xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision f60a0d74522ea4abd1cafcec4dd19dfeab258f8f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
91       Types(*this), VTables(*this), ObjCRuntime(nullptr),
92       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
93       DebugInfo(nullptr), ObjCData(nullptr),
94       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
95       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
96       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
97       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
98       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
99       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
100       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)),
101       WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles,
102                                    C.getSourceManager()) {
103 
104   // Initialize the type cache.
105   llvm::LLVMContext &LLVMContext = M.getContext();
106   VoidTy = llvm::Type::getVoidTy(LLVMContext);
107   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
108   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
109   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
110   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
111   FloatTy = llvm::Type::getFloatTy(LLVMContext);
112   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
113   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
114   PointerAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
120   Int8PtrTy = Int8Ty->getPointerTo(0);
121   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
122 
123   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
124   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
125 
126   if (LangOpts.ObjC1)
127     createObjCRuntime();
128   if (LangOpts.OpenCL)
129     createOpenCLRuntime();
130   if (LangOpts.OpenMP)
131     createOpenMPRuntime();
132   if (LangOpts.CUDA)
133     createCUDARuntime();
134 
135   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
136   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
137       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
138     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
139                            getCXXABI().getMangleContext());
140 
141   // If debug info or coverage generation is enabled, create the CGDebugInfo
142   // object.
143   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
144       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
145     DebugInfo = new CGDebugInfo(*this);
146 
147   Block.GlobalUniqueCount = 0;
148 
149   if (C.getLangOpts().ObjC1)
150     ObjCData = new ObjCEntrypoints();
151 
152   if (CodeGenOpts.hasProfileClangUse()) {
153     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
154         CodeGenOpts.ProfileInstrumentUsePath);
155     if (std::error_code EC = ReaderOrErr.getError()) {
156       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
157                                               "Could not read profile %0: %1");
158       getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
159                                 << EC.message();
160     } else
161       PGOReader = std::move(ReaderOrErr.get());
162   }
163 
164   // If coverage mapping generation is enabled, create the
165   // CoverageMappingModuleGen object.
166   if (CodeGenOpts.CoverageMapping)
167     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
168 }
169 
170 CodeGenModule::~CodeGenModule() {
171   delete ObjCRuntime;
172   delete OpenCLRuntime;
173   delete OpenMPRuntime;
174   delete CUDARuntime;
175   delete TheTargetCodeGenInfo;
176   delete TBAA;
177   delete DebugInfo;
178   delete ObjCData;
179 }
180 
181 void CodeGenModule::createObjCRuntime() {
182   // This is just isGNUFamily(), but we want to force implementors of
183   // new ABIs to decide how best to do this.
184   switch (LangOpts.ObjCRuntime.getKind()) {
185   case ObjCRuntime::GNUstep:
186   case ObjCRuntime::GCC:
187   case ObjCRuntime::ObjFW:
188     ObjCRuntime = CreateGNUObjCRuntime(*this);
189     return;
190 
191   case ObjCRuntime::FragileMacOSX:
192   case ObjCRuntime::MacOSX:
193   case ObjCRuntime::iOS:
194   case ObjCRuntime::WatchOS:
195     ObjCRuntime = CreateMacObjCRuntime(*this);
196     return;
197   }
198   llvm_unreachable("bad runtime kind");
199 }
200 
201 void CodeGenModule::createOpenCLRuntime() {
202   OpenCLRuntime = new CGOpenCLRuntime(*this);
203 }
204 
205 void CodeGenModule::createOpenMPRuntime() {
206   // Select a specialized code generation class based on the target, if any.
207   // If it does not exist use the default implementation.
208   switch (getTarget().getTriple().getArch()) {
209 
210   case llvm::Triple::nvptx:
211   case llvm::Triple::nvptx64:
212     assert(getLangOpts().OpenMPIsDevice &&
213            "OpenMP NVPTX is only prepared to deal with device code.");
214     OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this);
215     break;
216   default:
217     OpenMPRuntime = new CGOpenMPRuntime(*this);
218     break;
219   }
220 }
221 
222 void CodeGenModule::createCUDARuntime() {
223   CUDARuntime = CreateNVCUDARuntime(*this);
224 }
225 
226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
227   Replacements[Name] = C;
228 }
229 
230 void CodeGenModule::applyReplacements() {
231   for (auto &I : Replacements) {
232     StringRef MangledName = I.first();
233     llvm::Constant *Replacement = I.second;
234     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
235     if (!Entry)
236       continue;
237     auto *OldF = cast<llvm::Function>(Entry);
238     auto *NewF = dyn_cast<llvm::Function>(Replacement);
239     if (!NewF) {
240       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
241         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
242       } else {
243         auto *CE = cast<llvm::ConstantExpr>(Replacement);
244         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
245                CE->getOpcode() == llvm::Instruction::GetElementPtr);
246         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
247       }
248     }
249 
250     // Replace old with new, but keep the old order.
251     OldF->replaceAllUsesWith(Replacement);
252     if (NewF) {
253       NewF->removeFromParent();
254       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
255                                                        NewF);
256     }
257     OldF->eraseFromParent();
258   }
259 }
260 
261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
262   GlobalValReplacements.push_back(std::make_pair(GV, C));
263 }
264 
265 void CodeGenModule::applyGlobalValReplacements() {
266   for (auto &I : GlobalValReplacements) {
267     llvm::GlobalValue *GV = I.first;
268     llvm::Constant *C = I.second;
269 
270     GV->replaceAllUsesWith(C);
271     GV->eraseFromParent();
272   }
273 }
274 
275 // This is only used in aliases that we created and we know they have a
276 // linear structure.
277 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
278   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
279   const llvm::Constant *C = &GA;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
286     if (!GA2)
287       return nullptr;
288     if (!Visited.insert(GA2).second)
289       return nullptr;
290     C = GA2->getAliasee();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     const AliasAttr *AA = D->getAttr<AliasAttr>();
303     StringRef MangledName = getMangledName(GD);
304     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
305     auto *Alias = cast<llvm::GlobalAlias>(Entry);
306     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
307     if (!GV) {
308       Error = true;
309       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
310     } else if (GV->isDeclaration()) {
311       Error = true;
312       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getAliasee();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
335       if (GA->isInterposable()) {
336         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName();
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getAliasee(), Alias->getType());
340         Alias->setAliasee(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = cast<llvm::GlobalAlias>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
399     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
400     if (PGOStats.hasDiagnostics())
401       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
402   }
403   EmitCtorList(GlobalCtors, "llvm.global_ctors");
404   EmitCtorList(GlobalDtors, "llvm.global_dtors");
405   EmitGlobalAnnotations();
406   EmitStaticExternCAliases();
407   EmitDeferredUnusedCoverageMappings();
408   if (CoverageMapping)
409     CoverageMapping->emit();
410   if (CodeGenOpts.SanitizeCfiCrossDso)
411     CodeGenFunction(*this).EmitCfiCheckFail();
412   emitLLVMUsed();
413   if (SanStats)
414     SanStats->finish();
415 
416   if (CodeGenOpts.Autolink &&
417       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
418     EmitModuleLinkOptions();
419   }
420   if (CodeGenOpts.DwarfVersion) {
421     // We actually want the latest version when there are conflicts.
422     // We can change from Warning to Latest if such mode is supported.
423     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
424                               CodeGenOpts.DwarfVersion);
425   }
426   if (CodeGenOpts.EmitCodeView) {
427     // Indicate that we want CodeView in the metadata.
428     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
429   }
430   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
431     // We don't support LTO with 2 with different StrictVTablePointers
432     // FIXME: we could support it by stripping all the information introduced
433     // by StrictVTablePointers.
434 
435     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
436 
437     llvm::Metadata *Ops[2] = {
438               llvm::MDString::get(VMContext, "StrictVTablePointers"),
439               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
440                   llvm::Type::getInt32Ty(VMContext), 1))};
441 
442     getModule().addModuleFlag(llvm::Module::Require,
443                               "StrictVTablePointersRequirement",
444                               llvm::MDNode::get(VMContext, Ops));
445   }
446   if (DebugInfo)
447     // We support a single version in the linked module. The LLVM
448     // parser will drop debug info with a different version number
449     // (and warn about it, too).
450     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
451                               llvm::DEBUG_METADATA_VERSION);
452 
453   // We need to record the widths of enums and wchar_t, so that we can generate
454   // the correct build attributes in the ARM backend.
455   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
456   if (   Arch == llvm::Triple::arm
457       || Arch == llvm::Triple::armeb
458       || Arch == llvm::Triple::thumb
459       || Arch == llvm::Triple::thumbeb) {
460     // Width of wchar_t in bytes
461     uint64_t WCharWidth =
462         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
463     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
464 
465     // The minimum width of an enum in bytes
466     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
467     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
468   }
469 
470   if (CodeGenOpts.SanitizeCfiCrossDso) {
471     // Indicate that we want cross-DSO control flow integrity checks.
472     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
473   }
474 
475   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
476     // Indicate whether __nvvm_reflect should be configured to flush denormal
477     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
478     // property.)
479     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
480                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
481   }
482 
483   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
484     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
485     switch (PLevel) {
486     case 0: break;
487     case 1: PL = llvm::PICLevel::Small; break;
488     case 2: PL = llvm::PICLevel::Large; break;
489     default: llvm_unreachable("Invalid PIC Level");
490     }
491 
492     getModule().setPICLevel(PL);
493   }
494 
495   SimplifyPersonality();
496 
497   if (getCodeGenOpts().EmitDeclMetadata)
498     EmitDeclMetadata();
499 
500   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
501     EmitCoverageFile();
502 
503   if (DebugInfo)
504     DebugInfo->finalize();
505 
506   EmitVersionIdentMetadata();
507 
508   EmitTargetMetadata();
509 }
510 
511 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
512   // Make sure that this type is translated.
513   Types.UpdateCompletedType(TD);
514 }
515 
516 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
517   // Make sure that this type is translated.
518   Types.RefreshTypeCacheForClass(RD);
519 }
520 
521 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
522   if (!TBAA)
523     return nullptr;
524   return TBAA->getTBAAInfo(QTy);
525 }
526 
527 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
528   if (!TBAA)
529     return nullptr;
530   return TBAA->getTBAAInfoForVTablePtr();
531 }
532 
533 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
534   if (!TBAA)
535     return nullptr;
536   return TBAA->getTBAAStructInfo(QTy);
537 }
538 
539 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
540                                                   llvm::MDNode *AccessN,
541                                                   uint64_t O) {
542   if (!TBAA)
543     return nullptr;
544   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
545 }
546 
547 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
548 /// and struct-path aware TBAA, the tag has the same format:
549 /// base type, access type and offset.
550 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
551 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
552                                                 llvm::MDNode *TBAAInfo,
553                                                 bool ConvertTypeToTag) {
554   if (ConvertTypeToTag && TBAA)
555     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
556                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
557   else
558     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
559 }
560 
561 void CodeGenModule::DecorateInstructionWithInvariantGroup(
562     llvm::Instruction *I, const CXXRecordDecl *RD) {
563   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
564   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
565   // Check if we have to wrap MDString in MDNode.
566   if (!MetaDataNode)
567     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
568   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
569 }
570 
571 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
572   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
573   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
574 }
575 
576 /// ErrorUnsupported - Print out an error that codegen doesn't support the
577 /// specified stmt yet.
578 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
579   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
580                                                "cannot compile this %0 yet");
581   std::string Msg = Type;
582   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
583     << Msg << S->getSourceRange();
584 }
585 
586 /// ErrorUnsupported - Print out an error that codegen doesn't support the
587 /// specified decl yet.
588 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
589   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
590                                                "cannot compile this %0 yet");
591   std::string Msg = Type;
592   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
593 }
594 
595 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
596   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
597 }
598 
599 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
600                                         const NamedDecl *D) const {
601   // Internal definitions always have default visibility.
602   if (GV->hasLocalLinkage()) {
603     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
604     return;
605   }
606 
607   // Set visibility for definitions.
608   LinkageInfo LV = D->getLinkageAndVisibility();
609   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
610     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
611 }
612 
613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
614   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
615       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
616       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
617       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
618       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
619 }
620 
621 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
622     CodeGenOptions::TLSModel M) {
623   switch (M) {
624   case CodeGenOptions::GeneralDynamicTLSModel:
625     return llvm::GlobalVariable::GeneralDynamicTLSModel;
626   case CodeGenOptions::LocalDynamicTLSModel:
627     return llvm::GlobalVariable::LocalDynamicTLSModel;
628   case CodeGenOptions::InitialExecTLSModel:
629     return llvm::GlobalVariable::InitialExecTLSModel;
630   case CodeGenOptions::LocalExecTLSModel:
631     return llvm::GlobalVariable::LocalExecTLSModel;
632   }
633   llvm_unreachable("Invalid TLS model!");
634 }
635 
636 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
637   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
638 
639   llvm::GlobalValue::ThreadLocalMode TLM;
640   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
641 
642   // Override the TLS model if it is explicitly specified.
643   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
644     TLM = GetLLVMTLSModel(Attr->getModel());
645   }
646 
647   GV->setThreadLocalMode(TLM);
648 }
649 
650 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
651   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
652 
653   // Some ABIs don't have constructor variants.  Make sure that base and
654   // complete constructors get mangled the same.
655   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
656     if (!getTarget().getCXXABI().hasConstructorVariants()) {
657       CXXCtorType OrigCtorType = GD.getCtorType();
658       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
659       if (OrigCtorType == Ctor_Base)
660         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
661     }
662   }
663 
664   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
665   if (!FoundStr.empty())
666     return FoundStr;
667 
668   const auto *ND = cast<NamedDecl>(GD.getDecl());
669   SmallString<256> Buffer;
670   StringRef Str;
671   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
672     llvm::raw_svector_ostream Out(Buffer);
673     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
674       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
675     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
676       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
677     else
678       getCXXABI().getMangleContext().mangleName(ND, Out);
679     Str = Out.str();
680   } else {
681     IdentifierInfo *II = ND->getIdentifier();
682     assert(II && "Attempt to mangle unnamed decl.");
683     Str = II->getName();
684   }
685 
686   // Keep the first result in the case of a mangling collision.
687   auto Result = Manglings.insert(std::make_pair(Str, GD));
688   return FoundStr = Result.first->first();
689 }
690 
691 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
692                                              const BlockDecl *BD) {
693   MangleContext &MangleCtx = getCXXABI().getMangleContext();
694   const Decl *D = GD.getDecl();
695 
696   SmallString<256> Buffer;
697   llvm::raw_svector_ostream Out(Buffer);
698   if (!D)
699     MangleCtx.mangleGlobalBlock(BD,
700       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
701   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
702     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
703   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
704     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
705   else
706     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
707 
708   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
709   return Result.first->first();
710 }
711 
712 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
713   return getModule().getNamedValue(Name);
714 }
715 
716 /// AddGlobalCtor - Add a function to the list that will be called before
717 /// main() runs.
718 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
719                                   llvm::Constant *AssociatedData) {
720   // FIXME: Type coercion of void()* types.
721   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
722 }
723 
724 /// AddGlobalDtor - Add a function to the list that will be called
725 /// when the module is unloaded.
726 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
727   // FIXME: Type coercion of void()* types.
728   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
729 }
730 
731 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
732   // Ctor function type is void()*.
733   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
734   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
735 
736   // Get the type of a ctor entry, { i32, void ()*, i8* }.
737   llvm::StructType *CtorStructTy = llvm::StructType::get(
738       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
739 
740   // Construct the constructor and destructor arrays.
741   SmallVector<llvm::Constant *, 8> Ctors;
742   for (const auto &I : Fns) {
743     llvm::Constant *S[] = {
744         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
745         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
746         (I.AssociatedData
747              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
748              : llvm::Constant::getNullValue(VoidPtrTy))};
749     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
750   }
751 
752   if (!Ctors.empty()) {
753     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
754     new llvm::GlobalVariable(TheModule, AT, false,
755                              llvm::GlobalValue::AppendingLinkage,
756                              llvm::ConstantArray::get(AT, Ctors),
757                              GlobalName);
758   }
759 }
760 
761 llvm::GlobalValue::LinkageTypes
762 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
763   const auto *D = cast<FunctionDecl>(GD.getDecl());
764 
765   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
766 
767   if (isa<CXXDestructorDecl>(D) &&
768       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
769                                          GD.getDtorType())) {
770     // Destructor variants in the Microsoft C++ ABI are always internal or
771     // linkonce_odr thunks emitted on an as-needed basis.
772     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
773                                    : llvm::GlobalValue::LinkOnceODRLinkage;
774   }
775 
776   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
777 }
778 
779 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
780   const auto *FD = cast<FunctionDecl>(GD.getDecl());
781 
782   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
783     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
784       // Don't dllexport/import destructor thunks.
785       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
786       return;
787     }
788   }
789 
790   if (FD->hasAttr<DLLImportAttr>())
791     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
792   else if (FD->hasAttr<DLLExportAttr>())
793     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
794   else
795     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
796 }
797 
798 llvm::ConstantInt *
799 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
800   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
801   if (!MDS) return nullptr;
802 
803   llvm::MD5 md5;
804   llvm::MD5::MD5Result result;
805   md5.update(MDS->getString());
806   md5.final(result);
807   uint64_t id = 0;
808   for (int i = 0; i < 8; ++i)
809     id |= static_cast<uint64_t>(result[i]) << (i * 8);
810   return llvm::ConstantInt::get(Int64Ty, id);
811 }
812 
813 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
814                                                     llvm::Function *F) {
815   setNonAliasAttributes(D, F);
816 }
817 
818 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
819                                               const CGFunctionInfo &Info,
820                                               llvm::Function *F) {
821   unsigned CallingConv;
822   AttributeListType AttributeList;
823   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
824                          false);
825   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
826   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
827 }
828 
829 /// Determines whether the language options require us to model
830 /// unwind exceptions.  We treat -fexceptions as mandating this
831 /// except under the fragile ObjC ABI with only ObjC exceptions
832 /// enabled.  This means, for example, that C with -fexceptions
833 /// enables this.
834 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
835   // If exceptions are completely disabled, obviously this is false.
836   if (!LangOpts.Exceptions) return false;
837 
838   // If C++ exceptions are enabled, this is true.
839   if (LangOpts.CXXExceptions) return true;
840 
841   // If ObjC exceptions are enabled, this depends on the ABI.
842   if (LangOpts.ObjCExceptions) {
843     return LangOpts.ObjCRuntime.hasUnwindExceptions();
844   }
845 
846   return true;
847 }
848 
849 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
850                                                            llvm::Function *F) {
851   llvm::AttrBuilder B;
852 
853   if (CodeGenOpts.UnwindTables)
854     B.addAttribute(llvm::Attribute::UWTable);
855 
856   if (!hasUnwindExceptions(LangOpts))
857     B.addAttribute(llvm::Attribute::NoUnwind);
858 
859   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
860     B.addAttribute(llvm::Attribute::StackProtect);
861   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
862     B.addAttribute(llvm::Attribute::StackProtectStrong);
863   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
864     B.addAttribute(llvm::Attribute::StackProtectReq);
865 
866   if (!D) {
867     F->addAttributes(llvm::AttributeSet::FunctionIndex,
868                      llvm::AttributeSet::get(
869                          F->getContext(),
870                          llvm::AttributeSet::FunctionIndex, B));
871     return;
872   }
873 
874   if (D->hasAttr<NakedAttr>()) {
875     // Naked implies noinline: we should not be inlining such functions.
876     B.addAttribute(llvm::Attribute::Naked);
877     B.addAttribute(llvm::Attribute::NoInline);
878   } else if (D->hasAttr<NoDuplicateAttr>()) {
879     B.addAttribute(llvm::Attribute::NoDuplicate);
880   } else if (D->hasAttr<NoInlineAttr>()) {
881     B.addAttribute(llvm::Attribute::NoInline);
882   } else if (D->hasAttr<AlwaysInlineAttr>() &&
883              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
884                                               llvm::Attribute::NoInline)) {
885     // (noinline wins over always_inline, and we can't specify both in IR)
886     B.addAttribute(llvm::Attribute::AlwaysInline);
887   }
888 
889   if (D->hasAttr<ColdAttr>()) {
890     if (!D->hasAttr<OptimizeNoneAttr>())
891       B.addAttribute(llvm::Attribute::OptimizeForSize);
892     B.addAttribute(llvm::Attribute::Cold);
893   }
894 
895   if (D->hasAttr<MinSizeAttr>())
896     B.addAttribute(llvm::Attribute::MinSize);
897 
898   F->addAttributes(llvm::AttributeSet::FunctionIndex,
899                    llvm::AttributeSet::get(
900                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
901 
902   if (D->hasAttr<OptimizeNoneAttr>()) {
903     // OptimizeNone implies noinline; we should not be inlining such functions.
904     F->addFnAttr(llvm::Attribute::OptimizeNone);
905     F->addFnAttr(llvm::Attribute::NoInline);
906 
907     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
908     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
909     F->removeFnAttr(llvm::Attribute::MinSize);
910     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
911            "OptimizeNone and AlwaysInline on same function!");
912 
913     // Attribute 'inlinehint' has no effect on 'optnone' functions.
914     // Explicitly remove it from the set of function attributes.
915     F->removeFnAttr(llvm::Attribute::InlineHint);
916   }
917 
918   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
919   if (alignment)
920     F->setAlignment(alignment);
921 
922   // Some C++ ABIs require 2-byte alignment for member functions, in order to
923   // reserve a bit for differentiating between virtual and non-virtual member
924   // functions. If the current target's C++ ABI requires this and this is a
925   // member function, set its alignment accordingly.
926   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
927     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
928       F->setAlignment(2);
929   }
930 }
931 
932 void CodeGenModule::SetCommonAttributes(const Decl *D,
933                                         llvm::GlobalValue *GV) {
934   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
935     setGlobalVisibility(GV, ND);
936   else
937     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
938 
939   if (D && D->hasAttr<UsedAttr>())
940     addUsedGlobal(GV);
941 }
942 
943 void CodeGenModule::setAliasAttributes(const Decl *D,
944                                        llvm::GlobalValue *GV) {
945   SetCommonAttributes(D, GV);
946 
947   // Process the dllexport attribute based on whether the original definition
948   // (not necessarily the aliasee) was exported.
949   if (D->hasAttr<DLLExportAttr>())
950     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
951 }
952 
953 void CodeGenModule::setNonAliasAttributes(const Decl *D,
954                                           llvm::GlobalObject *GO) {
955   SetCommonAttributes(D, GO);
956 
957   if (D)
958     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
959       GO->setSection(SA->getName());
960 
961   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
962 }
963 
964 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
965                                                   llvm::Function *F,
966                                                   const CGFunctionInfo &FI) {
967   SetLLVMFunctionAttributes(D, FI, F);
968   SetLLVMFunctionAttributesForDefinition(D, F);
969 
970   F->setLinkage(llvm::Function::InternalLinkage);
971 
972   setNonAliasAttributes(D, F);
973 }
974 
975 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
976                                          const NamedDecl *ND) {
977   // Set linkage and visibility in case we never see a definition.
978   LinkageInfo LV = ND->getLinkageAndVisibility();
979   if (LV.getLinkage() != ExternalLinkage) {
980     // Don't set internal linkage on declarations.
981   } else {
982     if (ND->hasAttr<DLLImportAttr>()) {
983       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
984       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
985     } else if (ND->hasAttr<DLLExportAttr>()) {
986       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
987       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
988     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
989       // "extern_weak" is overloaded in LLVM; we probably should have
990       // separate linkage types for this.
991       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
992     }
993 
994     // Set visibility on a declaration only if it's explicit.
995     if (LV.isVisibilityExplicit())
996       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
997   }
998 }
999 
1000 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
1001                                               llvm::Function *F) {
1002   // Only if we are checking indirect calls.
1003   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1004     return;
1005 
1006   // Non-static class methods are handled via vtable pointer checks elsewhere.
1007   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1008     return;
1009 
1010   // Additionally, if building with cross-DSO support...
1011   if (CodeGenOpts.SanitizeCfiCrossDso) {
1012     // Don't emit entries for function declarations. In cross-DSO mode these are
1013     // handled with better precision at run time.
1014     if (!FD->hasBody())
1015       return;
1016     // Skip available_externally functions. They won't be codegen'ed in the
1017     // current module anyway.
1018     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1019       return;
1020   }
1021 
1022   llvm::NamedMDNode *BitsetsMD =
1023       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1024 
1025   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1026   llvm::Metadata *BitsetOps[] = {
1027       MD, llvm::ConstantAsMetadata::get(F),
1028       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1029   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1030 
1031   // Emit a hash-based bit set entry for cross-DSO calls.
1032   if (CodeGenOpts.SanitizeCfiCrossDso) {
1033     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1034       llvm::Metadata *BitsetOps2[] = {
1035           llvm::ConstantAsMetadata::get(TypeId),
1036           llvm::ConstantAsMetadata::get(F),
1037           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1038       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1039     }
1040   }
1041 }
1042 
1043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1044                                           bool IsIncompleteFunction,
1045                                           bool IsThunk) {
1046   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1047     // If this is an intrinsic function, set the function's attributes
1048     // to the intrinsic's attributes.
1049     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1050     return;
1051   }
1052 
1053   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1054 
1055   if (!IsIncompleteFunction)
1056     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1057 
1058   // Add the Returned attribute for "this", except for iOS 5 and earlier
1059   // where substantial code, including the libstdc++ dylib, was compiled with
1060   // GCC and does not actually return "this".
1061   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1062       !(getTarget().getTriple().isiOS() &&
1063         getTarget().getTriple().isOSVersionLT(6))) {
1064     assert(!F->arg_empty() &&
1065            F->arg_begin()->getType()
1066              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1067            "unexpected this return");
1068     F->addAttribute(1, llvm::Attribute::Returned);
1069   }
1070 
1071   // Only a few attributes are set on declarations; these may later be
1072   // overridden by a definition.
1073 
1074   setLinkageAndVisibilityForGV(F, FD);
1075 
1076   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1077     F->setSection(SA->getName());
1078 
1079   if (FD->isReplaceableGlobalAllocationFunction()) {
1080     // A replaceable global allocation function does not act like a builtin by
1081     // default, only if it is invoked by a new-expression or delete-expression.
1082     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1083                     llvm::Attribute::NoBuiltin);
1084 
1085     // A sane operator new returns a non-aliasing pointer.
1086     // FIXME: Also add NonNull attribute to the return value
1087     // for the non-nothrow forms?
1088     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1089     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1090         (Kind == OO_New || Kind == OO_Array_New))
1091       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1092                       llvm::Attribute::NoAlias);
1093   }
1094 
1095   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1096     F->setUnnamedAddr(true);
1097   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1098     if (MD->isVirtual())
1099       F->setUnnamedAddr(true);
1100 
1101   CreateFunctionBitSetEntry(FD, F);
1102 }
1103 
1104 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1105   assert(!GV->isDeclaration() &&
1106          "Only globals with definition can force usage.");
1107   LLVMUsed.emplace_back(GV);
1108 }
1109 
1110 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1111   assert(!GV->isDeclaration() &&
1112          "Only globals with definition can force usage.");
1113   LLVMCompilerUsed.emplace_back(GV);
1114 }
1115 
1116 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1117                      std::vector<llvm::WeakVH> &List) {
1118   // Don't create llvm.used if there is no need.
1119   if (List.empty())
1120     return;
1121 
1122   // Convert List to what ConstantArray needs.
1123   SmallVector<llvm::Constant*, 8> UsedArray;
1124   UsedArray.resize(List.size());
1125   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1126     UsedArray[i] =
1127         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1128             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1129   }
1130 
1131   if (UsedArray.empty())
1132     return;
1133   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1134 
1135   auto *GV = new llvm::GlobalVariable(
1136       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1137       llvm::ConstantArray::get(ATy, UsedArray), Name);
1138 
1139   GV->setSection("llvm.metadata");
1140 }
1141 
1142 void CodeGenModule::emitLLVMUsed() {
1143   emitUsed(*this, "llvm.used", LLVMUsed);
1144   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1145 }
1146 
1147 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1148   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1149   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1150 }
1151 
1152 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1153   llvm::SmallString<32> Opt;
1154   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1155   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1156   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1157 }
1158 
1159 void CodeGenModule::AddDependentLib(StringRef Lib) {
1160   llvm::SmallString<24> Opt;
1161   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1162   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1163   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1164 }
1165 
1166 /// \brief Add link options implied by the given module, including modules
1167 /// it depends on, using a postorder walk.
1168 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1169                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1170                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1171   // Import this module's parent.
1172   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1173     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1174   }
1175 
1176   // Import this module's dependencies.
1177   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1178     if (Visited.insert(Mod->Imports[I - 1]).second)
1179       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1180   }
1181 
1182   // Add linker options to link against the libraries/frameworks
1183   // described by this module.
1184   llvm::LLVMContext &Context = CGM.getLLVMContext();
1185   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1186     // Link against a framework.  Frameworks are currently Darwin only, so we
1187     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1188     if (Mod->LinkLibraries[I-1].IsFramework) {
1189       llvm::Metadata *Args[2] = {
1190           llvm::MDString::get(Context, "-framework"),
1191           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1192 
1193       Metadata.push_back(llvm::MDNode::get(Context, Args));
1194       continue;
1195     }
1196 
1197     // Link against a library.
1198     llvm::SmallString<24> Opt;
1199     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1200       Mod->LinkLibraries[I-1].Library, Opt);
1201     auto *OptString = llvm::MDString::get(Context, Opt);
1202     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1203   }
1204 }
1205 
1206 void CodeGenModule::EmitModuleLinkOptions() {
1207   // Collect the set of all of the modules we want to visit to emit link
1208   // options, which is essentially the imported modules and all of their
1209   // non-explicit child modules.
1210   llvm::SetVector<clang::Module *> LinkModules;
1211   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1212   SmallVector<clang::Module *, 16> Stack;
1213 
1214   // Seed the stack with imported modules.
1215   for (Module *M : ImportedModules)
1216     if (Visited.insert(M).second)
1217       Stack.push_back(M);
1218 
1219   // Find all of the modules to import, making a little effort to prune
1220   // non-leaf modules.
1221   while (!Stack.empty()) {
1222     clang::Module *Mod = Stack.pop_back_val();
1223 
1224     bool AnyChildren = false;
1225 
1226     // Visit the submodules of this module.
1227     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1228                                         SubEnd = Mod->submodule_end();
1229          Sub != SubEnd; ++Sub) {
1230       // Skip explicit children; they need to be explicitly imported to be
1231       // linked against.
1232       if ((*Sub)->IsExplicit)
1233         continue;
1234 
1235       if (Visited.insert(*Sub).second) {
1236         Stack.push_back(*Sub);
1237         AnyChildren = true;
1238       }
1239     }
1240 
1241     // We didn't find any children, so add this module to the list of
1242     // modules to link against.
1243     if (!AnyChildren) {
1244       LinkModules.insert(Mod);
1245     }
1246   }
1247 
1248   // Add link options for all of the imported modules in reverse topological
1249   // order.  We don't do anything to try to order import link flags with respect
1250   // to linker options inserted by things like #pragma comment().
1251   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1252   Visited.clear();
1253   for (Module *M : LinkModules)
1254     if (Visited.insert(M).second)
1255       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1256   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1257   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1258 
1259   // Add the linker options metadata flag.
1260   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1261                             llvm::MDNode::get(getLLVMContext(),
1262                                               LinkerOptionsMetadata));
1263 }
1264 
1265 void CodeGenModule::EmitDeferred() {
1266   // Emit code for any potentially referenced deferred decls.  Since a
1267   // previously unused static decl may become used during the generation of code
1268   // for a static function, iterate until no changes are made.
1269 
1270   if (!DeferredVTables.empty()) {
1271     EmitDeferredVTables();
1272 
1273     // Emitting a vtable doesn't directly cause more vtables to
1274     // become deferred, although it can cause functions to be
1275     // emitted that then need those vtables.
1276     assert(DeferredVTables.empty());
1277   }
1278 
1279   // Stop if we're out of both deferred vtables and deferred declarations.
1280   if (DeferredDeclsToEmit.empty())
1281     return;
1282 
1283   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1284   // work, it will not interfere with this.
1285   std::vector<DeferredGlobal> CurDeclsToEmit;
1286   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1287 
1288   for (DeferredGlobal &G : CurDeclsToEmit) {
1289     GlobalDecl D = G.GD;
1290     G.GV = nullptr;
1291 
1292     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1293     // to get GlobalValue with exactly the type we need, not something that
1294     // might had been created for another decl with the same mangled name but
1295     // different type.
1296     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1297         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1298 
1299     // In case of different address spaces, we may still get a cast, even with
1300     // IsForDefinition equal to true. Query mangled names table to get
1301     // GlobalValue.
1302     if (!GV)
1303       GV = GetGlobalValue(getMangledName(D));
1304 
1305     // Make sure GetGlobalValue returned non-null.
1306     assert(GV);
1307 
1308     // Check to see if we've already emitted this.  This is necessary
1309     // for a couple of reasons: first, decls can end up in the
1310     // deferred-decls queue multiple times, and second, decls can end
1311     // up with definitions in unusual ways (e.g. by an extern inline
1312     // function acquiring a strong function redefinition).  Just
1313     // ignore these cases.
1314     if (!GV->isDeclaration())
1315       continue;
1316 
1317     // Otherwise, emit the definition and move on to the next one.
1318     EmitGlobalDefinition(D, GV);
1319 
1320     // If we found out that we need to emit more decls, do that recursively.
1321     // This has the advantage that the decls are emitted in a DFS and related
1322     // ones are close together, which is convenient for testing.
1323     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1324       EmitDeferred();
1325       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1326     }
1327   }
1328 }
1329 
1330 void CodeGenModule::EmitGlobalAnnotations() {
1331   if (Annotations.empty())
1332     return;
1333 
1334   // Create a new global variable for the ConstantStruct in the Module.
1335   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1336     Annotations[0]->getType(), Annotations.size()), Annotations);
1337   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1338                                       llvm::GlobalValue::AppendingLinkage,
1339                                       Array, "llvm.global.annotations");
1340   gv->setSection(AnnotationSection);
1341 }
1342 
1343 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1344   llvm::Constant *&AStr = AnnotationStrings[Str];
1345   if (AStr)
1346     return AStr;
1347 
1348   // Not found yet, create a new global.
1349   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1350   auto *gv =
1351       new llvm::GlobalVariable(getModule(), s->getType(), true,
1352                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1353   gv->setSection(AnnotationSection);
1354   gv->setUnnamedAddr(true);
1355   AStr = gv;
1356   return gv;
1357 }
1358 
1359 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1360   SourceManager &SM = getContext().getSourceManager();
1361   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1362   if (PLoc.isValid())
1363     return EmitAnnotationString(PLoc.getFilename());
1364   return EmitAnnotationString(SM.getBufferName(Loc));
1365 }
1366 
1367 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1368   SourceManager &SM = getContext().getSourceManager();
1369   PresumedLoc PLoc = SM.getPresumedLoc(L);
1370   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1371     SM.getExpansionLineNumber(L);
1372   return llvm::ConstantInt::get(Int32Ty, LineNo);
1373 }
1374 
1375 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1376                                                 const AnnotateAttr *AA,
1377                                                 SourceLocation L) {
1378   // Get the globals for file name, annotation, and the line number.
1379   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1380                  *UnitGV = EmitAnnotationUnit(L),
1381                  *LineNoCst = EmitAnnotationLineNo(L);
1382 
1383   // Create the ConstantStruct for the global annotation.
1384   llvm::Constant *Fields[4] = {
1385     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1386     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1387     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1388     LineNoCst
1389   };
1390   return llvm::ConstantStruct::getAnon(Fields);
1391 }
1392 
1393 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1394                                          llvm::GlobalValue *GV) {
1395   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1396   // Get the struct elements for these annotations.
1397   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1398     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1399 }
1400 
1401 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1402                                            SourceLocation Loc) const {
1403   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1404   // Blacklist by function name.
1405   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1406     return true;
1407   // Blacklist by location.
1408   if (Loc.isValid())
1409     return SanitizerBL.isBlacklistedLocation(Loc);
1410   // If location is unknown, this may be a compiler-generated function. Assume
1411   // it's located in the main file.
1412   auto &SM = Context.getSourceManager();
1413   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1414     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1415   }
1416   return false;
1417 }
1418 
1419 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1420                                            SourceLocation Loc, QualType Ty,
1421                                            StringRef Category) const {
1422   // For now globals can be blacklisted only in ASan and KASan.
1423   if (!LangOpts.Sanitize.hasOneOf(
1424           SanitizerKind::Address | SanitizerKind::KernelAddress))
1425     return false;
1426   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1427   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1428     return true;
1429   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1430     return true;
1431   // Check global type.
1432   if (!Ty.isNull()) {
1433     // Drill down the array types: if global variable of a fixed type is
1434     // blacklisted, we also don't instrument arrays of them.
1435     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1436       Ty = AT->getElementType();
1437     Ty = Ty.getCanonicalType().getUnqualifiedType();
1438     // We allow to blacklist only record types (classes, structs etc.)
1439     if (Ty->isRecordType()) {
1440       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1441       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1442         return true;
1443     }
1444   }
1445   return false;
1446 }
1447 
1448 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1449   // Never defer when EmitAllDecls is specified.
1450   if (LangOpts.EmitAllDecls)
1451     return true;
1452 
1453   return getContext().DeclMustBeEmitted(Global);
1454 }
1455 
1456 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1457   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1458     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1459       // Implicit template instantiations may change linkage if they are later
1460       // explicitly instantiated, so they should not be emitted eagerly.
1461       return false;
1462   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1463   // codegen for global variables, because they may be marked as threadprivate.
1464   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1465       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1466     return false;
1467 
1468   return true;
1469 }
1470 
1471 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1472     const CXXUuidofExpr* E) {
1473   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1474   // well-formed.
1475   StringRef Uuid = E->getUuidStr();
1476   std::string Name = "_GUID_" + Uuid.lower();
1477   std::replace(Name.begin(), Name.end(), '-', '_');
1478 
1479   // The UUID descriptor should be pointer aligned.
1480   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1481 
1482   // Look for an existing global.
1483   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1484     return ConstantAddress(GV, Alignment);
1485 
1486   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1487   assert(Init && "failed to initialize as constant");
1488 
1489   auto *GV = new llvm::GlobalVariable(
1490       getModule(), Init->getType(),
1491       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1492   if (supportsCOMDAT())
1493     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1494   return ConstantAddress(GV, Alignment);
1495 }
1496 
1497 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1498   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1499   assert(AA && "No alias?");
1500 
1501   CharUnits Alignment = getContext().getDeclAlign(VD);
1502   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1503 
1504   // See if there is already something with the target's name in the module.
1505   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1506   if (Entry) {
1507     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1508     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1509     return ConstantAddress(Ptr, Alignment);
1510   }
1511 
1512   llvm::Constant *Aliasee;
1513   if (isa<llvm::FunctionType>(DeclTy))
1514     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1515                                       GlobalDecl(cast<FunctionDecl>(VD)),
1516                                       /*ForVTable=*/false);
1517   else
1518     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1519                                     llvm::PointerType::getUnqual(DeclTy),
1520                                     nullptr);
1521 
1522   auto *F = cast<llvm::GlobalValue>(Aliasee);
1523   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1524   WeakRefReferences.insert(F);
1525 
1526   return ConstantAddress(Aliasee, Alignment);
1527 }
1528 
1529 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1530   const auto *Global = cast<ValueDecl>(GD.getDecl());
1531 
1532   // Weak references don't produce any output by themselves.
1533   if (Global->hasAttr<WeakRefAttr>())
1534     return;
1535 
1536   // If this is an alias definition (which otherwise looks like a declaration)
1537   // emit it now.
1538   if (Global->hasAttr<AliasAttr>())
1539     return EmitAliasDefinition(GD);
1540 
1541   // If this is CUDA, be selective about which declarations we emit.
1542   if (LangOpts.CUDA) {
1543     if (LangOpts.CUDAIsDevice) {
1544       if (!Global->hasAttr<CUDADeviceAttr>() &&
1545           !Global->hasAttr<CUDAGlobalAttr>() &&
1546           !Global->hasAttr<CUDAConstantAttr>() &&
1547           !Global->hasAttr<CUDASharedAttr>())
1548         return;
1549     } else {
1550       // We need to emit host-side 'shadows' for all global
1551       // device-side variables because the CUDA runtime needs their
1552       // size and host-side address in order to provide access to
1553       // their device-side incarnations.
1554 
1555       // So device-only functions are the only things we skip.
1556       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1557           Global->hasAttr<CUDADeviceAttr>())
1558         return;
1559 
1560       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1561              "Expected Variable or Function");
1562     }
1563   }
1564 
1565   if (LangOpts.OpenMP) {
1566     // If this is OpenMP device, check if it is legal to emit this global
1567     // normally.
1568     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1569       return;
1570     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1571       if (MustBeEmitted(Global))
1572         EmitOMPDeclareReduction(DRD);
1573       return;
1574     }
1575   }
1576 
1577   // Ignore declarations, they will be emitted on their first use.
1578   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1579     // Forward declarations are emitted lazily on first use.
1580     if (!FD->doesThisDeclarationHaveABody()) {
1581       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1582         return;
1583 
1584       StringRef MangledName = getMangledName(GD);
1585 
1586       // Compute the function info and LLVM type.
1587       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1588       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1589 
1590       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1591                               /*DontDefer=*/false);
1592       return;
1593     }
1594   } else {
1595     const auto *VD = cast<VarDecl>(Global);
1596     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1597     // We need to emit device-side global CUDA variables even if a
1598     // variable does not have a definition -- we still need to define
1599     // host-side shadow for it.
1600     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1601                            !VD->hasDefinition() &&
1602                            (VD->hasAttr<CUDAConstantAttr>() ||
1603                             VD->hasAttr<CUDADeviceAttr>());
1604     if (!MustEmitForCuda &&
1605         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1606         !Context.isMSStaticDataMemberInlineDefinition(VD))
1607       return;
1608   }
1609 
1610   // Defer code generation to first use when possible, e.g. if this is an inline
1611   // function. If the global must always be emitted, do it eagerly if possible
1612   // to benefit from cache locality.
1613   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1614     // Emit the definition if it can't be deferred.
1615     EmitGlobalDefinition(GD);
1616     return;
1617   }
1618 
1619   // If we're deferring emission of a C++ variable with an
1620   // initializer, remember the order in which it appeared in the file.
1621   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1622       cast<VarDecl>(Global)->hasInit()) {
1623     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1624     CXXGlobalInits.push_back(nullptr);
1625   }
1626 
1627   StringRef MangledName = getMangledName(GD);
1628   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1629     // The value has already been used and should therefore be emitted.
1630     addDeferredDeclToEmit(GV, GD);
1631   } else if (MustBeEmitted(Global)) {
1632     // The value must be emitted, but cannot be emitted eagerly.
1633     assert(!MayBeEmittedEagerly(Global));
1634     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1635   } else {
1636     // Otherwise, remember that we saw a deferred decl with this name.  The
1637     // first use of the mangled name will cause it to move into
1638     // DeferredDeclsToEmit.
1639     DeferredDecls[MangledName] = GD;
1640   }
1641 }
1642 
1643 namespace {
1644   struct FunctionIsDirectlyRecursive :
1645     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1646     const StringRef Name;
1647     const Builtin::Context &BI;
1648     bool Result;
1649     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1650       Name(N), BI(C), Result(false) {
1651     }
1652     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1653 
1654     bool TraverseCallExpr(CallExpr *E) {
1655       const FunctionDecl *FD = E->getDirectCallee();
1656       if (!FD)
1657         return true;
1658       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1659       if (Attr && Name == Attr->getLabel()) {
1660         Result = true;
1661         return false;
1662       }
1663       unsigned BuiltinID = FD->getBuiltinID();
1664       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1665         return true;
1666       StringRef BuiltinName = BI.getName(BuiltinID);
1667       if (BuiltinName.startswith("__builtin_") &&
1668           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1669         Result = true;
1670         return false;
1671       }
1672       return true;
1673     }
1674   };
1675 
1676   struct DLLImportFunctionVisitor
1677       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1678     bool SafeToInline = true;
1679 
1680     bool VisitVarDecl(VarDecl *VD) {
1681       // A thread-local variable cannot be imported.
1682       SafeToInline = !VD->getTLSKind();
1683       return SafeToInline;
1684     }
1685 
1686     // Make sure we're not referencing non-imported vars or functions.
1687     bool VisitDeclRefExpr(DeclRefExpr *E) {
1688       ValueDecl *VD = E->getDecl();
1689       if (isa<FunctionDecl>(VD))
1690         SafeToInline = VD->hasAttr<DLLImportAttr>();
1691       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1692         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1693       return SafeToInline;
1694     }
1695     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1696       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1697       return SafeToInline;
1698     }
1699     bool VisitCXXNewExpr(CXXNewExpr *E) {
1700       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1701       return SafeToInline;
1702     }
1703   };
1704 }
1705 
1706 // isTriviallyRecursive - Check if this function calls another
1707 // decl that, because of the asm attribute or the other decl being a builtin,
1708 // ends up pointing to itself.
1709 bool
1710 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1711   StringRef Name;
1712   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1713     // asm labels are a special kind of mangling we have to support.
1714     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1715     if (!Attr)
1716       return false;
1717     Name = Attr->getLabel();
1718   } else {
1719     Name = FD->getName();
1720   }
1721 
1722   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1723   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1724   return Walker.Result;
1725 }
1726 
1727 bool
1728 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1729   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1730     return true;
1731   const auto *F = cast<FunctionDecl>(GD.getDecl());
1732   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1733     return false;
1734 
1735   if (F->hasAttr<DLLImportAttr>()) {
1736     // Check whether it would be safe to inline this dllimport function.
1737     DLLImportFunctionVisitor Visitor;
1738     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1739     if (!Visitor.SafeToInline)
1740       return false;
1741   }
1742 
1743   // PR9614. Avoid cases where the source code is lying to us. An available
1744   // externally function should have an equivalent function somewhere else,
1745   // but a function that calls itself is clearly not equivalent to the real
1746   // implementation.
1747   // This happens in glibc's btowc and in some configure checks.
1748   return !isTriviallyRecursive(F);
1749 }
1750 
1751 /// If the type for the method's class was generated by
1752 /// CGDebugInfo::createContextChain(), the cache contains only a
1753 /// limited DIType without any declarations. Since EmitFunctionStart()
1754 /// needs to find the canonical declaration for each method, we need
1755 /// to construct the complete type prior to emitting the method.
1756 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1757   if (!D->isInstance())
1758     return;
1759 
1760   if (CGDebugInfo *DI = getModuleDebugInfo())
1761     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1762       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1763       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1764     }
1765 }
1766 
1767 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1768   const auto *D = cast<ValueDecl>(GD.getDecl());
1769 
1770   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1771                                  Context.getSourceManager(),
1772                                  "Generating code for declaration");
1773 
1774   if (isa<FunctionDecl>(D)) {
1775     // At -O0, don't generate IR for functions with available_externally
1776     // linkage.
1777     if (!shouldEmitFunction(GD))
1778       return;
1779 
1780     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1781       CompleteDIClassType(Method);
1782       // Make sure to emit the definition(s) before we emit the thunks.
1783       // This is necessary for the generation of certain thunks.
1784       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1785         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1786       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1787         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1788       else
1789         EmitGlobalFunctionDefinition(GD, GV);
1790 
1791       if (Method->isVirtual())
1792         getVTables().EmitThunks(GD);
1793 
1794       return;
1795     }
1796 
1797     return EmitGlobalFunctionDefinition(GD, GV);
1798   }
1799 
1800   if (const auto *VD = dyn_cast<VarDecl>(D))
1801     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1802 
1803   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1804 }
1805 
1806 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1807                                                       llvm::Function *NewFn);
1808 
1809 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1810 /// module, create and return an llvm Function with the specified type. If there
1811 /// is something in the module with the specified name, return it potentially
1812 /// bitcasted to the right type.
1813 ///
1814 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1815 /// to set the attributes on the function when it is first created.
1816 llvm::Constant *
1817 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1818                                        llvm::Type *Ty,
1819                                        GlobalDecl GD, bool ForVTable,
1820                                        bool DontDefer, bool IsThunk,
1821                                        llvm::AttributeSet ExtraAttrs,
1822                                        bool IsForDefinition) {
1823   const Decl *D = GD.getDecl();
1824 
1825   // Lookup the entry, lazily creating it if necessary.
1826   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1827   if (Entry) {
1828     if (WeakRefReferences.erase(Entry)) {
1829       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1830       if (FD && !FD->hasAttr<WeakAttr>())
1831         Entry->setLinkage(llvm::Function::ExternalLinkage);
1832     }
1833 
1834     // Handle dropped DLL attributes.
1835     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1836       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1837 
1838     // If there are two attempts to define the same mangled name, issue an
1839     // error.
1840     if (IsForDefinition && !Entry->isDeclaration()) {
1841       GlobalDecl OtherGD;
1842       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1843       // to make sure that we issue an error only once.
1844       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1845           (GD.getCanonicalDecl().getDecl() !=
1846            OtherGD.getCanonicalDecl().getDecl()) &&
1847           DiagnosedConflictingDefinitions.insert(GD).second) {
1848         getDiags().Report(D->getLocation(),
1849                           diag::err_duplicate_mangled_name);
1850         getDiags().Report(OtherGD.getDecl()->getLocation(),
1851                           diag::note_previous_definition);
1852       }
1853     }
1854 
1855     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1856         (Entry->getType()->getElementType() == Ty)) {
1857       return Entry;
1858     }
1859 
1860     // Make sure the result is of the correct type.
1861     // (If function is requested for a definition, we always need to create a new
1862     // function, not just return a bitcast.)
1863     if (!IsForDefinition)
1864       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1865   }
1866 
1867   // This function doesn't have a complete type (for example, the return
1868   // type is an incomplete struct). Use a fake type instead, and make
1869   // sure not to try to set attributes.
1870   bool IsIncompleteFunction = false;
1871 
1872   llvm::FunctionType *FTy;
1873   if (isa<llvm::FunctionType>(Ty)) {
1874     FTy = cast<llvm::FunctionType>(Ty);
1875   } else {
1876     FTy = llvm::FunctionType::get(VoidTy, false);
1877     IsIncompleteFunction = true;
1878   }
1879 
1880   llvm::Function *F =
1881       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1882                              Entry ? StringRef() : MangledName, &getModule());
1883 
1884   // If we already created a function with the same mangled name (but different
1885   // type) before, take its name and add it to the list of functions to be
1886   // replaced with F at the end of CodeGen.
1887   //
1888   // This happens if there is a prototype for a function (e.g. "int f()") and
1889   // then a definition of a different type (e.g. "int f(int x)").
1890   if (Entry) {
1891     F->takeName(Entry);
1892 
1893     // This might be an implementation of a function without a prototype, in
1894     // which case, try to do special replacement of calls which match the new
1895     // prototype.  The really key thing here is that we also potentially drop
1896     // arguments from the call site so as to make a direct call, which makes the
1897     // inliner happier and suppresses a number of optimizer warnings (!) about
1898     // dropping arguments.
1899     if (!Entry->use_empty()) {
1900       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1901       Entry->removeDeadConstantUsers();
1902     }
1903 
1904     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1905         F, Entry->getType()->getElementType()->getPointerTo());
1906     addGlobalValReplacement(Entry, BC);
1907   }
1908 
1909   assert(F->getName() == MangledName && "name was uniqued!");
1910   if (D)
1911     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1912   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1913     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1914     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1915                      llvm::AttributeSet::get(VMContext,
1916                                              llvm::AttributeSet::FunctionIndex,
1917                                              B));
1918   }
1919 
1920   if (!DontDefer) {
1921     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1922     // each other bottoming out with the base dtor.  Therefore we emit non-base
1923     // dtors on usage, even if there is no dtor definition in the TU.
1924     if (D && isa<CXXDestructorDecl>(D) &&
1925         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1926                                            GD.getDtorType()))
1927       addDeferredDeclToEmit(F, GD);
1928 
1929     // This is the first use or definition of a mangled name.  If there is a
1930     // deferred decl with this name, remember that we need to emit it at the end
1931     // of the file.
1932     auto DDI = DeferredDecls.find(MangledName);
1933     if (DDI != DeferredDecls.end()) {
1934       // Move the potentially referenced deferred decl to the
1935       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1936       // don't need it anymore).
1937       addDeferredDeclToEmit(F, DDI->second);
1938       DeferredDecls.erase(DDI);
1939 
1940       // Otherwise, there are cases we have to worry about where we're
1941       // using a declaration for which we must emit a definition but where
1942       // we might not find a top-level definition:
1943       //   - member functions defined inline in their classes
1944       //   - friend functions defined inline in some class
1945       //   - special member functions with implicit definitions
1946       // If we ever change our AST traversal to walk into class methods,
1947       // this will be unnecessary.
1948       //
1949       // We also don't emit a definition for a function if it's going to be an
1950       // entry in a vtable, unless it's already marked as used.
1951     } else if (getLangOpts().CPlusPlus && D) {
1952       // Look for a declaration that's lexically in a record.
1953       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1954            FD = FD->getPreviousDecl()) {
1955         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1956           if (FD->doesThisDeclarationHaveABody()) {
1957             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1958             break;
1959           }
1960         }
1961       }
1962     }
1963   }
1964 
1965   // Make sure the result is of the requested type.
1966   if (!IsIncompleteFunction) {
1967     assert(F->getType()->getElementType() == Ty);
1968     return F;
1969   }
1970 
1971   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1972   return llvm::ConstantExpr::getBitCast(F, PTy);
1973 }
1974 
1975 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1976 /// non-null, then this function will use the specified type if it has to
1977 /// create it (this occurs when we see a definition of the function).
1978 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1979                                                  llvm::Type *Ty,
1980                                                  bool ForVTable,
1981                                                  bool DontDefer,
1982                                                  bool IsForDefinition) {
1983   // If there was no specific requested type, just convert it now.
1984   if (!Ty) {
1985     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1986     auto CanonTy = Context.getCanonicalType(FD->getType());
1987     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1988   }
1989 
1990   StringRef MangledName = getMangledName(GD);
1991   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1992                                  /*IsThunk=*/false, llvm::AttributeSet(),
1993                                  IsForDefinition);
1994 }
1995 
1996 /// CreateRuntimeFunction - Create a new runtime function with the specified
1997 /// type and name.
1998 llvm::Constant *
1999 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2000                                      StringRef Name,
2001                                      llvm::AttributeSet ExtraAttrs) {
2002   llvm::Constant *C =
2003       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2004                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2005   if (auto *F = dyn_cast<llvm::Function>(C))
2006     if (F->empty())
2007       F->setCallingConv(getRuntimeCC());
2008   return C;
2009 }
2010 
2011 /// CreateBuiltinFunction - Create a new builtin function with the specified
2012 /// type and name.
2013 llvm::Constant *
2014 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2015                                      StringRef Name,
2016                                      llvm::AttributeSet ExtraAttrs) {
2017   llvm::Constant *C =
2018       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2019                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2020   if (auto *F = dyn_cast<llvm::Function>(C))
2021     if (F->empty())
2022       F->setCallingConv(getBuiltinCC());
2023   return C;
2024 }
2025 
2026 /// isTypeConstant - Determine whether an object of this type can be emitted
2027 /// as a constant.
2028 ///
2029 /// If ExcludeCtor is true, the duration when the object's constructor runs
2030 /// will not be considered. The caller will need to verify that the object is
2031 /// not written to during its construction.
2032 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2033   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2034     return false;
2035 
2036   if (Context.getLangOpts().CPlusPlus) {
2037     if (const CXXRecordDecl *Record
2038           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2039       return ExcludeCtor && !Record->hasMutableFields() &&
2040              Record->hasTrivialDestructor();
2041   }
2042 
2043   return true;
2044 }
2045 
2046 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2047 /// create and return an llvm GlobalVariable with the specified type.  If there
2048 /// is something in the module with the specified name, return it potentially
2049 /// bitcasted to the right type.
2050 ///
2051 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2052 /// to set the attributes on the global when it is first created.
2053 ///
2054 /// If IsForDefinition is true, it is guranteed that an actual global with
2055 /// type Ty will be returned, not conversion of a variable with the same
2056 /// mangled name but some other type.
2057 llvm::Constant *
2058 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2059                                      llvm::PointerType *Ty,
2060                                      const VarDecl *D,
2061                                      bool IsForDefinition) {
2062   // Lookup the entry, lazily creating it if necessary.
2063   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2064   if (Entry) {
2065     if (WeakRefReferences.erase(Entry)) {
2066       if (D && !D->hasAttr<WeakAttr>())
2067         Entry->setLinkage(llvm::Function::ExternalLinkage);
2068     }
2069 
2070     // Handle dropped DLL attributes.
2071     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2072       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2073 
2074     if (Entry->getType() == Ty)
2075       return Entry;
2076 
2077     // If there are two attempts to define the same mangled name, issue an
2078     // error.
2079     if (IsForDefinition && !Entry->isDeclaration()) {
2080       GlobalDecl OtherGD;
2081       const VarDecl *OtherD;
2082 
2083       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2084       // to make sure that we issue an error only once.
2085       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2086           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2087           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2088           OtherD->hasInit() &&
2089           DiagnosedConflictingDefinitions.insert(D).second) {
2090         getDiags().Report(D->getLocation(),
2091                           diag::err_duplicate_mangled_name);
2092         getDiags().Report(OtherGD.getDecl()->getLocation(),
2093                           diag::note_previous_definition);
2094       }
2095     }
2096 
2097     // Make sure the result is of the correct type.
2098     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2099       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2100 
2101     // (If global is requested for a definition, we always need to create a new
2102     // global, not just return a bitcast.)
2103     if (!IsForDefinition)
2104       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2105   }
2106 
2107   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2108   auto *GV = new llvm::GlobalVariable(
2109       getModule(), Ty->getElementType(), false,
2110       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2111       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2112 
2113   // If we already created a global with the same mangled name (but different
2114   // type) before, take its name and remove it from its parent.
2115   if (Entry) {
2116     GV->takeName(Entry);
2117 
2118     if (!Entry->use_empty()) {
2119       llvm::Constant *NewPtrForOldDecl =
2120           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2121       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2122     }
2123 
2124     Entry->eraseFromParent();
2125   }
2126 
2127   // This is the first use or definition of a mangled name.  If there is a
2128   // deferred decl with this name, remember that we need to emit it at the end
2129   // of the file.
2130   auto DDI = DeferredDecls.find(MangledName);
2131   if (DDI != DeferredDecls.end()) {
2132     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2133     // list, and remove it from DeferredDecls (since we don't need it anymore).
2134     addDeferredDeclToEmit(GV, DDI->second);
2135     DeferredDecls.erase(DDI);
2136   }
2137 
2138   // Handle things which are present even on external declarations.
2139   if (D) {
2140     // FIXME: This code is overly simple and should be merged with other global
2141     // handling.
2142     GV->setConstant(isTypeConstant(D->getType(), false));
2143 
2144     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2145 
2146     setLinkageAndVisibilityForGV(GV, D);
2147 
2148     if (D->getTLSKind()) {
2149       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2150         CXXThreadLocals.push_back(D);
2151       setTLSMode(GV, *D);
2152     }
2153 
2154     // If required by the ABI, treat declarations of static data members with
2155     // inline initializers as definitions.
2156     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2157       EmitGlobalVarDefinition(D);
2158     }
2159 
2160     // Handle XCore specific ABI requirements.
2161     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2162         D->getLanguageLinkage() == CLanguageLinkage &&
2163         D->getType().isConstant(Context) &&
2164         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2165       GV->setSection(".cp.rodata");
2166   }
2167 
2168   if (AddrSpace != Ty->getAddressSpace())
2169     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2170 
2171   return GV;
2172 }
2173 
2174 llvm::Constant *
2175 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2176                                bool IsForDefinition) {
2177   if (isa<CXXConstructorDecl>(GD.getDecl()))
2178     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2179                                 getFromCtorType(GD.getCtorType()),
2180                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2181                                 /*DontDefer=*/false, IsForDefinition);
2182   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2183     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2184                                 getFromDtorType(GD.getDtorType()),
2185                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2186                                 /*DontDefer=*/false, IsForDefinition);
2187   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2188     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2189         cast<CXXMethodDecl>(GD.getDecl()));
2190     auto Ty = getTypes().GetFunctionType(*FInfo);
2191     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2192                              IsForDefinition);
2193   } else if (isa<FunctionDecl>(GD.getDecl())) {
2194     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2195     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2196     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2197                              IsForDefinition);
2198   } else
2199     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2200                               IsForDefinition);
2201 }
2202 
2203 llvm::GlobalVariable *
2204 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2205                                       llvm::Type *Ty,
2206                                       llvm::GlobalValue::LinkageTypes Linkage) {
2207   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2208   llvm::GlobalVariable *OldGV = nullptr;
2209 
2210   if (GV) {
2211     // Check if the variable has the right type.
2212     if (GV->getType()->getElementType() == Ty)
2213       return GV;
2214 
2215     // Because C++ name mangling, the only way we can end up with an already
2216     // existing global with the same name is if it has been declared extern "C".
2217     assert(GV->isDeclaration() && "Declaration has wrong type!");
2218     OldGV = GV;
2219   }
2220 
2221   // Create a new variable.
2222   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2223                                 Linkage, nullptr, Name);
2224 
2225   if (OldGV) {
2226     // Replace occurrences of the old variable if needed.
2227     GV->takeName(OldGV);
2228 
2229     if (!OldGV->use_empty()) {
2230       llvm::Constant *NewPtrForOldDecl =
2231       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2232       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2233     }
2234 
2235     OldGV->eraseFromParent();
2236   }
2237 
2238   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2239       !GV->hasAvailableExternallyLinkage())
2240     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2241 
2242   return GV;
2243 }
2244 
2245 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2246 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2247 /// then it will be created with the specified type instead of whatever the
2248 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2249 /// that an actual global with type Ty will be returned, not conversion of a
2250 /// variable with the same mangled name but some other type.
2251 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2252                                                   llvm::Type *Ty,
2253                                                   bool IsForDefinition) {
2254   assert(D->hasGlobalStorage() && "Not a global variable");
2255   QualType ASTTy = D->getType();
2256   if (!Ty)
2257     Ty = getTypes().ConvertTypeForMem(ASTTy);
2258 
2259   llvm::PointerType *PTy =
2260     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2261 
2262   StringRef MangledName = getMangledName(D);
2263   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2264 }
2265 
2266 /// CreateRuntimeVariable - Create a new runtime global variable with the
2267 /// specified type and name.
2268 llvm::Constant *
2269 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2270                                      StringRef Name) {
2271   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2272 }
2273 
2274 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2275   assert(!D->getInit() && "Cannot emit definite definitions here!");
2276 
2277   StringRef MangledName = getMangledName(D);
2278   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2279 
2280   // We already have a definition, not declaration, with the same mangled name.
2281   // Emitting of declaration is not required (and actually overwrites emitted
2282   // definition).
2283   if (GV && !GV->isDeclaration())
2284     return;
2285 
2286   // If we have not seen a reference to this variable yet, place it into the
2287   // deferred declarations table to be emitted if needed later.
2288   if (!MustBeEmitted(D) && !GV) {
2289       DeferredDecls[MangledName] = D;
2290       return;
2291   }
2292 
2293   // The tentative definition is the only definition.
2294   EmitGlobalVarDefinition(D);
2295 }
2296 
2297 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2298   return Context.toCharUnitsFromBits(
2299       getDataLayout().getTypeStoreSizeInBits(Ty));
2300 }
2301 
2302 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2303                                                  unsigned AddrSpace) {
2304   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2305     if (D->hasAttr<CUDAConstantAttr>())
2306       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2307     else if (D->hasAttr<CUDASharedAttr>())
2308       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2309     else
2310       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2311   }
2312 
2313   return AddrSpace;
2314 }
2315 
2316 template<typename SomeDecl>
2317 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2318                                                llvm::GlobalValue *GV) {
2319   if (!getLangOpts().CPlusPlus)
2320     return;
2321 
2322   // Must have 'used' attribute, or else inline assembly can't rely on
2323   // the name existing.
2324   if (!D->template hasAttr<UsedAttr>())
2325     return;
2326 
2327   // Must have internal linkage and an ordinary name.
2328   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2329     return;
2330 
2331   // Must be in an extern "C" context. Entities declared directly within
2332   // a record are not extern "C" even if the record is in such a context.
2333   const SomeDecl *First = D->getFirstDecl();
2334   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2335     return;
2336 
2337   // OK, this is an internal linkage entity inside an extern "C" linkage
2338   // specification. Make a note of that so we can give it the "expected"
2339   // mangled name if nothing else is using that name.
2340   std::pair<StaticExternCMap::iterator, bool> R =
2341       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2342 
2343   // If we have multiple internal linkage entities with the same name
2344   // in extern "C" regions, none of them gets that name.
2345   if (!R.second)
2346     R.first->second = nullptr;
2347 }
2348 
2349 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2350   if (!CGM.supportsCOMDAT())
2351     return false;
2352 
2353   if (D.hasAttr<SelectAnyAttr>())
2354     return true;
2355 
2356   GVALinkage Linkage;
2357   if (auto *VD = dyn_cast<VarDecl>(&D))
2358     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2359   else
2360     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2361 
2362   switch (Linkage) {
2363   case GVA_Internal:
2364   case GVA_AvailableExternally:
2365   case GVA_StrongExternal:
2366     return false;
2367   case GVA_DiscardableODR:
2368   case GVA_StrongODR:
2369     return true;
2370   }
2371   llvm_unreachable("No such linkage");
2372 }
2373 
2374 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2375                                           llvm::GlobalObject &GO) {
2376   if (!shouldBeInCOMDAT(*this, D))
2377     return;
2378   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2379 }
2380 
2381 /// Pass IsTentative as true if you want to create a tentative definition.
2382 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2383                                             bool IsTentative) {
2384   llvm::Constant *Init = nullptr;
2385   QualType ASTTy = D->getType();
2386   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2387   bool NeedsGlobalCtor = false;
2388   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2389 
2390   const VarDecl *InitDecl;
2391   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2392 
2393   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2394   // as part of their declaration."  Sema has already checked for
2395   // error cases, so we just need to set Init to UndefValue.
2396   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2397       D->hasAttr<CUDASharedAttr>())
2398     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2399   else if (!InitExpr) {
2400     // This is a tentative definition; tentative definitions are
2401     // implicitly initialized with { 0 }.
2402     //
2403     // Note that tentative definitions are only emitted at the end of
2404     // a translation unit, so they should never have incomplete
2405     // type. In addition, EmitTentativeDefinition makes sure that we
2406     // never attempt to emit a tentative definition if a real one
2407     // exists. A use may still exists, however, so we still may need
2408     // to do a RAUW.
2409     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2410     Init = EmitNullConstant(D->getType());
2411   } else {
2412     initializedGlobalDecl = GlobalDecl(D);
2413     Init = EmitConstantInit(*InitDecl);
2414 
2415     if (!Init) {
2416       QualType T = InitExpr->getType();
2417       if (D->getType()->isReferenceType())
2418         T = D->getType();
2419 
2420       if (getLangOpts().CPlusPlus) {
2421         Init = EmitNullConstant(T);
2422         NeedsGlobalCtor = true;
2423       } else {
2424         ErrorUnsupported(D, "static initializer");
2425         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2426       }
2427     } else {
2428       // We don't need an initializer, so remove the entry for the delayed
2429       // initializer position (just in case this entry was delayed) if we
2430       // also don't need to register a destructor.
2431       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2432         DelayedCXXInitPosition.erase(D);
2433     }
2434   }
2435 
2436   llvm::Type* InitType = Init->getType();
2437   llvm::Constant *Entry =
2438       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2439 
2440   // Strip off a bitcast if we got one back.
2441   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2442     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2443            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2444            // All zero index gep.
2445            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2446     Entry = CE->getOperand(0);
2447   }
2448 
2449   // Entry is now either a Function or GlobalVariable.
2450   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2451 
2452   // We have a definition after a declaration with the wrong type.
2453   // We must make a new GlobalVariable* and update everything that used OldGV
2454   // (a declaration or tentative definition) with the new GlobalVariable*
2455   // (which will be a definition).
2456   //
2457   // This happens if there is a prototype for a global (e.g.
2458   // "extern int x[];") and then a definition of a different type (e.g.
2459   // "int x[10];"). This also happens when an initializer has a different type
2460   // from the type of the global (this happens with unions).
2461   if (!GV ||
2462       GV->getType()->getElementType() != InitType ||
2463       GV->getType()->getAddressSpace() !=
2464        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2465 
2466     // Move the old entry aside so that we'll create a new one.
2467     Entry->setName(StringRef());
2468 
2469     // Make a new global with the correct type, this is now guaranteed to work.
2470     GV = cast<llvm::GlobalVariable>(
2471         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2472 
2473     // Replace all uses of the old global with the new global
2474     llvm::Constant *NewPtrForOldDecl =
2475         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2476     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2477 
2478     // Erase the old global, since it is no longer used.
2479     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2480   }
2481 
2482   MaybeHandleStaticInExternC(D, GV);
2483 
2484   if (D->hasAttr<AnnotateAttr>())
2485     AddGlobalAnnotations(D, GV);
2486 
2487   // Set the llvm linkage type as appropriate.
2488   llvm::GlobalValue::LinkageTypes Linkage =
2489       getLLVMLinkageVarDefinition(D, GV->isConstant());
2490 
2491   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2492   // the device. [...]"
2493   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2494   // __device__, declares a variable that: [...]
2495   // Is accessible from all the threads within the grid and from the host
2496   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2497   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2498   if (GV && LangOpts.CUDA) {
2499     if (LangOpts.CUDAIsDevice) {
2500       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2501         GV->setExternallyInitialized(true);
2502     } else {
2503       // Host-side shadows of external declarations of device-side
2504       // global variables become internal definitions. These have to
2505       // be internal in order to prevent name conflicts with global
2506       // host variables with the same name in a different TUs.
2507       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2508         Linkage = llvm::GlobalValue::InternalLinkage;
2509 
2510         // Shadow variables and their properties must be registered
2511         // with CUDA runtime.
2512         unsigned Flags = 0;
2513         if (!D->hasDefinition())
2514           Flags |= CGCUDARuntime::ExternDeviceVar;
2515         if (D->hasAttr<CUDAConstantAttr>())
2516           Flags |= CGCUDARuntime::ConstantDeviceVar;
2517         getCUDARuntime().registerDeviceVar(*GV, Flags);
2518       } else if (D->hasAttr<CUDASharedAttr>())
2519         // __shared__ variables are odd. Shadows do get created, but
2520         // they are not registered with the CUDA runtime, so they
2521         // can't really be used to access their device-side
2522         // counterparts. It's not clear yet whether it's nvcc's bug or
2523         // a feature, but we've got to do the same for compatibility.
2524         Linkage = llvm::GlobalValue::InternalLinkage;
2525     }
2526   }
2527   GV->setInitializer(Init);
2528 
2529   // If it is safe to mark the global 'constant', do so now.
2530   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2531                   isTypeConstant(D->getType(), true));
2532 
2533   // If it is in a read-only section, mark it 'constant'.
2534   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2535     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2536     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2537       GV->setConstant(true);
2538   }
2539 
2540   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2541 
2542 
2543   // On Darwin, if the normal linkage of a C++ thread_local variable is
2544   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2545   // copies within a linkage unit; otherwise, the backing variable has
2546   // internal linkage and all accesses should just be calls to the
2547   // Itanium-specified entry point, which has the normal linkage of the
2548   // variable. This is to preserve the ability to change the implementation
2549   // behind the scenes.
2550   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2551       Context.getTargetInfo().getTriple().isOSDarwin() &&
2552       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2553       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2554     Linkage = llvm::GlobalValue::InternalLinkage;
2555 
2556   GV->setLinkage(Linkage);
2557   if (D->hasAttr<DLLImportAttr>())
2558     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2559   else if (D->hasAttr<DLLExportAttr>())
2560     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2561   else
2562     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2563 
2564   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2565     // common vars aren't constant even if declared const.
2566     GV->setConstant(false);
2567 
2568   setNonAliasAttributes(D, GV);
2569 
2570   if (D->getTLSKind() && !GV->isThreadLocal()) {
2571     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2572       CXXThreadLocals.push_back(D);
2573     setTLSMode(GV, *D);
2574   }
2575 
2576   maybeSetTrivialComdat(*D, *GV);
2577 
2578   // Emit the initializer function if necessary.
2579   if (NeedsGlobalCtor || NeedsGlobalDtor)
2580     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2581 
2582   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2583 
2584   // Emit global variable debug information.
2585   if (CGDebugInfo *DI = getModuleDebugInfo())
2586     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2587       DI->EmitGlobalVariable(GV, D);
2588 }
2589 
2590 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2591                                       CodeGenModule &CGM, const VarDecl *D,
2592                                       bool NoCommon) {
2593   // Don't give variables common linkage if -fno-common was specified unless it
2594   // was overridden by a NoCommon attribute.
2595   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2596     return true;
2597 
2598   // C11 6.9.2/2:
2599   //   A declaration of an identifier for an object that has file scope without
2600   //   an initializer, and without a storage-class specifier or with the
2601   //   storage-class specifier static, constitutes a tentative definition.
2602   if (D->getInit() || D->hasExternalStorage())
2603     return true;
2604 
2605   // A variable cannot be both common and exist in a section.
2606   if (D->hasAttr<SectionAttr>())
2607     return true;
2608 
2609   // Thread local vars aren't considered common linkage.
2610   if (D->getTLSKind())
2611     return true;
2612 
2613   // Tentative definitions marked with WeakImportAttr are true definitions.
2614   if (D->hasAttr<WeakImportAttr>())
2615     return true;
2616 
2617   // A variable cannot be both common and exist in a comdat.
2618   if (shouldBeInCOMDAT(CGM, *D))
2619     return true;
2620 
2621   // Declarations with a required alignment do not have common linakge in MSVC
2622   // mode.
2623   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2624     if (D->hasAttr<AlignedAttr>())
2625       return true;
2626     QualType VarType = D->getType();
2627     if (Context.isAlignmentRequired(VarType))
2628       return true;
2629 
2630     if (const auto *RT = VarType->getAs<RecordType>()) {
2631       const RecordDecl *RD = RT->getDecl();
2632       for (const FieldDecl *FD : RD->fields()) {
2633         if (FD->isBitField())
2634           continue;
2635         if (FD->hasAttr<AlignedAttr>())
2636           return true;
2637         if (Context.isAlignmentRequired(FD->getType()))
2638           return true;
2639       }
2640     }
2641   }
2642 
2643   return false;
2644 }
2645 
2646 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2647     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2648   if (Linkage == GVA_Internal)
2649     return llvm::Function::InternalLinkage;
2650 
2651   if (D->hasAttr<WeakAttr>()) {
2652     if (IsConstantVariable)
2653       return llvm::GlobalVariable::WeakODRLinkage;
2654     else
2655       return llvm::GlobalVariable::WeakAnyLinkage;
2656   }
2657 
2658   // We are guaranteed to have a strong definition somewhere else,
2659   // so we can use available_externally linkage.
2660   if (Linkage == GVA_AvailableExternally)
2661     return llvm::Function::AvailableExternallyLinkage;
2662 
2663   // Note that Apple's kernel linker doesn't support symbol
2664   // coalescing, so we need to avoid linkonce and weak linkages there.
2665   // Normally, this means we just map to internal, but for explicit
2666   // instantiations we'll map to external.
2667 
2668   // In C++, the compiler has to emit a definition in every translation unit
2669   // that references the function.  We should use linkonce_odr because
2670   // a) if all references in this translation unit are optimized away, we
2671   // don't need to codegen it.  b) if the function persists, it needs to be
2672   // merged with other definitions. c) C++ has the ODR, so we know the
2673   // definition is dependable.
2674   if (Linkage == GVA_DiscardableODR)
2675     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2676                                             : llvm::Function::InternalLinkage;
2677 
2678   // An explicit instantiation of a template has weak linkage, since
2679   // explicit instantiations can occur in multiple translation units
2680   // and must all be equivalent. However, we are not allowed to
2681   // throw away these explicit instantiations.
2682   if (Linkage == GVA_StrongODR)
2683     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2684                                             : llvm::Function::ExternalLinkage;
2685 
2686   // C++ doesn't have tentative definitions and thus cannot have common
2687   // linkage.
2688   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2689       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2690                                  CodeGenOpts.NoCommon))
2691     return llvm::GlobalVariable::CommonLinkage;
2692 
2693   // selectany symbols are externally visible, so use weak instead of
2694   // linkonce.  MSVC optimizes away references to const selectany globals, so
2695   // all definitions should be the same and ODR linkage should be used.
2696   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2697   if (D->hasAttr<SelectAnyAttr>())
2698     return llvm::GlobalVariable::WeakODRLinkage;
2699 
2700   // Otherwise, we have strong external linkage.
2701   assert(Linkage == GVA_StrongExternal);
2702   return llvm::GlobalVariable::ExternalLinkage;
2703 }
2704 
2705 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2706     const VarDecl *VD, bool IsConstant) {
2707   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2708   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2709 }
2710 
2711 /// Replace the uses of a function that was declared with a non-proto type.
2712 /// We want to silently drop extra arguments from call sites
2713 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2714                                           llvm::Function *newFn) {
2715   // Fast path.
2716   if (old->use_empty()) return;
2717 
2718   llvm::Type *newRetTy = newFn->getReturnType();
2719   SmallVector<llvm::Value*, 4> newArgs;
2720   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2721 
2722   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2723          ui != ue; ) {
2724     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2725     llvm::User *user = use->getUser();
2726 
2727     // Recognize and replace uses of bitcasts.  Most calls to
2728     // unprototyped functions will use bitcasts.
2729     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2730       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2731         replaceUsesOfNonProtoConstant(bitcast, newFn);
2732       continue;
2733     }
2734 
2735     // Recognize calls to the function.
2736     llvm::CallSite callSite(user);
2737     if (!callSite) continue;
2738     if (!callSite.isCallee(&*use)) continue;
2739 
2740     // If the return types don't match exactly, then we can't
2741     // transform this call unless it's dead.
2742     if (callSite->getType() != newRetTy && !callSite->use_empty())
2743       continue;
2744 
2745     // Get the call site's attribute list.
2746     SmallVector<llvm::AttributeSet, 8> newAttrs;
2747     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2748 
2749     // Collect any return attributes from the call.
2750     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2751       newAttrs.push_back(
2752         llvm::AttributeSet::get(newFn->getContext(),
2753                                 oldAttrs.getRetAttributes()));
2754 
2755     // If the function was passed too few arguments, don't transform.
2756     unsigned newNumArgs = newFn->arg_size();
2757     if (callSite.arg_size() < newNumArgs) continue;
2758 
2759     // If extra arguments were passed, we silently drop them.
2760     // If any of the types mismatch, we don't transform.
2761     unsigned argNo = 0;
2762     bool dontTransform = false;
2763     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2764            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2765       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2766         dontTransform = true;
2767         break;
2768       }
2769 
2770       // Add any parameter attributes.
2771       if (oldAttrs.hasAttributes(argNo + 1))
2772         newAttrs.
2773           push_back(llvm::
2774                     AttributeSet::get(newFn->getContext(),
2775                                       oldAttrs.getParamAttributes(argNo + 1)));
2776     }
2777     if (dontTransform)
2778       continue;
2779 
2780     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2781       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2782                                                  oldAttrs.getFnAttributes()));
2783 
2784     // Okay, we can transform this.  Create the new call instruction and copy
2785     // over the required information.
2786     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2787 
2788     // Copy over any operand bundles.
2789     callSite.getOperandBundlesAsDefs(newBundles);
2790 
2791     llvm::CallSite newCall;
2792     if (callSite.isCall()) {
2793       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2794                                        callSite.getInstruction());
2795     } else {
2796       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2797       newCall = llvm::InvokeInst::Create(newFn,
2798                                          oldInvoke->getNormalDest(),
2799                                          oldInvoke->getUnwindDest(),
2800                                          newArgs, newBundles, "",
2801                                          callSite.getInstruction());
2802     }
2803     newArgs.clear(); // for the next iteration
2804 
2805     if (!newCall->getType()->isVoidTy())
2806       newCall->takeName(callSite.getInstruction());
2807     newCall.setAttributes(
2808                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2809     newCall.setCallingConv(callSite.getCallingConv());
2810 
2811     // Finally, remove the old call, replacing any uses with the new one.
2812     if (!callSite->use_empty())
2813       callSite->replaceAllUsesWith(newCall.getInstruction());
2814 
2815     // Copy debug location attached to CI.
2816     if (callSite->getDebugLoc())
2817       newCall->setDebugLoc(callSite->getDebugLoc());
2818 
2819     callSite->eraseFromParent();
2820   }
2821 }
2822 
2823 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2824 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2825 /// existing call uses of the old function in the module, this adjusts them to
2826 /// call the new function directly.
2827 ///
2828 /// This is not just a cleanup: the always_inline pass requires direct calls to
2829 /// functions to be able to inline them.  If there is a bitcast in the way, it
2830 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2831 /// run at -O0.
2832 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2833                                                       llvm::Function *NewFn) {
2834   // If we're redefining a global as a function, don't transform it.
2835   if (!isa<llvm::Function>(Old)) return;
2836 
2837   replaceUsesOfNonProtoConstant(Old, NewFn);
2838 }
2839 
2840 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2841   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2842   // If we have a definition, this might be a deferred decl. If the
2843   // instantiation is explicit, make sure we emit it at the end.
2844   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2845     GetAddrOfGlobalVar(VD);
2846 
2847   EmitTopLevelDecl(VD);
2848 }
2849 
2850 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2851                                                  llvm::GlobalValue *GV) {
2852   const auto *D = cast<FunctionDecl>(GD.getDecl());
2853 
2854   // Compute the function info and LLVM type.
2855   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2856   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2857 
2858   // Get or create the prototype for the function.
2859   if (!GV || (GV->getType()->getElementType() != Ty))
2860     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2861                                                    /*DontDefer=*/true,
2862                                                    /*IsForDefinition=*/true));
2863 
2864   // Already emitted.
2865   if (!GV->isDeclaration())
2866     return;
2867 
2868   // We need to set linkage and visibility on the function before
2869   // generating code for it because various parts of IR generation
2870   // want to propagate this information down (e.g. to local static
2871   // declarations).
2872   auto *Fn = cast<llvm::Function>(GV);
2873   setFunctionLinkage(GD, Fn);
2874   setFunctionDLLStorageClass(GD, Fn);
2875 
2876   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2877   setGlobalVisibility(Fn, D);
2878 
2879   MaybeHandleStaticInExternC(D, Fn);
2880 
2881   maybeSetTrivialComdat(*D, *Fn);
2882 
2883   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2884 
2885   setFunctionDefinitionAttributes(D, Fn);
2886   SetLLVMFunctionAttributesForDefinition(D, Fn);
2887 
2888   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2889     AddGlobalCtor(Fn, CA->getPriority());
2890   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2891     AddGlobalDtor(Fn, DA->getPriority());
2892   if (D->hasAttr<AnnotateAttr>())
2893     AddGlobalAnnotations(D, Fn);
2894 }
2895 
2896 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2897   const auto *D = cast<ValueDecl>(GD.getDecl());
2898   const AliasAttr *AA = D->getAttr<AliasAttr>();
2899   assert(AA && "Not an alias?");
2900 
2901   StringRef MangledName = getMangledName(GD);
2902 
2903   if (AA->getAliasee() == MangledName) {
2904     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2905     return;
2906   }
2907 
2908   // If there is a definition in the module, then it wins over the alias.
2909   // This is dubious, but allow it to be safe.  Just ignore the alias.
2910   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2911   if (Entry && !Entry->isDeclaration())
2912     return;
2913 
2914   Aliases.push_back(GD);
2915 
2916   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2917 
2918   // Create a reference to the named value.  This ensures that it is emitted
2919   // if a deferred decl.
2920   llvm::Constant *Aliasee;
2921   if (isa<llvm::FunctionType>(DeclTy))
2922     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2923                                       /*ForVTable=*/false);
2924   else
2925     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2926                                     llvm::PointerType::getUnqual(DeclTy),
2927                                     /*D=*/nullptr);
2928 
2929   // Create the new alias itself, but don't set a name yet.
2930   auto *GA = llvm::GlobalAlias::create(
2931       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2932 
2933   if (Entry) {
2934     if (GA->getAliasee() == Entry) {
2935       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2936       return;
2937     }
2938 
2939     assert(Entry->isDeclaration());
2940 
2941     // If there is a declaration in the module, then we had an extern followed
2942     // by the alias, as in:
2943     //   extern int test6();
2944     //   ...
2945     //   int test6() __attribute__((alias("test7")));
2946     //
2947     // Remove it and replace uses of it with the alias.
2948     GA->takeName(Entry);
2949 
2950     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2951                                                           Entry->getType()));
2952     Entry->eraseFromParent();
2953   } else {
2954     GA->setName(MangledName);
2955   }
2956 
2957   // Set attributes which are particular to an alias; this is a
2958   // specialization of the attributes which may be set on a global
2959   // variable/function.
2960   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2961       D->isWeakImported()) {
2962     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2963   }
2964 
2965   if (const auto *VD = dyn_cast<VarDecl>(D))
2966     if (VD->getTLSKind())
2967       setTLSMode(GA, *VD);
2968 
2969   setAliasAttributes(D, GA);
2970 }
2971 
2972 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2973                                             ArrayRef<llvm::Type*> Tys) {
2974   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2975                                          Tys);
2976 }
2977 
2978 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2979 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2980                          const StringLiteral *Literal, bool TargetIsLSB,
2981                          bool &IsUTF16, unsigned &StringLength) {
2982   StringRef String = Literal->getString();
2983   unsigned NumBytes = String.size();
2984 
2985   // Check for simple case.
2986   if (!Literal->containsNonAsciiOrNull()) {
2987     StringLength = NumBytes;
2988     return *Map.insert(std::make_pair(String, nullptr)).first;
2989   }
2990 
2991   // Otherwise, convert the UTF8 literals into a string of shorts.
2992   IsUTF16 = true;
2993 
2994   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2995   const UTF8 *FromPtr = (const UTF8 *)String.data();
2996   UTF16 *ToPtr = &ToBuf[0];
2997 
2998   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2999                            &ToPtr, ToPtr + NumBytes,
3000                            strictConversion);
3001 
3002   // ConvertUTF8toUTF16 returns the length in ToPtr.
3003   StringLength = ToPtr - &ToBuf[0];
3004 
3005   // Add an explicit null.
3006   *ToPtr = 0;
3007   return *Map.insert(std::make_pair(
3008                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3009                                    (StringLength + 1) * 2),
3010                          nullptr)).first;
3011 }
3012 
3013 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3014 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3015                        const StringLiteral *Literal, unsigned &StringLength) {
3016   StringRef String = Literal->getString();
3017   StringLength = String.size();
3018   return *Map.insert(std::make_pair(String, nullptr)).first;
3019 }
3020 
3021 ConstantAddress
3022 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3023   unsigned StringLength = 0;
3024   bool isUTF16 = false;
3025   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3026       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3027                                getDataLayout().isLittleEndian(), isUTF16,
3028                                StringLength);
3029 
3030   if (auto *C = Entry.second)
3031     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3032 
3033   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3034   llvm::Constant *Zeros[] = { Zero, Zero };
3035   llvm::Value *V;
3036 
3037   // If we don't already have it, get __CFConstantStringClassReference.
3038   if (!CFConstantStringClassRef) {
3039     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3040     Ty = llvm::ArrayType::get(Ty, 0);
3041     llvm::Constant *GV = CreateRuntimeVariable(Ty,
3042                                            "__CFConstantStringClassReference");
3043     // Decay array -> ptr
3044     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3045     CFConstantStringClassRef = V;
3046   }
3047   else
3048     V = CFConstantStringClassRef;
3049 
3050   QualType CFTy = getContext().getCFConstantStringType();
3051 
3052   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3053 
3054   llvm::Constant *Fields[4];
3055 
3056   // Class pointer.
3057   Fields[0] = cast<llvm::ConstantExpr>(V);
3058 
3059   // Flags.
3060   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3061   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
3062     llvm::ConstantInt::get(Ty, 0x07C8);
3063 
3064   // String pointer.
3065   llvm::Constant *C = nullptr;
3066   if (isUTF16) {
3067     auto Arr = llvm::makeArrayRef(
3068         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3069         Entry.first().size() / 2);
3070     C = llvm::ConstantDataArray::get(VMContext, Arr);
3071   } else {
3072     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3073   }
3074 
3075   // Note: -fwritable-strings doesn't make the backing store strings of
3076   // CFStrings writable. (See <rdar://problem/10657500>)
3077   auto *GV =
3078       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3079                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3080   GV->setUnnamedAddr(true);
3081   // Don't enforce the target's minimum global alignment, since the only use
3082   // of the string is via this class initializer.
3083   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
3084   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3085   // that changes the section it ends in, which surprises ld64.
3086   if (isUTF16) {
3087     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3088     GV->setAlignment(Align.getQuantity());
3089     GV->setSection("__TEXT,__ustring");
3090   } else {
3091     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3092     GV->setAlignment(Align.getQuantity());
3093     GV->setSection("__TEXT,__cstring,cstring_literals");
3094   }
3095 
3096   // String.
3097   Fields[2] =
3098       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3099 
3100   if (isUTF16)
3101     // Cast the UTF16 string to the correct type.
3102     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3103 
3104   // String length.
3105   Ty = getTypes().ConvertType(getContext().LongTy);
3106   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3107 
3108   CharUnits Alignment = getPointerAlign();
3109 
3110   // The struct.
3111   C = llvm::ConstantStruct::get(STy, Fields);
3112   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3113                                 llvm::GlobalVariable::PrivateLinkage, C,
3114                                 "_unnamed_cfstring_");
3115   GV->setSection("__DATA,__cfstring");
3116   GV->setAlignment(Alignment.getQuantity());
3117   Entry.second = GV;
3118 
3119   return ConstantAddress(GV, Alignment);
3120 }
3121 
3122 ConstantAddress
3123 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3124   unsigned StringLength = 0;
3125   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3126       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3127 
3128   if (auto *C = Entry.second)
3129     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3130 
3131   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3132   llvm::Constant *Zeros[] = { Zero, Zero };
3133   llvm::Value *V;
3134   // If we don't already have it, get _NSConstantStringClassReference.
3135   if (!ConstantStringClassRef) {
3136     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3137     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3138     llvm::Constant *GV;
3139     if (LangOpts.ObjCRuntime.isNonFragile()) {
3140       std::string str =
3141         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3142                             : "OBJC_CLASS_$_" + StringClass;
3143       GV = getObjCRuntime().GetClassGlobal(str);
3144       // Make sure the result is of the correct type.
3145       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3146       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3147       ConstantStringClassRef = V;
3148     } else {
3149       std::string str =
3150         StringClass.empty() ? "_NSConstantStringClassReference"
3151                             : "_" + StringClass + "ClassReference";
3152       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3153       GV = CreateRuntimeVariable(PTy, str);
3154       // Decay array -> ptr
3155       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3156       ConstantStringClassRef = V;
3157     }
3158   } else
3159     V = ConstantStringClassRef;
3160 
3161   if (!NSConstantStringType) {
3162     // Construct the type for a constant NSString.
3163     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3164     D->startDefinition();
3165 
3166     QualType FieldTypes[3];
3167 
3168     // const int *isa;
3169     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3170     // const char *str;
3171     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3172     // unsigned int length;
3173     FieldTypes[2] = Context.UnsignedIntTy;
3174 
3175     // Create fields
3176     for (unsigned i = 0; i < 3; ++i) {
3177       FieldDecl *Field = FieldDecl::Create(Context, D,
3178                                            SourceLocation(),
3179                                            SourceLocation(), nullptr,
3180                                            FieldTypes[i], /*TInfo=*/nullptr,
3181                                            /*BitWidth=*/nullptr,
3182                                            /*Mutable=*/false,
3183                                            ICIS_NoInit);
3184       Field->setAccess(AS_public);
3185       D->addDecl(Field);
3186     }
3187 
3188     D->completeDefinition();
3189     QualType NSTy = Context.getTagDeclType(D);
3190     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3191   }
3192 
3193   llvm::Constant *Fields[3];
3194 
3195   // Class pointer.
3196   Fields[0] = cast<llvm::ConstantExpr>(V);
3197 
3198   // String pointer.
3199   llvm::Constant *C =
3200       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3201 
3202   llvm::GlobalValue::LinkageTypes Linkage;
3203   bool isConstant;
3204   Linkage = llvm::GlobalValue::PrivateLinkage;
3205   isConstant = !LangOpts.WritableStrings;
3206 
3207   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3208                                       Linkage, C, ".str");
3209   GV->setUnnamedAddr(true);
3210   // Don't enforce the target's minimum global alignment, since the only use
3211   // of the string is via this class initializer.
3212   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3213   GV->setAlignment(Align.getQuantity());
3214   Fields[1] =
3215       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3216 
3217   // String length.
3218   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3219   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3220 
3221   // The struct.
3222   CharUnits Alignment = getPointerAlign();
3223   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3224   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3225                                 llvm::GlobalVariable::PrivateLinkage, C,
3226                                 "_unnamed_nsstring_");
3227   GV->setAlignment(Alignment.getQuantity());
3228   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3229   const char *NSStringNonFragileABISection =
3230       "__DATA,__objc_stringobj,regular,no_dead_strip";
3231   // FIXME. Fix section.
3232   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3233                      ? NSStringNonFragileABISection
3234                      : NSStringSection);
3235   Entry.second = GV;
3236 
3237   return ConstantAddress(GV, Alignment);
3238 }
3239 
3240 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3241   if (ObjCFastEnumerationStateType.isNull()) {
3242     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3243     D->startDefinition();
3244 
3245     QualType FieldTypes[] = {
3246       Context.UnsignedLongTy,
3247       Context.getPointerType(Context.getObjCIdType()),
3248       Context.getPointerType(Context.UnsignedLongTy),
3249       Context.getConstantArrayType(Context.UnsignedLongTy,
3250                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3251     };
3252 
3253     for (size_t i = 0; i < 4; ++i) {
3254       FieldDecl *Field = FieldDecl::Create(Context,
3255                                            D,
3256                                            SourceLocation(),
3257                                            SourceLocation(), nullptr,
3258                                            FieldTypes[i], /*TInfo=*/nullptr,
3259                                            /*BitWidth=*/nullptr,
3260                                            /*Mutable=*/false,
3261                                            ICIS_NoInit);
3262       Field->setAccess(AS_public);
3263       D->addDecl(Field);
3264     }
3265 
3266     D->completeDefinition();
3267     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3268   }
3269 
3270   return ObjCFastEnumerationStateType;
3271 }
3272 
3273 llvm::Constant *
3274 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3275   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3276 
3277   // Don't emit it as the address of the string, emit the string data itself
3278   // as an inline array.
3279   if (E->getCharByteWidth() == 1) {
3280     SmallString<64> Str(E->getString());
3281 
3282     // Resize the string to the right size, which is indicated by its type.
3283     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3284     Str.resize(CAT->getSize().getZExtValue());
3285     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3286   }
3287 
3288   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3289   llvm::Type *ElemTy = AType->getElementType();
3290   unsigned NumElements = AType->getNumElements();
3291 
3292   // Wide strings have either 2-byte or 4-byte elements.
3293   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3294     SmallVector<uint16_t, 32> Elements;
3295     Elements.reserve(NumElements);
3296 
3297     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3298       Elements.push_back(E->getCodeUnit(i));
3299     Elements.resize(NumElements);
3300     return llvm::ConstantDataArray::get(VMContext, Elements);
3301   }
3302 
3303   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3304   SmallVector<uint32_t, 32> Elements;
3305   Elements.reserve(NumElements);
3306 
3307   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3308     Elements.push_back(E->getCodeUnit(i));
3309   Elements.resize(NumElements);
3310   return llvm::ConstantDataArray::get(VMContext, Elements);
3311 }
3312 
3313 static llvm::GlobalVariable *
3314 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3315                       CodeGenModule &CGM, StringRef GlobalName,
3316                       CharUnits Alignment) {
3317   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3318   unsigned AddrSpace = 0;
3319   if (CGM.getLangOpts().OpenCL)
3320     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3321 
3322   llvm::Module &M = CGM.getModule();
3323   // Create a global variable for this string
3324   auto *GV = new llvm::GlobalVariable(
3325       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3326       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3327   GV->setAlignment(Alignment.getQuantity());
3328   GV->setUnnamedAddr(true);
3329   if (GV->isWeakForLinker()) {
3330     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3331     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3332   }
3333 
3334   return GV;
3335 }
3336 
3337 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3338 /// constant array for the given string literal.
3339 ConstantAddress
3340 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3341                                                   StringRef Name) {
3342   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3343 
3344   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3345   llvm::GlobalVariable **Entry = nullptr;
3346   if (!LangOpts.WritableStrings) {
3347     Entry = &ConstantStringMap[C];
3348     if (auto GV = *Entry) {
3349       if (Alignment.getQuantity() > GV->getAlignment())
3350         GV->setAlignment(Alignment.getQuantity());
3351       return ConstantAddress(GV, Alignment);
3352     }
3353   }
3354 
3355   SmallString<256> MangledNameBuffer;
3356   StringRef GlobalVariableName;
3357   llvm::GlobalValue::LinkageTypes LT;
3358 
3359   // Mangle the string literal if the ABI allows for it.  However, we cannot
3360   // do this if  we are compiling with ASan or -fwritable-strings because they
3361   // rely on strings having normal linkage.
3362   if (!LangOpts.WritableStrings &&
3363       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3364       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3365     llvm::raw_svector_ostream Out(MangledNameBuffer);
3366     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3367 
3368     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3369     GlobalVariableName = MangledNameBuffer;
3370   } else {
3371     LT = llvm::GlobalValue::PrivateLinkage;
3372     GlobalVariableName = Name;
3373   }
3374 
3375   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3376   if (Entry)
3377     *Entry = GV;
3378 
3379   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3380                                   QualType());
3381   return ConstantAddress(GV, Alignment);
3382 }
3383 
3384 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3385 /// array for the given ObjCEncodeExpr node.
3386 ConstantAddress
3387 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3388   std::string Str;
3389   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3390 
3391   return GetAddrOfConstantCString(Str);
3392 }
3393 
3394 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3395 /// the literal and a terminating '\0' character.
3396 /// The result has pointer to array type.
3397 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3398     const std::string &Str, const char *GlobalName) {
3399   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3400   CharUnits Alignment =
3401     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3402 
3403   llvm::Constant *C =
3404       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3405 
3406   // Don't share any string literals if strings aren't constant.
3407   llvm::GlobalVariable **Entry = nullptr;
3408   if (!LangOpts.WritableStrings) {
3409     Entry = &ConstantStringMap[C];
3410     if (auto GV = *Entry) {
3411       if (Alignment.getQuantity() > GV->getAlignment())
3412         GV->setAlignment(Alignment.getQuantity());
3413       return ConstantAddress(GV, Alignment);
3414     }
3415   }
3416 
3417   // Get the default prefix if a name wasn't specified.
3418   if (!GlobalName)
3419     GlobalName = ".str";
3420   // Create a global variable for this.
3421   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3422                                   GlobalName, Alignment);
3423   if (Entry)
3424     *Entry = GV;
3425   return ConstantAddress(GV, Alignment);
3426 }
3427 
3428 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3429     const MaterializeTemporaryExpr *E, const Expr *Init) {
3430   assert((E->getStorageDuration() == SD_Static ||
3431           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3432   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3433 
3434   // If we're not materializing a subobject of the temporary, keep the
3435   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3436   QualType MaterializedType = Init->getType();
3437   if (Init == E->GetTemporaryExpr())
3438     MaterializedType = E->getType();
3439 
3440   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3441 
3442   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3443     return ConstantAddress(Slot, Align);
3444 
3445   // FIXME: If an externally-visible declaration extends multiple temporaries,
3446   // we need to give each temporary the same name in every translation unit (and
3447   // we also need to make the temporaries externally-visible).
3448   SmallString<256> Name;
3449   llvm::raw_svector_ostream Out(Name);
3450   getCXXABI().getMangleContext().mangleReferenceTemporary(
3451       VD, E->getManglingNumber(), Out);
3452 
3453   APValue *Value = nullptr;
3454   if (E->getStorageDuration() == SD_Static) {
3455     // We might have a cached constant initializer for this temporary. Note
3456     // that this might have a different value from the value computed by
3457     // evaluating the initializer if the surrounding constant expression
3458     // modifies the temporary.
3459     Value = getContext().getMaterializedTemporaryValue(E, false);
3460     if (Value && Value->isUninit())
3461       Value = nullptr;
3462   }
3463 
3464   // Try evaluating it now, it might have a constant initializer.
3465   Expr::EvalResult EvalResult;
3466   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3467       !EvalResult.hasSideEffects())
3468     Value = &EvalResult.Val;
3469 
3470   llvm::Constant *InitialValue = nullptr;
3471   bool Constant = false;
3472   llvm::Type *Type;
3473   if (Value) {
3474     // The temporary has a constant initializer, use it.
3475     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3476     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3477     Type = InitialValue->getType();
3478   } else {
3479     // No initializer, the initialization will be provided when we
3480     // initialize the declaration which performed lifetime extension.
3481     Type = getTypes().ConvertTypeForMem(MaterializedType);
3482   }
3483 
3484   // Create a global variable for this lifetime-extended temporary.
3485   llvm::GlobalValue::LinkageTypes Linkage =
3486       getLLVMLinkageVarDefinition(VD, Constant);
3487   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3488     const VarDecl *InitVD;
3489     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3490         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3491       // Temporaries defined inside a class get linkonce_odr linkage because the
3492       // class can be defined in multipe translation units.
3493       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3494     } else {
3495       // There is no need for this temporary to have external linkage if the
3496       // VarDecl has external linkage.
3497       Linkage = llvm::GlobalVariable::InternalLinkage;
3498     }
3499   }
3500   unsigned AddrSpace = GetGlobalVarAddressSpace(
3501       VD, getContext().getTargetAddressSpace(MaterializedType));
3502   auto *GV = new llvm::GlobalVariable(
3503       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3504       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3505       AddrSpace);
3506   setGlobalVisibility(GV, VD);
3507   GV->setAlignment(Align.getQuantity());
3508   if (supportsCOMDAT() && GV->isWeakForLinker())
3509     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3510   if (VD->getTLSKind())
3511     setTLSMode(GV, *VD);
3512   MaterializedGlobalTemporaryMap[E] = GV;
3513   return ConstantAddress(GV, Align);
3514 }
3515 
3516 /// EmitObjCPropertyImplementations - Emit information for synthesized
3517 /// properties for an implementation.
3518 void CodeGenModule::EmitObjCPropertyImplementations(const
3519                                                     ObjCImplementationDecl *D) {
3520   for (const auto *PID : D->property_impls()) {
3521     // Dynamic is just for type-checking.
3522     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3523       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3524 
3525       // Determine which methods need to be implemented, some may have
3526       // been overridden. Note that ::isPropertyAccessor is not the method
3527       // we want, that just indicates if the decl came from a
3528       // property. What we want to know is if the method is defined in
3529       // this implementation.
3530       if (!D->getInstanceMethod(PD->getGetterName()))
3531         CodeGenFunction(*this).GenerateObjCGetter(
3532                                  const_cast<ObjCImplementationDecl *>(D), PID);
3533       if (!PD->isReadOnly() &&
3534           !D->getInstanceMethod(PD->getSetterName()))
3535         CodeGenFunction(*this).GenerateObjCSetter(
3536                                  const_cast<ObjCImplementationDecl *>(D), PID);
3537     }
3538   }
3539 }
3540 
3541 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3542   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3543   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3544        ivar; ivar = ivar->getNextIvar())
3545     if (ivar->getType().isDestructedType())
3546       return true;
3547 
3548   return false;
3549 }
3550 
3551 static bool AllTrivialInitializers(CodeGenModule &CGM,
3552                                    ObjCImplementationDecl *D) {
3553   CodeGenFunction CGF(CGM);
3554   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3555        E = D->init_end(); B != E; ++B) {
3556     CXXCtorInitializer *CtorInitExp = *B;
3557     Expr *Init = CtorInitExp->getInit();
3558     if (!CGF.isTrivialInitializer(Init))
3559       return false;
3560   }
3561   return true;
3562 }
3563 
3564 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3565 /// for an implementation.
3566 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3567   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3568   if (needsDestructMethod(D)) {
3569     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3570     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3571     ObjCMethodDecl *DTORMethod =
3572       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3573                              cxxSelector, getContext().VoidTy, nullptr, D,
3574                              /*isInstance=*/true, /*isVariadic=*/false,
3575                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3576                              /*isDefined=*/false, ObjCMethodDecl::Required);
3577     D->addInstanceMethod(DTORMethod);
3578     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3579     D->setHasDestructors(true);
3580   }
3581 
3582   // If the implementation doesn't have any ivar initializers, we don't need
3583   // a .cxx_construct.
3584   if (D->getNumIvarInitializers() == 0 ||
3585       AllTrivialInitializers(*this, D))
3586     return;
3587 
3588   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3589   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3590   // The constructor returns 'self'.
3591   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3592                                                 D->getLocation(),
3593                                                 D->getLocation(),
3594                                                 cxxSelector,
3595                                                 getContext().getObjCIdType(),
3596                                                 nullptr, D, /*isInstance=*/true,
3597                                                 /*isVariadic=*/false,
3598                                                 /*isPropertyAccessor=*/true,
3599                                                 /*isImplicitlyDeclared=*/true,
3600                                                 /*isDefined=*/false,
3601                                                 ObjCMethodDecl::Required);
3602   D->addInstanceMethod(CTORMethod);
3603   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3604   D->setHasNonZeroConstructors(true);
3605 }
3606 
3607 /// EmitNamespace - Emit all declarations in a namespace.
3608 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3609   for (auto *I : ND->decls()) {
3610     if (const auto *VD = dyn_cast<VarDecl>(I))
3611       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3612           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3613         continue;
3614     EmitTopLevelDecl(I);
3615   }
3616 }
3617 
3618 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3619 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3620   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3621       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3622     ErrorUnsupported(LSD, "linkage spec");
3623     return;
3624   }
3625 
3626   for (auto *I : LSD->decls()) {
3627     // Meta-data for ObjC class includes references to implemented methods.
3628     // Generate class's method definitions first.
3629     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3630       for (auto *M : OID->methods())
3631         EmitTopLevelDecl(M);
3632     }
3633     EmitTopLevelDecl(I);
3634   }
3635 }
3636 
3637 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3638 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3639   // Ignore dependent declarations.
3640   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3641     return;
3642 
3643   switch (D->getKind()) {
3644   case Decl::CXXConversion:
3645   case Decl::CXXMethod:
3646   case Decl::Function:
3647     // Skip function templates
3648     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3649         cast<FunctionDecl>(D)->isLateTemplateParsed())
3650       return;
3651 
3652     EmitGlobal(cast<FunctionDecl>(D));
3653     // Always provide some coverage mapping
3654     // even for the functions that aren't emitted.
3655     AddDeferredUnusedCoverageMapping(D);
3656     break;
3657 
3658   case Decl::Var:
3659     // Skip variable templates
3660     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3661       return;
3662   case Decl::VarTemplateSpecialization:
3663     EmitGlobal(cast<VarDecl>(D));
3664     break;
3665 
3666   // Indirect fields from global anonymous structs and unions can be
3667   // ignored; only the actual variable requires IR gen support.
3668   case Decl::IndirectField:
3669     break;
3670 
3671   // C++ Decls
3672   case Decl::Namespace:
3673     EmitNamespace(cast<NamespaceDecl>(D));
3674     break;
3675     // No code generation needed.
3676   case Decl::UsingShadow:
3677   case Decl::ClassTemplate:
3678   case Decl::VarTemplate:
3679   case Decl::VarTemplatePartialSpecialization:
3680   case Decl::FunctionTemplate:
3681   case Decl::TypeAliasTemplate:
3682   case Decl::Block:
3683   case Decl::Empty:
3684     break;
3685   case Decl::Using:          // using X; [C++]
3686     if (CGDebugInfo *DI = getModuleDebugInfo())
3687         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3688     return;
3689   case Decl::NamespaceAlias:
3690     if (CGDebugInfo *DI = getModuleDebugInfo())
3691         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3692     return;
3693   case Decl::UsingDirective: // using namespace X; [C++]
3694     if (CGDebugInfo *DI = getModuleDebugInfo())
3695       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3696     return;
3697   case Decl::CXXConstructor:
3698     // Skip function templates
3699     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3700         cast<FunctionDecl>(D)->isLateTemplateParsed())
3701       return;
3702 
3703     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3704     break;
3705   case Decl::CXXDestructor:
3706     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3707       return;
3708     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3709     break;
3710 
3711   case Decl::StaticAssert:
3712     // Nothing to do.
3713     break;
3714 
3715   // Objective-C Decls
3716 
3717   // Forward declarations, no (immediate) code generation.
3718   case Decl::ObjCInterface:
3719   case Decl::ObjCCategory:
3720     break;
3721 
3722   case Decl::ObjCProtocol: {
3723     auto *Proto = cast<ObjCProtocolDecl>(D);
3724     if (Proto->isThisDeclarationADefinition())
3725       ObjCRuntime->GenerateProtocol(Proto);
3726     break;
3727   }
3728 
3729   case Decl::ObjCCategoryImpl:
3730     // Categories have properties but don't support synthesize so we
3731     // can ignore them here.
3732     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3733     break;
3734 
3735   case Decl::ObjCImplementation: {
3736     auto *OMD = cast<ObjCImplementationDecl>(D);
3737     EmitObjCPropertyImplementations(OMD);
3738     EmitObjCIvarInitializations(OMD);
3739     ObjCRuntime->GenerateClass(OMD);
3740     // Emit global variable debug information.
3741     if (CGDebugInfo *DI = getModuleDebugInfo())
3742       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3743         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3744             OMD->getClassInterface()), OMD->getLocation());
3745     break;
3746   }
3747   case Decl::ObjCMethod: {
3748     auto *OMD = cast<ObjCMethodDecl>(D);
3749     // If this is not a prototype, emit the body.
3750     if (OMD->getBody())
3751       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3752     break;
3753   }
3754   case Decl::ObjCCompatibleAlias:
3755     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3756     break;
3757 
3758   case Decl::PragmaComment: {
3759     const auto *PCD = cast<PragmaCommentDecl>(D);
3760     switch (PCD->getCommentKind()) {
3761     case PCK_Unknown:
3762       llvm_unreachable("unexpected pragma comment kind");
3763     case PCK_Linker:
3764       AppendLinkerOptions(PCD->getArg());
3765       break;
3766     case PCK_Lib:
3767       AddDependentLib(PCD->getArg());
3768       break;
3769     case PCK_Compiler:
3770     case PCK_ExeStr:
3771     case PCK_User:
3772       break; // We ignore all of these.
3773     }
3774     break;
3775   }
3776 
3777   case Decl::PragmaDetectMismatch: {
3778     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3779     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3780     break;
3781   }
3782 
3783   case Decl::LinkageSpec:
3784     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3785     break;
3786 
3787   case Decl::FileScopeAsm: {
3788     // File-scope asm is ignored during device-side CUDA compilation.
3789     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3790       break;
3791     // File-scope asm is ignored during device-side OpenMP compilation.
3792     if (LangOpts.OpenMPIsDevice)
3793       break;
3794     auto *AD = cast<FileScopeAsmDecl>(D);
3795     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3796     break;
3797   }
3798 
3799   case Decl::Import: {
3800     auto *Import = cast<ImportDecl>(D);
3801 
3802     // Ignore import declarations that come from imported modules.
3803     if (Import->getImportedOwningModule())
3804       break;
3805     if (CGDebugInfo *DI = getModuleDebugInfo())
3806       DI->EmitImportDecl(*Import);
3807 
3808     ImportedModules.insert(Import->getImportedModule());
3809     break;
3810   }
3811 
3812   case Decl::OMPThreadPrivate:
3813     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3814     break;
3815 
3816   case Decl::ClassTemplateSpecialization: {
3817     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3818     if (DebugInfo &&
3819         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3820         Spec->hasDefinition())
3821       DebugInfo->completeTemplateDefinition(*Spec);
3822     break;
3823   }
3824 
3825   case Decl::OMPDeclareReduction:
3826     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3827     break;
3828 
3829   default:
3830     // Make sure we handled everything we should, every other kind is a
3831     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3832     // function. Need to recode Decl::Kind to do that easily.
3833     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3834     break;
3835   }
3836 }
3837 
3838 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3839   // Do we need to generate coverage mapping?
3840   if (!CodeGenOpts.CoverageMapping)
3841     return;
3842   switch (D->getKind()) {
3843   case Decl::CXXConversion:
3844   case Decl::CXXMethod:
3845   case Decl::Function:
3846   case Decl::ObjCMethod:
3847   case Decl::CXXConstructor:
3848   case Decl::CXXDestructor: {
3849     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3850       return;
3851     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3852     if (I == DeferredEmptyCoverageMappingDecls.end())
3853       DeferredEmptyCoverageMappingDecls[D] = true;
3854     break;
3855   }
3856   default:
3857     break;
3858   };
3859 }
3860 
3861 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3862   // Do we need to generate coverage mapping?
3863   if (!CodeGenOpts.CoverageMapping)
3864     return;
3865   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3866     if (Fn->isTemplateInstantiation())
3867       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3868   }
3869   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3870   if (I == DeferredEmptyCoverageMappingDecls.end())
3871     DeferredEmptyCoverageMappingDecls[D] = false;
3872   else
3873     I->second = false;
3874 }
3875 
3876 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3877   std::vector<const Decl *> DeferredDecls;
3878   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3879     if (!I.second)
3880       continue;
3881     DeferredDecls.push_back(I.first);
3882   }
3883   // Sort the declarations by their location to make sure that the tests get a
3884   // predictable order for the coverage mapping for the unused declarations.
3885   if (CodeGenOpts.DumpCoverageMapping)
3886     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3887               [] (const Decl *LHS, const Decl *RHS) {
3888       return LHS->getLocStart() < RHS->getLocStart();
3889     });
3890   for (const auto *D : DeferredDecls) {
3891     switch (D->getKind()) {
3892     case Decl::CXXConversion:
3893     case Decl::CXXMethod:
3894     case Decl::Function:
3895     case Decl::ObjCMethod: {
3896       CodeGenPGO PGO(*this);
3897       GlobalDecl GD(cast<FunctionDecl>(D));
3898       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3899                                   getFunctionLinkage(GD));
3900       break;
3901     }
3902     case Decl::CXXConstructor: {
3903       CodeGenPGO PGO(*this);
3904       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3905       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3906                                   getFunctionLinkage(GD));
3907       break;
3908     }
3909     case Decl::CXXDestructor: {
3910       CodeGenPGO PGO(*this);
3911       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3912       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3913                                   getFunctionLinkage(GD));
3914       break;
3915     }
3916     default:
3917       break;
3918     };
3919   }
3920 }
3921 
3922 /// Turns the given pointer into a constant.
3923 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3924                                           const void *Ptr) {
3925   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3926   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3927   return llvm::ConstantInt::get(i64, PtrInt);
3928 }
3929 
3930 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3931                                    llvm::NamedMDNode *&GlobalMetadata,
3932                                    GlobalDecl D,
3933                                    llvm::GlobalValue *Addr) {
3934   if (!GlobalMetadata)
3935     GlobalMetadata =
3936       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3937 
3938   // TODO: should we report variant information for ctors/dtors?
3939   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3940                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3941                                CGM.getLLVMContext(), D.getDecl()))};
3942   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3943 }
3944 
3945 /// For each function which is declared within an extern "C" region and marked
3946 /// as 'used', but has internal linkage, create an alias from the unmangled
3947 /// name to the mangled name if possible. People expect to be able to refer
3948 /// to such functions with an unmangled name from inline assembly within the
3949 /// same translation unit.
3950 void CodeGenModule::EmitStaticExternCAliases() {
3951   // Don't do anything if we're generating CUDA device code -- the NVPTX
3952   // assembly target doesn't support aliases.
3953   if (Context.getTargetInfo().getTriple().isNVPTX())
3954     return;
3955   for (auto &I : StaticExternCValues) {
3956     IdentifierInfo *Name = I.first;
3957     llvm::GlobalValue *Val = I.second;
3958     if (Val && !getModule().getNamedValue(Name->getName()))
3959       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3960   }
3961 }
3962 
3963 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3964                                              GlobalDecl &Result) const {
3965   auto Res = Manglings.find(MangledName);
3966   if (Res == Manglings.end())
3967     return false;
3968   Result = Res->getValue();
3969   return true;
3970 }
3971 
3972 /// Emits metadata nodes associating all the global values in the
3973 /// current module with the Decls they came from.  This is useful for
3974 /// projects using IR gen as a subroutine.
3975 ///
3976 /// Since there's currently no way to associate an MDNode directly
3977 /// with an llvm::GlobalValue, we create a global named metadata
3978 /// with the name 'clang.global.decl.ptrs'.
3979 void CodeGenModule::EmitDeclMetadata() {
3980   llvm::NamedMDNode *GlobalMetadata = nullptr;
3981 
3982   for (auto &I : MangledDeclNames) {
3983     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3984     // Some mangled names don't necessarily have an associated GlobalValue
3985     // in this module, e.g. if we mangled it for DebugInfo.
3986     if (Addr)
3987       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3988   }
3989 }
3990 
3991 /// Emits metadata nodes for all the local variables in the current
3992 /// function.
3993 void CodeGenFunction::EmitDeclMetadata() {
3994   if (LocalDeclMap.empty()) return;
3995 
3996   llvm::LLVMContext &Context = getLLVMContext();
3997 
3998   // Find the unique metadata ID for this name.
3999   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4000 
4001   llvm::NamedMDNode *GlobalMetadata = nullptr;
4002 
4003   for (auto &I : LocalDeclMap) {
4004     const Decl *D = I.first;
4005     llvm::Value *Addr = I.second.getPointer();
4006     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4007       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4008       Alloca->setMetadata(
4009           DeclPtrKind, llvm::MDNode::get(
4010                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4011     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4012       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4013       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4014     }
4015   }
4016 }
4017 
4018 void CodeGenModule::EmitVersionIdentMetadata() {
4019   llvm::NamedMDNode *IdentMetadata =
4020     TheModule.getOrInsertNamedMetadata("llvm.ident");
4021   std::string Version = getClangFullVersion();
4022   llvm::LLVMContext &Ctx = TheModule.getContext();
4023 
4024   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4025   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4026 }
4027 
4028 void CodeGenModule::EmitTargetMetadata() {
4029   // Warning, new MangledDeclNames may be appended within this loop.
4030   // We rely on MapVector insertions adding new elements to the end
4031   // of the container.
4032   // FIXME: Move this loop into the one target that needs it, and only
4033   // loop over those declarations for which we couldn't emit the target
4034   // metadata when we emitted the declaration.
4035   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4036     auto Val = *(MangledDeclNames.begin() + I);
4037     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4038     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4039     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4040   }
4041 }
4042 
4043 void CodeGenModule::EmitCoverageFile() {
4044   if (!getCodeGenOpts().CoverageFile.empty()) {
4045     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4046       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4047       llvm::LLVMContext &Ctx = TheModule.getContext();
4048       llvm::MDString *CoverageFile =
4049           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4050       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4051         llvm::MDNode *CU = CUNode->getOperand(i);
4052         llvm::Metadata *Elts[] = {CoverageFile, CU};
4053         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4054       }
4055     }
4056   }
4057 }
4058 
4059 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4060   // Sema has checked that all uuid strings are of the form
4061   // "12345678-1234-1234-1234-1234567890ab".
4062   assert(Uuid.size() == 36);
4063   for (unsigned i = 0; i < 36; ++i) {
4064     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4065     else                                         assert(isHexDigit(Uuid[i]));
4066   }
4067 
4068   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4069   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4070 
4071   llvm::Constant *Field3[8];
4072   for (unsigned Idx = 0; Idx < 8; ++Idx)
4073     Field3[Idx] = llvm::ConstantInt::get(
4074         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4075 
4076   llvm::Constant *Fields[4] = {
4077     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4078     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4079     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4080     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4081   };
4082 
4083   return llvm::ConstantStruct::getAnon(Fields);
4084 }
4085 
4086 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4087                                                        bool ForEH) {
4088   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4089   // FIXME: should we even be calling this method if RTTI is disabled
4090   // and it's not for EH?
4091   if (!ForEH && !getLangOpts().RTTI)
4092     return llvm::Constant::getNullValue(Int8PtrTy);
4093 
4094   if (ForEH && Ty->isObjCObjectPointerType() &&
4095       LangOpts.ObjCRuntime.isGNUFamily())
4096     return ObjCRuntime->GetEHType(Ty);
4097 
4098   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4099 }
4100 
4101 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4102   for (auto RefExpr : D->varlists()) {
4103     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4104     bool PerformInit =
4105         VD->getAnyInitializer() &&
4106         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4107                                                         /*ForRef=*/false);
4108 
4109     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4110     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4111             VD, Addr, RefExpr->getLocStart(), PerformInit))
4112       CXXGlobalInits.push_back(InitFunction);
4113   }
4114 }
4115 
4116 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4117   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4118   if (InternalId)
4119     return InternalId;
4120 
4121   if (isExternallyVisible(T->getLinkage())) {
4122     std::string OutName;
4123     llvm::raw_string_ostream Out(OutName);
4124     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4125 
4126     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4127   } else {
4128     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4129                                            llvm::ArrayRef<llvm::Metadata *>());
4130   }
4131 
4132   return InternalId;
4133 }
4134 
4135 /// Returns whether this module needs the "all-vtables" bitset.
4136 bool CodeGenModule::NeedAllVtablesBitSet() const {
4137   // Returns true if at least one of vtable-based CFI checkers is enabled and
4138   // is not in the trapping mode.
4139   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4140            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4141           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4142            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4143           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4144            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4145           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4146            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4147 }
4148 
4149 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4150                                             llvm::GlobalVariable *VTable,
4151                                             CharUnits Offset,
4152                                             const CXXRecordDecl *RD) {
4153   llvm::Metadata *MD =
4154       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4155   llvm::Metadata *BitsetOps[] = {
4156       MD, llvm::ConstantAsMetadata::get(VTable),
4157       llvm::ConstantAsMetadata::get(
4158           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4159   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4160 
4161   if (CodeGenOpts.SanitizeCfiCrossDso) {
4162     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4163       llvm::Metadata *BitsetOps2[] = {
4164           llvm::ConstantAsMetadata::get(TypeId),
4165           llvm::ConstantAsMetadata::get(VTable),
4166           llvm::ConstantAsMetadata::get(
4167               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4168       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4169     }
4170   }
4171 
4172   if (NeedAllVtablesBitSet()) {
4173     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4174     llvm::Metadata *BitsetOps[] = {
4175         MD, llvm::ConstantAsMetadata::get(VTable),
4176         llvm::ConstantAsMetadata::get(
4177             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4178     // Avoid adding a node to BitsetsMD twice.
4179     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4180       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4181   }
4182 }
4183 
4184 // Fills in the supplied string map with the set of target features for the
4185 // passed in function.
4186 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4187                                           const FunctionDecl *FD) {
4188   StringRef TargetCPU = Target.getTargetOpts().CPU;
4189   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4190     // If we have a TargetAttr build up the feature map based on that.
4191     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4192 
4193     // Make a copy of the features as passed on the command line into the
4194     // beginning of the additional features from the function to override.
4195     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4196                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4197                             Target.getTargetOpts().FeaturesAsWritten.end());
4198 
4199     if (ParsedAttr.second != "")
4200       TargetCPU = ParsedAttr.second;
4201 
4202     // Now populate the feature map, first with the TargetCPU which is either
4203     // the default or a new one from the target attribute string. Then we'll use
4204     // the passed in features (FeaturesAsWritten) along with the new ones from
4205     // the attribute.
4206     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4207   } else {
4208     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4209                           Target.getTargetOpts().Features);
4210   }
4211 }
4212 
4213 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4214   if (!SanStats)
4215     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4216 
4217   return *SanStats;
4218 }
4219