xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e128dd18ab472003fd9df2966de7b168892f91a8)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/CodeGen/CodeGenOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 #include "llvm/Support/ErrorHandling.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 
38 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
39                              llvm::Module &M, const llvm::TargetData &TD,
40                              Diagnostic &diags)
41   : BlockModule(C, M, TD, Types, *this), Context(C),
42     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
43     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
44     VtableInfo(*this), Runtime(0),
45     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
46     VMContext(M.getContext()) {
47 
48   if (!Features.ObjC1)
49     Runtime = 0;
50   else if (!Features.NeXTRuntime)
51     Runtime = CreateGNUObjCRuntime(*this);
52   else if (Features.ObjCNonFragileABI)
53     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
54   else
55     Runtime = CreateMacObjCRuntime(*this);
56 
57   // If debug info generation is enabled, create the CGDebugInfo object.
58   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(this) : 0;
59 }
60 
61 CodeGenModule::~CodeGenModule() {
62   delete Runtime;
63   delete DebugInfo;
64 }
65 
66 void CodeGenModule::Release() {
67   // We need to call this first because it can add deferred declarations.
68   EmitCXXGlobalInitFunc();
69 
70   EmitDeferred();
71   if (Runtime)
72     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
73       AddGlobalCtor(ObjCInitFunction);
74   EmitCtorList(GlobalCtors, "llvm.global_ctors");
75   EmitCtorList(GlobalDtors, "llvm.global_dtors");
76   EmitAnnotations();
77   EmitLLVMUsed();
78 }
79 
80 /// ErrorUnsupported - Print out an error that codegen doesn't support the
81 /// specified stmt yet.
82 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
83                                      bool OmitOnError) {
84   if (OmitOnError && getDiags().hasErrorOccurred())
85     return;
86   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
87                                                "cannot compile this %0 yet");
88   std::string Msg = Type;
89   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
90     << Msg << S->getSourceRange();
91 }
92 
93 /// ErrorUnsupported - Print out an error that codegen doesn't support the
94 /// specified decl yet.
95 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
96                                      bool OmitOnError) {
97   if (OmitOnError && getDiags().hasErrorOccurred())
98     return;
99   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
100                                                "cannot compile this %0 yet");
101   std::string Msg = Type;
102   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
103 }
104 
105 LangOptions::VisibilityMode
106 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
107   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
108     if (VD->getStorageClass() == VarDecl::PrivateExtern)
109       return LangOptions::Hidden;
110 
111   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
112     switch (attr->getVisibility()) {
113     default: assert(0 && "Unknown visibility!");
114     case VisibilityAttr::DefaultVisibility:
115       return LangOptions::Default;
116     case VisibilityAttr::HiddenVisibility:
117       return LangOptions::Hidden;
118     case VisibilityAttr::ProtectedVisibility:
119       return LangOptions::Protected;
120     }
121   }
122 
123   return getLangOptions().getVisibilityMode();
124 }
125 
126 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
127                                         const Decl *D) const {
128   // Internal definitions always have default visibility.
129   if (GV->hasLocalLinkage()) {
130     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131     return;
132   }
133 
134   switch (getDeclVisibilityMode(D)) {
135   default: assert(0 && "Unknown visibility!");
136   case LangOptions::Default:
137     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
138   case LangOptions::Hidden:
139     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
140   case LangOptions::Protected:
141     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
142   }
143 }
144 
145 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
146   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
147 
148   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
149     return getMangledCXXCtorName(D, GD.getCtorType());
150   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
151     return getMangledCXXDtorName(D, GD.getDtorType());
152 
153   return getMangledName(ND);
154 }
155 
156 /// \brief Retrieves the mangled name for the given declaration.
157 ///
158 /// If the given declaration requires a mangled name, returns an
159 /// const char* containing the mangled name.  Otherwise, returns
160 /// the unmangled name.
161 ///
162 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
163   // In C, functions with no attributes never need to be mangled. Fastpath them.
164   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
165     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166     return ND->getNameAsCString();
167   }
168 
169   llvm::SmallString<256> Name;
170   if (!getMangleContext().mangleName(ND, Name)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // "static" functions get internal linkage.
257   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
258     return CodeGenModule::GVA_Internal;
259 
260   // The kind of external linkage this function will have, if it is not
261   // inline or static.
262   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
263   if (Context.getLangOptions().CPlusPlus &&
264       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
265     External = CodeGenModule::GVA_TemplateInstantiation;
266 
267   if (!FD->isInlined())
268     return External;
269 
270   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
271     // GNU or C99 inline semantics. Determine whether this symbol should be
272     // externally visible.
273     if (FD->isInlineDefinitionExternallyVisible())
274       return External;
275 
276     // C99 inline semantics, where the symbol is not externally visible.
277     return CodeGenModule::GVA_C99Inline;
278   }
279 
280   // C++0x [temp.explicit]p9:
281   //   [ Note: The intent is that an inline function that is the subject of
282   //   an explicit instantiation declaration will still be implicitly
283   //   instantiated when used so that the body can be considered for
284   //   inlining, but that no out-of-line copy of the inline function would be
285   //   generated in the translation unit. -- end note ]
286   if (FD->getTemplateSpecializationKind()
287                                        == TSK_ExplicitInstantiationDeclaration)
288     return CodeGenModule::GVA_C99Inline;
289 
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
351     F->addFnAttr(llvm::Attribute::StackProtect);
352   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
353     F->addFnAttr(llvm::Attribute::StackProtectReq);
354 
355   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
356     unsigned width = Context.Target.getCharWidth();
357     F->setAlignment(AA->getAlignment() / width);
358     while ((AA = AA->getNext<AlignedAttr>()))
359       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
360   }
361   // C++ ABI requires 2-byte alignment for member functions.
362   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
363     F->setAlignment(2);
364 }
365 
366 void CodeGenModule::SetCommonAttributes(const Decl *D,
367                                         llvm::GlobalValue *GV) {
368   setGlobalVisibility(GV, D);
369 
370   if (D->hasAttr<UsedAttr>())
371     AddUsedGlobal(GV);
372 
373   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
374     GV->setSection(SA->getName());
375 }
376 
377 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
378                                                   llvm::Function *F,
379                                                   const CGFunctionInfo &FI) {
380   SetLLVMFunctionAttributes(D, FI, F);
381   SetLLVMFunctionAttributesForDefinition(D, F);
382 
383   F->setLinkage(llvm::Function::InternalLinkage);
384 
385   SetCommonAttributes(D, F);
386 }
387 
388 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
389                                           llvm::Function *F,
390                                           bool IsIncompleteFunction) {
391   if (!IsIncompleteFunction)
392     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
393 
394   // Only a few attributes are set on declarations; these may later be
395   // overridden by a definition.
396 
397   if (FD->hasAttr<DLLImportAttr>()) {
398     F->setLinkage(llvm::Function::DLLImportLinkage);
399   } else if (FD->hasAttr<WeakAttr>() ||
400              FD->hasAttr<WeakImportAttr>()) {
401     // "extern_weak" is overloaded in LLVM; we probably should have
402     // separate linkage types for this.
403     F->setLinkage(llvm::Function::ExternalWeakLinkage);
404   } else {
405     F->setLinkage(llvm::Function::ExternalLinkage);
406   }
407 
408   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
409     F->setSection(SA->getName());
410 }
411 
412 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
413   assert(!GV->isDeclaration() &&
414          "Only globals with definition can force usage.");
415   LLVMUsed.push_back(GV);
416 }
417 
418 void CodeGenModule::EmitLLVMUsed() {
419   // Don't create llvm.used if there is no need.
420   if (LLVMUsed.empty())
421     return;
422 
423   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
424 
425   // Convert LLVMUsed to what ConstantArray needs.
426   std::vector<llvm::Constant*> UsedArray;
427   UsedArray.resize(LLVMUsed.size());
428   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
429     UsedArray[i] =
430      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
431                                       i8PTy);
432   }
433 
434   if (UsedArray.empty())
435     return;
436   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
437 
438   llvm::GlobalVariable *GV =
439     new llvm::GlobalVariable(getModule(), ATy, false,
440                              llvm::GlobalValue::AppendingLinkage,
441                              llvm::ConstantArray::get(ATy, UsedArray),
442                              "llvm.used");
443 
444   GV->setSection("llvm.metadata");
445 }
446 
447 void CodeGenModule::EmitDeferred() {
448   // Emit code for any potentially referenced deferred decls.  Since a
449   // previously unused static decl may become used during the generation of code
450   // for a static function, iterate until no  changes are made.
451   while (!DeferredDeclsToEmit.empty()) {
452     GlobalDecl D = DeferredDeclsToEmit.back();
453     DeferredDeclsToEmit.pop_back();
454 
455     // The mangled name for the decl must have been emitted in GlobalDeclMap.
456     // Look it up to see if it was defined with a stronger definition (e.g. an
457     // extern inline function with a strong function redefinition).  If so,
458     // just ignore the deferred decl.
459     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
460     assert(CGRef && "Deferred decl wasn't referenced?");
461 
462     if (!CGRef->isDeclaration())
463       continue;
464 
465     // Otherwise, emit the definition and move on to the next one.
466     EmitGlobalDefinition(D);
467   }
468 }
469 
470 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
471 /// annotation information for a given GlobalValue.  The annotation struct is
472 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
473 /// GlobalValue being annotated.  The second field is the constant string
474 /// created from the AnnotateAttr's annotation.  The third field is a constant
475 /// string containing the name of the translation unit.  The fourth field is
476 /// the line number in the file of the annotated value declaration.
477 ///
478 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
479 ///        appears to.
480 ///
481 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
482                                                 const AnnotateAttr *AA,
483                                                 unsigned LineNo) {
484   llvm::Module *M = &getModule();
485 
486   // get [N x i8] constants for the annotation string, and the filename string
487   // which are the 2nd and 3rd elements of the global annotation structure.
488   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
489   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
490                                                   AA->getAnnotation(), true);
491   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
492                                                   M->getModuleIdentifier(),
493                                                   true);
494 
495   // Get the two global values corresponding to the ConstantArrays we just
496   // created to hold the bytes of the strings.
497   llvm::GlobalValue *annoGV =
498     new llvm::GlobalVariable(*M, anno->getType(), false,
499                              llvm::GlobalValue::PrivateLinkage, anno,
500                              GV->getName());
501   // translation unit name string, emitted into the llvm.metadata section.
502   llvm::GlobalValue *unitGV =
503     new llvm::GlobalVariable(*M, unit->getType(), false,
504                              llvm::GlobalValue::PrivateLinkage, unit,
505                              ".str");
506 
507   // Create the ConstantStruct for the global annotation.
508   llvm::Constant *Fields[4] = {
509     llvm::ConstantExpr::getBitCast(GV, SBP),
510     llvm::ConstantExpr::getBitCast(annoGV, SBP),
511     llvm::ConstantExpr::getBitCast(unitGV, SBP),
512     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
513   };
514   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
515 }
516 
517 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
518   // Never defer when EmitAllDecls is specified or the decl has
519   // attribute used.
520   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
521     return false;
522 
523   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
524     // Constructors and destructors should never be deferred.
525     if (FD->hasAttr<ConstructorAttr>() ||
526         FD->hasAttr<DestructorAttr>())
527       return false;
528 
529     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
530 
531     // static, static inline, always_inline, and extern inline functions can
532     // always be deferred.  Normal inline functions can be deferred in C99/C++.
533     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
534         Linkage == GVA_CXXInline)
535       return true;
536     return false;
537   }
538 
539   const VarDecl *VD = cast<VarDecl>(Global);
540   assert(VD->isFileVarDecl() && "Invalid decl");
541 
542   // We never want to defer structs that have non-trivial constructors or
543   // destructors.
544 
545   // FIXME: Handle references.
546   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
547     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
548       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
549         return false;
550     }
551   }
552 
553   // Static data may be deferred, but out-of-line static data members
554   // cannot be.
555   if (VD->isInAnonymousNamespace())
556     return true;
557   if (VD->getStorageClass() == VarDecl::Static) {
558     // Initializer has side effects?
559     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
560       return false;
561     return !(VD->isStaticDataMember() && VD->isOutOfLine());
562   }
563   return false;
564 }
565 
566 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
567   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
568 
569   // If this is an alias definition (which otherwise looks like a declaration)
570   // emit it now.
571   if (Global->hasAttr<AliasAttr>())
572     return EmitAliasDefinition(Global);
573 
574   // Ignore declarations, they will be emitted on their first use.
575   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
576     // Forward declarations are emitted lazily on first use.
577     if (!FD->isThisDeclarationADefinition())
578       return;
579   } else {
580     const VarDecl *VD = cast<VarDecl>(Global);
581     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
582 
583     // In C++, if this is marked "extern", defer code generation.
584     if (getLangOptions().CPlusPlus && !VD->getInit() &&
585         (VD->getStorageClass() == VarDecl::Extern ||
586          VD->isExternC()))
587       return;
588 
589     // In C, if this isn't a definition, defer code generation.
590     if (!getLangOptions().CPlusPlus && !VD->getInit())
591       return;
592   }
593 
594   // Defer code generation when possible if this is a static definition, inline
595   // function etc.  These we only want to emit if they are used.
596   if (MayDeferGeneration(Global)) {
597     // If the value has already been used, add it directly to the
598     // DeferredDeclsToEmit list.
599     const char *MangledName = getMangledName(GD);
600     if (GlobalDeclMap.count(MangledName))
601       DeferredDeclsToEmit.push_back(GD);
602     else {
603       // Otherwise, remember that we saw a deferred decl with this name.  The
604       // first use of the mangled name will cause it to move into
605       // DeferredDeclsToEmit.
606       DeferredDecls[MangledName] = GD;
607     }
608     return;
609   }
610 
611   // Otherwise emit the definition.
612   EmitGlobalDefinition(GD);
613 }
614 
615 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
616   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
617 
618   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
619                                  Context.getSourceManager(),
620                                  "Generating code for declaration");
621 
622   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
623     const CXXRecordDecl *RD = MD->getParent();
624     // We have to convert it to have a record layout.
625     Types.ConvertTagDeclType(RD);
626     const CGRecordLayout &CGLayout = Types.getCGRecordLayout(RD);
627     // A definition of a KeyFunction, generates all the class data, such
628     // as vtable, rtti and the VTT.
629     if (CGLayout.getKeyFunction()
630         && (CGLayout.getKeyFunction()->getCanonicalDecl()
631             == MD->getCanonicalDecl()))
632       getVtableInfo().GenerateClassData(RD);
633   }
634   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
635     EmitCXXConstructor(CD, GD.getCtorType());
636   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
637     EmitCXXDestructor(DD, GD.getDtorType());
638   else if (isa<FunctionDecl>(D))
639     EmitGlobalFunctionDefinition(GD);
640   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
641     EmitGlobalVarDefinition(VD);
642   else {
643     assert(0 && "Invalid argument to EmitGlobalDefinition()");
644   }
645 }
646 
647 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
648 /// module, create and return an llvm Function with the specified type. If there
649 /// is something in the module with the specified name, return it potentially
650 /// bitcasted to the right type.
651 ///
652 /// If D is non-null, it specifies a decl that correspond to this.  This is used
653 /// to set the attributes on the function when it is first created.
654 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
655                                                        const llvm::Type *Ty,
656                                                        GlobalDecl D) {
657   // Lookup the entry, lazily creating it if necessary.
658   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
659   if (Entry) {
660     if (Entry->getType()->getElementType() == Ty)
661       return Entry;
662 
663     // Make sure the result is of the correct type.
664     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
665     return llvm::ConstantExpr::getBitCast(Entry, PTy);
666   }
667 
668   // This function doesn't have a complete type (for example, the return
669   // type is an incomplete struct). Use a fake type instead, and make
670   // sure not to try to set attributes.
671   bool IsIncompleteFunction = false;
672   if (!isa<llvm::FunctionType>(Ty)) {
673     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
674                                  std::vector<const llvm::Type*>(), false);
675     IsIncompleteFunction = true;
676   }
677   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
678                                              llvm::Function::ExternalLinkage,
679                                              "", &getModule());
680   F->setName(MangledName);
681   if (D.getDecl())
682     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
683                           IsIncompleteFunction);
684   Entry = F;
685 
686   // This is the first use or definition of a mangled name.  If there is a
687   // deferred decl with this name, remember that we need to emit it at the end
688   // of the file.
689   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
690     DeferredDecls.find(MangledName);
691   if (DDI != DeferredDecls.end()) {
692     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
693     // list, and remove it from DeferredDecls (since we don't need it anymore).
694     DeferredDeclsToEmit.push_back(DDI->second);
695     DeferredDecls.erase(DDI);
696   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
697     // If this the first reference to a C++ inline function in a class, queue up
698     // the deferred function body for emission.  These are not seen as
699     // top-level declarations.
700     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
701       DeferredDeclsToEmit.push_back(D);
702     // A called constructor which has no definition or declaration need be
703     // synthesized.
704     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
705       const CXXRecordDecl *ClassDecl =
706         cast<CXXRecordDecl>(CD->getDeclContext());
707       if (CD->isCopyConstructor(getContext()))
708         DeferredCopyConstructorToEmit(D);
709       else if (!ClassDecl->hasUserDeclaredConstructor())
710         DeferredDeclsToEmit.push_back(D);
711     }
712     else if (isa<CXXDestructorDecl>(FD))
713        DeferredDestructorToEmit(D);
714     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
715            if (MD->isCopyAssignment())
716              DeferredCopyAssignmentToEmit(D);
717   }
718 
719   return F;
720 }
721 
722 /// Defer definition of copy constructor(s) which need be implicitly defined.
723 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
724   const CXXConstructorDecl *CD =
725     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
726   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
727   if (ClassDecl->hasTrivialCopyConstructor() ||
728       ClassDecl->hasUserDeclaredCopyConstructor())
729     return;
730 
731   // First make sure all direct base classes and virtual bases and non-static
732   // data mebers which need to have their copy constructors implicitly defined
733   // are defined. 12.8.p7
734   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
735        Base != ClassDecl->bases_end(); ++Base) {
736     CXXRecordDecl *BaseClassDecl
737       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
738     if (CXXConstructorDecl *BaseCopyCtor =
739         BaseClassDecl->getCopyConstructor(Context, 0))
740       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
741   }
742 
743   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
744        FieldEnd = ClassDecl->field_end();
745        Field != FieldEnd; ++Field) {
746     QualType FieldType = Context.getCanonicalType((*Field)->getType());
747     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
748       FieldType = Array->getElementType();
749     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
750       if ((*Field)->isAnonymousStructOrUnion())
751         continue;
752       CXXRecordDecl *FieldClassDecl
753         = cast<CXXRecordDecl>(FieldClassType->getDecl());
754       if (CXXConstructorDecl *FieldCopyCtor =
755           FieldClassDecl->getCopyConstructor(Context, 0))
756         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
757     }
758   }
759   DeferredDeclsToEmit.push_back(CopyCtorDecl);
760 }
761 
762 /// Defer definition of copy assignments which need be implicitly defined.
763 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
764   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
765   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
766 
767   if (ClassDecl->hasTrivialCopyAssignment() ||
768       ClassDecl->hasUserDeclaredCopyAssignment())
769     return;
770 
771   // First make sure all direct base classes and virtual bases and non-static
772   // data mebers which need to have their copy assignments implicitly defined
773   // are defined. 12.8.p12
774   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
775        Base != ClassDecl->bases_end(); ++Base) {
776     CXXRecordDecl *BaseClassDecl
777       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
778     const CXXMethodDecl *MD = 0;
779     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
780         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
781         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
782       GetAddrOfFunction(MD, 0);
783   }
784 
785   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
786        FieldEnd = ClassDecl->field_end();
787        Field != FieldEnd; ++Field) {
788     QualType FieldType = Context.getCanonicalType((*Field)->getType());
789     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
790       FieldType = Array->getElementType();
791     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
792       if ((*Field)->isAnonymousStructOrUnion())
793         continue;
794       CXXRecordDecl *FieldClassDecl
795         = cast<CXXRecordDecl>(FieldClassType->getDecl());
796       const CXXMethodDecl *MD = 0;
797       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
798           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
799           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
800           GetAddrOfFunction(MD, 0);
801     }
802   }
803   DeferredDeclsToEmit.push_back(CopyAssignDecl);
804 }
805 
806 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
807   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
808   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
809   if (ClassDecl->hasTrivialDestructor() ||
810       ClassDecl->hasUserDeclaredDestructor())
811     return;
812 
813   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
814        Base != ClassDecl->bases_end(); ++Base) {
815     CXXRecordDecl *BaseClassDecl
816       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
817     if (const CXXDestructorDecl *BaseDtor =
818           BaseClassDecl->getDestructor(Context))
819       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
820   }
821 
822   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
823        FieldEnd = ClassDecl->field_end();
824        Field != FieldEnd; ++Field) {
825     QualType FieldType = Context.getCanonicalType((*Field)->getType());
826     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
827       FieldType = Array->getElementType();
828     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
829       if ((*Field)->isAnonymousStructOrUnion())
830         continue;
831       CXXRecordDecl *FieldClassDecl
832         = cast<CXXRecordDecl>(FieldClassType->getDecl());
833       if (const CXXDestructorDecl *FieldDtor =
834             FieldClassDecl->getDestructor(Context))
835         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
836     }
837   }
838   DeferredDeclsToEmit.push_back(DtorDecl);
839 }
840 
841 
842 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
843 /// non-null, then this function will use the specified type if it has to
844 /// create it (this occurs when we see a definition of the function).
845 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
846                                                  const llvm::Type *Ty) {
847   // If there was no specific requested type, just convert it now.
848   if (!Ty)
849     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
850   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
851 }
852 
853 /// CreateRuntimeFunction - Create a new runtime function with the specified
854 /// type and name.
855 llvm::Constant *
856 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
857                                      const char *Name) {
858   // Convert Name to be a uniqued string from the IdentifierInfo table.
859   Name = getContext().Idents.get(Name).getNameStart();
860   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
861 }
862 
863 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
864 /// create and return an llvm GlobalVariable with the specified type.  If there
865 /// is something in the module with the specified name, return it potentially
866 /// bitcasted to the right type.
867 ///
868 /// If D is non-null, it specifies a decl that correspond to this.  This is used
869 /// to set the attributes on the global when it is first created.
870 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
871                                                      const llvm::PointerType*Ty,
872                                                      const VarDecl *D) {
873   // Lookup the entry, lazily creating it if necessary.
874   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
875   if (Entry) {
876     if (Entry->getType() == Ty)
877       return Entry;
878 
879     // Make sure the result is of the correct type.
880     return llvm::ConstantExpr::getBitCast(Entry, Ty);
881   }
882 
883   // This is the first use or definition of a mangled name.  If there is a
884   // deferred decl with this name, remember that we need to emit it at the end
885   // of the file.
886   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
887     DeferredDecls.find(MangledName);
888   if (DDI != DeferredDecls.end()) {
889     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
890     // list, and remove it from DeferredDecls (since we don't need it anymore).
891     DeferredDeclsToEmit.push_back(DDI->second);
892     DeferredDecls.erase(DDI);
893   }
894 
895   llvm::GlobalVariable *GV =
896     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
897                              llvm::GlobalValue::ExternalLinkage,
898                              0, "", 0,
899                              false, Ty->getAddressSpace());
900   GV->setName(MangledName);
901 
902   // Handle things which are present even on external declarations.
903   if (D) {
904     // FIXME: This code is overly simple and should be merged with other global
905     // handling.
906     GV->setConstant(D->getType().isConstant(Context));
907 
908     // FIXME: Merge with other attribute handling code.
909     if (D->getStorageClass() == VarDecl::PrivateExtern)
910       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
911 
912     if (D->hasAttr<WeakAttr>() ||
913         D->hasAttr<WeakImportAttr>())
914       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
915 
916     GV->setThreadLocal(D->isThreadSpecified());
917   }
918 
919   return Entry = GV;
920 }
921 
922 
923 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
924 /// given global variable.  If Ty is non-null and if the global doesn't exist,
925 /// then it will be greated with the specified type instead of whatever the
926 /// normal requested type would be.
927 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
928                                                   const llvm::Type *Ty) {
929   assert(D->hasGlobalStorage() && "Not a global variable");
930   QualType ASTTy = D->getType();
931   if (Ty == 0)
932     Ty = getTypes().ConvertTypeForMem(ASTTy);
933 
934   const llvm::PointerType *PTy =
935     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
936   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
937 }
938 
939 /// CreateRuntimeVariable - Create a new runtime global variable with the
940 /// specified type and name.
941 llvm::Constant *
942 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
943                                      const char *Name) {
944   // Convert Name to be a uniqued string from the IdentifierInfo table.
945   Name = getContext().Idents.get(Name).getNameStart();
946   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
947 }
948 
949 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
950   assert(!D->getInit() && "Cannot emit definite definitions here!");
951 
952   if (MayDeferGeneration(D)) {
953     // If we have not seen a reference to this variable yet, place it
954     // into the deferred declarations table to be emitted if needed
955     // later.
956     const char *MangledName = getMangledName(D);
957     if (GlobalDeclMap.count(MangledName) == 0) {
958       DeferredDecls[MangledName] = D;
959       return;
960     }
961   }
962 
963   // The tentative definition is the only definition.
964   EmitGlobalVarDefinition(D);
965 }
966 
967 static CodeGenModule::GVALinkage
968 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
969   // Everything located semantically within an anonymous namespace is
970   // always internal.
971   if (VD->isInAnonymousNamespace())
972     return CodeGenModule::GVA_Internal;
973 
974   // Handle linkage for static data members.
975   if (VD->isStaticDataMember()) {
976     switch (VD->getTemplateSpecializationKind()) {
977     case TSK_Undeclared:
978     case TSK_ExplicitSpecialization:
979     case TSK_ExplicitInstantiationDefinition:
980       return CodeGenModule::GVA_StrongExternal;
981 
982     case TSK_ExplicitInstantiationDeclaration:
983       llvm::llvm_unreachable("Variable should not be instantiated");
984       // Fall through to treat this like any other instantiation.
985 
986     case TSK_ImplicitInstantiation:
987       return CodeGenModule::GVA_TemplateInstantiation;
988     }
989   }
990 
991   // Static variables get internal linkage.
992   if (VD->getStorageClass() == VarDecl::Static)
993     return CodeGenModule::GVA_Internal;
994 
995   return CodeGenModule::GVA_StrongExternal;
996 }
997 
998 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
999   llvm::Constant *Init = 0;
1000   QualType ASTTy = D->getType();
1001 
1002   if (D->getInit() == 0) {
1003     // This is a tentative definition; tentative definitions are
1004     // implicitly initialized with { 0 }.
1005     //
1006     // Note that tentative definitions are only emitted at the end of
1007     // a translation unit, so they should never have incomplete
1008     // type. In addition, EmitTentativeDefinition makes sure that we
1009     // never attempt to emit a tentative definition if a real one
1010     // exists. A use may still exists, however, so we still may need
1011     // to do a RAUW.
1012     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1013     Init = EmitNullConstant(D->getType());
1014   } else {
1015     Init = EmitConstantExpr(D->getInit(), D->getType());
1016 
1017     if (!Init) {
1018       QualType T = D->getInit()->getType();
1019       if (getLangOptions().CPlusPlus) {
1020         CXXGlobalInits.push_back(D);
1021         Init = EmitNullConstant(T);
1022       } else {
1023         ErrorUnsupported(D, "static initializer");
1024         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1025       }
1026     }
1027   }
1028 
1029   const llvm::Type* InitType = Init->getType();
1030   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1031 
1032   // Strip off a bitcast if we got one back.
1033   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1034     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1035            // all zero index gep.
1036            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1037     Entry = CE->getOperand(0);
1038   }
1039 
1040   // Entry is now either a Function or GlobalVariable.
1041   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1042 
1043   // We have a definition after a declaration with the wrong type.
1044   // We must make a new GlobalVariable* and update everything that used OldGV
1045   // (a declaration or tentative definition) with the new GlobalVariable*
1046   // (which will be a definition).
1047   //
1048   // This happens if there is a prototype for a global (e.g.
1049   // "extern int x[];") and then a definition of a different type (e.g.
1050   // "int x[10];"). This also happens when an initializer has a different type
1051   // from the type of the global (this happens with unions).
1052   if (GV == 0 ||
1053       GV->getType()->getElementType() != InitType ||
1054       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1055 
1056     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1057     GlobalDeclMap.erase(getMangledName(D));
1058 
1059     // Make a new global with the correct type, this is now guaranteed to work.
1060     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1061     GV->takeName(cast<llvm::GlobalValue>(Entry));
1062 
1063     // Replace all uses of the old global with the new global
1064     llvm::Constant *NewPtrForOldDecl =
1065         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1066     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1067 
1068     // Erase the old global, since it is no longer used.
1069     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1070   }
1071 
1072   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1073     SourceManager &SM = Context.getSourceManager();
1074     AddAnnotation(EmitAnnotateAttr(GV, AA,
1075                               SM.getInstantiationLineNumber(D->getLocation())));
1076   }
1077 
1078   GV->setInitializer(Init);
1079 
1080   // If it is safe to mark the global 'constant', do so now.
1081   GV->setConstant(false);
1082   if (D->getType().isConstant(Context)) {
1083     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1084     // members, it cannot be declared "LLVM const".
1085     GV->setConstant(true);
1086   }
1087 
1088   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1089 
1090   // Set the llvm linkage type as appropriate.
1091   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1092   if (Linkage == GVA_Internal)
1093     GV->setLinkage(llvm::Function::InternalLinkage);
1094   else if (D->hasAttr<DLLImportAttr>())
1095     GV->setLinkage(llvm::Function::DLLImportLinkage);
1096   else if (D->hasAttr<DLLExportAttr>())
1097     GV->setLinkage(llvm::Function::DLLExportLinkage);
1098   else if (D->hasAttr<WeakAttr>()) {
1099     if (GV->isConstant())
1100       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1101     else
1102       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1103   } else if (Linkage == GVA_TemplateInstantiation)
1104     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1105   else if (!CodeGenOpts.NoCommon &&
1106            !D->hasExternalStorage() && !D->getInit() &&
1107            !D->getAttr<SectionAttr>()) {
1108     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1109     // common vars aren't constant even if declared const.
1110     GV->setConstant(false);
1111   } else
1112     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1113 
1114   SetCommonAttributes(D, GV);
1115 
1116   // Emit global variable debug information.
1117   if (CGDebugInfo *DI = getDebugInfo()) {
1118     DI->setLocation(D->getLocation());
1119     DI->EmitGlobalVariable(GV, D);
1120   }
1121 }
1122 
1123 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1124 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1125 /// existing call uses of the old function in the module, this adjusts them to
1126 /// call the new function directly.
1127 ///
1128 /// This is not just a cleanup: the always_inline pass requires direct calls to
1129 /// functions to be able to inline them.  If there is a bitcast in the way, it
1130 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1131 /// run at -O0.
1132 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1133                                                       llvm::Function *NewFn) {
1134   // If we're redefining a global as a function, don't transform it.
1135   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1136   if (OldFn == 0) return;
1137 
1138   const llvm::Type *NewRetTy = NewFn->getReturnType();
1139   llvm::SmallVector<llvm::Value*, 4> ArgList;
1140 
1141   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1142        UI != E; ) {
1143     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1144     unsigned OpNo = UI.getOperandNo();
1145     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1146     if (!CI || OpNo != 0) continue;
1147 
1148     // If the return types don't match exactly, and if the call isn't dead, then
1149     // we can't transform this call.
1150     if (CI->getType() != NewRetTy && !CI->use_empty())
1151       continue;
1152 
1153     // If the function was passed too few arguments, don't transform.  If extra
1154     // arguments were passed, we silently drop them.  If any of the types
1155     // mismatch, we don't transform.
1156     unsigned ArgNo = 0;
1157     bool DontTransform = false;
1158     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1159          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1160       if (CI->getNumOperands()-1 == ArgNo ||
1161           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1162         DontTransform = true;
1163         break;
1164       }
1165     }
1166     if (DontTransform)
1167       continue;
1168 
1169     // Okay, we can transform this.  Create the new call instruction and copy
1170     // over the required information.
1171     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1172     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1173                                                      ArgList.end(), "", CI);
1174     ArgList.clear();
1175     if (!NewCall->getType()->isVoidTy())
1176       NewCall->takeName(CI);
1177     NewCall->setAttributes(CI->getAttributes());
1178     NewCall->setCallingConv(CI->getCallingConv());
1179 
1180     // Finally, remove the old call, replacing any uses with the new one.
1181     if (!CI->use_empty())
1182       CI->replaceAllUsesWith(NewCall);
1183 
1184     // Copy any custom metadata attached with CI.
1185     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1186     TheMetadata.copyMD(CI, NewCall);
1187 
1188     CI->eraseFromParent();
1189   }
1190 }
1191 
1192 
1193 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1194   const llvm::FunctionType *Ty;
1195   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1196 
1197   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1198     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1199 
1200     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1201   } else {
1202     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1203 
1204     // As a special case, make sure that definitions of K&R function
1205     // "type foo()" aren't declared as varargs (which forces the backend
1206     // to do unnecessary work).
1207     if (D->getType()->isFunctionNoProtoType()) {
1208       assert(Ty->isVarArg() && "Didn't lower type as expected");
1209       // Due to stret, the lowered function could have arguments.
1210       // Just create the same type as was lowered by ConvertType
1211       // but strip off the varargs bit.
1212       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1213       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1214     }
1215   }
1216 
1217   // Get or create the prototype for the function.
1218   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1219 
1220   // Strip off a bitcast if we got one back.
1221   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1222     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1223     Entry = CE->getOperand(0);
1224   }
1225 
1226 
1227   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1228     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1229 
1230     // If the types mismatch then we have to rewrite the definition.
1231     assert(OldFn->isDeclaration() &&
1232            "Shouldn't replace non-declaration");
1233 
1234     // F is the Function* for the one with the wrong type, we must make a new
1235     // Function* and update everything that used F (a declaration) with the new
1236     // Function* (which will be a definition).
1237     //
1238     // This happens if there is a prototype for a function
1239     // (e.g. "int f()") and then a definition of a different type
1240     // (e.g. "int f(int x)").  Start by making a new function of the
1241     // correct type, RAUW, then steal the name.
1242     GlobalDeclMap.erase(getMangledName(D));
1243     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1244     NewFn->takeName(OldFn);
1245 
1246     // If this is an implementation of a function without a prototype, try to
1247     // replace any existing uses of the function (which may be calls) with uses
1248     // of the new function
1249     if (D->getType()->isFunctionNoProtoType()) {
1250       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1251       OldFn->removeDeadConstantUsers();
1252     }
1253 
1254     // Replace uses of F with the Function we will endow with a body.
1255     if (!Entry->use_empty()) {
1256       llvm::Constant *NewPtrForOldDecl =
1257         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1258       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1259     }
1260 
1261     // Ok, delete the old function now, which is dead.
1262     OldFn->eraseFromParent();
1263 
1264     Entry = NewFn;
1265   }
1266 
1267   llvm::Function *Fn = cast<llvm::Function>(Entry);
1268 
1269   CodeGenFunction(*this).GenerateCode(D, Fn);
1270 
1271   SetFunctionDefinitionAttributes(D, Fn);
1272   SetLLVMFunctionAttributesForDefinition(D, Fn);
1273 
1274   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1275     AddGlobalCtor(Fn, CA->getPriority());
1276   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1277     AddGlobalDtor(Fn, DA->getPriority());
1278 }
1279 
1280 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1281   const AliasAttr *AA = D->getAttr<AliasAttr>();
1282   assert(AA && "Not an alias?");
1283 
1284   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1285 
1286   // Unique the name through the identifier table.
1287   const char *AliaseeName = AA->getAliasee().c_str();
1288   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1289 
1290   // Create a reference to the named value.  This ensures that it is emitted
1291   // if a deferred decl.
1292   llvm::Constant *Aliasee;
1293   if (isa<llvm::FunctionType>(DeclTy))
1294     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1295   else
1296     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1297                                     llvm::PointerType::getUnqual(DeclTy), 0);
1298 
1299   // Create the new alias itself, but don't set a name yet.
1300   llvm::GlobalValue *GA =
1301     new llvm::GlobalAlias(Aliasee->getType(),
1302                           llvm::Function::ExternalLinkage,
1303                           "", Aliasee, &getModule());
1304 
1305   // See if there is already something with the alias' name in the module.
1306   const char *MangledName = getMangledName(D);
1307   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1308 
1309   if (Entry && !Entry->isDeclaration()) {
1310     // If there is a definition in the module, then it wins over the alias.
1311     // This is dubious, but allow it to be safe.  Just ignore the alias.
1312     GA->eraseFromParent();
1313     return;
1314   }
1315 
1316   if (Entry) {
1317     // If there is a declaration in the module, then we had an extern followed
1318     // by the alias, as in:
1319     //   extern int test6();
1320     //   ...
1321     //   int test6() __attribute__((alias("test7")));
1322     //
1323     // Remove it and replace uses of it with the alias.
1324 
1325     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1326                                                           Entry->getType()));
1327     Entry->eraseFromParent();
1328   }
1329 
1330   // Now we know that there is no conflict, set the name.
1331   Entry = GA;
1332   GA->setName(MangledName);
1333 
1334   // Set attributes which are particular to an alias; this is a
1335   // specialization of the attributes which may be set on a global
1336   // variable/function.
1337   if (D->hasAttr<DLLExportAttr>()) {
1338     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1339       // The dllexport attribute is ignored for undefined symbols.
1340       if (FD->getBody())
1341         GA->setLinkage(llvm::Function::DLLExportLinkage);
1342     } else {
1343       GA->setLinkage(llvm::Function::DLLExportLinkage);
1344     }
1345   } else if (D->hasAttr<WeakAttr>() ||
1346              D->hasAttr<WeakImportAttr>()) {
1347     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1348   }
1349 
1350   SetCommonAttributes(D, GA);
1351 }
1352 
1353 /// getBuiltinLibFunction - Given a builtin id for a function like
1354 /// "__builtin_fabsf", return a Function* for "fabsf".
1355 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1356                                                   unsigned BuiltinID) {
1357   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1358           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1359          "isn't a lib fn");
1360 
1361   // Get the name, skip over the __builtin_ prefix (if necessary).
1362   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1363   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1364     Name += 10;
1365 
1366   // Get the type for the builtin.
1367   ASTContext::GetBuiltinTypeError Error;
1368   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1369   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1370 
1371   const llvm::FunctionType *Ty =
1372     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1373 
1374   // Unique the name through the identifier table.
1375   Name = getContext().Idents.get(Name).getNameStart();
1376   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1377 }
1378 
1379 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1380                                             unsigned NumTys) {
1381   return llvm::Intrinsic::getDeclaration(&getModule(),
1382                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1383 }
1384 
1385 llvm::Function *CodeGenModule::getMemCpyFn() {
1386   if (MemCpyFn) return MemCpyFn;
1387   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1388   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1389 }
1390 
1391 llvm::Function *CodeGenModule::getMemMoveFn() {
1392   if (MemMoveFn) return MemMoveFn;
1393   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1394   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1395 }
1396 
1397 llvm::Function *CodeGenModule::getMemSetFn() {
1398   if (MemSetFn) return MemSetFn;
1399   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1400   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1401 }
1402 
1403 static llvm::StringMapEntry<llvm::Constant*> &
1404 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1405                          const StringLiteral *Literal,
1406                          bool TargetIsLSB,
1407                          bool &IsUTF16,
1408                          unsigned &StringLength) {
1409   unsigned NumBytes = Literal->getByteLength();
1410 
1411   // Check for simple case.
1412   if (!Literal->containsNonAsciiOrNull()) {
1413     StringLength = NumBytes;
1414     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1415                                                 StringLength));
1416   }
1417 
1418   // Otherwise, convert the UTF8 literals into a byte string.
1419   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1420   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1421   UTF16 *ToPtr = &ToBuf[0];
1422 
1423   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1424                                                &ToPtr, ToPtr + NumBytes,
1425                                                strictConversion);
1426 
1427   // Check for conversion failure.
1428   if (Result != conversionOK) {
1429     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1430     // this duplicate code.
1431     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1432     StringLength = NumBytes;
1433     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1434                                                 StringLength));
1435   }
1436 
1437   // ConvertUTF8toUTF16 returns the length in ToPtr.
1438   StringLength = ToPtr - &ToBuf[0];
1439 
1440   // Render the UTF-16 string into a byte array and convert to the target byte
1441   // order.
1442   //
1443   // FIXME: This isn't something we should need to do here.
1444   llvm::SmallString<128> AsBytes;
1445   AsBytes.reserve(StringLength * 2);
1446   for (unsigned i = 0; i != StringLength; ++i) {
1447     unsigned short Val = ToBuf[i];
1448     if (TargetIsLSB) {
1449       AsBytes.push_back(Val & 0xFF);
1450       AsBytes.push_back(Val >> 8);
1451     } else {
1452       AsBytes.push_back(Val >> 8);
1453       AsBytes.push_back(Val & 0xFF);
1454     }
1455   }
1456   // Append one extra null character, the second is automatically added by our
1457   // caller.
1458   AsBytes.push_back(0);
1459 
1460   IsUTF16 = true;
1461   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1462 }
1463 
1464 llvm::Constant *
1465 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1466   unsigned StringLength = 0;
1467   bool isUTF16 = false;
1468   llvm::StringMapEntry<llvm::Constant*> &Entry =
1469     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1470                              getTargetData().isLittleEndian(),
1471                              isUTF16, StringLength);
1472 
1473   if (llvm::Constant *C = Entry.getValue())
1474     return C;
1475 
1476   llvm::Constant *Zero =
1477       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1478   llvm::Constant *Zeros[] = { Zero, Zero };
1479 
1480   // If we don't already have it, get __CFConstantStringClassReference.
1481   if (!CFConstantStringClassRef) {
1482     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1483     Ty = llvm::ArrayType::get(Ty, 0);
1484     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1485                                            "__CFConstantStringClassReference");
1486     // Decay array -> ptr
1487     CFConstantStringClassRef =
1488       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1489   }
1490 
1491   QualType CFTy = getContext().getCFConstantStringType();
1492 
1493   const llvm::StructType *STy =
1494     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1495 
1496   std::vector<llvm::Constant*> Fields(4);
1497 
1498   // Class pointer.
1499   Fields[0] = CFConstantStringClassRef;
1500 
1501   // Flags.
1502   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1503   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1504     llvm::ConstantInt::get(Ty, 0x07C8);
1505 
1506   // String pointer.
1507   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1508 
1509   const char *Sect = 0;
1510   llvm::GlobalValue::LinkageTypes Linkage;
1511   bool isConstant;
1512   if (isUTF16) {
1513     Sect = getContext().Target.getUnicodeStringSection();
1514     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1515     Linkage = llvm::GlobalValue::InternalLinkage;
1516     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1517     // does make plain ascii ones writable.
1518     isConstant = true;
1519   } else {
1520     Linkage = llvm::GlobalValue::PrivateLinkage;
1521     isConstant = !Features.WritableStrings;
1522   }
1523 
1524   llvm::GlobalVariable *GV =
1525     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1526                              ".str");
1527   if (Sect)
1528     GV->setSection(Sect);
1529   if (isUTF16) {
1530     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1531     GV->setAlignment(Align);
1532   }
1533   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1534 
1535   // String length.
1536   Ty = getTypes().ConvertType(getContext().LongTy);
1537   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1538 
1539   // The struct.
1540   C = llvm::ConstantStruct::get(STy, Fields);
1541   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1542                                 llvm::GlobalVariable::PrivateLinkage, C,
1543                                 "_unnamed_cfstring_");
1544   if (const char *Sect = getContext().Target.getCFStringSection())
1545     GV->setSection(Sect);
1546   Entry.setValue(GV);
1547 
1548   return GV;
1549 }
1550 
1551 /// GetStringForStringLiteral - Return the appropriate bytes for a
1552 /// string literal, properly padded to match the literal type.
1553 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1554   const char *StrData = E->getStrData();
1555   unsigned Len = E->getByteLength();
1556 
1557   const ConstantArrayType *CAT =
1558     getContext().getAsConstantArrayType(E->getType());
1559   assert(CAT && "String isn't pointer or array!");
1560 
1561   // Resize the string to the right size.
1562   std::string Str(StrData, StrData+Len);
1563   uint64_t RealLen = CAT->getSize().getZExtValue();
1564 
1565   if (E->isWide())
1566     RealLen *= getContext().Target.getWCharWidth()/8;
1567 
1568   Str.resize(RealLen, '\0');
1569 
1570   return Str;
1571 }
1572 
1573 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1574 /// constant array for the given string literal.
1575 llvm::Constant *
1576 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1577   // FIXME: This can be more efficient.
1578   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1579   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1580   if (S->isWide()) {
1581     llvm::Type *DestTy =
1582         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1583     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1584   }
1585   return C;
1586 }
1587 
1588 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1589 /// array for the given ObjCEncodeExpr node.
1590 llvm::Constant *
1591 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1592   std::string Str;
1593   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1594 
1595   return GetAddrOfConstantCString(Str);
1596 }
1597 
1598 
1599 /// GenerateWritableString -- Creates storage for a string literal.
1600 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1601                                              bool constant,
1602                                              CodeGenModule &CGM,
1603                                              const char *GlobalName) {
1604   // Create Constant for this string literal. Don't add a '\0'.
1605   llvm::Constant *C =
1606       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1607 
1608   // Create a global variable for this string
1609   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1610                                   llvm::GlobalValue::PrivateLinkage,
1611                                   C, GlobalName);
1612 }
1613 
1614 /// GetAddrOfConstantString - Returns a pointer to a character array
1615 /// containing the literal. This contents are exactly that of the
1616 /// given string, i.e. it will not be null terminated automatically;
1617 /// see GetAddrOfConstantCString. Note that whether the result is
1618 /// actually a pointer to an LLVM constant depends on
1619 /// Feature.WriteableStrings.
1620 ///
1621 /// The result has pointer to array type.
1622 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1623                                                        const char *GlobalName) {
1624   bool IsConstant = !Features.WritableStrings;
1625 
1626   // Get the default prefix if a name wasn't specified.
1627   if (!GlobalName)
1628     GlobalName = ".str";
1629 
1630   // Don't share any string literals if strings aren't constant.
1631   if (!IsConstant)
1632     return GenerateStringLiteral(str, false, *this, GlobalName);
1633 
1634   llvm::StringMapEntry<llvm::Constant *> &Entry =
1635     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1636 
1637   if (Entry.getValue())
1638     return Entry.getValue();
1639 
1640   // Create a global variable for this.
1641   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1642   Entry.setValue(C);
1643   return C;
1644 }
1645 
1646 /// GetAddrOfConstantCString - Returns a pointer to a character
1647 /// array containing the literal and a terminating '\-'
1648 /// character. The result has pointer to array type.
1649 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1650                                                         const char *GlobalName){
1651   return GetAddrOfConstantString(str + '\0', GlobalName);
1652 }
1653 
1654 /// EmitObjCPropertyImplementations - Emit information for synthesized
1655 /// properties for an implementation.
1656 void CodeGenModule::EmitObjCPropertyImplementations(const
1657                                                     ObjCImplementationDecl *D) {
1658   for (ObjCImplementationDecl::propimpl_iterator
1659          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1660     ObjCPropertyImplDecl *PID = *i;
1661 
1662     // Dynamic is just for type-checking.
1663     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1664       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1665 
1666       // Determine which methods need to be implemented, some may have
1667       // been overridden. Note that ::isSynthesized is not the method
1668       // we want, that just indicates if the decl came from a
1669       // property. What we want to know is if the method is defined in
1670       // this implementation.
1671       if (!D->getInstanceMethod(PD->getGetterName()))
1672         CodeGenFunction(*this).GenerateObjCGetter(
1673                                  const_cast<ObjCImplementationDecl *>(D), PID);
1674       if (!PD->isReadOnly() &&
1675           !D->getInstanceMethod(PD->getSetterName()))
1676         CodeGenFunction(*this).GenerateObjCSetter(
1677                                  const_cast<ObjCImplementationDecl *>(D), PID);
1678     }
1679   }
1680 }
1681 
1682 /// EmitNamespace - Emit all declarations in a namespace.
1683 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1684   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1685        I != E; ++I)
1686     EmitTopLevelDecl(*I);
1687 }
1688 
1689 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1690 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1691   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1692       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1693     ErrorUnsupported(LSD, "linkage spec");
1694     return;
1695   }
1696 
1697   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1698        I != E; ++I)
1699     EmitTopLevelDecl(*I);
1700 }
1701 
1702 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1703 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1704   // If an error has occurred, stop code generation, but continue
1705   // parsing and semantic analysis (to ensure all warnings and errors
1706   // are emitted).
1707   if (Diags.hasErrorOccurred())
1708     return;
1709 
1710   // Ignore dependent declarations.
1711   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1712     return;
1713 
1714   switch (D->getKind()) {
1715   case Decl::CXXConversion:
1716   case Decl::CXXMethod:
1717   case Decl::Function:
1718     // Skip function templates
1719     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1720       return;
1721 
1722     EmitGlobal(cast<FunctionDecl>(D));
1723     break;
1724 
1725   case Decl::Var:
1726     EmitGlobal(cast<VarDecl>(D));
1727     break;
1728 
1729   // C++ Decls
1730   case Decl::Namespace:
1731     EmitNamespace(cast<NamespaceDecl>(D));
1732     break;
1733     // No code generation needed.
1734   case Decl::UsingShadow:
1735   case Decl::Using:
1736   case Decl::UsingDirective:
1737   case Decl::ClassTemplate:
1738   case Decl::FunctionTemplate:
1739   case Decl::NamespaceAlias:
1740     break;
1741   case Decl::CXXConstructor:
1742     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1743     break;
1744   case Decl::CXXDestructor:
1745     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1746     break;
1747 
1748   case Decl::StaticAssert:
1749     // Nothing to do.
1750     break;
1751 
1752   // Objective-C Decls
1753 
1754   // Forward declarations, no (immediate) code generation.
1755   case Decl::ObjCClass:
1756   case Decl::ObjCForwardProtocol:
1757   case Decl::ObjCCategory:
1758   case Decl::ObjCInterface:
1759     break;
1760 
1761   case Decl::ObjCProtocol:
1762     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1763     break;
1764 
1765   case Decl::ObjCCategoryImpl:
1766     // Categories have properties but don't support synthesize so we
1767     // can ignore them here.
1768     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1769     break;
1770 
1771   case Decl::ObjCImplementation: {
1772     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1773     EmitObjCPropertyImplementations(OMD);
1774     Runtime->GenerateClass(OMD);
1775     break;
1776   }
1777   case Decl::ObjCMethod: {
1778     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1779     // If this is not a prototype, emit the body.
1780     if (OMD->getBody())
1781       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1782     break;
1783   }
1784   case Decl::ObjCCompatibleAlias:
1785     // compatibility-alias is a directive and has no code gen.
1786     break;
1787 
1788   case Decl::LinkageSpec:
1789     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1790     break;
1791 
1792   case Decl::FileScopeAsm: {
1793     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1794     std::string AsmString(AD->getAsmString()->getStrData(),
1795                           AD->getAsmString()->getByteLength());
1796 
1797     const std::string &S = getModule().getModuleInlineAsm();
1798     if (S.empty())
1799       getModule().setModuleInlineAsm(AsmString);
1800     else
1801       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1802     break;
1803   }
1804 
1805   default:
1806     // Make sure we handled everything we should, every other kind is a
1807     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1808     // function. Need to recode Decl::Kind to do that easily.
1809     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1810   }
1811 }
1812