the same mangled name, issue an
3368     // error.
3369     if (IsForDefinition && !Entry->isDeclaration()) {
3370       GlobalDecl OtherGD;
3371       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3372       // to make sure that we issue an error only once.
3373       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3374           (GD.getCanonicalDecl().getDecl() !=
3375            OtherGD.getCanonicalDecl().getDecl()) &&
3376           DiagnosedConflictingDefinitions.insert(GD).second) {
3377         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3378             << MangledName;
3379         getDiags().Report(OtherGD.getDecl()->getLocation(),
3380                           diag::note_previous_definition);
3381       }
3382     }
3383 
3384     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3385         (Entry->getValueType() == Ty)) {
3386       return Entry;
3387     }
3388 
3389     // Make sure the result is of the correct type.
3390     // (If function is requested for a definition, we always need to create a new
3391     // function, not just return a bitcast.)
3392     if (!IsForDefinition)
3393       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3394   }
3395 
3396   // This function doesn't have a complete type (for example, the return
3397   // type is an incomplete struct). Use a fake type instead, and make
3398   // sure not to try to set attributes.
3399   bool IsIncompleteFunction = false;
3400 
3401   llvm::FunctionType *FTy;
3402   if (isa<llvm::FunctionType>(Ty)) {
3403     FTy = cast<llvm::FunctionType>(Ty);
3404   } else {
3405     FTy = llvm::FunctionType::get(VoidTy, false);
3406     IsIncompleteFunction = true;
3407   }
3408 
3409   llvm::Function *F =
3410       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3411                              Entry ? StringRef() : MangledName, &getModule());
3412 
3413   // If we already created a function with the same mangled name (but different
3414   // type) before, take its name and add it to the list of functions to be
3415   // replaced with F at the end of CodeGen.
3416   //
3417   // This happens if there is a prototype for a function (e.g. "int f()") and
3418   // then a definition of a different type (e.g. "int f(int x)").
3419   if (Entry) {
3420     F->takeName(Entry);
3421 
3422     // This might be an implementation of a function without a prototype, in
3423     // which case, try to do special replacement of calls which match the new
3424     // prototype.  The really key thing here is that we also potentially drop
3425     // arguments from the call site so as to make a direct call, which makes the
3426     // inliner happier and suppresses a number of optimizer warnings (!) about
3427     // dropping arguments.
3428     if (!Entry->use_empty()) {
3429       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3430       Entry->removeDeadConstantUsers();
3431     }
3432 
3433     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3434         F, Entry->getValueType()->getPointerTo());
3435     addGlobalValReplacement(Entry, BC);
3436   }
3437 
3438   assert(F->getName() == MangledName && "name was uniqued!");
3439   if (D)
3440     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3441   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3442     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3443     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3444   }
3445 
3446   if (!DontDefer) {
3447     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3448     // each other bottoming out with the base dtor.  Therefore we emit non-base
3449     // dtors on usage, even if there is no dtor definition in the TU.
3450     if (D && isa<CXXDestructorDecl>(D) &&
3451         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3452                                            GD.getDtorType()))
3453       addDeferredDeclToEmit(GD);
3454 
3455     // This is the first use or definition of a mangled name.  If there is a
3456     // deferred decl with this name, remember that we need to emit it at the end
3457     // of the file.
3458     auto DDI = DeferredDecls.find(MangledName);
3459     if (DDI != DeferredDecls.end()) {
3460       // Move the potentially referenced deferred decl to the
3461       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3462       // don't need it anymore).
3463       addDeferredDeclToEmit(DDI->second);
3464       DeferredDecls.erase(DDI);
3465 
3466       // Otherwise, there are cases we have to worry about where we're
3467       // using a declaration for which we must emit a definition but where
3468       // we might not find a top-level definition:
3469       //   - member functions defined inline in their classes
3470       //   - friend functions defined inline in some class
3471       //   - special member functions with implicit definitions
3472       // If we ever change our AST traversal to walk into class methods,
3473       // this will be unnecessary.
3474       //
3475       // We also don't emit a definition for a function if it's going to be an
3476       // entry in a vtable, unless it's already marked as used.
3477     } else if (getLangOpts().CPlusPlus && D) {
3478       // Look for a declaration that's lexically in a record.
3479       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3480            FD = FD->getPreviousDecl()) {
3481         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3482           if (FD->doesThisDeclarationHaveABody()) {
3483             addDeferredDeclToEmit(GD.getWithDecl(FD));
3484             break;
3485           }
3486         }
3487       }
3488     }
3489   }
3490 
3491   // Make sure the result is of the requested type.
3492   if (!IsIncompleteFunction) {
3493     assert(F->getFunctionType() == Ty);
3494     return F;
3495   }
3496 
3497   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3498   return llvm::ConstantExpr::getBitCast(F, PTy);
3499 }
3500 
3501 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3502 /// non-null, then this function will use the specified type if it has to
3503 /// create it (this occurs when we see a definition of the function).
3504 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3505                                                  llvm::Type *Ty,
3506                                                  bool ForVTable,
3507                                                  bool DontDefer,
3508                                               ForDefinition_t IsForDefinition) {
3509   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3510          "consteval function should never be emitted");
3511   // If there was no specific requested type, just convert it now.
3512   if (!Ty) {
3513     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3514     Ty = getTypes().ConvertType(FD->getType());
3515   }
3516 
3517   // Devirtualized destructor calls may come through here instead of via
3518   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3519   // of the complete destructor when necessary.
3520   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3521     if (getTarget().getCXXABI().isMicrosoft() &&
3522         GD.getDtorType() == Dtor_Complete &&
3523         DD->getParent()->getNumVBases() == 0)
3524       GD = GlobalDecl(DD, Dtor_Base);
3525   }
3526 
3527   StringRef MangledName = getMangledName(GD);
3528   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3529                                  /*IsThunk=*/false, llvm::AttributeList(),
3530                                  IsForDefinition);
3531 }
3532 
3533 static const FunctionDecl *
3534 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3535   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3536   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3537 
3538   IdentifierInfo &CII = C.Idents.get(Name);
3539   for (const auto &Result : DC->lookup(&CII))
3540     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3541       return FD;
3542 
3543   if (!C.getLangOpts().CPlusPlus)
3544     return nullptr;
3545 
3546   // Demangle the premangled name from getTerminateFn()
3547   IdentifierInfo &CXXII =
3548       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3549           ? C.Idents.get("terminate")
3550           : C.Idents.get(Name);
3551 
3552   for (const auto &N : {"__cxxabiv1", "std"}) {
3553     IdentifierInfo &NS = C.Idents.get(N);
3554     for (const auto &Result : DC->lookup(&NS)) {
3555       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3556       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3557         for (const auto &Result : LSD->lookup(&NS))
3558           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3559             break;
3560 
3561       if (ND)
3562         for (const auto &Result : ND->lookup(&CXXII))
3563           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3564             return FD;
3565     }
3566   }
3567 
3568   return nullptr;
3569 }
3570 
3571 /// CreateRuntimeFunction - Create a new runtime function with the specified
3572 /// type and name.
3573 llvm::FunctionCallee
3574 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3575                                      llvm::AttributeList ExtraAttrs, bool Local,
3576                                      bool AssumeConvergent) {
3577   if (AssumeConvergent) {
3578     ExtraAttrs =
3579         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3580                                 llvm::Attribute::Convergent);
3581   }
3582 
3583   llvm::Constant *C =
3584       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3585                               /*DontDefer=*/false, /*IsThunk=*/false,
3586                               ExtraAttrs);
3587 
3588   if (auto *F = dyn_cast<llvm::Function>(C)) {
3589     if (F->empty()) {
3590       F->setCallingConv(getRuntimeCC());
3591 
3592       // In Windows Itanium environments, try to mark runtime functions
3593       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3594       // will link their standard library statically or dynamically. Marking
3595       // functions imported when they are not imported can cause linker errors
3596       // and warnings.
3597       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3598           !getCodeGenOpts().LTOVisibilityPublicStd) {
3599         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3600         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3601           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3602           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3603         }
3604       }
3605       setDSOLocal(F);
3606     }
3607   }
3608 
3609   return {FTy, C};
3610 }
3611 
3612 /// isTypeConstant - Determine whether an object of this type can be emitted
3613 /// as a constant.
3614 ///
3615 /// If ExcludeCtor is true, the duration when the object's constructor runs
3616 /// will not be considered. The caller will need to verify that the object is
3617 /// not written to during its construction.
3618 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3619   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3620     return false;
3621 
3622   if (Context.getLangOpts().CPlusPlus) {
3623     if (const CXXRecordDecl *Record
3624           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3625       return ExcludeCtor && !Record->hasMutableFields() &&
3626              Record->hasTrivialDestructor();
3627   }
3628 
3629   return true;
3630 }
3631 
3632 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3633 /// create and return an llvm GlobalVariable with the specified type.  If there
3634 /// is something in the module with the specified name, return it potentially
3635 /// bitcasted to the right type.
3636 ///
3637 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3638 /// to set the attributes on the global when it is first created.
3639 ///
3640 /// If IsForDefinition is true, it is guaranteed that an actual global with
3641 /// type Ty will be returned, not conversion of a variable with the same
3642 /// mangled name but some other type.
3643 llvm::Constant *
3644 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3645                                      llvm::PointerType *Ty,
3646                                      const VarDecl *D,
3647                                      ForDefinition_t IsForDefinition) {
3648   // Lookup the entry, lazily creating it if necessary.
3649   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3650   if (Entry) {
3651     if (WeakRefReferences.erase(Entry)) {
3652       if (D && !D->hasAttr<WeakAttr>())
3653         Entry->setLinkage(llvm::Function::ExternalLinkage);
3654     }
3655 
3656     // Handle dropped DLL attributes.
3657     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3658       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3659 
3660     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3661       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3662 
3663     if (Entry->getType() == Ty)
3664       return Entry;
3665 
3666     // If there are two attempts to define the same mangled name, issue an
3667     // error.
3668     if (IsForDefinition && !Entry->isDeclaration()) {
3669       GlobalDecl OtherGD;
3670       const VarDecl *OtherD;
3671 
3672       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3673       // to make sure that we issue an error only once.
3674       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3675           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3676           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3677           OtherD->hasInit() &&
3678           DiagnosedConflictingDefinitions.insert(D).second) {
3679         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3680             << MangledName;
3681         getDiags().Report(OtherGD.getDecl()->getLocation(),
3682                           diag::note_previous_definition);
3683       }
3684     }
3685 
3686     // Make sure the result is of the correct type.
3687     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3688       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3689 
3690     // (If global is requested for a definition, we always need to create a new
3691     // global, not just return a bitcast.)
3692     if (!IsForDefinition)
3693       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3694   }
3695 
3696   auto AddrSpace = GetGlobalVarAddressSpace(D);
3697   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3698 
3699   auto *GV = new llvm::GlobalVariable(
3700       getModule(), Ty->getElementType(), false,
3701       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3702       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3703 
3704   // If we already created a global with the same mangled name (but different
3705   // type) before, take its name and remove it from its parent.
3706   if (Entry) {
3707     GV->takeName(Entry);
3708 
3709     if (!Entry->use_empty()) {
3710       llvm::Constant *NewPtrForOldDecl =
3711           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3712       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3713     }
3714 
3715     Entry->eraseFromParent();
3716   }
3717 
3718   // This is the first use or definition of a mangled name.  If there is a
3719   // deferred decl with this name, remember that we need to emit it at the end
3720   // of the file.
3721   auto DDI = DeferredDecls.find(MangledName);
3722   if (DDI != DeferredDecls.end()) {
3723     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3724     // list, and remove it from DeferredDecls (since we don't need it anymore).
3725     addDeferredDeclToEmit(DDI->second);
3726     DeferredDecls.erase(DDI);
3727   }
3728 
3729   // Handle things which are present even on external declarations.
3730   if (D) {
3731     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3732       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3733 
3734     // FIXME: This code is overly simple and should be merged with other global
3735     // handling.
3736     GV->setConstant(isTypeConstant(D->getType(), false));
3737 
3738     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3739 
3740     setLinkageForGV(GV, D);
3741 
3742     if (D->getTLSKind()) {
3743       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3744         CXXThreadLocals.push_back(D);
3745       setTLSMode(GV, *D);
3746     }
3747 
3748     setGVProperties(GV, D);
3749 
3750     // If required by the ABI, treat declarations of static data members with
3751     // inline initializers as definitions.
3752     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3753       EmitGlobalVarDefinition(D);
3754     }
3755 
3756     // Emit section information for extern variables.
3757     if (D->hasExternalStorage()) {
3758       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3759         GV->setSection(SA->getName());
3760     }
3761 
3762     // Handle XCore specific ABI requirements.
3763     if (getTriple().getArch() == llvm::Triple::xcore &&
3764         D->getLanguageLinkage() == CLanguageLinkage &&
3765         D->getType().isConstant(Context) &&
3766         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3767       GV->setSection(".cp.rodata");
3768 
3769     // Check if we a have a const declaration with an initializer, we may be
3770     // able to emit it as available_externally to expose it's value to the
3771     // optimizer.
3772     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3773         D->getType().isConstQualified() && !GV->hasInitializer() &&
3774         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3775       const auto *Record =
3776           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3777       bool HasMutableFields = Record && Record->hasMutableFields();
3778       if (!HasMutableFields) {
3779         const VarDecl *InitDecl;
3780         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3781         if (InitExpr) {
3782           ConstantEmitter emitter(*this);
3783           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3784           if (Init) {
3785             auto *InitType = Init->getType();
3786             if (GV->getValueType() != InitType) {
3787               // The type of the initializer does not match the definition.
3788               // This happens when an initializer has a different type from
3789               // the type of the global (because of padding at the end of a
3790               // structure for instance).
3791               GV->setName(StringRef());
3792               // Make a new global with the correct type, this is now guaranteed
3793               // to work.
3794               auto *NewGV = cast<llvm::GlobalVariable>(
3795                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3796                       ->stripPointerCasts());
3797 
3798               // Erase the old global, since it is no longer used.
3799               GV->eraseFromParent();
3800               GV = NewGV;
3801             } else {
3802               GV->setInitializer(Init);
3803               GV->setConstant(true);
3804               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3805             }
3806             emitter.finalize(GV);
3807           }
3808         }
3809       }
3810     }
3811   }
3812 
3813   if (GV->isDeclaration())
3814     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3815 
3816   LangAS ExpectedAS =
3817       D ? D->getType().getAddressSpace()
3818         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3819   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3820          Ty->getPointerAddressSpace());
3821   if (AddrSpace != ExpectedAS)
3822     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3823                                                        ExpectedAS, Ty);
3824 
3825   return GV;
3826 }
3827 
3828 llvm::Constant *
3829 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3830   const Decl *D = GD.getDecl();
3831 
3832   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3833     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3834                                 /*DontDefer=*/false, IsForDefinition);
3835 
3836   if (isa<CXXMethodDecl>(D)) {
3837     auto FInfo =
3838         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3839     auto Ty = getTypes().GetFunctionType(*FInfo);
3840     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3841                              IsForDefinition);
3842   }
3843 
3844   if (isa<FunctionDecl>(D)) {
3845     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3846     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3847     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3848                              IsForDefinition);
3849   }
3850 
3851   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3852 }
3853 
3854 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3855     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3856     unsigned Alignment) {
3857   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3858   llvm::GlobalVariable *OldGV = nullptr;
3859 
3860   if (GV) {
3861     // Check if the variable has the right type.
3862     if (GV->getValueType() == Ty)
3863       return GV;
3864 
3865     // Because C++ name mangling, the only way we can end up with an already
3866     // existing global with the same name is if it has been declared extern "C".
3867     assert(GV->isDeclaration() && "Declaration has wrong type!");
3868     OldGV = GV;
3869   }
3870 
3871   // Create a new variable.
3872   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3873                                 Linkage, nullptr, Name);
3874 
3875   if (OldGV) {
3876     // Replace occurrences of the old variable if needed.
3877     GV->takeName(OldGV);
3878 
3879     if (!OldGV->use_empty()) {
3880       llvm::Constant *NewPtrForOldDecl =
3881       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3882       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3883     }
3884 
3885     OldGV->eraseFromParent();
3886   }
3887 
3888   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3889       !GV->hasAvailableExternallyLinkage())
3890     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3891 
3892   GV->setAlignment(llvm::MaybeAlign(Alignment));
3893 
3894   return GV;
3895 }
3896 
3897 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3898 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3899 /// then it will be created with the specified type instead of whatever the
3900 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3901 /// that an actual global with type Ty will be returned, not conversion of a
3902 /// variable with the same mangled name but some other type.
3903 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3904                                                   llvm::Type *Ty,
3905                                            ForDefinition_t IsForDefinition) {
3906   assert(D->hasGlobalStorage() && "Not a global variable");
3907   QualType ASTTy = D->getType();
3908   if (!Ty)
3909     Ty = getTypes().ConvertTypeForMem(ASTTy);
3910 
3911   llvm::PointerType *PTy =
3912     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3913 
3914   StringRef MangledName = getMangledName(D);
3915   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3916 }
3917 
3918 /// CreateRuntimeVariable - Create a new runtime global variable with the
3919 /// specified type and name.
3920 llvm::Constant *
3921 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3922                                      StringRef Name) {
3923   auto PtrTy =
3924       getContext().getLangOpts().OpenCL
3925           ? llvm::PointerType::get(
3926                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3927           : llvm::PointerType::getUnqual(Ty);
3928   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3929   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3930   return Ret;
3931 }
3932 
3933 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3934   assert(!D->getInit() && "Cannot emit definite definitions here!");
3935 
3936   StringRef MangledName = getMangledName(D);
3937   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3938 
3939   // We already have a definition, not declaration, with the same mangled name.
3940   // Emitting of declaration is not required (and actually overwrites emitted
3941   // definition).
3942   if (GV && !GV->isDeclaration())
3943     return;
3944 
3945   // If we have not seen a reference to this variable yet, place it into the
3946   // deferred declarations table to be emitted if needed later.
3947   if (!MustBeEmitted(D) && !GV) {
3948       DeferredDecls[MangledName] = D;
3949       return;
3950   }
3951 
3952   // The tentative definition is the only definition.
3953   EmitGlobalVarDefinition(D);
3954 }
3955 
3956 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3957   EmitExternalVarDeclaration(D);
3958 }
3959 
3960 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3961   return Context.toCharUnitsFromBits(
3962       getDataLayout().getTypeStoreSizeInBits(Ty));
3963 }
3964 
3965 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3966   LangAS AddrSpace = LangAS::Default;
3967   if (LangOpts.OpenCL) {
3968     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3969     assert(AddrSpace == LangAS::opencl_global ||
3970            AddrSpace == LangAS::opencl_global_device ||
3971            AddrSpace == LangAS::opencl_global_host ||
3972            AddrSpace == LangAS::opencl_constant ||
3973            AddrSpace == LangAS::opencl_local ||
3974            AddrSpace >= LangAS::FirstTargetAddressSpace);
3975     return AddrSpace;
3976   }
3977 
3978   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3979     if (D && D->hasAttr<CUDAConstantAttr>())
3980       return LangAS::cuda_constant;
3981     else if (D && D->hasAttr<CUDASharedAttr>())
3982       return LangAS::cuda_shared;
3983     else if (D && D->hasAttr<CUDADeviceAttr>())
3984       return LangAS::cuda_device;
3985     else if (D && D->getType().isConstQualified())
3986       return LangAS::cuda_constant;
3987     else
3988       return LangAS::cuda_device;
3989   }
3990 
3991   if (LangOpts.OpenMP) {
3992     LangAS AS;
3993     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3994       return AS;
3995   }
3996   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3997 }
3998 
3999 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4000   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4001   if (LangOpts.OpenCL)
4002     return LangAS::opencl_constant;
4003   if (auto AS = getTarget().getConstantAddressSpace())
4004     return AS.getValue();
4005   return LangAS::Default;
4006 }
4007 
4008 // In address space agnostic languages, string literals are in default address
4009 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4010 // emitted in constant address space in LLVM IR. To be consistent with other
4011 // parts of AST, string literal global variables in constant address space
4012 // need to be casted to default address space before being put into address
4013 // map and referenced by other part of CodeGen.
4014 // In OpenCL, string literals are in constant address space in AST, therefore
4015 // they should not be casted to default address space.
4016 static llvm::Constant *
4017 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4018                                        llvm::GlobalVariable *GV) {
4019   llvm::Constant *Cast = GV;
4020   if (!CGM.getLangOpts().OpenCL) {
4021     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4022       if (AS != LangAS::Default)
4023         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4024             CGM, GV, AS.getValue(), LangAS::Default,
4025             GV->getValueType()->getPointerTo(
4026                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4027     }
4028   }
4029   return Cast;
4030 }
4031 
4032 template<typename SomeDecl>
4033 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4034                                                llvm::GlobalValue *GV) {
4035   if (!getLangOpts().CPlusPlus)
4036     return;
4037 
4038   // Must have 'used' attribute, or else inline assembly can't rely on
4039   // the name existing.
4040   if (!D->template hasAttr<UsedAttr>())
4041     return;
4042 
4043   // Must have internal linkage and an ordinary name.
4044   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4045     return;
4046 
4047   // Must be in an extern "C" context. Entities declared directly within
4048   // a record are not extern "C" even if the record is in such a context.
4049   const SomeDecl *First = D->getFirstDecl();
4050   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4051     return;
4052 
4053   // OK, this is an internal linkage entity inside an extern "C" linkage
4054   // specification. Make a note of that so we can give it the "expected"
4055   // mangled name if nothing else is using that name.
4056   std::pair<StaticExternCMap::iterator, bool> R =
4057       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4058 
4059   // If we have multiple internal linkage entities with the same name
4060   // in extern "C" regions, none of them gets that name.
4061   if (!R.second)
4062     R.first->second = nullptr;
4063 }
4064 
4065 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4066   if (!CGM.supportsCOMDAT())
4067     return false;
4068 
4069   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4070   // them being "merged" by the COMDAT Folding linker optimization.
4071   if (D.hasAttr<CUDAGlobalAttr>())
4072     return false;
4073 
4074   if (D.hasAttr<SelectAnyAttr>())
4075     return true;
4076 
4077   GVALinkage Linkage;
4078   if (auto *VD = dyn_cast<VarDecl>(&D))
4079     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4080   else
4081     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4082 
4083   switch (Linkage) {
4084   case GVA_Internal:
4085   case GVA_AvailableExternally:
4086   case GVA_StrongExternal:
4087     return false;
4088   case GVA_DiscardableODR:
4089   case GVA_StrongODR:
4090     return true;
4091   }
4092   llvm_unreachable("No such linkage");
4093 }
4094 
4095 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4096                                           llvm::GlobalObject &GO) {
4097   if (!shouldBeInCOMDAT(*this, D))
4098     return;
4099   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4100 }
4101 
4102 /// Pass IsTentative as true if you want to create a tentative definition.
4103 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4104                                             bool IsTentative) {
4105   // OpenCL global variables of sampler type are translated to function calls,
4106   // therefore no need to be translated.
4107   QualType ASTTy = D->getType();
4108   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4109     return;
4110 
4111   // If this is OpenMP device, check if it is legal to emit this global
4112   // normally.
4113   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4114       OpenMPRuntime->emitTargetGlobalVariable(D))
4115     return;
4116 
4117   llvm::Constant *Init = nullptr;
4118   bool NeedsGlobalCtor = false;
4119   bool NeedsGlobalDtor =
4120       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4121 
4122   const VarDecl *InitDecl;
4123   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4124 
4125   Optional<ConstantEmitter> emitter;
4126 
4127   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4128   // as part of their declaration."  Sema has already checked for
4129   // error cases, so we just need to set Init to UndefValue.
4130   bool IsCUDASharedVar =
4131       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4132   // Shadows of initialized device-side global variables are also left
4133   // undefined.
4134   bool IsCUDAShadowVar =
4135       !getLangOpts().CUDAIsDevice &&
4136       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4137        D->hasAttr<CUDASharedAttr>());
4138   bool IsCUDADeviceShadowVar =
4139       getLangOpts().CUDAIsDevice &&
4140       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4141        D->getType()->isCUDADeviceBuiltinTextureType());
4142   // HIP pinned shadow of initialized host-side global variables are also
4143   // left undefined.
4144   if (getLangOpts().CUDA &&
4145       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4146     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4147   else if (D->hasAttr<LoaderUninitializedAttr>())
4148     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4149   else if (!InitExpr) {
4150     // This is a tentative definition; tentative definitions are
4151     // implicitly initialized with { 0 }.
4152     //
4153     // Note that tentative definitions are only emitted at the end of
4154     // a translation unit, so they should never have incomplete
4155     // type. In addition, EmitTentativeDefinition makes sure that we
4156     // never attempt to emit a tentative definition if a real one
4157     // exists. A use may still exists, however, so we still may need
4158     // to do a RAUW.
4159     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4160     Init = EmitNullConstant(D->getType());
4161   } else {
4162     initializedGlobalDecl = GlobalDecl(D);
4163     emitter.emplace(*this);
4164     Init = emitter->tryEmitForInitializer(*InitDecl);
4165 
4166     if (!Init) {
4167       QualType T = InitExpr->getType();
4168       if (D->getType()->isReferenceType())
4169         T = D->getType();
4170 
4171       if (getLangOpts().CPlusPlus) {
4172         Init = EmitNullConstant(T);
4173         NeedsGlobalCtor = true;
4174       } else {
4175         ErrorUnsupported(D, "static initializer");
4176         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4177       }
4178     } else {
4179       // We don't need an initializer, so remove the entry for the delayed
4180       // initializer position (just in case this entry was delayed) if we
4181       // also don't need to register a destructor.
4182       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4183         DelayedCXXInitPosition.erase(D);
4184     }
4185   }
4186 
4187   llvm::Type* InitType = Init->getType();
4188   llvm::Constant *Entry =
4189       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4190 
4191   // Strip off pointer casts if we got them.
4192   Entry = Entry->stripPointerCasts();
4193 
4194   // Entry is now either a Function or GlobalVariable.
4195   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4196 
4197   // We have a definition after a declaration with the wrong type.
4198   // We must make a new GlobalVariable* and update everything that used OldGV
4199   // (a declaration or tentative definition) with the new GlobalVariable*
4200   // (which will be a definition).
4201   //
4202   // This happens if there is a prototype for a global (e.g.
4203   // "extern int x[];") and then a definition of a different type (e.g.
4204   // "int x[10];"). This also happens when an initializer has a different type
4205   // from the type of the global (this happens with unions).
4206   if (!GV || GV->getValueType() != InitType ||
4207       GV->getType()->getAddressSpace() !=
4208           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4209 
4210     // Move the old entry aside so that we'll create a new one.
4211     Entry->setName(StringRef());
4212 
4213     // Make a new global with the correct type, this is now guaranteed to work.
4214     GV = cast<llvm::GlobalVariable>(
4215         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4216             ->stripPointerCasts());
4217 
4218     // Replace all uses of the old global with the new global
4219     llvm::Constant *NewPtrForOldDecl =
4220         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4221     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4222 
4223     // Erase the old global, since it is no longer used.
4224     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4225   }
4226 
4227   MaybeHandleStaticInExternC(D, GV);
4228 
4229   if (D->hasAttr<AnnotateAttr>())
4230     AddGlobalAnnotations(D, GV);
4231 
4232   // Set the llvm linkage type as appropriate.
4233   llvm::GlobalValue::LinkageTypes Linkage =
4234       getLLVMLinkageVarDefinition(D, GV->isConstant());
4235 
4236   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4237   // the device. [...]"
4238   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4239   // __device__, declares a variable that: [...]
4240   // Is accessible from all the threads within the grid and from the host
4241   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4242   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4243   if (GV && LangOpts.CUDA) {
4244     if (LangOpts.CUDAIsDevice) {
4245       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4246           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4247         GV->setExternallyInitialized(true);
4248     } else {
4249       // Host-side shadows of external declarations of device-side
4250       // global variables become internal definitions. These have to
4251       // be internal in order to prevent name conflicts with global
4252       // host variables with the same name in a different TUs.
4253       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4254         Linkage = llvm::GlobalValue::InternalLinkage;
4255         // Shadow variables and their properties must be registered with CUDA
4256         // runtime. Skip Extern global variables, which will be registered in
4257         // the TU where they are defined.
4258         //
4259         // Don't register a C++17 inline variable. The local symbol can be
4260         // discarded and referencing a discarded local symbol from outside the
4261         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4262         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4263         if (!D->hasExternalStorage() && !D->isInline())
4264           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4265                                              D->hasAttr<CUDAConstantAttr>());
4266       } else if (D->hasAttr<CUDASharedAttr>()) {
4267         // __shared__ variables are odd. Shadows do get created, but
4268         // they are not registered with the CUDA runtime, so they
4269         // can't really be used to access their device-side
4270         // counterparts. It's not clear yet whether it's nvcc's bug or
4271         // a feature, but we've got to do the same for compatibility.
4272         Linkage = llvm::GlobalValue::InternalLinkage;
4273       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4274                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4275         // Builtin surfaces and textures and their template arguments are
4276         // also registered with CUDA runtime.
4277         Linkage = llvm::GlobalValue::InternalLinkage;
4278         const ClassTemplateSpecializationDecl *TD =
4279             cast<ClassTemplateSpecializationDecl>(
4280                 D->getType()->getAs<RecordType>()->getDecl());
4281         const TemplateArgumentList &Args = TD->getTemplateArgs();
4282         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4283           assert(Args.size() == 2 &&
4284                  "Unexpected number of template arguments of CUDA device "
4285                  "builtin surface type.");
4286           auto SurfType = Args[1].getAsIntegral();
4287           if (!D->hasExternalStorage())
4288             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4289                                                 SurfType.getSExtValue());
4290         } else {
4291           assert(Args.size() == 3 &&
4292                  "Unexpected number of template arguments of CUDA device "
4293                  "builtin texture type.");
4294           auto TexType = Args[1].getAsIntegral();
4295           auto Normalized = Args[2].getAsIntegral();
4296           if (!D->hasExternalStorage())
4297             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4298                                                TexType.getSExtValue(),
4299                                                Normalized.getZExtValue());
4300         }
4301       }
4302     }
4303   }
4304 
4305   GV->setInitializer(Init);
4306   if (emitter)
4307     emitter->finalize(GV);
4308 
4309   // If it is safe to mark the global 'constant', do so now.
4310   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4311                   isTypeConstant(D->getType(), true));
4312 
4313   // If it is in a read-only section, mark it 'constant'.
4314   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4315     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4316     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4317       GV->setConstant(true);
4318   }
4319 
4320   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4321 
4322   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4323   // function is only defined alongside the variable, not also alongside
4324   // callers. Normally, all accesses to a thread_local go through the
4325   // thread-wrapper in order to ensure initialization has occurred, underlying
4326   // variable will never be used other than the thread-wrapper, so it can be
4327   // converted to internal linkage.
4328   //
4329   // However, if the variable has the 'constinit' attribute, it _can_ be
4330   // referenced directly, without calling the thread-wrapper, so the linkage
4331   // must not be changed.
4332   //
4333   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4334   // weak or linkonce, the de-duplication semantics are important to preserve,
4335   // so we don't change the linkage.
4336   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4337       Linkage == llvm::GlobalValue::ExternalLinkage &&
4338       Context.getTargetInfo().getTriple().isOSDarwin() &&
4339       !D->hasAttr<ConstInitAttr>())
4340     Linkage = llvm::GlobalValue::InternalLinkage;
4341 
4342   GV->setLinkage(Linkage);
4343   if (D->hasAttr<DLLImportAttr>())
4344     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4345   else if (D->hasAttr<DLLExportAttr>())
4346     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4347   else
4348     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4349 
4350   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4351     // common vars aren't constant even if declared const.
4352     GV->setConstant(false);
4353     // Tentative definition of global variables may be initialized with
4354     // non-zero null pointers. In this case they should have weak linkage
4355     // since common linkage must have zero initializer and must not have
4356     // explicit section therefore cannot have non-zero initial value.
4357     if (!GV->getInitializer()->isNullValue())
4358       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4359   }
4360 
4361   setNonAliasAttributes(D, GV);
4362 
4363   if (D->getTLSKind() && !GV->isThreadLocal()) {
4364     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4365       CXXThreadLocals.push_back(D);
4366     setTLSMode(GV, *D);
4367   }
4368 
4369   maybeSetTrivialComdat(*D, *GV);
4370 
4371   // Emit the initializer function if necessary.
4372   if (NeedsGlobalCtor || NeedsGlobalDtor)
4373     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4374 
4375   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4376 
4377   // Emit global variable debug information.
4378   if (CGDebugInfo *DI = getModuleDebugInfo())
4379     if (getCodeGenOpts().hasReducedDebugInfo())
4380       DI->EmitGlobalVariable(GV, D);
4381 }
4382 
4383 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4384   if (CGDebugInfo *DI = getModuleDebugInfo())
4385     if (getCodeGenOpts().hasReducedDebugInfo()) {
4386       QualType ASTTy = D->getType();
4387       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4388       llvm::PointerType *PTy =
4389           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4390       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4391       DI->EmitExternalVariable(
4392           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4393     }
4394 }
4395 
4396 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4397                                       CodeGenModule &CGM, const VarDecl *D,
4398                                       bool NoCommon) {
4399   // Don't give variables common linkage if -fno-common was specified unless it
4400   // was overridden by a NoCommon attribute.
4401   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4402     return true;
4403 
4404   // C11 6.9.2/2:
4405   //   A declaration of an identifier for an object that has file scope without
4406   //   an initializer, and without a storage-class specifier or with the
4407   //   storage-class specifier static, constitutes a tentative definition.
4408   if (D->getInit() || D->hasExternalStorage())
4409     return true;
4410 
4411   // A variable cannot be both common and exist in a section.
4412   if (D->hasAttr<SectionAttr>())
4413     return true;
4414 
4415   // A variable cannot be both common and exist in a section.
4416   // We don't try to determine which is the right section in the front-end.
4417   // If no specialized section name is applicable, it will resort to default.
4418   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4419       D->hasAttr<PragmaClangDataSectionAttr>() ||
4420       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4421       D->hasAttr<PragmaClangRodataSectionAttr>())
4422     return true;
4423 
4424   // Thread local vars aren't considered common linkage.
4425   if (D->getTLSKind())
4426     return true;
4427 
4428   // Tentative definitions marked with WeakImportAttr are true definitions.
4429   if (D->hasAttr<WeakImportAttr>())
4430     return true;
4431 
4432   // A variable cannot be both common and exist in a comdat.
4433   if (shouldBeInCOMDAT(CGM, *D))
4434     return true;
4435 
4436   // Declarations with a required alignment do not have common linkage in MSVC
4437   // mode.
4438   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4439     if (D->hasAttr<AlignedAttr>())
4440       return true;
4441     QualType VarType = D->getType();
4442     if (Context.isAlignmentRequired(VarType))
4443       return true;
4444 
4445     if (const auto *RT = VarType->getAs<RecordType>()) {
4446       const RecordDecl *RD = RT->getDecl();
4447       for (const FieldDecl *FD : RD->fields()) {
4448         if (FD->isBitField())
4449           continue;
4450         if (FD->hasAttr<AlignedAttr>())
4451           return true;
4452         if (Context.isAlignmentRequired(FD->getType()))
4453           return true;
4454       }
4455     }
4456   }
4457 
4458   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4459   // common symbols, so symbols with greater alignment requirements cannot be
4460   // common.
4461   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4462   // alignments for common symbols via the aligncomm directive, so this
4463   // restriction only applies to MSVC environments.
4464   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4465       Context.getTypeAlignIfKnown(D->getType()) >
4466           Context.toBits(CharUnits::fromQuantity(32)))
4467     return true;
4468 
4469   return false;
4470 }
4471 
4472 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4473     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4474   if (Linkage == GVA_Internal)
4475     return llvm::Function::InternalLinkage;
4476 
4477   if (D->hasAttr<WeakAttr>()) {
4478     if (IsConstantVariable)
4479       return llvm::GlobalVariable::WeakODRLinkage;
4480     else
4481       return llvm::GlobalVariable::WeakAnyLinkage;
4482   }
4483 
4484   if (const auto *FD = D->getAsFunction())
4485     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4486       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4487 
4488   // We are guaranteed to have a strong definition somewhere else,
4489   // so we can use available_externally linkage.
4490   if (Linkage == GVA_AvailableExternally)
4491     return llvm::GlobalValue::AvailableExternallyLinkage;
4492 
4493   // Note that Apple's kernel linker doesn't support symbol
4494   // coalescing, so we need to avoid linkonce and weak linkages there.
4495   // Normally, this means we just map to internal, but for explicit
4496   // instantiations we'll map to external.
4497 
4498   // In C++, the compiler has to emit a definition in every translation unit
4499   // that references the function.  We should use linkonce_odr because
4500   // a) if all references in this translation unit are optimized away, we
4501   // don't need to codegen it.  b) if the function persists, it needs to be
4502   // merged with other definitions. c) C++ has the ODR, so we know the
4503   // definition is dependable.
4504   if (Linkage == GVA_DiscardableODR)
4505     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4506                                             : llvm::Function::InternalLinkage;
4507 
4508   // An explicit instantiation of a template has weak linkage, since
4509   // explicit instantiations can occur in multiple translation units
4510   // and must all be equivalent. However, we are not allowed to
4511   // throw away these explicit instantiations.
4512   //
4513   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4514   // so say that CUDA templates are either external (for kernels) or internal.
4515   // This lets llvm perform aggressive inter-procedural optimizations. For
4516   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4517   // therefore we need to follow the normal linkage paradigm.
4518   if (Linkage == GVA_StrongODR) {
4519     if (getLangOpts().AppleKext)
4520       return llvm::Function::ExternalLinkage;
4521     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4522         !getLangOpts().GPURelocatableDeviceCode)
4523       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4524                                           : llvm::Function::InternalLinkage;
4525     return llvm::Function::WeakODRLinkage;
4526   }
4527 
4528   // C++ doesn't have tentative definitions and thus cannot have common
4529   // linkage.
4530   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4531       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4532                                  CodeGenOpts.NoCommon))
4533     return llvm::GlobalVariable::CommonLinkage;
4534 
4535   // selectany symbols are externally visible, so use weak instead of
4536   // linkonce.  MSVC optimizes away references to const selectany globals, so
4537   // all definitions should be the same and ODR linkage should be used.
4538   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4539   if (D->hasAttr<SelectAnyAttr>())
4540     return llvm::GlobalVariable::WeakODRLinkage;
4541 
4542   // Otherwise, we have strong external linkage.
4543   assert(Linkage == GVA_StrongExternal);
4544   return llvm::GlobalVariable::ExternalLinkage;
4545 }
4546 
4547 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4548     const VarDecl *VD, bool IsConstant) {
4549   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4550   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4551 }
4552 
4553 /// Replace the uses of a function that was declared with a non-proto type.
4554 /// We want to silently drop extra arguments from call sites
4555 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4556                                           llvm::Function *newFn) {
4557   // Fast path.
4558   if (old->use_empty()) return;
4559 
4560   llvm::Type *newRetTy = newFn->getReturnType();
4561   SmallVector<llvm::Value*, 4> newArgs;
4562   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4563 
4564   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4565          ui != ue; ) {
4566     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4567     llvm::User *user = use->getUser();
4568 
4569     // Recognize and replace uses of bitcasts.  Most calls to
4570     // unprototyped functions will use bitcasts.
4571     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4572       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4573         replaceUsesOfNonProtoConstant(bitcast, newFn);
4574       continue;
4575     }
4576 
4577     // Recognize calls to the function.
4578     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4579     if (!callSite) continue;
4580     if (!callSite->isCallee(&*use))
4581       continue;
4582 
4583     // If the return types don't match exactly, then we can't
4584     // transform this call unless it's dead.
4585     if (callSite->getType() != newRetTy && !callSite->use_empty())
4586       continue;
4587 
4588     // Get the call site's attribute list.
4589     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4590     llvm::AttributeList oldAttrs = callSite->getAttributes();
4591 
4592     // If the function was passed too few arguments, don't transform.
4593     unsigned newNumArgs = newFn->arg_size();
4594     if (callSite->arg_size() < newNumArgs)
4595       continue;
4596 
4597     // If extra arguments were passed, we silently drop them.
4598     // If any of the types mismatch, we don't transform.
4599     unsigned argNo = 0;
4600     bool dontTransform = false;
4601     for (llvm::Argument &A : newFn->args()) {
4602       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4603         dontTransform = true;
4604         break;
4605       }
4606 
4607       // Add any parameter attributes.
4608       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4609       argNo++;
4610     }
4611     if (dontTransform)
4612       continue;
4613 
4614     // Okay, we can transform this.  Create the new call instruction and copy
4615     // over the required information.
4616     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4617 
4618     // Copy over any operand bundles.
4619     callSite->getOperandBundlesAsDefs(newBundles);
4620 
4621     llvm::CallBase *newCall;
4622     if (dyn_cast<llvm::CallInst>(callSite)) {
4623       newCall =
4624           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4625     } else {
4626       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4627       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4628                                          oldInvoke->getUnwindDest(), newArgs,
4629                                          newBundles, "", callSite);
4630     }
4631     newArgs.clear(); // for the next iteration
4632 
4633     if (!newCall->getType()->isVoidTy())
4634       newCall->takeName(callSite);
4635     newCall->setAttributes(llvm::AttributeList::get(
4636         newFn->getContext(), oldAttrs.getFnAttributes(),
4637         oldAttrs.getRetAttributes(), newArgAttrs));
4638     newCall->setCallingConv(callSite->getCallingConv());
4639 
4640     // Finally, remove the old call, replacing any uses with the new one.
4641     if (!callSite->use_empty())
4642       callSite->replaceAllUsesWith(newCall);
4643 
4644     // Copy debug location attached to CI.
4645     if (callSite->getDebugLoc())
4646       newCall->setDebugLoc(callSite->getDebugLoc());
4647 
4648     callSite->eraseFromParent();
4649   }
4650 }
4651 
4652 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4653 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4654 /// existing call uses of the old function in the module, this adjusts them to
4655 /// call the new function directly.
4656 ///
4657 /// This is not just a cleanup: the always_inline pass requires direct calls to
4658 /// functions to be able to inline them.  If there is a bitcast in the way, it
4659 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4660 /// run at -O0.
4661 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4662                                                       llvm::Function *NewFn) {
4663   // If we're redefining a global as a function, don't transform it.
4664   if (!isa<llvm::Function>(Old)) return;
4665 
4666   replaceUsesOfNonProtoConstant(Old, NewFn);
4667 }
4668 
4669 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4670   auto DK = VD->isThisDeclarationADefinition();
4671   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4672     return;
4673 
4674   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4675   // If we have a definition, this might be a deferred decl. If the
4676   // instantiation is explicit, make sure we emit it at the end.
4677   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4678     GetAddrOfGlobalVar(VD);
4679 
4680   EmitTopLevelDecl(VD);
4681 }
4682 
4683 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4684                                                  llvm::GlobalValue *GV) {
4685   const auto *D = cast<FunctionDecl>(GD.getDecl());
4686 
4687   // Compute the function info and LLVM type.
4688   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4689   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4690 
4691   // Get or create the prototype for the function.
4692   if (!GV || (GV->getValueType() != Ty))
4693     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4694                                                    /*DontDefer=*/true,
4695                                                    ForDefinition));
4696 
4697   // Already emitted.
4698   if (!GV->isDeclaration())
4699     return;
4700 
4701   // We need to set linkage and visibility on the function before
4702   // generating code for it because various parts of IR generation
4703   // want to propagate this information down (e.g. to local static
4704   // declarations).
4705   auto *Fn = cast<llvm::Function>(GV);
4706   setFunctionLinkage(GD, Fn);
4707 
4708   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4709   setGVProperties(Fn, GD);
4710 
4711   MaybeHandleStaticInExternC(D, Fn);
4712 
4713   maybeSetTrivialComdat(*D, *Fn);
4714 
4715   // Set CodeGen attributes that represent floating point environment.
4716   setLLVMFunctionFEnvAttributes(D, Fn);
4717 
4718   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4719 
4720   setNonAliasAttributes(GD, Fn);
4721   SetLLVMFunctionAttributesForDefinition(D, Fn);
4722 
4723   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4724     AddGlobalCtor(Fn, CA->getPriority());
4725   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4726     AddGlobalDtor(Fn, DA->getPriority(), true);
4727   if (D->hasAttr<AnnotateAttr>())
4728     AddGlobalAnnotations(D, Fn);
4729 }
4730 
4731 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4732   const auto *D = cast<ValueDecl>(GD.getDecl());
4733   const AliasAttr *AA = D->getAttr<AliasAttr>();
4734   assert(AA && "Not an alias?");
4735 
4736   StringRef MangledName = getMangledName(GD);
4737 
4738   if (AA->getAliasee() == MangledName) {
4739     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4740     return;
4741   }
4742 
4743   // If there is a definition in the module, then it wins over the alias.
4744   // This is dubious, but allow it to be safe.  Just ignore the alias.
4745   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4746   if (Entry && !Entry->isDeclaration())
4747     return;
4748 
4749   Aliases.push_back(GD);
4750 
4751   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4752 
4753   // Create a reference to the named value.  This ensures that it is emitted
4754   // if a deferred decl.
4755   llvm::Constant *Aliasee;
4756   llvm::GlobalValue::LinkageTypes LT;
4757   if (isa<llvm::FunctionType>(DeclTy)) {
4758     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4759                                       /*ForVTable=*/false);
4760     LT = getFunctionLinkage(GD);
4761   } else {
4762     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4763                                     llvm::PointerType::getUnqual(DeclTy),
4764                                     /*D=*/nullptr);
4765     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4766       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4767     else
4768       LT = getFunctionLinkage(GD);
4769   }
4770 
4771   // Create the new alias itself, but don't set a name yet.
4772   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4773   auto *GA =
4774       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4775 
4776   if (Entry) {
4777     if (GA->getAliasee() == Entry) {
4778       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4779       return;
4780     }
4781 
4782     assert(Entry->isDeclaration());
4783 
4784     // If there is a declaration in the module, then we had an extern followed
4785     // by the alias, as in:
4786     //   extern int test6();
4787     //   ...
4788     //   int test6() __attribute__((alias("test7")));
4789     //
4790     // Remove it and replace uses of it with the alias.
4791     GA->takeName(Entry);
4792 
4793     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4794                                                           Entry->getType()));
4795     Entry->eraseFromParent();
4796   } else {
4797     GA->setName(MangledName);
4798   }
4799 
4800   // Set attributes which are particular to an alias; this is a
4801   // specialization of the attributes which may be set on a global
4802   // variable/function.
4803   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4804       D->isWeakImported()) {
4805     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4806   }
4807 
4808   if (const auto *VD = dyn_cast<VarDecl>(D))
4809     if (VD->getTLSKind())
4810       setTLSMode(GA, *VD);
4811 
4812   SetCommonAttributes(GD, GA);
4813 }
4814 
4815 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4816   const auto *D = cast<ValueDecl>(GD.getDecl());
4817   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4818   assert(IFA && "Not an ifunc?");
4819 
4820   StringRef MangledName = getMangledName(GD);
4821 
4822   if (IFA->getResolver() == MangledName) {
4823     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4824     return;
4825   }
4826 
4827   // Report an error if some definition overrides ifunc.
4828   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4829   if (Entry && !Entry->isDeclaration()) {
4830     GlobalDecl OtherGD;
4831     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4832         DiagnosedConflictingDefinitions.insert(GD).second) {
4833       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4834           << MangledName;
4835       Diags.Report(OtherGD.getDecl()->getLocation(),
4836                    diag::note_previous_definition);
4837     }
4838     return;
4839   }
4840 
4841   Aliases.push_back(GD);
4842 
4843   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4844   llvm::Constant *Resolver =
4845       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4846                               /*ForVTable=*/false);
4847   llvm::GlobalIFunc *GIF =
4848       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4849                                 "", Resolver, &getModule());
4850   if (Entry) {
4851     if (GIF->getResolver() == Entry) {
4852       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4853       return;
4854     }
4855     assert(Entry->isDeclaration());
4856 
4857     // If there is a declaration in the module, then we had an extern followed
4858     // by the ifunc, as in:
4859     //   extern int test();
4860     //   ...
4861     //   int test() __attribute__((ifunc("resolver")));
4862     //
4863     // Remove it and replace uses of it with the ifunc.
4864     GIF->takeName(Entry);
4865 
4866     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4867                                                           Entry->getType()));
4868     Entry->eraseFromParent();
4869   } else
4870     GIF->setName(MangledName);
4871 
4872   SetCommonAttributes(GD, GIF);
4873 }
4874 
4875 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4876                                             ArrayRef<llvm::Type*> Tys) {
4877   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4878                                          Tys);
4879 }
4880 
4881 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4882 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4883                          const StringLiteral *Literal, bool TargetIsLSB,
4884                          bool &IsUTF16, unsigned &StringLength) {
4885   StringRef String = Literal->getString();
4886   unsigned NumBytes = String.size();
4887 
4888   // Check for simple case.
4889   if (!Literal->containsNonAsciiOrNull()) {
4890     StringLength = NumBytes;
4891     return *Map.insert(std::make_pair(String, nullptr)).first;
4892   }
4893 
4894   // Otherwise, convert the UTF8 literals into a string of shorts.
4895   IsUTF16 = true;
4896 
4897   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4898   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4899   llvm::UTF16 *ToPtr = &ToBuf[0];
4900 
4901   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4902                                  ToPtr + NumBytes, llvm::strictConversion);
4903 
4904   // ConvertUTF8toUTF16 returns the length in ToPtr.
4905   StringLength = ToPtr - &ToBuf[0];
4906 
4907   // Add an explicit null.
4908   *ToPtr = 0;
4909   return *Map.insert(std::make_pair(
4910                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4911                                    (StringLength + 1) * 2),
4912                          nullptr)).first;
4913 }
4914 
4915 ConstantAddress
4916 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4917   unsigned StringLength = 0;
4918   bool isUTF16 = false;
4919   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4920       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4921                                getDataLayout().isLittleEndian(), isUTF16,
4922                                StringLength);
4923 
4924   if (auto *C = Entry.second)
4925     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4926 
4927   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4928   llvm::Constant *Zeros[] = { Zero, Zero };
4929 
4930   const ASTContext &Context = getContext();
4931   const llvm::Triple &Triple = getTriple();
4932 
4933   const auto CFRuntime = getLangOpts().CFRuntime;
4934   const bool IsSwiftABI =
4935       static_cast<unsigned>(CFRuntime) >=
4936       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4937   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4938 
4939   // If we don't already have it, get __CFConstantStringClassReference.
4940   if (!CFConstantStringClassRef) {
4941     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4942     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4943     Ty = llvm::ArrayType::get(Ty, 0);
4944 
4945     switch (CFRuntime) {
4946     default: break;
4947     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4948     case LangOptions::CoreFoundationABI::Swift5_0:
4949       CFConstantStringClassName =
4950           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4951                               : "$s10Foundation19_NSCFConstantStringCN";
4952       Ty = IntPtrTy;
4953       break;
4954     case LangOptions::CoreFoundationABI::Swift4_2:
4955       CFConstantStringClassName =
4956           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4957                               : "$S10Foundation19_NSCFConstantStringCN";
4958       Ty = IntPtrTy;
4959       break;
4960     case LangOptions::CoreFoundationABI::Swift4_1:
4961       CFConstantStringClassName =
4962           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4963                               : "__T010Foundation19_NSCFConstantStringCN";
4964       Ty = IntPtrTy;
4965       break;
4966     }
4967 
4968     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4969 
4970     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4971       llvm::GlobalValue *GV = nullptr;
4972 
4973       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4974         IdentifierInfo &II = Context.Idents.get(GV->getName());
4975         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4976         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4977 
4978         const VarDecl *VD = nullptr;
4979         for (const auto &Result : DC->lookup(&II))
4980           if ((VD = dyn_cast<VarDecl>(Result)))
4981             break;
4982 
4983         if (Triple.isOSBinFormatELF()) {
4984           if (!VD)
4985             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4986         } else {
4987           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4988           if (!VD || !VD->hasAttr<DLLExportAttr>())
4989             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4990           else
4991             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4992         }
4993 
4994         setDSOLocal(GV);
4995       }
4996     }
4997 
4998     // Decay array -> ptr
4999     CFConstantStringClassRef =
5000         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5001                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5002   }
5003 
5004   QualType CFTy = Context.getCFConstantStringType();
5005 
5006   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5007 
5008   ConstantInitBuilder Builder(*this);
5009   auto Fields = Builder.beginStruct(STy);
5010 
5011   // Class pointer.
5012   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5013 
5014   // Flags.
5015   if (IsSwiftABI) {
5016     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5017     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5018   } else {
5019     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5020   }
5021 
5022   // String pointer.
5023   llvm::Constant *C = nullptr;
5024   if (isUTF16) {
5025     auto Arr = llvm::makeArrayRef(
5026         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5027         Entry.first().size() / 2);
5028     C = llvm::ConstantDataArray::get(VMContext, Arr);
5029   } else {
5030     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5031   }
5032 
5033   // Note: -fwritable-strings doesn't make the backing store strings of
5034   // CFStrings writable. (See <rdar://problem/10657500>)
5035   auto *GV =
5036       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5037                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5038   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5039   // Don't enforce the target's minimum global alignment, since the only use
5040   // of the string is via this class initializer.
5041   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5042                             : Context.getTypeAlignInChars(Context.CharTy);
5043   GV->setAlignment(Align.getAsAlign());
5044 
5045   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5046   // Without it LLVM can merge the string with a non unnamed_addr one during
5047   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5048   if (Triple.isOSBinFormatMachO())
5049     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5050                            : "__TEXT,__cstring,cstring_literals");
5051   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5052   // the static linker to adjust permissions to read-only later on.
5053   else if (Triple.isOSBinFormatELF())
5054     GV->setSection(".rodata");
5055 
5056   // String.
5057   llvm::Constant *Str =
5058       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5059 
5060   if (isUTF16)
5061     // Cast the UTF16 string to the correct type.
5062     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5063   Fields.add(Str);
5064 
5065   // String length.
5066   llvm::IntegerType *LengthTy =
5067       llvm::IntegerType::get(getModule().getContext(),
5068                              Context.getTargetInfo().getLongWidth());
5069   if (IsSwiftABI) {
5070     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5071         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5072       LengthTy = Int32Ty;
5073     else
5074       LengthTy = IntPtrTy;
5075   }
5076   Fields.addInt(LengthTy, StringLength);
5077 
5078   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5079   // properly aligned on 32-bit platforms.
5080   CharUnits Alignment =
5081       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5082 
5083   // The struct.
5084   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5085                                     /*isConstant=*/false,
5086                                     llvm::GlobalVariable::PrivateLinkage);
5087   GV->addAttribute("objc_arc_inert");
5088   switch (Triple.getObjectFormat()) {
5089   case llvm::Triple::UnknownObjectFormat:
5090     llvm_unreachable("unknown file format");
5091   case llvm::Triple::GOFF:
5092     llvm_unreachable("GOFF is not yet implemented");
5093   case llvm::Triple::XCOFF:
5094     llvm_unreachable("XCOFF is not yet implemented");
5095   case llvm::Triple::COFF:
5096   case llvm::Triple::ELF:
5097   case llvm::Triple::Wasm:
5098     GV->setSection("cfstring");
5099     break;
5100   case llvm::Triple::MachO:
5101     GV->setSection("__DATA,__cfstring");
5102     break;
5103   }
5104   Entry.second = GV;
5105 
5106   return ConstantAddress(GV, Alignment);
5107 }
5108 
5109 bool CodeGenModule::getExpressionLocationsEnabled() const {
5110   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5111 }
5112 
5113 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5114   if (ObjCFastEnumerationStateType.isNull()) {
5115     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5116     D->startDefinition();
5117 
5118     QualType FieldTypes[] = {
5119       Context.UnsignedLongTy,
5120       Context.getPointerType(Context.getObjCIdType()),
5121       Context.getPointerType(Context.UnsignedLongTy),
5122       Context.getConstantArrayType(Context.UnsignedLongTy,
5123                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5124     };
5125 
5126     for (size_t i = 0; i < 4; ++i) {
5127       FieldDecl *Field = FieldDecl::Create(Context,
5128                                            D,
5129                                            SourceLocation(),
5130                                            SourceLocation(), nullptr,
5131                                            FieldTypes[i], /*TInfo=*/nullptr,
5132                                            /*BitWidth=*/nullptr,
5133                                            /*Mutable=*/false,
5134                                            ICIS_NoInit);
5135       Field->setAccess(AS_public);
5136       D->addDecl(Field);
5137     }
5138 
5139     D->completeDefinition();
5140     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5141   }
5142 
5143   return ObjCFastEnumerationStateType;
5144 }
5145 
5146 llvm::Constant *
5147 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5148   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5149 
5150   // Don't emit it as the address of the string, emit the string data itself
5151   // as an inline array.
5152   if (E->getCharByteWidth() == 1) {
5153     SmallString<64> Str(E->getString());
5154 
5155     // Resize the string to the right size, which is indicated by its type.
5156     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5157     Str.resize(CAT->getSize().getZExtValue());
5158     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5159   }
5160 
5161   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5162   llvm::Type *ElemTy = AType->getElementType();
5163   unsigned NumElements = AType->getNumElements();
5164 
5165   // Wide strings have either 2-byte or 4-byte elements.
5166   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5167     SmallVector<uint16_t, 32> Elements;
5168     Elements.reserve(NumElements);
5169 
5170     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5171       Elements.push_back(E->getCodeUnit(i));
5172     Elements.resize(NumElements);
5173     return llvm::ConstantDataArray::get(VMContext, Elements);
5174   }
5175 
5176   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5177   SmallVector<uint32_t, 32> Elements;
5178   Elements.reserve(NumElements);
5179 
5180   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5181     Elements.push_back(E->getCodeUnit(i));
5182   Elements.resize(NumElements);
5183   return llvm::ConstantDataArray::get(VMContext, Elements);
5184 }
5185 
5186 static llvm::GlobalVariable *
5187 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5188                       CodeGenModule &CGM, StringRef GlobalName,
5189                       CharUnits Alignment) {
5190   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5191       CGM.getStringLiteralAddressSpace());
5192 
5193   llvm::Module &M = CGM.getModule();
5194   // Create a global variable for this string
5195   auto *GV = new llvm::GlobalVariable(
5196       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5197       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5198   GV->setAlignment(Alignment.getAsAlign());
5199   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5200   if (GV->isWeakForLinker()) {
5201     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5202     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5203   }
5204   CGM.setDSOLocal(GV);
5205 
5206   return GV;
5207 }
5208 
5209 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5210 /// constant array for the given string literal.
5211 ConstantAddress
5212 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5213                                                   StringRef Name) {
5214   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5215 
5216   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5217   llvm::GlobalVariable **Entry = nullptr;
5218   if (!LangOpts.WritableStrings) {
5219     Entry = &ConstantStringMap[C];
5220     if (auto GV = *Entry) {
5221       if (Alignment.getQuantity() > GV->getAlignment())
5222         GV->setAlignment(Alignment.getAsAlign());
5223       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5224                              Alignment);
5225     }
5226   }
5227 
5228   SmallString<256> MangledNameBuffer;
5229   StringRef GlobalVariableName;
5230   llvm::GlobalValue::LinkageTypes LT;
5231 
5232   // Mangle the string literal if that's how the ABI merges duplicate strings.
5233   // Don't do it if they are writable, since we don't want writes in one TU to
5234   // affect strings in another.
5235   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5236       !LangOpts.WritableStrings) {
5237     llvm::raw_svector_ostream Out(MangledNameBuffer);
5238     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5239     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5240     GlobalVariableName = MangledNameBuffer;
5241   } else {
5242     LT = llvm::GlobalValue::PrivateLinkage;
5243     GlobalVariableName = Name;
5244   }
5245 
5246   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5247   if (Entry)
5248     *Entry = GV;
5249 
5250   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5251                                   QualType());
5252 
5253   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5254                          Alignment);
5255 }
5256 
5257 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5258 /// array for the given ObjCEncodeExpr node.
5259 ConstantAddress
5260 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5261   std::string Str;
5262   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5263 
5264   return GetAddrOfConstantCString(Str);
5265 }
5266 
5267 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5268 /// the literal and a terminating '\0' character.
5269 /// The result has pointer to array type.
5270 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5271     const std::string &Str, const char *GlobalName) {
5272   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5273   CharUnits Alignment =
5274     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5275 
5276   llvm::Constant *C =
5277       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5278 
5279   // Don't share any string literals if strings aren't constant.
5280   llvm::GlobalVariable **Entry = nullptr;
5281   if (!LangOpts.WritableStrings) {
5282     Entry = &ConstantStringMap[C];
5283     if (auto GV = *Entry) {
5284       if (Alignment.getQuantity() > GV->getAlignment())
5285         GV->setAlignment(Alignment.getAsAlign());
5286       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5287                              Alignment);
5288     }
5289   }
5290 
5291   // Get the default prefix if a name wasn't specified.
5292   if (!GlobalName)
5293     GlobalName = ".str";
5294   // Create a global variable for this.
5295   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5296                                   GlobalName, Alignment);
5297   if (Entry)
5298     *Entry = GV;
5299 
5300   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5301                          Alignment);
5302 }
5303 
5304 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5305     const MaterializeTemporaryExpr *E, const Expr *Init) {
5306   assert((E->getStorageDuration() == SD_Static ||
5307           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5308   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5309 
5310   // If we're not materializing a subobject of the temporary, keep the
5311   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5312   QualType MaterializedType = Init->getType();
5313   if (Init == E->getSubExpr())
5314     MaterializedType = E->getType();
5315 
5316   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5317 
5318   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5319     return ConstantAddress(Slot, Align);
5320 
5321   // FIXME: If an externally-visible declaration extends multiple temporaries,
5322   // we need to give each temporary the same name in every translation unit (and
5323   // we also need to make the temporaries externally-visible).
5324   SmallString<256> Name;
5325   llvm::raw_svector_ostream Out(Name);
5326   getCXXABI().getMangleContext().mangleReferenceTemporary(
5327       VD, E->getManglingNumber(), Out);
5328 
5329   APValue *Value = nullptr;
5330   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5331     // If the initializer of the extending declaration is a constant
5332     // initializer, we should have a cached constant initializer for this
5333     // temporary. Note that this might have a different value from the value
5334     // computed by evaluating the initializer if the surrounding constant
5335     // expression modifies the temporary.
5336     Value = E->getOrCreateValue(false);
5337   }
5338 
5339   // Try evaluating it now, it might have a constant initializer.
5340   Expr::EvalResult EvalResult;
5341   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5342       !EvalResult.hasSideEffects())
5343     Value = &EvalResult.Val;
5344 
5345   LangAS AddrSpace =
5346       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5347 
5348   Optional<ConstantEmitter> emitter;
5349   llvm::Constant *InitialValue = nullptr;
5350   bool Constant = false;
5351   llvm::Type *Type;
5352   if (Value) {
5353     // The temporary has a constant initializer, use it.
5354     emitter.emplace(*this);
5355     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5356                                                MaterializedType);
5357     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5358     Type = InitialValue->getType();
5359   } else {
5360     // No initializer, the initialization will be provided when we
5361     // initialize the declaration which performed lifetime extension.
5362     Type = getTypes().ConvertTypeForMem(MaterializedType);
5363   }
5364 
5365   // Create a global variable for this lifetime-extended temporary.
5366   llvm::GlobalValue::LinkageTypes Linkage =
5367       getLLVMLinkageVarDefinition(VD, Constant);
5368   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5369     const VarDecl *InitVD;
5370     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5371         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5372       // Temporaries defined inside a class get linkonce_odr linkage because the
5373       // class can be defined in multiple translation units.
5374       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5375     } else {
5376       // There is no need for this temporary to have external linkage if the
5377       // VarDecl has external linkage.
5378       Linkage = llvm::GlobalVariable::InternalLinkage;
5379     }
5380   }
5381   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5382   auto *GV = new llvm::GlobalVariable(
5383       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5384       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5385   if (emitter) emitter->finalize(GV);
5386   setGVProperties(GV, VD);
5387   GV->setAlignment(Align.getAsAlign());
5388   if (supportsCOMDAT() && GV->isWeakForLinker())
5389     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5390   if (VD->getTLSKind())
5391     setTLSMode(GV, *VD);
5392   llvm::Constant *CV = GV;
5393   if (AddrSpace != LangAS::Default)
5394     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5395         *this, GV, AddrSpace, LangAS::Default,
5396         Type->getPointerTo(
5397             getContext().getTargetAddressSpace(LangAS::Default)));
5398   MaterializedGlobalTemporaryMap[E] = CV;
5399   return ConstantAddress(CV, Align);
5400 }
5401 
5402 /// EmitObjCPropertyImplementations - Emit information for synthesized
5403 /// properties for an implementation.
5404 void CodeGenModule::EmitObjCPropertyImplementations(const
5405                                                     ObjCImplementationDecl *D) {
5406   for (const auto *PID : D->property_impls()) {
5407     // Dynamic is just for type-checking.
5408     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5409       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5410 
5411       // Determine which methods need to be implemented, some may have
5412       // been overridden. Note that ::isPropertyAccessor is not the method
5413       // we want, that just indicates if the decl came from a
5414       // property. What we want to know is if the method is defined in
5415       // this implementation.
5416       auto *Getter = PID->getGetterMethodDecl();
5417       if (!Getter || Getter->isSynthesizedAccessorStub())
5418         CodeGenFunction(*this).GenerateObjCGetter(
5419             const_cast<ObjCImplementationDecl *>(D), PID);
5420       auto *Setter = PID->getSetterMethodDecl();
5421       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5422         CodeGenFunction(*this).GenerateObjCSetter(
5423                                  const_cast<ObjCImplementationDecl *>(D), PID);
5424     }
5425   }
5426 }
5427 
5428 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5429   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5430   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5431        ivar; ivar = ivar->getNextIvar())
5432     if (ivar->getType().isDestructedType())
5433       return true;
5434 
5435   return false;
5436 }
5437 
5438 static bool AllTrivialInitializers(CodeGenModule &CGM,
5439                                    ObjCImplementationDecl *D) {
5440   CodeGenFunction CGF(CGM);
5441   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5442        E = D->init_end(); B != E; ++B) {
5443     CXXCtorInitializer *CtorInitExp = *B;
5444     Expr *Init = CtorInitExp->getInit();
5445     if (!CGF.isTrivialInitializer(Init))
5446       return false;
5447   }
5448   return true;
5449 }
5450 
5451 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5452 /// for an implementation.
5453 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5454   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5455   if (needsDestructMethod(D)) {
5456     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5457     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5458     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5459         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5460         getContext().VoidTy, nullptr, D,
5461         /*isInstance=*/true, /*isVariadic=*/false,
5462         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5463         /*isImplicitlyDeclared=*/true,
5464         /*isDefined=*/false, ObjCMethodDecl::Required);
5465     D->addInstanceMethod(DTORMethod);
5466     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5467     D->setHasDestructors(true);
5468   }
5469 
5470   // If the implementation doesn't have any ivar initializers, we don't need
5471   // a .cxx_construct.
5472   if (D->getNumIvarInitializers() == 0 ||
5473       AllTrivialInitializers(*this, D))
5474     return;
5475 
5476   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5477   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5478   // The constructor returns 'self'.
5479   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5480       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5481       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5482       /*isVariadic=*/false,
5483       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5484       /*isImplicitlyDeclared=*/true,
5485       /*isDefined=*/false, ObjCMethodDecl::Required);
5486   D->addInstanceMethod(CTORMethod);
5487   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5488   D->setHasNonZeroConstructors(true);
5489 }
5490 
5491 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5492 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5493   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5494       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5495     ErrorUnsupported(LSD, "linkage spec");
5496     return;
5497   }
5498 
5499   EmitDeclContext(LSD);
5500 }
5501 
5502 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5503   for (auto *I : DC->decls()) {
5504     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5505     // are themselves considered "top-level", so EmitTopLevelDecl on an
5506     // ObjCImplDecl does not recursively visit them. We need to do that in
5507     // case they're nested inside another construct (LinkageSpecDecl /
5508     // ExportDecl) that does stop them from being considered "top-level".
5509     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5510       for (auto *M : OID->methods())
5511         EmitTopLevelDecl(M);
5512     }
5513 
5514     EmitTopLevelDecl(I);
5515   }
5516 }
5517 
5518 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5519 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5520   // Ignore dependent declarations.
5521   if (D->isTemplated())
5522     return;
5523 
5524   // Consteval function shouldn't be emitted.
5525   if (auto *FD = dyn_cast<FunctionDecl>(D))
5526     if (FD->isConsteval())
5527       return;
5528 
5529   switch (D->getKind()) {
5530   case Decl::CXXConversion:
5531   case Decl::CXXMethod:
5532   case Decl::Function:
5533     EmitGlobal(cast<FunctionDecl>(D));
5534     // Always provide some coverage mapping
5535     // even for the functions that aren't emitted.
5536     AddDeferredUnusedCoverageMapping(D);
5537     break;
5538 
5539   case Decl::CXXDeductionGuide:
5540     // Function-like, but does not result in code emission.
5541     break;
5542 
5543   case Decl::Var:
5544   case Decl::Decomposition:
5545   case Decl::VarTemplateSpecialization:
5546     EmitGlobal(cast<VarDecl>(D));
5547     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5548       for (auto *B : DD->bindings())
5549         if (auto *HD = B->getHoldingVar())
5550           EmitGlobal(HD);
5551     break;
5552 
5553   // Indirect fields from global anonymous structs and unions can be
5554   // ignored; only the actual variable requires IR gen support.
5555   case Decl::IndirectField:
5556     break;
5557 
5558   // C++ Decls
5559   case Decl::Namespace:
5560     EmitDeclContext(cast<NamespaceDecl>(D));
5561     break;
5562   case Decl::ClassTemplateSpecialization: {
5563     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5564     if (CGDebugInfo *DI = getModuleDebugInfo())
5565       if (Spec->getSpecializationKind() ==
5566               TSK_ExplicitInstantiationDefinition &&
5567           Spec->hasDefinition())
5568         DI->completeTemplateDefinition(*Spec);
5569   } LLVM_FALLTHROUGH;
5570   case Decl::CXXRecord: {
5571     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5572     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5573       if (CRD->hasDefinition())
5574         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5575       if (auto *ES = D->getASTContext().getExternalSource())
5576         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5577           DI->completeUnusedClass(*CRD);
5578     }
5579     // Emit any static data members, they may be definitions.
5580     for (auto *I : CRD->decls())
5581       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5582         EmitTopLevelDecl(I);
5583     break;
5584   }
5585     // No code generation needed.
5586   case Decl::UsingShadow:
5587   case Decl::ClassTemplate:
5588   case Decl::VarTemplate:
5589   case Decl::Concept:
5590   case Decl::VarTemplatePartialSpecialization:
5591   case Decl::FunctionTemplate:
5592   case Decl::TypeAliasTemplate:
5593   case Decl::Block:
5594   case Decl::Empty:
5595   case Decl::Binding:
5596     break;
5597   case Decl::Using:          // using X; [C++]
5598     if (CGDebugInfo *DI = getModuleDebugInfo())
5599         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5600     break;
5601   case Decl::NamespaceAlias:
5602     if (CGDebugInfo *DI = getModuleDebugInfo())
5603         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5604     break;
5605   case Decl::UsingDirective: // using namespace X; [C++]
5606     if (CGDebugInfo *DI = getModuleDebugInfo())
5607       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5608     break;
5609   case Decl::CXXConstructor:
5610     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5611     break;
5612   case Decl::CXXDestructor:
5613     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5614     break;
5615 
5616   case Decl::StaticAssert:
5617     // Nothing to do.
5618     break;
5619 
5620   // Objective-C Decls
5621 
5622   // Forward declarations, no (immediate) code generation.
5623   case Decl::ObjCInterface:
5624   case Decl::ObjCCategory:
5625     break;
5626 
5627   case Decl::ObjCProtocol: {
5628     auto *Proto = cast<ObjCProtocolDecl>(D);
5629     if (Proto->isThisDeclarationADefinition())
5630       ObjCRuntime->GenerateProtocol(Proto);
5631     break;
5632   }
5633 
5634   case Decl::ObjCCategoryImpl:
5635     // Categories have properties but don't support synthesize so we
5636     // can ignore them here.
5637     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5638     break;
5639 
5640   case Decl::ObjCImplementation: {
5641     auto *OMD = cast<ObjCImplementationDecl>(D);
5642     EmitObjCPropertyImplementations(OMD);
5643     EmitObjCIvarInitializations(OMD);
5644     ObjCRuntime->GenerateClass(OMD);
5645     // Emit global variable debug information.
5646     if (CGDebugInfo *DI = getModuleDebugInfo())
5647       if (getCodeGenOpts().hasReducedDebugInfo())
5648         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5649             OMD->getClassInterface()), OMD->getLocation());
5650     break;
5651   }
5652   case Decl::ObjCMethod: {
5653     auto *OMD = cast<ObjCMethodDecl>(D);
5654     // If this is not a prototype, emit the body.
5655     if (OMD->getBody())
5656       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5657     break;
5658   }
5659   case Decl::ObjCCompatibleAlias:
5660     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5661     break;
5662 
5663   case Decl::PragmaComment: {
5664     const auto *PCD = cast<PragmaCommentDecl>(D);
5665     switch (PCD->getCommentKind()) {
5666     case PCK_Unknown:
5667       llvm_unreachable("unexpected pragma comment kind");
5668     case PCK_Linker:
5669       AppendLinkerOptions(PCD->getArg());
5670       break;
5671     case PCK_Lib:
5672         AddDependentLib(PCD->getArg());
5673       break;
5674     case PCK_Compiler:
5675     case PCK_ExeStr:
5676     case PCK_User:
5677       break; // We ignore all of these.
5678     }
5679     break;
5680   }
5681 
5682   case Decl::PragmaDetectMismatch: {
5683     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5684     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5685     break;
5686   }
5687 
5688   case Decl::LinkageSpec:
5689     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5690     break;
5691 
5692   case Decl::FileScopeAsm: {
5693     // File-scope asm is ignored during device-side CUDA compilation.
5694     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5695       break;
5696     // File-scope asm is ignored during device-side OpenMP compilation.
5697     if (LangOpts.OpenMPIsDevice)
5698       break;
5699     auto *AD = cast<FileScopeAsmDecl>(D);
5700     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5701     break;
5702   }
5703 
5704   case Decl::Import: {
5705     auto *Import = cast<ImportDecl>(D);
5706 
5707     // If we've already imported this module, we're done.
5708     if (!ImportedModules.insert(Import->getImportedModule()))
5709       break;
5710 
5711     // Emit debug information for direct imports.
5712     if (!Import->getImportedOwningModule()) {
5713       if (CGDebugInfo *DI = getModuleDebugInfo())
5714         DI->EmitImportDecl(*Import);
5715     }
5716 
5717     // Find all of the submodules and emit the module initializers.
5718     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5719     SmallVector<clang::Module *, 16> Stack;
5720     Visited.insert(Import->getImportedModule());
5721     Stack.push_back(Import->getImportedModule());
5722 
5723     while (!Stack.empty()) {
5724       clang::Module *Mod = Stack.pop_back_val();
5725       if (!EmittedModuleInitializers.insert(Mod).second)
5726         continue;
5727 
5728       for (auto *D : Context.getModuleInitializers(Mod))
5729         EmitTopLevelDecl(D);
5730 
5731       // Visit the submodules of this module.
5732       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5733                                              SubEnd = Mod->submodule_end();
5734            Sub != SubEnd; ++Sub) {
5735         // Skip explicit children; they need to be explicitly imported to emit
5736         // the initializers.
5737         if ((*Sub)->IsExplicit)
5738           continue;
5739 
5740         if (Visited.insert(*Sub).second)
5741           Stack.push_back(*Sub);
5742       }
5743     }
5744     break;
5745   }
5746 
5747   case Decl::Export:
5748     EmitDeclContext(cast<ExportDecl>(D));
5749     break;
5750 
5751   case Decl::OMPThreadPrivate:
5752     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5753     break;
5754 
5755   case Decl::OMPAllocate:
5756     break;
5757 
5758   case Decl::OMPDeclareReduction:
5759     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5760     break;
5761 
5762   case Decl::OMPDeclareMapper:
5763     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5764     break;
5765 
5766   case Decl::OMPRequires:
5767     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5768     break;
5769 
5770   case Decl::Typedef:
5771   case Decl::TypeAlias: // using foo = bar; [C++11]
5772     if (CGDebugInfo *DI = getModuleDebugInfo())
5773       DI->EmitAndRetainType(
5774           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5775     break;
5776 
5777   case Decl::Record:
5778     if (CGDebugInfo *DI = getModuleDebugInfo())
5779       if (cast<RecordDecl>(D)->getDefinition())
5780         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5781     break;
5782 
5783   case Decl::Enum:
5784     if (CGDebugInfo *DI = getModuleDebugInfo())
5785       if (cast<EnumDecl>(D)->getDefinition())
5786         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5787     break;
5788 
5789   default:
5790     // Make sure we handled everything we should, every other kind is a
5791     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5792     // function. Need to recode Decl::Kind to do that easily.
5793     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5794     break;
5795   }
5796 }
5797 
5798 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5799   // Do we need to generate coverage mapping?
5800   if (!CodeGenOpts.CoverageMapping)
5801     return;
5802   switch (D->getKind()) {
5803   case Decl::CXXConversion:
5804   case Decl::CXXMethod:
5805   case Decl::Function:
5806   case Decl::ObjCMethod:
5807   case Decl::CXXConstructor:
5808   case Decl::CXXDestructor: {
5809     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5810       break;
5811     SourceManager &SM = getContext().getSourceManager();
5812     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5813       break;
5814     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5815     if (I == DeferredEmptyCoverageMappingDecls.end())
5816       DeferredEmptyCoverageMappingDecls[D] = true;
5817     break;
5818   }
5819   default:
5820     break;
5821   };
5822 }
5823 
5824 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5825   // Do we need to generate coverage mapping?
5826   if (!CodeGenOpts.CoverageMapping)
5827     return;
5828   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5829     if (Fn->isTemplateInstantiation())
5830       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5831   }
5832   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5833   if (I == DeferredEmptyCoverageMappingDecls.end())
5834     DeferredEmptyCoverageMappingDecls[D] = false;
5835   else
5836     I->second = false;
5837 }
5838 
5839 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5840   // We call takeVector() here to avoid use-after-free.
5841   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5842   // we deserialize function bodies to emit coverage info for them, and that
5843   // deserializes more declarations. How should we handle that case?
5844   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5845     if (!Entry.second)
5846       continue;
5847     const Decl *D = Entry.first;
5848     switch (D->getKind()) {
5849     case Decl::CXXConversion:
5850     case Decl::CXXMethod:
5851     case Decl::Function:
5852     case Decl::ObjCMethod: {
5853       CodeGenPGO PGO(*this);
5854       GlobalDecl GD(cast<FunctionDecl>(D));
5855       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5856                                   getFunctionLinkage(GD));
5857       break;
5858     }
5859     case Decl::CXXConstructor: {
5860       CodeGenPGO PGO(*this);
5861       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5862       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5863                                   getFunctionLinkage(GD));
5864       break;
5865     }
5866     case Decl::CXXDestructor: {
5867       CodeGenPGO PGO(*this);
5868       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5869       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5870                                   getFunctionLinkage(GD));
5871       break;
5872     }
5873     default:
5874       break;
5875     };
5876   }
5877 }
5878 
5879 void CodeGenModule::EmitMainVoidAlias() {
5880   // In order to transition away from "__original_main" gracefully, emit an
5881   // alias for "main" in the no-argument case so that libc can detect when
5882   // new-style no-argument main is in used.
5883   if (llvm::Function *F = getModule().getFunction("main")) {
5884     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5885         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5886       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5887   }
5888 }
5889 
5890 /// Turns the given pointer into a constant.
5891 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5892                                           const void *Ptr) {
5893   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5894   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5895   return llvm::ConstantInt::get(i64, PtrInt);
5896 }
5897 
5898 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5899                                    llvm::NamedMDNode *&GlobalMetadata,
5900                                    GlobalDecl D,
5901                                    llvm::GlobalValue *Addr) {
5902   if (!GlobalMetadata)
5903     GlobalMetadata =
5904       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5905 
5906   // TODO: should we report variant information for ctors/dtors?
5907   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5908                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5909                                CGM.getLLVMContext(), D.getDecl()))};
5910   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5911 }
5912 
5913 /// For each function which is declared within an extern "C" region and marked
5914 /// as 'used', but has internal linkage, create an alias from the unmangled
5915 /// name to the mangled name if possible. People expect to be able to refer
5916 /// to such functions with an unmangled name from inline assembly within the
5917 /// same translation unit.
5918 void CodeGenModule::EmitStaticExternCAliases() {
5919   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5920     return;
5921   for (auto &I : StaticExternCValues) {
5922     IdentifierInfo *Name = I.first;
5923     llvm::GlobalValue *Val = I.second;
5924     if (Val && !getModule().getNamedValue(Name->getName()))
5925       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5926   }
5927 }
5928 
5929 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5930                                              GlobalDecl &Result) const {
5931   auto Res = Manglings.find(MangledName);
5932   if (Res == Manglings.end())
5933     return false;
5934   Result = Res->getValue();
5935   return true;
5936 }
5937 
5938 /// Emits metadata nodes associating all the global values in the
5939 /// current module with the Decls they came from.  This is useful for
5940 /// projects using IR gen as a subroutine.
5941 ///
5942 /// Since there's currently no way to associate an MDNode directly
5943 /// with an llvm::GlobalValue, we create a global named metadata
5944 /// with the name 'clang.global.decl.ptrs'.
5945 void CodeGenModule::EmitDeclMetadata() {
5946   llvm::NamedMDNode *GlobalMetadata = nullptr;
5947 
5948   for (auto &I : MangledDeclNames) {
5949     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5950     // Some mangled names don't necessarily have an associated GlobalValue
5951     // in this module, e.g. if we mangled it for DebugInfo.
5952     if (Addr)
5953       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5954   }
5955 }
5956 
5957 /// Emits metadata nodes for all the local variables in the current
5958 /// function.
5959 void CodeGenFunction::EmitDeclMetadata() {
5960   if (LocalDeclMap.empty()) return;
5961 
5962   llvm::LLVMContext &Context = getLLVMContext();
5963 
5964   // Find the unique metadata ID for this name.
5965   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5966 
5967   llvm::NamedMDNode *GlobalMetadata = nullptr;
5968 
5969   for (auto &I : LocalDeclMap) {
5970     const Decl *D = I.first;
5971     llvm::Value *Addr = I.second.getPointer();
5972     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5973       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5974       Alloca->setMetadata(
5975           DeclPtrKind, llvm::MDNode::get(
5976                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5977     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5978       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5979       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5980     }
5981   }
5982 }
5983 
5984 void CodeGenModule::EmitVersionIdentMetadata() {
5985   llvm::NamedMDNode *IdentMetadata =
5986     TheModule.getOrInsertNamedMetadata("llvm.ident");
5987   std::string Version = getClangFullVersion();
5988   llvm::LLVMContext &Ctx = TheModule.getContext();
5989 
5990   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5991   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5992 }
5993 
5994 void CodeGenModule::EmitCommandLineMetadata() {
5995   llvm::NamedMDNode *CommandLineMetadata =
5996     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5997   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5998   llvm::LLVMContext &Ctx = TheModule.getContext();
5999 
6000   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6001   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6002 }
6003 
6004 void CodeGenModule::EmitCoverageFile() {
6005   if (getCodeGenOpts().CoverageDataFile.empty() &&
6006       getCodeGenOpts().CoverageNotesFile.empty())
6007     return;
6008 
6009   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6010   if (!CUNode)
6011     return;
6012 
6013   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6014   llvm::LLVMContext &Ctx = TheModule.getContext();
6015   auto *CoverageDataFile =
6016       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6017   auto *CoverageNotesFile =
6018       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6019   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6020     llvm::MDNode *CU = CUNode->getOperand(i);
6021     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6022     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6023   }
6024 }
6025 
6026 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6027                                                        bool ForEH) {
6028   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6029   // FIXME: should we even be calling this method if RTTI is disabled
6030   // and it's not for EH?
6031   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6032       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6033        getTriple().isNVPTX()))
6034     return llvm::Constant::getNullValue(Int8PtrTy);
6035 
6036   if (ForEH && Ty->isObjCObjectPointerType() &&
6037       LangOpts.ObjCRuntime.isGNUFamily())
6038     return ObjCRuntime->GetEHType(Ty);
6039 
6040   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6041 }
6042 
6043 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6044   // Do not emit threadprivates in simd-only mode.
6045   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6046     return;
6047   for (auto RefExpr : D->varlists()) {
6048     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6049     bool PerformInit =
6050         VD->getAnyInitializer() &&
6051         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6052                                                         /*ForRef=*/false);
6053 
6054     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6055     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6056             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6057       CXXGlobalInits.push_back(InitFunction);
6058   }
6059 }
6060 
6061 llvm::Metadata *
6062 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6063                                             StringRef Suffix) {
6064   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6065   if (InternalId)
6066     return InternalId;
6067 
6068   if (isExternallyVisible(T->getLinkage())) {
6069     std::string OutName;
6070     llvm::raw_string_ostream Out(OutName);
6071     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6072     Out << Suffix;
6073 
6074     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6075   } else {
6076     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6077                                            llvm::ArrayRef<llvm::Metadata *>());
6078   }
6079 
6080   return InternalId;
6081 }
6082 
6083 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6084   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6085 }
6086 
6087 llvm::Metadata *
6088 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6089   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6090 }
6091 
6092 // Generalize pointer types to a void pointer with the qualifiers of the
6093 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6094 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6095 // 'void *'.
6096 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6097   if (!Ty->isPointerType())
6098     return Ty;
6099 
6100   return Ctx.getPointerType(
6101       QualType(Ctx.VoidTy).withCVRQualifiers(
6102           Ty->getPointeeType().getCVRQualifiers()));
6103 }
6104 
6105 // Apply type generalization to a FunctionType's return and argument types
6106 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6107   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6108     SmallVector<QualType, 8> GeneralizedParams;
6109     for (auto &Param : FnType->param_types())
6110       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6111 
6112     return Ctx.getFunctionType(
6113         GeneralizeType(Ctx, FnType->getReturnType()),
6114         GeneralizedParams, FnType->getExtProtoInfo());
6115   }
6116 
6117   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6118     return Ctx.getFunctionNoProtoType(
6119         GeneralizeType(Ctx, FnType->getReturnType()));
6120 
6121   llvm_unreachable("Encountered unknown FunctionType");
6122 }
6123 
6124 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6125   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6126                                       GeneralizedMetadataIdMap, ".generalized");
6127 }
6128 
6129 /// Returns whether this module needs the "all-vtables" type identifier.
6130 bool CodeGenModule::NeedAllVtablesTypeId() const {
6131   // Returns true if at least one of vtable-based CFI checkers is enabled and
6132   // is not in the trapping mode.
6133   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6134            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6135           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6136            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6137           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6138            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6139           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6140            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6141 }
6142 
6143 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6144                                           CharUnits Offset,
6145                                           const CXXRecordDecl *RD) {
6146   llvm::Metadata *MD =
6147       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6148   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6149 
6150   if (CodeGenOpts.SanitizeCfiCrossDso)
6151     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6152       VTable->addTypeMetadata(Offset.getQuantity(),
6153                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6154 
6155   if (NeedAllVtablesTypeId()) {
6156     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6157     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6158   }
6159 }
6160 
6161 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6162   if (!SanStats)
6163     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6164 
6165   return *SanStats;
6166 }
6167 llvm::Value *
6168 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6169                                                   CodeGenFunction &CGF) {
6170   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6171   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6172   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6173   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6174                                 "__translate_sampler_initializer"),
6175                                 {C});
6176 }
6177 
6178 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6179     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6180   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6181                                  /* forPointeeType= */ true);
6182 }
6183 
6184 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6185                                                  LValueBaseInfo *BaseInfo,
6186                                                  TBAAAccessInfo *TBAAInfo,
6187                                                  bool forPointeeType) {
6188   if (TBAAInfo)
6189     *TBAAInfo = getTBAAAccessInfo(T);
6190 
6191   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6192   // that doesn't return the information we need to compute BaseInfo.
6193 
6194   // Honor alignment typedef attributes even on incomplete types.
6195   // We also honor them straight for C++ class types, even as pointees;
6196   // there's an expressivity gap here.
6197   if (auto TT = T->getAs<TypedefType>()) {
6198     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6199       if (BaseInfo)
6200         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6201       return getContext().toCharUnitsFromBits(Align);
6202     }
6203   }
6204 
6205   bool AlignForArray = T->isArrayType();
6206 
6207   // Analyze the base element type, so we don't get confused by incomplete
6208   // array types.
6209   T = getContext().getBaseElementType(T);
6210 
6211   if (T->isIncompleteType()) {
6212     // We could try to replicate the logic from
6213     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6214     // type is incomplete, so it's impossible to test. We could try to reuse
6215     // getTypeAlignIfKnown, but that doesn't return the information we need
6216     // to set BaseInfo.  So just ignore the possibility that the alignment is
6217     // greater than one.
6218     if (BaseInfo)
6219       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6220     return CharUnits::One();
6221   }
6222 
6223   if (BaseInfo)
6224     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6225 
6226   CharUnits Alignment;
6227   const CXXRecordDecl *RD;
6228   if (T.getQualifiers().hasUnaligned()) {
6229     Alignment = CharUnits::One();
6230   } else if (forPointeeType && !AlignForArray &&
6231              (RD = T->getAsCXXRecordDecl())) {
6232     // For C++ class pointees, we don't know whether we're pointing at a
6233     // base or a complete object, so we generally need to use the
6234     // non-virtual alignment.
6235     Alignment = getClassPointerAlignment(RD);
6236   } else {
6237     Alignment = getContext().getTypeAlignInChars(T);
6238   }
6239 
6240   // Cap to the global maximum type alignment unless the alignment
6241   // was somehow explicit on the type.
6242   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6243     if (Alignment.getQuantity() > MaxAlign &&
6244         !getContext().isAlignmentRequired(T))
6245       Alignment = CharUnits::fromQuantity(MaxAlign);
6246   }
6247   return Alignment;
6248 }
6249 
6250 bool CodeGenModule::stopAutoInit() {
6251   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6252   if (StopAfter) {
6253     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6254     // used
6255     if (NumAutoVarInit >= StopAfter) {
6256       return true;
6257     }
6258     if (!NumAutoVarInit) {
6259       unsigned DiagID = getDiags().getCustomDiagID(
6260           DiagnosticsEngine::Warning,
6261           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6262           "number of times ftrivial-auto-var-init=%1 gets applied.");
6263       getDiags().Report(DiagID)
6264           << StopAfter
6265           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6266                       LangOptions::TrivialAutoVarInitKind::Zero
6267                   ? "zero"
6268                   : "pattern");
6269     }
6270     ++NumAutoVarInit;
6271   }
6272   return false;
6273 }
6274