1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ProfileSummary.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 #include "llvm/Support/TimeProfiler.h" 62 63 using namespace clang; 64 using namespace CodeGen; 65 66 static llvm::cl::opt<bool> LimitedCoverage( 67 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 68 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 69 llvm::cl::init(false)); 70 71 static const char AnnotationSection[] = "llvm.metadata"; 72 73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 74 switch (CGM.getTarget().getCXXABI().getKind()) { 75 case TargetCXXABI::GenericAArch64: 76 case TargetCXXABI::GenericARM: 77 case TargetCXXABI::iOS: 78 case TargetCXXABI::iOS64: 79 case TargetCXXABI::WatchOS: 80 case TargetCXXABI::GenericMIPS: 81 case TargetCXXABI::GenericItanium: 82 case TargetCXXABI::WebAssembly: 83 return CreateItaniumCXXABI(CGM); 84 case TargetCXXABI::Microsoft: 85 return CreateMicrosoftCXXABI(CGM); 86 } 87 88 llvm_unreachable("invalid C++ ABI kind"); 89 } 90 91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 92 const PreprocessorOptions &PPO, 93 const CodeGenOptions &CGO, llvm::Module &M, 94 DiagnosticsEngine &diags, 95 CoverageSourceInfo *CoverageInfo) 96 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 97 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 98 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 99 VMContext(M.getContext()), Types(*this), VTables(*this), 100 SanitizerMD(new SanitizerMetadata(*this)) { 101 102 // Initialize the type cache. 103 llvm::LLVMContext &LLVMContext = M.getContext(); 104 VoidTy = llvm::Type::getVoidTy(LLVMContext); 105 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 106 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 107 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 108 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 109 HalfTy = llvm::Type::getHalfTy(LLVMContext); 110 FloatTy = llvm::Type::getFloatTy(LLVMContext); 111 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 112 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 113 PointerAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 115 SizeSizeInBytes = 116 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 117 IntAlignInBytes = 118 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 119 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 120 IntPtrTy = llvm::IntegerType::get(LLVMContext, 121 C.getTargetInfo().getMaxPointerWidth()); 122 Int8PtrTy = Int8Ty->getPointerTo(0); 123 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 124 AllocaInt8PtrTy = Int8Ty->getPointerTo( 125 M.getDataLayout().getAllocaAddrSpace()); 126 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 127 128 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 129 130 if (LangOpts.ObjC) 131 createObjCRuntime(); 132 if (LangOpts.OpenCL) 133 createOpenCLRuntime(); 134 if (LangOpts.OpenMP) 135 createOpenMPRuntime(); 136 if (LangOpts.CUDA) 137 createCUDARuntime(); 138 139 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 140 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 141 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 142 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 143 getCXXABI().getMangleContext())); 144 145 // If debug info or coverage generation is enabled, create the CGDebugInfo 146 // object. 147 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 148 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 149 DebugInfo.reset(new CGDebugInfo(*this)); 150 151 Block.GlobalUniqueCount = 0; 152 153 if (C.getLangOpts().ObjC) 154 ObjCData.reset(new ObjCEntrypoints()); 155 156 if (CodeGenOpts.hasProfileClangUse()) { 157 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 158 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 159 if (auto E = ReaderOrErr.takeError()) { 160 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 161 "Could not read profile %0: %1"); 162 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 163 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 164 << EI.message(); 165 }); 166 } else 167 PGOReader = std::move(ReaderOrErr.get()); 168 } 169 170 // If coverage mapping generation is enabled, create the 171 // CoverageMappingModuleGen object. 172 if (CodeGenOpts.CoverageMapping) 173 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 174 } 175 176 CodeGenModule::~CodeGenModule() {} 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 // Select a specialized code generation class based on the target, if any. 204 // If it does not exist use the default implementation. 205 switch (getTriple().getArch()) { 206 case llvm::Triple::nvptx: 207 case llvm::Triple::nvptx64: 208 assert(getLangOpts().OpenMPIsDevice && 209 "OpenMP NVPTX is only prepared to deal with device code."); 210 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 211 break; 212 default: 213 if (LangOpts.OpenMPSimd) 214 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 215 else 216 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 217 break; 218 } 219 } 220 221 void CodeGenModule::createCUDARuntime() { 222 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 223 } 224 225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 226 Replacements[Name] = C; 227 } 228 229 void CodeGenModule::applyReplacements() { 230 for (auto &I : Replacements) { 231 StringRef MangledName = I.first(); 232 llvm::Constant *Replacement = I.second; 233 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 234 if (!Entry) 235 continue; 236 auto *OldF = cast<llvm::Function>(Entry); 237 auto *NewF = dyn_cast<llvm::Function>(Replacement); 238 if (!NewF) { 239 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 240 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 241 } else { 242 auto *CE = cast<llvm::ConstantExpr>(Replacement); 243 assert(CE->getOpcode() == llvm::Instruction::BitCast || 244 CE->getOpcode() == llvm::Instruction::GetElementPtr); 245 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 246 } 247 } 248 249 // Replace old with new, but keep the old order. 250 OldF->replaceAllUsesWith(Replacement); 251 if (NewF) { 252 NewF->removeFromParent(); 253 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 254 NewF); 255 } 256 OldF->eraseFromParent(); 257 } 258 } 259 260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 261 GlobalValReplacements.push_back(std::make_pair(GV, C)); 262 } 263 264 void CodeGenModule::applyGlobalValReplacements() { 265 for (auto &I : GlobalValReplacements) { 266 llvm::GlobalValue *GV = I.first; 267 llvm::Constant *C = I.second; 268 269 GV->replaceAllUsesWith(C); 270 GV->eraseFromParent(); 271 } 272 } 273 274 // This is only used in aliases that we created and we know they have a 275 // linear structure. 276 static const llvm::GlobalObject *getAliasedGlobal( 277 const llvm::GlobalIndirectSymbol &GIS) { 278 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 279 const llvm::Constant *C = &GIS; 280 for (;;) { 281 C = C->stripPointerCasts(); 282 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 283 return GO; 284 // stripPointerCasts will not walk over weak aliases. 285 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 286 if (!GIS2) 287 return nullptr; 288 if (!Visited.insert(GIS2).second) 289 return nullptr; 290 C = GIS2->getIndirectSymbol(); 291 } 292 } 293 294 void CodeGenModule::checkAliases() { 295 // Check if the constructed aliases are well formed. It is really unfortunate 296 // that we have to do this in CodeGen, but we only construct mangled names 297 // and aliases during codegen. 298 bool Error = false; 299 DiagnosticsEngine &Diags = getDiags(); 300 for (const GlobalDecl &GD : Aliases) { 301 const auto *D = cast<ValueDecl>(GD.getDecl()); 302 SourceLocation Location; 303 bool IsIFunc = D->hasAttr<IFuncAttr>(); 304 if (const Attr *A = D->getDefiningAttr()) 305 Location = A->getLocation(); 306 else 307 llvm_unreachable("Not an alias or ifunc?"); 308 StringRef MangledName = getMangledName(GD); 309 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 310 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 311 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 312 if (!GV) { 313 Error = true; 314 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 315 } else if (GV->isDeclaration()) { 316 Error = true; 317 Diags.Report(Location, diag::err_alias_to_undefined) 318 << IsIFunc << IsIFunc; 319 } else if (IsIFunc) { 320 // Check resolver function type. 321 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 322 GV->getType()->getPointerElementType()); 323 assert(FTy); 324 if (!FTy->getReturnType()->isPointerTy()) 325 Diags.Report(Location, diag::err_ifunc_resolver_return); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 registerGlobalDtorsWithAtExit(); 402 EmitCXXThreadLocalInitFunc(); 403 if (ObjCRuntime) 404 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 405 AddGlobalCtor(ObjCInitFunction); 406 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 407 CUDARuntime) { 408 if (llvm::Function *CudaCtorFunction = 409 CUDARuntime->makeModuleCtorFunction()) 410 AddGlobalCtor(CudaCtorFunction); 411 } 412 if (OpenMPRuntime) { 413 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 414 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 415 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 416 } 417 if (llvm::Function *OpenMPRegistrationFunction = 418 OpenMPRuntime->emitRegistrationFunction()) { 419 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 420 OpenMPRegistrationFunction : nullptr; 421 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 422 } 423 OpenMPRuntime->clear(); 424 } 425 if (PGOReader) { 426 getModule().setProfileSummary( 427 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 428 llvm::ProfileSummary::PSK_Instr); 429 if (PGOStats.hasDiagnostics()) 430 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 431 } 432 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 433 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 434 EmitGlobalAnnotations(); 435 EmitStaticExternCAliases(); 436 EmitDeferredUnusedCoverageMappings(); 437 if (CoverageMapping) 438 CoverageMapping->emit(); 439 if (CodeGenOpts.SanitizeCfiCrossDso) { 440 CodeGenFunction(*this).EmitCfiCheckFail(); 441 CodeGenFunction(*this).EmitCfiCheckStub(); 442 } 443 emitAtAvailableLinkGuard(); 444 emitLLVMUsed(); 445 if (SanStats) 446 SanStats->finish(); 447 448 if (CodeGenOpts.Autolink && 449 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 450 EmitModuleLinkOptions(); 451 } 452 453 // On ELF we pass the dependent library specifiers directly to the linker 454 // without manipulating them. This is in contrast to other platforms where 455 // they are mapped to a specific linker option by the compiler. This 456 // difference is a result of the greater variety of ELF linkers and the fact 457 // that ELF linkers tend to handle libraries in a more complicated fashion 458 // than on other platforms. This forces us to defer handling the dependent 459 // libs to the linker. 460 // 461 // CUDA/HIP device and host libraries are different. Currently there is no 462 // way to differentiate dependent libraries for host or device. Existing 463 // usage of #pragma comment(lib, *) is intended for host libraries on 464 // Windows. Therefore emit llvm.dependent-libraries only for host. 465 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 466 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 467 for (auto *MD : ELFDependentLibraries) 468 NMD->addOperand(MD); 469 } 470 471 // Record mregparm value now so it is visible through rest of codegen. 472 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 473 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 474 CodeGenOpts.NumRegisterParameters); 475 476 if (CodeGenOpts.DwarfVersion) { 477 // We actually want the latest version when there are conflicts. 478 // We can change from Warning to Latest if such mode is supported. 479 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 480 CodeGenOpts.DwarfVersion); 481 } 482 if (CodeGenOpts.EmitCodeView) { 483 // Indicate that we want CodeView in the metadata. 484 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 485 } 486 if (CodeGenOpts.CodeViewGHash) { 487 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 488 } 489 if (CodeGenOpts.ControlFlowGuard) { 490 // We want function ID tables for Control Flow Guard. 491 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 492 } 493 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 494 // We don't support LTO with 2 with different StrictVTablePointers 495 // FIXME: we could support it by stripping all the information introduced 496 // by StrictVTablePointers. 497 498 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 499 500 llvm::Metadata *Ops[2] = { 501 llvm::MDString::get(VMContext, "StrictVTablePointers"), 502 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 503 llvm::Type::getInt32Ty(VMContext), 1))}; 504 505 getModule().addModuleFlag(llvm::Module::Require, 506 "StrictVTablePointersRequirement", 507 llvm::MDNode::get(VMContext, Ops)); 508 } 509 if (DebugInfo) 510 // We support a single version in the linked module. The LLVM 511 // parser will drop debug info with a different version number 512 // (and warn about it, too). 513 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 514 llvm::DEBUG_METADATA_VERSION); 515 516 // We need to record the widths of enums and wchar_t, so that we can generate 517 // the correct build attributes in the ARM backend. wchar_size is also used by 518 // TargetLibraryInfo. 519 uint64_t WCharWidth = 520 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 521 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 522 523 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 524 if ( Arch == llvm::Triple::arm 525 || Arch == llvm::Triple::armeb 526 || Arch == llvm::Triple::thumb 527 || Arch == llvm::Triple::thumbeb) { 528 // The minimum width of an enum in bytes 529 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 530 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 531 } 532 533 if (CodeGenOpts.SanitizeCfiCrossDso) { 534 // Indicate that we want cross-DSO control flow integrity checks. 535 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 536 } 537 538 if (CodeGenOpts.CFProtectionReturn && 539 Target.checkCFProtectionReturnSupported(getDiags())) { 540 // Indicate that we want to instrument return control flow protection. 541 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 542 1); 543 } 544 545 if (CodeGenOpts.CFProtectionBranch && 546 Target.checkCFProtectionBranchSupported(getDiags())) { 547 // Indicate that we want to instrument branch control flow protection. 548 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 549 1); 550 } 551 552 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 553 // Indicate whether __nvvm_reflect should be configured to flush denormal 554 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 555 // property.) 556 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 557 CodeGenOpts.FlushDenorm ? 1 : 0); 558 } 559 560 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 561 if (LangOpts.OpenCL) { 562 EmitOpenCLMetadata(); 563 // Emit SPIR version. 564 if (getTriple().isSPIR()) { 565 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 566 // opencl.spir.version named metadata. 567 // C++ is backwards compatible with OpenCL v2.0. 568 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 569 llvm::Metadata *SPIRVerElts[] = { 570 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 571 Int32Ty, Version / 100)), 572 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 573 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 574 llvm::NamedMDNode *SPIRVerMD = 575 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 576 llvm::LLVMContext &Ctx = TheModule.getContext(); 577 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 578 } 579 } 580 581 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 582 assert(PLevel < 3 && "Invalid PIC Level"); 583 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 584 if (Context.getLangOpts().PIE) 585 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 586 } 587 588 if (getCodeGenOpts().CodeModel.size() > 0) { 589 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 590 .Case("tiny", llvm::CodeModel::Tiny) 591 .Case("small", llvm::CodeModel::Small) 592 .Case("kernel", llvm::CodeModel::Kernel) 593 .Case("medium", llvm::CodeModel::Medium) 594 .Case("large", llvm::CodeModel::Large) 595 .Default(~0u); 596 if (CM != ~0u) { 597 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 598 getModule().setCodeModel(codeModel); 599 } 600 } 601 602 if (CodeGenOpts.NoPLT) 603 getModule().setRtLibUseGOT(); 604 605 SimplifyPersonality(); 606 607 if (getCodeGenOpts().EmitDeclMetadata) 608 EmitDeclMetadata(); 609 610 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 611 EmitCoverageFile(); 612 613 if (DebugInfo) 614 DebugInfo->finalize(); 615 616 if (getCodeGenOpts().EmitVersionIdentMetadata) 617 EmitVersionIdentMetadata(); 618 619 if (!getCodeGenOpts().RecordCommandLine.empty()) 620 EmitCommandLineMetadata(); 621 622 EmitTargetMetadata(); 623 } 624 625 void CodeGenModule::EmitOpenCLMetadata() { 626 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 627 // opencl.ocl.version named metadata node. 628 // C++ is backwards compatible with OpenCL v2.0. 629 // FIXME: We might need to add CXX version at some point too? 630 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 631 llvm::Metadata *OCLVerElts[] = { 632 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 633 Int32Ty, Version / 100)), 634 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 635 Int32Ty, (Version % 100) / 10))}; 636 llvm::NamedMDNode *OCLVerMD = 637 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 638 llvm::LLVMContext &Ctx = TheModule.getContext(); 639 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 640 } 641 642 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 643 // Make sure that this type is translated. 644 Types.UpdateCompletedType(TD); 645 } 646 647 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 648 // Make sure that this type is translated. 649 Types.RefreshTypeCacheForClass(RD); 650 } 651 652 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 653 if (!TBAA) 654 return nullptr; 655 return TBAA->getTypeInfo(QTy); 656 } 657 658 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 659 if (!TBAA) 660 return TBAAAccessInfo(); 661 return TBAA->getAccessInfo(AccessType); 662 } 663 664 TBAAAccessInfo 665 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 666 if (!TBAA) 667 return TBAAAccessInfo(); 668 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 669 } 670 671 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 672 if (!TBAA) 673 return nullptr; 674 return TBAA->getTBAAStructInfo(QTy); 675 } 676 677 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 678 if (!TBAA) 679 return nullptr; 680 return TBAA->getBaseTypeInfo(QTy); 681 } 682 683 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 684 if (!TBAA) 685 return nullptr; 686 return TBAA->getAccessTagInfo(Info); 687 } 688 689 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 690 TBAAAccessInfo TargetInfo) { 691 if (!TBAA) 692 return TBAAAccessInfo(); 693 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 694 } 695 696 TBAAAccessInfo 697 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 698 TBAAAccessInfo InfoB) { 699 if (!TBAA) 700 return TBAAAccessInfo(); 701 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 702 } 703 704 TBAAAccessInfo 705 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 706 TBAAAccessInfo SrcInfo) { 707 if (!TBAA) 708 return TBAAAccessInfo(); 709 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 710 } 711 712 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 713 TBAAAccessInfo TBAAInfo) { 714 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 715 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 716 } 717 718 void CodeGenModule::DecorateInstructionWithInvariantGroup( 719 llvm::Instruction *I, const CXXRecordDecl *RD) { 720 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 721 llvm::MDNode::get(getLLVMContext(), {})); 722 } 723 724 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 725 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 726 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 727 } 728 729 /// ErrorUnsupported - Print out an error that codegen doesn't support the 730 /// specified stmt yet. 731 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 732 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 733 "cannot compile this %0 yet"); 734 std::string Msg = Type; 735 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 736 << Msg << S->getSourceRange(); 737 } 738 739 /// ErrorUnsupported - Print out an error that codegen doesn't support the 740 /// specified decl yet. 741 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 742 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 743 "cannot compile this %0 yet"); 744 std::string Msg = Type; 745 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 746 } 747 748 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 749 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 750 } 751 752 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 753 const NamedDecl *D) const { 754 if (GV->hasDLLImportStorageClass()) 755 return; 756 // Internal definitions always have default visibility. 757 if (GV->hasLocalLinkage()) { 758 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 759 return; 760 } 761 if (!D) 762 return; 763 // Set visibility for definitions, and for declarations if requested globally 764 // or set explicitly. 765 LinkageInfo LV = D->getLinkageAndVisibility(); 766 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 767 !GV->isDeclarationForLinker()) 768 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 769 } 770 771 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 772 llvm::GlobalValue *GV) { 773 if (GV->hasLocalLinkage()) 774 return true; 775 776 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 777 return true; 778 779 // DLLImport explicitly marks the GV as external. 780 if (GV->hasDLLImportStorageClass()) 781 return false; 782 783 const llvm::Triple &TT = CGM.getTriple(); 784 if (TT.isWindowsGNUEnvironment()) { 785 // In MinGW, variables without DLLImport can still be automatically 786 // imported from a DLL by the linker; don't mark variables that 787 // potentially could come from another DLL as DSO local. 788 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 789 !GV->isThreadLocal()) 790 return false; 791 } 792 793 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 794 // remain unresolved in the link, they can be resolved to zero, which is 795 // outside the current DSO. 796 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 797 return false; 798 799 // Every other GV is local on COFF. 800 // Make an exception for windows OS in the triple: Some firmware builds use 801 // *-win32-macho triples. This (accidentally?) produced windows relocations 802 // without GOT tables in older clang versions; Keep this behaviour. 803 // FIXME: even thread local variables? 804 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 805 return true; 806 807 // Only handle COFF and ELF for now. 808 if (!TT.isOSBinFormatELF()) 809 return false; 810 811 // If this is not an executable, don't assume anything is local. 812 const auto &CGOpts = CGM.getCodeGenOpts(); 813 llvm::Reloc::Model RM = CGOpts.RelocationModel; 814 const auto &LOpts = CGM.getLangOpts(); 815 if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice) 816 return false; 817 818 // A definition cannot be preempted from an executable. 819 if (!GV->isDeclarationForLinker()) 820 return true; 821 822 // Most PIC code sequences that assume that a symbol is local cannot produce a 823 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 824 // depended, it seems worth it to handle it here. 825 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 826 return false; 827 828 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 829 llvm::Triple::ArchType Arch = TT.getArch(); 830 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 831 Arch == llvm::Triple::ppc64le) 832 return false; 833 834 // If we can use copy relocations we can assume it is local. 835 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 836 if (!Var->isThreadLocal() && 837 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 838 return true; 839 840 // If we can use a plt entry as the symbol address we can assume it 841 // is local. 842 // FIXME: This should work for PIE, but the gold linker doesn't support it. 843 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 844 return true; 845 846 // Otherwise don't assue it is local. 847 return false; 848 } 849 850 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 851 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 852 } 853 854 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 855 GlobalDecl GD) const { 856 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 857 // C++ destructors have a few C++ ABI specific special cases. 858 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 859 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 860 return; 861 } 862 setDLLImportDLLExport(GV, D); 863 } 864 865 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 866 const NamedDecl *D) const { 867 if (D && D->isExternallyVisible()) { 868 if (D->hasAttr<DLLImportAttr>()) 869 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 870 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 871 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 872 } 873 } 874 875 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 876 GlobalDecl GD) const { 877 setDLLImportDLLExport(GV, GD); 878 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 879 } 880 881 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 882 const NamedDecl *D) const { 883 setDLLImportDLLExport(GV, D); 884 setGVPropertiesAux(GV, D); 885 } 886 887 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 888 const NamedDecl *D) const { 889 setGlobalVisibility(GV, D); 890 setDSOLocal(GV); 891 GV->setPartition(CodeGenOpts.SymbolPartition); 892 } 893 894 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 895 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 896 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 897 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 898 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 899 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 900 } 901 902 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 903 CodeGenOptions::TLSModel M) { 904 switch (M) { 905 case CodeGenOptions::GeneralDynamicTLSModel: 906 return llvm::GlobalVariable::GeneralDynamicTLSModel; 907 case CodeGenOptions::LocalDynamicTLSModel: 908 return llvm::GlobalVariable::LocalDynamicTLSModel; 909 case CodeGenOptions::InitialExecTLSModel: 910 return llvm::GlobalVariable::InitialExecTLSModel; 911 case CodeGenOptions::LocalExecTLSModel: 912 return llvm::GlobalVariable::LocalExecTLSModel; 913 } 914 llvm_unreachable("Invalid TLS model!"); 915 } 916 917 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 918 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 919 920 llvm::GlobalValue::ThreadLocalMode TLM; 921 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 922 923 // Override the TLS model if it is explicitly specified. 924 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 925 TLM = GetLLVMTLSModel(Attr->getModel()); 926 } 927 928 GV->setThreadLocalMode(TLM); 929 } 930 931 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 932 StringRef Name) { 933 const TargetInfo &Target = CGM.getTarget(); 934 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 935 } 936 937 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 938 const CPUSpecificAttr *Attr, 939 unsigned CPUIndex, 940 raw_ostream &Out) { 941 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 942 // supported. 943 if (Attr) 944 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 945 else if (CGM.getTarget().supportsIFunc()) 946 Out << ".resolver"; 947 } 948 949 static void AppendTargetMangling(const CodeGenModule &CGM, 950 const TargetAttr *Attr, raw_ostream &Out) { 951 if (Attr->isDefaultVersion()) 952 return; 953 954 Out << '.'; 955 const TargetInfo &Target = CGM.getTarget(); 956 TargetAttr::ParsedTargetAttr Info = 957 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 958 // Multiversioning doesn't allow "no-${feature}", so we can 959 // only have "+" prefixes here. 960 assert(LHS.startswith("+") && RHS.startswith("+") && 961 "Features should always have a prefix."); 962 return Target.multiVersionSortPriority(LHS.substr(1)) > 963 Target.multiVersionSortPriority(RHS.substr(1)); 964 }); 965 966 bool IsFirst = true; 967 968 if (!Info.Architecture.empty()) { 969 IsFirst = false; 970 Out << "arch_" << Info.Architecture; 971 } 972 973 for (StringRef Feat : Info.Features) { 974 if (!IsFirst) 975 Out << '_'; 976 IsFirst = false; 977 Out << Feat.substr(1); 978 } 979 } 980 981 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 982 const NamedDecl *ND, 983 bool OmitMultiVersionMangling = false) { 984 SmallString<256> Buffer; 985 llvm::raw_svector_ostream Out(Buffer); 986 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 987 if (MC.shouldMangleDeclName(ND)) { 988 llvm::raw_svector_ostream Out(Buffer); 989 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 990 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 991 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 992 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 993 else 994 MC.mangleName(ND, Out); 995 } else { 996 IdentifierInfo *II = ND->getIdentifier(); 997 assert(II && "Attempt to mangle unnamed decl."); 998 const auto *FD = dyn_cast<FunctionDecl>(ND); 999 1000 if (FD && 1001 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1002 llvm::raw_svector_ostream Out(Buffer); 1003 Out << "__regcall3__" << II->getName(); 1004 } else { 1005 Out << II->getName(); 1006 } 1007 } 1008 1009 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1010 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1011 switch (FD->getMultiVersionKind()) { 1012 case MultiVersionKind::CPUDispatch: 1013 case MultiVersionKind::CPUSpecific: 1014 AppendCPUSpecificCPUDispatchMangling(CGM, 1015 FD->getAttr<CPUSpecificAttr>(), 1016 GD.getMultiVersionIndex(), Out); 1017 break; 1018 case MultiVersionKind::Target: 1019 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1020 break; 1021 case MultiVersionKind::None: 1022 llvm_unreachable("None multiversion type isn't valid here"); 1023 } 1024 } 1025 1026 return Out.str(); 1027 } 1028 1029 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1030 const FunctionDecl *FD) { 1031 if (!FD->isMultiVersion()) 1032 return; 1033 1034 // Get the name of what this would be without the 'target' attribute. This 1035 // allows us to lookup the version that was emitted when this wasn't a 1036 // multiversion function. 1037 std::string NonTargetName = 1038 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1039 GlobalDecl OtherGD; 1040 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1041 assert(OtherGD.getCanonicalDecl() 1042 .getDecl() 1043 ->getAsFunction() 1044 ->isMultiVersion() && 1045 "Other GD should now be a multiversioned function"); 1046 // OtherFD is the version of this function that was mangled BEFORE 1047 // becoming a MultiVersion function. It potentially needs to be updated. 1048 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1049 .getDecl() 1050 ->getAsFunction() 1051 ->getMostRecentDecl(); 1052 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1053 // This is so that if the initial version was already the 'default' 1054 // version, we don't try to update it. 1055 if (OtherName != NonTargetName) { 1056 // Remove instead of erase, since others may have stored the StringRef 1057 // to this. 1058 const auto ExistingRecord = Manglings.find(NonTargetName); 1059 if (ExistingRecord != std::end(Manglings)) 1060 Manglings.remove(&(*ExistingRecord)); 1061 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1062 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1063 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1064 Entry->setName(OtherName); 1065 } 1066 } 1067 } 1068 1069 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1070 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1071 1072 // Some ABIs don't have constructor variants. Make sure that base and 1073 // complete constructors get mangled the same. 1074 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1075 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1076 CXXCtorType OrigCtorType = GD.getCtorType(); 1077 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1078 if (OrigCtorType == Ctor_Base) 1079 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1080 } 1081 } 1082 1083 auto FoundName = MangledDeclNames.find(CanonicalGD); 1084 if (FoundName != MangledDeclNames.end()) 1085 return FoundName->second; 1086 1087 // Keep the first result in the case of a mangling collision. 1088 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1089 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1090 1091 // Postfix kernel stub names with .stub to differentiate them from kernel 1092 // names in device binaries. This is to facilitate the debugger to find 1093 // the correct symbols for kernels in the device binary. 1094 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1095 if (getLangOpts().HIP && !getLangOpts().CUDAIsDevice && 1096 FD->hasAttr<CUDAGlobalAttr>()) 1097 MangledName = MangledName + ".stub"; 1098 1099 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1100 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1101 } 1102 1103 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1104 const BlockDecl *BD) { 1105 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1106 const Decl *D = GD.getDecl(); 1107 1108 SmallString<256> Buffer; 1109 llvm::raw_svector_ostream Out(Buffer); 1110 if (!D) 1111 MangleCtx.mangleGlobalBlock(BD, 1112 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1113 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1114 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1115 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1116 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1117 else 1118 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1119 1120 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1121 return Result.first->first(); 1122 } 1123 1124 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1125 return getModule().getNamedValue(Name); 1126 } 1127 1128 /// AddGlobalCtor - Add a function to the list that will be called before 1129 /// main() runs. 1130 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1131 llvm::Constant *AssociatedData) { 1132 // FIXME: Type coercion of void()* types. 1133 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1134 } 1135 1136 /// AddGlobalDtor - Add a function to the list that will be called 1137 /// when the module is unloaded. 1138 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1139 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1140 DtorsUsingAtExit[Priority].push_back(Dtor); 1141 return; 1142 } 1143 1144 // FIXME: Type coercion of void()* types. 1145 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1146 } 1147 1148 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1149 if (Fns.empty()) return; 1150 1151 // Ctor function type is void()*. 1152 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1153 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1154 TheModule.getDataLayout().getProgramAddressSpace()); 1155 1156 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1157 llvm::StructType *CtorStructTy = llvm::StructType::get( 1158 Int32Ty, CtorPFTy, VoidPtrTy); 1159 1160 // Construct the constructor and destructor arrays. 1161 ConstantInitBuilder builder(*this); 1162 auto ctors = builder.beginArray(CtorStructTy); 1163 for (const auto &I : Fns) { 1164 auto ctor = ctors.beginStruct(CtorStructTy); 1165 ctor.addInt(Int32Ty, I.Priority); 1166 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1167 if (I.AssociatedData) 1168 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1169 else 1170 ctor.addNullPointer(VoidPtrTy); 1171 ctor.finishAndAddTo(ctors); 1172 } 1173 1174 auto list = 1175 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1176 /*constant*/ false, 1177 llvm::GlobalValue::AppendingLinkage); 1178 1179 // The LTO linker doesn't seem to like it when we set an alignment 1180 // on appending variables. Take it off as a workaround. 1181 list->setAlignment(0); 1182 1183 Fns.clear(); 1184 } 1185 1186 llvm::GlobalValue::LinkageTypes 1187 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1188 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1189 1190 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1191 1192 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1193 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1194 1195 if (isa<CXXConstructorDecl>(D) && 1196 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1197 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1198 // Our approach to inheriting constructors is fundamentally different from 1199 // that used by the MS ABI, so keep our inheriting constructor thunks 1200 // internal rather than trying to pick an unambiguous mangling for them. 1201 return llvm::GlobalValue::InternalLinkage; 1202 } 1203 1204 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1205 } 1206 1207 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1208 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1209 if (!MDS) return nullptr; 1210 1211 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1212 } 1213 1214 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1215 const CGFunctionInfo &Info, 1216 llvm::Function *F) { 1217 unsigned CallingConv; 1218 llvm::AttributeList PAL; 1219 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1220 F->setAttributes(PAL); 1221 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1222 } 1223 1224 static void removeImageAccessQualifier(std::string& TyName) { 1225 std::string ReadOnlyQual("__read_only"); 1226 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1227 if (ReadOnlyPos != std::string::npos) 1228 // "+ 1" for the space after access qualifier. 1229 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1230 else { 1231 std::string WriteOnlyQual("__write_only"); 1232 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1233 if (WriteOnlyPos != std::string::npos) 1234 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1235 else { 1236 std::string ReadWriteQual("__read_write"); 1237 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1238 if (ReadWritePos != std::string::npos) 1239 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1240 } 1241 } 1242 } 1243 1244 // Returns the address space id that should be produced to the 1245 // kernel_arg_addr_space metadata. This is always fixed to the ids 1246 // as specified in the SPIR 2.0 specification in order to differentiate 1247 // for example in clGetKernelArgInfo() implementation between the address 1248 // spaces with targets without unique mapping to the OpenCL address spaces 1249 // (basically all single AS CPUs). 1250 static unsigned ArgInfoAddressSpace(LangAS AS) { 1251 switch (AS) { 1252 case LangAS::opencl_global: return 1; 1253 case LangAS::opencl_constant: return 2; 1254 case LangAS::opencl_local: return 3; 1255 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1256 default: 1257 return 0; // Assume private. 1258 } 1259 } 1260 1261 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1262 const FunctionDecl *FD, 1263 CodeGenFunction *CGF) { 1264 assert(((FD && CGF) || (!FD && !CGF)) && 1265 "Incorrect use - FD and CGF should either be both null or not!"); 1266 // Create MDNodes that represent the kernel arg metadata. 1267 // Each MDNode is a list in the form of "key", N number of values which is 1268 // the same number of values as their are kernel arguments. 1269 1270 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1271 1272 // MDNode for the kernel argument address space qualifiers. 1273 SmallVector<llvm::Metadata *, 8> addressQuals; 1274 1275 // MDNode for the kernel argument access qualifiers (images only). 1276 SmallVector<llvm::Metadata *, 8> accessQuals; 1277 1278 // MDNode for the kernel argument type names. 1279 SmallVector<llvm::Metadata *, 8> argTypeNames; 1280 1281 // MDNode for the kernel argument base type names. 1282 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1283 1284 // MDNode for the kernel argument type qualifiers. 1285 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1286 1287 // MDNode for the kernel argument names. 1288 SmallVector<llvm::Metadata *, 8> argNames; 1289 1290 if (FD && CGF) 1291 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1292 const ParmVarDecl *parm = FD->getParamDecl(i); 1293 QualType ty = parm->getType(); 1294 std::string typeQuals; 1295 1296 if (ty->isPointerType()) { 1297 QualType pointeeTy = ty->getPointeeType(); 1298 1299 // Get address qualifier. 1300 addressQuals.push_back( 1301 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1302 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1303 1304 // Get argument type name. 1305 std::string typeName = 1306 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1307 1308 // Turn "unsigned type" to "utype" 1309 std::string::size_type pos = typeName.find("unsigned"); 1310 if (pointeeTy.isCanonical() && pos != std::string::npos) 1311 typeName.erase(pos + 1, 8); 1312 1313 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1314 1315 std::string baseTypeName = 1316 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1317 Policy) + 1318 "*"; 1319 1320 // Turn "unsigned type" to "utype" 1321 pos = baseTypeName.find("unsigned"); 1322 if (pos != std::string::npos) 1323 baseTypeName.erase(pos + 1, 8); 1324 1325 argBaseTypeNames.push_back( 1326 llvm::MDString::get(VMContext, baseTypeName)); 1327 1328 // Get argument type qualifiers: 1329 if (ty.isRestrictQualified()) 1330 typeQuals = "restrict"; 1331 if (pointeeTy.isConstQualified() || 1332 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1333 typeQuals += typeQuals.empty() ? "const" : " const"; 1334 if (pointeeTy.isVolatileQualified()) 1335 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1336 } else { 1337 uint32_t AddrSpc = 0; 1338 bool isPipe = ty->isPipeType(); 1339 if (ty->isImageType() || isPipe) 1340 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1341 1342 addressQuals.push_back( 1343 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1344 1345 // Get argument type name. 1346 std::string typeName; 1347 if (isPipe) 1348 typeName = ty.getCanonicalType() 1349 ->getAs<PipeType>() 1350 ->getElementType() 1351 .getAsString(Policy); 1352 else 1353 typeName = ty.getUnqualifiedType().getAsString(Policy); 1354 1355 // Turn "unsigned type" to "utype" 1356 std::string::size_type pos = typeName.find("unsigned"); 1357 if (ty.isCanonical() && pos != std::string::npos) 1358 typeName.erase(pos + 1, 8); 1359 1360 std::string baseTypeName; 1361 if (isPipe) 1362 baseTypeName = ty.getCanonicalType() 1363 ->getAs<PipeType>() 1364 ->getElementType() 1365 .getCanonicalType() 1366 .getAsString(Policy); 1367 else 1368 baseTypeName = 1369 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1370 1371 // Remove access qualifiers on images 1372 // (as they are inseparable from type in clang implementation, 1373 // but OpenCL spec provides a special query to get access qualifier 1374 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1375 if (ty->isImageType()) { 1376 removeImageAccessQualifier(typeName); 1377 removeImageAccessQualifier(baseTypeName); 1378 } 1379 1380 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1381 1382 // Turn "unsigned type" to "utype" 1383 pos = baseTypeName.find("unsigned"); 1384 if (pos != std::string::npos) 1385 baseTypeName.erase(pos + 1, 8); 1386 1387 argBaseTypeNames.push_back( 1388 llvm::MDString::get(VMContext, baseTypeName)); 1389 1390 if (isPipe) 1391 typeQuals = "pipe"; 1392 } 1393 1394 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1395 1396 // Get image and pipe access qualifier: 1397 if (ty->isImageType() || ty->isPipeType()) { 1398 const Decl *PDecl = parm; 1399 if (auto *TD = dyn_cast<TypedefType>(ty)) 1400 PDecl = TD->getDecl(); 1401 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1402 if (A && A->isWriteOnly()) 1403 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1404 else if (A && A->isReadWrite()) 1405 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1406 else 1407 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1408 } else 1409 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1410 1411 // Get argument name. 1412 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1413 } 1414 1415 Fn->setMetadata("kernel_arg_addr_space", 1416 llvm::MDNode::get(VMContext, addressQuals)); 1417 Fn->setMetadata("kernel_arg_access_qual", 1418 llvm::MDNode::get(VMContext, accessQuals)); 1419 Fn->setMetadata("kernel_arg_type", 1420 llvm::MDNode::get(VMContext, argTypeNames)); 1421 Fn->setMetadata("kernel_arg_base_type", 1422 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1423 Fn->setMetadata("kernel_arg_type_qual", 1424 llvm::MDNode::get(VMContext, argTypeQuals)); 1425 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1426 Fn->setMetadata("kernel_arg_name", 1427 llvm::MDNode::get(VMContext, argNames)); 1428 } 1429 1430 /// Determines whether the language options require us to model 1431 /// unwind exceptions. We treat -fexceptions as mandating this 1432 /// except under the fragile ObjC ABI with only ObjC exceptions 1433 /// enabled. This means, for example, that C with -fexceptions 1434 /// enables this. 1435 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1436 // If exceptions are completely disabled, obviously this is false. 1437 if (!LangOpts.Exceptions) return false; 1438 1439 // If C++ exceptions are enabled, this is true. 1440 if (LangOpts.CXXExceptions) return true; 1441 1442 // If ObjC exceptions are enabled, this depends on the ABI. 1443 if (LangOpts.ObjCExceptions) { 1444 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1445 } 1446 1447 return true; 1448 } 1449 1450 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1451 const CXXMethodDecl *MD) { 1452 // Check that the type metadata can ever actually be used by a call. 1453 if (!CGM.getCodeGenOpts().LTOUnit || 1454 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1455 return false; 1456 1457 // Only functions whose address can be taken with a member function pointer 1458 // need this sort of type metadata. 1459 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1460 !isa<CXXDestructorDecl>(MD); 1461 } 1462 1463 std::vector<const CXXRecordDecl *> 1464 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1465 llvm::SetVector<const CXXRecordDecl *> MostBases; 1466 1467 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1468 CollectMostBases = [&](const CXXRecordDecl *RD) { 1469 if (RD->getNumBases() == 0) 1470 MostBases.insert(RD); 1471 for (const CXXBaseSpecifier &B : RD->bases()) 1472 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1473 }; 1474 CollectMostBases(RD); 1475 return MostBases.takeVector(); 1476 } 1477 1478 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1479 llvm::Function *F) { 1480 llvm::AttrBuilder B; 1481 1482 if (CodeGenOpts.UnwindTables) 1483 B.addAttribute(llvm::Attribute::UWTable); 1484 1485 if (!hasUnwindExceptions(LangOpts)) 1486 B.addAttribute(llvm::Attribute::NoUnwind); 1487 1488 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1489 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1490 B.addAttribute(llvm::Attribute::StackProtect); 1491 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1492 B.addAttribute(llvm::Attribute::StackProtectStrong); 1493 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1494 B.addAttribute(llvm::Attribute::StackProtectReq); 1495 } 1496 1497 if (!D) { 1498 // If we don't have a declaration to control inlining, the function isn't 1499 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1500 // disabled, mark the function as noinline. 1501 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1502 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1503 B.addAttribute(llvm::Attribute::NoInline); 1504 1505 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1506 return; 1507 } 1508 1509 // Track whether we need to add the optnone LLVM attribute, 1510 // starting with the default for this optimization level. 1511 bool ShouldAddOptNone = 1512 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1513 // We can't add optnone in the following cases, it won't pass the verifier. 1514 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1515 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1516 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1517 1518 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1519 B.addAttribute(llvm::Attribute::OptimizeNone); 1520 1521 // OptimizeNone implies noinline; we should not be inlining such functions. 1522 B.addAttribute(llvm::Attribute::NoInline); 1523 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1524 "OptimizeNone and AlwaysInline on same function!"); 1525 1526 // We still need to handle naked functions even though optnone subsumes 1527 // much of their semantics. 1528 if (D->hasAttr<NakedAttr>()) 1529 B.addAttribute(llvm::Attribute::Naked); 1530 1531 // OptimizeNone wins over OptimizeForSize and MinSize. 1532 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1533 F->removeFnAttr(llvm::Attribute::MinSize); 1534 } else if (D->hasAttr<NakedAttr>()) { 1535 // Naked implies noinline: we should not be inlining such functions. 1536 B.addAttribute(llvm::Attribute::Naked); 1537 B.addAttribute(llvm::Attribute::NoInline); 1538 } else if (D->hasAttr<NoDuplicateAttr>()) { 1539 B.addAttribute(llvm::Attribute::NoDuplicate); 1540 } else if (D->hasAttr<NoInlineAttr>()) { 1541 B.addAttribute(llvm::Attribute::NoInline); 1542 } else if (D->hasAttr<AlwaysInlineAttr>() && 1543 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1544 // (noinline wins over always_inline, and we can't specify both in IR) 1545 B.addAttribute(llvm::Attribute::AlwaysInline); 1546 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1547 // If we're not inlining, then force everything that isn't always_inline to 1548 // carry an explicit noinline attribute. 1549 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1550 B.addAttribute(llvm::Attribute::NoInline); 1551 } else { 1552 // Otherwise, propagate the inline hint attribute and potentially use its 1553 // absence to mark things as noinline. 1554 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1555 // Search function and template pattern redeclarations for inline. 1556 auto CheckForInline = [](const FunctionDecl *FD) { 1557 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1558 return Redecl->isInlineSpecified(); 1559 }; 1560 if (any_of(FD->redecls(), CheckRedeclForInline)) 1561 return true; 1562 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1563 if (!Pattern) 1564 return false; 1565 return any_of(Pattern->redecls(), CheckRedeclForInline); 1566 }; 1567 if (CheckForInline(FD)) { 1568 B.addAttribute(llvm::Attribute::InlineHint); 1569 } else if (CodeGenOpts.getInlining() == 1570 CodeGenOptions::OnlyHintInlining && 1571 !FD->isInlined() && 1572 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1573 B.addAttribute(llvm::Attribute::NoInline); 1574 } 1575 } 1576 } 1577 1578 // Add other optimization related attributes if we are optimizing this 1579 // function. 1580 if (!D->hasAttr<OptimizeNoneAttr>()) { 1581 if (D->hasAttr<ColdAttr>()) { 1582 if (!ShouldAddOptNone) 1583 B.addAttribute(llvm::Attribute::OptimizeForSize); 1584 B.addAttribute(llvm::Attribute::Cold); 1585 } 1586 1587 if (D->hasAttr<MinSizeAttr>()) 1588 B.addAttribute(llvm::Attribute::MinSize); 1589 } 1590 1591 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1592 1593 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1594 if (alignment) 1595 F->setAlignment(alignment); 1596 1597 if (!D->hasAttr<AlignedAttr>()) 1598 if (LangOpts.FunctionAlignment) 1599 F->setAlignment(1 << LangOpts.FunctionAlignment); 1600 1601 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1602 // reserve a bit for differentiating between virtual and non-virtual member 1603 // functions. If the current target's C++ ABI requires this and this is a 1604 // member function, set its alignment accordingly. 1605 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1606 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1607 F->setAlignment(2); 1608 } 1609 1610 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1611 if (CodeGenOpts.SanitizeCfiCrossDso) 1612 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1613 CreateFunctionTypeMetadataForIcall(FD, F); 1614 1615 // Emit type metadata on member functions for member function pointer checks. 1616 // These are only ever necessary on definitions; we're guaranteed that the 1617 // definition will be present in the LTO unit as a result of LTO visibility. 1618 auto *MD = dyn_cast<CXXMethodDecl>(D); 1619 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1620 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1621 llvm::Metadata *Id = 1622 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1623 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1624 F->addTypeMetadata(0, Id); 1625 } 1626 } 1627 } 1628 1629 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1630 const Decl *D = GD.getDecl(); 1631 if (dyn_cast_or_null<NamedDecl>(D)) 1632 setGVProperties(GV, GD); 1633 else 1634 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1635 1636 if (D && D->hasAttr<UsedAttr>()) 1637 addUsedGlobal(GV); 1638 1639 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1640 const auto *VD = cast<VarDecl>(D); 1641 if (VD->getType().isConstQualified() && 1642 VD->getStorageDuration() == SD_Static) 1643 addUsedGlobal(GV); 1644 } 1645 } 1646 1647 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1648 llvm::AttrBuilder &Attrs) { 1649 // Add target-cpu and target-features attributes to functions. If 1650 // we have a decl for the function and it has a target attribute then 1651 // parse that and add it to the feature set. 1652 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1653 std::vector<std::string> Features; 1654 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1655 FD = FD ? FD->getMostRecentDecl() : FD; 1656 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1657 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1658 bool AddedAttr = false; 1659 if (TD || SD) { 1660 llvm::StringMap<bool> FeatureMap; 1661 getFunctionFeatureMap(FeatureMap, GD); 1662 1663 // Produce the canonical string for this set of features. 1664 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1665 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1666 1667 // Now add the target-cpu and target-features to the function. 1668 // While we populated the feature map above, we still need to 1669 // get and parse the target attribute so we can get the cpu for 1670 // the function. 1671 if (TD) { 1672 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1673 if (ParsedAttr.Architecture != "" && 1674 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1675 TargetCPU = ParsedAttr.Architecture; 1676 } 1677 } else { 1678 // Otherwise just add the existing target cpu and target features to the 1679 // function. 1680 Features = getTarget().getTargetOpts().Features; 1681 } 1682 1683 if (TargetCPU != "") { 1684 Attrs.addAttribute("target-cpu", TargetCPU); 1685 AddedAttr = true; 1686 } 1687 if (!Features.empty()) { 1688 llvm::sort(Features); 1689 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1690 AddedAttr = true; 1691 } 1692 1693 return AddedAttr; 1694 } 1695 1696 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1697 llvm::GlobalObject *GO) { 1698 const Decl *D = GD.getDecl(); 1699 SetCommonAttributes(GD, GO); 1700 1701 if (D) { 1702 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1703 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1704 GV->addAttribute("bss-section", SA->getName()); 1705 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1706 GV->addAttribute("data-section", SA->getName()); 1707 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1708 GV->addAttribute("rodata-section", SA->getName()); 1709 } 1710 1711 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1712 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1713 if (!D->getAttr<SectionAttr>()) 1714 F->addFnAttr("implicit-section-name", SA->getName()); 1715 1716 llvm::AttrBuilder Attrs; 1717 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1718 // We know that GetCPUAndFeaturesAttributes will always have the 1719 // newest set, since it has the newest possible FunctionDecl, so the 1720 // new ones should replace the old. 1721 F->removeFnAttr("target-cpu"); 1722 F->removeFnAttr("target-features"); 1723 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1724 } 1725 } 1726 1727 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1728 GO->setSection(CSA->getName()); 1729 else if (const auto *SA = D->getAttr<SectionAttr>()) 1730 GO->setSection(SA->getName()); 1731 } 1732 1733 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1734 } 1735 1736 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1737 llvm::Function *F, 1738 const CGFunctionInfo &FI) { 1739 const Decl *D = GD.getDecl(); 1740 SetLLVMFunctionAttributes(GD, FI, F); 1741 SetLLVMFunctionAttributesForDefinition(D, F); 1742 1743 F->setLinkage(llvm::Function::InternalLinkage); 1744 1745 setNonAliasAttributes(GD, F); 1746 } 1747 1748 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1749 // Set linkage and visibility in case we never see a definition. 1750 LinkageInfo LV = ND->getLinkageAndVisibility(); 1751 // Don't set internal linkage on declarations. 1752 // "extern_weak" is overloaded in LLVM; we probably should have 1753 // separate linkage types for this. 1754 if (isExternallyVisible(LV.getLinkage()) && 1755 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1756 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1757 } 1758 1759 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1760 llvm::Function *F) { 1761 // Only if we are checking indirect calls. 1762 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1763 return; 1764 1765 // Non-static class methods are handled via vtable or member function pointer 1766 // checks elsewhere. 1767 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1768 return; 1769 1770 // Additionally, if building with cross-DSO support... 1771 if (CodeGenOpts.SanitizeCfiCrossDso) { 1772 // Skip available_externally functions. They won't be codegen'ed in the 1773 // current module anyway. 1774 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1775 return; 1776 } 1777 1778 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1779 F->addTypeMetadata(0, MD); 1780 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1781 1782 // Emit a hash-based bit set entry for cross-DSO calls. 1783 if (CodeGenOpts.SanitizeCfiCrossDso) 1784 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1785 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1786 } 1787 1788 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1789 bool IsIncompleteFunction, 1790 bool IsThunk) { 1791 1792 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1793 // If this is an intrinsic function, set the function's attributes 1794 // to the intrinsic's attributes. 1795 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1796 return; 1797 } 1798 1799 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1800 1801 if (!IsIncompleteFunction) 1802 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1803 1804 // Add the Returned attribute for "this", except for iOS 5 and earlier 1805 // where substantial code, including the libstdc++ dylib, was compiled with 1806 // GCC and does not actually return "this". 1807 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1808 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1809 assert(!F->arg_empty() && 1810 F->arg_begin()->getType() 1811 ->canLosslesslyBitCastTo(F->getReturnType()) && 1812 "unexpected this return"); 1813 F->addAttribute(1, llvm::Attribute::Returned); 1814 } 1815 1816 // Only a few attributes are set on declarations; these may later be 1817 // overridden by a definition. 1818 1819 setLinkageForGV(F, FD); 1820 setGVProperties(F, FD); 1821 1822 // Setup target-specific attributes. 1823 if (!IsIncompleteFunction && F->isDeclaration()) 1824 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1825 1826 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1827 F->setSection(CSA->getName()); 1828 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1829 F->setSection(SA->getName()); 1830 1831 if (FD->isReplaceableGlobalAllocationFunction()) { 1832 // A replaceable global allocation function does not act like a builtin by 1833 // default, only if it is invoked by a new-expression or delete-expression. 1834 F->addAttribute(llvm::AttributeList::FunctionIndex, 1835 llvm::Attribute::NoBuiltin); 1836 1837 // A sane operator new returns a non-aliasing pointer. 1838 // FIXME: Also add NonNull attribute to the return value 1839 // for the non-nothrow forms? 1840 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1841 if (getCodeGenOpts().AssumeSaneOperatorNew && 1842 (Kind == OO_New || Kind == OO_Array_New)) 1843 F->addAttribute(llvm::AttributeList::ReturnIndex, 1844 llvm::Attribute::NoAlias); 1845 } 1846 1847 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1848 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1849 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1850 if (MD->isVirtual()) 1851 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1852 1853 // Don't emit entries for function declarations in the cross-DSO mode. This 1854 // is handled with better precision by the receiving DSO. 1855 if (!CodeGenOpts.SanitizeCfiCrossDso) 1856 CreateFunctionTypeMetadataForIcall(FD, F); 1857 1858 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1859 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1860 1861 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1862 // Annotate the callback behavior as metadata: 1863 // - The callback callee (as argument number). 1864 // - The callback payloads (as argument numbers). 1865 llvm::LLVMContext &Ctx = F->getContext(); 1866 llvm::MDBuilder MDB(Ctx); 1867 1868 // The payload indices are all but the first one in the encoding. The first 1869 // identifies the callback callee. 1870 int CalleeIdx = *CB->encoding_begin(); 1871 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1872 F->addMetadata(llvm::LLVMContext::MD_callback, 1873 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1874 CalleeIdx, PayloadIndices, 1875 /* VarArgsArePassed */ false)})); 1876 } 1877 } 1878 1879 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1880 assert(!GV->isDeclaration() && 1881 "Only globals with definition can force usage."); 1882 LLVMUsed.emplace_back(GV); 1883 } 1884 1885 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1886 assert(!GV->isDeclaration() && 1887 "Only globals with definition can force usage."); 1888 LLVMCompilerUsed.emplace_back(GV); 1889 } 1890 1891 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1892 std::vector<llvm::WeakTrackingVH> &List) { 1893 // Don't create llvm.used if there is no need. 1894 if (List.empty()) 1895 return; 1896 1897 // Convert List to what ConstantArray needs. 1898 SmallVector<llvm::Constant*, 8> UsedArray; 1899 UsedArray.resize(List.size()); 1900 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1901 UsedArray[i] = 1902 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1903 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1904 } 1905 1906 if (UsedArray.empty()) 1907 return; 1908 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1909 1910 auto *GV = new llvm::GlobalVariable( 1911 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1912 llvm::ConstantArray::get(ATy, UsedArray), Name); 1913 1914 GV->setSection("llvm.metadata"); 1915 } 1916 1917 void CodeGenModule::emitLLVMUsed() { 1918 emitUsed(*this, "llvm.used", LLVMUsed); 1919 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1920 } 1921 1922 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1923 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1924 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1925 } 1926 1927 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1928 llvm::SmallString<32> Opt; 1929 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1930 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1931 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1932 } 1933 1934 void CodeGenModule::AddDependentLib(StringRef Lib) { 1935 auto &C = getLLVMContext(); 1936 if (getTarget().getTriple().isOSBinFormatELF()) { 1937 ELFDependentLibraries.push_back( 1938 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1939 return; 1940 } 1941 1942 llvm::SmallString<24> Opt; 1943 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1944 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1945 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1946 } 1947 1948 /// Add link options implied by the given module, including modules 1949 /// it depends on, using a postorder walk. 1950 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1951 SmallVectorImpl<llvm::MDNode *> &Metadata, 1952 llvm::SmallPtrSet<Module *, 16> &Visited) { 1953 // Import this module's parent. 1954 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1955 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1956 } 1957 1958 // Import this module's dependencies. 1959 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1960 if (Visited.insert(Mod->Imports[I - 1]).second) 1961 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1962 } 1963 1964 // Add linker options to link against the libraries/frameworks 1965 // described by this module. 1966 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1967 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1968 1969 // For modules that use export_as for linking, use that module 1970 // name instead. 1971 if (Mod->UseExportAsModuleLinkName) 1972 return; 1973 1974 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1975 // Link against a framework. Frameworks are currently Darwin only, so we 1976 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1977 if (Mod->LinkLibraries[I-1].IsFramework) { 1978 llvm::Metadata *Args[2] = { 1979 llvm::MDString::get(Context, "-framework"), 1980 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1981 1982 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1983 continue; 1984 } 1985 1986 // Link against a library. 1987 if (IsELF) { 1988 llvm::Metadata *Args[2] = { 1989 llvm::MDString::get(Context, "lib"), 1990 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 1991 }; 1992 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1993 } else { 1994 llvm::SmallString<24> Opt; 1995 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1996 Mod->LinkLibraries[I - 1].Library, Opt); 1997 auto *OptString = llvm::MDString::get(Context, Opt); 1998 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1999 } 2000 } 2001 } 2002 2003 void CodeGenModule::EmitModuleLinkOptions() { 2004 // Collect the set of all of the modules we want to visit to emit link 2005 // options, which is essentially the imported modules and all of their 2006 // non-explicit child modules. 2007 llvm::SetVector<clang::Module *> LinkModules; 2008 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2009 SmallVector<clang::Module *, 16> Stack; 2010 2011 // Seed the stack with imported modules. 2012 for (Module *M : ImportedModules) { 2013 // Do not add any link flags when an implementation TU of a module imports 2014 // a header of that same module. 2015 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2016 !getLangOpts().isCompilingModule()) 2017 continue; 2018 if (Visited.insert(M).second) 2019 Stack.push_back(M); 2020 } 2021 2022 // Find all of the modules to import, making a little effort to prune 2023 // non-leaf modules. 2024 while (!Stack.empty()) { 2025 clang::Module *Mod = Stack.pop_back_val(); 2026 2027 bool AnyChildren = false; 2028 2029 // Visit the submodules of this module. 2030 for (const auto &SM : Mod->submodules()) { 2031 // Skip explicit children; they need to be explicitly imported to be 2032 // linked against. 2033 if (SM->IsExplicit) 2034 continue; 2035 2036 if (Visited.insert(SM).second) { 2037 Stack.push_back(SM); 2038 AnyChildren = true; 2039 } 2040 } 2041 2042 // We didn't find any children, so add this module to the list of 2043 // modules to link against. 2044 if (!AnyChildren) { 2045 LinkModules.insert(Mod); 2046 } 2047 } 2048 2049 // Add link options for all of the imported modules in reverse topological 2050 // order. We don't do anything to try to order import link flags with respect 2051 // to linker options inserted by things like #pragma comment(). 2052 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2053 Visited.clear(); 2054 for (Module *M : LinkModules) 2055 if (Visited.insert(M).second) 2056 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2057 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2058 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2059 2060 // Add the linker options metadata flag. 2061 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2062 for (auto *MD : LinkerOptionsMetadata) 2063 NMD->addOperand(MD); 2064 } 2065 2066 void CodeGenModule::EmitDeferred() { 2067 // Emit deferred declare target declarations. 2068 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2069 getOpenMPRuntime().emitDeferredTargetDecls(); 2070 2071 // Emit code for any potentially referenced deferred decls. Since a 2072 // previously unused static decl may become used during the generation of code 2073 // for a static function, iterate until no changes are made. 2074 2075 if (!DeferredVTables.empty()) { 2076 EmitDeferredVTables(); 2077 2078 // Emitting a vtable doesn't directly cause more vtables to 2079 // become deferred, although it can cause functions to be 2080 // emitted that then need those vtables. 2081 assert(DeferredVTables.empty()); 2082 } 2083 2084 // Stop if we're out of both deferred vtables and deferred declarations. 2085 if (DeferredDeclsToEmit.empty()) 2086 return; 2087 2088 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2089 // work, it will not interfere with this. 2090 std::vector<GlobalDecl> CurDeclsToEmit; 2091 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2092 2093 for (GlobalDecl &D : CurDeclsToEmit) { 2094 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2095 // to get GlobalValue with exactly the type we need, not something that 2096 // might had been created for another decl with the same mangled name but 2097 // different type. 2098 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2099 GetAddrOfGlobal(D, ForDefinition)); 2100 2101 // In case of different address spaces, we may still get a cast, even with 2102 // IsForDefinition equal to true. Query mangled names table to get 2103 // GlobalValue. 2104 if (!GV) 2105 GV = GetGlobalValue(getMangledName(D)); 2106 2107 // Make sure GetGlobalValue returned non-null. 2108 assert(GV); 2109 2110 // Check to see if we've already emitted this. This is necessary 2111 // for a couple of reasons: first, decls can end up in the 2112 // deferred-decls queue multiple times, and second, decls can end 2113 // up with definitions in unusual ways (e.g. by an extern inline 2114 // function acquiring a strong function redefinition). Just 2115 // ignore these cases. 2116 if (!GV->isDeclaration()) 2117 continue; 2118 2119 // Otherwise, emit the definition and move on to the next one. 2120 EmitGlobalDefinition(D, GV); 2121 2122 // If we found out that we need to emit more decls, do that recursively. 2123 // This has the advantage that the decls are emitted in a DFS and related 2124 // ones are close together, which is convenient for testing. 2125 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2126 EmitDeferred(); 2127 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2128 } 2129 } 2130 } 2131 2132 void CodeGenModule::EmitVTablesOpportunistically() { 2133 // Try to emit external vtables as available_externally if they have emitted 2134 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2135 // is not allowed to create new references to things that need to be emitted 2136 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2137 2138 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2139 && "Only emit opportunistic vtables with optimizations"); 2140 2141 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2142 assert(getVTables().isVTableExternal(RD) && 2143 "This queue should only contain external vtables"); 2144 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2145 VTables.GenerateClassData(RD); 2146 } 2147 OpportunisticVTables.clear(); 2148 } 2149 2150 void CodeGenModule::EmitGlobalAnnotations() { 2151 if (Annotations.empty()) 2152 return; 2153 2154 // Create a new global variable for the ConstantStruct in the Module. 2155 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2156 Annotations[0]->getType(), Annotations.size()), Annotations); 2157 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2158 llvm::GlobalValue::AppendingLinkage, 2159 Array, "llvm.global.annotations"); 2160 gv->setSection(AnnotationSection); 2161 } 2162 2163 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2164 llvm::Constant *&AStr = AnnotationStrings[Str]; 2165 if (AStr) 2166 return AStr; 2167 2168 // Not found yet, create a new global. 2169 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2170 auto *gv = 2171 new llvm::GlobalVariable(getModule(), s->getType(), true, 2172 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2173 gv->setSection(AnnotationSection); 2174 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2175 AStr = gv; 2176 return gv; 2177 } 2178 2179 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2180 SourceManager &SM = getContext().getSourceManager(); 2181 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2182 if (PLoc.isValid()) 2183 return EmitAnnotationString(PLoc.getFilename()); 2184 return EmitAnnotationString(SM.getBufferName(Loc)); 2185 } 2186 2187 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2188 SourceManager &SM = getContext().getSourceManager(); 2189 PresumedLoc PLoc = SM.getPresumedLoc(L); 2190 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2191 SM.getExpansionLineNumber(L); 2192 return llvm::ConstantInt::get(Int32Ty, LineNo); 2193 } 2194 2195 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2196 const AnnotateAttr *AA, 2197 SourceLocation L) { 2198 // Get the globals for file name, annotation, and the line number. 2199 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2200 *UnitGV = EmitAnnotationUnit(L), 2201 *LineNoCst = EmitAnnotationLineNo(L); 2202 2203 // Create the ConstantStruct for the global annotation. 2204 llvm::Constant *Fields[4] = { 2205 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 2206 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2207 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2208 LineNoCst 2209 }; 2210 return llvm::ConstantStruct::getAnon(Fields); 2211 } 2212 2213 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2214 llvm::GlobalValue *GV) { 2215 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2216 // Get the struct elements for these annotations. 2217 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2218 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2219 } 2220 2221 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2222 llvm::Function *Fn, 2223 SourceLocation Loc) const { 2224 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2225 // Blacklist by function name. 2226 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2227 return true; 2228 // Blacklist by location. 2229 if (Loc.isValid()) 2230 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2231 // If location is unknown, this may be a compiler-generated function. Assume 2232 // it's located in the main file. 2233 auto &SM = Context.getSourceManager(); 2234 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2235 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2236 } 2237 return false; 2238 } 2239 2240 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2241 SourceLocation Loc, QualType Ty, 2242 StringRef Category) const { 2243 // For now globals can be blacklisted only in ASan and KASan. 2244 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 2245 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2246 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 2247 if (!EnabledAsanMask) 2248 return false; 2249 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2250 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2251 return true; 2252 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2253 return true; 2254 // Check global type. 2255 if (!Ty.isNull()) { 2256 // Drill down the array types: if global variable of a fixed type is 2257 // blacklisted, we also don't instrument arrays of them. 2258 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2259 Ty = AT->getElementType(); 2260 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2261 // We allow to blacklist only record types (classes, structs etc.) 2262 if (Ty->isRecordType()) { 2263 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2264 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2265 return true; 2266 } 2267 } 2268 return false; 2269 } 2270 2271 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2272 StringRef Category) const { 2273 const auto &XRayFilter = getContext().getXRayFilter(); 2274 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2275 auto Attr = ImbueAttr::NONE; 2276 if (Loc.isValid()) 2277 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2278 if (Attr == ImbueAttr::NONE) 2279 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2280 switch (Attr) { 2281 case ImbueAttr::NONE: 2282 return false; 2283 case ImbueAttr::ALWAYS: 2284 Fn->addFnAttr("function-instrument", "xray-always"); 2285 break; 2286 case ImbueAttr::ALWAYS_ARG1: 2287 Fn->addFnAttr("function-instrument", "xray-always"); 2288 Fn->addFnAttr("xray-log-args", "1"); 2289 break; 2290 case ImbueAttr::NEVER: 2291 Fn->addFnAttr("function-instrument", "xray-never"); 2292 break; 2293 } 2294 return true; 2295 } 2296 2297 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2298 // Never defer when EmitAllDecls is specified. 2299 if (LangOpts.EmitAllDecls) 2300 return true; 2301 2302 if (CodeGenOpts.KeepStaticConsts) { 2303 const auto *VD = dyn_cast<VarDecl>(Global); 2304 if (VD && VD->getType().isConstQualified() && 2305 VD->getStorageDuration() == SD_Static) 2306 return true; 2307 } 2308 2309 return getContext().DeclMustBeEmitted(Global); 2310 } 2311 2312 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2313 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2314 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2315 // Implicit template instantiations may change linkage if they are later 2316 // explicitly instantiated, so they should not be emitted eagerly. 2317 return false; 2318 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2319 if (Context.getInlineVariableDefinitionKind(VD) == 2320 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2321 // A definition of an inline constexpr static data member may change 2322 // linkage later if it's redeclared outside the class. 2323 return false; 2324 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2325 // codegen for global variables, because they may be marked as threadprivate. 2326 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2327 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2328 !isTypeConstant(Global->getType(), false) && 2329 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2330 return false; 2331 2332 return true; 2333 } 2334 2335 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2336 const CXXUuidofExpr* E) { 2337 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2338 // well-formed. 2339 StringRef Uuid = E->getUuidStr(); 2340 std::string Name = "_GUID_" + Uuid.lower(); 2341 std::replace(Name.begin(), Name.end(), '-', '_'); 2342 2343 // The UUID descriptor should be pointer aligned. 2344 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2345 2346 // Look for an existing global. 2347 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2348 return ConstantAddress(GV, Alignment); 2349 2350 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2351 assert(Init && "failed to initialize as constant"); 2352 2353 auto *GV = new llvm::GlobalVariable( 2354 getModule(), Init->getType(), 2355 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2356 if (supportsCOMDAT()) 2357 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2358 setDSOLocal(GV); 2359 return ConstantAddress(GV, Alignment); 2360 } 2361 2362 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2363 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2364 assert(AA && "No alias?"); 2365 2366 CharUnits Alignment = getContext().getDeclAlign(VD); 2367 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2368 2369 // See if there is already something with the target's name in the module. 2370 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2371 if (Entry) { 2372 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2373 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2374 return ConstantAddress(Ptr, Alignment); 2375 } 2376 2377 llvm::Constant *Aliasee; 2378 if (isa<llvm::FunctionType>(DeclTy)) 2379 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2380 GlobalDecl(cast<FunctionDecl>(VD)), 2381 /*ForVTable=*/false); 2382 else 2383 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2384 llvm::PointerType::getUnqual(DeclTy), 2385 nullptr); 2386 2387 auto *F = cast<llvm::GlobalValue>(Aliasee); 2388 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2389 WeakRefReferences.insert(F); 2390 2391 return ConstantAddress(Aliasee, Alignment); 2392 } 2393 2394 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2395 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2396 2397 // Weak references don't produce any output by themselves. 2398 if (Global->hasAttr<WeakRefAttr>()) 2399 return; 2400 2401 // If this is an alias definition (which otherwise looks like a declaration) 2402 // emit it now. 2403 if (Global->hasAttr<AliasAttr>()) 2404 return EmitAliasDefinition(GD); 2405 2406 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2407 if (Global->hasAttr<IFuncAttr>()) 2408 return emitIFuncDefinition(GD); 2409 2410 // If this is a cpu_dispatch multiversion function, emit the resolver. 2411 if (Global->hasAttr<CPUDispatchAttr>()) 2412 return emitCPUDispatchDefinition(GD); 2413 2414 // If this is CUDA, be selective about which declarations we emit. 2415 if (LangOpts.CUDA) { 2416 if (LangOpts.CUDAIsDevice) { 2417 if (!Global->hasAttr<CUDADeviceAttr>() && 2418 !Global->hasAttr<CUDAGlobalAttr>() && 2419 !Global->hasAttr<CUDAConstantAttr>() && 2420 !Global->hasAttr<CUDASharedAttr>()) 2421 return; 2422 } else { 2423 // We need to emit host-side 'shadows' for all global 2424 // device-side variables because the CUDA runtime needs their 2425 // size and host-side address in order to provide access to 2426 // their device-side incarnations. 2427 2428 // So device-only functions are the only things we skip. 2429 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2430 Global->hasAttr<CUDADeviceAttr>()) 2431 return; 2432 2433 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2434 "Expected Variable or Function"); 2435 } 2436 } 2437 2438 if (LangOpts.OpenMP) { 2439 // If this is OpenMP device, check if it is legal to emit this global 2440 // normally. 2441 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2442 return; 2443 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2444 if (MustBeEmitted(Global)) 2445 EmitOMPDeclareReduction(DRD); 2446 return; 2447 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2448 if (MustBeEmitted(Global)) 2449 EmitOMPDeclareMapper(DMD); 2450 return; 2451 } 2452 } 2453 2454 // Ignore declarations, they will be emitted on their first use. 2455 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2456 // Forward declarations are emitted lazily on first use. 2457 if (!FD->doesThisDeclarationHaveABody()) { 2458 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2459 return; 2460 2461 StringRef MangledName = getMangledName(GD); 2462 2463 // Compute the function info and LLVM type. 2464 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2465 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2466 2467 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2468 /*DontDefer=*/false); 2469 return; 2470 } 2471 } else { 2472 const auto *VD = cast<VarDecl>(Global); 2473 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2474 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2475 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2476 if (LangOpts.OpenMP) { 2477 // Emit declaration of the must-be-emitted declare target variable. 2478 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2479 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2480 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2481 (void)GetAddrOfGlobalVar(VD); 2482 } else { 2483 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2484 "link claue expected."); 2485 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2486 } 2487 return; 2488 } 2489 } 2490 // If this declaration may have caused an inline variable definition to 2491 // change linkage, make sure that it's emitted. 2492 if (Context.getInlineVariableDefinitionKind(VD) == 2493 ASTContext::InlineVariableDefinitionKind::Strong) 2494 GetAddrOfGlobalVar(VD); 2495 return; 2496 } 2497 } 2498 2499 // Defer code generation to first use when possible, e.g. if this is an inline 2500 // function. If the global must always be emitted, do it eagerly if possible 2501 // to benefit from cache locality. 2502 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2503 // Emit the definition if it can't be deferred. 2504 EmitGlobalDefinition(GD); 2505 return; 2506 } 2507 2508 // If we're deferring emission of a C++ variable with an 2509 // initializer, remember the order in which it appeared in the file. 2510 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2511 cast<VarDecl>(Global)->hasInit()) { 2512 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2513 CXXGlobalInits.push_back(nullptr); 2514 } 2515 2516 StringRef MangledName = getMangledName(GD); 2517 if (GetGlobalValue(MangledName) != nullptr) { 2518 // The value has already been used and should therefore be emitted. 2519 addDeferredDeclToEmit(GD); 2520 } else if (MustBeEmitted(Global)) { 2521 // The value must be emitted, but cannot be emitted eagerly. 2522 assert(!MayBeEmittedEagerly(Global)); 2523 addDeferredDeclToEmit(GD); 2524 } else { 2525 // Otherwise, remember that we saw a deferred decl with this name. The 2526 // first use of the mangled name will cause it to move into 2527 // DeferredDeclsToEmit. 2528 DeferredDecls[MangledName] = GD; 2529 } 2530 } 2531 2532 // Check if T is a class type with a destructor that's not dllimport. 2533 static bool HasNonDllImportDtor(QualType T) { 2534 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2535 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2536 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2537 return true; 2538 2539 return false; 2540 } 2541 2542 namespace { 2543 struct FunctionIsDirectlyRecursive 2544 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2545 const StringRef Name; 2546 const Builtin::Context &BI; 2547 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2548 : Name(N), BI(C) {} 2549 2550 bool VisitCallExpr(const CallExpr *E) { 2551 const FunctionDecl *FD = E->getDirectCallee(); 2552 if (!FD) 2553 return false; 2554 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2555 if (Attr && Name == Attr->getLabel()) 2556 return true; 2557 unsigned BuiltinID = FD->getBuiltinID(); 2558 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2559 return false; 2560 StringRef BuiltinName = BI.getName(BuiltinID); 2561 if (BuiltinName.startswith("__builtin_") && 2562 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2563 return true; 2564 } 2565 return false; 2566 } 2567 2568 bool VisitStmt(const Stmt *S) { 2569 for (const Stmt *Child : S->children()) 2570 if (Child && this->Visit(Child)) 2571 return true; 2572 return false; 2573 } 2574 }; 2575 2576 // Make sure we're not referencing non-imported vars or functions. 2577 struct DLLImportFunctionVisitor 2578 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2579 bool SafeToInline = true; 2580 2581 bool shouldVisitImplicitCode() const { return true; } 2582 2583 bool VisitVarDecl(VarDecl *VD) { 2584 if (VD->getTLSKind()) { 2585 // A thread-local variable cannot be imported. 2586 SafeToInline = false; 2587 return SafeToInline; 2588 } 2589 2590 // A variable definition might imply a destructor call. 2591 if (VD->isThisDeclarationADefinition()) 2592 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2593 2594 return SafeToInline; 2595 } 2596 2597 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2598 if (const auto *D = E->getTemporary()->getDestructor()) 2599 SafeToInline = D->hasAttr<DLLImportAttr>(); 2600 return SafeToInline; 2601 } 2602 2603 bool VisitDeclRefExpr(DeclRefExpr *E) { 2604 ValueDecl *VD = E->getDecl(); 2605 if (isa<FunctionDecl>(VD)) 2606 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2607 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2608 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2609 return SafeToInline; 2610 } 2611 2612 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2613 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2614 return SafeToInline; 2615 } 2616 2617 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2618 CXXMethodDecl *M = E->getMethodDecl(); 2619 if (!M) { 2620 // Call through a pointer to member function. This is safe to inline. 2621 SafeToInline = true; 2622 } else { 2623 SafeToInline = M->hasAttr<DLLImportAttr>(); 2624 } 2625 return SafeToInline; 2626 } 2627 2628 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2629 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2630 return SafeToInline; 2631 } 2632 2633 bool VisitCXXNewExpr(CXXNewExpr *E) { 2634 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2635 return SafeToInline; 2636 } 2637 }; 2638 } 2639 2640 // isTriviallyRecursive - Check if this function calls another 2641 // decl that, because of the asm attribute or the other decl being a builtin, 2642 // ends up pointing to itself. 2643 bool 2644 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2645 StringRef Name; 2646 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2647 // asm labels are a special kind of mangling we have to support. 2648 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2649 if (!Attr) 2650 return false; 2651 Name = Attr->getLabel(); 2652 } else { 2653 Name = FD->getName(); 2654 } 2655 2656 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2657 const Stmt *Body = FD->getBody(); 2658 return Body ? Walker.Visit(Body) : false; 2659 } 2660 2661 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2662 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2663 return true; 2664 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2665 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2666 return false; 2667 2668 if (F->hasAttr<DLLImportAttr>()) { 2669 // Check whether it would be safe to inline this dllimport function. 2670 DLLImportFunctionVisitor Visitor; 2671 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2672 if (!Visitor.SafeToInline) 2673 return false; 2674 2675 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2676 // Implicit destructor invocations aren't captured in the AST, so the 2677 // check above can't see them. Check for them manually here. 2678 for (const Decl *Member : Dtor->getParent()->decls()) 2679 if (isa<FieldDecl>(Member)) 2680 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2681 return false; 2682 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2683 if (HasNonDllImportDtor(B.getType())) 2684 return false; 2685 } 2686 } 2687 2688 // PR9614. Avoid cases where the source code is lying to us. An available 2689 // externally function should have an equivalent function somewhere else, 2690 // but a function that calls itself is clearly not equivalent to the real 2691 // implementation. 2692 // This happens in glibc's btowc and in some configure checks. 2693 return !isTriviallyRecursive(F); 2694 } 2695 2696 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2697 return CodeGenOpts.OptimizationLevel > 0; 2698 } 2699 2700 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2701 llvm::GlobalValue *GV) { 2702 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2703 2704 if (FD->isCPUSpecificMultiVersion()) { 2705 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2706 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2707 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2708 // Requires multiple emits. 2709 } else 2710 EmitGlobalFunctionDefinition(GD, GV); 2711 } 2712 2713 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2714 const auto *D = cast<ValueDecl>(GD.getDecl()); 2715 2716 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2717 Context.getSourceManager(), 2718 "Generating code for declaration"); 2719 2720 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2721 // At -O0, don't generate IR for functions with available_externally 2722 // linkage. 2723 if (!shouldEmitFunction(GD)) 2724 return; 2725 2726 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2727 std::string Name; 2728 llvm::raw_string_ostream OS(Name); 2729 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2730 /*Qualified=*/true); 2731 return Name; 2732 }); 2733 2734 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2735 // Make sure to emit the definition(s) before we emit the thunks. 2736 // This is necessary for the generation of certain thunks. 2737 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2738 ABI->emitCXXStructor(GD); 2739 else if (FD->isMultiVersion()) 2740 EmitMultiVersionFunctionDefinition(GD, GV); 2741 else 2742 EmitGlobalFunctionDefinition(GD, GV); 2743 2744 if (Method->isVirtual()) 2745 getVTables().EmitThunks(GD); 2746 2747 return; 2748 } 2749 2750 if (FD->isMultiVersion()) 2751 return EmitMultiVersionFunctionDefinition(GD, GV); 2752 return EmitGlobalFunctionDefinition(GD, GV); 2753 } 2754 2755 if (const auto *VD = dyn_cast<VarDecl>(D)) 2756 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2757 2758 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2759 } 2760 2761 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2762 llvm::Function *NewFn); 2763 2764 static unsigned 2765 TargetMVPriority(const TargetInfo &TI, 2766 const CodeGenFunction::MultiVersionResolverOption &RO) { 2767 unsigned Priority = 0; 2768 for (StringRef Feat : RO.Conditions.Features) 2769 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2770 2771 if (!RO.Conditions.Architecture.empty()) 2772 Priority = std::max( 2773 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2774 return Priority; 2775 } 2776 2777 void CodeGenModule::emitMultiVersionFunctions() { 2778 for (GlobalDecl GD : MultiVersionFuncs) { 2779 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2780 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2781 getContext().forEachMultiversionedFunctionVersion( 2782 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2783 GlobalDecl CurGD{ 2784 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2785 StringRef MangledName = getMangledName(CurGD); 2786 llvm::Constant *Func = GetGlobalValue(MangledName); 2787 if (!Func) { 2788 if (CurFD->isDefined()) { 2789 EmitGlobalFunctionDefinition(CurGD, nullptr); 2790 Func = GetGlobalValue(MangledName); 2791 } else { 2792 const CGFunctionInfo &FI = 2793 getTypes().arrangeGlobalDeclaration(GD); 2794 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2795 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2796 /*DontDefer=*/false, ForDefinition); 2797 } 2798 assert(Func && "This should have just been created"); 2799 } 2800 2801 const auto *TA = CurFD->getAttr<TargetAttr>(); 2802 llvm::SmallVector<StringRef, 8> Feats; 2803 TA->getAddedFeatures(Feats); 2804 2805 Options.emplace_back(cast<llvm::Function>(Func), 2806 TA->getArchitecture(), Feats); 2807 }); 2808 2809 llvm::Function *ResolverFunc; 2810 const TargetInfo &TI = getTarget(); 2811 2812 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2813 ResolverFunc = cast<llvm::Function>( 2814 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2815 else 2816 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2817 2818 if (supportsCOMDAT()) 2819 ResolverFunc->setComdat( 2820 getModule().getOrInsertComdat(ResolverFunc->getName())); 2821 2822 llvm::stable_sort( 2823 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2824 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2825 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2826 }); 2827 CodeGenFunction CGF(*this); 2828 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2829 } 2830 } 2831 2832 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2833 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2834 assert(FD && "Not a FunctionDecl?"); 2835 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2836 assert(DD && "Not a cpu_dispatch Function?"); 2837 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2838 2839 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2840 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2841 DeclTy = getTypes().GetFunctionType(FInfo); 2842 } 2843 2844 StringRef ResolverName = getMangledName(GD); 2845 2846 llvm::Type *ResolverType; 2847 GlobalDecl ResolverGD; 2848 if (getTarget().supportsIFunc()) 2849 ResolverType = llvm::FunctionType::get( 2850 llvm::PointerType::get(DeclTy, 2851 Context.getTargetAddressSpace(FD->getType())), 2852 false); 2853 else { 2854 ResolverType = DeclTy; 2855 ResolverGD = GD; 2856 } 2857 2858 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2859 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2860 2861 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2862 const TargetInfo &Target = getTarget(); 2863 unsigned Index = 0; 2864 for (const IdentifierInfo *II : DD->cpus()) { 2865 // Get the name of the target function so we can look it up/create it. 2866 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2867 getCPUSpecificMangling(*this, II->getName()); 2868 2869 llvm::Constant *Func = GetGlobalValue(MangledName); 2870 2871 if (!Func) { 2872 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2873 if (ExistingDecl.getDecl() && 2874 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2875 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2876 Func = GetGlobalValue(MangledName); 2877 } else { 2878 if (!ExistingDecl.getDecl()) 2879 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2880 2881 Func = GetOrCreateLLVMFunction( 2882 MangledName, DeclTy, ExistingDecl, 2883 /*ForVTable=*/false, /*DontDefer=*/true, 2884 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2885 } 2886 } 2887 2888 llvm::SmallVector<StringRef, 32> Features; 2889 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2890 llvm::transform(Features, Features.begin(), 2891 [](StringRef Str) { return Str.substr(1); }); 2892 Features.erase(std::remove_if( 2893 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2894 return !Target.validateCpuSupports(Feat); 2895 }), Features.end()); 2896 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2897 ++Index; 2898 } 2899 2900 llvm::sort( 2901 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2902 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2903 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2904 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2905 }); 2906 2907 // If the list contains multiple 'default' versions, such as when it contains 2908 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2909 // always run on at least a 'pentium'). We do this by deleting the 'least 2910 // advanced' (read, lowest mangling letter). 2911 while (Options.size() > 1 && 2912 CodeGenFunction::GetX86CpuSupportsMask( 2913 (Options.end() - 2)->Conditions.Features) == 0) { 2914 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2915 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2916 if (LHSName.compare(RHSName) < 0) 2917 Options.erase(Options.end() - 2); 2918 else 2919 Options.erase(Options.end() - 1); 2920 } 2921 2922 CodeGenFunction CGF(*this); 2923 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2924 } 2925 2926 /// If a dispatcher for the specified mangled name is not in the module, create 2927 /// and return an llvm Function with the specified type. 2928 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2929 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2930 std::string MangledName = 2931 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2932 2933 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2934 // a separate resolver). 2935 std::string ResolverName = MangledName; 2936 if (getTarget().supportsIFunc()) 2937 ResolverName += ".ifunc"; 2938 else if (FD->isTargetMultiVersion()) 2939 ResolverName += ".resolver"; 2940 2941 // If this already exists, just return that one. 2942 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2943 return ResolverGV; 2944 2945 // Since this is the first time we've created this IFunc, make sure 2946 // that we put this multiversioned function into the list to be 2947 // replaced later if necessary (target multiversioning only). 2948 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2949 MultiVersionFuncs.push_back(GD); 2950 2951 if (getTarget().supportsIFunc()) { 2952 llvm::Type *ResolverType = llvm::FunctionType::get( 2953 llvm::PointerType::get( 2954 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2955 false); 2956 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2957 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2958 /*ForVTable=*/false); 2959 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2960 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2961 GIF->setName(ResolverName); 2962 SetCommonAttributes(FD, GIF); 2963 2964 return GIF; 2965 } 2966 2967 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2968 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2969 assert(isa<llvm::GlobalValue>(Resolver) && 2970 "Resolver should be created for the first time"); 2971 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2972 return Resolver; 2973 } 2974 2975 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2976 /// module, create and return an llvm Function with the specified type. If there 2977 /// is something in the module with the specified name, return it potentially 2978 /// bitcasted to the right type. 2979 /// 2980 /// If D is non-null, it specifies a decl that correspond to this. This is used 2981 /// to set the attributes on the function when it is first created. 2982 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2983 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2984 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2985 ForDefinition_t IsForDefinition) { 2986 const Decl *D = GD.getDecl(); 2987 2988 // Any attempts to use a MultiVersion function should result in retrieving 2989 // the iFunc instead. Name Mangling will handle the rest of the changes. 2990 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2991 // For the device mark the function as one that should be emitted. 2992 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2993 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2994 !DontDefer && !IsForDefinition) { 2995 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2996 GlobalDecl GDDef; 2997 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2998 GDDef = GlobalDecl(CD, GD.getCtorType()); 2999 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3000 GDDef = GlobalDecl(DD, GD.getDtorType()); 3001 else 3002 GDDef = GlobalDecl(FDDef); 3003 EmitGlobal(GDDef); 3004 } 3005 } 3006 3007 if (FD->isMultiVersion()) { 3008 const auto *TA = FD->getAttr<TargetAttr>(); 3009 if (TA && TA->isDefaultVersion()) 3010 UpdateMultiVersionNames(GD, FD); 3011 if (!IsForDefinition) 3012 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3013 } 3014 } 3015 3016 // Lookup the entry, lazily creating it if necessary. 3017 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3018 if (Entry) { 3019 if (WeakRefReferences.erase(Entry)) { 3020 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3021 if (FD && !FD->hasAttr<WeakAttr>()) 3022 Entry->setLinkage(llvm::Function::ExternalLinkage); 3023 } 3024 3025 // Handle dropped DLL attributes. 3026 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3027 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3028 setDSOLocal(Entry); 3029 } 3030 3031 // If there are two attempts to define the same mangled name, issue an 3032 // error. 3033 if (IsForDefinition && !Entry->isDeclaration()) { 3034 GlobalDecl OtherGD; 3035 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3036 // to make sure that we issue an error only once. 3037 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3038 (GD.getCanonicalDecl().getDecl() != 3039 OtherGD.getCanonicalDecl().getDecl()) && 3040 DiagnosedConflictingDefinitions.insert(GD).second) { 3041 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3042 << MangledName; 3043 getDiags().Report(OtherGD.getDecl()->getLocation(), 3044 diag::note_previous_definition); 3045 } 3046 } 3047 3048 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3049 (Entry->getType()->getElementType() == Ty)) { 3050 return Entry; 3051 } 3052 3053 // Make sure the result is of the correct type. 3054 // (If function is requested for a definition, we always need to create a new 3055 // function, not just return a bitcast.) 3056 if (!IsForDefinition) 3057 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3058 } 3059 3060 // This function doesn't have a complete type (for example, the return 3061 // type is an incomplete struct). Use a fake type instead, and make 3062 // sure not to try to set attributes. 3063 bool IsIncompleteFunction = false; 3064 3065 llvm::FunctionType *FTy; 3066 if (isa<llvm::FunctionType>(Ty)) { 3067 FTy = cast<llvm::FunctionType>(Ty); 3068 } else { 3069 FTy = llvm::FunctionType::get(VoidTy, false); 3070 IsIncompleteFunction = true; 3071 } 3072 3073 llvm::Function *F = 3074 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3075 Entry ? StringRef() : MangledName, &getModule()); 3076 3077 // If we already created a function with the same mangled name (but different 3078 // type) before, take its name and add it to the list of functions to be 3079 // replaced with F at the end of CodeGen. 3080 // 3081 // This happens if there is a prototype for a function (e.g. "int f()") and 3082 // then a definition of a different type (e.g. "int f(int x)"). 3083 if (Entry) { 3084 F->takeName(Entry); 3085 3086 // This might be an implementation of a function without a prototype, in 3087 // which case, try to do special replacement of calls which match the new 3088 // prototype. The really key thing here is that we also potentially drop 3089 // arguments from the call site so as to make a direct call, which makes the 3090 // inliner happier and suppresses a number of optimizer warnings (!) about 3091 // dropping arguments. 3092 if (!Entry->use_empty()) { 3093 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3094 Entry->removeDeadConstantUsers(); 3095 } 3096 3097 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3098 F, Entry->getType()->getElementType()->getPointerTo()); 3099 addGlobalValReplacement(Entry, BC); 3100 } 3101 3102 assert(F->getName() == MangledName && "name was uniqued!"); 3103 if (D) 3104 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3105 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3106 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3107 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3108 } 3109 3110 if (!DontDefer) { 3111 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3112 // each other bottoming out with the base dtor. Therefore we emit non-base 3113 // dtors on usage, even if there is no dtor definition in the TU. 3114 if (D && isa<CXXDestructorDecl>(D) && 3115 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3116 GD.getDtorType())) 3117 addDeferredDeclToEmit(GD); 3118 3119 // This is the first use or definition of a mangled name. If there is a 3120 // deferred decl with this name, remember that we need to emit it at the end 3121 // of the file. 3122 auto DDI = DeferredDecls.find(MangledName); 3123 if (DDI != DeferredDecls.end()) { 3124 // Move the potentially referenced deferred decl to the 3125 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3126 // don't need it anymore). 3127 addDeferredDeclToEmit(DDI->second); 3128 DeferredDecls.erase(DDI); 3129 3130 // Otherwise, there are cases we have to worry about where we're 3131 // using a declaration for which we must emit a definition but where 3132 // we might not find a top-level definition: 3133 // - member functions defined inline in their classes 3134 // - friend functions defined inline in some class 3135 // - special member functions with implicit definitions 3136 // If we ever change our AST traversal to walk into class methods, 3137 // this will be unnecessary. 3138 // 3139 // We also don't emit a definition for a function if it's going to be an 3140 // entry in a vtable, unless it's already marked as used. 3141 } else if (getLangOpts().CPlusPlus && D) { 3142 // Look for a declaration that's lexically in a record. 3143 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3144 FD = FD->getPreviousDecl()) { 3145 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3146 if (FD->doesThisDeclarationHaveABody()) { 3147 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3148 break; 3149 } 3150 } 3151 } 3152 } 3153 } 3154 3155 // Make sure the result is of the requested type. 3156 if (!IsIncompleteFunction) { 3157 assert(F->getType()->getElementType() == Ty); 3158 return F; 3159 } 3160 3161 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3162 return llvm::ConstantExpr::getBitCast(F, PTy); 3163 } 3164 3165 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3166 /// non-null, then this function will use the specified type if it has to 3167 /// create it (this occurs when we see a definition of the function). 3168 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3169 llvm::Type *Ty, 3170 bool ForVTable, 3171 bool DontDefer, 3172 ForDefinition_t IsForDefinition) { 3173 // If there was no specific requested type, just convert it now. 3174 if (!Ty) { 3175 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3176 Ty = getTypes().ConvertType(FD->getType()); 3177 } 3178 3179 // Devirtualized destructor calls may come through here instead of via 3180 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3181 // of the complete destructor when necessary. 3182 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3183 if (getTarget().getCXXABI().isMicrosoft() && 3184 GD.getDtorType() == Dtor_Complete && 3185 DD->getParent()->getNumVBases() == 0) 3186 GD = GlobalDecl(DD, Dtor_Base); 3187 } 3188 3189 StringRef MangledName = getMangledName(GD); 3190 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3191 /*IsThunk=*/false, llvm::AttributeList(), 3192 IsForDefinition); 3193 } 3194 3195 static const FunctionDecl * 3196 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3197 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3198 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3199 3200 IdentifierInfo &CII = C.Idents.get(Name); 3201 for (const auto &Result : DC->lookup(&CII)) 3202 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3203 return FD; 3204 3205 if (!C.getLangOpts().CPlusPlus) 3206 return nullptr; 3207 3208 // Demangle the premangled name from getTerminateFn() 3209 IdentifierInfo &CXXII = 3210 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3211 ? C.Idents.get("terminate") 3212 : C.Idents.get(Name); 3213 3214 for (const auto &N : {"__cxxabiv1", "std"}) { 3215 IdentifierInfo &NS = C.Idents.get(N); 3216 for (const auto &Result : DC->lookup(&NS)) { 3217 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3218 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3219 for (const auto &Result : LSD->lookup(&NS)) 3220 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3221 break; 3222 3223 if (ND) 3224 for (const auto &Result : ND->lookup(&CXXII)) 3225 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3226 return FD; 3227 } 3228 } 3229 3230 return nullptr; 3231 } 3232 3233 /// CreateRuntimeFunction - Create a new runtime function with the specified 3234 /// type and name. 3235 llvm::FunctionCallee 3236 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3237 llvm::AttributeList ExtraAttrs, 3238 bool Local) { 3239 llvm::Constant *C = 3240 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3241 /*DontDefer=*/false, /*IsThunk=*/false, 3242 ExtraAttrs); 3243 3244 if (auto *F = dyn_cast<llvm::Function>(C)) { 3245 if (F->empty()) { 3246 F->setCallingConv(getRuntimeCC()); 3247 3248 // In Windows Itanium environments, try to mark runtime functions 3249 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3250 // will link their standard library statically or dynamically. Marking 3251 // functions imported when they are not imported can cause linker errors 3252 // and warnings. 3253 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3254 !getCodeGenOpts().LTOVisibilityPublicStd) { 3255 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3256 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3257 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3258 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3259 } 3260 } 3261 setDSOLocal(F); 3262 } 3263 } 3264 3265 return {FTy, C}; 3266 } 3267 3268 /// isTypeConstant - Determine whether an object of this type can be emitted 3269 /// as a constant. 3270 /// 3271 /// If ExcludeCtor is true, the duration when the object's constructor runs 3272 /// will not be considered. The caller will need to verify that the object is 3273 /// not written to during its construction. 3274 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3275 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3276 return false; 3277 3278 if (Context.getLangOpts().CPlusPlus) { 3279 if (const CXXRecordDecl *Record 3280 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3281 return ExcludeCtor && !Record->hasMutableFields() && 3282 Record->hasTrivialDestructor(); 3283 } 3284 3285 return true; 3286 } 3287 3288 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3289 /// create and return an llvm GlobalVariable with the specified type. If there 3290 /// is something in the module with the specified name, return it potentially 3291 /// bitcasted to the right type. 3292 /// 3293 /// If D is non-null, it specifies a decl that correspond to this. This is used 3294 /// to set the attributes on the global when it is first created. 3295 /// 3296 /// If IsForDefinition is true, it is guaranteed that an actual global with 3297 /// type Ty will be returned, not conversion of a variable with the same 3298 /// mangled name but some other type. 3299 llvm::Constant * 3300 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3301 llvm::PointerType *Ty, 3302 const VarDecl *D, 3303 ForDefinition_t IsForDefinition) { 3304 // Lookup the entry, lazily creating it if necessary. 3305 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3306 if (Entry) { 3307 if (WeakRefReferences.erase(Entry)) { 3308 if (D && !D->hasAttr<WeakAttr>()) 3309 Entry->setLinkage(llvm::Function::ExternalLinkage); 3310 } 3311 3312 // Handle dropped DLL attributes. 3313 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3314 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3315 3316 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3317 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3318 3319 if (Entry->getType() == Ty) 3320 return Entry; 3321 3322 // If there are two attempts to define the same mangled name, issue an 3323 // error. 3324 if (IsForDefinition && !Entry->isDeclaration()) { 3325 GlobalDecl OtherGD; 3326 const VarDecl *OtherD; 3327 3328 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3329 // to make sure that we issue an error only once. 3330 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3331 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3332 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3333 OtherD->hasInit() && 3334 DiagnosedConflictingDefinitions.insert(D).second) { 3335 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3336 << MangledName; 3337 getDiags().Report(OtherGD.getDecl()->getLocation(), 3338 diag::note_previous_definition); 3339 } 3340 } 3341 3342 // Make sure the result is of the correct type. 3343 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3344 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3345 3346 // (If global is requested for a definition, we always need to create a new 3347 // global, not just return a bitcast.) 3348 if (!IsForDefinition) 3349 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3350 } 3351 3352 auto AddrSpace = GetGlobalVarAddressSpace(D); 3353 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3354 3355 auto *GV = new llvm::GlobalVariable( 3356 getModule(), Ty->getElementType(), false, 3357 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3358 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3359 3360 // If we already created a global with the same mangled name (but different 3361 // type) before, take its name and remove it from its parent. 3362 if (Entry) { 3363 GV->takeName(Entry); 3364 3365 if (!Entry->use_empty()) { 3366 llvm::Constant *NewPtrForOldDecl = 3367 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3368 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3369 } 3370 3371 Entry->eraseFromParent(); 3372 } 3373 3374 // This is the first use or definition of a mangled name. If there is a 3375 // deferred decl with this name, remember that we need to emit it at the end 3376 // of the file. 3377 auto DDI = DeferredDecls.find(MangledName); 3378 if (DDI != DeferredDecls.end()) { 3379 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3380 // list, and remove it from DeferredDecls (since we don't need it anymore). 3381 addDeferredDeclToEmit(DDI->second); 3382 DeferredDecls.erase(DDI); 3383 } 3384 3385 // Handle things which are present even on external declarations. 3386 if (D) { 3387 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3388 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3389 3390 // FIXME: This code is overly simple and should be merged with other global 3391 // handling. 3392 GV->setConstant(isTypeConstant(D->getType(), false)); 3393 3394 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3395 3396 setLinkageForGV(GV, D); 3397 3398 if (D->getTLSKind()) { 3399 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3400 CXXThreadLocals.push_back(D); 3401 setTLSMode(GV, *D); 3402 } 3403 3404 setGVProperties(GV, D); 3405 3406 // If required by the ABI, treat declarations of static data members with 3407 // inline initializers as definitions. 3408 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3409 EmitGlobalVarDefinition(D); 3410 } 3411 3412 // Emit section information for extern variables. 3413 if (D->hasExternalStorage()) { 3414 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3415 GV->setSection(SA->getName()); 3416 } 3417 3418 // Handle XCore specific ABI requirements. 3419 if (getTriple().getArch() == llvm::Triple::xcore && 3420 D->getLanguageLinkage() == CLanguageLinkage && 3421 D->getType().isConstant(Context) && 3422 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3423 GV->setSection(".cp.rodata"); 3424 3425 // Check if we a have a const declaration with an initializer, we may be 3426 // able to emit it as available_externally to expose it's value to the 3427 // optimizer. 3428 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3429 D->getType().isConstQualified() && !GV->hasInitializer() && 3430 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3431 const auto *Record = 3432 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3433 bool HasMutableFields = Record && Record->hasMutableFields(); 3434 if (!HasMutableFields) { 3435 const VarDecl *InitDecl; 3436 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3437 if (InitExpr) { 3438 ConstantEmitter emitter(*this); 3439 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3440 if (Init) { 3441 auto *InitType = Init->getType(); 3442 if (GV->getType()->getElementType() != InitType) { 3443 // The type of the initializer does not match the definition. 3444 // This happens when an initializer has a different type from 3445 // the type of the global (because of padding at the end of a 3446 // structure for instance). 3447 GV->setName(StringRef()); 3448 // Make a new global with the correct type, this is now guaranteed 3449 // to work. 3450 auto *NewGV = cast<llvm::GlobalVariable>( 3451 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3452 3453 // Erase the old global, since it is no longer used. 3454 GV->eraseFromParent(); 3455 GV = NewGV; 3456 } else { 3457 GV->setInitializer(Init); 3458 GV->setConstant(true); 3459 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3460 } 3461 emitter.finalize(GV); 3462 } 3463 } 3464 } 3465 } 3466 } 3467 3468 LangAS ExpectedAS = 3469 D ? D->getType().getAddressSpace() 3470 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3471 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3472 Ty->getPointerAddressSpace()); 3473 if (AddrSpace != ExpectedAS) 3474 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3475 ExpectedAS, Ty); 3476 3477 if (GV->isDeclaration()) 3478 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3479 3480 return GV; 3481 } 3482 3483 llvm::Constant * 3484 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3485 ForDefinition_t IsForDefinition) { 3486 const Decl *D = GD.getDecl(); 3487 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3488 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3489 /*DontDefer=*/false, IsForDefinition); 3490 else if (isa<CXXMethodDecl>(D)) { 3491 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3492 cast<CXXMethodDecl>(D)); 3493 auto Ty = getTypes().GetFunctionType(*FInfo); 3494 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3495 IsForDefinition); 3496 } else if (isa<FunctionDecl>(D)) { 3497 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3498 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3499 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3500 IsForDefinition); 3501 } else 3502 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3503 IsForDefinition); 3504 } 3505 3506 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3507 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3508 unsigned Alignment) { 3509 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3510 llvm::GlobalVariable *OldGV = nullptr; 3511 3512 if (GV) { 3513 // Check if the variable has the right type. 3514 if (GV->getType()->getElementType() == Ty) 3515 return GV; 3516 3517 // Because C++ name mangling, the only way we can end up with an already 3518 // existing global with the same name is if it has been declared extern "C". 3519 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3520 OldGV = GV; 3521 } 3522 3523 // Create a new variable. 3524 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3525 Linkage, nullptr, Name); 3526 3527 if (OldGV) { 3528 // Replace occurrences of the old variable if needed. 3529 GV->takeName(OldGV); 3530 3531 if (!OldGV->use_empty()) { 3532 llvm::Constant *NewPtrForOldDecl = 3533 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3534 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3535 } 3536 3537 OldGV->eraseFromParent(); 3538 } 3539 3540 if (supportsCOMDAT() && GV->isWeakForLinker() && 3541 !GV->hasAvailableExternallyLinkage()) 3542 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3543 3544 GV->setAlignment(Alignment); 3545 3546 return GV; 3547 } 3548 3549 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3550 /// given global variable. If Ty is non-null and if the global doesn't exist, 3551 /// then it will be created with the specified type instead of whatever the 3552 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3553 /// that an actual global with type Ty will be returned, not conversion of a 3554 /// variable with the same mangled name but some other type. 3555 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3556 llvm::Type *Ty, 3557 ForDefinition_t IsForDefinition) { 3558 assert(D->hasGlobalStorage() && "Not a global variable"); 3559 QualType ASTTy = D->getType(); 3560 if (!Ty) 3561 Ty = getTypes().ConvertTypeForMem(ASTTy); 3562 3563 llvm::PointerType *PTy = 3564 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3565 3566 StringRef MangledName = getMangledName(D); 3567 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3568 } 3569 3570 /// CreateRuntimeVariable - Create a new runtime global variable with the 3571 /// specified type and name. 3572 llvm::Constant * 3573 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3574 StringRef Name) { 3575 auto *Ret = 3576 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3577 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3578 return Ret; 3579 } 3580 3581 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3582 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3583 3584 StringRef MangledName = getMangledName(D); 3585 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3586 3587 // We already have a definition, not declaration, with the same mangled name. 3588 // Emitting of declaration is not required (and actually overwrites emitted 3589 // definition). 3590 if (GV && !GV->isDeclaration()) 3591 return; 3592 3593 // If we have not seen a reference to this variable yet, place it into the 3594 // deferred declarations table to be emitted if needed later. 3595 if (!MustBeEmitted(D) && !GV) { 3596 DeferredDecls[MangledName] = D; 3597 return; 3598 } 3599 3600 // The tentative definition is the only definition. 3601 EmitGlobalVarDefinition(D); 3602 } 3603 3604 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3605 return Context.toCharUnitsFromBits( 3606 getDataLayout().getTypeStoreSizeInBits(Ty)); 3607 } 3608 3609 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3610 LangAS AddrSpace = LangAS::Default; 3611 if (LangOpts.OpenCL) { 3612 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3613 assert(AddrSpace == LangAS::opencl_global || 3614 AddrSpace == LangAS::opencl_constant || 3615 AddrSpace == LangAS::opencl_local || 3616 AddrSpace >= LangAS::FirstTargetAddressSpace); 3617 return AddrSpace; 3618 } 3619 3620 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3621 if (D && D->hasAttr<CUDAConstantAttr>()) 3622 return LangAS::cuda_constant; 3623 else if (D && D->hasAttr<CUDASharedAttr>()) 3624 return LangAS::cuda_shared; 3625 else if (D && D->hasAttr<CUDADeviceAttr>()) 3626 return LangAS::cuda_device; 3627 else if (D && D->getType().isConstQualified()) 3628 return LangAS::cuda_constant; 3629 else 3630 return LangAS::cuda_device; 3631 } 3632 3633 if (LangOpts.OpenMP) { 3634 LangAS AS; 3635 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3636 return AS; 3637 } 3638 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3639 } 3640 3641 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3642 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3643 if (LangOpts.OpenCL) 3644 return LangAS::opencl_constant; 3645 if (auto AS = getTarget().getConstantAddressSpace()) 3646 return AS.getValue(); 3647 return LangAS::Default; 3648 } 3649 3650 // In address space agnostic languages, string literals are in default address 3651 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3652 // emitted in constant address space in LLVM IR. To be consistent with other 3653 // parts of AST, string literal global variables in constant address space 3654 // need to be casted to default address space before being put into address 3655 // map and referenced by other part of CodeGen. 3656 // In OpenCL, string literals are in constant address space in AST, therefore 3657 // they should not be casted to default address space. 3658 static llvm::Constant * 3659 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3660 llvm::GlobalVariable *GV) { 3661 llvm::Constant *Cast = GV; 3662 if (!CGM.getLangOpts().OpenCL) { 3663 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3664 if (AS != LangAS::Default) 3665 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3666 CGM, GV, AS.getValue(), LangAS::Default, 3667 GV->getValueType()->getPointerTo( 3668 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3669 } 3670 } 3671 return Cast; 3672 } 3673 3674 template<typename SomeDecl> 3675 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3676 llvm::GlobalValue *GV) { 3677 if (!getLangOpts().CPlusPlus) 3678 return; 3679 3680 // Must have 'used' attribute, or else inline assembly can't rely on 3681 // the name existing. 3682 if (!D->template hasAttr<UsedAttr>()) 3683 return; 3684 3685 // Must have internal linkage and an ordinary name. 3686 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3687 return; 3688 3689 // Must be in an extern "C" context. Entities declared directly within 3690 // a record are not extern "C" even if the record is in such a context. 3691 const SomeDecl *First = D->getFirstDecl(); 3692 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3693 return; 3694 3695 // OK, this is an internal linkage entity inside an extern "C" linkage 3696 // specification. Make a note of that so we can give it the "expected" 3697 // mangled name if nothing else is using that name. 3698 std::pair<StaticExternCMap::iterator, bool> R = 3699 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3700 3701 // If we have multiple internal linkage entities with the same name 3702 // in extern "C" regions, none of them gets that name. 3703 if (!R.second) 3704 R.first->second = nullptr; 3705 } 3706 3707 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3708 if (!CGM.supportsCOMDAT()) 3709 return false; 3710 3711 if (D.hasAttr<SelectAnyAttr>()) 3712 return true; 3713 3714 GVALinkage Linkage; 3715 if (auto *VD = dyn_cast<VarDecl>(&D)) 3716 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3717 else 3718 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3719 3720 switch (Linkage) { 3721 case GVA_Internal: 3722 case GVA_AvailableExternally: 3723 case GVA_StrongExternal: 3724 return false; 3725 case GVA_DiscardableODR: 3726 case GVA_StrongODR: 3727 return true; 3728 } 3729 llvm_unreachable("No such linkage"); 3730 } 3731 3732 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3733 llvm::GlobalObject &GO) { 3734 if (!shouldBeInCOMDAT(*this, D)) 3735 return; 3736 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3737 } 3738 3739 /// Pass IsTentative as true if you want to create a tentative definition. 3740 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3741 bool IsTentative) { 3742 // OpenCL global variables of sampler type are translated to function calls, 3743 // therefore no need to be translated. 3744 QualType ASTTy = D->getType(); 3745 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3746 return; 3747 3748 // If this is OpenMP device, check if it is legal to emit this global 3749 // normally. 3750 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3751 OpenMPRuntime->emitTargetGlobalVariable(D)) 3752 return; 3753 3754 llvm::Constant *Init = nullptr; 3755 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3756 bool NeedsGlobalCtor = false; 3757 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3758 3759 const VarDecl *InitDecl; 3760 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3761 3762 Optional<ConstantEmitter> emitter; 3763 3764 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3765 // as part of their declaration." Sema has already checked for 3766 // error cases, so we just need to set Init to UndefValue. 3767 bool IsCUDASharedVar = 3768 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3769 // Shadows of initialized device-side global variables are also left 3770 // undefined. 3771 bool IsCUDAShadowVar = 3772 !getLangOpts().CUDAIsDevice && 3773 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3774 D->hasAttr<CUDASharedAttr>()); 3775 if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar)) 3776 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3777 else if (!InitExpr) { 3778 // This is a tentative definition; tentative definitions are 3779 // implicitly initialized with { 0 }. 3780 // 3781 // Note that tentative definitions are only emitted at the end of 3782 // a translation unit, so they should never have incomplete 3783 // type. In addition, EmitTentativeDefinition makes sure that we 3784 // never attempt to emit a tentative definition if a real one 3785 // exists. A use may still exists, however, so we still may need 3786 // to do a RAUW. 3787 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3788 Init = EmitNullConstant(D->getType()); 3789 } else { 3790 initializedGlobalDecl = GlobalDecl(D); 3791 emitter.emplace(*this); 3792 Init = emitter->tryEmitForInitializer(*InitDecl); 3793 3794 if (!Init) { 3795 QualType T = InitExpr->getType(); 3796 if (D->getType()->isReferenceType()) 3797 T = D->getType(); 3798 3799 if (getLangOpts().CPlusPlus) { 3800 Init = EmitNullConstant(T); 3801 NeedsGlobalCtor = true; 3802 } else { 3803 ErrorUnsupported(D, "static initializer"); 3804 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3805 } 3806 } else { 3807 // We don't need an initializer, so remove the entry for the delayed 3808 // initializer position (just in case this entry was delayed) if we 3809 // also don't need to register a destructor. 3810 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3811 DelayedCXXInitPosition.erase(D); 3812 } 3813 } 3814 3815 llvm::Type* InitType = Init->getType(); 3816 llvm::Constant *Entry = 3817 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3818 3819 // Strip off a bitcast if we got one back. 3820 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3821 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3822 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3823 // All zero index gep. 3824 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3825 Entry = CE->getOperand(0); 3826 } 3827 3828 // Entry is now either a Function or GlobalVariable. 3829 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3830 3831 // We have a definition after a declaration with the wrong type. 3832 // We must make a new GlobalVariable* and update everything that used OldGV 3833 // (a declaration or tentative definition) with the new GlobalVariable* 3834 // (which will be a definition). 3835 // 3836 // This happens if there is a prototype for a global (e.g. 3837 // "extern int x[];") and then a definition of a different type (e.g. 3838 // "int x[10];"). This also happens when an initializer has a different type 3839 // from the type of the global (this happens with unions). 3840 if (!GV || GV->getType()->getElementType() != InitType || 3841 GV->getType()->getAddressSpace() != 3842 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3843 3844 // Move the old entry aside so that we'll create a new one. 3845 Entry->setName(StringRef()); 3846 3847 // Make a new global with the correct type, this is now guaranteed to work. 3848 GV = cast<llvm::GlobalVariable>( 3849 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3850 3851 // Replace all uses of the old global with the new global 3852 llvm::Constant *NewPtrForOldDecl = 3853 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3854 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3855 3856 // Erase the old global, since it is no longer used. 3857 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3858 } 3859 3860 MaybeHandleStaticInExternC(D, GV); 3861 3862 if (D->hasAttr<AnnotateAttr>()) 3863 AddGlobalAnnotations(D, GV); 3864 3865 // Set the llvm linkage type as appropriate. 3866 llvm::GlobalValue::LinkageTypes Linkage = 3867 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3868 3869 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3870 // the device. [...]" 3871 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3872 // __device__, declares a variable that: [...] 3873 // Is accessible from all the threads within the grid and from the host 3874 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3875 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3876 if (GV && LangOpts.CUDA) { 3877 if (LangOpts.CUDAIsDevice) { 3878 if (Linkage != llvm::GlobalValue::InternalLinkage && 3879 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 3880 GV->setExternallyInitialized(true); 3881 } else { 3882 // Host-side shadows of external declarations of device-side 3883 // global variables become internal definitions. These have to 3884 // be internal in order to prevent name conflicts with global 3885 // host variables with the same name in a different TUs. 3886 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3887 Linkage = llvm::GlobalValue::InternalLinkage; 3888 3889 // Shadow variables and their properties must be registered 3890 // with CUDA runtime. 3891 unsigned Flags = 0; 3892 if (!D->hasDefinition()) 3893 Flags |= CGCUDARuntime::ExternDeviceVar; 3894 if (D->hasAttr<CUDAConstantAttr>()) 3895 Flags |= CGCUDARuntime::ConstantDeviceVar; 3896 // Extern global variables will be registered in the TU where they are 3897 // defined. 3898 if (!D->hasExternalStorage()) 3899 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 3900 } else if (D->hasAttr<CUDASharedAttr>()) 3901 // __shared__ variables are odd. Shadows do get created, but 3902 // they are not registered with the CUDA runtime, so they 3903 // can't really be used to access their device-side 3904 // counterparts. It's not clear yet whether it's nvcc's bug or 3905 // a feature, but we've got to do the same for compatibility. 3906 Linkage = llvm::GlobalValue::InternalLinkage; 3907 } 3908 } 3909 3910 GV->setInitializer(Init); 3911 if (emitter) emitter->finalize(GV); 3912 3913 // If it is safe to mark the global 'constant', do so now. 3914 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3915 isTypeConstant(D->getType(), true)); 3916 3917 // If it is in a read-only section, mark it 'constant'. 3918 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3919 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3920 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3921 GV->setConstant(true); 3922 } 3923 3924 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3925 3926 3927 // On Darwin, if the normal linkage of a C++ thread_local variable is 3928 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3929 // copies within a linkage unit; otherwise, the backing variable has 3930 // internal linkage and all accesses should just be calls to the 3931 // Itanium-specified entry point, which has the normal linkage of the 3932 // variable. This is to preserve the ability to change the implementation 3933 // behind the scenes. 3934 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3935 Context.getTargetInfo().getTriple().isOSDarwin() && 3936 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3937 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3938 Linkage = llvm::GlobalValue::InternalLinkage; 3939 3940 GV->setLinkage(Linkage); 3941 if (D->hasAttr<DLLImportAttr>()) 3942 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3943 else if (D->hasAttr<DLLExportAttr>()) 3944 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3945 else 3946 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3947 3948 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3949 // common vars aren't constant even if declared const. 3950 GV->setConstant(false); 3951 // Tentative definition of global variables may be initialized with 3952 // non-zero null pointers. In this case they should have weak linkage 3953 // since common linkage must have zero initializer and must not have 3954 // explicit section therefore cannot have non-zero initial value. 3955 if (!GV->getInitializer()->isNullValue()) 3956 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3957 } 3958 3959 setNonAliasAttributes(D, GV); 3960 3961 if (D->getTLSKind() && !GV->isThreadLocal()) { 3962 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3963 CXXThreadLocals.push_back(D); 3964 setTLSMode(GV, *D); 3965 } 3966 3967 maybeSetTrivialComdat(*D, *GV); 3968 3969 // Emit the initializer function if necessary. 3970 if (NeedsGlobalCtor || NeedsGlobalDtor) 3971 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3972 3973 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3974 3975 // Emit global variable debug information. 3976 if (CGDebugInfo *DI = getModuleDebugInfo()) 3977 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3978 DI->EmitGlobalVariable(GV, D); 3979 } 3980 3981 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3982 CodeGenModule &CGM, const VarDecl *D, 3983 bool NoCommon) { 3984 // Don't give variables common linkage if -fno-common was specified unless it 3985 // was overridden by a NoCommon attribute. 3986 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3987 return true; 3988 3989 // C11 6.9.2/2: 3990 // A declaration of an identifier for an object that has file scope without 3991 // an initializer, and without a storage-class specifier or with the 3992 // storage-class specifier static, constitutes a tentative definition. 3993 if (D->getInit() || D->hasExternalStorage()) 3994 return true; 3995 3996 // A variable cannot be both common and exist in a section. 3997 if (D->hasAttr<SectionAttr>()) 3998 return true; 3999 4000 // A variable cannot be both common and exist in a section. 4001 // We don't try to determine which is the right section in the front-end. 4002 // If no specialized section name is applicable, it will resort to default. 4003 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4004 D->hasAttr<PragmaClangDataSectionAttr>() || 4005 D->hasAttr<PragmaClangRodataSectionAttr>()) 4006 return true; 4007 4008 // Thread local vars aren't considered common linkage. 4009 if (D->getTLSKind()) 4010 return true; 4011 4012 // Tentative definitions marked with WeakImportAttr are true definitions. 4013 if (D->hasAttr<WeakImportAttr>()) 4014 return true; 4015 4016 // A variable cannot be both common and exist in a comdat. 4017 if (shouldBeInCOMDAT(CGM, *D)) 4018 return true; 4019 4020 // Declarations with a required alignment do not have common linkage in MSVC 4021 // mode. 4022 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4023 if (D->hasAttr<AlignedAttr>()) 4024 return true; 4025 QualType VarType = D->getType(); 4026 if (Context.isAlignmentRequired(VarType)) 4027 return true; 4028 4029 if (const auto *RT = VarType->getAs<RecordType>()) { 4030 const RecordDecl *RD = RT->getDecl(); 4031 for (const FieldDecl *FD : RD->fields()) { 4032 if (FD->isBitField()) 4033 continue; 4034 if (FD->hasAttr<AlignedAttr>()) 4035 return true; 4036 if (Context.isAlignmentRequired(FD->getType())) 4037 return true; 4038 } 4039 } 4040 } 4041 4042 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4043 // common symbols, so symbols with greater alignment requirements cannot be 4044 // common. 4045 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4046 // alignments for common symbols via the aligncomm directive, so this 4047 // restriction only applies to MSVC environments. 4048 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4049 Context.getTypeAlignIfKnown(D->getType()) > 4050 Context.toBits(CharUnits::fromQuantity(32))) 4051 return true; 4052 4053 return false; 4054 } 4055 4056 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4057 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4058 if (Linkage == GVA_Internal) 4059 return llvm::Function::InternalLinkage; 4060 4061 if (D->hasAttr<WeakAttr>()) { 4062 if (IsConstantVariable) 4063 return llvm::GlobalVariable::WeakODRLinkage; 4064 else 4065 return llvm::GlobalVariable::WeakAnyLinkage; 4066 } 4067 4068 if (const auto *FD = D->getAsFunction()) 4069 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4070 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4071 4072 // We are guaranteed to have a strong definition somewhere else, 4073 // so we can use available_externally linkage. 4074 if (Linkage == GVA_AvailableExternally) 4075 return llvm::GlobalValue::AvailableExternallyLinkage; 4076 4077 // Note that Apple's kernel linker doesn't support symbol 4078 // coalescing, so we need to avoid linkonce and weak linkages there. 4079 // Normally, this means we just map to internal, but for explicit 4080 // instantiations we'll map to external. 4081 4082 // In C++, the compiler has to emit a definition in every translation unit 4083 // that references the function. We should use linkonce_odr because 4084 // a) if all references in this translation unit are optimized away, we 4085 // don't need to codegen it. b) if the function persists, it needs to be 4086 // merged with other definitions. c) C++ has the ODR, so we know the 4087 // definition is dependable. 4088 if (Linkage == GVA_DiscardableODR) 4089 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4090 : llvm::Function::InternalLinkage; 4091 4092 // An explicit instantiation of a template has weak linkage, since 4093 // explicit instantiations can occur in multiple translation units 4094 // and must all be equivalent. However, we are not allowed to 4095 // throw away these explicit instantiations. 4096 // 4097 // We don't currently support CUDA device code spread out across multiple TUs, 4098 // so say that CUDA templates are either external (for kernels) or internal. 4099 // This lets llvm perform aggressive inter-procedural optimizations. 4100 if (Linkage == GVA_StrongODR) { 4101 if (Context.getLangOpts().AppleKext) 4102 return llvm::Function::ExternalLinkage; 4103 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4104 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4105 : llvm::Function::InternalLinkage; 4106 return llvm::Function::WeakODRLinkage; 4107 } 4108 4109 // C++ doesn't have tentative definitions and thus cannot have common 4110 // linkage. 4111 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4112 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4113 CodeGenOpts.NoCommon)) 4114 return llvm::GlobalVariable::CommonLinkage; 4115 4116 // selectany symbols are externally visible, so use weak instead of 4117 // linkonce. MSVC optimizes away references to const selectany globals, so 4118 // all definitions should be the same and ODR linkage should be used. 4119 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4120 if (D->hasAttr<SelectAnyAttr>()) 4121 return llvm::GlobalVariable::WeakODRLinkage; 4122 4123 // Otherwise, we have strong external linkage. 4124 assert(Linkage == GVA_StrongExternal); 4125 return llvm::GlobalVariable::ExternalLinkage; 4126 } 4127 4128 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4129 const VarDecl *VD, bool IsConstant) { 4130 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4131 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4132 } 4133 4134 /// Replace the uses of a function that was declared with a non-proto type. 4135 /// We want to silently drop extra arguments from call sites 4136 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4137 llvm::Function *newFn) { 4138 // Fast path. 4139 if (old->use_empty()) return; 4140 4141 llvm::Type *newRetTy = newFn->getReturnType(); 4142 SmallVector<llvm::Value*, 4> newArgs; 4143 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4144 4145 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4146 ui != ue; ) { 4147 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4148 llvm::User *user = use->getUser(); 4149 4150 // Recognize and replace uses of bitcasts. Most calls to 4151 // unprototyped functions will use bitcasts. 4152 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4153 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4154 replaceUsesOfNonProtoConstant(bitcast, newFn); 4155 continue; 4156 } 4157 4158 // Recognize calls to the function. 4159 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4160 if (!callSite) continue; 4161 if (!callSite->isCallee(&*use)) 4162 continue; 4163 4164 // If the return types don't match exactly, then we can't 4165 // transform this call unless it's dead. 4166 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4167 continue; 4168 4169 // Get the call site's attribute list. 4170 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4171 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4172 4173 // If the function was passed too few arguments, don't transform. 4174 unsigned newNumArgs = newFn->arg_size(); 4175 if (callSite->arg_size() < newNumArgs) 4176 continue; 4177 4178 // If extra arguments were passed, we silently drop them. 4179 // If any of the types mismatch, we don't transform. 4180 unsigned argNo = 0; 4181 bool dontTransform = false; 4182 for (llvm::Argument &A : newFn->args()) { 4183 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4184 dontTransform = true; 4185 break; 4186 } 4187 4188 // Add any parameter attributes. 4189 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4190 argNo++; 4191 } 4192 if (dontTransform) 4193 continue; 4194 4195 // Okay, we can transform this. Create the new call instruction and copy 4196 // over the required information. 4197 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4198 4199 // Copy over any operand bundles. 4200 callSite->getOperandBundlesAsDefs(newBundles); 4201 4202 llvm::CallBase *newCall; 4203 if (dyn_cast<llvm::CallInst>(callSite)) { 4204 newCall = 4205 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4206 } else { 4207 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4208 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4209 oldInvoke->getUnwindDest(), newArgs, 4210 newBundles, "", callSite); 4211 } 4212 newArgs.clear(); // for the next iteration 4213 4214 if (!newCall->getType()->isVoidTy()) 4215 newCall->takeName(callSite); 4216 newCall->setAttributes(llvm::AttributeList::get( 4217 newFn->getContext(), oldAttrs.getFnAttributes(), 4218 oldAttrs.getRetAttributes(), newArgAttrs)); 4219 newCall->setCallingConv(callSite->getCallingConv()); 4220 4221 // Finally, remove the old call, replacing any uses with the new one. 4222 if (!callSite->use_empty()) 4223 callSite->replaceAllUsesWith(newCall); 4224 4225 // Copy debug location attached to CI. 4226 if (callSite->getDebugLoc()) 4227 newCall->setDebugLoc(callSite->getDebugLoc()); 4228 4229 callSite->eraseFromParent(); 4230 } 4231 } 4232 4233 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4234 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4235 /// existing call uses of the old function in the module, this adjusts them to 4236 /// call the new function directly. 4237 /// 4238 /// This is not just a cleanup: the always_inline pass requires direct calls to 4239 /// functions to be able to inline them. If there is a bitcast in the way, it 4240 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4241 /// run at -O0. 4242 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4243 llvm::Function *NewFn) { 4244 // If we're redefining a global as a function, don't transform it. 4245 if (!isa<llvm::Function>(Old)) return; 4246 4247 replaceUsesOfNonProtoConstant(Old, NewFn); 4248 } 4249 4250 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4251 auto DK = VD->isThisDeclarationADefinition(); 4252 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4253 return; 4254 4255 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4256 // If we have a definition, this might be a deferred decl. If the 4257 // instantiation is explicit, make sure we emit it at the end. 4258 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4259 GetAddrOfGlobalVar(VD); 4260 4261 EmitTopLevelDecl(VD); 4262 } 4263 4264 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4265 llvm::GlobalValue *GV) { 4266 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4267 4268 // Compute the function info and LLVM type. 4269 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4270 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4271 4272 // Get or create the prototype for the function. 4273 if (!GV || (GV->getType()->getElementType() != Ty)) 4274 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4275 /*DontDefer=*/true, 4276 ForDefinition)); 4277 4278 // Already emitted. 4279 if (!GV->isDeclaration()) 4280 return; 4281 4282 // We need to set linkage and visibility on the function before 4283 // generating code for it because various parts of IR generation 4284 // want to propagate this information down (e.g. to local static 4285 // declarations). 4286 auto *Fn = cast<llvm::Function>(GV); 4287 setFunctionLinkage(GD, Fn); 4288 4289 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4290 setGVProperties(Fn, GD); 4291 4292 MaybeHandleStaticInExternC(D, Fn); 4293 4294 4295 maybeSetTrivialComdat(*D, *Fn); 4296 4297 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4298 4299 setNonAliasAttributes(GD, Fn); 4300 SetLLVMFunctionAttributesForDefinition(D, Fn); 4301 4302 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4303 AddGlobalCtor(Fn, CA->getPriority()); 4304 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4305 AddGlobalDtor(Fn, DA->getPriority()); 4306 if (D->hasAttr<AnnotateAttr>()) 4307 AddGlobalAnnotations(D, Fn); 4308 } 4309 4310 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4311 const auto *D = cast<ValueDecl>(GD.getDecl()); 4312 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4313 assert(AA && "Not an alias?"); 4314 4315 StringRef MangledName = getMangledName(GD); 4316 4317 if (AA->getAliasee() == MangledName) { 4318 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4319 return; 4320 } 4321 4322 // If there is a definition in the module, then it wins over the alias. 4323 // This is dubious, but allow it to be safe. Just ignore the alias. 4324 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4325 if (Entry && !Entry->isDeclaration()) 4326 return; 4327 4328 Aliases.push_back(GD); 4329 4330 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4331 4332 // Create a reference to the named value. This ensures that it is emitted 4333 // if a deferred decl. 4334 llvm::Constant *Aliasee; 4335 if (isa<llvm::FunctionType>(DeclTy)) 4336 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4337 /*ForVTable=*/false); 4338 else 4339 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4340 llvm::PointerType::getUnqual(DeclTy), 4341 /*D=*/nullptr); 4342 4343 // Create the new alias itself, but don't set a name yet. 4344 auto *GA = llvm::GlobalAlias::create( 4345 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4346 4347 if (Entry) { 4348 if (GA->getAliasee() == Entry) { 4349 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4350 return; 4351 } 4352 4353 assert(Entry->isDeclaration()); 4354 4355 // If there is a declaration in the module, then we had an extern followed 4356 // by the alias, as in: 4357 // extern int test6(); 4358 // ... 4359 // int test6() __attribute__((alias("test7"))); 4360 // 4361 // Remove it and replace uses of it with the alias. 4362 GA->takeName(Entry); 4363 4364 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4365 Entry->getType())); 4366 Entry->eraseFromParent(); 4367 } else { 4368 GA->setName(MangledName); 4369 } 4370 4371 // Set attributes which are particular to an alias; this is a 4372 // specialization of the attributes which may be set on a global 4373 // variable/function. 4374 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4375 D->isWeakImported()) { 4376 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4377 } 4378 4379 if (const auto *VD = dyn_cast<VarDecl>(D)) 4380 if (VD->getTLSKind()) 4381 setTLSMode(GA, *VD); 4382 4383 SetCommonAttributes(GD, GA); 4384 } 4385 4386 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4387 const auto *D = cast<ValueDecl>(GD.getDecl()); 4388 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4389 assert(IFA && "Not an ifunc?"); 4390 4391 StringRef MangledName = getMangledName(GD); 4392 4393 if (IFA->getResolver() == MangledName) { 4394 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4395 return; 4396 } 4397 4398 // Report an error if some definition overrides ifunc. 4399 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4400 if (Entry && !Entry->isDeclaration()) { 4401 GlobalDecl OtherGD; 4402 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4403 DiagnosedConflictingDefinitions.insert(GD).second) { 4404 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4405 << MangledName; 4406 Diags.Report(OtherGD.getDecl()->getLocation(), 4407 diag::note_previous_definition); 4408 } 4409 return; 4410 } 4411 4412 Aliases.push_back(GD); 4413 4414 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4415 llvm::Constant *Resolver = 4416 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4417 /*ForVTable=*/false); 4418 llvm::GlobalIFunc *GIF = 4419 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4420 "", Resolver, &getModule()); 4421 if (Entry) { 4422 if (GIF->getResolver() == Entry) { 4423 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4424 return; 4425 } 4426 assert(Entry->isDeclaration()); 4427 4428 // If there is a declaration in the module, then we had an extern followed 4429 // by the ifunc, as in: 4430 // extern int test(); 4431 // ... 4432 // int test() __attribute__((ifunc("resolver"))); 4433 // 4434 // Remove it and replace uses of it with the ifunc. 4435 GIF->takeName(Entry); 4436 4437 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4438 Entry->getType())); 4439 Entry->eraseFromParent(); 4440 } else 4441 GIF->setName(MangledName); 4442 4443 SetCommonAttributes(GD, GIF); 4444 } 4445 4446 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4447 ArrayRef<llvm::Type*> Tys) { 4448 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4449 Tys); 4450 } 4451 4452 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4453 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4454 const StringLiteral *Literal, bool TargetIsLSB, 4455 bool &IsUTF16, unsigned &StringLength) { 4456 StringRef String = Literal->getString(); 4457 unsigned NumBytes = String.size(); 4458 4459 // Check for simple case. 4460 if (!Literal->containsNonAsciiOrNull()) { 4461 StringLength = NumBytes; 4462 return *Map.insert(std::make_pair(String, nullptr)).first; 4463 } 4464 4465 // Otherwise, convert the UTF8 literals into a string of shorts. 4466 IsUTF16 = true; 4467 4468 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4469 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4470 llvm::UTF16 *ToPtr = &ToBuf[0]; 4471 4472 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4473 ToPtr + NumBytes, llvm::strictConversion); 4474 4475 // ConvertUTF8toUTF16 returns the length in ToPtr. 4476 StringLength = ToPtr - &ToBuf[0]; 4477 4478 // Add an explicit null. 4479 *ToPtr = 0; 4480 return *Map.insert(std::make_pair( 4481 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4482 (StringLength + 1) * 2), 4483 nullptr)).first; 4484 } 4485 4486 ConstantAddress 4487 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4488 unsigned StringLength = 0; 4489 bool isUTF16 = false; 4490 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4491 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4492 getDataLayout().isLittleEndian(), isUTF16, 4493 StringLength); 4494 4495 if (auto *C = Entry.second) 4496 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4497 4498 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4499 llvm::Constant *Zeros[] = { Zero, Zero }; 4500 4501 const ASTContext &Context = getContext(); 4502 const llvm::Triple &Triple = getTriple(); 4503 4504 const auto CFRuntime = getLangOpts().CFRuntime; 4505 const bool IsSwiftABI = 4506 static_cast<unsigned>(CFRuntime) >= 4507 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4508 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4509 4510 // If we don't already have it, get __CFConstantStringClassReference. 4511 if (!CFConstantStringClassRef) { 4512 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4513 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4514 Ty = llvm::ArrayType::get(Ty, 0); 4515 4516 switch (CFRuntime) { 4517 default: break; 4518 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4519 case LangOptions::CoreFoundationABI::Swift5_0: 4520 CFConstantStringClassName = 4521 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4522 : "$s10Foundation19_NSCFConstantStringCN"; 4523 Ty = IntPtrTy; 4524 break; 4525 case LangOptions::CoreFoundationABI::Swift4_2: 4526 CFConstantStringClassName = 4527 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4528 : "$S10Foundation19_NSCFConstantStringCN"; 4529 Ty = IntPtrTy; 4530 break; 4531 case LangOptions::CoreFoundationABI::Swift4_1: 4532 CFConstantStringClassName = 4533 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4534 : "__T010Foundation19_NSCFConstantStringCN"; 4535 Ty = IntPtrTy; 4536 break; 4537 } 4538 4539 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4540 4541 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4542 llvm::GlobalValue *GV = nullptr; 4543 4544 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4545 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4546 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4547 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4548 4549 const VarDecl *VD = nullptr; 4550 for (const auto &Result : DC->lookup(&II)) 4551 if ((VD = dyn_cast<VarDecl>(Result))) 4552 break; 4553 4554 if (Triple.isOSBinFormatELF()) { 4555 if (!VD) 4556 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4557 } else { 4558 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4559 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4560 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4561 else 4562 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4563 } 4564 4565 setDSOLocal(GV); 4566 } 4567 } 4568 4569 // Decay array -> ptr 4570 CFConstantStringClassRef = 4571 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4572 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4573 } 4574 4575 QualType CFTy = Context.getCFConstantStringType(); 4576 4577 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4578 4579 ConstantInitBuilder Builder(*this); 4580 auto Fields = Builder.beginStruct(STy); 4581 4582 // Class pointer. 4583 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4584 4585 // Flags. 4586 if (IsSwiftABI) { 4587 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4588 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4589 } else { 4590 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4591 } 4592 4593 // String pointer. 4594 llvm::Constant *C = nullptr; 4595 if (isUTF16) { 4596 auto Arr = llvm::makeArrayRef( 4597 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4598 Entry.first().size() / 2); 4599 C = llvm::ConstantDataArray::get(VMContext, Arr); 4600 } else { 4601 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4602 } 4603 4604 // Note: -fwritable-strings doesn't make the backing store strings of 4605 // CFStrings writable. (See <rdar://problem/10657500>) 4606 auto *GV = 4607 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4608 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4609 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4610 // Don't enforce the target's minimum global alignment, since the only use 4611 // of the string is via this class initializer. 4612 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4613 : Context.getTypeAlignInChars(Context.CharTy); 4614 GV->setAlignment(Align.getQuantity()); 4615 4616 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4617 // Without it LLVM can merge the string with a non unnamed_addr one during 4618 // LTO. Doing that changes the section it ends in, which surprises ld64. 4619 if (Triple.isOSBinFormatMachO()) 4620 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4621 : "__TEXT,__cstring,cstring_literals"); 4622 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4623 // the static linker to adjust permissions to read-only later on. 4624 else if (Triple.isOSBinFormatELF()) 4625 GV->setSection(".rodata"); 4626 4627 // String. 4628 llvm::Constant *Str = 4629 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4630 4631 if (isUTF16) 4632 // Cast the UTF16 string to the correct type. 4633 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4634 Fields.add(Str); 4635 4636 // String length. 4637 llvm::IntegerType *LengthTy = 4638 llvm::IntegerType::get(getModule().getContext(), 4639 Context.getTargetInfo().getLongWidth()); 4640 if (IsSwiftABI) { 4641 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4642 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4643 LengthTy = Int32Ty; 4644 else 4645 LengthTy = IntPtrTy; 4646 } 4647 Fields.addInt(LengthTy, StringLength); 4648 4649 CharUnits Alignment = getPointerAlign(); 4650 4651 // The struct. 4652 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4653 /*isConstant=*/false, 4654 llvm::GlobalVariable::PrivateLinkage); 4655 switch (Triple.getObjectFormat()) { 4656 case llvm::Triple::UnknownObjectFormat: 4657 llvm_unreachable("unknown file format"); 4658 case llvm::Triple::XCOFF: 4659 llvm_unreachable("XCOFF is not yet implemented"); 4660 case llvm::Triple::COFF: 4661 case llvm::Triple::ELF: 4662 case llvm::Triple::Wasm: 4663 GV->setSection("cfstring"); 4664 break; 4665 case llvm::Triple::MachO: 4666 GV->setSection("__DATA,__cfstring"); 4667 break; 4668 } 4669 Entry.second = GV; 4670 4671 return ConstantAddress(GV, Alignment); 4672 } 4673 4674 bool CodeGenModule::getExpressionLocationsEnabled() const { 4675 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4676 } 4677 4678 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4679 if (ObjCFastEnumerationStateType.isNull()) { 4680 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4681 D->startDefinition(); 4682 4683 QualType FieldTypes[] = { 4684 Context.UnsignedLongTy, 4685 Context.getPointerType(Context.getObjCIdType()), 4686 Context.getPointerType(Context.UnsignedLongTy), 4687 Context.getConstantArrayType(Context.UnsignedLongTy, 4688 llvm::APInt(32, 5), ArrayType::Normal, 0) 4689 }; 4690 4691 for (size_t i = 0; i < 4; ++i) { 4692 FieldDecl *Field = FieldDecl::Create(Context, 4693 D, 4694 SourceLocation(), 4695 SourceLocation(), nullptr, 4696 FieldTypes[i], /*TInfo=*/nullptr, 4697 /*BitWidth=*/nullptr, 4698 /*Mutable=*/false, 4699 ICIS_NoInit); 4700 Field->setAccess(AS_public); 4701 D->addDecl(Field); 4702 } 4703 4704 D->completeDefinition(); 4705 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4706 } 4707 4708 return ObjCFastEnumerationStateType; 4709 } 4710 4711 llvm::Constant * 4712 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4713 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4714 4715 // Don't emit it as the address of the string, emit the string data itself 4716 // as an inline array. 4717 if (E->getCharByteWidth() == 1) { 4718 SmallString<64> Str(E->getString()); 4719 4720 // Resize the string to the right size, which is indicated by its type. 4721 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4722 Str.resize(CAT->getSize().getZExtValue()); 4723 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4724 } 4725 4726 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4727 llvm::Type *ElemTy = AType->getElementType(); 4728 unsigned NumElements = AType->getNumElements(); 4729 4730 // Wide strings have either 2-byte or 4-byte elements. 4731 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4732 SmallVector<uint16_t, 32> Elements; 4733 Elements.reserve(NumElements); 4734 4735 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4736 Elements.push_back(E->getCodeUnit(i)); 4737 Elements.resize(NumElements); 4738 return llvm::ConstantDataArray::get(VMContext, Elements); 4739 } 4740 4741 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4742 SmallVector<uint32_t, 32> Elements; 4743 Elements.reserve(NumElements); 4744 4745 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4746 Elements.push_back(E->getCodeUnit(i)); 4747 Elements.resize(NumElements); 4748 return llvm::ConstantDataArray::get(VMContext, Elements); 4749 } 4750 4751 static llvm::GlobalVariable * 4752 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4753 CodeGenModule &CGM, StringRef GlobalName, 4754 CharUnits Alignment) { 4755 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4756 CGM.getStringLiteralAddressSpace()); 4757 4758 llvm::Module &M = CGM.getModule(); 4759 // Create a global variable for this string 4760 auto *GV = new llvm::GlobalVariable( 4761 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4762 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4763 GV->setAlignment(Alignment.getQuantity()); 4764 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4765 if (GV->isWeakForLinker()) { 4766 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4767 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4768 } 4769 CGM.setDSOLocal(GV); 4770 4771 return GV; 4772 } 4773 4774 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4775 /// constant array for the given string literal. 4776 ConstantAddress 4777 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4778 StringRef Name) { 4779 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4780 4781 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4782 llvm::GlobalVariable **Entry = nullptr; 4783 if (!LangOpts.WritableStrings) { 4784 Entry = &ConstantStringMap[C]; 4785 if (auto GV = *Entry) { 4786 if (Alignment.getQuantity() > GV->getAlignment()) 4787 GV->setAlignment(Alignment.getQuantity()); 4788 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4789 Alignment); 4790 } 4791 } 4792 4793 SmallString<256> MangledNameBuffer; 4794 StringRef GlobalVariableName; 4795 llvm::GlobalValue::LinkageTypes LT; 4796 4797 // Mangle the string literal if that's how the ABI merges duplicate strings. 4798 // Don't do it if they are writable, since we don't want writes in one TU to 4799 // affect strings in another. 4800 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4801 !LangOpts.WritableStrings) { 4802 llvm::raw_svector_ostream Out(MangledNameBuffer); 4803 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4804 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4805 GlobalVariableName = MangledNameBuffer; 4806 } else { 4807 LT = llvm::GlobalValue::PrivateLinkage; 4808 GlobalVariableName = Name; 4809 } 4810 4811 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4812 if (Entry) 4813 *Entry = GV; 4814 4815 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4816 QualType()); 4817 4818 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4819 Alignment); 4820 } 4821 4822 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4823 /// array for the given ObjCEncodeExpr node. 4824 ConstantAddress 4825 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4826 std::string Str; 4827 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4828 4829 return GetAddrOfConstantCString(Str); 4830 } 4831 4832 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4833 /// the literal and a terminating '\0' character. 4834 /// The result has pointer to array type. 4835 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4836 const std::string &Str, const char *GlobalName) { 4837 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4838 CharUnits Alignment = 4839 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4840 4841 llvm::Constant *C = 4842 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4843 4844 // Don't share any string literals if strings aren't constant. 4845 llvm::GlobalVariable **Entry = nullptr; 4846 if (!LangOpts.WritableStrings) { 4847 Entry = &ConstantStringMap[C]; 4848 if (auto GV = *Entry) { 4849 if (Alignment.getQuantity() > GV->getAlignment()) 4850 GV->setAlignment(Alignment.getQuantity()); 4851 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4852 Alignment); 4853 } 4854 } 4855 4856 // Get the default prefix if a name wasn't specified. 4857 if (!GlobalName) 4858 GlobalName = ".str"; 4859 // Create a global variable for this. 4860 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4861 GlobalName, Alignment); 4862 if (Entry) 4863 *Entry = GV; 4864 4865 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4866 Alignment); 4867 } 4868 4869 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4870 const MaterializeTemporaryExpr *E, const Expr *Init) { 4871 assert((E->getStorageDuration() == SD_Static || 4872 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4873 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4874 4875 // If we're not materializing a subobject of the temporary, keep the 4876 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4877 QualType MaterializedType = Init->getType(); 4878 if (Init == E->GetTemporaryExpr()) 4879 MaterializedType = E->getType(); 4880 4881 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4882 4883 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4884 return ConstantAddress(Slot, Align); 4885 4886 // FIXME: If an externally-visible declaration extends multiple temporaries, 4887 // we need to give each temporary the same name in every translation unit (and 4888 // we also need to make the temporaries externally-visible). 4889 SmallString<256> Name; 4890 llvm::raw_svector_ostream Out(Name); 4891 getCXXABI().getMangleContext().mangleReferenceTemporary( 4892 VD, E->getManglingNumber(), Out); 4893 4894 APValue *Value = nullptr; 4895 if (E->getStorageDuration() == SD_Static) { 4896 // We might have a cached constant initializer for this temporary. Note 4897 // that this might have a different value from the value computed by 4898 // evaluating the initializer if the surrounding constant expression 4899 // modifies the temporary. 4900 Value = getContext().getMaterializedTemporaryValue(E, false); 4901 if (Value && Value->isAbsent()) 4902 Value = nullptr; 4903 } 4904 4905 // Try evaluating it now, it might have a constant initializer. 4906 Expr::EvalResult EvalResult; 4907 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4908 !EvalResult.hasSideEffects()) 4909 Value = &EvalResult.Val; 4910 4911 LangAS AddrSpace = 4912 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4913 4914 Optional<ConstantEmitter> emitter; 4915 llvm::Constant *InitialValue = nullptr; 4916 bool Constant = false; 4917 llvm::Type *Type; 4918 if (Value) { 4919 // The temporary has a constant initializer, use it. 4920 emitter.emplace(*this); 4921 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4922 MaterializedType); 4923 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4924 Type = InitialValue->getType(); 4925 } else { 4926 // No initializer, the initialization will be provided when we 4927 // initialize the declaration which performed lifetime extension. 4928 Type = getTypes().ConvertTypeForMem(MaterializedType); 4929 } 4930 4931 // Create a global variable for this lifetime-extended temporary. 4932 llvm::GlobalValue::LinkageTypes Linkage = 4933 getLLVMLinkageVarDefinition(VD, Constant); 4934 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4935 const VarDecl *InitVD; 4936 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4937 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4938 // Temporaries defined inside a class get linkonce_odr linkage because the 4939 // class can be defined in multiple translation units. 4940 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4941 } else { 4942 // There is no need for this temporary to have external linkage if the 4943 // VarDecl has external linkage. 4944 Linkage = llvm::GlobalVariable::InternalLinkage; 4945 } 4946 } 4947 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4948 auto *GV = new llvm::GlobalVariable( 4949 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4950 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4951 if (emitter) emitter->finalize(GV); 4952 setGVProperties(GV, VD); 4953 GV->setAlignment(Align.getQuantity()); 4954 if (supportsCOMDAT() && GV->isWeakForLinker()) 4955 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4956 if (VD->getTLSKind()) 4957 setTLSMode(GV, *VD); 4958 llvm::Constant *CV = GV; 4959 if (AddrSpace != LangAS::Default) 4960 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4961 *this, GV, AddrSpace, LangAS::Default, 4962 Type->getPointerTo( 4963 getContext().getTargetAddressSpace(LangAS::Default))); 4964 MaterializedGlobalTemporaryMap[E] = CV; 4965 return ConstantAddress(CV, Align); 4966 } 4967 4968 /// EmitObjCPropertyImplementations - Emit information for synthesized 4969 /// properties for an implementation. 4970 void CodeGenModule::EmitObjCPropertyImplementations(const 4971 ObjCImplementationDecl *D) { 4972 for (const auto *PID : D->property_impls()) { 4973 // Dynamic is just for type-checking. 4974 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4975 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4976 4977 // Determine which methods need to be implemented, some may have 4978 // been overridden. Note that ::isPropertyAccessor is not the method 4979 // we want, that just indicates if the decl came from a 4980 // property. What we want to know is if the method is defined in 4981 // this implementation. 4982 if (!D->getInstanceMethod(PD->getGetterName())) 4983 CodeGenFunction(*this).GenerateObjCGetter( 4984 const_cast<ObjCImplementationDecl *>(D), PID); 4985 if (!PD->isReadOnly() && 4986 !D->getInstanceMethod(PD->getSetterName())) 4987 CodeGenFunction(*this).GenerateObjCSetter( 4988 const_cast<ObjCImplementationDecl *>(D), PID); 4989 } 4990 } 4991 } 4992 4993 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4994 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4995 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4996 ivar; ivar = ivar->getNextIvar()) 4997 if (ivar->getType().isDestructedType()) 4998 return true; 4999 5000 return false; 5001 } 5002 5003 static bool AllTrivialInitializers(CodeGenModule &CGM, 5004 ObjCImplementationDecl *D) { 5005 CodeGenFunction CGF(CGM); 5006 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5007 E = D->init_end(); B != E; ++B) { 5008 CXXCtorInitializer *CtorInitExp = *B; 5009 Expr *Init = CtorInitExp->getInit(); 5010 if (!CGF.isTrivialInitializer(Init)) 5011 return false; 5012 } 5013 return true; 5014 } 5015 5016 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5017 /// for an implementation. 5018 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5019 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5020 if (needsDestructMethod(D)) { 5021 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5022 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5023 ObjCMethodDecl *DTORMethod = 5024 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 5025 cxxSelector, getContext().VoidTy, nullptr, D, 5026 /*isInstance=*/true, /*isVariadic=*/false, 5027 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 5028 /*isDefined=*/false, ObjCMethodDecl::Required); 5029 D->addInstanceMethod(DTORMethod); 5030 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5031 D->setHasDestructors(true); 5032 } 5033 5034 // If the implementation doesn't have any ivar initializers, we don't need 5035 // a .cxx_construct. 5036 if (D->getNumIvarInitializers() == 0 || 5037 AllTrivialInitializers(*this, D)) 5038 return; 5039 5040 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5041 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5042 // The constructor returns 'self'. 5043 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 5044 D->getLocation(), 5045 D->getLocation(), 5046 cxxSelector, 5047 getContext().getObjCIdType(), 5048 nullptr, D, /*isInstance=*/true, 5049 /*isVariadic=*/false, 5050 /*isPropertyAccessor=*/true, 5051 /*isImplicitlyDeclared=*/true, 5052 /*isDefined=*/false, 5053 ObjCMethodDecl::Required); 5054 D->addInstanceMethod(CTORMethod); 5055 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5056 D->setHasNonZeroConstructors(true); 5057 } 5058 5059 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5060 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5061 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5062 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5063 ErrorUnsupported(LSD, "linkage spec"); 5064 return; 5065 } 5066 5067 EmitDeclContext(LSD); 5068 } 5069 5070 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5071 for (auto *I : DC->decls()) { 5072 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5073 // are themselves considered "top-level", so EmitTopLevelDecl on an 5074 // ObjCImplDecl does not recursively visit them. We need to do that in 5075 // case they're nested inside another construct (LinkageSpecDecl / 5076 // ExportDecl) that does stop them from being considered "top-level". 5077 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5078 for (auto *M : OID->methods()) 5079 EmitTopLevelDecl(M); 5080 } 5081 5082 EmitTopLevelDecl(I); 5083 } 5084 } 5085 5086 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5087 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5088 // Ignore dependent declarations. 5089 if (D->isTemplated()) 5090 return; 5091 5092 switch (D->getKind()) { 5093 case Decl::CXXConversion: 5094 case Decl::CXXMethod: 5095 case Decl::Function: 5096 EmitGlobal(cast<FunctionDecl>(D)); 5097 // Always provide some coverage mapping 5098 // even for the functions that aren't emitted. 5099 AddDeferredUnusedCoverageMapping(D); 5100 break; 5101 5102 case Decl::CXXDeductionGuide: 5103 // Function-like, but does not result in code emission. 5104 break; 5105 5106 case Decl::Var: 5107 case Decl::Decomposition: 5108 case Decl::VarTemplateSpecialization: 5109 EmitGlobal(cast<VarDecl>(D)); 5110 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5111 for (auto *B : DD->bindings()) 5112 if (auto *HD = B->getHoldingVar()) 5113 EmitGlobal(HD); 5114 break; 5115 5116 // Indirect fields from global anonymous structs and unions can be 5117 // ignored; only the actual variable requires IR gen support. 5118 case Decl::IndirectField: 5119 break; 5120 5121 // C++ Decls 5122 case Decl::Namespace: 5123 EmitDeclContext(cast<NamespaceDecl>(D)); 5124 break; 5125 case Decl::ClassTemplateSpecialization: { 5126 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5127 if (DebugInfo && 5128 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5129 Spec->hasDefinition()) 5130 DebugInfo->completeTemplateDefinition(*Spec); 5131 } LLVM_FALLTHROUGH; 5132 case Decl::CXXRecord: 5133 if (DebugInfo) { 5134 if (auto *ES = D->getASTContext().getExternalSource()) 5135 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5136 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5137 } 5138 // Emit any static data members, they may be definitions. 5139 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5140 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5141 EmitTopLevelDecl(I); 5142 break; 5143 // No code generation needed. 5144 case Decl::UsingShadow: 5145 case Decl::ClassTemplate: 5146 case Decl::VarTemplate: 5147 case Decl::VarTemplatePartialSpecialization: 5148 case Decl::FunctionTemplate: 5149 case Decl::TypeAliasTemplate: 5150 case Decl::Block: 5151 case Decl::Empty: 5152 case Decl::Binding: 5153 break; 5154 case Decl::Using: // using X; [C++] 5155 if (CGDebugInfo *DI = getModuleDebugInfo()) 5156 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5157 return; 5158 case Decl::NamespaceAlias: 5159 if (CGDebugInfo *DI = getModuleDebugInfo()) 5160 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5161 return; 5162 case Decl::UsingDirective: // using namespace X; [C++] 5163 if (CGDebugInfo *DI = getModuleDebugInfo()) 5164 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5165 return; 5166 case Decl::CXXConstructor: 5167 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5168 break; 5169 case Decl::CXXDestructor: 5170 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5171 break; 5172 5173 case Decl::StaticAssert: 5174 // Nothing to do. 5175 break; 5176 5177 // Objective-C Decls 5178 5179 // Forward declarations, no (immediate) code generation. 5180 case Decl::ObjCInterface: 5181 case Decl::ObjCCategory: 5182 break; 5183 5184 case Decl::ObjCProtocol: { 5185 auto *Proto = cast<ObjCProtocolDecl>(D); 5186 if (Proto->isThisDeclarationADefinition()) 5187 ObjCRuntime->GenerateProtocol(Proto); 5188 break; 5189 } 5190 5191 case Decl::ObjCCategoryImpl: 5192 // Categories have properties but don't support synthesize so we 5193 // can ignore them here. 5194 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5195 break; 5196 5197 case Decl::ObjCImplementation: { 5198 auto *OMD = cast<ObjCImplementationDecl>(D); 5199 EmitObjCPropertyImplementations(OMD); 5200 EmitObjCIvarInitializations(OMD); 5201 ObjCRuntime->GenerateClass(OMD); 5202 // Emit global variable debug information. 5203 if (CGDebugInfo *DI = getModuleDebugInfo()) 5204 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 5205 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5206 OMD->getClassInterface()), OMD->getLocation()); 5207 break; 5208 } 5209 case Decl::ObjCMethod: { 5210 auto *OMD = cast<ObjCMethodDecl>(D); 5211 // If this is not a prototype, emit the body. 5212 if (OMD->getBody()) 5213 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5214 break; 5215 } 5216 case Decl::ObjCCompatibleAlias: 5217 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5218 break; 5219 5220 case Decl::PragmaComment: { 5221 const auto *PCD = cast<PragmaCommentDecl>(D); 5222 switch (PCD->getCommentKind()) { 5223 case PCK_Unknown: 5224 llvm_unreachable("unexpected pragma comment kind"); 5225 case PCK_Linker: 5226 AppendLinkerOptions(PCD->getArg()); 5227 break; 5228 case PCK_Lib: 5229 AddDependentLib(PCD->getArg()); 5230 break; 5231 case PCK_Compiler: 5232 case PCK_ExeStr: 5233 case PCK_User: 5234 break; // We ignore all of these. 5235 } 5236 break; 5237 } 5238 5239 case Decl::PragmaDetectMismatch: { 5240 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5241 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5242 break; 5243 } 5244 5245 case Decl::LinkageSpec: 5246 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5247 break; 5248 5249 case Decl::FileScopeAsm: { 5250 // File-scope asm is ignored during device-side CUDA compilation. 5251 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5252 break; 5253 // File-scope asm is ignored during device-side OpenMP compilation. 5254 if (LangOpts.OpenMPIsDevice) 5255 break; 5256 auto *AD = cast<FileScopeAsmDecl>(D); 5257 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5258 break; 5259 } 5260 5261 case Decl::Import: { 5262 auto *Import = cast<ImportDecl>(D); 5263 5264 // If we've already imported this module, we're done. 5265 if (!ImportedModules.insert(Import->getImportedModule())) 5266 break; 5267 5268 // Emit debug information for direct imports. 5269 if (!Import->getImportedOwningModule()) { 5270 if (CGDebugInfo *DI = getModuleDebugInfo()) 5271 DI->EmitImportDecl(*Import); 5272 } 5273 5274 // Find all of the submodules and emit the module initializers. 5275 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5276 SmallVector<clang::Module *, 16> Stack; 5277 Visited.insert(Import->getImportedModule()); 5278 Stack.push_back(Import->getImportedModule()); 5279 5280 while (!Stack.empty()) { 5281 clang::Module *Mod = Stack.pop_back_val(); 5282 if (!EmittedModuleInitializers.insert(Mod).second) 5283 continue; 5284 5285 for (auto *D : Context.getModuleInitializers(Mod)) 5286 EmitTopLevelDecl(D); 5287 5288 // Visit the submodules of this module. 5289 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5290 SubEnd = Mod->submodule_end(); 5291 Sub != SubEnd; ++Sub) { 5292 // Skip explicit children; they need to be explicitly imported to emit 5293 // the initializers. 5294 if ((*Sub)->IsExplicit) 5295 continue; 5296 5297 if (Visited.insert(*Sub).second) 5298 Stack.push_back(*Sub); 5299 } 5300 } 5301 break; 5302 } 5303 5304 case Decl::Export: 5305 EmitDeclContext(cast<ExportDecl>(D)); 5306 break; 5307 5308 case Decl::OMPThreadPrivate: 5309 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5310 break; 5311 5312 case Decl::OMPAllocate: 5313 break; 5314 5315 case Decl::OMPDeclareReduction: 5316 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5317 break; 5318 5319 case Decl::OMPDeclareMapper: 5320 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5321 break; 5322 5323 case Decl::OMPRequires: 5324 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5325 break; 5326 5327 default: 5328 // Make sure we handled everything we should, every other kind is a 5329 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5330 // function. Need to recode Decl::Kind to do that easily. 5331 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5332 break; 5333 } 5334 } 5335 5336 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5337 // Do we need to generate coverage mapping? 5338 if (!CodeGenOpts.CoverageMapping) 5339 return; 5340 switch (D->getKind()) { 5341 case Decl::CXXConversion: 5342 case Decl::CXXMethod: 5343 case Decl::Function: 5344 case Decl::ObjCMethod: 5345 case Decl::CXXConstructor: 5346 case Decl::CXXDestructor: { 5347 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5348 return; 5349 SourceManager &SM = getContext().getSourceManager(); 5350 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5351 return; 5352 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5353 if (I == DeferredEmptyCoverageMappingDecls.end()) 5354 DeferredEmptyCoverageMappingDecls[D] = true; 5355 break; 5356 } 5357 default: 5358 break; 5359 }; 5360 } 5361 5362 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5363 // Do we need to generate coverage mapping? 5364 if (!CodeGenOpts.CoverageMapping) 5365 return; 5366 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5367 if (Fn->isTemplateInstantiation()) 5368 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5369 } 5370 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5371 if (I == DeferredEmptyCoverageMappingDecls.end()) 5372 DeferredEmptyCoverageMappingDecls[D] = false; 5373 else 5374 I->second = false; 5375 } 5376 5377 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5378 // We call takeVector() here to avoid use-after-free. 5379 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5380 // we deserialize function bodies to emit coverage info for them, and that 5381 // deserializes more declarations. How should we handle that case? 5382 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5383 if (!Entry.second) 5384 continue; 5385 const Decl *D = Entry.first; 5386 switch (D->getKind()) { 5387 case Decl::CXXConversion: 5388 case Decl::CXXMethod: 5389 case Decl::Function: 5390 case Decl::ObjCMethod: { 5391 CodeGenPGO PGO(*this); 5392 GlobalDecl GD(cast<FunctionDecl>(D)); 5393 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5394 getFunctionLinkage(GD)); 5395 break; 5396 } 5397 case Decl::CXXConstructor: { 5398 CodeGenPGO PGO(*this); 5399 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5400 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5401 getFunctionLinkage(GD)); 5402 break; 5403 } 5404 case Decl::CXXDestructor: { 5405 CodeGenPGO PGO(*this); 5406 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5407 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5408 getFunctionLinkage(GD)); 5409 break; 5410 } 5411 default: 5412 break; 5413 }; 5414 } 5415 } 5416 5417 /// Turns the given pointer into a constant. 5418 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5419 const void *Ptr) { 5420 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5421 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5422 return llvm::ConstantInt::get(i64, PtrInt); 5423 } 5424 5425 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5426 llvm::NamedMDNode *&GlobalMetadata, 5427 GlobalDecl D, 5428 llvm::GlobalValue *Addr) { 5429 if (!GlobalMetadata) 5430 GlobalMetadata = 5431 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5432 5433 // TODO: should we report variant information for ctors/dtors? 5434 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5435 llvm::ConstantAsMetadata::get(GetPointerConstant( 5436 CGM.getLLVMContext(), D.getDecl()))}; 5437 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5438 } 5439 5440 /// For each function which is declared within an extern "C" region and marked 5441 /// as 'used', but has internal linkage, create an alias from the unmangled 5442 /// name to the mangled name if possible. People expect to be able to refer 5443 /// to such functions with an unmangled name from inline assembly within the 5444 /// same translation unit. 5445 void CodeGenModule::EmitStaticExternCAliases() { 5446 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5447 return; 5448 for (auto &I : StaticExternCValues) { 5449 IdentifierInfo *Name = I.first; 5450 llvm::GlobalValue *Val = I.second; 5451 if (Val && !getModule().getNamedValue(Name->getName())) 5452 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5453 } 5454 } 5455 5456 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5457 GlobalDecl &Result) const { 5458 auto Res = Manglings.find(MangledName); 5459 if (Res == Manglings.end()) 5460 return false; 5461 Result = Res->getValue(); 5462 return true; 5463 } 5464 5465 /// Emits metadata nodes associating all the global values in the 5466 /// current module with the Decls they came from. This is useful for 5467 /// projects using IR gen as a subroutine. 5468 /// 5469 /// Since there's currently no way to associate an MDNode directly 5470 /// with an llvm::GlobalValue, we create a global named metadata 5471 /// with the name 'clang.global.decl.ptrs'. 5472 void CodeGenModule::EmitDeclMetadata() { 5473 llvm::NamedMDNode *GlobalMetadata = nullptr; 5474 5475 for (auto &I : MangledDeclNames) { 5476 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5477 // Some mangled names don't necessarily have an associated GlobalValue 5478 // in this module, e.g. if we mangled it for DebugInfo. 5479 if (Addr) 5480 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5481 } 5482 } 5483 5484 /// Emits metadata nodes for all the local variables in the current 5485 /// function. 5486 void CodeGenFunction::EmitDeclMetadata() { 5487 if (LocalDeclMap.empty()) return; 5488 5489 llvm::LLVMContext &Context = getLLVMContext(); 5490 5491 // Find the unique metadata ID for this name. 5492 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5493 5494 llvm::NamedMDNode *GlobalMetadata = nullptr; 5495 5496 for (auto &I : LocalDeclMap) { 5497 const Decl *D = I.first; 5498 llvm::Value *Addr = I.second.getPointer(); 5499 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5500 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5501 Alloca->setMetadata( 5502 DeclPtrKind, llvm::MDNode::get( 5503 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5504 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5505 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5506 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5507 } 5508 } 5509 } 5510 5511 void CodeGenModule::EmitVersionIdentMetadata() { 5512 llvm::NamedMDNode *IdentMetadata = 5513 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5514 std::string Version = getClangFullVersion(); 5515 llvm::LLVMContext &Ctx = TheModule.getContext(); 5516 5517 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5518 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5519 } 5520 5521 void CodeGenModule::EmitCommandLineMetadata() { 5522 llvm::NamedMDNode *CommandLineMetadata = 5523 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5524 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5525 llvm::LLVMContext &Ctx = TheModule.getContext(); 5526 5527 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5528 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5529 } 5530 5531 void CodeGenModule::EmitTargetMetadata() { 5532 // Warning, new MangledDeclNames may be appended within this loop. 5533 // We rely on MapVector insertions adding new elements to the end 5534 // of the container. 5535 // FIXME: Move this loop into the one target that needs it, and only 5536 // loop over those declarations for which we couldn't emit the target 5537 // metadata when we emitted the declaration. 5538 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5539 auto Val = *(MangledDeclNames.begin() + I); 5540 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5541 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5542 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5543 } 5544 } 5545 5546 void CodeGenModule::EmitCoverageFile() { 5547 if (getCodeGenOpts().CoverageDataFile.empty() && 5548 getCodeGenOpts().CoverageNotesFile.empty()) 5549 return; 5550 5551 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5552 if (!CUNode) 5553 return; 5554 5555 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5556 llvm::LLVMContext &Ctx = TheModule.getContext(); 5557 auto *CoverageDataFile = 5558 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5559 auto *CoverageNotesFile = 5560 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5561 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5562 llvm::MDNode *CU = CUNode->getOperand(i); 5563 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5564 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5565 } 5566 } 5567 5568 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5569 // Sema has checked that all uuid strings are of the form 5570 // "12345678-1234-1234-1234-1234567890ab". 5571 assert(Uuid.size() == 36); 5572 for (unsigned i = 0; i < 36; ++i) { 5573 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5574 else assert(isHexDigit(Uuid[i])); 5575 } 5576 5577 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5578 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5579 5580 llvm::Constant *Field3[8]; 5581 for (unsigned Idx = 0; Idx < 8; ++Idx) 5582 Field3[Idx] = llvm::ConstantInt::get( 5583 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5584 5585 llvm::Constant *Fields[4] = { 5586 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5587 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5588 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5589 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5590 }; 5591 5592 return llvm::ConstantStruct::getAnon(Fields); 5593 } 5594 5595 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5596 bool ForEH) { 5597 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5598 // FIXME: should we even be calling this method if RTTI is disabled 5599 // and it's not for EH? 5600 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5601 return llvm::Constant::getNullValue(Int8PtrTy); 5602 5603 if (ForEH && Ty->isObjCObjectPointerType() && 5604 LangOpts.ObjCRuntime.isGNUFamily()) 5605 return ObjCRuntime->GetEHType(Ty); 5606 5607 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5608 } 5609 5610 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5611 // Do not emit threadprivates in simd-only mode. 5612 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5613 return; 5614 for (auto RefExpr : D->varlists()) { 5615 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5616 bool PerformInit = 5617 VD->getAnyInitializer() && 5618 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5619 /*ForRef=*/false); 5620 5621 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5622 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5623 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5624 CXXGlobalInits.push_back(InitFunction); 5625 } 5626 } 5627 5628 llvm::Metadata * 5629 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5630 StringRef Suffix) { 5631 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5632 if (InternalId) 5633 return InternalId; 5634 5635 if (isExternallyVisible(T->getLinkage())) { 5636 std::string OutName; 5637 llvm::raw_string_ostream Out(OutName); 5638 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5639 Out << Suffix; 5640 5641 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5642 } else { 5643 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5644 llvm::ArrayRef<llvm::Metadata *>()); 5645 } 5646 5647 return InternalId; 5648 } 5649 5650 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5651 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5652 } 5653 5654 llvm::Metadata * 5655 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5656 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5657 } 5658 5659 // Generalize pointer types to a void pointer with the qualifiers of the 5660 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5661 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5662 // 'void *'. 5663 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5664 if (!Ty->isPointerType()) 5665 return Ty; 5666 5667 return Ctx.getPointerType( 5668 QualType(Ctx.VoidTy).withCVRQualifiers( 5669 Ty->getPointeeType().getCVRQualifiers())); 5670 } 5671 5672 // Apply type generalization to a FunctionType's return and argument types 5673 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5674 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5675 SmallVector<QualType, 8> GeneralizedParams; 5676 for (auto &Param : FnType->param_types()) 5677 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5678 5679 return Ctx.getFunctionType( 5680 GeneralizeType(Ctx, FnType->getReturnType()), 5681 GeneralizedParams, FnType->getExtProtoInfo()); 5682 } 5683 5684 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5685 return Ctx.getFunctionNoProtoType( 5686 GeneralizeType(Ctx, FnType->getReturnType())); 5687 5688 llvm_unreachable("Encountered unknown FunctionType"); 5689 } 5690 5691 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5692 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5693 GeneralizedMetadataIdMap, ".generalized"); 5694 } 5695 5696 /// Returns whether this module needs the "all-vtables" type identifier. 5697 bool CodeGenModule::NeedAllVtablesTypeId() const { 5698 // Returns true if at least one of vtable-based CFI checkers is enabled and 5699 // is not in the trapping mode. 5700 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5701 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5702 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5703 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5704 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5705 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5706 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5707 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5708 } 5709 5710 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5711 CharUnits Offset, 5712 const CXXRecordDecl *RD) { 5713 llvm::Metadata *MD = 5714 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5715 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5716 5717 if (CodeGenOpts.SanitizeCfiCrossDso) 5718 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5719 VTable->addTypeMetadata(Offset.getQuantity(), 5720 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5721 5722 if (NeedAllVtablesTypeId()) { 5723 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5724 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5725 } 5726 } 5727 5728 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5729 assert(TD != nullptr); 5730 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5731 5732 ParsedAttr.Features.erase( 5733 llvm::remove_if(ParsedAttr.Features, 5734 [&](const std::string &Feat) { 5735 return !Target.isValidFeatureName( 5736 StringRef{Feat}.substr(1)); 5737 }), 5738 ParsedAttr.Features.end()); 5739 return ParsedAttr; 5740 } 5741 5742 5743 // Fills in the supplied string map with the set of target features for the 5744 // passed in function. 5745 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5746 GlobalDecl GD) { 5747 StringRef TargetCPU = Target.getTargetOpts().CPU; 5748 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5749 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5750 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5751 5752 // Make a copy of the features as passed on the command line into the 5753 // beginning of the additional features from the function to override. 5754 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5755 Target.getTargetOpts().FeaturesAsWritten.begin(), 5756 Target.getTargetOpts().FeaturesAsWritten.end()); 5757 5758 if (ParsedAttr.Architecture != "" && 5759 Target.isValidCPUName(ParsedAttr.Architecture)) 5760 TargetCPU = ParsedAttr.Architecture; 5761 5762 // Now populate the feature map, first with the TargetCPU which is either 5763 // the default or a new one from the target attribute string. Then we'll use 5764 // the passed in features (FeaturesAsWritten) along with the new ones from 5765 // the attribute. 5766 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5767 ParsedAttr.Features); 5768 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5769 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5770 Target.getCPUSpecificCPUDispatchFeatures( 5771 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5772 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5773 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5774 } else { 5775 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5776 Target.getTargetOpts().Features); 5777 } 5778 } 5779 5780 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5781 if (!SanStats) 5782 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5783 5784 return *SanStats; 5785 } 5786 llvm::Value * 5787 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5788 CodeGenFunction &CGF) { 5789 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5790 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5791 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5792 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5793 "__translate_sampler_initializer"), 5794 {C}); 5795 } 5796