xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision deafd0b2a42b16568f416fbe218db82d56e2d89d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60   return *CreateItaniumCXXABI(CGM);
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::TargetData &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
68     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
74     ConstantStringClassRef(0), NSConstantStringType(0),
75     VMContext(M.getContext()),
76     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
77     BlockObjectAssign(0), BlockObjectDispose(0),
78     BlockDescriptorType(0), GenericBlockLiteralType(0) {
79   if (Features.ObjC1)
80     createObjCRuntime();
81   if (Features.OpenCL)
82     createOpenCLRuntime();
83   if (Features.CUDA)
84     createCUDARuntime();
85 
86   // Enable TBAA unless it's suppressed.
87   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
88     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
89                            ABI.getMangleContext());
90 
91   // If debug info or coverage generation is enabled, create the CGDebugInfo
92   // object.
93   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
94       CodeGenOpts.EmitGcovNotes)
95     DebugInfo = new CGDebugInfo(*this);
96 
97   Block.GlobalUniqueCount = 0;
98 
99   if (C.getLangOptions().ObjCAutoRefCount)
100     ARCData = new ARCEntrypoints();
101   RRData = new RREntrypoints();
102 
103   // Initialize the type cache.
104   llvm::LLVMContext &LLVMContext = M.getContext();
105   VoidTy = llvm::Type::getVoidTy(LLVMContext);
106   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
113   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
114   Int8PtrTy = Int8Ty->getPointerTo(0);
115   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
116 }
117 
118 CodeGenModule::~CodeGenModule() {
119   delete ObjCRuntime;
120   delete OpenCLRuntime;
121   delete CUDARuntime;
122   delete TheTargetCodeGenInfo;
123   delete &ABI;
124   delete TBAA;
125   delete DebugInfo;
126   delete ARCData;
127   delete RRData;
128 }
129 
130 void CodeGenModule::createObjCRuntime() {
131   if (!Features.NeXTRuntime)
132     ObjCRuntime = CreateGNUObjCRuntime(*this);
133   else
134     ObjCRuntime = CreateMacObjCRuntime(*this);
135 }
136 
137 void CodeGenModule::createOpenCLRuntime() {
138   OpenCLRuntime = new CGOpenCLRuntime(*this);
139 }
140 
141 void CodeGenModule::createCUDARuntime() {
142   CUDARuntime = CreateNVCUDARuntime(*this);
143 }
144 
145 void CodeGenModule::Release() {
146   EmitDeferred();
147   EmitCXXGlobalInitFunc();
148   EmitCXXGlobalDtorFunc();
149   if (ObjCRuntime)
150     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
151       AddGlobalCtor(ObjCInitFunction);
152   EmitCtorList(GlobalCtors, "llvm.global_ctors");
153   EmitCtorList(GlobalDtors, "llvm.global_dtors");
154   EmitGlobalAnnotations();
155   EmitLLVMUsed();
156 
157   SimplifyPersonality();
158 
159   if (getCodeGenOpts().EmitDeclMetadata)
160     EmitDeclMetadata();
161 
162   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
163     EmitCoverageFile();
164 
165   if (DebugInfo)
166     DebugInfo->finalize();
167 }
168 
169 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
170   // Make sure that this type is translated.
171   Types.UpdateCompletedType(TD);
172   if (DebugInfo)
173     DebugInfo->UpdateCompletedType(TD);
174 }
175 
176 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
177   if (!TBAA)
178     return 0;
179   return TBAA->getTBAAInfo(QTy);
180 }
181 
182 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
183                                         llvm::MDNode *TBAAInfo) {
184   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
185 }
186 
187 bool CodeGenModule::isTargetDarwin() const {
188   return getContext().getTargetInfo().getTriple().isOSDarwin();
189 }
190 
191 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
192   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
193   getDiags().Report(Context.getFullLoc(loc), diagID);
194 }
195 
196 /// ErrorUnsupported - Print out an error that codegen doesn't support the
197 /// specified stmt yet.
198 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
199                                      bool OmitOnError) {
200   if (OmitOnError && getDiags().hasErrorOccurred())
201     return;
202   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
203                                                "cannot compile this %0 yet");
204   std::string Msg = Type;
205   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
206     << Msg << S->getSourceRange();
207 }
208 
209 /// ErrorUnsupported - Print out an error that codegen doesn't support the
210 /// specified decl yet.
211 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
212                                      bool OmitOnError) {
213   if (OmitOnError && getDiags().hasErrorOccurred())
214     return;
215   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
216                                                "cannot compile this %0 yet");
217   std::string Msg = Type;
218   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
219 }
220 
221 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
222   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
223 }
224 
225 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
226                                         const NamedDecl *D) const {
227   // Internal definitions always have default visibility.
228   if (GV->hasLocalLinkage()) {
229     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
230     return;
231   }
232 
233   // Set visibility for definitions.
234   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
235   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
236     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
237 }
238 
239 /// Set the symbol visibility of type information (vtable and RTTI)
240 /// associated with the given type.
241 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
242                                       const CXXRecordDecl *RD,
243                                       TypeVisibilityKind TVK) const {
244   setGlobalVisibility(GV, RD);
245 
246   if (!CodeGenOpts.HiddenWeakVTables)
247     return;
248 
249   // We never want to drop the visibility for RTTI names.
250   if (TVK == TVK_ForRTTIName)
251     return;
252 
253   // We want to drop the visibility to hidden for weak type symbols.
254   // This isn't possible if there might be unresolved references
255   // elsewhere that rely on this symbol being visible.
256 
257   // This should be kept roughly in sync with setThunkVisibility
258   // in CGVTables.cpp.
259 
260   // Preconditions.
261   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
262       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
263     return;
264 
265   // Don't override an explicit visibility attribute.
266   if (RD->getExplicitVisibility())
267     return;
268 
269   switch (RD->getTemplateSpecializationKind()) {
270   // We have to disable the optimization if this is an EI definition
271   // because there might be EI declarations in other shared objects.
272   case TSK_ExplicitInstantiationDefinition:
273   case TSK_ExplicitInstantiationDeclaration:
274     return;
275 
276   // Every use of a non-template class's type information has to emit it.
277   case TSK_Undeclared:
278     break;
279 
280   // In theory, implicit instantiations can ignore the possibility of
281   // an explicit instantiation declaration because there necessarily
282   // must be an EI definition somewhere with default visibility.  In
283   // practice, it's possible to have an explicit instantiation for
284   // an arbitrary template class, and linkers aren't necessarily able
285   // to deal with mixed-visibility symbols.
286   case TSK_ExplicitSpecialization:
287   case TSK_ImplicitInstantiation:
288     if (!CodeGenOpts.HiddenWeakTemplateVTables)
289       return;
290     break;
291   }
292 
293   // If there's a key function, there may be translation units
294   // that don't have the key function's definition.  But ignore
295   // this if we're emitting RTTI under -fno-rtti.
296   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
297     if (Context.getKeyFunction(RD))
298       return;
299   }
300 
301   // Otherwise, drop the visibility to hidden.
302   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
303   GV->setUnnamedAddr(true);
304 }
305 
306 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
307   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
308 
309   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
310   if (!Str.empty())
311     return Str;
312 
313   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
314     IdentifierInfo *II = ND->getIdentifier();
315     assert(II && "Attempt to mangle unnamed decl.");
316 
317     Str = II->getName();
318     return Str;
319   }
320 
321   llvm::SmallString<256> Buffer;
322   llvm::raw_svector_ostream Out(Buffer);
323   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
324     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
325   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
326     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
327   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
328     getCXXABI().getMangleContext().mangleBlock(BD, Out);
329   else
330     getCXXABI().getMangleContext().mangleName(ND, Out);
331 
332   // Allocate space for the mangled name.
333   Out.flush();
334   size_t Length = Buffer.size();
335   char *Name = MangledNamesAllocator.Allocate<char>(Length);
336   std::copy(Buffer.begin(), Buffer.end(), Name);
337 
338   Str = StringRef(Name, Length);
339 
340   return Str;
341 }
342 
343 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
344                                         const BlockDecl *BD) {
345   MangleContext &MangleCtx = getCXXABI().getMangleContext();
346   const Decl *D = GD.getDecl();
347   llvm::raw_svector_ostream Out(Buffer.getBuffer());
348   if (D == 0)
349     MangleCtx.mangleGlobalBlock(BD, Out);
350   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
351     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
352   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
353     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
354   else
355     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
356 }
357 
358 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
359   return getModule().getNamedValue(Name);
360 }
361 
362 /// AddGlobalCtor - Add a function to the list that will be called before
363 /// main() runs.
364 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
365   // FIXME: Type coercion of void()* types.
366   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
367 }
368 
369 /// AddGlobalDtor - Add a function to the list that will be called
370 /// when the module is unloaded.
371 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
372   // FIXME: Type coercion of void()* types.
373   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
374 }
375 
376 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
377   // Ctor function type is void()*.
378   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
379   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
380 
381   // Get the type of a ctor entry, { i32, void ()* }.
382   llvm::StructType *CtorStructTy =
383     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
384                           llvm::PointerType::getUnqual(CtorFTy), NULL);
385 
386   // Construct the constructor and destructor arrays.
387   std::vector<llvm::Constant*> Ctors;
388   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
389     std::vector<llvm::Constant*> S;
390     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
391                 I->second, false));
392     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
393     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
394   }
395 
396   if (!Ctors.empty()) {
397     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
398     new llvm::GlobalVariable(TheModule, AT, false,
399                              llvm::GlobalValue::AppendingLinkage,
400                              llvm::ConstantArray::get(AT, Ctors),
401                              GlobalName);
402   }
403 }
404 
405 llvm::GlobalValue::LinkageTypes
406 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
407   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
408 
409   if (Linkage == GVA_Internal)
410     return llvm::Function::InternalLinkage;
411 
412   if (D->hasAttr<DLLExportAttr>())
413     return llvm::Function::DLLExportLinkage;
414 
415   if (D->hasAttr<WeakAttr>())
416     return llvm::Function::WeakAnyLinkage;
417 
418   // In C99 mode, 'inline' functions are guaranteed to have a strong
419   // definition somewhere else, so we can use available_externally linkage.
420   if (Linkage == GVA_C99Inline)
421     return llvm::Function::AvailableExternallyLinkage;
422 
423   // Note that Apple's kernel linker doesn't support symbol
424   // coalescing, so we need to avoid linkonce and weak linkages there.
425   // Normally, this means we just map to internal, but for explicit
426   // instantiations we'll map to external.
427 
428   // In C++, the compiler has to emit a definition in every translation unit
429   // that references the function.  We should use linkonce_odr because
430   // a) if all references in this translation unit are optimized away, we
431   // don't need to codegen it.  b) if the function persists, it needs to be
432   // merged with other definitions. c) C++ has the ODR, so we know the
433   // definition is dependable.
434   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
435     return !Context.getLangOptions().AppleKext
436              ? llvm::Function::LinkOnceODRLinkage
437              : llvm::Function::InternalLinkage;
438 
439   // An explicit instantiation of a template has weak linkage, since
440   // explicit instantiations can occur in multiple translation units
441   // and must all be equivalent. However, we are not allowed to
442   // throw away these explicit instantiations.
443   if (Linkage == GVA_ExplicitTemplateInstantiation)
444     return !Context.getLangOptions().AppleKext
445              ? llvm::Function::WeakODRLinkage
446              : llvm::Function::ExternalLinkage;
447 
448   // Otherwise, we have strong external linkage.
449   assert(Linkage == GVA_StrongExternal);
450   return llvm::Function::ExternalLinkage;
451 }
452 
453 
454 /// SetFunctionDefinitionAttributes - Set attributes for a global.
455 ///
456 /// FIXME: This is currently only done for aliases and functions, but not for
457 /// variables (these details are set in EmitGlobalVarDefinition for variables).
458 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
459                                                     llvm::GlobalValue *GV) {
460   SetCommonAttributes(D, GV);
461 }
462 
463 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
464                                               const CGFunctionInfo &Info,
465                                               llvm::Function *F) {
466   unsigned CallingConv;
467   AttributeListType AttributeList;
468   ConstructAttributeList(Info, D, AttributeList, CallingConv);
469   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
470                                           AttributeList.size()));
471   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
472 }
473 
474 /// Determines whether the language options require us to model
475 /// unwind exceptions.  We treat -fexceptions as mandating this
476 /// except under the fragile ObjC ABI with only ObjC exceptions
477 /// enabled.  This means, for example, that C with -fexceptions
478 /// enables this.
479 static bool hasUnwindExceptions(const LangOptions &Features) {
480   // If exceptions are completely disabled, obviously this is false.
481   if (!Features.Exceptions) return false;
482 
483   // If C++ exceptions are enabled, this is true.
484   if (Features.CXXExceptions) return true;
485 
486   // If ObjC exceptions are enabled, this depends on the ABI.
487   if (Features.ObjCExceptions) {
488     if (!Features.ObjCNonFragileABI) return false;
489   }
490 
491   return true;
492 }
493 
494 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
495                                                            llvm::Function *F) {
496   if (CodeGenOpts.UnwindTables)
497     F->setHasUWTable();
498 
499   if (!hasUnwindExceptions(Features))
500     F->addFnAttr(llvm::Attribute::NoUnwind);
501 
502   if (D->hasAttr<NakedAttr>()) {
503     // Naked implies noinline: we should not be inlining such functions.
504     F->addFnAttr(llvm::Attribute::Naked);
505     F->addFnAttr(llvm::Attribute::NoInline);
506   }
507 
508   if (D->hasAttr<NoInlineAttr>())
509     F->addFnAttr(llvm::Attribute::NoInline);
510 
511   // (noinline wins over always_inline, and we can't specify both in IR)
512   if (D->hasAttr<AlwaysInlineAttr>() &&
513       !F->hasFnAttr(llvm::Attribute::NoInline))
514     F->addFnAttr(llvm::Attribute::AlwaysInline);
515 
516   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
517     F->setUnnamedAddr(true);
518 
519   if (Features.getStackProtector() == LangOptions::SSPOn)
520     F->addFnAttr(llvm::Attribute::StackProtect);
521   else if (Features.getStackProtector() == LangOptions::SSPReq)
522     F->addFnAttr(llvm::Attribute::StackProtectReq);
523 
524   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
525   if (alignment)
526     F->setAlignment(alignment);
527 
528   // C++ ABI requires 2-byte alignment for member functions.
529   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
530     F->setAlignment(2);
531 }
532 
533 void CodeGenModule::SetCommonAttributes(const Decl *D,
534                                         llvm::GlobalValue *GV) {
535   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
536     setGlobalVisibility(GV, ND);
537   else
538     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
539 
540   if (D->hasAttr<UsedAttr>())
541     AddUsedGlobal(GV);
542 
543   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
544     GV->setSection(SA->getName());
545 
546   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
547 }
548 
549 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
550                                                   llvm::Function *F,
551                                                   const CGFunctionInfo &FI) {
552   SetLLVMFunctionAttributes(D, FI, F);
553   SetLLVMFunctionAttributesForDefinition(D, F);
554 
555   F->setLinkage(llvm::Function::InternalLinkage);
556 
557   SetCommonAttributes(D, F);
558 }
559 
560 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
561                                           llvm::Function *F,
562                                           bool IsIncompleteFunction) {
563   if (unsigned IID = F->getIntrinsicID()) {
564     // If this is an intrinsic function, set the function's attributes
565     // to the intrinsic's attributes.
566     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
567     return;
568   }
569 
570   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
571 
572   if (!IsIncompleteFunction)
573     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
574 
575   // Only a few attributes are set on declarations; these may later be
576   // overridden by a definition.
577 
578   if (FD->hasAttr<DLLImportAttr>()) {
579     F->setLinkage(llvm::Function::DLLImportLinkage);
580   } else if (FD->hasAttr<WeakAttr>() ||
581              FD->isWeakImported()) {
582     // "extern_weak" is overloaded in LLVM; we probably should have
583     // separate linkage types for this.
584     F->setLinkage(llvm::Function::ExternalWeakLinkage);
585   } else {
586     F->setLinkage(llvm::Function::ExternalLinkage);
587 
588     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
589     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
590       F->setVisibility(GetLLVMVisibility(LV.visibility()));
591     }
592   }
593 
594   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
595     F->setSection(SA->getName());
596 }
597 
598 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
599   assert(!GV->isDeclaration() &&
600          "Only globals with definition can force usage.");
601   LLVMUsed.push_back(GV);
602 }
603 
604 void CodeGenModule::EmitLLVMUsed() {
605   // Don't create llvm.used if there is no need.
606   if (LLVMUsed.empty())
607     return;
608 
609   llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
610 
611   // Convert LLVMUsed to what ConstantArray needs.
612   std::vector<llvm::Constant*> UsedArray;
613   UsedArray.resize(LLVMUsed.size());
614   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
615     UsedArray[i] =
616      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
617                                       i8PTy);
618   }
619 
620   if (UsedArray.empty())
621     return;
622   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
623 
624   llvm::GlobalVariable *GV =
625     new llvm::GlobalVariable(getModule(), ATy, false,
626                              llvm::GlobalValue::AppendingLinkage,
627                              llvm::ConstantArray::get(ATy, UsedArray),
628                              "llvm.used");
629 
630   GV->setSection("llvm.metadata");
631 }
632 
633 void CodeGenModule::EmitDeferred() {
634   // Emit code for any potentially referenced deferred decls.  Since a
635   // previously unused static decl may become used during the generation of code
636   // for a static function, iterate until no changes are made.
637 
638   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
639     if (!DeferredVTables.empty()) {
640       const CXXRecordDecl *RD = DeferredVTables.back();
641       DeferredVTables.pop_back();
642       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
643       continue;
644     }
645 
646     GlobalDecl D = DeferredDeclsToEmit.back();
647     DeferredDeclsToEmit.pop_back();
648 
649     // Check to see if we've already emitted this.  This is necessary
650     // for a couple of reasons: first, decls can end up in the
651     // deferred-decls queue multiple times, and second, decls can end
652     // up with definitions in unusual ways (e.g. by an extern inline
653     // function acquiring a strong function redefinition).  Just
654     // ignore these cases.
655     //
656     // TODO: That said, looking this up multiple times is very wasteful.
657     StringRef Name = getMangledName(D);
658     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
659     assert(CGRef && "Deferred decl wasn't referenced?");
660 
661     if (!CGRef->isDeclaration())
662       continue;
663 
664     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
665     // purposes an alias counts as a definition.
666     if (isa<llvm::GlobalAlias>(CGRef))
667       continue;
668 
669     // Otherwise, emit the definition and move on to the next one.
670     EmitGlobalDefinition(D);
671   }
672 }
673 
674 void CodeGenModule::EmitGlobalAnnotations() {
675   if (Annotations.empty())
676     return;
677 
678   // Create a new global variable for the ConstantStruct in the Module.
679   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
680     Annotations[0]->getType(), Annotations.size()), Annotations);
681   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
682     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
683     "llvm.global.annotations");
684   gv->setSection(AnnotationSection);
685 }
686 
687 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
688   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
689   if (i != AnnotationStrings.end())
690     return i->second;
691 
692   // Not found yet, create a new global.
693   llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
694   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
695     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
696   gv->setSection(AnnotationSection);
697   gv->setUnnamedAddr(true);
698   AnnotationStrings[Str] = gv;
699   return gv;
700 }
701 
702 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
703   SourceManager &SM = getContext().getSourceManager();
704   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
705   if (PLoc.isValid())
706     return EmitAnnotationString(PLoc.getFilename());
707   return EmitAnnotationString(SM.getBufferName(Loc));
708 }
709 
710 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
711   SourceManager &SM = getContext().getSourceManager();
712   PresumedLoc PLoc = SM.getPresumedLoc(L);
713   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
714     SM.getExpansionLineNumber(L);
715   return llvm::ConstantInt::get(Int32Ty, LineNo);
716 }
717 
718 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
719                                                 const AnnotateAttr *AA,
720                                                 SourceLocation L) {
721   // Get the globals for file name, annotation, and the line number.
722   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
723                  *UnitGV = EmitAnnotationUnit(L),
724                  *LineNoCst = EmitAnnotationLineNo(L);
725 
726   // Create the ConstantStruct for the global annotation.
727   llvm::Constant *Fields[4] = {
728     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
729     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
730     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
731     LineNoCst
732   };
733   return llvm::ConstantStruct::getAnon(Fields);
734 }
735 
736 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
737                                          llvm::GlobalValue *GV) {
738   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
739   // Get the struct elements for these annotations.
740   for (specific_attr_iterator<AnnotateAttr>
741        ai = D->specific_attr_begin<AnnotateAttr>(),
742        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
743     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
744 }
745 
746 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
747   // Never defer when EmitAllDecls is specified.
748   if (Features.EmitAllDecls)
749     return false;
750 
751   return !getContext().DeclMustBeEmitted(Global);
752 }
753 
754 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
755   const AliasAttr *AA = VD->getAttr<AliasAttr>();
756   assert(AA && "No alias?");
757 
758   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
759 
760   // See if there is already something with the target's name in the module.
761   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
762 
763   llvm::Constant *Aliasee;
764   if (isa<llvm::FunctionType>(DeclTy))
765     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
766                                       /*ForVTable=*/false);
767   else
768     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
769                                     llvm::PointerType::getUnqual(DeclTy), 0);
770   if (!Entry) {
771     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
772     F->setLinkage(llvm::Function::ExternalWeakLinkage);
773     WeakRefReferences.insert(F);
774   }
775 
776   return Aliasee;
777 }
778 
779 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
780   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
781 
782   // Weak references don't produce any output by themselves.
783   if (Global->hasAttr<WeakRefAttr>())
784     return;
785 
786   // If this is an alias definition (which otherwise looks like a declaration)
787   // emit it now.
788   if (Global->hasAttr<AliasAttr>())
789     return EmitAliasDefinition(GD);
790 
791   // If this is CUDA, be selective about which declarations we emit.
792   if (Features.CUDA) {
793     if (CodeGenOpts.CUDAIsDevice) {
794       if (!Global->hasAttr<CUDADeviceAttr>() &&
795           !Global->hasAttr<CUDAGlobalAttr>() &&
796           !Global->hasAttr<CUDAConstantAttr>() &&
797           !Global->hasAttr<CUDASharedAttr>())
798         return;
799     } else {
800       if (!Global->hasAttr<CUDAHostAttr>() && (
801             Global->hasAttr<CUDADeviceAttr>() ||
802             Global->hasAttr<CUDAConstantAttr>() ||
803             Global->hasAttr<CUDASharedAttr>()))
804         return;
805     }
806   }
807 
808   // Ignore declarations, they will be emitted on their first use.
809   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
810     // Forward declarations are emitted lazily on first use.
811     if (!FD->doesThisDeclarationHaveABody()) {
812       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
813         return;
814 
815       const FunctionDecl *InlineDefinition = 0;
816       FD->getBody(InlineDefinition);
817 
818       StringRef MangledName = getMangledName(GD);
819       llvm::StringMap<GlobalDecl>::iterator DDI =
820           DeferredDecls.find(MangledName);
821       if (DDI != DeferredDecls.end())
822         DeferredDecls.erase(DDI);
823       EmitGlobalDefinition(InlineDefinition);
824       return;
825     }
826   } else {
827     const VarDecl *VD = cast<VarDecl>(Global);
828     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
829 
830     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
831       return;
832   }
833 
834   // Defer code generation when possible if this is a static definition, inline
835   // function etc.  These we only want to emit if they are used.
836   if (!MayDeferGeneration(Global)) {
837     // Emit the definition if it can't be deferred.
838     EmitGlobalDefinition(GD);
839     return;
840   }
841 
842   // If we're deferring emission of a C++ variable with an
843   // initializer, remember the order in which it appeared in the file.
844   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
845       cast<VarDecl>(Global)->hasInit()) {
846     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
847     CXXGlobalInits.push_back(0);
848   }
849 
850   // If the value has already been used, add it directly to the
851   // DeferredDeclsToEmit list.
852   StringRef MangledName = getMangledName(GD);
853   if (GetGlobalValue(MangledName))
854     DeferredDeclsToEmit.push_back(GD);
855   else {
856     // Otherwise, remember that we saw a deferred decl with this name.  The
857     // first use of the mangled name will cause it to move into
858     // DeferredDeclsToEmit.
859     DeferredDecls[MangledName] = GD;
860   }
861 }
862 
863 namespace {
864   struct FunctionIsDirectlyRecursive :
865     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
866     const StringRef Name;
867     const Builtin::Context &BI;
868     bool Result;
869     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
870       Name(N), BI(C), Result(false) {
871     }
872     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
873 
874     bool TraverseCallExpr(CallExpr *E) {
875       const FunctionDecl *FD = E->getDirectCallee();
876       if (!FD)
877         return true;
878       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
879       if (Attr && Name == Attr->getLabel()) {
880         Result = true;
881         return false;
882       }
883       unsigned BuiltinID = FD->getBuiltinID();
884       if (!BuiltinID)
885         return true;
886       const char *BuiltinName = BI.GetName(BuiltinID) + strlen("__builtin_");
887       if (Name == BuiltinName) {
888         Result = true;
889         return false;
890       }
891       return true;
892     }
893   };
894 }
895 
896 // isTriviallyRecursive - Check if this function calls another
897 // decl that, because of the asm attribute or the other decl being a builtin,
898 // ends up pointing to itself.
899 bool
900 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
901   StringRef Name;
902   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
903     // asm labels are a special king of mangling we have to support.
904     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
905     if (!Attr)
906       return false;
907     Name = Attr->getLabel();
908   } else {
909     Name = FD->getName();
910   }
911 
912   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
913   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
914   return Walker.Result;
915 }
916 
917 bool
918 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
919   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
920     return true;
921   if (CodeGenOpts.OptimizationLevel == 0 &&
922       !F->hasAttr<AlwaysInlineAttr>())
923     return false;
924   // PR9614. Avoid cases where the source code is lying to us. An available
925   // externally function should have an equivalent function somewhere else,
926   // but a function that calls itself is clearly not equivalent to the real
927   // implementation.
928   // This happens in glibc's btowc and in some configure checks.
929   return !isTriviallyRecursive(F);
930 }
931 
932 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
933   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
934 
935   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
936                                  Context.getSourceManager(),
937                                  "Generating code for declaration");
938 
939   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
940     // At -O0, don't generate IR for functions with available_externally
941     // linkage.
942     if (!shouldEmitFunction(Function))
943       return;
944 
945     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
946       // Make sure to emit the definition(s) before we emit the thunks.
947       // This is necessary for the generation of certain thunks.
948       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
949         EmitCXXConstructor(CD, GD.getCtorType());
950       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
951         EmitCXXDestructor(DD, GD.getDtorType());
952       else
953         EmitGlobalFunctionDefinition(GD);
954 
955       if (Method->isVirtual())
956         getVTables().EmitThunks(GD);
957 
958       return;
959     }
960 
961     return EmitGlobalFunctionDefinition(GD);
962   }
963 
964   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
965     return EmitGlobalVarDefinition(VD);
966 
967   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
968 }
969 
970 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
971 /// module, create and return an llvm Function with the specified type. If there
972 /// is something in the module with the specified name, return it potentially
973 /// bitcasted to the right type.
974 ///
975 /// If D is non-null, it specifies a decl that correspond to this.  This is used
976 /// to set the attributes on the function when it is first created.
977 llvm::Constant *
978 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
979                                        llvm::Type *Ty,
980                                        GlobalDecl D, bool ForVTable,
981                                        llvm::Attributes ExtraAttrs) {
982   // Lookup the entry, lazily creating it if necessary.
983   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
984   if (Entry) {
985     if (WeakRefReferences.count(Entry)) {
986       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
987       if (FD && !FD->hasAttr<WeakAttr>())
988         Entry->setLinkage(llvm::Function::ExternalLinkage);
989 
990       WeakRefReferences.erase(Entry);
991     }
992 
993     if (Entry->getType()->getElementType() == Ty)
994       return Entry;
995 
996     // Make sure the result is of the correct type.
997     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
998   }
999 
1000   // This function doesn't have a complete type (for example, the return
1001   // type is an incomplete struct). Use a fake type instead, and make
1002   // sure not to try to set attributes.
1003   bool IsIncompleteFunction = false;
1004 
1005   llvm::FunctionType *FTy;
1006   if (isa<llvm::FunctionType>(Ty)) {
1007     FTy = cast<llvm::FunctionType>(Ty);
1008   } else {
1009     FTy = llvm::FunctionType::get(VoidTy, false);
1010     IsIncompleteFunction = true;
1011   }
1012 
1013   llvm::Function *F = llvm::Function::Create(FTy,
1014                                              llvm::Function::ExternalLinkage,
1015                                              MangledName, &getModule());
1016   assert(F->getName() == MangledName && "name was uniqued!");
1017   if (D.getDecl())
1018     SetFunctionAttributes(D, F, IsIncompleteFunction);
1019   if (ExtraAttrs != llvm::Attribute::None)
1020     F->addFnAttr(ExtraAttrs);
1021 
1022   // This is the first use or definition of a mangled name.  If there is a
1023   // deferred decl with this name, remember that we need to emit it at the end
1024   // of the file.
1025   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1026   if (DDI != DeferredDecls.end()) {
1027     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1028     // list, and remove it from DeferredDecls (since we don't need it anymore).
1029     DeferredDeclsToEmit.push_back(DDI->second);
1030     DeferredDecls.erase(DDI);
1031 
1032   // Otherwise, there are cases we have to worry about where we're
1033   // using a declaration for which we must emit a definition but where
1034   // we might not find a top-level definition:
1035   //   - member functions defined inline in their classes
1036   //   - friend functions defined inline in some class
1037   //   - special member functions with implicit definitions
1038   // If we ever change our AST traversal to walk into class methods,
1039   // this will be unnecessary.
1040   //
1041   // We also don't emit a definition for a function if it's going to be an entry
1042   // in a vtable, unless it's already marked as used.
1043   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1044     // Look for a declaration that's lexically in a record.
1045     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1046     do {
1047       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1048         if (FD->isImplicit() && !ForVTable) {
1049           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1050           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1051           break;
1052         } else if (FD->doesThisDeclarationHaveABody()) {
1053           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1054           break;
1055         }
1056       }
1057       FD = FD->getPreviousDeclaration();
1058     } while (FD);
1059   }
1060 
1061   // Make sure the result is of the requested type.
1062   if (!IsIncompleteFunction) {
1063     assert(F->getType()->getElementType() == Ty);
1064     return F;
1065   }
1066 
1067   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1068   return llvm::ConstantExpr::getBitCast(F, PTy);
1069 }
1070 
1071 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1072 /// non-null, then this function will use the specified type if it has to
1073 /// create it (this occurs when we see a definition of the function).
1074 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1075                                                  llvm::Type *Ty,
1076                                                  bool ForVTable) {
1077   // If there was no specific requested type, just convert it now.
1078   if (!Ty)
1079     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1080 
1081   StringRef MangledName = getMangledName(GD);
1082   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1083 }
1084 
1085 /// CreateRuntimeFunction - Create a new runtime function with the specified
1086 /// type and name.
1087 llvm::Constant *
1088 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1089                                      StringRef Name,
1090                                      llvm::Attributes ExtraAttrs) {
1091   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1092                                  ExtraAttrs);
1093 }
1094 
1095 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1096                                  bool ConstantInit) {
1097   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1098     return false;
1099 
1100   if (Context.getLangOptions().CPlusPlus) {
1101     if (const RecordType *Record
1102           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1103       return ConstantInit &&
1104              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1105              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1106   }
1107 
1108   return true;
1109 }
1110 
1111 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1112 /// create and return an llvm GlobalVariable with the specified type.  If there
1113 /// is something in the module with the specified name, return it potentially
1114 /// bitcasted to the right type.
1115 ///
1116 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1117 /// to set the attributes on the global when it is first created.
1118 llvm::Constant *
1119 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1120                                      llvm::PointerType *Ty,
1121                                      const VarDecl *D,
1122                                      bool UnnamedAddr) {
1123   // Lookup the entry, lazily creating it if necessary.
1124   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1125   if (Entry) {
1126     if (WeakRefReferences.count(Entry)) {
1127       if (D && !D->hasAttr<WeakAttr>())
1128         Entry->setLinkage(llvm::Function::ExternalLinkage);
1129 
1130       WeakRefReferences.erase(Entry);
1131     }
1132 
1133     if (UnnamedAddr)
1134       Entry->setUnnamedAddr(true);
1135 
1136     if (Entry->getType() == Ty)
1137       return Entry;
1138 
1139     // Make sure the result is of the correct type.
1140     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1141   }
1142 
1143   // This is the first use or definition of a mangled name.  If there is a
1144   // deferred decl with this name, remember that we need to emit it at the end
1145   // of the file.
1146   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1147   if (DDI != DeferredDecls.end()) {
1148     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1149     // list, and remove it from DeferredDecls (since we don't need it anymore).
1150     DeferredDeclsToEmit.push_back(DDI->second);
1151     DeferredDecls.erase(DDI);
1152   }
1153 
1154   llvm::GlobalVariable *GV =
1155     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1156                              llvm::GlobalValue::ExternalLinkage,
1157                              0, MangledName, 0,
1158                              false, Ty->getAddressSpace());
1159 
1160   // Handle things which are present even on external declarations.
1161   if (D) {
1162     // FIXME: This code is overly simple and should be merged with other global
1163     // handling.
1164     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1165 
1166     // Set linkage and visibility in case we never see a definition.
1167     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1168     if (LV.linkage() != ExternalLinkage) {
1169       // Don't set internal linkage on declarations.
1170     } else {
1171       if (D->hasAttr<DLLImportAttr>())
1172         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1173       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1174         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1175 
1176       // Set visibility on a declaration only if it's explicit.
1177       if (LV.visibilityExplicit())
1178         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1179     }
1180 
1181     GV->setThreadLocal(D->isThreadSpecified());
1182   }
1183 
1184   return GV;
1185 }
1186 
1187 
1188 llvm::GlobalVariable *
1189 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1190                                       llvm::Type *Ty,
1191                                       llvm::GlobalValue::LinkageTypes Linkage) {
1192   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1193   llvm::GlobalVariable *OldGV = 0;
1194 
1195 
1196   if (GV) {
1197     // Check if the variable has the right type.
1198     if (GV->getType()->getElementType() == Ty)
1199       return GV;
1200 
1201     // Because C++ name mangling, the only way we can end up with an already
1202     // existing global with the same name is if it has been declared extern "C".
1203       assert(GV->isDeclaration() && "Declaration has wrong type!");
1204     OldGV = GV;
1205   }
1206 
1207   // Create a new variable.
1208   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1209                                 Linkage, 0, Name);
1210 
1211   if (OldGV) {
1212     // Replace occurrences of the old variable if needed.
1213     GV->takeName(OldGV);
1214 
1215     if (!OldGV->use_empty()) {
1216       llvm::Constant *NewPtrForOldDecl =
1217       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1218       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1219     }
1220 
1221     OldGV->eraseFromParent();
1222   }
1223 
1224   return GV;
1225 }
1226 
1227 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1228 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1229 /// then it will be greated with the specified type instead of whatever the
1230 /// normal requested type would be.
1231 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1232                                                   llvm::Type *Ty) {
1233   assert(D->hasGlobalStorage() && "Not a global variable");
1234   QualType ASTTy = D->getType();
1235   if (Ty == 0)
1236     Ty = getTypes().ConvertTypeForMem(ASTTy);
1237 
1238   llvm::PointerType *PTy =
1239     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1240 
1241   StringRef MangledName = getMangledName(D);
1242   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1243 }
1244 
1245 /// CreateRuntimeVariable - Create a new runtime global variable with the
1246 /// specified type and name.
1247 llvm::Constant *
1248 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1249                                      StringRef Name) {
1250   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1251                                true);
1252 }
1253 
1254 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1255   assert(!D->getInit() && "Cannot emit definite definitions here!");
1256 
1257   if (MayDeferGeneration(D)) {
1258     // If we have not seen a reference to this variable yet, place it
1259     // into the deferred declarations table to be emitted if needed
1260     // later.
1261     StringRef MangledName = getMangledName(D);
1262     if (!GetGlobalValue(MangledName)) {
1263       DeferredDecls[MangledName] = D;
1264       return;
1265     }
1266   }
1267 
1268   // The tentative definition is the only definition.
1269   EmitGlobalVarDefinition(D);
1270 }
1271 
1272 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1273   if (DefinitionRequired)
1274     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1275 }
1276 
1277 llvm::GlobalVariable::LinkageTypes
1278 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1279   if (RD->getLinkage() != ExternalLinkage)
1280     return llvm::GlobalVariable::InternalLinkage;
1281 
1282   if (const CXXMethodDecl *KeyFunction
1283                                     = RD->getASTContext().getKeyFunction(RD)) {
1284     // If this class has a key function, use that to determine the linkage of
1285     // the vtable.
1286     const FunctionDecl *Def = 0;
1287     if (KeyFunction->hasBody(Def))
1288       KeyFunction = cast<CXXMethodDecl>(Def);
1289 
1290     switch (KeyFunction->getTemplateSpecializationKind()) {
1291       case TSK_Undeclared:
1292       case TSK_ExplicitSpecialization:
1293         // When compiling with optimizations turned on, we emit all vtables,
1294         // even if the key function is not defined in the current translation
1295         // unit. If this is the case, use available_externally linkage.
1296         if (!Def && CodeGenOpts.OptimizationLevel)
1297           return llvm::GlobalVariable::AvailableExternallyLinkage;
1298 
1299         if (KeyFunction->isInlined())
1300           return !Context.getLangOptions().AppleKext ?
1301                    llvm::GlobalVariable::LinkOnceODRLinkage :
1302                    llvm::Function::InternalLinkage;
1303 
1304         return llvm::GlobalVariable::ExternalLinkage;
1305 
1306       case TSK_ImplicitInstantiation:
1307         return !Context.getLangOptions().AppleKext ?
1308                  llvm::GlobalVariable::LinkOnceODRLinkage :
1309                  llvm::Function::InternalLinkage;
1310 
1311       case TSK_ExplicitInstantiationDefinition:
1312         return !Context.getLangOptions().AppleKext ?
1313                  llvm::GlobalVariable::WeakODRLinkage :
1314                  llvm::Function::InternalLinkage;
1315 
1316       case TSK_ExplicitInstantiationDeclaration:
1317         // FIXME: Use available_externally linkage. However, this currently
1318         // breaks LLVM's build due to undefined symbols.
1319         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1320         return !Context.getLangOptions().AppleKext ?
1321                  llvm::GlobalVariable::LinkOnceODRLinkage :
1322                  llvm::Function::InternalLinkage;
1323     }
1324   }
1325 
1326   if (Context.getLangOptions().AppleKext)
1327     return llvm::Function::InternalLinkage;
1328 
1329   switch (RD->getTemplateSpecializationKind()) {
1330   case TSK_Undeclared:
1331   case TSK_ExplicitSpecialization:
1332   case TSK_ImplicitInstantiation:
1333     // FIXME: Use available_externally linkage. However, this currently
1334     // breaks LLVM's build due to undefined symbols.
1335     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1336   case TSK_ExplicitInstantiationDeclaration:
1337     return llvm::GlobalVariable::LinkOnceODRLinkage;
1338 
1339   case TSK_ExplicitInstantiationDefinition:
1340       return llvm::GlobalVariable::WeakODRLinkage;
1341   }
1342 
1343   // Silence GCC warning.
1344   return llvm::GlobalVariable::LinkOnceODRLinkage;
1345 }
1346 
1347 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1348     return Context.toCharUnitsFromBits(
1349       TheTargetData.getTypeStoreSizeInBits(Ty));
1350 }
1351 
1352 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1353   llvm::Constant *Init = 0;
1354   QualType ASTTy = D->getType();
1355   bool NonConstInit = false;
1356 
1357   const Expr *InitExpr = D->getAnyInitializer();
1358 
1359   if (!InitExpr) {
1360     // This is a tentative definition; tentative definitions are
1361     // implicitly initialized with { 0 }.
1362     //
1363     // Note that tentative definitions are only emitted at the end of
1364     // a translation unit, so they should never have incomplete
1365     // type. In addition, EmitTentativeDefinition makes sure that we
1366     // never attempt to emit a tentative definition if a real one
1367     // exists. A use may still exists, however, so we still may need
1368     // to do a RAUW.
1369     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1370     Init = EmitNullConstant(D->getType());
1371   } else {
1372     Init = EmitConstantExpr(InitExpr, D->getType());
1373     if (!Init) {
1374       QualType T = InitExpr->getType();
1375       if (D->getType()->isReferenceType())
1376         T = D->getType();
1377 
1378       if (getLangOptions().CPlusPlus) {
1379         Init = EmitNullConstant(T);
1380         NonConstInit = true;
1381       } else {
1382         ErrorUnsupported(D, "static initializer");
1383         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1384       }
1385     } else {
1386       // We don't need an initializer, so remove the entry for the delayed
1387       // initializer position (just in case this entry was delayed).
1388       if (getLangOptions().CPlusPlus)
1389         DelayedCXXInitPosition.erase(D);
1390     }
1391   }
1392 
1393   llvm::Type* InitType = Init->getType();
1394   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1395 
1396   // Strip off a bitcast if we got one back.
1397   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1398     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1399            // all zero index gep.
1400            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1401     Entry = CE->getOperand(0);
1402   }
1403 
1404   // Entry is now either a Function or GlobalVariable.
1405   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1406 
1407   // We have a definition after a declaration with the wrong type.
1408   // We must make a new GlobalVariable* and update everything that used OldGV
1409   // (a declaration or tentative definition) with the new GlobalVariable*
1410   // (which will be a definition).
1411   //
1412   // This happens if there is a prototype for a global (e.g.
1413   // "extern int x[];") and then a definition of a different type (e.g.
1414   // "int x[10];"). This also happens when an initializer has a different type
1415   // from the type of the global (this happens with unions).
1416   if (GV == 0 ||
1417       GV->getType()->getElementType() != InitType ||
1418       GV->getType()->getAddressSpace() !=
1419         getContext().getTargetAddressSpace(ASTTy)) {
1420 
1421     // Move the old entry aside so that we'll create a new one.
1422     Entry->setName(StringRef());
1423 
1424     // Make a new global with the correct type, this is now guaranteed to work.
1425     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1426 
1427     // Replace all uses of the old global with the new global
1428     llvm::Constant *NewPtrForOldDecl =
1429         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1430     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1431 
1432     // Erase the old global, since it is no longer used.
1433     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1434   }
1435 
1436   if (D->hasAttr<AnnotateAttr>())
1437     AddGlobalAnnotations(D, GV);
1438 
1439   GV->setInitializer(Init);
1440 
1441   // If it is safe to mark the global 'constant', do so now.
1442   GV->setConstant(false);
1443   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1444     GV->setConstant(true);
1445 
1446   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1447 
1448   // Set the llvm linkage type as appropriate.
1449   llvm::GlobalValue::LinkageTypes Linkage =
1450     GetLLVMLinkageVarDefinition(D, GV);
1451   GV->setLinkage(Linkage);
1452   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1453     // common vars aren't constant even if declared const.
1454     GV->setConstant(false);
1455 
1456   SetCommonAttributes(D, GV);
1457 
1458   // Emit the initializer function if necessary.
1459   if (NonConstInit)
1460     EmitCXXGlobalVarDeclInitFunc(D, GV);
1461 
1462   // Emit global variable debug information.
1463   if (CGDebugInfo *DI = getModuleDebugInfo())
1464     DI->EmitGlobalVariable(GV, D);
1465 }
1466 
1467 llvm::GlobalValue::LinkageTypes
1468 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1469                                            llvm::GlobalVariable *GV) {
1470   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1471   if (Linkage == GVA_Internal)
1472     return llvm::Function::InternalLinkage;
1473   else if (D->hasAttr<DLLImportAttr>())
1474     return llvm::Function::DLLImportLinkage;
1475   else if (D->hasAttr<DLLExportAttr>())
1476     return llvm::Function::DLLExportLinkage;
1477   else if (D->hasAttr<WeakAttr>()) {
1478     if (GV->isConstant())
1479       return llvm::GlobalVariable::WeakODRLinkage;
1480     else
1481       return llvm::GlobalVariable::WeakAnyLinkage;
1482   } else if (Linkage == GVA_TemplateInstantiation ||
1483              Linkage == GVA_ExplicitTemplateInstantiation)
1484     return llvm::GlobalVariable::WeakODRLinkage;
1485   else if (!getLangOptions().CPlusPlus &&
1486            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1487              D->getAttr<CommonAttr>()) &&
1488            !D->hasExternalStorage() && !D->getInit() &&
1489            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1490            !D->getAttr<WeakImportAttr>()) {
1491     // Thread local vars aren't considered common linkage.
1492     return llvm::GlobalVariable::CommonLinkage;
1493   }
1494   return llvm::GlobalVariable::ExternalLinkage;
1495 }
1496 
1497 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1498 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1499 /// existing call uses of the old function in the module, this adjusts them to
1500 /// call the new function directly.
1501 ///
1502 /// This is not just a cleanup: the always_inline pass requires direct calls to
1503 /// functions to be able to inline them.  If there is a bitcast in the way, it
1504 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1505 /// run at -O0.
1506 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1507                                                       llvm::Function *NewFn) {
1508   // If we're redefining a global as a function, don't transform it.
1509   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1510   if (OldFn == 0) return;
1511 
1512   llvm::Type *NewRetTy = NewFn->getReturnType();
1513   SmallVector<llvm::Value*, 4> ArgList;
1514 
1515   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1516        UI != E; ) {
1517     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1518     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1519     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1520     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1521     llvm::CallSite CS(CI);
1522     if (!CI || !CS.isCallee(I)) continue;
1523 
1524     // If the return types don't match exactly, and if the call isn't dead, then
1525     // we can't transform this call.
1526     if (CI->getType() != NewRetTy && !CI->use_empty())
1527       continue;
1528 
1529     // Get the attribute list.
1530     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1531     llvm::AttrListPtr AttrList = CI->getAttributes();
1532 
1533     // Get any return attributes.
1534     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1535 
1536     // Add the return attributes.
1537     if (RAttrs)
1538       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1539 
1540     // If the function was passed too few arguments, don't transform.  If extra
1541     // arguments were passed, we silently drop them.  If any of the types
1542     // mismatch, we don't transform.
1543     unsigned ArgNo = 0;
1544     bool DontTransform = false;
1545     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1546          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1547       if (CS.arg_size() == ArgNo ||
1548           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1549         DontTransform = true;
1550         break;
1551       }
1552 
1553       // Add any parameter attributes.
1554       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1555         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1556     }
1557     if (DontTransform)
1558       continue;
1559 
1560     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1561       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1562 
1563     // Okay, we can transform this.  Create the new call instruction and copy
1564     // over the required information.
1565     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1566     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1567     ArgList.clear();
1568     if (!NewCall->getType()->isVoidTy())
1569       NewCall->takeName(CI);
1570     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1571                                                   AttrVec.end()));
1572     NewCall->setCallingConv(CI->getCallingConv());
1573 
1574     // Finally, remove the old call, replacing any uses with the new one.
1575     if (!CI->use_empty())
1576       CI->replaceAllUsesWith(NewCall);
1577 
1578     // Copy debug location attached to CI.
1579     if (!CI->getDebugLoc().isUnknown())
1580       NewCall->setDebugLoc(CI->getDebugLoc());
1581     CI->eraseFromParent();
1582   }
1583 }
1584 
1585 
1586 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1587   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1588 
1589   // Compute the function info and LLVM type.
1590   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1591   bool variadic = false;
1592   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1593     variadic = fpt->isVariadic();
1594   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1595 
1596   // Get or create the prototype for the function.
1597   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1598 
1599   // Strip off a bitcast if we got one back.
1600   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1601     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1602     Entry = CE->getOperand(0);
1603   }
1604 
1605 
1606   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1607     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1608 
1609     // If the types mismatch then we have to rewrite the definition.
1610     assert(OldFn->isDeclaration() &&
1611            "Shouldn't replace non-declaration");
1612 
1613     // F is the Function* for the one with the wrong type, we must make a new
1614     // Function* and update everything that used F (a declaration) with the new
1615     // Function* (which will be a definition).
1616     //
1617     // This happens if there is a prototype for a function
1618     // (e.g. "int f()") and then a definition of a different type
1619     // (e.g. "int f(int x)").  Move the old function aside so that it
1620     // doesn't interfere with GetAddrOfFunction.
1621     OldFn->setName(StringRef());
1622     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1623 
1624     // If this is an implementation of a function without a prototype, try to
1625     // replace any existing uses of the function (which may be calls) with uses
1626     // of the new function
1627     if (D->getType()->isFunctionNoProtoType()) {
1628       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1629       OldFn->removeDeadConstantUsers();
1630     }
1631 
1632     // Replace uses of F with the Function we will endow with a body.
1633     if (!Entry->use_empty()) {
1634       llvm::Constant *NewPtrForOldDecl =
1635         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1636       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1637     }
1638 
1639     // Ok, delete the old function now, which is dead.
1640     OldFn->eraseFromParent();
1641 
1642     Entry = NewFn;
1643   }
1644 
1645   // We need to set linkage and visibility on the function before
1646   // generating code for it because various parts of IR generation
1647   // want to propagate this information down (e.g. to local static
1648   // declarations).
1649   llvm::Function *Fn = cast<llvm::Function>(Entry);
1650   setFunctionLinkage(D, Fn);
1651 
1652   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1653   setGlobalVisibility(Fn, D);
1654 
1655   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1656 
1657   SetFunctionDefinitionAttributes(D, Fn);
1658   SetLLVMFunctionAttributesForDefinition(D, Fn);
1659 
1660   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1661     AddGlobalCtor(Fn, CA->getPriority());
1662   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1663     AddGlobalDtor(Fn, DA->getPriority());
1664   if (D->hasAttr<AnnotateAttr>())
1665     AddGlobalAnnotations(D, Fn);
1666 }
1667 
1668 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1669   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1670   const AliasAttr *AA = D->getAttr<AliasAttr>();
1671   assert(AA && "Not an alias?");
1672 
1673   StringRef MangledName = getMangledName(GD);
1674 
1675   // If there is a definition in the module, then it wins over the alias.
1676   // This is dubious, but allow it to be safe.  Just ignore the alias.
1677   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1678   if (Entry && !Entry->isDeclaration())
1679     return;
1680 
1681   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1682 
1683   // Create a reference to the named value.  This ensures that it is emitted
1684   // if a deferred decl.
1685   llvm::Constant *Aliasee;
1686   if (isa<llvm::FunctionType>(DeclTy))
1687     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1688                                       /*ForVTable=*/false);
1689   else
1690     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1691                                     llvm::PointerType::getUnqual(DeclTy), 0);
1692 
1693   // Create the new alias itself, but don't set a name yet.
1694   llvm::GlobalValue *GA =
1695     new llvm::GlobalAlias(Aliasee->getType(),
1696                           llvm::Function::ExternalLinkage,
1697                           "", Aliasee, &getModule());
1698 
1699   if (Entry) {
1700     assert(Entry->isDeclaration());
1701 
1702     // If there is a declaration in the module, then we had an extern followed
1703     // by the alias, as in:
1704     //   extern int test6();
1705     //   ...
1706     //   int test6() __attribute__((alias("test7")));
1707     //
1708     // Remove it and replace uses of it with the alias.
1709     GA->takeName(Entry);
1710 
1711     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1712                                                           Entry->getType()));
1713     Entry->eraseFromParent();
1714   } else {
1715     GA->setName(MangledName);
1716   }
1717 
1718   // Set attributes which are particular to an alias; this is a
1719   // specialization of the attributes which may be set on a global
1720   // variable/function.
1721   if (D->hasAttr<DLLExportAttr>()) {
1722     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1723       // The dllexport attribute is ignored for undefined symbols.
1724       if (FD->hasBody())
1725         GA->setLinkage(llvm::Function::DLLExportLinkage);
1726     } else {
1727       GA->setLinkage(llvm::Function::DLLExportLinkage);
1728     }
1729   } else if (D->hasAttr<WeakAttr>() ||
1730              D->hasAttr<WeakRefAttr>() ||
1731              D->isWeakImported()) {
1732     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1733   }
1734 
1735   SetCommonAttributes(D, GA);
1736 }
1737 
1738 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1739                                             ArrayRef<llvm::Type*> Tys) {
1740   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1741                                          Tys);
1742 }
1743 
1744 static llvm::StringMapEntry<llvm::Constant*> &
1745 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1746                          const StringLiteral *Literal,
1747                          bool TargetIsLSB,
1748                          bool &IsUTF16,
1749                          unsigned &StringLength) {
1750   StringRef String = Literal->getString();
1751   unsigned NumBytes = String.size();
1752 
1753   // Check for simple case.
1754   if (!Literal->containsNonAsciiOrNull()) {
1755     StringLength = NumBytes;
1756     return Map.GetOrCreateValue(String);
1757   }
1758 
1759   // Otherwise, convert the UTF8 literals into a byte string.
1760   SmallVector<UTF16, 128> ToBuf(NumBytes);
1761   const UTF8 *FromPtr = (UTF8 *)String.data();
1762   UTF16 *ToPtr = &ToBuf[0];
1763 
1764   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1765                            &ToPtr, ToPtr + NumBytes,
1766                            strictConversion);
1767 
1768   // ConvertUTF8toUTF16 returns the length in ToPtr.
1769   StringLength = ToPtr - &ToBuf[0];
1770 
1771   // Render the UTF-16 string into a byte array and convert to the target byte
1772   // order.
1773   //
1774   // FIXME: This isn't something we should need to do here.
1775   llvm::SmallString<128> AsBytes;
1776   AsBytes.reserve(StringLength * 2);
1777   for (unsigned i = 0; i != StringLength; ++i) {
1778     unsigned short Val = ToBuf[i];
1779     if (TargetIsLSB) {
1780       AsBytes.push_back(Val & 0xFF);
1781       AsBytes.push_back(Val >> 8);
1782     } else {
1783       AsBytes.push_back(Val >> 8);
1784       AsBytes.push_back(Val & 0xFF);
1785     }
1786   }
1787   // Append one extra null character, the second is automatically added by our
1788   // caller.
1789   AsBytes.push_back(0);
1790 
1791   IsUTF16 = true;
1792   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1793 }
1794 
1795 static llvm::StringMapEntry<llvm::Constant*> &
1796 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1797 		       const StringLiteral *Literal,
1798 		       unsigned &StringLength)
1799 {
1800 	StringRef String = Literal->getString();
1801 	StringLength = String.size();
1802 	return Map.GetOrCreateValue(String);
1803 }
1804 
1805 llvm::Constant *
1806 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1807   unsigned StringLength = 0;
1808   bool isUTF16 = false;
1809   llvm::StringMapEntry<llvm::Constant*> &Entry =
1810     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1811                              getTargetData().isLittleEndian(),
1812                              isUTF16, StringLength);
1813 
1814   if (llvm::Constant *C = Entry.getValue())
1815     return C;
1816 
1817   llvm::Constant *Zero =
1818       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1819   llvm::Constant *Zeros[] = { Zero, Zero };
1820 
1821   // If we don't already have it, get __CFConstantStringClassReference.
1822   if (!CFConstantStringClassRef) {
1823     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1824     Ty = llvm::ArrayType::get(Ty, 0);
1825     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1826                                            "__CFConstantStringClassReference");
1827     // Decay array -> ptr
1828     CFConstantStringClassRef =
1829       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1830   }
1831 
1832   QualType CFTy = getContext().getCFConstantStringType();
1833 
1834   llvm::StructType *STy =
1835     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1836 
1837   llvm::Constant *Fields[4];
1838 
1839   // Class pointer.
1840   Fields[0] = CFConstantStringClassRef;
1841 
1842   // Flags.
1843   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1844   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1845     llvm::ConstantInt::get(Ty, 0x07C8);
1846 
1847   // String pointer.
1848   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1849 
1850   llvm::GlobalValue::LinkageTypes Linkage;
1851   bool isConstant;
1852   if (isUTF16) {
1853     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1854     Linkage = llvm::GlobalValue::InternalLinkage;
1855     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1856     // does make plain ascii ones writable.
1857     isConstant = true;
1858   } else {
1859     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1860     // when using private linkage. It is not clear if this is a bug in ld
1861     // or a reasonable new restriction.
1862     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1863     isConstant = !Features.WritableStrings;
1864   }
1865 
1866   llvm::GlobalVariable *GV =
1867     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1868                              ".str");
1869   GV->setUnnamedAddr(true);
1870   if (isUTF16) {
1871     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1872     GV->setAlignment(Align.getQuantity());
1873   } else {
1874     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1875     GV->setAlignment(Align.getQuantity());
1876   }
1877   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1878 
1879   // String length.
1880   Ty = getTypes().ConvertType(getContext().LongTy);
1881   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1882 
1883   // The struct.
1884   C = llvm::ConstantStruct::get(STy, Fields);
1885   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1886                                 llvm::GlobalVariable::PrivateLinkage, C,
1887                                 "_unnamed_cfstring_");
1888   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1889     GV->setSection(Sect);
1890   Entry.setValue(GV);
1891 
1892   return GV;
1893 }
1894 
1895 static RecordDecl *
1896 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1897                  DeclContext *DC, IdentifierInfo *Id) {
1898   SourceLocation Loc;
1899   if (Ctx.getLangOptions().CPlusPlus)
1900     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1901   else
1902     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1903 }
1904 
1905 llvm::Constant *
1906 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1907   unsigned StringLength = 0;
1908   llvm::StringMapEntry<llvm::Constant*> &Entry =
1909     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1910 
1911   if (llvm::Constant *C = Entry.getValue())
1912     return C;
1913 
1914   llvm::Constant *Zero =
1915   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1916   llvm::Constant *Zeros[] = { Zero, Zero };
1917 
1918   // If we don't already have it, get _NSConstantStringClassReference.
1919   if (!ConstantStringClassRef) {
1920     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1921     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1922     llvm::Constant *GV;
1923     if (Features.ObjCNonFragileABI) {
1924       std::string str =
1925         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1926                             : "OBJC_CLASS_$_" + StringClass;
1927       GV = getObjCRuntime().GetClassGlobal(str);
1928       // Make sure the result is of the correct type.
1929       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1930       ConstantStringClassRef =
1931         llvm::ConstantExpr::getBitCast(GV, PTy);
1932     } else {
1933       std::string str =
1934         StringClass.empty() ? "_NSConstantStringClassReference"
1935                             : "_" + StringClass + "ClassReference";
1936       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1937       GV = CreateRuntimeVariable(PTy, str);
1938       // Decay array -> ptr
1939       ConstantStringClassRef =
1940         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1941     }
1942   }
1943 
1944   if (!NSConstantStringType) {
1945     // Construct the type for a constant NSString.
1946     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1947                                      Context.getTranslationUnitDecl(),
1948                                    &Context.Idents.get("__builtin_NSString"));
1949     D->startDefinition();
1950 
1951     QualType FieldTypes[3];
1952 
1953     // const int *isa;
1954     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1955     // const char *str;
1956     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1957     // unsigned int length;
1958     FieldTypes[2] = Context.UnsignedIntTy;
1959 
1960     // Create fields
1961     for (unsigned i = 0; i < 3; ++i) {
1962       FieldDecl *Field = FieldDecl::Create(Context, D,
1963                                            SourceLocation(),
1964                                            SourceLocation(), 0,
1965                                            FieldTypes[i], /*TInfo=*/0,
1966                                            /*BitWidth=*/0,
1967                                            /*Mutable=*/false,
1968                                            /*HasInit=*/false);
1969       Field->setAccess(AS_public);
1970       D->addDecl(Field);
1971     }
1972 
1973     D->completeDefinition();
1974     QualType NSTy = Context.getTagDeclType(D);
1975     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1976   }
1977 
1978   llvm::Constant *Fields[3];
1979 
1980   // Class pointer.
1981   Fields[0] = ConstantStringClassRef;
1982 
1983   // String pointer.
1984   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1985 
1986   llvm::GlobalValue::LinkageTypes Linkage;
1987   bool isConstant;
1988   Linkage = llvm::GlobalValue::PrivateLinkage;
1989   isConstant = !Features.WritableStrings;
1990 
1991   llvm::GlobalVariable *GV =
1992   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1993                            ".str");
1994   GV->setUnnamedAddr(true);
1995   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1996   GV->setAlignment(Align.getQuantity());
1997   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1998 
1999   // String length.
2000   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2001   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2002 
2003   // The struct.
2004   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2005   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2006                                 llvm::GlobalVariable::PrivateLinkage, C,
2007                                 "_unnamed_nsstring_");
2008   // FIXME. Fix section.
2009   if (const char *Sect =
2010         Features.ObjCNonFragileABI
2011           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2012           : getContext().getTargetInfo().getNSStringSection())
2013     GV->setSection(Sect);
2014   Entry.setValue(GV);
2015 
2016   return GV;
2017 }
2018 
2019 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2020   if (ObjCFastEnumerationStateType.isNull()) {
2021     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2022                                      Context.getTranslationUnitDecl(),
2023                       &Context.Idents.get("__objcFastEnumerationState"));
2024     D->startDefinition();
2025 
2026     QualType FieldTypes[] = {
2027       Context.UnsignedLongTy,
2028       Context.getPointerType(Context.getObjCIdType()),
2029       Context.getPointerType(Context.UnsignedLongTy),
2030       Context.getConstantArrayType(Context.UnsignedLongTy,
2031                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2032     };
2033 
2034     for (size_t i = 0; i < 4; ++i) {
2035       FieldDecl *Field = FieldDecl::Create(Context,
2036                                            D,
2037                                            SourceLocation(),
2038                                            SourceLocation(), 0,
2039                                            FieldTypes[i], /*TInfo=*/0,
2040                                            /*BitWidth=*/0,
2041                                            /*Mutable=*/false,
2042                                            /*HasInit=*/false);
2043       Field->setAccess(AS_public);
2044       D->addDecl(Field);
2045     }
2046 
2047     D->completeDefinition();
2048     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2049   }
2050 
2051   return ObjCFastEnumerationStateType;
2052 }
2053 
2054 /// GetStringForStringLiteral - Return the appropriate bytes for a
2055 /// string literal, properly padded to match the literal type.
2056 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2057   assert((E->isAscii() || E->isUTF8())
2058          && "Use GetConstantArrayFromStringLiteral for wide strings");
2059   const ASTContext &Context = getContext();
2060   const ConstantArrayType *CAT =
2061     Context.getAsConstantArrayType(E->getType());
2062   assert(CAT && "String isn't pointer or array!");
2063 
2064   // Resize the string to the right size.
2065   uint64_t RealLen = CAT->getSize().getZExtValue();
2066 
2067   std::string Str = E->getString().str();
2068   Str.resize(RealLen, '\0');
2069 
2070   return Str;
2071 }
2072 
2073 llvm::Constant *
2074 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2075   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2076 
2077   // Don't emit it as the address of the string, emit the string data itself
2078   // as an inline array.
2079   if (E->getCharByteWidth()==1) {
2080     return llvm::ConstantArray::get(VMContext,
2081                                     GetStringForStringLiteral(E), false);
2082   } else {
2083     llvm::ArrayType *AType =
2084       cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2085     llvm::Type *ElemTy = AType->getElementType();
2086     unsigned NumElements = AType->getNumElements();
2087     std::vector<llvm::Constant*> Elts;
2088     Elts.reserve(NumElements);
2089 
2090     for(unsigned i=0;i<E->getLength();++i) {
2091       unsigned value = E->getCodeUnit(i);
2092       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false);
2093       Elts.push_back(C);
2094     }
2095     for(unsigned i=E->getLength();i<NumElements;++i) {
2096       llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false);
2097       Elts.push_back(C);
2098     }
2099 
2100     return llvm::ConstantArray::get(AType, Elts);
2101   }
2102 
2103 }
2104 
2105 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2106 /// constant array for the given string literal.
2107 llvm::Constant *
2108 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2109   // FIXME: This can be more efficient.
2110   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2111   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2112   if (S->isAscii() || S->isUTF8()) {
2113     return GetAddrOfConstantString(GetStringForStringLiteral(S),
2114                                    /* GlobalName */ 0,
2115                                    Align.getQuantity());
2116   }
2117 
2118   // FIXME: the following does not memoize wide strings
2119   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2120   llvm::GlobalVariable *GV =
2121     new llvm::GlobalVariable(getModule(),C->getType(),
2122                              !Features.WritableStrings,
2123                              llvm::GlobalValue::PrivateLinkage,
2124                              C,".str");
2125   GV->setAlignment(Align.getQuantity());
2126   GV->setUnnamedAddr(true);
2127 
2128   return GV;
2129 }
2130 
2131 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2132 /// array for the given ObjCEncodeExpr node.
2133 llvm::Constant *
2134 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2135   std::string Str;
2136   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2137 
2138   return GetAddrOfConstantCString(Str);
2139 }
2140 
2141 
2142 /// GenerateWritableString -- Creates storage for a string literal.
2143 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2144                                              bool constant,
2145                                              CodeGenModule &CGM,
2146                                              const char *GlobalName,
2147                                              unsigned Alignment) {
2148   // Create Constant for this string literal. Don't add a '\0'.
2149   llvm::Constant *C =
2150       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2151 
2152   // Create a global variable for this string
2153   llvm::GlobalVariable *GV =
2154     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2155                              llvm::GlobalValue::PrivateLinkage,
2156                              C, GlobalName);
2157   GV->setAlignment(Alignment);
2158   GV->setUnnamedAddr(true);
2159   return GV;
2160 }
2161 
2162 /// GetAddrOfConstantString - Returns a pointer to a character array
2163 /// containing the literal. This contents are exactly that of the
2164 /// given string, i.e. it will not be null terminated automatically;
2165 /// see GetAddrOfConstantCString. Note that whether the result is
2166 /// actually a pointer to an LLVM constant depends on
2167 /// Feature.WriteableStrings.
2168 ///
2169 /// The result has pointer to array type.
2170 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2171                                                        const char *GlobalName,
2172                                                        unsigned Alignment) {
2173   bool IsConstant = !Features.WritableStrings;
2174 
2175   // Get the default prefix if a name wasn't specified.
2176   if (!GlobalName)
2177     GlobalName = ".str";
2178 
2179   // Don't share any string literals if strings aren't constant.
2180   if (!IsConstant)
2181     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2182 
2183   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2184     ConstantStringMap.GetOrCreateValue(Str);
2185 
2186   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2187     if (Alignment > GV->getAlignment()) {
2188       GV->setAlignment(Alignment);
2189     }
2190     return GV;
2191   }
2192 
2193   // Create a global variable for this.
2194   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2195   Entry.setValue(GV);
2196   return GV;
2197 }
2198 
2199 /// GetAddrOfConstantCString - Returns a pointer to a character
2200 /// array containing the literal and a terminating '\0'
2201 /// character. The result has pointer to array type.
2202 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2203                                                         const char *GlobalName,
2204                                                         unsigned Alignment) {
2205   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2206   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2207 }
2208 
2209 /// EmitObjCPropertyImplementations - Emit information for synthesized
2210 /// properties for an implementation.
2211 void CodeGenModule::EmitObjCPropertyImplementations(const
2212                                                     ObjCImplementationDecl *D) {
2213   for (ObjCImplementationDecl::propimpl_iterator
2214          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2215     ObjCPropertyImplDecl *PID = *i;
2216 
2217     // Dynamic is just for type-checking.
2218     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2219       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2220 
2221       // Determine which methods need to be implemented, some may have
2222       // been overridden. Note that ::isSynthesized is not the method
2223       // we want, that just indicates if the decl came from a
2224       // property. What we want to know is if the method is defined in
2225       // this implementation.
2226       if (!D->getInstanceMethod(PD->getGetterName()))
2227         CodeGenFunction(*this).GenerateObjCGetter(
2228                                  const_cast<ObjCImplementationDecl *>(D), PID);
2229       if (!PD->isReadOnly() &&
2230           !D->getInstanceMethod(PD->getSetterName()))
2231         CodeGenFunction(*this).GenerateObjCSetter(
2232                                  const_cast<ObjCImplementationDecl *>(D), PID);
2233     }
2234   }
2235 }
2236 
2237 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2238   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2239   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2240        ivar; ivar = ivar->getNextIvar())
2241     if (ivar->getType().isDestructedType())
2242       return true;
2243 
2244   return false;
2245 }
2246 
2247 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2248 /// for an implementation.
2249 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2250   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2251   if (needsDestructMethod(D)) {
2252     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2253     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2254     ObjCMethodDecl *DTORMethod =
2255       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2256                              cxxSelector, getContext().VoidTy, 0, D,
2257                              /*isInstance=*/true, /*isVariadic=*/false,
2258                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2259                              /*isDefined=*/false, ObjCMethodDecl::Required);
2260     D->addInstanceMethod(DTORMethod);
2261     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2262     D->setHasCXXStructors(true);
2263   }
2264 
2265   // If the implementation doesn't have any ivar initializers, we don't need
2266   // a .cxx_construct.
2267   if (D->getNumIvarInitializers() == 0)
2268     return;
2269 
2270   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2271   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2272   // The constructor returns 'self'.
2273   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2274                                                 D->getLocation(),
2275                                                 D->getLocation(),
2276                                                 cxxSelector,
2277                                                 getContext().getObjCIdType(), 0,
2278                                                 D, /*isInstance=*/true,
2279                                                 /*isVariadic=*/false,
2280                                                 /*isSynthesized=*/true,
2281                                                 /*isImplicitlyDeclared=*/true,
2282                                                 /*isDefined=*/false,
2283                                                 ObjCMethodDecl::Required);
2284   D->addInstanceMethod(CTORMethod);
2285   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2286   D->setHasCXXStructors(true);
2287 }
2288 
2289 /// EmitNamespace - Emit all declarations in a namespace.
2290 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2291   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2292        I != E; ++I)
2293     EmitTopLevelDecl(*I);
2294 }
2295 
2296 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2297 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2298   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2299       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2300     ErrorUnsupported(LSD, "linkage spec");
2301     return;
2302   }
2303 
2304   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2305        I != E; ++I)
2306     EmitTopLevelDecl(*I);
2307 }
2308 
2309 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2310 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2311   // If an error has occurred, stop code generation, but continue
2312   // parsing and semantic analysis (to ensure all warnings and errors
2313   // are emitted).
2314   if (Diags.hasErrorOccurred())
2315     return;
2316 
2317   // Ignore dependent declarations.
2318   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2319     return;
2320 
2321   switch (D->getKind()) {
2322   case Decl::CXXConversion:
2323   case Decl::CXXMethod:
2324   case Decl::Function:
2325     // Skip function templates
2326     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2327         cast<FunctionDecl>(D)->isLateTemplateParsed())
2328       return;
2329 
2330     EmitGlobal(cast<FunctionDecl>(D));
2331     break;
2332 
2333   case Decl::Var:
2334     EmitGlobal(cast<VarDecl>(D));
2335     break;
2336 
2337   // Indirect fields from global anonymous structs and unions can be
2338   // ignored; only the actual variable requires IR gen support.
2339   case Decl::IndirectField:
2340     break;
2341 
2342   // C++ Decls
2343   case Decl::Namespace:
2344     EmitNamespace(cast<NamespaceDecl>(D));
2345     break;
2346     // No code generation needed.
2347   case Decl::UsingShadow:
2348   case Decl::Using:
2349   case Decl::UsingDirective:
2350   case Decl::ClassTemplate:
2351   case Decl::FunctionTemplate:
2352   case Decl::TypeAliasTemplate:
2353   case Decl::NamespaceAlias:
2354   case Decl::Block:
2355   case Decl::Import:
2356     break;
2357   case Decl::CXXConstructor:
2358     // Skip function templates
2359     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2360         cast<FunctionDecl>(D)->isLateTemplateParsed())
2361       return;
2362 
2363     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2364     break;
2365   case Decl::CXXDestructor:
2366     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2367       return;
2368     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2369     break;
2370 
2371   case Decl::StaticAssert:
2372     // Nothing to do.
2373     break;
2374 
2375   // Objective-C Decls
2376 
2377   // Forward declarations, no (immediate) code generation.
2378   case Decl::ObjCForwardProtocol:
2379   case Decl::ObjCInterface:
2380     break;
2381 
2382   case Decl::ObjCCategory: {
2383     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2384     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2385       Context.ResetObjCLayout(CD->getClassInterface());
2386     break;
2387   }
2388 
2389   case Decl::ObjCProtocol:
2390     ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2391     break;
2392 
2393   case Decl::ObjCCategoryImpl:
2394     // Categories have properties but don't support synthesize so we
2395     // can ignore them here.
2396     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2397     break;
2398 
2399   case Decl::ObjCImplementation: {
2400     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2401     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2402       Context.ResetObjCLayout(OMD->getClassInterface());
2403     EmitObjCPropertyImplementations(OMD);
2404     EmitObjCIvarInitializations(OMD);
2405     ObjCRuntime->GenerateClass(OMD);
2406     break;
2407   }
2408   case Decl::ObjCMethod: {
2409     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2410     // If this is not a prototype, emit the body.
2411     if (OMD->getBody())
2412       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2413     break;
2414   }
2415   case Decl::ObjCCompatibleAlias:
2416     // compatibility-alias is a directive and has no code gen.
2417     break;
2418 
2419   case Decl::LinkageSpec:
2420     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2421     break;
2422 
2423   case Decl::FileScopeAsm: {
2424     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2425     StringRef AsmString = AD->getAsmString()->getString();
2426 
2427     const std::string &S = getModule().getModuleInlineAsm();
2428     if (S.empty())
2429       getModule().setModuleInlineAsm(AsmString);
2430     else if (*--S.end() == '\n')
2431       getModule().setModuleInlineAsm(S + AsmString.str());
2432     else
2433       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2434     break;
2435   }
2436 
2437   default:
2438     // Make sure we handled everything we should, every other kind is a
2439     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2440     // function. Need to recode Decl::Kind to do that easily.
2441     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2442   }
2443 }
2444 
2445 /// Turns the given pointer into a constant.
2446 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2447                                           const void *Ptr) {
2448   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2449   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2450   return llvm::ConstantInt::get(i64, PtrInt);
2451 }
2452 
2453 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2454                                    llvm::NamedMDNode *&GlobalMetadata,
2455                                    GlobalDecl D,
2456                                    llvm::GlobalValue *Addr) {
2457   if (!GlobalMetadata)
2458     GlobalMetadata =
2459       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2460 
2461   // TODO: should we report variant information for ctors/dtors?
2462   llvm::Value *Ops[] = {
2463     Addr,
2464     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2465   };
2466   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2467 }
2468 
2469 /// Emits metadata nodes associating all the global values in the
2470 /// current module with the Decls they came from.  This is useful for
2471 /// projects using IR gen as a subroutine.
2472 ///
2473 /// Since there's currently no way to associate an MDNode directly
2474 /// with an llvm::GlobalValue, we create a global named metadata
2475 /// with the name 'clang.global.decl.ptrs'.
2476 void CodeGenModule::EmitDeclMetadata() {
2477   llvm::NamedMDNode *GlobalMetadata = 0;
2478 
2479   // StaticLocalDeclMap
2480   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2481          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2482        I != E; ++I) {
2483     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2484     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2485   }
2486 }
2487 
2488 /// Emits metadata nodes for all the local variables in the current
2489 /// function.
2490 void CodeGenFunction::EmitDeclMetadata() {
2491   if (LocalDeclMap.empty()) return;
2492 
2493   llvm::LLVMContext &Context = getLLVMContext();
2494 
2495   // Find the unique metadata ID for this name.
2496   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2497 
2498   llvm::NamedMDNode *GlobalMetadata = 0;
2499 
2500   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2501          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2502     const Decl *D = I->first;
2503     llvm::Value *Addr = I->second;
2504 
2505     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2506       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2507       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2508     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2509       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2510       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2511     }
2512   }
2513 }
2514 
2515 void CodeGenModule::EmitCoverageFile() {
2516   if (!getCodeGenOpts().CoverageFile.empty()) {
2517     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2518       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2519       llvm::LLVMContext &Ctx = TheModule.getContext();
2520       llvm::MDString *CoverageFile =
2521           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2522       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2523         llvm::MDNode *CU = CUNode->getOperand(i);
2524         llvm::Value *node[] = { CoverageFile, CU };
2525         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2526         GCov->addOperand(N);
2527       }
2528     }
2529   }
2530 }
2531