1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 364 const llvm::DataLayout &DL = M.getDataLayout(); 365 AllocaInt8PtrTy = 366 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 369 ConstGlobalsPtrTy = llvm::PointerType::get( 370 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 371 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 372 373 // Build C++20 Module initializers. 374 // TODO: Add Microsoft here once we know the mangling required for the 375 // initializers. 376 CXX20ModuleInits = 377 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 378 ItaniumMangleContext::MK_Itanium; 379 380 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 381 382 if (LangOpts.ObjC) 383 createObjCRuntime(); 384 if (LangOpts.OpenCL) 385 createOpenCLRuntime(); 386 if (LangOpts.OpenMP) 387 createOpenMPRuntime(); 388 if (LangOpts.CUDA) 389 createCUDARuntime(); 390 if (LangOpts.HLSL) 391 createHLSLRuntime(); 392 393 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 394 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 395 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 396 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 397 getCXXABI().getMangleContext())); 398 399 // If debug info or coverage generation is enabled, create the CGDebugInfo 400 // object. 401 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 402 CodeGenOpts.CoverageNotesFile.size() || 403 CodeGenOpts.CoverageDataFile.size()) 404 DebugInfo.reset(new CGDebugInfo(*this)); 405 406 Block.GlobalUniqueCount = 0; 407 408 if (C.getLangOpts().ObjC) 409 ObjCData.reset(new ObjCEntrypoints()); 410 411 if (CodeGenOpts.hasProfileClangUse()) { 412 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 413 CodeGenOpts.ProfileInstrumentUsePath, *FS, 414 CodeGenOpts.ProfileRemappingFile); 415 // We're checking for profile read errors in CompilerInvocation, so if 416 // there was an error it should've already been caught. If it hasn't been 417 // somehow, trip an assertion. 418 assert(ReaderOrErr); 419 PGOReader = std::move(ReaderOrErr.get()); 420 } 421 422 // If coverage mapping generation is enabled, create the 423 // CoverageMappingModuleGen object. 424 if (CodeGenOpts.CoverageMapping) 425 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 426 427 // Generate the module name hash here if needed. 428 if (CodeGenOpts.UniqueInternalLinkageNames && 429 !getModule().getSourceFileName().empty()) { 430 std::string Path = getModule().getSourceFileName(); 431 // Check if a path substitution is needed from the MacroPrefixMap. 432 for (const auto &Entry : LangOpts.MacroPrefixMap) 433 if (Path.rfind(Entry.first, 0) != std::string::npos) { 434 Path = Entry.second + Path.substr(Entry.first.size()); 435 break; 436 } 437 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 438 } 439 } 440 441 CodeGenModule::~CodeGenModule() {} 442 443 void CodeGenModule::createObjCRuntime() { 444 // This is just isGNUFamily(), but we want to force implementors of 445 // new ABIs to decide how best to do this. 446 switch (LangOpts.ObjCRuntime.getKind()) { 447 case ObjCRuntime::GNUstep: 448 case ObjCRuntime::GCC: 449 case ObjCRuntime::ObjFW: 450 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 451 return; 452 453 case ObjCRuntime::FragileMacOSX: 454 case ObjCRuntime::MacOSX: 455 case ObjCRuntime::iOS: 456 case ObjCRuntime::WatchOS: 457 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 458 return; 459 } 460 llvm_unreachable("bad runtime kind"); 461 } 462 463 void CodeGenModule::createOpenCLRuntime() { 464 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 465 } 466 467 void CodeGenModule::createOpenMPRuntime() { 468 // Select a specialized code generation class based on the target, if any. 469 // If it does not exist use the default implementation. 470 switch (getTriple().getArch()) { 471 case llvm::Triple::nvptx: 472 case llvm::Triple::nvptx64: 473 case llvm::Triple::amdgcn: 474 assert(getLangOpts().OpenMPIsTargetDevice && 475 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 476 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 477 break; 478 default: 479 if (LangOpts.OpenMPSimd) 480 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 481 else 482 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 483 break; 484 } 485 } 486 487 void CodeGenModule::createCUDARuntime() { 488 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 489 } 490 491 void CodeGenModule::createHLSLRuntime() { 492 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 493 } 494 495 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 496 Replacements[Name] = C; 497 } 498 499 void CodeGenModule::applyReplacements() { 500 for (auto &I : Replacements) { 501 StringRef MangledName = I.first; 502 llvm::Constant *Replacement = I.second; 503 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 504 if (!Entry) 505 continue; 506 auto *OldF = cast<llvm::Function>(Entry); 507 auto *NewF = dyn_cast<llvm::Function>(Replacement); 508 if (!NewF) { 509 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 510 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 511 } else { 512 auto *CE = cast<llvm::ConstantExpr>(Replacement); 513 assert(CE->getOpcode() == llvm::Instruction::BitCast || 514 CE->getOpcode() == llvm::Instruction::GetElementPtr); 515 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 516 } 517 } 518 519 // Replace old with new, but keep the old order. 520 OldF->replaceAllUsesWith(Replacement); 521 if (NewF) { 522 NewF->removeFromParent(); 523 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 524 NewF); 525 } 526 OldF->eraseFromParent(); 527 } 528 } 529 530 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 531 GlobalValReplacements.push_back(std::make_pair(GV, C)); 532 } 533 534 void CodeGenModule::applyGlobalValReplacements() { 535 for (auto &I : GlobalValReplacements) { 536 llvm::GlobalValue *GV = I.first; 537 llvm::Constant *C = I.second; 538 539 GV->replaceAllUsesWith(C); 540 GV->eraseFromParent(); 541 } 542 } 543 544 // This is only used in aliases that we created and we know they have a 545 // linear structure. 546 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 547 const llvm::Constant *C; 548 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 549 C = GA->getAliasee(); 550 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 551 C = GI->getResolver(); 552 else 553 return GV; 554 555 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 556 if (!AliaseeGV) 557 return nullptr; 558 559 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 560 if (FinalGV == GV) 561 return nullptr; 562 563 return FinalGV; 564 } 565 566 static bool checkAliasedGlobal( 567 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 568 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 569 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 570 SourceRange AliasRange) { 571 GV = getAliasedGlobal(Alias); 572 if (!GV) { 573 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 574 return false; 575 } 576 577 if (GV->hasCommonLinkage()) { 578 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 579 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 580 Diags.Report(Location, diag::err_alias_to_common); 581 return false; 582 } 583 } 584 585 if (GV->isDeclaration()) { 586 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 587 Diags.Report(Location, diag::note_alias_requires_mangled_name) 588 << IsIFunc << IsIFunc; 589 // Provide a note if the given function is not found and exists as a 590 // mangled name. 591 for (const auto &[Decl, Name] : MangledDeclNames) { 592 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 593 if (ND->getName() == GV->getName()) { 594 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 595 << Name 596 << FixItHint::CreateReplacement( 597 AliasRange, 598 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 599 .str()); 600 } 601 } 602 } 603 return false; 604 } 605 606 if (IsIFunc) { 607 // Check resolver function type. 608 const auto *F = dyn_cast<llvm::Function>(GV); 609 if (!F) { 610 Diags.Report(Location, diag::err_alias_to_undefined) 611 << IsIFunc << IsIFunc; 612 return false; 613 } 614 615 llvm::FunctionType *FTy = F->getFunctionType(); 616 if (!FTy->getReturnType()->isPointerTy()) { 617 Diags.Report(Location, diag::err_ifunc_resolver_return); 618 return false; 619 } 620 } 621 622 return true; 623 } 624 625 void CodeGenModule::checkAliases() { 626 // Check if the constructed aliases are well formed. It is really unfortunate 627 // that we have to do this in CodeGen, but we only construct mangled names 628 // and aliases during codegen. 629 bool Error = false; 630 DiagnosticsEngine &Diags = getDiags(); 631 for (const GlobalDecl &GD : Aliases) { 632 const auto *D = cast<ValueDecl>(GD.getDecl()); 633 SourceLocation Location; 634 SourceRange Range; 635 bool IsIFunc = D->hasAttr<IFuncAttr>(); 636 if (const Attr *A = D->getDefiningAttr()) { 637 Location = A->getLocation(); 638 Range = A->getRange(); 639 } else 640 llvm_unreachable("Not an alias or ifunc?"); 641 642 StringRef MangledName = getMangledName(GD); 643 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 644 const llvm::GlobalValue *GV = nullptr; 645 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 646 MangledDeclNames, Range)) { 647 Error = true; 648 continue; 649 } 650 651 llvm::Constant *Aliasee = 652 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 653 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 654 655 llvm::GlobalValue *AliaseeGV; 656 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 657 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 658 else 659 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 660 661 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 662 StringRef AliasSection = SA->getName(); 663 if (AliasSection != AliaseeGV->getSection()) 664 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 665 << AliasSection << IsIFunc << IsIFunc; 666 } 667 668 // We have to handle alias to weak aliases in here. LLVM itself disallows 669 // this since the object semantics would not match the IL one. For 670 // compatibility with gcc we implement it by just pointing the alias 671 // to its aliasee's aliasee. We also warn, since the user is probably 672 // expecting the link to be weak. 673 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 674 if (GA->isInterposable()) { 675 Diags.Report(Location, diag::warn_alias_to_weak_alias) 676 << GV->getName() << GA->getName() << IsIFunc; 677 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 678 GA->getAliasee(), Alias->getType()); 679 680 if (IsIFunc) 681 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 682 else 683 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 684 } 685 } 686 } 687 if (!Error) 688 return; 689 690 for (const GlobalDecl &GD : Aliases) { 691 StringRef MangledName = getMangledName(GD); 692 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 693 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 694 Alias->eraseFromParent(); 695 } 696 } 697 698 void CodeGenModule::clear() { 699 DeferredDeclsToEmit.clear(); 700 EmittedDeferredDecls.clear(); 701 if (OpenMPRuntime) 702 OpenMPRuntime->clear(); 703 } 704 705 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 706 StringRef MainFile) { 707 if (!hasDiagnostics()) 708 return; 709 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 710 if (MainFile.empty()) 711 MainFile = "<stdin>"; 712 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 713 } else { 714 if (Mismatched > 0) 715 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 716 717 if (Missing > 0) 718 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 719 } 720 } 721 722 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 723 llvm::Module &M) { 724 if (!LO.VisibilityFromDLLStorageClass) 725 return; 726 727 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 728 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 729 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 730 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 731 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 732 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 733 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 734 CodeGenModule::GetLLVMVisibility( 735 LO.getExternDeclNoDLLStorageClassVisibility()); 736 737 for (llvm::GlobalValue &GV : M.global_values()) { 738 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 739 continue; 740 741 // Reset DSO locality before setting the visibility. This removes 742 // any effects that visibility options and annotations may have 743 // had on the DSO locality. Setting the visibility will implicitly set 744 // appropriate globals to DSO Local; however, this will be pessimistic 745 // w.r.t. to the normal compiler IRGen. 746 GV.setDSOLocal(false); 747 748 if (GV.isDeclarationForLinker()) { 749 GV.setVisibility(GV.getDLLStorageClass() == 750 llvm::GlobalValue::DLLImportStorageClass 751 ? ExternDeclDLLImportVisibility 752 : ExternDeclNoDLLStorageClassVisibility); 753 } else { 754 GV.setVisibility(GV.getDLLStorageClass() == 755 llvm::GlobalValue::DLLExportStorageClass 756 ? DLLExportVisibility 757 : NoDLLStorageClassVisibility); 758 } 759 760 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 761 } 762 } 763 764 void CodeGenModule::Release() { 765 Module *Primary = getContext().getCurrentNamedModule(); 766 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 767 EmitModuleInitializers(Primary); 768 EmitDeferred(); 769 DeferredDecls.insert(EmittedDeferredDecls.begin(), 770 EmittedDeferredDecls.end()); 771 EmittedDeferredDecls.clear(); 772 EmitVTablesOpportunistically(); 773 applyGlobalValReplacements(); 774 applyReplacements(); 775 emitMultiVersionFunctions(); 776 777 if (Context.getLangOpts().IncrementalExtensions && 778 GlobalTopLevelStmtBlockInFlight.first) { 779 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 780 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 781 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 782 } 783 784 // Module implementations are initialized the same way as a regular TU that 785 // imports one or more modules. 786 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 787 EmitCXXModuleInitFunc(Primary); 788 else 789 EmitCXXGlobalInitFunc(); 790 EmitCXXGlobalCleanUpFunc(); 791 registerGlobalDtorsWithAtExit(); 792 EmitCXXThreadLocalInitFunc(); 793 if (ObjCRuntime) 794 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 795 AddGlobalCtor(ObjCInitFunction); 796 if (Context.getLangOpts().CUDA && CUDARuntime) { 797 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 798 AddGlobalCtor(CudaCtorFunction); 799 } 800 if (OpenMPRuntime) { 801 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 802 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 803 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 804 } 805 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 806 OpenMPRuntime->clear(); 807 } 808 if (PGOReader) { 809 getModule().setProfileSummary( 810 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 811 llvm::ProfileSummary::PSK_Instr); 812 if (PGOStats.hasDiagnostics()) 813 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 814 } 815 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 816 return L.LexOrder < R.LexOrder; 817 }); 818 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 819 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 820 EmitGlobalAnnotations(); 821 EmitStaticExternCAliases(); 822 checkAliases(); 823 EmitDeferredUnusedCoverageMappings(); 824 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 825 if (CoverageMapping) 826 CoverageMapping->emit(); 827 if (CodeGenOpts.SanitizeCfiCrossDso) { 828 CodeGenFunction(*this).EmitCfiCheckFail(); 829 CodeGenFunction(*this).EmitCfiCheckStub(); 830 } 831 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 832 finalizeKCFITypes(); 833 emitAtAvailableLinkGuard(); 834 if (Context.getTargetInfo().getTriple().isWasm()) 835 EmitMainVoidAlias(); 836 837 if (getTriple().isAMDGPU()) { 838 // Emit amdgpu_code_object_version module flag, which is code object version 839 // times 100. 840 if (getTarget().getTargetOpts().CodeObjectVersion != 841 TargetOptions::COV_None) { 842 getModule().addModuleFlag(llvm::Module::Error, 843 "amdgpu_code_object_version", 844 getTarget().getTargetOpts().CodeObjectVersion); 845 } 846 847 // Currently, "-mprintf-kind" option is only supported for HIP 848 if (LangOpts.HIP) { 849 auto *MDStr = llvm::MDString::get( 850 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 851 TargetOptions::AMDGPUPrintfKind::Hostcall) 852 ? "hostcall" 853 : "buffered"); 854 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 855 MDStr); 856 } 857 } 858 859 // Emit a global array containing all external kernels or device variables 860 // used by host functions and mark it as used for CUDA/HIP. This is necessary 861 // to get kernels or device variables in archives linked in even if these 862 // kernels or device variables are only used in host functions. 863 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 864 SmallVector<llvm::Constant *, 8> UsedArray; 865 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 866 GlobalDecl GD; 867 if (auto *FD = dyn_cast<FunctionDecl>(D)) 868 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 869 else 870 GD = GlobalDecl(D); 871 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 872 GetAddrOfGlobal(GD), Int8PtrTy)); 873 } 874 875 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 876 877 auto *GV = new llvm::GlobalVariable( 878 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 879 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 880 addCompilerUsedGlobal(GV); 881 } 882 883 emitLLVMUsed(); 884 if (SanStats) 885 SanStats->finish(); 886 887 if (CodeGenOpts.Autolink && 888 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 889 EmitModuleLinkOptions(); 890 } 891 892 // On ELF we pass the dependent library specifiers directly to the linker 893 // without manipulating them. This is in contrast to other platforms where 894 // they are mapped to a specific linker option by the compiler. This 895 // difference is a result of the greater variety of ELF linkers and the fact 896 // that ELF linkers tend to handle libraries in a more complicated fashion 897 // than on other platforms. This forces us to defer handling the dependent 898 // libs to the linker. 899 // 900 // CUDA/HIP device and host libraries are different. Currently there is no 901 // way to differentiate dependent libraries for host or device. Existing 902 // usage of #pragma comment(lib, *) is intended for host libraries on 903 // Windows. Therefore emit llvm.dependent-libraries only for host. 904 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 905 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 906 for (auto *MD : ELFDependentLibraries) 907 NMD->addOperand(MD); 908 } 909 910 // Record mregparm value now so it is visible through rest of codegen. 911 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 912 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 913 CodeGenOpts.NumRegisterParameters); 914 915 if (CodeGenOpts.DwarfVersion) { 916 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 917 CodeGenOpts.DwarfVersion); 918 } 919 920 if (CodeGenOpts.Dwarf64) 921 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 922 923 if (Context.getLangOpts().SemanticInterposition) 924 // Require various optimization to respect semantic interposition. 925 getModule().setSemanticInterposition(true); 926 927 if (CodeGenOpts.EmitCodeView) { 928 // Indicate that we want CodeView in the metadata. 929 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 930 } 931 if (CodeGenOpts.CodeViewGHash) { 932 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 933 } 934 if (CodeGenOpts.ControlFlowGuard) { 935 // Function ID tables and checks for Control Flow Guard (cfguard=2). 936 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 937 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 938 // Function ID tables for Control Flow Guard (cfguard=1). 939 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 940 } 941 if (CodeGenOpts.EHContGuard) { 942 // Function ID tables for EH Continuation Guard. 943 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 944 } 945 if (Context.getLangOpts().Kernel) { 946 // Note if we are compiling with /kernel. 947 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 948 } 949 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 950 // We don't support LTO with 2 with different StrictVTablePointers 951 // FIXME: we could support it by stripping all the information introduced 952 // by StrictVTablePointers. 953 954 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 955 956 llvm::Metadata *Ops[2] = { 957 llvm::MDString::get(VMContext, "StrictVTablePointers"), 958 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 959 llvm::Type::getInt32Ty(VMContext), 1))}; 960 961 getModule().addModuleFlag(llvm::Module::Require, 962 "StrictVTablePointersRequirement", 963 llvm::MDNode::get(VMContext, Ops)); 964 } 965 if (getModuleDebugInfo()) 966 // We support a single version in the linked module. The LLVM 967 // parser will drop debug info with a different version number 968 // (and warn about it, too). 969 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 970 llvm::DEBUG_METADATA_VERSION); 971 972 // We need to record the widths of enums and wchar_t, so that we can generate 973 // the correct build attributes in the ARM backend. wchar_size is also used by 974 // TargetLibraryInfo. 975 uint64_t WCharWidth = 976 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 977 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 978 979 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 980 if ( Arch == llvm::Triple::arm 981 || Arch == llvm::Triple::armeb 982 || Arch == llvm::Triple::thumb 983 || Arch == llvm::Triple::thumbeb) { 984 // The minimum width of an enum in bytes 985 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 986 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 987 } 988 989 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 990 StringRef ABIStr = Target.getABI(); 991 llvm::LLVMContext &Ctx = TheModule.getContext(); 992 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 993 llvm::MDString::get(Ctx, ABIStr)); 994 } 995 996 if (CodeGenOpts.SanitizeCfiCrossDso) { 997 // Indicate that we want cross-DSO control flow integrity checks. 998 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 999 } 1000 1001 if (CodeGenOpts.WholeProgramVTables) { 1002 // Indicate whether VFE was enabled for this module, so that the 1003 // vcall_visibility metadata added under whole program vtables is handled 1004 // appropriately in the optimizer. 1005 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1006 CodeGenOpts.VirtualFunctionElimination); 1007 } 1008 1009 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1010 getModule().addModuleFlag(llvm::Module::Override, 1011 "CFI Canonical Jump Tables", 1012 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1013 } 1014 1015 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1016 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1017 // KCFI assumes patchable-function-prefix is the same for all indirectly 1018 // called functions. Store the expected offset for code generation. 1019 if (CodeGenOpts.PatchableFunctionEntryOffset) 1020 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1021 CodeGenOpts.PatchableFunctionEntryOffset); 1022 } 1023 1024 if (CodeGenOpts.CFProtectionReturn && 1025 Target.checkCFProtectionReturnSupported(getDiags())) { 1026 // Indicate that we want to instrument return control flow protection. 1027 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1028 1); 1029 } 1030 1031 if (CodeGenOpts.CFProtectionBranch && 1032 Target.checkCFProtectionBranchSupported(getDiags())) { 1033 // Indicate that we want to instrument branch control flow protection. 1034 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1035 1); 1036 } 1037 1038 if (CodeGenOpts.FunctionReturnThunks) 1039 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1040 1041 if (CodeGenOpts.IndirectBranchCSPrefix) 1042 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1043 1044 // Add module metadata for return address signing (ignoring 1045 // non-leaf/all) and stack tagging. These are actually turned on by function 1046 // attributes, but we use module metadata to emit build attributes. This is 1047 // needed for LTO, where the function attributes are inside bitcode 1048 // serialised into a global variable by the time build attributes are 1049 // emitted, so we can't access them. LTO objects could be compiled with 1050 // different flags therefore module flags are set to "Min" behavior to achieve 1051 // the same end result of the normal build where e.g BTI is off if any object 1052 // doesn't support it. 1053 if (Context.getTargetInfo().hasFeature("ptrauth") && 1054 LangOpts.getSignReturnAddressScope() != 1055 LangOptions::SignReturnAddressScopeKind::None) 1056 getModule().addModuleFlag(llvm::Module::Override, 1057 "sign-return-address-buildattr", 1); 1058 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1059 getModule().addModuleFlag(llvm::Module::Override, 1060 "tag-stack-memory-buildattr", 1); 1061 1062 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1063 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1064 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1065 Arch == llvm::Triple::aarch64_be) { 1066 if (LangOpts.BranchTargetEnforcement) 1067 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1068 1); 1069 if (LangOpts.hasSignReturnAddress()) 1070 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1071 if (LangOpts.isSignReturnAddressScopeAll()) 1072 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1073 1); 1074 if (!LangOpts.isSignReturnAddressWithAKey()) 1075 getModule().addModuleFlag(llvm::Module::Min, 1076 "sign-return-address-with-bkey", 1); 1077 } 1078 1079 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1080 llvm::LLVMContext &Ctx = TheModule.getContext(); 1081 getModule().addModuleFlag( 1082 llvm::Module::Error, "MemProfProfileFilename", 1083 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1084 } 1085 1086 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1087 // Indicate whether __nvvm_reflect should be configured to flush denormal 1088 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1089 // property.) 1090 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1091 CodeGenOpts.FP32DenormalMode.Output != 1092 llvm::DenormalMode::IEEE); 1093 } 1094 1095 if (LangOpts.EHAsynch) 1096 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1097 1098 // Indicate whether this Module was compiled with -fopenmp 1099 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1100 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1101 if (getLangOpts().OpenMPIsTargetDevice) 1102 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1103 LangOpts.OpenMP); 1104 1105 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1106 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1107 EmitOpenCLMetadata(); 1108 // Emit SPIR version. 1109 if (getTriple().isSPIR()) { 1110 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1111 // opencl.spir.version named metadata. 1112 // C++ for OpenCL has a distinct mapping for version compatibility with 1113 // OpenCL. 1114 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1115 llvm::Metadata *SPIRVerElts[] = { 1116 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1117 Int32Ty, Version / 100)), 1118 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1119 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1120 llvm::NamedMDNode *SPIRVerMD = 1121 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1122 llvm::LLVMContext &Ctx = TheModule.getContext(); 1123 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1124 } 1125 } 1126 1127 // HLSL related end of code gen work items. 1128 if (LangOpts.HLSL) 1129 getHLSLRuntime().finishCodeGen(); 1130 1131 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1132 assert(PLevel < 3 && "Invalid PIC Level"); 1133 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1134 if (Context.getLangOpts().PIE) 1135 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1136 } 1137 1138 if (getCodeGenOpts().CodeModel.size() > 0) { 1139 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1140 .Case("tiny", llvm::CodeModel::Tiny) 1141 .Case("small", llvm::CodeModel::Small) 1142 .Case("kernel", llvm::CodeModel::Kernel) 1143 .Case("medium", llvm::CodeModel::Medium) 1144 .Case("large", llvm::CodeModel::Large) 1145 .Default(~0u); 1146 if (CM != ~0u) { 1147 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1148 getModule().setCodeModel(codeModel); 1149 1150 if (CM == llvm::CodeModel::Medium && 1151 Context.getTargetInfo().getTriple().getArch() == 1152 llvm::Triple::x86_64) { 1153 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1154 } 1155 } 1156 } 1157 1158 if (CodeGenOpts.NoPLT) 1159 getModule().setRtLibUseGOT(); 1160 if (getTriple().isOSBinFormatELF() && 1161 CodeGenOpts.DirectAccessExternalData != 1162 getModule().getDirectAccessExternalData()) { 1163 getModule().setDirectAccessExternalData( 1164 CodeGenOpts.DirectAccessExternalData); 1165 } 1166 if (CodeGenOpts.UnwindTables) 1167 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1168 1169 switch (CodeGenOpts.getFramePointer()) { 1170 case CodeGenOptions::FramePointerKind::None: 1171 // 0 ("none") is the default. 1172 break; 1173 case CodeGenOptions::FramePointerKind::NonLeaf: 1174 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1175 break; 1176 case CodeGenOptions::FramePointerKind::All: 1177 getModule().setFramePointer(llvm::FramePointerKind::All); 1178 break; 1179 } 1180 1181 SimplifyPersonality(); 1182 1183 if (getCodeGenOpts().EmitDeclMetadata) 1184 EmitDeclMetadata(); 1185 1186 if (getCodeGenOpts().CoverageNotesFile.size() || 1187 getCodeGenOpts().CoverageDataFile.size()) 1188 EmitCoverageFile(); 1189 1190 if (CGDebugInfo *DI = getModuleDebugInfo()) 1191 DI->finalize(); 1192 1193 if (getCodeGenOpts().EmitVersionIdentMetadata) 1194 EmitVersionIdentMetadata(); 1195 1196 if (!getCodeGenOpts().RecordCommandLine.empty()) 1197 EmitCommandLineMetadata(); 1198 1199 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1200 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1201 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1202 getModule().setStackProtectorGuardReg( 1203 getCodeGenOpts().StackProtectorGuardReg); 1204 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1205 getModule().setStackProtectorGuardSymbol( 1206 getCodeGenOpts().StackProtectorGuardSymbol); 1207 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1208 getModule().setStackProtectorGuardOffset( 1209 getCodeGenOpts().StackProtectorGuardOffset); 1210 if (getCodeGenOpts().StackAlignment) 1211 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1212 if (getCodeGenOpts().SkipRaxSetup) 1213 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1214 if (getLangOpts().RegCall4) 1215 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1216 1217 if (getContext().getTargetInfo().getMaxTLSAlign()) 1218 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1219 getContext().getTargetInfo().getMaxTLSAlign()); 1220 1221 getTargetCodeGenInfo().emitTargetGlobals(*this); 1222 1223 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1224 1225 EmitBackendOptionsMetadata(getCodeGenOpts()); 1226 1227 // If there is device offloading code embed it in the host now. 1228 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1229 1230 // Set visibility from DLL storage class 1231 // We do this at the end of LLVM IR generation; after any operation 1232 // that might affect the DLL storage class or the visibility, and 1233 // before anything that might act on these. 1234 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1235 } 1236 1237 void CodeGenModule::EmitOpenCLMetadata() { 1238 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1239 // opencl.ocl.version named metadata node. 1240 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1241 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1242 llvm::Metadata *OCLVerElts[] = { 1243 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1244 Int32Ty, Version / 100)), 1245 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1246 Int32Ty, (Version % 100) / 10))}; 1247 llvm::NamedMDNode *OCLVerMD = 1248 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1249 llvm::LLVMContext &Ctx = TheModule.getContext(); 1250 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1251 } 1252 1253 void CodeGenModule::EmitBackendOptionsMetadata( 1254 const CodeGenOptions &CodeGenOpts) { 1255 if (getTriple().isRISCV()) { 1256 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1257 CodeGenOpts.SmallDataLimit); 1258 } 1259 } 1260 1261 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1262 // Make sure that this type is translated. 1263 Types.UpdateCompletedType(TD); 1264 } 1265 1266 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1267 // Make sure that this type is translated. 1268 Types.RefreshTypeCacheForClass(RD); 1269 } 1270 1271 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1272 if (!TBAA) 1273 return nullptr; 1274 return TBAA->getTypeInfo(QTy); 1275 } 1276 1277 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1278 if (!TBAA) 1279 return TBAAAccessInfo(); 1280 if (getLangOpts().CUDAIsDevice) { 1281 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1282 // access info. 1283 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1284 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1285 nullptr) 1286 return TBAAAccessInfo(); 1287 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1288 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1289 nullptr) 1290 return TBAAAccessInfo(); 1291 } 1292 } 1293 return TBAA->getAccessInfo(AccessType); 1294 } 1295 1296 TBAAAccessInfo 1297 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1298 if (!TBAA) 1299 return TBAAAccessInfo(); 1300 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1301 } 1302 1303 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1304 if (!TBAA) 1305 return nullptr; 1306 return TBAA->getTBAAStructInfo(QTy); 1307 } 1308 1309 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1310 if (!TBAA) 1311 return nullptr; 1312 return TBAA->getBaseTypeInfo(QTy); 1313 } 1314 1315 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1316 if (!TBAA) 1317 return nullptr; 1318 return TBAA->getAccessTagInfo(Info); 1319 } 1320 1321 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1322 TBAAAccessInfo TargetInfo) { 1323 if (!TBAA) 1324 return TBAAAccessInfo(); 1325 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1326 } 1327 1328 TBAAAccessInfo 1329 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1330 TBAAAccessInfo InfoB) { 1331 if (!TBAA) 1332 return TBAAAccessInfo(); 1333 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1334 } 1335 1336 TBAAAccessInfo 1337 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1338 TBAAAccessInfo SrcInfo) { 1339 if (!TBAA) 1340 return TBAAAccessInfo(); 1341 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1342 } 1343 1344 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1345 TBAAAccessInfo TBAAInfo) { 1346 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1347 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1348 } 1349 1350 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1351 llvm::Instruction *I, const CXXRecordDecl *RD) { 1352 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1353 llvm::MDNode::get(getLLVMContext(), {})); 1354 } 1355 1356 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1357 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1358 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1359 } 1360 1361 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1362 /// specified stmt yet. 1363 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1364 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1365 "cannot compile this %0 yet"); 1366 std::string Msg = Type; 1367 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1368 << Msg << S->getSourceRange(); 1369 } 1370 1371 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1372 /// specified decl yet. 1373 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1374 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1375 "cannot compile this %0 yet"); 1376 std::string Msg = Type; 1377 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1378 } 1379 1380 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1381 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1382 } 1383 1384 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1385 const NamedDecl *D) const { 1386 // Internal definitions always have default visibility. 1387 if (GV->hasLocalLinkage()) { 1388 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1389 return; 1390 } 1391 if (!D) 1392 return; 1393 1394 // Set visibility for definitions, and for declarations if requested globally 1395 // or set explicitly. 1396 LinkageInfo LV = D->getLinkageAndVisibility(); 1397 1398 // OpenMP declare target variables must be visible to the host so they can 1399 // be registered. We require protected visibility unless the variable has 1400 // the DT_nohost modifier and does not need to be registered. 1401 if (Context.getLangOpts().OpenMP && 1402 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1403 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1404 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1405 OMPDeclareTargetDeclAttr::DT_NoHost && 1406 LV.getVisibility() == HiddenVisibility) { 1407 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1408 return; 1409 } 1410 1411 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1412 // Reject incompatible dlllstorage and visibility annotations. 1413 if (!LV.isVisibilityExplicit()) 1414 return; 1415 if (GV->hasDLLExportStorageClass()) { 1416 if (LV.getVisibility() == HiddenVisibility) 1417 getDiags().Report(D->getLocation(), 1418 diag::err_hidden_visibility_dllexport); 1419 } else if (LV.getVisibility() != DefaultVisibility) { 1420 getDiags().Report(D->getLocation(), 1421 diag::err_non_default_visibility_dllimport); 1422 } 1423 return; 1424 } 1425 1426 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1427 !GV->isDeclarationForLinker()) 1428 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1429 } 1430 1431 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1432 llvm::GlobalValue *GV) { 1433 if (GV->hasLocalLinkage()) 1434 return true; 1435 1436 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1437 return true; 1438 1439 // DLLImport explicitly marks the GV as external. 1440 if (GV->hasDLLImportStorageClass()) 1441 return false; 1442 1443 const llvm::Triple &TT = CGM.getTriple(); 1444 const auto &CGOpts = CGM.getCodeGenOpts(); 1445 if (TT.isWindowsGNUEnvironment()) { 1446 // In MinGW, variables without DLLImport can still be automatically 1447 // imported from a DLL by the linker; don't mark variables that 1448 // potentially could come from another DLL as DSO local. 1449 1450 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1451 // (and this actually happens in the public interface of libstdc++), so 1452 // such variables can't be marked as DSO local. (Native TLS variables 1453 // can't be dllimported at all, though.) 1454 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1455 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1456 CGOpts.AutoImport) 1457 return false; 1458 } 1459 1460 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1461 // remain unresolved in the link, they can be resolved to zero, which is 1462 // outside the current DSO. 1463 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1464 return false; 1465 1466 // Every other GV is local on COFF. 1467 // Make an exception for windows OS in the triple: Some firmware builds use 1468 // *-win32-macho triples. This (accidentally?) produced windows relocations 1469 // without GOT tables in older clang versions; Keep this behaviour. 1470 // FIXME: even thread local variables? 1471 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1472 return true; 1473 1474 // Only handle COFF and ELF for now. 1475 if (!TT.isOSBinFormatELF()) 1476 return false; 1477 1478 // If this is not an executable, don't assume anything is local. 1479 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1480 const auto &LOpts = CGM.getLangOpts(); 1481 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1482 // On ELF, if -fno-semantic-interposition is specified and the target 1483 // supports local aliases, there will be neither CC1 1484 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1485 // dso_local on the function if using a local alias is preferable (can avoid 1486 // PLT indirection). 1487 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1488 return false; 1489 return !(CGM.getLangOpts().SemanticInterposition || 1490 CGM.getLangOpts().HalfNoSemanticInterposition); 1491 } 1492 1493 // A definition cannot be preempted from an executable. 1494 if (!GV->isDeclarationForLinker()) 1495 return true; 1496 1497 // Most PIC code sequences that assume that a symbol is local cannot produce a 1498 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1499 // depended, it seems worth it to handle it here. 1500 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1501 return false; 1502 1503 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1504 if (TT.isPPC64()) 1505 return false; 1506 1507 if (CGOpts.DirectAccessExternalData) { 1508 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1509 // for non-thread-local variables. If the symbol is not defined in the 1510 // executable, a copy relocation will be needed at link time. dso_local is 1511 // excluded for thread-local variables because they generally don't support 1512 // copy relocations. 1513 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1514 if (!Var->isThreadLocal()) 1515 return true; 1516 1517 // -fno-pic sets dso_local on a function declaration to allow direct 1518 // accesses when taking its address (similar to a data symbol). If the 1519 // function is not defined in the executable, a canonical PLT entry will be 1520 // needed at link time. -fno-direct-access-external-data can avoid the 1521 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1522 // it could just cause trouble without providing perceptible benefits. 1523 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1524 return true; 1525 } 1526 1527 // If we can use copy relocations we can assume it is local. 1528 1529 // Otherwise don't assume it is local. 1530 return false; 1531 } 1532 1533 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1534 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1535 } 1536 1537 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1538 GlobalDecl GD) const { 1539 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1540 // C++ destructors have a few C++ ABI specific special cases. 1541 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1542 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1543 return; 1544 } 1545 setDLLImportDLLExport(GV, D); 1546 } 1547 1548 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1549 const NamedDecl *D) const { 1550 if (D && D->isExternallyVisible()) { 1551 if (D->hasAttr<DLLImportAttr>()) 1552 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1553 else if ((D->hasAttr<DLLExportAttr>() || 1554 shouldMapVisibilityToDLLExport(D)) && 1555 !GV->isDeclarationForLinker()) 1556 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1557 } 1558 } 1559 1560 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1561 GlobalDecl GD) const { 1562 setDLLImportDLLExport(GV, GD); 1563 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1564 } 1565 1566 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1567 const NamedDecl *D) const { 1568 setDLLImportDLLExport(GV, D); 1569 setGVPropertiesAux(GV, D); 1570 } 1571 1572 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1573 const NamedDecl *D) const { 1574 setGlobalVisibility(GV, D); 1575 setDSOLocal(GV); 1576 GV->setPartition(CodeGenOpts.SymbolPartition); 1577 } 1578 1579 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1580 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1581 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1582 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1583 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1584 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1585 } 1586 1587 llvm::GlobalVariable::ThreadLocalMode 1588 CodeGenModule::GetDefaultLLVMTLSModel() const { 1589 switch (CodeGenOpts.getDefaultTLSModel()) { 1590 case CodeGenOptions::GeneralDynamicTLSModel: 1591 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1592 case CodeGenOptions::LocalDynamicTLSModel: 1593 return llvm::GlobalVariable::LocalDynamicTLSModel; 1594 case CodeGenOptions::InitialExecTLSModel: 1595 return llvm::GlobalVariable::InitialExecTLSModel; 1596 case CodeGenOptions::LocalExecTLSModel: 1597 return llvm::GlobalVariable::LocalExecTLSModel; 1598 } 1599 llvm_unreachable("Invalid TLS model!"); 1600 } 1601 1602 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1603 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1604 1605 llvm::GlobalValue::ThreadLocalMode TLM; 1606 TLM = GetDefaultLLVMTLSModel(); 1607 1608 // Override the TLS model if it is explicitly specified. 1609 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1610 TLM = GetLLVMTLSModel(Attr->getModel()); 1611 } 1612 1613 GV->setThreadLocalMode(TLM); 1614 } 1615 1616 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1617 StringRef Name) { 1618 const TargetInfo &Target = CGM.getTarget(); 1619 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1620 } 1621 1622 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1623 const CPUSpecificAttr *Attr, 1624 unsigned CPUIndex, 1625 raw_ostream &Out) { 1626 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1627 // supported. 1628 if (Attr) 1629 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1630 else if (CGM.getTarget().supportsIFunc()) 1631 Out << ".resolver"; 1632 } 1633 1634 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1635 const TargetVersionAttr *Attr, 1636 raw_ostream &Out) { 1637 if (Attr->isDefaultVersion()) 1638 return; 1639 Out << "._"; 1640 const TargetInfo &TI = CGM.getTarget(); 1641 llvm::SmallVector<StringRef, 8> Feats; 1642 Attr->getFeatures(Feats); 1643 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1644 return TI.multiVersionSortPriority(FeatL) < 1645 TI.multiVersionSortPriority(FeatR); 1646 }); 1647 for (const auto &Feat : Feats) { 1648 Out << 'M'; 1649 Out << Feat; 1650 } 1651 } 1652 1653 static void AppendTargetMangling(const CodeGenModule &CGM, 1654 const TargetAttr *Attr, raw_ostream &Out) { 1655 if (Attr->isDefaultVersion()) 1656 return; 1657 1658 Out << '.'; 1659 const TargetInfo &Target = CGM.getTarget(); 1660 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1661 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1662 // Multiversioning doesn't allow "no-${feature}", so we can 1663 // only have "+" prefixes here. 1664 assert(LHS.startswith("+") && RHS.startswith("+") && 1665 "Features should always have a prefix."); 1666 return Target.multiVersionSortPriority(LHS.substr(1)) > 1667 Target.multiVersionSortPriority(RHS.substr(1)); 1668 }); 1669 1670 bool IsFirst = true; 1671 1672 if (!Info.CPU.empty()) { 1673 IsFirst = false; 1674 Out << "arch_" << Info.CPU; 1675 } 1676 1677 for (StringRef Feat : Info.Features) { 1678 if (!IsFirst) 1679 Out << '_'; 1680 IsFirst = false; 1681 Out << Feat.substr(1); 1682 } 1683 } 1684 1685 // Returns true if GD is a function decl with internal linkage and 1686 // needs a unique suffix after the mangled name. 1687 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1688 CodeGenModule &CGM) { 1689 const Decl *D = GD.getDecl(); 1690 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1691 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1692 } 1693 1694 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1695 const TargetClonesAttr *Attr, 1696 unsigned VersionIndex, 1697 raw_ostream &Out) { 1698 const TargetInfo &TI = CGM.getTarget(); 1699 if (TI.getTriple().isAArch64()) { 1700 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1701 if (FeatureStr == "default") 1702 return; 1703 Out << "._"; 1704 SmallVector<StringRef, 8> Features; 1705 FeatureStr.split(Features, "+"); 1706 llvm::stable_sort(Features, 1707 [&TI](const StringRef FeatL, const StringRef FeatR) { 1708 return TI.multiVersionSortPriority(FeatL) < 1709 TI.multiVersionSortPriority(FeatR); 1710 }); 1711 for (auto &Feat : Features) { 1712 Out << 'M'; 1713 Out << Feat; 1714 } 1715 } else { 1716 Out << '.'; 1717 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1718 if (FeatureStr.startswith("arch=")) 1719 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1720 else 1721 Out << FeatureStr; 1722 1723 Out << '.' << Attr->getMangledIndex(VersionIndex); 1724 } 1725 } 1726 1727 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1728 const NamedDecl *ND, 1729 bool OmitMultiVersionMangling = false) { 1730 SmallString<256> Buffer; 1731 llvm::raw_svector_ostream Out(Buffer); 1732 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1733 if (!CGM.getModuleNameHash().empty()) 1734 MC.needsUniqueInternalLinkageNames(); 1735 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1736 if (ShouldMangle) 1737 MC.mangleName(GD.getWithDecl(ND), Out); 1738 else { 1739 IdentifierInfo *II = ND->getIdentifier(); 1740 assert(II && "Attempt to mangle unnamed decl."); 1741 const auto *FD = dyn_cast<FunctionDecl>(ND); 1742 1743 if (FD && 1744 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1745 if (CGM.getLangOpts().RegCall4) 1746 Out << "__regcall4__" << II->getName(); 1747 else 1748 Out << "__regcall3__" << II->getName(); 1749 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1750 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1751 Out << "__device_stub__" << II->getName(); 1752 } else { 1753 Out << II->getName(); 1754 } 1755 } 1756 1757 // Check if the module name hash should be appended for internal linkage 1758 // symbols. This should come before multi-version target suffixes are 1759 // appended. This is to keep the name and module hash suffix of the 1760 // internal linkage function together. The unique suffix should only be 1761 // added when name mangling is done to make sure that the final name can 1762 // be properly demangled. For example, for C functions without prototypes, 1763 // name mangling is not done and the unique suffix should not be appeneded 1764 // then. 1765 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1766 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1767 "Hash computed when not explicitly requested"); 1768 Out << CGM.getModuleNameHash(); 1769 } 1770 1771 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1772 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1773 switch (FD->getMultiVersionKind()) { 1774 case MultiVersionKind::CPUDispatch: 1775 case MultiVersionKind::CPUSpecific: 1776 AppendCPUSpecificCPUDispatchMangling(CGM, 1777 FD->getAttr<CPUSpecificAttr>(), 1778 GD.getMultiVersionIndex(), Out); 1779 break; 1780 case MultiVersionKind::Target: 1781 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1782 break; 1783 case MultiVersionKind::TargetVersion: 1784 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1785 break; 1786 case MultiVersionKind::TargetClones: 1787 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1788 GD.getMultiVersionIndex(), Out); 1789 break; 1790 case MultiVersionKind::None: 1791 llvm_unreachable("None multiversion type isn't valid here"); 1792 } 1793 } 1794 1795 // Make unique name for device side static file-scope variable for HIP. 1796 if (CGM.getContext().shouldExternalize(ND) && 1797 CGM.getLangOpts().GPURelocatableDeviceCode && 1798 CGM.getLangOpts().CUDAIsDevice) 1799 CGM.printPostfixForExternalizedDecl(Out, ND); 1800 1801 return std::string(Out.str()); 1802 } 1803 1804 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1805 const FunctionDecl *FD, 1806 StringRef &CurName) { 1807 if (!FD->isMultiVersion()) 1808 return; 1809 1810 // Get the name of what this would be without the 'target' attribute. This 1811 // allows us to lookup the version that was emitted when this wasn't a 1812 // multiversion function. 1813 std::string NonTargetName = 1814 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1815 GlobalDecl OtherGD; 1816 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1817 assert(OtherGD.getCanonicalDecl() 1818 .getDecl() 1819 ->getAsFunction() 1820 ->isMultiVersion() && 1821 "Other GD should now be a multiversioned function"); 1822 // OtherFD is the version of this function that was mangled BEFORE 1823 // becoming a MultiVersion function. It potentially needs to be updated. 1824 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1825 .getDecl() 1826 ->getAsFunction() 1827 ->getMostRecentDecl(); 1828 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1829 // This is so that if the initial version was already the 'default' 1830 // version, we don't try to update it. 1831 if (OtherName != NonTargetName) { 1832 // Remove instead of erase, since others may have stored the StringRef 1833 // to this. 1834 const auto ExistingRecord = Manglings.find(NonTargetName); 1835 if (ExistingRecord != std::end(Manglings)) 1836 Manglings.remove(&(*ExistingRecord)); 1837 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1838 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1839 Result.first->first(); 1840 // If this is the current decl is being created, make sure we update the name. 1841 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1842 CurName = OtherNameRef; 1843 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1844 Entry->setName(OtherName); 1845 } 1846 } 1847 } 1848 1849 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1850 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1851 1852 // Some ABIs don't have constructor variants. Make sure that base and 1853 // complete constructors get mangled the same. 1854 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1855 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1856 CXXCtorType OrigCtorType = GD.getCtorType(); 1857 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1858 if (OrigCtorType == Ctor_Base) 1859 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1860 } 1861 } 1862 1863 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1864 // static device variable depends on whether the variable is referenced by 1865 // a host or device host function. Therefore the mangled name cannot be 1866 // cached. 1867 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1868 auto FoundName = MangledDeclNames.find(CanonicalGD); 1869 if (FoundName != MangledDeclNames.end()) 1870 return FoundName->second; 1871 } 1872 1873 // Keep the first result in the case of a mangling collision. 1874 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1875 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1876 1877 // Ensure either we have different ABIs between host and device compilations, 1878 // says host compilation following MSVC ABI but device compilation follows 1879 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1880 // mangling should be the same after name stubbing. The later checking is 1881 // very important as the device kernel name being mangled in host-compilation 1882 // is used to resolve the device binaries to be executed. Inconsistent naming 1883 // result in undefined behavior. Even though we cannot check that naming 1884 // directly between host- and device-compilations, the host- and 1885 // device-mangling in host compilation could help catching certain ones. 1886 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1887 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1888 (getContext().getAuxTargetInfo() && 1889 (getContext().getAuxTargetInfo()->getCXXABI() != 1890 getContext().getTargetInfo().getCXXABI())) || 1891 getCUDARuntime().getDeviceSideName(ND) == 1892 getMangledNameImpl( 1893 *this, 1894 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1895 ND)); 1896 1897 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1898 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1899 } 1900 1901 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1902 const BlockDecl *BD) { 1903 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1904 const Decl *D = GD.getDecl(); 1905 1906 SmallString<256> Buffer; 1907 llvm::raw_svector_ostream Out(Buffer); 1908 if (!D) 1909 MangleCtx.mangleGlobalBlock(BD, 1910 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1911 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1912 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1913 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1914 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1915 else 1916 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1917 1918 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1919 return Result.first->first(); 1920 } 1921 1922 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1923 auto it = MangledDeclNames.begin(); 1924 while (it != MangledDeclNames.end()) { 1925 if (it->second == Name) 1926 return it->first; 1927 it++; 1928 } 1929 return GlobalDecl(); 1930 } 1931 1932 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1933 return getModule().getNamedValue(Name); 1934 } 1935 1936 /// AddGlobalCtor - Add a function to the list that will be called before 1937 /// main() runs. 1938 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1939 unsigned LexOrder, 1940 llvm::Constant *AssociatedData) { 1941 // FIXME: Type coercion of void()* types. 1942 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1943 } 1944 1945 /// AddGlobalDtor - Add a function to the list that will be called 1946 /// when the module is unloaded. 1947 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1948 bool IsDtorAttrFunc) { 1949 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1950 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1951 DtorsUsingAtExit[Priority].push_back(Dtor); 1952 return; 1953 } 1954 1955 // FIXME: Type coercion of void()* types. 1956 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1957 } 1958 1959 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1960 if (Fns.empty()) return; 1961 1962 // Ctor function type is void()*. 1963 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1964 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1965 TheModule.getDataLayout().getProgramAddressSpace()); 1966 1967 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1968 llvm::StructType *CtorStructTy = llvm::StructType::get( 1969 Int32Ty, CtorPFTy, VoidPtrTy); 1970 1971 // Construct the constructor and destructor arrays. 1972 ConstantInitBuilder builder(*this); 1973 auto ctors = builder.beginArray(CtorStructTy); 1974 for (const auto &I : Fns) { 1975 auto ctor = ctors.beginStruct(CtorStructTy); 1976 ctor.addInt(Int32Ty, I.Priority); 1977 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1978 if (I.AssociatedData) 1979 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1980 else 1981 ctor.addNullPointer(VoidPtrTy); 1982 ctor.finishAndAddTo(ctors); 1983 } 1984 1985 auto list = 1986 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1987 /*constant*/ false, 1988 llvm::GlobalValue::AppendingLinkage); 1989 1990 // The LTO linker doesn't seem to like it when we set an alignment 1991 // on appending variables. Take it off as a workaround. 1992 list->setAlignment(std::nullopt); 1993 1994 Fns.clear(); 1995 } 1996 1997 llvm::GlobalValue::LinkageTypes 1998 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1999 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2000 2001 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2002 2003 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2004 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2005 2006 return getLLVMLinkageForDeclarator(D, Linkage); 2007 } 2008 2009 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2010 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2011 if (!MDS) return nullptr; 2012 2013 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2014 } 2015 2016 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2017 if (auto *FnType = T->getAs<FunctionProtoType>()) 2018 T = getContext().getFunctionType( 2019 FnType->getReturnType(), FnType->getParamTypes(), 2020 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2021 2022 std::string OutName; 2023 llvm::raw_string_ostream Out(OutName); 2024 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2025 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2026 2027 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2028 Out << ".normalized"; 2029 2030 return llvm::ConstantInt::get(Int32Ty, 2031 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2032 } 2033 2034 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2035 const CGFunctionInfo &Info, 2036 llvm::Function *F, bool IsThunk) { 2037 unsigned CallingConv; 2038 llvm::AttributeList PAL; 2039 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2040 /*AttrOnCallSite=*/false, IsThunk); 2041 F->setAttributes(PAL); 2042 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2043 } 2044 2045 static void removeImageAccessQualifier(std::string& TyName) { 2046 std::string ReadOnlyQual("__read_only"); 2047 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2048 if (ReadOnlyPos != std::string::npos) 2049 // "+ 1" for the space after access qualifier. 2050 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2051 else { 2052 std::string WriteOnlyQual("__write_only"); 2053 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2054 if (WriteOnlyPos != std::string::npos) 2055 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2056 else { 2057 std::string ReadWriteQual("__read_write"); 2058 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2059 if (ReadWritePos != std::string::npos) 2060 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2061 } 2062 } 2063 } 2064 2065 // Returns the address space id that should be produced to the 2066 // kernel_arg_addr_space metadata. This is always fixed to the ids 2067 // as specified in the SPIR 2.0 specification in order to differentiate 2068 // for example in clGetKernelArgInfo() implementation between the address 2069 // spaces with targets without unique mapping to the OpenCL address spaces 2070 // (basically all single AS CPUs). 2071 static unsigned ArgInfoAddressSpace(LangAS AS) { 2072 switch (AS) { 2073 case LangAS::opencl_global: 2074 return 1; 2075 case LangAS::opencl_constant: 2076 return 2; 2077 case LangAS::opencl_local: 2078 return 3; 2079 case LangAS::opencl_generic: 2080 return 4; // Not in SPIR 2.0 specs. 2081 case LangAS::opencl_global_device: 2082 return 5; 2083 case LangAS::opencl_global_host: 2084 return 6; 2085 default: 2086 return 0; // Assume private. 2087 } 2088 } 2089 2090 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2091 const FunctionDecl *FD, 2092 CodeGenFunction *CGF) { 2093 assert(((FD && CGF) || (!FD && !CGF)) && 2094 "Incorrect use - FD and CGF should either be both null or not!"); 2095 // Create MDNodes that represent the kernel arg metadata. 2096 // Each MDNode is a list in the form of "key", N number of values which is 2097 // the same number of values as their are kernel arguments. 2098 2099 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2100 2101 // MDNode for the kernel argument address space qualifiers. 2102 SmallVector<llvm::Metadata *, 8> addressQuals; 2103 2104 // MDNode for the kernel argument access qualifiers (images only). 2105 SmallVector<llvm::Metadata *, 8> accessQuals; 2106 2107 // MDNode for the kernel argument type names. 2108 SmallVector<llvm::Metadata *, 8> argTypeNames; 2109 2110 // MDNode for the kernel argument base type names. 2111 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2112 2113 // MDNode for the kernel argument type qualifiers. 2114 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2115 2116 // MDNode for the kernel argument names. 2117 SmallVector<llvm::Metadata *, 8> argNames; 2118 2119 if (FD && CGF) 2120 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2121 const ParmVarDecl *parm = FD->getParamDecl(i); 2122 // Get argument name. 2123 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2124 2125 if (!getLangOpts().OpenCL) 2126 continue; 2127 QualType ty = parm->getType(); 2128 std::string typeQuals; 2129 2130 // Get image and pipe access qualifier: 2131 if (ty->isImageType() || ty->isPipeType()) { 2132 const Decl *PDecl = parm; 2133 if (const auto *TD = ty->getAs<TypedefType>()) 2134 PDecl = TD->getDecl(); 2135 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2136 if (A && A->isWriteOnly()) 2137 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2138 else if (A && A->isReadWrite()) 2139 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2140 else 2141 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2142 } else 2143 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2144 2145 auto getTypeSpelling = [&](QualType Ty) { 2146 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2147 2148 if (Ty.isCanonical()) { 2149 StringRef typeNameRef = typeName; 2150 // Turn "unsigned type" to "utype" 2151 if (typeNameRef.consume_front("unsigned ")) 2152 return std::string("u") + typeNameRef.str(); 2153 if (typeNameRef.consume_front("signed ")) 2154 return typeNameRef.str(); 2155 } 2156 2157 return typeName; 2158 }; 2159 2160 if (ty->isPointerType()) { 2161 QualType pointeeTy = ty->getPointeeType(); 2162 2163 // Get address qualifier. 2164 addressQuals.push_back( 2165 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2166 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2167 2168 // Get argument type name. 2169 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2170 std::string baseTypeName = 2171 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2172 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2173 argBaseTypeNames.push_back( 2174 llvm::MDString::get(VMContext, baseTypeName)); 2175 2176 // Get argument type qualifiers: 2177 if (ty.isRestrictQualified()) 2178 typeQuals = "restrict"; 2179 if (pointeeTy.isConstQualified() || 2180 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2181 typeQuals += typeQuals.empty() ? "const" : " const"; 2182 if (pointeeTy.isVolatileQualified()) 2183 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2184 } else { 2185 uint32_t AddrSpc = 0; 2186 bool isPipe = ty->isPipeType(); 2187 if (ty->isImageType() || isPipe) 2188 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2189 2190 addressQuals.push_back( 2191 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2192 2193 // Get argument type name. 2194 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2195 std::string typeName = getTypeSpelling(ty); 2196 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2197 2198 // Remove access qualifiers on images 2199 // (as they are inseparable from type in clang implementation, 2200 // but OpenCL spec provides a special query to get access qualifier 2201 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2202 if (ty->isImageType()) { 2203 removeImageAccessQualifier(typeName); 2204 removeImageAccessQualifier(baseTypeName); 2205 } 2206 2207 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2208 argBaseTypeNames.push_back( 2209 llvm::MDString::get(VMContext, baseTypeName)); 2210 2211 if (isPipe) 2212 typeQuals = "pipe"; 2213 } 2214 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2215 } 2216 2217 if (getLangOpts().OpenCL) { 2218 Fn->setMetadata("kernel_arg_addr_space", 2219 llvm::MDNode::get(VMContext, addressQuals)); 2220 Fn->setMetadata("kernel_arg_access_qual", 2221 llvm::MDNode::get(VMContext, accessQuals)); 2222 Fn->setMetadata("kernel_arg_type", 2223 llvm::MDNode::get(VMContext, argTypeNames)); 2224 Fn->setMetadata("kernel_arg_base_type", 2225 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2226 Fn->setMetadata("kernel_arg_type_qual", 2227 llvm::MDNode::get(VMContext, argTypeQuals)); 2228 } 2229 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2230 getCodeGenOpts().HIPSaveKernelArgName) 2231 Fn->setMetadata("kernel_arg_name", 2232 llvm::MDNode::get(VMContext, argNames)); 2233 } 2234 2235 /// Determines whether the language options require us to model 2236 /// unwind exceptions. We treat -fexceptions as mandating this 2237 /// except under the fragile ObjC ABI with only ObjC exceptions 2238 /// enabled. This means, for example, that C with -fexceptions 2239 /// enables this. 2240 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2241 // If exceptions are completely disabled, obviously this is false. 2242 if (!LangOpts.Exceptions) return false; 2243 2244 // If C++ exceptions are enabled, this is true. 2245 if (LangOpts.CXXExceptions) return true; 2246 2247 // If ObjC exceptions are enabled, this depends on the ABI. 2248 if (LangOpts.ObjCExceptions) { 2249 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2250 } 2251 2252 return true; 2253 } 2254 2255 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2256 const CXXMethodDecl *MD) { 2257 // Check that the type metadata can ever actually be used by a call. 2258 if (!CGM.getCodeGenOpts().LTOUnit || 2259 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2260 return false; 2261 2262 // Only functions whose address can be taken with a member function pointer 2263 // need this sort of type metadata. 2264 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2265 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2266 } 2267 2268 SmallVector<const CXXRecordDecl *, 0> 2269 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2270 llvm::SetVector<const CXXRecordDecl *> MostBases; 2271 2272 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2273 CollectMostBases = [&](const CXXRecordDecl *RD) { 2274 if (RD->getNumBases() == 0) 2275 MostBases.insert(RD); 2276 for (const CXXBaseSpecifier &B : RD->bases()) 2277 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2278 }; 2279 CollectMostBases(RD); 2280 return MostBases.takeVector(); 2281 } 2282 2283 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2284 llvm::Function *F) { 2285 llvm::AttrBuilder B(F->getContext()); 2286 2287 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2288 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2289 2290 if (CodeGenOpts.StackClashProtector) 2291 B.addAttribute("probe-stack", "inline-asm"); 2292 2293 if (!hasUnwindExceptions(LangOpts)) 2294 B.addAttribute(llvm::Attribute::NoUnwind); 2295 2296 if (D && D->hasAttr<NoStackProtectorAttr>()) 2297 ; // Do nothing. 2298 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2299 LangOpts.getStackProtector() == LangOptions::SSPOn) 2300 B.addAttribute(llvm::Attribute::StackProtectStrong); 2301 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2302 B.addAttribute(llvm::Attribute::StackProtect); 2303 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2304 B.addAttribute(llvm::Attribute::StackProtectStrong); 2305 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2306 B.addAttribute(llvm::Attribute::StackProtectReq); 2307 2308 if (!D) { 2309 // If we don't have a declaration to control inlining, the function isn't 2310 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2311 // disabled, mark the function as noinline. 2312 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2313 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2314 B.addAttribute(llvm::Attribute::NoInline); 2315 2316 F->addFnAttrs(B); 2317 return; 2318 } 2319 2320 // Handle SME attributes that apply to function definitions, 2321 // rather than to function prototypes. 2322 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2323 B.addAttribute("aarch64_pstate_sm_body"); 2324 2325 if (D->hasAttr<ArmNewZAAttr>()) 2326 B.addAttribute("aarch64_pstate_za_new"); 2327 2328 // Track whether we need to add the optnone LLVM attribute, 2329 // starting with the default for this optimization level. 2330 bool ShouldAddOptNone = 2331 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2332 // We can't add optnone in the following cases, it won't pass the verifier. 2333 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2334 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2335 2336 // Add optnone, but do so only if the function isn't always_inline. 2337 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2338 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2339 B.addAttribute(llvm::Attribute::OptimizeNone); 2340 2341 // OptimizeNone implies noinline; we should not be inlining such functions. 2342 B.addAttribute(llvm::Attribute::NoInline); 2343 2344 // We still need to handle naked functions even though optnone subsumes 2345 // much of their semantics. 2346 if (D->hasAttr<NakedAttr>()) 2347 B.addAttribute(llvm::Attribute::Naked); 2348 2349 // OptimizeNone wins over OptimizeForSize and MinSize. 2350 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2351 F->removeFnAttr(llvm::Attribute::MinSize); 2352 } else if (D->hasAttr<NakedAttr>()) { 2353 // Naked implies noinline: we should not be inlining such functions. 2354 B.addAttribute(llvm::Attribute::Naked); 2355 B.addAttribute(llvm::Attribute::NoInline); 2356 } else if (D->hasAttr<NoDuplicateAttr>()) { 2357 B.addAttribute(llvm::Attribute::NoDuplicate); 2358 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2359 // Add noinline if the function isn't always_inline. 2360 B.addAttribute(llvm::Attribute::NoInline); 2361 } else if (D->hasAttr<AlwaysInlineAttr>() && 2362 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2363 // (noinline wins over always_inline, and we can't specify both in IR) 2364 B.addAttribute(llvm::Attribute::AlwaysInline); 2365 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2366 // If we're not inlining, then force everything that isn't always_inline to 2367 // carry an explicit noinline attribute. 2368 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2369 B.addAttribute(llvm::Attribute::NoInline); 2370 } else { 2371 // Otherwise, propagate the inline hint attribute and potentially use its 2372 // absence to mark things as noinline. 2373 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2374 // Search function and template pattern redeclarations for inline. 2375 auto CheckForInline = [](const FunctionDecl *FD) { 2376 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2377 return Redecl->isInlineSpecified(); 2378 }; 2379 if (any_of(FD->redecls(), CheckRedeclForInline)) 2380 return true; 2381 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2382 if (!Pattern) 2383 return false; 2384 return any_of(Pattern->redecls(), CheckRedeclForInline); 2385 }; 2386 if (CheckForInline(FD)) { 2387 B.addAttribute(llvm::Attribute::InlineHint); 2388 } else if (CodeGenOpts.getInlining() == 2389 CodeGenOptions::OnlyHintInlining && 2390 !FD->isInlined() && 2391 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2392 B.addAttribute(llvm::Attribute::NoInline); 2393 } 2394 } 2395 } 2396 2397 // Add other optimization related attributes if we are optimizing this 2398 // function. 2399 if (!D->hasAttr<OptimizeNoneAttr>()) { 2400 if (D->hasAttr<ColdAttr>()) { 2401 if (!ShouldAddOptNone) 2402 B.addAttribute(llvm::Attribute::OptimizeForSize); 2403 B.addAttribute(llvm::Attribute::Cold); 2404 } 2405 if (D->hasAttr<HotAttr>()) 2406 B.addAttribute(llvm::Attribute::Hot); 2407 if (D->hasAttr<MinSizeAttr>()) 2408 B.addAttribute(llvm::Attribute::MinSize); 2409 } 2410 2411 F->addFnAttrs(B); 2412 2413 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2414 if (alignment) 2415 F->setAlignment(llvm::Align(alignment)); 2416 2417 if (!D->hasAttr<AlignedAttr>()) 2418 if (LangOpts.FunctionAlignment) 2419 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2420 2421 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2422 // reserve a bit for differentiating between virtual and non-virtual member 2423 // functions. If the current target's C++ ABI requires this and this is a 2424 // member function, set its alignment accordingly. 2425 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2426 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2427 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2428 } 2429 2430 // In the cross-dso CFI mode with canonical jump tables, we want !type 2431 // attributes on definitions only. 2432 if (CodeGenOpts.SanitizeCfiCrossDso && 2433 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2434 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2435 // Skip available_externally functions. They won't be codegen'ed in the 2436 // current module anyway. 2437 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2438 CreateFunctionTypeMetadataForIcall(FD, F); 2439 } 2440 } 2441 2442 // Emit type metadata on member functions for member function pointer checks. 2443 // These are only ever necessary on definitions; we're guaranteed that the 2444 // definition will be present in the LTO unit as a result of LTO visibility. 2445 auto *MD = dyn_cast<CXXMethodDecl>(D); 2446 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2447 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2448 llvm::Metadata *Id = 2449 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2450 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2451 F->addTypeMetadata(0, Id); 2452 } 2453 } 2454 } 2455 2456 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2457 const Decl *D = GD.getDecl(); 2458 if (isa_and_nonnull<NamedDecl>(D)) 2459 setGVProperties(GV, GD); 2460 else 2461 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2462 2463 if (D && D->hasAttr<UsedAttr>()) 2464 addUsedOrCompilerUsedGlobal(GV); 2465 2466 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2467 VD && 2468 ((CodeGenOpts.KeepPersistentStorageVariables && 2469 (VD->getStorageDuration() == SD_Static || 2470 VD->getStorageDuration() == SD_Thread)) || 2471 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2472 VD->getType().isConstQualified()))) 2473 addUsedOrCompilerUsedGlobal(GV); 2474 } 2475 2476 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2477 llvm::AttrBuilder &Attrs, 2478 bool SetTargetFeatures) { 2479 // Add target-cpu and target-features attributes to functions. If 2480 // we have a decl for the function and it has a target attribute then 2481 // parse that and add it to the feature set. 2482 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2483 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2484 std::vector<std::string> Features; 2485 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2486 FD = FD ? FD->getMostRecentDecl() : FD; 2487 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2488 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2489 assert((!TD || !TV) && "both target_version and target specified"); 2490 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2491 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2492 bool AddedAttr = false; 2493 if (TD || TV || SD || TC) { 2494 llvm::StringMap<bool> FeatureMap; 2495 getContext().getFunctionFeatureMap(FeatureMap, GD); 2496 2497 // Produce the canonical string for this set of features. 2498 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2499 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2500 2501 // Now add the target-cpu and target-features to the function. 2502 // While we populated the feature map above, we still need to 2503 // get and parse the target attribute so we can get the cpu for 2504 // the function. 2505 if (TD) { 2506 ParsedTargetAttr ParsedAttr = 2507 Target.parseTargetAttr(TD->getFeaturesStr()); 2508 if (!ParsedAttr.CPU.empty() && 2509 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2510 TargetCPU = ParsedAttr.CPU; 2511 TuneCPU = ""; // Clear the tune CPU. 2512 } 2513 if (!ParsedAttr.Tune.empty() && 2514 getTarget().isValidCPUName(ParsedAttr.Tune)) 2515 TuneCPU = ParsedAttr.Tune; 2516 } 2517 2518 if (SD) { 2519 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2520 // favor this processor. 2521 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2522 } 2523 } else { 2524 // Otherwise just add the existing target cpu and target features to the 2525 // function. 2526 Features = getTarget().getTargetOpts().Features; 2527 } 2528 2529 if (!TargetCPU.empty()) { 2530 Attrs.addAttribute("target-cpu", TargetCPU); 2531 AddedAttr = true; 2532 } 2533 if (!TuneCPU.empty()) { 2534 Attrs.addAttribute("tune-cpu", TuneCPU); 2535 AddedAttr = true; 2536 } 2537 if (!Features.empty() && SetTargetFeatures) { 2538 llvm::erase_if(Features, [&](const std::string& F) { 2539 return getTarget().isReadOnlyFeature(F.substr(1)); 2540 }); 2541 llvm::sort(Features); 2542 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2543 AddedAttr = true; 2544 } 2545 2546 return AddedAttr; 2547 } 2548 2549 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2550 llvm::GlobalObject *GO) { 2551 const Decl *D = GD.getDecl(); 2552 SetCommonAttributes(GD, GO); 2553 2554 if (D) { 2555 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2556 if (D->hasAttr<RetainAttr>()) 2557 addUsedGlobal(GV); 2558 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2559 GV->addAttribute("bss-section", SA->getName()); 2560 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2561 GV->addAttribute("data-section", SA->getName()); 2562 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2563 GV->addAttribute("rodata-section", SA->getName()); 2564 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2565 GV->addAttribute("relro-section", SA->getName()); 2566 } 2567 2568 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2569 if (D->hasAttr<RetainAttr>()) 2570 addUsedGlobal(F); 2571 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2572 if (!D->getAttr<SectionAttr>()) 2573 F->addFnAttr("implicit-section-name", SA->getName()); 2574 2575 llvm::AttrBuilder Attrs(F->getContext()); 2576 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2577 // We know that GetCPUAndFeaturesAttributes will always have the 2578 // newest set, since it has the newest possible FunctionDecl, so the 2579 // new ones should replace the old. 2580 llvm::AttributeMask RemoveAttrs; 2581 RemoveAttrs.addAttribute("target-cpu"); 2582 RemoveAttrs.addAttribute("target-features"); 2583 RemoveAttrs.addAttribute("tune-cpu"); 2584 F->removeFnAttrs(RemoveAttrs); 2585 F->addFnAttrs(Attrs); 2586 } 2587 } 2588 2589 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2590 GO->setSection(CSA->getName()); 2591 else if (const auto *SA = D->getAttr<SectionAttr>()) 2592 GO->setSection(SA->getName()); 2593 } 2594 2595 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2596 } 2597 2598 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2599 llvm::Function *F, 2600 const CGFunctionInfo &FI) { 2601 const Decl *D = GD.getDecl(); 2602 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2603 SetLLVMFunctionAttributesForDefinition(D, F); 2604 2605 F->setLinkage(llvm::Function::InternalLinkage); 2606 2607 setNonAliasAttributes(GD, F); 2608 } 2609 2610 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2611 // Set linkage and visibility in case we never see a definition. 2612 LinkageInfo LV = ND->getLinkageAndVisibility(); 2613 // Don't set internal linkage on declarations. 2614 // "extern_weak" is overloaded in LLVM; we probably should have 2615 // separate linkage types for this. 2616 if (isExternallyVisible(LV.getLinkage()) && 2617 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2618 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2619 } 2620 2621 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2622 llvm::Function *F) { 2623 // Only if we are checking indirect calls. 2624 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2625 return; 2626 2627 // Non-static class methods are handled via vtable or member function pointer 2628 // checks elsewhere. 2629 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2630 return; 2631 2632 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2633 F->addTypeMetadata(0, MD); 2634 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2635 2636 // Emit a hash-based bit set entry for cross-DSO calls. 2637 if (CodeGenOpts.SanitizeCfiCrossDso) 2638 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2639 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2640 } 2641 2642 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2643 llvm::LLVMContext &Ctx = F->getContext(); 2644 llvm::MDBuilder MDB(Ctx); 2645 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2646 llvm::MDNode::get( 2647 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2648 } 2649 2650 static bool allowKCFIIdentifier(StringRef Name) { 2651 // KCFI type identifier constants are only necessary for external assembly 2652 // functions, which means it's safe to skip unusual names. Subset of 2653 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2654 return llvm::all_of(Name, [](const char &C) { 2655 return llvm::isAlnum(C) || C == '_' || C == '.'; 2656 }); 2657 } 2658 2659 void CodeGenModule::finalizeKCFITypes() { 2660 llvm::Module &M = getModule(); 2661 for (auto &F : M.functions()) { 2662 // Remove KCFI type metadata from non-address-taken local functions. 2663 bool AddressTaken = F.hasAddressTaken(); 2664 if (!AddressTaken && F.hasLocalLinkage()) 2665 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2666 2667 // Generate a constant with the expected KCFI type identifier for all 2668 // address-taken function declarations to support annotating indirectly 2669 // called assembly functions. 2670 if (!AddressTaken || !F.isDeclaration()) 2671 continue; 2672 2673 const llvm::ConstantInt *Type; 2674 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2675 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2676 else 2677 continue; 2678 2679 StringRef Name = F.getName(); 2680 if (!allowKCFIIdentifier(Name)) 2681 continue; 2682 2683 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2684 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2685 .str(); 2686 M.appendModuleInlineAsm(Asm); 2687 } 2688 } 2689 2690 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2691 bool IsIncompleteFunction, 2692 bool IsThunk) { 2693 2694 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2695 // If this is an intrinsic function, set the function's attributes 2696 // to the intrinsic's attributes. 2697 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2698 return; 2699 } 2700 2701 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2702 2703 if (!IsIncompleteFunction) 2704 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2705 IsThunk); 2706 2707 // Add the Returned attribute for "this", except for iOS 5 and earlier 2708 // where substantial code, including the libstdc++ dylib, was compiled with 2709 // GCC and does not actually return "this". 2710 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2711 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2712 assert(!F->arg_empty() && 2713 F->arg_begin()->getType() 2714 ->canLosslesslyBitCastTo(F->getReturnType()) && 2715 "unexpected this return"); 2716 F->addParamAttr(0, llvm::Attribute::Returned); 2717 } 2718 2719 // Only a few attributes are set on declarations; these may later be 2720 // overridden by a definition. 2721 2722 setLinkageForGV(F, FD); 2723 setGVProperties(F, FD); 2724 2725 // Setup target-specific attributes. 2726 if (!IsIncompleteFunction && F->isDeclaration()) 2727 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2728 2729 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2730 F->setSection(CSA->getName()); 2731 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2732 F->setSection(SA->getName()); 2733 2734 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2735 if (EA->isError()) 2736 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2737 else if (EA->isWarning()) 2738 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2739 } 2740 2741 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2742 if (FD->isInlineBuiltinDeclaration()) { 2743 const FunctionDecl *FDBody; 2744 bool HasBody = FD->hasBody(FDBody); 2745 (void)HasBody; 2746 assert(HasBody && "Inline builtin declarations should always have an " 2747 "available body!"); 2748 if (shouldEmitFunction(FDBody)) 2749 F->addFnAttr(llvm::Attribute::NoBuiltin); 2750 } 2751 2752 if (FD->isReplaceableGlobalAllocationFunction()) { 2753 // A replaceable global allocation function does not act like a builtin by 2754 // default, only if it is invoked by a new-expression or delete-expression. 2755 F->addFnAttr(llvm::Attribute::NoBuiltin); 2756 } 2757 2758 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2759 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2760 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2761 if (MD->isVirtual()) 2762 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2763 2764 // Don't emit entries for function declarations in the cross-DSO mode. This 2765 // is handled with better precision by the receiving DSO. But if jump tables 2766 // are non-canonical then we need type metadata in order to produce the local 2767 // jump table. 2768 if (!CodeGenOpts.SanitizeCfiCrossDso || 2769 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2770 CreateFunctionTypeMetadataForIcall(FD, F); 2771 2772 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2773 setKCFIType(FD, F); 2774 2775 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2776 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2777 2778 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2779 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2780 2781 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2782 // Annotate the callback behavior as metadata: 2783 // - The callback callee (as argument number). 2784 // - The callback payloads (as argument numbers). 2785 llvm::LLVMContext &Ctx = F->getContext(); 2786 llvm::MDBuilder MDB(Ctx); 2787 2788 // The payload indices are all but the first one in the encoding. The first 2789 // identifies the callback callee. 2790 int CalleeIdx = *CB->encoding_begin(); 2791 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2792 F->addMetadata(llvm::LLVMContext::MD_callback, 2793 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2794 CalleeIdx, PayloadIndices, 2795 /* VarArgsArePassed */ false)})); 2796 } 2797 } 2798 2799 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2800 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2801 "Only globals with definition can force usage."); 2802 LLVMUsed.emplace_back(GV); 2803 } 2804 2805 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2806 assert(!GV->isDeclaration() && 2807 "Only globals with definition can force usage."); 2808 LLVMCompilerUsed.emplace_back(GV); 2809 } 2810 2811 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2812 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2813 "Only globals with definition can force usage."); 2814 if (getTriple().isOSBinFormatELF()) 2815 LLVMCompilerUsed.emplace_back(GV); 2816 else 2817 LLVMUsed.emplace_back(GV); 2818 } 2819 2820 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2821 std::vector<llvm::WeakTrackingVH> &List) { 2822 // Don't create llvm.used if there is no need. 2823 if (List.empty()) 2824 return; 2825 2826 // Convert List to what ConstantArray needs. 2827 SmallVector<llvm::Constant*, 8> UsedArray; 2828 UsedArray.resize(List.size()); 2829 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2830 UsedArray[i] = 2831 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2832 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2833 } 2834 2835 if (UsedArray.empty()) 2836 return; 2837 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2838 2839 auto *GV = new llvm::GlobalVariable( 2840 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2841 llvm::ConstantArray::get(ATy, UsedArray), Name); 2842 2843 GV->setSection("llvm.metadata"); 2844 } 2845 2846 void CodeGenModule::emitLLVMUsed() { 2847 emitUsed(*this, "llvm.used", LLVMUsed); 2848 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2849 } 2850 2851 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2852 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2853 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2854 } 2855 2856 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2857 llvm::SmallString<32> Opt; 2858 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2859 if (Opt.empty()) 2860 return; 2861 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2862 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2863 } 2864 2865 void CodeGenModule::AddDependentLib(StringRef Lib) { 2866 auto &C = getLLVMContext(); 2867 if (getTarget().getTriple().isOSBinFormatELF()) { 2868 ELFDependentLibraries.push_back( 2869 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2870 return; 2871 } 2872 2873 llvm::SmallString<24> Opt; 2874 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2875 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2876 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2877 } 2878 2879 /// Add link options implied by the given module, including modules 2880 /// it depends on, using a postorder walk. 2881 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2882 SmallVectorImpl<llvm::MDNode *> &Metadata, 2883 llvm::SmallPtrSet<Module *, 16> &Visited) { 2884 // Import this module's parent. 2885 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2886 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2887 } 2888 2889 // Import this module's dependencies. 2890 for (Module *Import : llvm::reverse(Mod->Imports)) { 2891 if (Visited.insert(Import).second) 2892 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2893 } 2894 2895 // Add linker options to link against the libraries/frameworks 2896 // described by this module. 2897 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2898 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2899 2900 // For modules that use export_as for linking, use that module 2901 // name instead. 2902 if (Mod->UseExportAsModuleLinkName) 2903 return; 2904 2905 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2906 // Link against a framework. Frameworks are currently Darwin only, so we 2907 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2908 if (LL.IsFramework) { 2909 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2910 llvm::MDString::get(Context, LL.Library)}; 2911 2912 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2913 continue; 2914 } 2915 2916 // Link against a library. 2917 if (IsELF) { 2918 llvm::Metadata *Args[2] = { 2919 llvm::MDString::get(Context, "lib"), 2920 llvm::MDString::get(Context, LL.Library), 2921 }; 2922 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2923 } else { 2924 llvm::SmallString<24> Opt; 2925 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2926 auto *OptString = llvm::MDString::get(Context, Opt); 2927 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2928 } 2929 } 2930 } 2931 2932 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2933 assert(Primary->isNamedModuleUnit() && 2934 "We should only emit module initializers for named modules."); 2935 2936 // Emit the initializers in the order that sub-modules appear in the 2937 // source, first Global Module Fragments, if present. 2938 if (auto GMF = Primary->getGlobalModuleFragment()) { 2939 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2940 if (isa<ImportDecl>(D)) 2941 continue; 2942 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2943 EmitTopLevelDecl(D); 2944 } 2945 } 2946 // Second any associated with the module, itself. 2947 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2948 // Skip import decls, the inits for those are called explicitly. 2949 if (isa<ImportDecl>(D)) 2950 continue; 2951 EmitTopLevelDecl(D); 2952 } 2953 // Third any associated with the Privat eMOdule Fragment, if present. 2954 if (auto PMF = Primary->getPrivateModuleFragment()) { 2955 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2956 // Skip import decls, the inits for those are called explicitly. 2957 if (isa<ImportDecl>(D)) 2958 continue; 2959 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2960 EmitTopLevelDecl(D); 2961 } 2962 } 2963 } 2964 2965 void CodeGenModule::EmitModuleLinkOptions() { 2966 // Collect the set of all of the modules we want to visit to emit link 2967 // options, which is essentially the imported modules and all of their 2968 // non-explicit child modules. 2969 llvm::SetVector<clang::Module *> LinkModules; 2970 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2971 SmallVector<clang::Module *, 16> Stack; 2972 2973 // Seed the stack with imported modules. 2974 for (Module *M : ImportedModules) { 2975 // Do not add any link flags when an implementation TU of a module imports 2976 // a header of that same module. 2977 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2978 !getLangOpts().isCompilingModule()) 2979 continue; 2980 if (Visited.insert(M).second) 2981 Stack.push_back(M); 2982 } 2983 2984 // Find all of the modules to import, making a little effort to prune 2985 // non-leaf modules. 2986 while (!Stack.empty()) { 2987 clang::Module *Mod = Stack.pop_back_val(); 2988 2989 bool AnyChildren = false; 2990 2991 // Visit the submodules of this module. 2992 for (const auto &SM : Mod->submodules()) { 2993 // Skip explicit children; they need to be explicitly imported to be 2994 // linked against. 2995 if (SM->IsExplicit) 2996 continue; 2997 2998 if (Visited.insert(SM).second) { 2999 Stack.push_back(SM); 3000 AnyChildren = true; 3001 } 3002 } 3003 3004 // We didn't find any children, so add this module to the list of 3005 // modules to link against. 3006 if (!AnyChildren) { 3007 LinkModules.insert(Mod); 3008 } 3009 } 3010 3011 // Add link options for all of the imported modules in reverse topological 3012 // order. We don't do anything to try to order import link flags with respect 3013 // to linker options inserted by things like #pragma comment(). 3014 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3015 Visited.clear(); 3016 for (Module *M : LinkModules) 3017 if (Visited.insert(M).second) 3018 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3019 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3020 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3021 3022 // Add the linker options metadata flag. 3023 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3024 for (auto *MD : LinkerOptionsMetadata) 3025 NMD->addOperand(MD); 3026 } 3027 3028 void CodeGenModule::EmitDeferred() { 3029 // Emit deferred declare target declarations. 3030 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3031 getOpenMPRuntime().emitDeferredTargetDecls(); 3032 3033 // Emit code for any potentially referenced deferred decls. Since a 3034 // previously unused static decl may become used during the generation of code 3035 // for a static function, iterate until no changes are made. 3036 3037 if (!DeferredVTables.empty()) { 3038 EmitDeferredVTables(); 3039 3040 // Emitting a vtable doesn't directly cause more vtables to 3041 // become deferred, although it can cause functions to be 3042 // emitted that then need those vtables. 3043 assert(DeferredVTables.empty()); 3044 } 3045 3046 // Emit CUDA/HIP static device variables referenced by host code only. 3047 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3048 // needed for further handling. 3049 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3050 llvm::append_range(DeferredDeclsToEmit, 3051 getContext().CUDADeviceVarODRUsedByHost); 3052 3053 // Stop if we're out of both deferred vtables and deferred declarations. 3054 if (DeferredDeclsToEmit.empty()) 3055 return; 3056 3057 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3058 // work, it will not interfere with this. 3059 std::vector<GlobalDecl> CurDeclsToEmit; 3060 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3061 3062 for (GlobalDecl &D : CurDeclsToEmit) { 3063 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3064 // to get GlobalValue with exactly the type we need, not something that 3065 // might had been created for another decl with the same mangled name but 3066 // different type. 3067 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3068 GetAddrOfGlobal(D, ForDefinition)); 3069 3070 // In case of different address spaces, we may still get a cast, even with 3071 // IsForDefinition equal to true. Query mangled names table to get 3072 // GlobalValue. 3073 if (!GV) 3074 GV = GetGlobalValue(getMangledName(D)); 3075 3076 // Make sure GetGlobalValue returned non-null. 3077 assert(GV); 3078 3079 // Check to see if we've already emitted this. This is necessary 3080 // for a couple of reasons: first, decls can end up in the 3081 // deferred-decls queue multiple times, and second, decls can end 3082 // up with definitions in unusual ways (e.g. by an extern inline 3083 // function acquiring a strong function redefinition). Just 3084 // ignore these cases. 3085 if (!GV->isDeclaration()) 3086 continue; 3087 3088 // If this is OpenMP, check if it is legal to emit this global normally. 3089 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3090 continue; 3091 3092 // Otherwise, emit the definition and move on to the next one. 3093 EmitGlobalDefinition(D, GV); 3094 3095 // If we found out that we need to emit more decls, do that recursively. 3096 // This has the advantage that the decls are emitted in a DFS and related 3097 // ones are close together, which is convenient for testing. 3098 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3099 EmitDeferred(); 3100 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3101 } 3102 } 3103 } 3104 3105 void CodeGenModule::EmitVTablesOpportunistically() { 3106 // Try to emit external vtables as available_externally if they have emitted 3107 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3108 // is not allowed to create new references to things that need to be emitted 3109 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3110 3111 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3112 && "Only emit opportunistic vtables with optimizations"); 3113 3114 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3115 assert(getVTables().isVTableExternal(RD) && 3116 "This queue should only contain external vtables"); 3117 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3118 VTables.GenerateClassData(RD); 3119 } 3120 OpportunisticVTables.clear(); 3121 } 3122 3123 void CodeGenModule::EmitGlobalAnnotations() { 3124 if (Annotations.empty()) 3125 return; 3126 3127 // Create a new global variable for the ConstantStruct in the Module. 3128 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3129 Annotations[0]->getType(), Annotations.size()), Annotations); 3130 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3131 llvm::GlobalValue::AppendingLinkage, 3132 Array, "llvm.global.annotations"); 3133 gv->setSection(AnnotationSection); 3134 } 3135 3136 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3137 llvm::Constant *&AStr = AnnotationStrings[Str]; 3138 if (AStr) 3139 return AStr; 3140 3141 // Not found yet, create a new global. 3142 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3143 auto *gv = new llvm::GlobalVariable( 3144 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3145 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3146 ConstGlobalsPtrTy->getAddressSpace()); 3147 gv->setSection(AnnotationSection); 3148 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3149 AStr = gv; 3150 return gv; 3151 } 3152 3153 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3154 SourceManager &SM = getContext().getSourceManager(); 3155 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3156 if (PLoc.isValid()) 3157 return EmitAnnotationString(PLoc.getFilename()); 3158 return EmitAnnotationString(SM.getBufferName(Loc)); 3159 } 3160 3161 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3162 SourceManager &SM = getContext().getSourceManager(); 3163 PresumedLoc PLoc = SM.getPresumedLoc(L); 3164 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3165 SM.getExpansionLineNumber(L); 3166 return llvm::ConstantInt::get(Int32Ty, LineNo); 3167 } 3168 3169 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3170 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3171 if (Exprs.empty()) 3172 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3173 3174 llvm::FoldingSetNodeID ID; 3175 for (Expr *E : Exprs) { 3176 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3177 } 3178 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3179 if (Lookup) 3180 return Lookup; 3181 3182 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3183 LLVMArgs.reserve(Exprs.size()); 3184 ConstantEmitter ConstEmiter(*this); 3185 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3186 const auto *CE = cast<clang::ConstantExpr>(E); 3187 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3188 CE->getType()); 3189 }); 3190 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3191 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3192 llvm::GlobalValue::PrivateLinkage, Struct, 3193 ".args"); 3194 GV->setSection(AnnotationSection); 3195 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3196 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3197 3198 Lookup = Bitcasted; 3199 return Bitcasted; 3200 } 3201 3202 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3203 const AnnotateAttr *AA, 3204 SourceLocation L) { 3205 // Get the globals for file name, annotation, and the line number. 3206 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3207 *UnitGV = EmitAnnotationUnit(L), 3208 *LineNoCst = EmitAnnotationLineNo(L), 3209 *Args = EmitAnnotationArgs(AA); 3210 3211 llvm::Constant *GVInGlobalsAS = GV; 3212 if (GV->getAddressSpace() != 3213 getDataLayout().getDefaultGlobalsAddressSpace()) { 3214 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3215 GV, 3216 llvm::PointerType::get( 3217 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3218 } 3219 3220 // Create the ConstantStruct for the global annotation. 3221 llvm::Constant *Fields[] = { 3222 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3223 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3224 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3225 LineNoCst, 3226 Args, 3227 }; 3228 return llvm::ConstantStruct::getAnon(Fields); 3229 } 3230 3231 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3232 llvm::GlobalValue *GV) { 3233 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3234 // Get the struct elements for these annotations. 3235 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3236 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3237 } 3238 3239 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3240 SourceLocation Loc) const { 3241 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3242 // NoSanitize by function name. 3243 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3244 return true; 3245 // NoSanitize by location. Check "mainfile" prefix. 3246 auto &SM = Context.getSourceManager(); 3247 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3248 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3249 return true; 3250 3251 // Check "src" prefix. 3252 if (Loc.isValid()) 3253 return NoSanitizeL.containsLocation(Kind, Loc); 3254 // If location is unknown, this may be a compiler-generated function. Assume 3255 // it's located in the main file. 3256 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3257 } 3258 3259 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3260 llvm::GlobalVariable *GV, 3261 SourceLocation Loc, QualType Ty, 3262 StringRef Category) const { 3263 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3264 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3265 return true; 3266 auto &SM = Context.getSourceManager(); 3267 if (NoSanitizeL.containsMainFile( 3268 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3269 Category)) 3270 return true; 3271 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3272 return true; 3273 3274 // Check global type. 3275 if (!Ty.isNull()) { 3276 // Drill down the array types: if global variable of a fixed type is 3277 // not sanitized, we also don't instrument arrays of them. 3278 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3279 Ty = AT->getElementType(); 3280 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3281 // Only record types (classes, structs etc.) are ignored. 3282 if (Ty->isRecordType()) { 3283 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3284 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3285 return true; 3286 } 3287 } 3288 return false; 3289 } 3290 3291 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3292 StringRef Category) const { 3293 const auto &XRayFilter = getContext().getXRayFilter(); 3294 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3295 auto Attr = ImbueAttr::NONE; 3296 if (Loc.isValid()) 3297 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3298 if (Attr == ImbueAttr::NONE) 3299 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3300 switch (Attr) { 3301 case ImbueAttr::NONE: 3302 return false; 3303 case ImbueAttr::ALWAYS: 3304 Fn->addFnAttr("function-instrument", "xray-always"); 3305 break; 3306 case ImbueAttr::ALWAYS_ARG1: 3307 Fn->addFnAttr("function-instrument", "xray-always"); 3308 Fn->addFnAttr("xray-log-args", "1"); 3309 break; 3310 case ImbueAttr::NEVER: 3311 Fn->addFnAttr("function-instrument", "xray-never"); 3312 break; 3313 } 3314 return true; 3315 } 3316 3317 ProfileList::ExclusionType 3318 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3319 SourceLocation Loc) const { 3320 const auto &ProfileList = getContext().getProfileList(); 3321 // If the profile list is empty, then instrument everything. 3322 if (ProfileList.isEmpty()) 3323 return ProfileList::Allow; 3324 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3325 // First, check the function name. 3326 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3327 return *V; 3328 // Next, check the source location. 3329 if (Loc.isValid()) 3330 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3331 return *V; 3332 // If location is unknown, this may be a compiler-generated function. Assume 3333 // it's located in the main file. 3334 auto &SM = Context.getSourceManager(); 3335 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3336 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3337 return *V; 3338 return ProfileList.getDefault(Kind); 3339 } 3340 3341 ProfileList::ExclusionType 3342 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3343 SourceLocation Loc) const { 3344 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3345 if (V != ProfileList::Allow) 3346 return V; 3347 3348 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3349 if (NumGroups > 1) { 3350 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3351 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3352 return ProfileList::Skip; 3353 } 3354 return ProfileList::Allow; 3355 } 3356 3357 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3358 // Never defer when EmitAllDecls is specified. 3359 if (LangOpts.EmitAllDecls) 3360 return true; 3361 3362 const auto *VD = dyn_cast<VarDecl>(Global); 3363 if (VD && 3364 ((CodeGenOpts.KeepPersistentStorageVariables && 3365 (VD->getStorageDuration() == SD_Static || 3366 VD->getStorageDuration() == SD_Thread)) || 3367 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3368 VD->getType().isConstQualified()))) 3369 return true; 3370 3371 return getContext().DeclMustBeEmitted(Global); 3372 } 3373 3374 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3375 // In OpenMP 5.0 variables and function may be marked as 3376 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3377 // that they must be emitted on the host/device. To be sure we need to have 3378 // seen a declare target with an explicit mentioning of the function, we know 3379 // we have if the level of the declare target attribute is -1. Note that we 3380 // check somewhere else if we should emit this at all. 3381 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3382 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3383 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3384 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3385 return false; 3386 } 3387 3388 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3389 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3390 // Implicit template instantiations may change linkage if they are later 3391 // explicitly instantiated, so they should not be emitted eagerly. 3392 return false; 3393 } 3394 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3395 if (Context.getInlineVariableDefinitionKind(VD) == 3396 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3397 // A definition of an inline constexpr static data member may change 3398 // linkage later if it's redeclared outside the class. 3399 return false; 3400 if (CXX20ModuleInits && VD->getOwningModule() && 3401 !VD->getOwningModule()->isModuleMapModule()) { 3402 // For CXX20, module-owned initializers need to be deferred, since it is 3403 // not known at this point if they will be run for the current module or 3404 // as part of the initializer for an imported one. 3405 return false; 3406 } 3407 } 3408 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3409 // codegen for global variables, because they may be marked as threadprivate. 3410 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3411 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3412 !Global->getType().isConstantStorage(getContext(), false, false) && 3413 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3414 return false; 3415 3416 return true; 3417 } 3418 3419 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3420 StringRef Name = getMangledName(GD); 3421 3422 // The UUID descriptor should be pointer aligned. 3423 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3424 3425 // Look for an existing global. 3426 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3427 return ConstantAddress(GV, GV->getValueType(), Alignment); 3428 3429 ConstantEmitter Emitter(*this); 3430 llvm::Constant *Init; 3431 3432 APValue &V = GD->getAsAPValue(); 3433 if (!V.isAbsent()) { 3434 // If possible, emit the APValue version of the initializer. In particular, 3435 // this gets the type of the constant right. 3436 Init = Emitter.emitForInitializer( 3437 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3438 } else { 3439 // As a fallback, directly construct the constant. 3440 // FIXME: This may get padding wrong under esoteric struct layout rules. 3441 // MSVC appears to create a complete type 'struct __s_GUID' that it 3442 // presumably uses to represent these constants. 3443 MSGuidDecl::Parts Parts = GD->getParts(); 3444 llvm::Constant *Fields[4] = { 3445 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3446 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3447 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3448 llvm::ConstantDataArray::getRaw( 3449 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3450 Int8Ty)}; 3451 Init = llvm::ConstantStruct::getAnon(Fields); 3452 } 3453 3454 auto *GV = new llvm::GlobalVariable( 3455 getModule(), Init->getType(), 3456 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3457 if (supportsCOMDAT()) 3458 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3459 setDSOLocal(GV); 3460 3461 if (!V.isAbsent()) { 3462 Emitter.finalize(GV); 3463 return ConstantAddress(GV, GV->getValueType(), Alignment); 3464 } 3465 3466 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3467 return ConstantAddress(GV, Ty, Alignment); 3468 } 3469 3470 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3471 const UnnamedGlobalConstantDecl *GCD) { 3472 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3473 3474 llvm::GlobalVariable **Entry = nullptr; 3475 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3476 if (*Entry) 3477 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3478 3479 ConstantEmitter Emitter(*this); 3480 llvm::Constant *Init; 3481 3482 const APValue &V = GCD->getValue(); 3483 3484 assert(!V.isAbsent()); 3485 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3486 GCD->getType()); 3487 3488 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3489 /*isConstant=*/true, 3490 llvm::GlobalValue::PrivateLinkage, Init, 3491 ".constant"); 3492 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3493 GV->setAlignment(Alignment.getAsAlign()); 3494 3495 Emitter.finalize(GV); 3496 3497 *Entry = GV; 3498 return ConstantAddress(GV, GV->getValueType(), Alignment); 3499 } 3500 3501 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3502 const TemplateParamObjectDecl *TPO) { 3503 StringRef Name = getMangledName(TPO); 3504 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3505 3506 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3507 return ConstantAddress(GV, GV->getValueType(), Alignment); 3508 3509 ConstantEmitter Emitter(*this); 3510 llvm::Constant *Init = Emitter.emitForInitializer( 3511 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3512 3513 if (!Init) { 3514 ErrorUnsupported(TPO, "template parameter object"); 3515 return ConstantAddress::invalid(); 3516 } 3517 3518 llvm::GlobalValue::LinkageTypes Linkage = 3519 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3520 ? llvm::GlobalValue::LinkOnceODRLinkage 3521 : llvm::GlobalValue::InternalLinkage; 3522 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3523 /*isConstant=*/true, Linkage, Init, Name); 3524 setGVProperties(GV, TPO); 3525 if (supportsCOMDAT()) 3526 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3527 Emitter.finalize(GV); 3528 3529 return ConstantAddress(GV, GV->getValueType(), Alignment); 3530 } 3531 3532 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3533 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3534 assert(AA && "No alias?"); 3535 3536 CharUnits Alignment = getContext().getDeclAlign(VD); 3537 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3538 3539 // See if there is already something with the target's name in the module. 3540 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3541 if (Entry) 3542 return ConstantAddress(Entry, DeclTy, Alignment); 3543 3544 llvm::Constant *Aliasee; 3545 if (isa<llvm::FunctionType>(DeclTy)) 3546 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3547 GlobalDecl(cast<FunctionDecl>(VD)), 3548 /*ForVTable=*/false); 3549 else 3550 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3551 nullptr); 3552 3553 auto *F = cast<llvm::GlobalValue>(Aliasee); 3554 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3555 WeakRefReferences.insert(F); 3556 3557 return ConstantAddress(Aliasee, DeclTy, Alignment); 3558 } 3559 3560 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3561 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3562 3563 // Weak references don't produce any output by themselves. 3564 if (Global->hasAttr<WeakRefAttr>()) 3565 return; 3566 3567 // If this is an alias definition (which otherwise looks like a declaration) 3568 // emit it now. 3569 if (Global->hasAttr<AliasAttr>()) 3570 return EmitAliasDefinition(GD); 3571 3572 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3573 if (Global->hasAttr<IFuncAttr>()) 3574 return emitIFuncDefinition(GD); 3575 3576 // If this is a cpu_dispatch multiversion function, emit the resolver. 3577 if (Global->hasAttr<CPUDispatchAttr>()) 3578 return emitCPUDispatchDefinition(GD); 3579 3580 // If this is CUDA, be selective about which declarations we emit. 3581 if (LangOpts.CUDA) { 3582 if (LangOpts.CUDAIsDevice) { 3583 if (!Global->hasAttr<CUDADeviceAttr>() && 3584 !Global->hasAttr<CUDAGlobalAttr>() && 3585 !Global->hasAttr<CUDAConstantAttr>() && 3586 !Global->hasAttr<CUDASharedAttr>() && 3587 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3588 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3589 !(LangOpts.HIPStdPar && 3590 isa<FunctionDecl>(Global) && 3591 !Global->hasAttr<CUDAHostAttr>())) 3592 return; 3593 } else { 3594 // We need to emit host-side 'shadows' for all global 3595 // device-side variables because the CUDA runtime needs their 3596 // size and host-side address in order to provide access to 3597 // their device-side incarnations. 3598 3599 // So device-only functions are the only things we skip. 3600 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3601 Global->hasAttr<CUDADeviceAttr>()) 3602 return; 3603 3604 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3605 "Expected Variable or Function"); 3606 } 3607 } 3608 3609 if (LangOpts.OpenMP) { 3610 // If this is OpenMP, check if it is legal to emit this global normally. 3611 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3612 return; 3613 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3614 if (MustBeEmitted(Global)) 3615 EmitOMPDeclareReduction(DRD); 3616 return; 3617 } 3618 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3619 if (MustBeEmitted(Global)) 3620 EmitOMPDeclareMapper(DMD); 3621 return; 3622 } 3623 } 3624 3625 // Ignore declarations, they will be emitted on their first use. 3626 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3627 // Forward declarations are emitted lazily on first use. 3628 if (!FD->doesThisDeclarationHaveABody()) { 3629 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3630 return; 3631 3632 StringRef MangledName = getMangledName(GD); 3633 3634 // Compute the function info and LLVM type. 3635 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3636 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3637 3638 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3639 /*DontDefer=*/false); 3640 return; 3641 } 3642 } else { 3643 const auto *VD = cast<VarDecl>(Global); 3644 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3645 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3646 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3647 if (LangOpts.OpenMP) { 3648 // Emit declaration of the must-be-emitted declare target variable. 3649 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3650 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3651 3652 // If this variable has external storage and doesn't require special 3653 // link handling we defer to its canonical definition. 3654 if (VD->hasExternalStorage() && 3655 Res != OMPDeclareTargetDeclAttr::MT_Link) 3656 return; 3657 3658 bool UnifiedMemoryEnabled = 3659 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3660 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3661 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3662 !UnifiedMemoryEnabled) { 3663 (void)GetAddrOfGlobalVar(VD); 3664 } else { 3665 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3666 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3667 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3668 UnifiedMemoryEnabled)) && 3669 "Link clause or to clause with unified memory expected."); 3670 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3671 } 3672 3673 return; 3674 } 3675 } 3676 // If this declaration may have caused an inline variable definition to 3677 // change linkage, make sure that it's emitted. 3678 if (Context.getInlineVariableDefinitionKind(VD) == 3679 ASTContext::InlineVariableDefinitionKind::Strong) 3680 GetAddrOfGlobalVar(VD); 3681 return; 3682 } 3683 } 3684 3685 // Defer code generation to first use when possible, e.g. if this is an inline 3686 // function. If the global must always be emitted, do it eagerly if possible 3687 // to benefit from cache locality. 3688 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3689 // Emit the definition if it can't be deferred. 3690 EmitGlobalDefinition(GD); 3691 addEmittedDeferredDecl(GD); 3692 return; 3693 } 3694 3695 // If we're deferring emission of a C++ variable with an 3696 // initializer, remember the order in which it appeared in the file. 3697 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3698 cast<VarDecl>(Global)->hasInit()) { 3699 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3700 CXXGlobalInits.push_back(nullptr); 3701 } 3702 3703 StringRef MangledName = getMangledName(GD); 3704 if (GetGlobalValue(MangledName) != nullptr) { 3705 // The value has already been used and should therefore be emitted. 3706 addDeferredDeclToEmit(GD); 3707 } else if (MustBeEmitted(Global)) { 3708 // The value must be emitted, but cannot be emitted eagerly. 3709 assert(!MayBeEmittedEagerly(Global)); 3710 addDeferredDeclToEmit(GD); 3711 } else { 3712 // Otherwise, remember that we saw a deferred decl with this name. The 3713 // first use of the mangled name will cause it to move into 3714 // DeferredDeclsToEmit. 3715 DeferredDecls[MangledName] = GD; 3716 } 3717 } 3718 3719 // Check if T is a class type with a destructor that's not dllimport. 3720 static bool HasNonDllImportDtor(QualType T) { 3721 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3722 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3723 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3724 return true; 3725 3726 return false; 3727 } 3728 3729 namespace { 3730 struct FunctionIsDirectlyRecursive 3731 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3732 const StringRef Name; 3733 const Builtin::Context &BI; 3734 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3735 : Name(N), BI(C) {} 3736 3737 bool VisitCallExpr(const CallExpr *E) { 3738 const FunctionDecl *FD = E->getDirectCallee(); 3739 if (!FD) 3740 return false; 3741 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3742 if (Attr && Name == Attr->getLabel()) 3743 return true; 3744 unsigned BuiltinID = FD->getBuiltinID(); 3745 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3746 return false; 3747 StringRef BuiltinName = BI.getName(BuiltinID); 3748 if (BuiltinName.startswith("__builtin_") && 3749 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3750 return true; 3751 } 3752 return false; 3753 } 3754 3755 bool VisitStmt(const Stmt *S) { 3756 for (const Stmt *Child : S->children()) 3757 if (Child && this->Visit(Child)) 3758 return true; 3759 return false; 3760 } 3761 }; 3762 3763 // Make sure we're not referencing non-imported vars or functions. 3764 struct DLLImportFunctionVisitor 3765 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3766 bool SafeToInline = true; 3767 3768 bool shouldVisitImplicitCode() const { return true; } 3769 3770 bool VisitVarDecl(VarDecl *VD) { 3771 if (VD->getTLSKind()) { 3772 // A thread-local variable cannot be imported. 3773 SafeToInline = false; 3774 return SafeToInline; 3775 } 3776 3777 // A variable definition might imply a destructor call. 3778 if (VD->isThisDeclarationADefinition()) 3779 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3780 3781 return SafeToInline; 3782 } 3783 3784 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3785 if (const auto *D = E->getTemporary()->getDestructor()) 3786 SafeToInline = D->hasAttr<DLLImportAttr>(); 3787 return SafeToInline; 3788 } 3789 3790 bool VisitDeclRefExpr(DeclRefExpr *E) { 3791 ValueDecl *VD = E->getDecl(); 3792 if (isa<FunctionDecl>(VD)) 3793 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3794 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3795 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3796 return SafeToInline; 3797 } 3798 3799 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3800 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3801 return SafeToInline; 3802 } 3803 3804 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3805 CXXMethodDecl *M = E->getMethodDecl(); 3806 if (!M) { 3807 // Call through a pointer to member function. This is safe to inline. 3808 SafeToInline = true; 3809 } else { 3810 SafeToInline = M->hasAttr<DLLImportAttr>(); 3811 } 3812 return SafeToInline; 3813 } 3814 3815 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3816 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3817 return SafeToInline; 3818 } 3819 3820 bool VisitCXXNewExpr(CXXNewExpr *E) { 3821 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3822 return SafeToInline; 3823 } 3824 }; 3825 } 3826 3827 // isTriviallyRecursive - Check if this function calls another 3828 // decl that, because of the asm attribute or the other decl being a builtin, 3829 // ends up pointing to itself. 3830 bool 3831 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3832 StringRef Name; 3833 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3834 // asm labels are a special kind of mangling we have to support. 3835 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3836 if (!Attr) 3837 return false; 3838 Name = Attr->getLabel(); 3839 } else { 3840 Name = FD->getName(); 3841 } 3842 3843 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3844 const Stmt *Body = FD->getBody(); 3845 return Body ? Walker.Visit(Body) : false; 3846 } 3847 3848 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3849 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3850 return true; 3851 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3852 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3853 return false; 3854 3855 if (F->hasAttr<NoInlineAttr>()) 3856 return false; 3857 3858 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3859 // Check whether it would be safe to inline this dllimport function. 3860 DLLImportFunctionVisitor Visitor; 3861 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3862 if (!Visitor.SafeToInline) 3863 return false; 3864 3865 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3866 // Implicit destructor invocations aren't captured in the AST, so the 3867 // check above can't see them. Check for them manually here. 3868 for (const Decl *Member : Dtor->getParent()->decls()) 3869 if (isa<FieldDecl>(Member)) 3870 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3871 return false; 3872 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3873 if (HasNonDllImportDtor(B.getType())) 3874 return false; 3875 } 3876 } 3877 3878 // Inline builtins declaration must be emitted. They often are fortified 3879 // functions. 3880 if (F->isInlineBuiltinDeclaration()) 3881 return true; 3882 3883 // PR9614. Avoid cases where the source code is lying to us. An available 3884 // externally function should have an equivalent function somewhere else, 3885 // but a function that calls itself through asm label/`__builtin_` trickery is 3886 // clearly not equivalent to the real implementation. 3887 // This happens in glibc's btowc and in some configure checks. 3888 return !isTriviallyRecursive(F); 3889 } 3890 3891 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3892 return CodeGenOpts.OptimizationLevel > 0; 3893 } 3894 3895 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3896 llvm::GlobalValue *GV) { 3897 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3898 3899 if (FD->isCPUSpecificMultiVersion()) { 3900 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3901 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3902 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3903 } else if (FD->isTargetClonesMultiVersion()) { 3904 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3905 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3906 if (Clone->isFirstOfVersion(I)) 3907 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3908 // Ensure that the resolver function is also emitted. 3909 GetOrCreateMultiVersionResolver(GD); 3910 } else 3911 EmitGlobalFunctionDefinition(GD, GV); 3912 } 3913 3914 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3915 const auto *D = cast<ValueDecl>(GD.getDecl()); 3916 3917 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3918 Context.getSourceManager(), 3919 "Generating code for declaration"); 3920 3921 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3922 // At -O0, don't generate IR for functions with available_externally 3923 // linkage. 3924 if (!shouldEmitFunction(GD)) 3925 return; 3926 3927 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3928 std::string Name; 3929 llvm::raw_string_ostream OS(Name); 3930 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3931 /*Qualified=*/true); 3932 return Name; 3933 }); 3934 3935 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3936 // Make sure to emit the definition(s) before we emit the thunks. 3937 // This is necessary for the generation of certain thunks. 3938 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3939 ABI->emitCXXStructor(GD); 3940 else if (FD->isMultiVersion()) 3941 EmitMultiVersionFunctionDefinition(GD, GV); 3942 else 3943 EmitGlobalFunctionDefinition(GD, GV); 3944 3945 if (Method->isVirtual()) 3946 getVTables().EmitThunks(GD); 3947 3948 return; 3949 } 3950 3951 if (FD->isMultiVersion()) 3952 return EmitMultiVersionFunctionDefinition(GD, GV); 3953 return EmitGlobalFunctionDefinition(GD, GV); 3954 } 3955 3956 if (const auto *VD = dyn_cast<VarDecl>(D)) 3957 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3958 3959 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3960 } 3961 3962 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3963 llvm::Function *NewFn); 3964 3965 static unsigned 3966 TargetMVPriority(const TargetInfo &TI, 3967 const CodeGenFunction::MultiVersionResolverOption &RO) { 3968 unsigned Priority = 0; 3969 unsigned NumFeatures = 0; 3970 for (StringRef Feat : RO.Conditions.Features) { 3971 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3972 NumFeatures++; 3973 } 3974 3975 if (!RO.Conditions.Architecture.empty()) 3976 Priority = std::max( 3977 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3978 3979 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3980 3981 return Priority; 3982 } 3983 3984 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3985 // TU can forward declare the function without causing problems. Particularly 3986 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3987 // work with internal linkage functions, so that the same function name can be 3988 // used with internal linkage in multiple TUs. 3989 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3990 GlobalDecl GD) { 3991 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3992 if (FD->getFormalLinkage() == InternalLinkage) 3993 return llvm::GlobalValue::InternalLinkage; 3994 return llvm::GlobalValue::WeakODRLinkage; 3995 } 3996 3997 void CodeGenModule::emitMultiVersionFunctions() { 3998 std::vector<GlobalDecl> MVFuncsToEmit; 3999 MultiVersionFuncs.swap(MVFuncsToEmit); 4000 for (GlobalDecl GD : MVFuncsToEmit) { 4001 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4002 assert(FD && "Expected a FunctionDecl"); 4003 4004 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4005 if (FD->isTargetMultiVersion()) { 4006 getContext().forEachMultiversionedFunctionVersion( 4007 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4008 GlobalDecl CurGD{ 4009 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4010 StringRef MangledName = getMangledName(CurGD); 4011 llvm::Constant *Func = GetGlobalValue(MangledName); 4012 if (!Func) { 4013 if (CurFD->isDefined()) { 4014 EmitGlobalFunctionDefinition(CurGD, nullptr); 4015 Func = GetGlobalValue(MangledName); 4016 } else { 4017 const CGFunctionInfo &FI = 4018 getTypes().arrangeGlobalDeclaration(GD); 4019 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4020 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4021 /*DontDefer=*/false, ForDefinition); 4022 } 4023 assert(Func && "This should have just been created"); 4024 } 4025 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4026 const auto *TA = CurFD->getAttr<TargetAttr>(); 4027 llvm::SmallVector<StringRef, 8> Feats; 4028 TA->getAddedFeatures(Feats); 4029 Options.emplace_back(cast<llvm::Function>(Func), 4030 TA->getArchitecture(), Feats); 4031 } else { 4032 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4033 llvm::SmallVector<StringRef, 8> Feats; 4034 TVA->getFeatures(Feats); 4035 Options.emplace_back(cast<llvm::Function>(Func), 4036 /*Architecture*/ "", Feats); 4037 } 4038 }); 4039 } else if (FD->isTargetClonesMultiVersion()) { 4040 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4041 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4042 ++VersionIndex) { 4043 if (!TC->isFirstOfVersion(VersionIndex)) 4044 continue; 4045 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4046 VersionIndex}; 4047 StringRef Version = TC->getFeatureStr(VersionIndex); 4048 StringRef MangledName = getMangledName(CurGD); 4049 llvm::Constant *Func = GetGlobalValue(MangledName); 4050 if (!Func) { 4051 if (FD->isDefined()) { 4052 EmitGlobalFunctionDefinition(CurGD, nullptr); 4053 Func = GetGlobalValue(MangledName); 4054 } else { 4055 const CGFunctionInfo &FI = 4056 getTypes().arrangeGlobalDeclaration(CurGD); 4057 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4058 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4059 /*DontDefer=*/false, ForDefinition); 4060 } 4061 assert(Func && "This should have just been created"); 4062 } 4063 4064 StringRef Architecture; 4065 llvm::SmallVector<StringRef, 1> Feature; 4066 4067 if (getTarget().getTriple().isAArch64()) { 4068 if (Version != "default") { 4069 llvm::SmallVector<StringRef, 8> VerFeats; 4070 Version.split(VerFeats, "+"); 4071 for (auto &CurFeat : VerFeats) 4072 Feature.push_back(CurFeat.trim()); 4073 } 4074 } else { 4075 if (Version.startswith("arch=")) 4076 Architecture = Version.drop_front(sizeof("arch=") - 1); 4077 else if (Version != "default") 4078 Feature.push_back(Version); 4079 } 4080 4081 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4082 } 4083 } else { 4084 assert(0 && "Expected a target or target_clones multiversion function"); 4085 continue; 4086 } 4087 4088 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4089 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4090 ResolverConstant = IFunc->getResolver(); 4091 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4092 4093 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4094 4095 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4096 ResolverFunc->setComdat( 4097 getModule().getOrInsertComdat(ResolverFunc->getName())); 4098 4099 const TargetInfo &TI = getTarget(); 4100 llvm::stable_sort( 4101 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4102 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4103 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4104 }); 4105 CodeGenFunction CGF(*this); 4106 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4107 } 4108 4109 // Ensure that any additions to the deferred decls list caused by emitting a 4110 // variant are emitted. This can happen when the variant itself is inline and 4111 // calls a function without linkage. 4112 if (!MVFuncsToEmit.empty()) 4113 EmitDeferred(); 4114 4115 // Ensure that any additions to the multiversion funcs list from either the 4116 // deferred decls or the multiversion functions themselves are emitted. 4117 if (!MultiVersionFuncs.empty()) 4118 emitMultiVersionFunctions(); 4119 } 4120 4121 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4122 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4123 assert(FD && "Not a FunctionDecl?"); 4124 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4125 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4126 assert(DD && "Not a cpu_dispatch Function?"); 4127 4128 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4129 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4130 4131 StringRef ResolverName = getMangledName(GD); 4132 UpdateMultiVersionNames(GD, FD, ResolverName); 4133 4134 llvm::Type *ResolverType; 4135 GlobalDecl ResolverGD; 4136 if (getTarget().supportsIFunc()) { 4137 ResolverType = llvm::FunctionType::get( 4138 llvm::PointerType::get(DeclTy, 4139 getTypes().getTargetAddressSpace(FD->getType())), 4140 false); 4141 } 4142 else { 4143 ResolverType = DeclTy; 4144 ResolverGD = GD; 4145 } 4146 4147 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4148 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4149 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4150 if (supportsCOMDAT()) 4151 ResolverFunc->setComdat( 4152 getModule().getOrInsertComdat(ResolverFunc->getName())); 4153 4154 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4155 const TargetInfo &Target = getTarget(); 4156 unsigned Index = 0; 4157 for (const IdentifierInfo *II : DD->cpus()) { 4158 // Get the name of the target function so we can look it up/create it. 4159 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4160 getCPUSpecificMangling(*this, II->getName()); 4161 4162 llvm::Constant *Func = GetGlobalValue(MangledName); 4163 4164 if (!Func) { 4165 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4166 if (ExistingDecl.getDecl() && 4167 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4168 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4169 Func = GetGlobalValue(MangledName); 4170 } else { 4171 if (!ExistingDecl.getDecl()) 4172 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4173 4174 Func = GetOrCreateLLVMFunction( 4175 MangledName, DeclTy, ExistingDecl, 4176 /*ForVTable=*/false, /*DontDefer=*/true, 4177 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4178 } 4179 } 4180 4181 llvm::SmallVector<StringRef, 32> Features; 4182 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4183 llvm::transform(Features, Features.begin(), 4184 [](StringRef Str) { return Str.substr(1); }); 4185 llvm::erase_if(Features, [&Target](StringRef Feat) { 4186 return !Target.validateCpuSupports(Feat); 4187 }); 4188 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4189 ++Index; 4190 } 4191 4192 llvm::stable_sort( 4193 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4194 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4195 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4196 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4197 }); 4198 4199 // If the list contains multiple 'default' versions, such as when it contains 4200 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4201 // always run on at least a 'pentium'). We do this by deleting the 'least 4202 // advanced' (read, lowest mangling letter). 4203 while (Options.size() > 1 && 4204 llvm::all_of(llvm::X86::getCpuSupportsMask( 4205 (Options.end() - 2)->Conditions.Features), 4206 [](auto X) { return X == 0; })) { 4207 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4208 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4209 if (LHSName.compare(RHSName) < 0) 4210 Options.erase(Options.end() - 2); 4211 else 4212 Options.erase(Options.end() - 1); 4213 } 4214 4215 CodeGenFunction CGF(*this); 4216 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4217 4218 if (getTarget().supportsIFunc()) { 4219 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4220 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4221 4222 // Fix up function declarations that were created for cpu_specific before 4223 // cpu_dispatch was known 4224 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4225 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4226 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4227 &getModule()); 4228 GI->takeName(IFunc); 4229 IFunc->replaceAllUsesWith(GI); 4230 IFunc->eraseFromParent(); 4231 IFunc = GI; 4232 } 4233 4234 std::string AliasName = getMangledNameImpl( 4235 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4236 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4237 if (!AliasFunc) { 4238 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4239 &getModule()); 4240 SetCommonAttributes(GD, GA); 4241 } 4242 } 4243 } 4244 4245 /// If a dispatcher for the specified mangled name is not in the module, create 4246 /// and return an llvm Function with the specified type. 4247 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4248 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4249 assert(FD && "Not a FunctionDecl?"); 4250 4251 std::string MangledName = 4252 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4253 4254 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4255 // a separate resolver). 4256 std::string ResolverName = MangledName; 4257 if (getTarget().supportsIFunc()) 4258 ResolverName += ".ifunc"; 4259 else if (FD->isTargetMultiVersion()) 4260 ResolverName += ".resolver"; 4261 4262 // If the resolver has already been created, just return it. 4263 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4264 return ResolverGV; 4265 4266 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4267 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4268 4269 // The resolver needs to be created. For target and target_clones, defer 4270 // creation until the end of the TU. 4271 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4272 MultiVersionFuncs.push_back(GD); 4273 4274 // For cpu_specific, don't create an ifunc yet because we don't know if the 4275 // cpu_dispatch will be emitted in this translation unit. 4276 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4277 llvm::Type *ResolverType = llvm::FunctionType::get( 4278 llvm::PointerType::get(DeclTy, 4279 getTypes().getTargetAddressSpace(FD->getType())), 4280 false); 4281 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4282 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4283 /*ForVTable=*/false); 4284 llvm::GlobalIFunc *GIF = 4285 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4286 "", Resolver, &getModule()); 4287 GIF->setName(ResolverName); 4288 SetCommonAttributes(FD, GIF); 4289 4290 return GIF; 4291 } 4292 4293 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4294 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4295 assert(isa<llvm::GlobalValue>(Resolver) && 4296 "Resolver should be created for the first time"); 4297 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4298 return Resolver; 4299 } 4300 4301 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4302 /// module, create and return an llvm Function with the specified type. If there 4303 /// is something in the module with the specified name, return it potentially 4304 /// bitcasted to the right type. 4305 /// 4306 /// If D is non-null, it specifies a decl that correspond to this. This is used 4307 /// to set the attributes on the function when it is first created. 4308 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4309 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4310 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4311 ForDefinition_t IsForDefinition) { 4312 const Decl *D = GD.getDecl(); 4313 4314 // Any attempts to use a MultiVersion function should result in retrieving 4315 // the iFunc instead. Name Mangling will handle the rest of the changes. 4316 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4317 // For the device mark the function as one that should be emitted. 4318 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4319 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4320 !DontDefer && !IsForDefinition) { 4321 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4322 GlobalDecl GDDef; 4323 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4324 GDDef = GlobalDecl(CD, GD.getCtorType()); 4325 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4326 GDDef = GlobalDecl(DD, GD.getDtorType()); 4327 else 4328 GDDef = GlobalDecl(FDDef); 4329 EmitGlobal(GDDef); 4330 } 4331 } 4332 4333 if (FD->isMultiVersion()) { 4334 UpdateMultiVersionNames(GD, FD, MangledName); 4335 if (!IsForDefinition) 4336 return GetOrCreateMultiVersionResolver(GD); 4337 } 4338 } 4339 4340 // Lookup the entry, lazily creating it if necessary. 4341 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4342 if (Entry) { 4343 if (WeakRefReferences.erase(Entry)) { 4344 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4345 if (FD && !FD->hasAttr<WeakAttr>()) 4346 Entry->setLinkage(llvm::Function::ExternalLinkage); 4347 } 4348 4349 // Handle dropped DLL attributes. 4350 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4351 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4352 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4353 setDSOLocal(Entry); 4354 } 4355 4356 // If there are two attempts to define the same mangled name, issue an 4357 // error. 4358 if (IsForDefinition && !Entry->isDeclaration()) { 4359 GlobalDecl OtherGD; 4360 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4361 // to make sure that we issue an error only once. 4362 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4363 (GD.getCanonicalDecl().getDecl() != 4364 OtherGD.getCanonicalDecl().getDecl()) && 4365 DiagnosedConflictingDefinitions.insert(GD).second) { 4366 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4367 << MangledName; 4368 getDiags().Report(OtherGD.getDecl()->getLocation(), 4369 diag::note_previous_definition); 4370 } 4371 } 4372 4373 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4374 (Entry->getValueType() == Ty)) { 4375 return Entry; 4376 } 4377 4378 // Make sure the result is of the correct type. 4379 // (If function is requested for a definition, we always need to create a new 4380 // function, not just return a bitcast.) 4381 if (!IsForDefinition) 4382 return Entry; 4383 } 4384 4385 // This function doesn't have a complete type (for example, the return 4386 // type is an incomplete struct). Use a fake type instead, and make 4387 // sure not to try to set attributes. 4388 bool IsIncompleteFunction = false; 4389 4390 llvm::FunctionType *FTy; 4391 if (isa<llvm::FunctionType>(Ty)) { 4392 FTy = cast<llvm::FunctionType>(Ty); 4393 } else { 4394 FTy = llvm::FunctionType::get(VoidTy, false); 4395 IsIncompleteFunction = true; 4396 } 4397 4398 llvm::Function *F = 4399 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4400 Entry ? StringRef() : MangledName, &getModule()); 4401 4402 // If we already created a function with the same mangled name (but different 4403 // type) before, take its name and add it to the list of functions to be 4404 // replaced with F at the end of CodeGen. 4405 // 4406 // This happens if there is a prototype for a function (e.g. "int f()") and 4407 // then a definition of a different type (e.g. "int f(int x)"). 4408 if (Entry) { 4409 F->takeName(Entry); 4410 4411 // This might be an implementation of a function without a prototype, in 4412 // which case, try to do special replacement of calls which match the new 4413 // prototype. The really key thing here is that we also potentially drop 4414 // arguments from the call site so as to make a direct call, which makes the 4415 // inliner happier and suppresses a number of optimizer warnings (!) about 4416 // dropping arguments. 4417 if (!Entry->use_empty()) { 4418 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4419 Entry->removeDeadConstantUsers(); 4420 } 4421 4422 addGlobalValReplacement(Entry, F); 4423 } 4424 4425 assert(F->getName() == MangledName && "name was uniqued!"); 4426 if (D) 4427 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4428 if (ExtraAttrs.hasFnAttrs()) { 4429 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4430 F->addFnAttrs(B); 4431 } 4432 4433 if (!DontDefer) { 4434 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4435 // each other bottoming out with the base dtor. Therefore we emit non-base 4436 // dtors on usage, even if there is no dtor definition in the TU. 4437 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4438 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4439 GD.getDtorType())) 4440 addDeferredDeclToEmit(GD); 4441 4442 // This is the first use or definition of a mangled name. If there is a 4443 // deferred decl with this name, remember that we need to emit it at the end 4444 // of the file. 4445 auto DDI = DeferredDecls.find(MangledName); 4446 if (DDI != DeferredDecls.end()) { 4447 // Move the potentially referenced deferred decl to the 4448 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4449 // don't need it anymore). 4450 addDeferredDeclToEmit(DDI->second); 4451 DeferredDecls.erase(DDI); 4452 4453 // Otherwise, there are cases we have to worry about where we're 4454 // using a declaration for which we must emit a definition but where 4455 // we might not find a top-level definition: 4456 // - member functions defined inline in their classes 4457 // - friend functions defined inline in some class 4458 // - special member functions with implicit definitions 4459 // If we ever change our AST traversal to walk into class methods, 4460 // this will be unnecessary. 4461 // 4462 // We also don't emit a definition for a function if it's going to be an 4463 // entry in a vtable, unless it's already marked as used. 4464 } else if (getLangOpts().CPlusPlus && D) { 4465 // Look for a declaration that's lexically in a record. 4466 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4467 FD = FD->getPreviousDecl()) { 4468 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4469 if (FD->doesThisDeclarationHaveABody()) { 4470 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4471 break; 4472 } 4473 } 4474 } 4475 } 4476 } 4477 4478 // Make sure the result is of the requested type. 4479 if (!IsIncompleteFunction) { 4480 assert(F->getFunctionType() == Ty); 4481 return F; 4482 } 4483 4484 return F; 4485 } 4486 4487 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4488 /// non-null, then this function will use the specified type if it has to 4489 /// create it (this occurs when we see a definition of the function). 4490 llvm::Constant * 4491 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4492 bool DontDefer, 4493 ForDefinition_t IsForDefinition) { 4494 // If there was no specific requested type, just convert it now. 4495 if (!Ty) { 4496 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4497 Ty = getTypes().ConvertType(FD->getType()); 4498 } 4499 4500 // Devirtualized destructor calls may come through here instead of via 4501 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4502 // of the complete destructor when necessary. 4503 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4504 if (getTarget().getCXXABI().isMicrosoft() && 4505 GD.getDtorType() == Dtor_Complete && 4506 DD->getParent()->getNumVBases() == 0) 4507 GD = GlobalDecl(DD, Dtor_Base); 4508 } 4509 4510 StringRef MangledName = getMangledName(GD); 4511 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4512 /*IsThunk=*/false, llvm::AttributeList(), 4513 IsForDefinition); 4514 // Returns kernel handle for HIP kernel stub function. 4515 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4516 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4517 auto *Handle = getCUDARuntime().getKernelHandle( 4518 cast<llvm::Function>(F->stripPointerCasts()), GD); 4519 if (IsForDefinition) 4520 return F; 4521 return Handle; 4522 } 4523 return F; 4524 } 4525 4526 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4527 llvm::GlobalValue *F = 4528 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4529 4530 return llvm::ConstantExpr::getBitCast( 4531 llvm::NoCFIValue::get(F), 4532 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4533 } 4534 4535 static const FunctionDecl * 4536 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4537 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4538 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4539 4540 IdentifierInfo &CII = C.Idents.get(Name); 4541 for (const auto *Result : DC->lookup(&CII)) 4542 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4543 return FD; 4544 4545 if (!C.getLangOpts().CPlusPlus) 4546 return nullptr; 4547 4548 // Demangle the premangled name from getTerminateFn() 4549 IdentifierInfo &CXXII = 4550 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4551 ? C.Idents.get("terminate") 4552 : C.Idents.get(Name); 4553 4554 for (const auto &N : {"__cxxabiv1", "std"}) { 4555 IdentifierInfo &NS = C.Idents.get(N); 4556 for (const auto *Result : DC->lookup(&NS)) { 4557 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4558 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4559 for (const auto *Result : LSD->lookup(&NS)) 4560 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4561 break; 4562 4563 if (ND) 4564 for (const auto *Result : ND->lookup(&CXXII)) 4565 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4566 return FD; 4567 } 4568 } 4569 4570 return nullptr; 4571 } 4572 4573 /// CreateRuntimeFunction - Create a new runtime function with the specified 4574 /// type and name. 4575 llvm::FunctionCallee 4576 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4577 llvm::AttributeList ExtraAttrs, bool Local, 4578 bool AssumeConvergent) { 4579 if (AssumeConvergent) { 4580 ExtraAttrs = 4581 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4582 } 4583 4584 llvm::Constant *C = 4585 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4586 /*DontDefer=*/false, /*IsThunk=*/false, 4587 ExtraAttrs); 4588 4589 if (auto *F = dyn_cast<llvm::Function>(C)) { 4590 if (F->empty()) { 4591 F->setCallingConv(getRuntimeCC()); 4592 4593 // In Windows Itanium environments, try to mark runtime functions 4594 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4595 // will link their standard library statically or dynamically. Marking 4596 // functions imported when they are not imported can cause linker errors 4597 // and warnings. 4598 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4599 !getCodeGenOpts().LTOVisibilityPublicStd) { 4600 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4601 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4602 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4603 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4604 } 4605 } 4606 setDSOLocal(F); 4607 } 4608 } 4609 4610 return {FTy, C}; 4611 } 4612 4613 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4614 /// create and return an llvm GlobalVariable with the specified type and address 4615 /// space. If there is something in the module with the specified name, return 4616 /// it potentially bitcasted to the right type. 4617 /// 4618 /// If D is non-null, it specifies a decl that correspond to this. This is used 4619 /// to set the attributes on the global when it is first created. 4620 /// 4621 /// If IsForDefinition is true, it is guaranteed that an actual global with 4622 /// type Ty will be returned, not conversion of a variable with the same 4623 /// mangled name but some other type. 4624 llvm::Constant * 4625 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4626 LangAS AddrSpace, const VarDecl *D, 4627 ForDefinition_t IsForDefinition) { 4628 // Lookup the entry, lazily creating it if necessary. 4629 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4630 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4631 if (Entry) { 4632 if (WeakRefReferences.erase(Entry)) { 4633 if (D && !D->hasAttr<WeakAttr>()) 4634 Entry->setLinkage(llvm::Function::ExternalLinkage); 4635 } 4636 4637 // Handle dropped DLL attributes. 4638 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4639 !shouldMapVisibilityToDLLExport(D)) 4640 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4641 4642 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4643 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4644 4645 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4646 return Entry; 4647 4648 // If there are two attempts to define the same mangled name, issue an 4649 // error. 4650 if (IsForDefinition && !Entry->isDeclaration()) { 4651 GlobalDecl OtherGD; 4652 const VarDecl *OtherD; 4653 4654 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4655 // to make sure that we issue an error only once. 4656 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4657 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4658 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4659 OtherD->hasInit() && 4660 DiagnosedConflictingDefinitions.insert(D).second) { 4661 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4662 << MangledName; 4663 getDiags().Report(OtherGD.getDecl()->getLocation(), 4664 diag::note_previous_definition); 4665 } 4666 } 4667 4668 // Make sure the result is of the correct type. 4669 if (Entry->getType()->getAddressSpace() != TargetAS) 4670 return llvm::ConstantExpr::getAddrSpaceCast( 4671 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4672 4673 // (If global is requested for a definition, we always need to create a new 4674 // global, not just return a bitcast.) 4675 if (!IsForDefinition) 4676 return Entry; 4677 } 4678 4679 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4680 4681 auto *GV = new llvm::GlobalVariable( 4682 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4683 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4684 getContext().getTargetAddressSpace(DAddrSpace)); 4685 4686 // If we already created a global with the same mangled name (but different 4687 // type) before, take its name and remove it from its parent. 4688 if (Entry) { 4689 GV->takeName(Entry); 4690 4691 if (!Entry->use_empty()) { 4692 llvm::Constant *NewPtrForOldDecl = 4693 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4694 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4695 } 4696 4697 Entry->eraseFromParent(); 4698 } 4699 4700 // This is the first use or definition of a mangled name. If there is a 4701 // deferred decl with this name, remember that we need to emit it at the end 4702 // of the file. 4703 auto DDI = DeferredDecls.find(MangledName); 4704 if (DDI != DeferredDecls.end()) { 4705 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4706 // list, and remove it from DeferredDecls (since we don't need it anymore). 4707 addDeferredDeclToEmit(DDI->second); 4708 DeferredDecls.erase(DDI); 4709 } 4710 4711 // Handle things which are present even on external declarations. 4712 if (D) { 4713 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4714 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4715 4716 // FIXME: This code is overly simple and should be merged with other global 4717 // handling. 4718 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4719 4720 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4721 4722 setLinkageForGV(GV, D); 4723 4724 if (D->getTLSKind()) { 4725 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4726 CXXThreadLocals.push_back(D); 4727 setTLSMode(GV, *D); 4728 } 4729 4730 setGVProperties(GV, D); 4731 4732 // If required by the ABI, treat declarations of static data members with 4733 // inline initializers as definitions. 4734 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4735 EmitGlobalVarDefinition(D); 4736 } 4737 4738 // Emit section information for extern variables. 4739 if (D->hasExternalStorage()) { 4740 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4741 GV->setSection(SA->getName()); 4742 } 4743 4744 // Handle XCore specific ABI requirements. 4745 if (getTriple().getArch() == llvm::Triple::xcore && 4746 D->getLanguageLinkage() == CLanguageLinkage && 4747 D->getType().isConstant(Context) && 4748 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4749 GV->setSection(".cp.rodata"); 4750 4751 // Check if we a have a const declaration with an initializer, we may be 4752 // able to emit it as available_externally to expose it's value to the 4753 // optimizer. 4754 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4755 D->getType().isConstQualified() && !GV->hasInitializer() && 4756 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4757 const auto *Record = 4758 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4759 bool HasMutableFields = Record && Record->hasMutableFields(); 4760 if (!HasMutableFields) { 4761 const VarDecl *InitDecl; 4762 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4763 if (InitExpr) { 4764 ConstantEmitter emitter(*this); 4765 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4766 if (Init) { 4767 auto *InitType = Init->getType(); 4768 if (GV->getValueType() != InitType) { 4769 // The type of the initializer does not match the definition. 4770 // This happens when an initializer has a different type from 4771 // the type of the global (because of padding at the end of a 4772 // structure for instance). 4773 GV->setName(StringRef()); 4774 // Make a new global with the correct type, this is now guaranteed 4775 // to work. 4776 auto *NewGV = cast<llvm::GlobalVariable>( 4777 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4778 ->stripPointerCasts()); 4779 4780 // Erase the old global, since it is no longer used. 4781 GV->eraseFromParent(); 4782 GV = NewGV; 4783 } else { 4784 GV->setInitializer(Init); 4785 GV->setConstant(true); 4786 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4787 } 4788 emitter.finalize(GV); 4789 } 4790 } 4791 } 4792 } 4793 } 4794 4795 if (D && 4796 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4797 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4798 // External HIP managed variables needed to be recorded for transformation 4799 // in both device and host compilations. 4800 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4801 D->hasExternalStorage()) 4802 getCUDARuntime().handleVarRegistration(D, *GV); 4803 } 4804 4805 if (D) 4806 SanitizerMD->reportGlobal(GV, *D); 4807 4808 LangAS ExpectedAS = 4809 D ? D->getType().getAddressSpace() 4810 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4811 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4812 if (DAddrSpace != ExpectedAS) { 4813 return getTargetCodeGenInfo().performAddrSpaceCast( 4814 *this, GV, DAddrSpace, ExpectedAS, 4815 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4816 } 4817 4818 return GV; 4819 } 4820 4821 llvm::Constant * 4822 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4823 const Decl *D = GD.getDecl(); 4824 4825 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4826 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4827 /*DontDefer=*/false, IsForDefinition); 4828 4829 if (isa<CXXMethodDecl>(D)) { 4830 auto FInfo = 4831 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4832 auto Ty = getTypes().GetFunctionType(*FInfo); 4833 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4834 IsForDefinition); 4835 } 4836 4837 if (isa<FunctionDecl>(D)) { 4838 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4839 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4840 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4841 IsForDefinition); 4842 } 4843 4844 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4845 } 4846 4847 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4848 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4849 llvm::Align Alignment) { 4850 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4851 llvm::GlobalVariable *OldGV = nullptr; 4852 4853 if (GV) { 4854 // Check if the variable has the right type. 4855 if (GV->getValueType() == Ty) 4856 return GV; 4857 4858 // Because C++ name mangling, the only way we can end up with an already 4859 // existing global with the same name is if it has been declared extern "C". 4860 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4861 OldGV = GV; 4862 } 4863 4864 // Create a new variable. 4865 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4866 Linkage, nullptr, Name); 4867 4868 if (OldGV) { 4869 // Replace occurrences of the old variable if needed. 4870 GV->takeName(OldGV); 4871 4872 if (!OldGV->use_empty()) { 4873 llvm::Constant *NewPtrForOldDecl = 4874 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4875 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4876 } 4877 4878 OldGV->eraseFromParent(); 4879 } 4880 4881 if (supportsCOMDAT() && GV->isWeakForLinker() && 4882 !GV->hasAvailableExternallyLinkage()) 4883 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4884 4885 GV->setAlignment(Alignment); 4886 4887 return GV; 4888 } 4889 4890 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4891 /// given global variable. If Ty is non-null and if the global doesn't exist, 4892 /// then it will be created with the specified type instead of whatever the 4893 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4894 /// that an actual global with type Ty will be returned, not conversion of a 4895 /// variable with the same mangled name but some other type. 4896 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4897 llvm::Type *Ty, 4898 ForDefinition_t IsForDefinition) { 4899 assert(D->hasGlobalStorage() && "Not a global variable"); 4900 QualType ASTTy = D->getType(); 4901 if (!Ty) 4902 Ty = getTypes().ConvertTypeForMem(ASTTy); 4903 4904 StringRef MangledName = getMangledName(D); 4905 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4906 IsForDefinition); 4907 } 4908 4909 /// CreateRuntimeVariable - Create a new runtime global variable with the 4910 /// specified type and name. 4911 llvm::Constant * 4912 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4913 StringRef Name) { 4914 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4915 : LangAS::Default; 4916 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4917 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4918 return Ret; 4919 } 4920 4921 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4922 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4923 4924 StringRef MangledName = getMangledName(D); 4925 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4926 4927 // We already have a definition, not declaration, with the same mangled name. 4928 // Emitting of declaration is not required (and actually overwrites emitted 4929 // definition). 4930 if (GV && !GV->isDeclaration()) 4931 return; 4932 4933 // If we have not seen a reference to this variable yet, place it into the 4934 // deferred declarations table to be emitted if needed later. 4935 if (!MustBeEmitted(D) && !GV) { 4936 DeferredDecls[MangledName] = D; 4937 return; 4938 } 4939 4940 // The tentative definition is the only definition. 4941 EmitGlobalVarDefinition(D); 4942 } 4943 4944 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4945 EmitExternalVarDeclaration(D); 4946 } 4947 4948 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4949 return Context.toCharUnitsFromBits( 4950 getDataLayout().getTypeStoreSizeInBits(Ty)); 4951 } 4952 4953 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4954 if (LangOpts.OpenCL) { 4955 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4956 assert(AS == LangAS::opencl_global || 4957 AS == LangAS::opencl_global_device || 4958 AS == LangAS::opencl_global_host || 4959 AS == LangAS::opencl_constant || 4960 AS == LangAS::opencl_local || 4961 AS >= LangAS::FirstTargetAddressSpace); 4962 return AS; 4963 } 4964 4965 if (LangOpts.SYCLIsDevice && 4966 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4967 return LangAS::sycl_global; 4968 4969 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4970 if (D) { 4971 if (D->hasAttr<CUDAConstantAttr>()) 4972 return LangAS::cuda_constant; 4973 if (D->hasAttr<CUDASharedAttr>()) 4974 return LangAS::cuda_shared; 4975 if (D->hasAttr<CUDADeviceAttr>()) 4976 return LangAS::cuda_device; 4977 if (D->getType().isConstQualified()) 4978 return LangAS::cuda_constant; 4979 } 4980 return LangAS::cuda_device; 4981 } 4982 4983 if (LangOpts.OpenMP) { 4984 LangAS AS; 4985 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4986 return AS; 4987 } 4988 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4989 } 4990 4991 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4992 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4993 if (LangOpts.OpenCL) 4994 return LangAS::opencl_constant; 4995 if (LangOpts.SYCLIsDevice) 4996 return LangAS::sycl_global; 4997 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4998 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4999 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5000 // with OpVariable instructions with Generic storage class which is not 5001 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5002 // UniformConstant storage class is not viable as pointers to it may not be 5003 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5004 return LangAS::cuda_device; 5005 if (auto AS = getTarget().getConstantAddressSpace()) 5006 return *AS; 5007 return LangAS::Default; 5008 } 5009 5010 // In address space agnostic languages, string literals are in default address 5011 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5012 // emitted in constant address space in LLVM IR. To be consistent with other 5013 // parts of AST, string literal global variables in constant address space 5014 // need to be casted to default address space before being put into address 5015 // map and referenced by other part of CodeGen. 5016 // In OpenCL, string literals are in constant address space in AST, therefore 5017 // they should not be casted to default address space. 5018 static llvm::Constant * 5019 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5020 llvm::GlobalVariable *GV) { 5021 llvm::Constant *Cast = GV; 5022 if (!CGM.getLangOpts().OpenCL) { 5023 auto AS = CGM.GetGlobalConstantAddressSpace(); 5024 if (AS != LangAS::Default) 5025 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5026 CGM, GV, AS, LangAS::Default, 5027 llvm::PointerType::get( 5028 CGM.getLLVMContext(), 5029 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5030 } 5031 return Cast; 5032 } 5033 5034 template<typename SomeDecl> 5035 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5036 llvm::GlobalValue *GV) { 5037 if (!getLangOpts().CPlusPlus) 5038 return; 5039 5040 // Must have 'used' attribute, or else inline assembly can't rely on 5041 // the name existing. 5042 if (!D->template hasAttr<UsedAttr>()) 5043 return; 5044 5045 // Must have internal linkage and an ordinary name. 5046 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5047 return; 5048 5049 // Must be in an extern "C" context. Entities declared directly within 5050 // a record are not extern "C" even if the record is in such a context. 5051 const SomeDecl *First = D->getFirstDecl(); 5052 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5053 return; 5054 5055 // OK, this is an internal linkage entity inside an extern "C" linkage 5056 // specification. Make a note of that so we can give it the "expected" 5057 // mangled name if nothing else is using that name. 5058 std::pair<StaticExternCMap::iterator, bool> R = 5059 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5060 5061 // If we have multiple internal linkage entities with the same name 5062 // in extern "C" regions, none of them gets that name. 5063 if (!R.second) 5064 R.first->second = nullptr; 5065 } 5066 5067 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5068 if (!CGM.supportsCOMDAT()) 5069 return false; 5070 5071 if (D.hasAttr<SelectAnyAttr>()) 5072 return true; 5073 5074 GVALinkage Linkage; 5075 if (auto *VD = dyn_cast<VarDecl>(&D)) 5076 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5077 else 5078 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5079 5080 switch (Linkage) { 5081 case GVA_Internal: 5082 case GVA_AvailableExternally: 5083 case GVA_StrongExternal: 5084 return false; 5085 case GVA_DiscardableODR: 5086 case GVA_StrongODR: 5087 return true; 5088 } 5089 llvm_unreachable("No such linkage"); 5090 } 5091 5092 bool CodeGenModule::supportsCOMDAT() const { 5093 return getTriple().supportsCOMDAT(); 5094 } 5095 5096 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5097 llvm::GlobalObject &GO) { 5098 if (!shouldBeInCOMDAT(*this, D)) 5099 return; 5100 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5101 } 5102 5103 /// Pass IsTentative as true if you want to create a tentative definition. 5104 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5105 bool IsTentative) { 5106 // OpenCL global variables of sampler type are translated to function calls, 5107 // therefore no need to be translated. 5108 QualType ASTTy = D->getType(); 5109 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5110 return; 5111 5112 // If this is OpenMP device, check if it is legal to emit this global 5113 // normally. 5114 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5115 OpenMPRuntime->emitTargetGlobalVariable(D)) 5116 return; 5117 5118 llvm::TrackingVH<llvm::Constant> Init; 5119 bool NeedsGlobalCtor = false; 5120 // Whether the definition of the variable is available externally. 5121 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5122 // since this is the job for its original source. 5123 bool IsDefinitionAvailableExternally = 5124 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5125 bool NeedsGlobalDtor = 5126 !IsDefinitionAvailableExternally && 5127 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5128 5129 const VarDecl *InitDecl; 5130 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5131 5132 std::optional<ConstantEmitter> emitter; 5133 5134 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5135 // as part of their declaration." Sema has already checked for 5136 // error cases, so we just need to set Init to UndefValue. 5137 bool IsCUDASharedVar = 5138 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5139 // Shadows of initialized device-side global variables are also left 5140 // undefined. 5141 // Managed Variables should be initialized on both host side and device side. 5142 bool IsCUDAShadowVar = 5143 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5144 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5145 D->hasAttr<CUDASharedAttr>()); 5146 bool IsCUDADeviceShadowVar = 5147 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5148 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5149 D->getType()->isCUDADeviceBuiltinTextureType()); 5150 if (getLangOpts().CUDA && 5151 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5152 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5153 else if (D->hasAttr<LoaderUninitializedAttr>()) 5154 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5155 else if (!InitExpr) { 5156 // This is a tentative definition; tentative definitions are 5157 // implicitly initialized with { 0 }. 5158 // 5159 // Note that tentative definitions are only emitted at the end of 5160 // a translation unit, so they should never have incomplete 5161 // type. In addition, EmitTentativeDefinition makes sure that we 5162 // never attempt to emit a tentative definition if a real one 5163 // exists. A use may still exists, however, so we still may need 5164 // to do a RAUW. 5165 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5166 Init = EmitNullConstant(D->getType()); 5167 } else { 5168 initializedGlobalDecl = GlobalDecl(D); 5169 emitter.emplace(*this); 5170 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5171 if (!Initializer) { 5172 QualType T = InitExpr->getType(); 5173 if (D->getType()->isReferenceType()) 5174 T = D->getType(); 5175 5176 if (getLangOpts().CPlusPlus) { 5177 if (InitDecl->hasFlexibleArrayInit(getContext())) 5178 ErrorUnsupported(D, "flexible array initializer"); 5179 Init = EmitNullConstant(T); 5180 5181 if (!IsDefinitionAvailableExternally) 5182 NeedsGlobalCtor = true; 5183 } else { 5184 ErrorUnsupported(D, "static initializer"); 5185 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5186 } 5187 } else { 5188 Init = Initializer; 5189 // We don't need an initializer, so remove the entry for the delayed 5190 // initializer position (just in case this entry was delayed) if we 5191 // also don't need to register a destructor. 5192 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5193 DelayedCXXInitPosition.erase(D); 5194 5195 #ifndef NDEBUG 5196 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5197 InitDecl->getFlexibleArrayInitChars(getContext()); 5198 CharUnits CstSize = CharUnits::fromQuantity( 5199 getDataLayout().getTypeAllocSize(Init->getType())); 5200 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5201 #endif 5202 } 5203 } 5204 5205 llvm::Type* InitType = Init->getType(); 5206 llvm::Constant *Entry = 5207 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5208 5209 // Strip off pointer casts if we got them. 5210 Entry = Entry->stripPointerCasts(); 5211 5212 // Entry is now either a Function or GlobalVariable. 5213 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5214 5215 // We have a definition after a declaration with the wrong type. 5216 // We must make a new GlobalVariable* and update everything that used OldGV 5217 // (a declaration or tentative definition) with the new GlobalVariable* 5218 // (which will be a definition). 5219 // 5220 // This happens if there is a prototype for a global (e.g. 5221 // "extern int x[];") and then a definition of a different type (e.g. 5222 // "int x[10];"). This also happens when an initializer has a different type 5223 // from the type of the global (this happens with unions). 5224 if (!GV || GV->getValueType() != InitType || 5225 GV->getType()->getAddressSpace() != 5226 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5227 5228 // Move the old entry aside so that we'll create a new one. 5229 Entry->setName(StringRef()); 5230 5231 // Make a new global with the correct type, this is now guaranteed to work. 5232 GV = cast<llvm::GlobalVariable>( 5233 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5234 ->stripPointerCasts()); 5235 5236 // Replace all uses of the old global with the new global 5237 llvm::Constant *NewPtrForOldDecl = 5238 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5239 Entry->getType()); 5240 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5241 5242 // Erase the old global, since it is no longer used. 5243 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5244 } 5245 5246 MaybeHandleStaticInExternC(D, GV); 5247 5248 if (D->hasAttr<AnnotateAttr>()) 5249 AddGlobalAnnotations(D, GV); 5250 5251 // Set the llvm linkage type as appropriate. 5252 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5253 5254 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5255 // the device. [...]" 5256 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5257 // __device__, declares a variable that: [...] 5258 // Is accessible from all the threads within the grid and from the host 5259 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5260 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5261 if (LangOpts.CUDA) { 5262 if (LangOpts.CUDAIsDevice) { 5263 if (Linkage != llvm::GlobalValue::InternalLinkage && 5264 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5265 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5266 D->getType()->isCUDADeviceBuiltinTextureType())) 5267 GV->setExternallyInitialized(true); 5268 } else { 5269 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5270 } 5271 getCUDARuntime().handleVarRegistration(D, *GV); 5272 } 5273 5274 GV->setInitializer(Init); 5275 if (emitter) 5276 emitter->finalize(GV); 5277 5278 // If it is safe to mark the global 'constant', do so now. 5279 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5280 D->getType().isConstantStorage(getContext(), true, true)); 5281 5282 // If it is in a read-only section, mark it 'constant'. 5283 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5284 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5285 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5286 GV->setConstant(true); 5287 } 5288 5289 CharUnits AlignVal = getContext().getDeclAlign(D); 5290 // Check for alignment specifed in an 'omp allocate' directive. 5291 if (std::optional<CharUnits> AlignValFromAllocate = 5292 getOMPAllocateAlignment(D)) 5293 AlignVal = *AlignValFromAllocate; 5294 GV->setAlignment(AlignVal.getAsAlign()); 5295 5296 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5297 // function is only defined alongside the variable, not also alongside 5298 // callers. Normally, all accesses to a thread_local go through the 5299 // thread-wrapper in order to ensure initialization has occurred, underlying 5300 // variable will never be used other than the thread-wrapper, so it can be 5301 // converted to internal linkage. 5302 // 5303 // However, if the variable has the 'constinit' attribute, it _can_ be 5304 // referenced directly, without calling the thread-wrapper, so the linkage 5305 // must not be changed. 5306 // 5307 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5308 // weak or linkonce, the de-duplication semantics are important to preserve, 5309 // so we don't change the linkage. 5310 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5311 Linkage == llvm::GlobalValue::ExternalLinkage && 5312 Context.getTargetInfo().getTriple().isOSDarwin() && 5313 !D->hasAttr<ConstInitAttr>()) 5314 Linkage = llvm::GlobalValue::InternalLinkage; 5315 5316 GV->setLinkage(Linkage); 5317 if (D->hasAttr<DLLImportAttr>()) 5318 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5319 else if (D->hasAttr<DLLExportAttr>()) 5320 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5321 else 5322 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5323 5324 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5325 // common vars aren't constant even if declared const. 5326 GV->setConstant(false); 5327 // Tentative definition of global variables may be initialized with 5328 // non-zero null pointers. In this case they should have weak linkage 5329 // since common linkage must have zero initializer and must not have 5330 // explicit section therefore cannot have non-zero initial value. 5331 if (!GV->getInitializer()->isNullValue()) 5332 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5333 } 5334 5335 setNonAliasAttributes(D, GV); 5336 5337 if (D->getTLSKind() && !GV->isThreadLocal()) { 5338 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5339 CXXThreadLocals.push_back(D); 5340 setTLSMode(GV, *D); 5341 } 5342 5343 maybeSetTrivialComdat(*D, *GV); 5344 5345 // Emit the initializer function if necessary. 5346 if (NeedsGlobalCtor || NeedsGlobalDtor) 5347 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5348 5349 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5350 5351 // Emit global variable debug information. 5352 if (CGDebugInfo *DI = getModuleDebugInfo()) 5353 if (getCodeGenOpts().hasReducedDebugInfo()) 5354 DI->EmitGlobalVariable(GV, D); 5355 } 5356 5357 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5358 if (CGDebugInfo *DI = getModuleDebugInfo()) 5359 if (getCodeGenOpts().hasReducedDebugInfo()) { 5360 QualType ASTTy = D->getType(); 5361 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5362 llvm::Constant *GV = 5363 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5364 DI->EmitExternalVariable( 5365 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5366 } 5367 } 5368 5369 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5370 CodeGenModule &CGM, const VarDecl *D, 5371 bool NoCommon) { 5372 // Don't give variables common linkage if -fno-common was specified unless it 5373 // was overridden by a NoCommon attribute. 5374 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5375 return true; 5376 5377 // C11 6.9.2/2: 5378 // A declaration of an identifier for an object that has file scope without 5379 // an initializer, and without a storage-class specifier or with the 5380 // storage-class specifier static, constitutes a tentative definition. 5381 if (D->getInit() || D->hasExternalStorage()) 5382 return true; 5383 5384 // A variable cannot be both common and exist in a section. 5385 if (D->hasAttr<SectionAttr>()) 5386 return true; 5387 5388 // A variable cannot be both common and exist in a section. 5389 // We don't try to determine which is the right section in the front-end. 5390 // If no specialized section name is applicable, it will resort to default. 5391 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5392 D->hasAttr<PragmaClangDataSectionAttr>() || 5393 D->hasAttr<PragmaClangRelroSectionAttr>() || 5394 D->hasAttr<PragmaClangRodataSectionAttr>()) 5395 return true; 5396 5397 // Thread local vars aren't considered common linkage. 5398 if (D->getTLSKind()) 5399 return true; 5400 5401 // Tentative definitions marked with WeakImportAttr are true definitions. 5402 if (D->hasAttr<WeakImportAttr>()) 5403 return true; 5404 5405 // A variable cannot be both common and exist in a comdat. 5406 if (shouldBeInCOMDAT(CGM, *D)) 5407 return true; 5408 5409 // Declarations with a required alignment do not have common linkage in MSVC 5410 // mode. 5411 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5412 if (D->hasAttr<AlignedAttr>()) 5413 return true; 5414 QualType VarType = D->getType(); 5415 if (Context.isAlignmentRequired(VarType)) 5416 return true; 5417 5418 if (const auto *RT = VarType->getAs<RecordType>()) { 5419 const RecordDecl *RD = RT->getDecl(); 5420 for (const FieldDecl *FD : RD->fields()) { 5421 if (FD->isBitField()) 5422 continue; 5423 if (FD->hasAttr<AlignedAttr>()) 5424 return true; 5425 if (Context.isAlignmentRequired(FD->getType())) 5426 return true; 5427 } 5428 } 5429 } 5430 5431 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5432 // common symbols, so symbols with greater alignment requirements cannot be 5433 // common. 5434 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5435 // alignments for common symbols via the aligncomm directive, so this 5436 // restriction only applies to MSVC environments. 5437 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5438 Context.getTypeAlignIfKnown(D->getType()) > 5439 Context.toBits(CharUnits::fromQuantity(32))) 5440 return true; 5441 5442 return false; 5443 } 5444 5445 llvm::GlobalValue::LinkageTypes 5446 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5447 GVALinkage Linkage) { 5448 if (Linkage == GVA_Internal) 5449 return llvm::Function::InternalLinkage; 5450 5451 if (D->hasAttr<WeakAttr>()) 5452 return llvm::GlobalVariable::WeakAnyLinkage; 5453 5454 if (const auto *FD = D->getAsFunction()) 5455 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5456 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5457 5458 // We are guaranteed to have a strong definition somewhere else, 5459 // so we can use available_externally linkage. 5460 if (Linkage == GVA_AvailableExternally) 5461 return llvm::GlobalValue::AvailableExternallyLinkage; 5462 5463 // Note that Apple's kernel linker doesn't support symbol 5464 // coalescing, so we need to avoid linkonce and weak linkages there. 5465 // Normally, this means we just map to internal, but for explicit 5466 // instantiations we'll map to external. 5467 5468 // In C++, the compiler has to emit a definition in every translation unit 5469 // that references the function. We should use linkonce_odr because 5470 // a) if all references in this translation unit are optimized away, we 5471 // don't need to codegen it. b) if the function persists, it needs to be 5472 // merged with other definitions. c) C++ has the ODR, so we know the 5473 // definition is dependable. 5474 if (Linkage == GVA_DiscardableODR) 5475 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5476 : llvm::Function::InternalLinkage; 5477 5478 // An explicit instantiation of a template has weak linkage, since 5479 // explicit instantiations can occur in multiple translation units 5480 // and must all be equivalent. However, we are not allowed to 5481 // throw away these explicit instantiations. 5482 // 5483 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5484 // so say that CUDA templates are either external (for kernels) or internal. 5485 // This lets llvm perform aggressive inter-procedural optimizations. For 5486 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5487 // therefore we need to follow the normal linkage paradigm. 5488 if (Linkage == GVA_StrongODR) { 5489 if (getLangOpts().AppleKext) 5490 return llvm::Function::ExternalLinkage; 5491 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5492 !getLangOpts().GPURelocatableDeviceCode) 5493 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5494 : llvm::Function::InternalLinkage; 5495 return llvm::Function::WeakODRLinkage; 5496 } 5497 5498 // C++ doesn't have tentative definitions and thus cannot have common 5499 // linkage. 5500 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5501 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5502 CodeGenOpts.NoCommon)) 5503 return llvm::GlobalVariable::CommonLinkage; 5504 5505 // selectany symbols are externally visible, so use weak instead of 5506 // linkonce. MSVC optimizes away references to const selectany globals, so 5507 // all definitions should be the same and ODR linkage should be used. 5508 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5509 if (D->hasAttr<SelectAnyAttr>()) 5510 return llvm::GlobalVariable::WeakODRLinkage; 5511 5512 // Otherwise, we have strong external linkage. 5513 assert(Linkage == GVA_StrongExternal); 5514 return llvm::GlobalVariable::ExternalLinkage; 5515 } 5516 5517 llvm::GlobalValue::LinkageTypes 5518 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5519 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5520 return getLLVMLinkageForDeclarator(VD, Linkage); 5521 } 5522 5523 /// Replace the uses of a function that was declared with a non-proto type. 5524 /// We want to silently drop extra arguments from call sites 5525 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5526 llvm::Function *newFn) { 5527 // Fast path. 5528 if (old->use_empty()) return; 5529 5530 llvm::Type *newRetTy = newFn->getReturnType(); 5531 SmallVector<llvm::Value*, 4> newArgs; 5532 5533 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5534 ui != ue; ) { 5535 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5536 llvm::User *user = use->getUser(); 5537 5538 // Recognize and replace uses of bitcasts. Most calls to 5539 // unprototyped functions will use bitcasts. 5540 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5541 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5542 replaceUsesOfNonProtoConstant(bitcast, newFn); 5543 continue; 5544 } 5545 5546 // Recognize calls to the function. 5547 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5548 if (!callSite) continue; 5549 if (!callSite->isCallee(&*use)) 5550 continue; 5551 5552 // If the return types don't match exactly, then we can't 5553 // transform this call unless it's dead. 5554 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5555 continue; 5556 5557 // Get the call site's attribute list. 5558 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5559 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5560 5561 // If the function was passed too few arguments, don't transform. 5562 unsigned newNumArgs = newFn->arg_size(); 5563 if (callSite->arg_size() < newNumArgs) 5564 continue; 5565 5566 // If extra arguments were passed, we silently drop them. 5567 // If any of the types mismatch, we don't transform. 5568 unsigned argNo = 0; 5569 bool dontTransform = false; 5570 for (llvm::Argument &A : newFn->args()) { 5571 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5572 dontTransform = true; 5573 break; 5574 } 5575 5576 // Add any parameter attributes. 5577 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5578 argNo++; 5579 } 5580 if (dontTransform) 5581 continue; 5582 5583 // Okay, we can transform this. Create the new call instruction and copy 5584 // over the required information. 5585 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5586 5587 // Copy over any operand bundles. 5588 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5589 callSite->getOperandBundlesAsDefs(newBundles); 5590 5591 llvm::CallBase *newCall; 5592 if (isa<llvm::CallInst>(callSite)) { 5593 newCall = 5594 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5595 } else { 5596 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5597 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5598 oldInvoke->getUnwindDest(), newArgs, 5599 newBundles, "", callSite); 5600 } 5601 newArgs.clear(); // for the next iteration 5602 5603 if (!newCall->getType()->isVoidTy()) 5604 newCall->takeName(callSite); 5605 newCall->setAttributes( 5606 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5607 oldAttrs.getRetAttrs(), newArgAttrs)); 5608 newCall->setCallingConv(callSite->getCallingConv()); 5609 5610 // Finally, remove the old call, replacing any uses with the new one. 5611 if (!callSite->use_empty()) 5612 callSite->replaceAllUsesWith(newCall); 5613 5614 // Copy debug location attached to CI. 5615 if (callSite->getDebugLoc()) 5616 newCall->setDebugLoc(callSite->getDebugLoc()); 5617 5618 callSite->eraseFromParent(); 5619 } 5620 } 5621 5622 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5623 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5624 /// existing call uses of the old function in the module, this adjusts them to 5625 /// call the new function directly. 5626 /// 5627 /// This is not just a cleanup: the always_inline pass requires direct calls to 5628 /// functions to be able to inline them. If there is a bitcast in the way, it 5629 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5630 /// run at -O0. 5631 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5632 llvm::Function *NewFn) { 5633 // If we're redefining a global as a function, don't transform it. 5634 if (!isa<llvm::Function>(Old)) return; 5635 5636 replaceUsesOfNonProtoConstant(Old, NewFn); 5637 } 5638 5639 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5640 auto DK = VD->isThisDeclarationADefinition(); 5641 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5642 return; 5643 5644 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5645 // If we have a definition, this might be a deferred decl. If the 5646 // instantiation is explicit, make sure we emit it at the end. 5647 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5648 GetAddrOfGlobalVar(VD); 5649 5650 EmitTopLevelDecl(VD); 5651 } 5652 5653 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5654 llvm::GlobalValue *GV) { 5655 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5656 5657 // Compute the function info and LLVM type. 5658 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5659 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5660 5661 // Get or create the prototype for the function. 5662 if (!GV || (GV->getValueType() != Ty)) 5663 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5664 /*DontDefer=*/true, 5665 ForDefinition)); 5666 5667 // Already emitted. 5668 if (!GV->isDeclaration()) 5669 return; 5670 5671 // We need to set linkage and visibility on the function before 5672 // generating code for it because various parts of IR generation 5673 // want to propagate this information down (e.g. to local static 5674 // declarations). 5675 auto *Fn = cast<llvm::Function>(GV); 5676 setFunctionLinkage(GD, Fn); 5677 5678 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5679 setGVProperties(Fn, GD); 5680 5681 MaybeHandleStaticInExternC(D, Fn); 5682 5683 maybeSetTrivialComdat(*D, *Fn); 5684 5685 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5686 5687 setNonAliasAttributes(GD, Fn); 5688 SetLLVMFunctionAttributesForDefinition(D, Fn); 5689 5690 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5691 AddGlobalCtor(Fn, CA->getPriority()); 5692 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5693 AddGlobalDtor(Fn, DA->getPriority(), true); 5694 if (D->hasAttr<AnnotateAttr>()) 5695 AddGlobalAnnotations(D, Fn); 5696 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5697 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5698 } 5699 5700 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5701 const auto *D = cast<ValueDecl>(GD.getDecl()); 5702 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5703 assert(AA && "Not an alias?"); 5704 5705 StringRef MangledName = getMangledName(GD); 5706 5707 if (AA->getAliasee() == MangledName) { 5708 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5709 return; 5710 } 5711 5712 // If there is a definition in the module, then it wins over the alias. 5713 // This is dubious, but allow it to be safe. Just ignore the alias. 5714 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5715 if (Entry && !Entry->isDeclaration()) 5716 return; 5717 5718 Aliases.push_back(GD); 5719 5720 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5721 5722 // Create a reference to the named value. This ensures that it is emitted 5723 // if a deferred decl. 5724 llvm::Constant *Aliasee; 5725 llvm::GlobalValue::LinkageTypes LT; 5726 if (isa<llvm::FunctionType>(DeclTy)) { 5727 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5728 /*ForVTable=*/false); 5729 LT = getFunctionLinkage(GD); 5730 } else { 5731 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5732 /*D=*/nullptr); 5733 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5734 LT = getLLVMLinkageVarDefinition(VD); 5735 else 5736 LT = getFunctionLinkage(GD); 5737 } 5738 5739 // Create the new alias itself, but don't set a name yet. 5740 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5741 auto *GA = 5742 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5743 5744 if (Entry) { 5745 if (GA->getAliasee() == Entry) { 5746 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5747 return; 5748 } 5749 5750 assert(Entry->isDeclaration()); 5751 5752 // If there is a declaration in the module, then we had an extern followed 5753 // by the alias, as in: 5754 // extern int test6(); 5755 // ... 5756 // int test6() __attribute__((alias("test7"))); 5757 // 5758 // Remove it and replace uses of it with the alias. 5759 GA->takeName(Entry); 5760 5761 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5762 Entry->getType())); 5763 Entry->eraseFromParent(); 5764 } else { 5765 GA->setName(MangledName); 5766 } 5767 5768 // Set attributes which are particular to an alias; this is a 5769 // specialization of the attributes which may be set on a global 5770 // variable/function. 5771 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5772 D->isWeakImported()) { 5773 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5774 } 5775 5776 if (const auto *VD = dyn_cast<VarDecl>(D)) 5777 if (VD->getTLSKind()) 5778 setTLSMode(GA, *VD); 5779 5780 SetCommonAttributes(GD, GA); 5781 5782 // Emit global alias debug information. 5783 if (isa<VarDecl>(D)) 5784 if (CGDebugInfo *DI = getModuleDebugInfo()) 5785 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5786 } 5787 5788 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5789 const auto *D = cast<ValueDecl>(GD.getDecl()); 5790 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5791 assert(IFA && "Not an ifunc?"); 5792 5793 StringRef MangledName = getMangledName(GD); 5794 5795 if (IFA->getResolver() == MangledName) { 5796 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5797 return; 5798 } 5799 5800 // Report an error if some definition overrides ifunc. 5801 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5802 if (Entry && !Entry->isDeclaration()) { 5803 GlobalDecl OtherGD; 5804 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5805 DiagnosedConflictingDefinitions.insert(GD).second) { 5806 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5807 << MangledName; 5808 Diags.Report(OtherGD.getDecl()->getLocation(), 5809 diag::note_previous_definition); 5810 } 5811 return; 5812 } 5813 5814 Aliases.push_back(GD); 5815 5816 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5817 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5818 llvm::Constant *Resolver = 5819 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5820 /*ForVTable=*/false); 5821 llvm::GlobalIFunc *GIF = 5822 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5823 "", Resolver, &getModule()); 5824 if (Entry) { 5825 if (GIF->getResolver() == Entry) { 5826 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5827 return; 5828 } 5829 assert(Entry->isDeclaration()); 5830 5831 // If there is a declaration in the module, then we had an extern followed 5832 // by the ifunc, as in: 5833 // extern int test(); 5834 // ... 5835 // int test() __attribute__((ifunc("resolver"))); 5836 // 5837 // Remove it and replace uses of it with the ifunc. 5838 GIF->takeName(Entry); 5839 5840 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5841 Entry->getType())); 5842 Entry->eraseFromParent(); 5843 } else 5844 GIF->setName(MangledName); 5845 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5846 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5847 } 5848 SetCommonAttributes(GD, GIF); 5849 } 5850 5851 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5852 ArrayRef<llvm::Type*> Tys) { 5853 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5854 Tys); 5855 } 5856 5857 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5858 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5859 const StringLiteral *Literal, bool TargetIsLSB, 5860 bool &IsUTF16, unsigned &StringLength) { 5861 StringRef String = Literal->getString(); 5862 unsigned NumBytes = String.size(); 5863 5864 // Check for simple case. 5865 if (!Literal->containsNonAsciiOrNull()) { 5866 StringLength = NumBytes; 5867 return *Map.insert(std::make_pair(String, nullptr)).first; 5868 } 5869 5870 // Otherwise, convert the UTF8 literals into a string of shorts. 5871 IsUTF16 = true; 5872 5873 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5874 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5875 llvm::UTF16 *ToPtr = &ToBuf[0]; 5876 5877 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5878 ToPtr + NumBytes, llvm::strictConversion); 5879 5880 // ConvertUTF8toUTF16 returns the length in ToPtr. 5881 StringLength = ToPtr - &ToBuf[0]; 5882 5883 // Add an explicit null. 5884 *ToPtr = 0; 5885 return *Map.insert(std::make_pair( 5886 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5887 (StringLength + 1) * 2), 5888 nullptr)).first; 5889 } 5890 5891 ConstantAddress 5892 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5893 unsigned StringLength = 0; 5894 bool isUTF16 = false; 5895 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5896 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5897 getDataLayout().isLittleEndian(), isUTF16, 5898 StringLength); 5899 5900 if (auto *C = Entry.second) 5901 return ConstantAddress( 5902 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5903 5904 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5905 llvm::Constant *Zeros[] = { Zero, Zero }; 5906 5907 const ASTContext &Context = getContext(); 5908 const llvm::Triple &Triple = getTriple(); 5909 5910 const auto CFRuntime = getLangOpts().CFRuntime; 5911 const bool IsSwiftABI = 5912 static_cast<unsigned>(CFRuntime) >= 5913 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5914 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5915 5916 // If we don't already have it, get __CFConstantStringClassReference. 5917 if (!CFConstantStringClassRef) { 5918 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5919 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5920 Ty = llvm::ArrayType::get(Ty, 0); 5921 5922 switch (CFRuntime) { 5923 default: break; 5924 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5925 case LangOptions::CoreFoundationABI::Swift5_0: 5926 CFConstantStringClassName = 5927 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5928 : "$s10Foundation19_NSCFConstantStringCN"; 5929 Ty = IntPtrTy; 5930 break; 5931 case LangOptions::CoreFoundationABI::Swift4_2: 5932 CFConstantStringClassName = 5933 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5934 : "$S10Foundation19_NSCFConstantStringCN"; 5935 Ty = IntPtrTy; 5936 break; 5937 case LangOptions::CoreFoundationABI::Swift4_1: 5938 CFConstantStringClassName = 5939 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5940 : "__T010Foundation19_NSCFConstantStringCN"; 5941 Ty = IntPtrTy; 5942 break; 5943 } 5944 5945 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5946 5947 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5948 llvm::GlobalValue *GV = nullptr; 5949 5950 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5951 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5952 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5953 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5954 5955 const VarDecl *VD = nullptr; 5956 for (const auto *Result : DC->lookup(&II)) 5957 if ((VD = dyn_cast<VarDecl>(Result))) 5958 break; 5959 5960 if (Triple.isOSBinFormatELF()) { 5961 if (!VD) 5962 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5963 } else { 5964 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5965 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5966 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5967 else 5968 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5969 } 5970 5971 setDSOLocal(GV); 5972 } 5973 } 5974 5975 // Decay array -> ptr 5976 CFConstantStringClassRef = 5977 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5978 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5979 } 5980 5981 QualType CFTy = Context.getCFConstantStringType(); 5982 5983 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5984 5985 ConstantInitBuilder Builder(*this); 5986 auto Fields = Builder.beginStruct(STy); 5987 5988 // Class pointer. 5989 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5990 5991 // Flags. 5992 if (IsSwiftABI) { 5993 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5994 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5995 } else { 5996 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5997 } 5998 5999 // String pointer. 6000 llvm::Constant *C = nullptr; 6001 if (isUTF16) { 6002 auto Arr = llvm::ArrayRef( 6003 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6004 Entry.first().size() / 2); 6005 C = llvm::ConstantDataArray::get(VMContext, Arr); 6006 } else { 6007 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6008 } 6009 6010 // Note: -fwritable-strings doesn't make the backing store strings of 6011 // CFStrings writable. 6012 auto *GV = 6013 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6014 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6015 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6016 // Don't enforce the target's minimum global alignment, since the only use 6017 // of the string is via this class initializer. 6018 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6019 : Context.getTypeAlignInChars(Context.CharTy); 6020 GV->setAlignment(Align.getAsAlign()); 6021 6022 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6023 // Without it LLVM can merge the string with a non unnamed_addr one during 6024 // LTO. Doing that changes the section it ends in, which surprises ld64. 6025 if (Triple.isOSBinFormatMachO()) 6026 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6027 : "__TEXT,__cstring,cstring_literals"); 6028 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6029 // the static linker to adjust permissions to read-only later on. 6030 else if (Triple.isOSBinFormatELF()) 6031 GV->setSection(".rodata"); 6032 6033 // String. 6034 llvm::Constant *Str = 6035 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6036 6037 if (isUTF16) 6038 // Cast the UTF16 string to the correct type. 6039 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6040 Fields.add(Str); 6041 6042 // String length. 6043 llvm::IntegerType *LengthTy = 6044 llvm::IntegerType::get(getModule().getContext(), 6045 Context.getTargetInfo().getLongWidth()); 6046 if (IsSwiftABI) { 6047 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6048 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6049 LengthTy = Int32Ty; 6050 else 6051 LengthTy = IntPtrTy; 6052 } 6053 Fields.addInt(LengthTy, StringLength); 6054 6055 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6056 // properly aligned on 32-bit platforms. 6057 CharUnits Alignment = 6058 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6059 6060 // The struct. 6061 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6062 /*isConstant=*/false, 6063 llvm::GlobalVariable::PrivateLinkage); 6064 GV->addAttribute("objc_arc_inert"); 6065 switch (Triple.getObjectFormat()) { 6066 case llvm::Triple::UnknownObjectFormat: 6067 llvm_unreachable("unknown file format"); 6068 case llvm::Triple::DXContainer: 6069 case llvm::Triple::GOFF: 6070 case llvm::Triple::SPIRV: 6071 case llvm::Triple::XCOFF: 6072 llvm_unreachable("unimplemented"); 6073 case llvm::Triple::COFF: 6074 case llvm::Triple::ELF: 6075 case llvm::Triple::Wasm: 6076 GV->setSection("cfstring"); 6077 break; 6078 case llvm::Triple::MachO: 6079 GV->setSection("__DATA,__cfstring"); 6080 break; 6081 } 6082 Entry.second = GV; 6083 6084 return ConstantAddress(GV, GV->getValueType(), Alignment); 6085 } 6086 6087 bool CodeGenModule::getExpressionLocationsEnabled() const { 6088 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6089 } 6090 6091 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6092 if (ObjCFastEnumerationStateType.isNull()) { 6093 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6094 D->startDefinition(); 6095 6096 QualType FieldTypes[] = { 6097 Context.UnsignedLongTy, 6098 Context.getPointerType(Context.getObjCIdType()), 6099 Context.getPointerType(Context.UnsignedLongTy), 6100 Context.getConstantArrayType(Context.UnsignedLongTy, 6101 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6102 }; 6103 6104 for (size_t i = 0; i < 4; ++i) { 6105 FieldDecl *Field = FieldDecl::Create(Context, 6106 D, 6107 SourceLocation(), 6108 SourceLocation(), nullptr, 6109 FieldTypes[i], /*TInfo=*/nullptr, 6110 /*BitWidth=*/nullptr, 6111 /*Mutable=*/false, 6112 ICIS_NoInit); 6113 Field->setAccess(AS_public); 6114 D->addDecl(Field); 6115 } 6116 6117 D->completeDefinition(); 6118 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6119 } 6120 6121 return ObjCFastEnumerationStateType; 6122 } 6123 6124 llvm::Constant * 6125 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6126 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6127 6128 // Don't emit it as the address of the string, emit the string data itself 6129 // as an inline array. 6130 if (E->getCharByteWidth() == 1) { 6131 SmallString<64> Str(E->getString()); 6132 6133 // Resize the string to the right size, which is indicated by its type. 6134 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6135 assert(CAT && "String literal not of constant array type!"); 6136 Str.resize(CAT->getSize().getZExtValue()); 6137 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6138 } 6139 6140 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6141 llvm::Type *ElemTy = AType->getElementType(); 6142 unsigned NumElements = AType->getNumElements(); 6143 6144 // Wide strings have either 2-byte or 4-byte elements. 6145 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6146 SmallVector<uint16_t, 32> Elements; 6147 Elements.reserve(NumElements); 6148 6149 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6150 Elements.push_back(E->getCodeUnit(i)); 6151 Elements.resize(NumElements); 6152 return llvm::ConstantDataArray::get(VMContext, Elements); 6153 } 6154 6155 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6156 SmallVector<uint32_t, 32> Elements; 6157 Elements.reserve(NumElements); 6158 6159 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6160 Elements.push_back(E->getCodeUnit(i)); 6161 Elements.resize(NumElements); 6162 return llvm::ConstantDataArray::get(VMContext, Elements); 6163 } 6164 6165 static llvm::GlobalVariable * 6166 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6167 CodeGenModule &CGM, StringRef GlobalName, 6168 CharUnits Alignment) { 6169 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6170 CGM.GetGlobalConstantAddressSpace()); 6171 6172 llvm::Module &M = CGM.getModule(); 6173 // Create a global variable for this string 6174 auto *GV = new llvm::GlobalVariable( 6175 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6176 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6177 GV->setAlignment(Alignment.getAsAlign()); 6178 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6179 if (GV->isWeakForLinker()) { 6180 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6181 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6182 } 6183 CGM.setDSOLocal(GV); 6184 6185 return GV; 6186 } 6187 6188 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6189 /// constant array for the given string literal. 6190 ConstantAddress 6191 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6192 StringRef Name) { 6193 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6194 6195 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6196 llvm::GlobalVariable **Entry = nullptr; 6197 if (!LangOpts.WritableStrings) { 6198 Entry = &ConstantStringMap[C]; 6199 if (auto GV = *Entry) { 6200 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6201 GV->setAlignment(Alignment.getAsAlign()); 6202 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6203 GV->getValueType(), Alignment); 6204 } 6205 } 6206 6207 SmallString<256> MangledNameBuffer; 6208 StringRef GlobalVariableName; 6209 llvm::GlobalValue::LinkageTypes LT; 6210 6211 // Mangle the string literal if that's how the ABI merges duplicate strings. 6212 // Don't do it if they are writable, since we don't want writes in one TU to 6213 // affect strings in another. 6214 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6215 !LangOpts.WritableStrings) { 6216 llvm::raw_svector_ostream Out(MangledNameBuffer); 6217 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6218 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6219 GlobalVariableName = MangledNameBuffer; 6220 } else { 6221 LT = llvm::GlobalValue::PrivateLinkage; 6222 GlobalVariableName = Name; 6223 } 6224 6225 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6226 6227 CGDebugInfo *DI = getModuleDebugInfo(); 6228 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6229 DI->AddStringLiteralDebugInfo(GV, S); 6230 6231 if (Entry) 6232 *Entry = GV; 6233 6234 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6235 6236 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6237 GV->getValueType(), Alignment); 6238 } 6239 6240 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6241 /// array for the given ObjCEncodeExpr node. 6242 ConstantAddress 6243 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6244 std::string Str; 6245 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6246 6247 return GetAddrOfConstantCString(Str); 6248 } 6249 6250 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6251 /// the literal and a terminating '\0' character. 6252 /// The result has pointer to array type. 6253 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6254 const std::string &Str, const char *GlobalName) { 6255 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6256 CharUnits Alignment = 6257 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6258 6259 llvm::Constant *C = 6260 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6261 6262 // Don't share any string literals if strings aren't constant. 6263 llvm::GlobalVariable **Entry = nullptr; 6264 if (!LangOpts.WritableStrings) { 6265 Entry = &ConstantStringMap[C]; 6266 if (auto GV = *Entry) { 6267 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6268 GV->setAlignment(Alignment.getAsAlign()); 6269 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6270 GV->getValueType(), Alignment); 6271 } 6272 } 6273 6274 // Get the default prefix if a name wasn't specified. 6275 if (!GlobalName) 6276 GlobalName = ".str"; 6277 // Create a global variable for this. 6278 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6279 GlobalName, Alignment); 6280 if (Entry) 6281 *Entry = GV; 6282 6283 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6284 GV->getValueType(), Alignment); 6285 } 6286 6287 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6288 const MaterializeTemporaryExpr *E, const Expr *Init) { 6289 assert((E->getStorageDuration() == SD_Static || 6290 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6291 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6292 6293 // If we're not materializing a subobject of the temporary, keep the 6294 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6295 QualType MaterializedType = Init->getType(); 6296 if (Init == E->getSubExpr()) 6297 MaterializedType = E->getType(); 6298 6299 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6300 6301 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6302 if (!InsertResult.second) { 6303 // We've seen this before: either we already created it or we're in the 6304 // process of doing so. 6305 if (!InsertResult.first->second) { 6306 // We recursively re-entered this function, probably during emission of 6307 // the initializer. Create a placeholder. We'll clean this up in the 6308 // outer call, at the end of this function. 6309 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6310 InsertResult.first->second = new llvm::GlobalVariable( 6311 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6312 nullptr); 6313 } 6314 return ConstantAddress(InsertResult.first->second, 6315 llvm::cast<llvm::GlobalVariable>( 6316 InsertResult.first->second->stripPointerCasts()) 6317 ->getValueType(), 6318 Align); 6319 } 6320 6321 // FIXME: If an externally-visible declaration extends multiple temporaries, 6322 // we need to give each temporary the same name in every translation unit (and 6323 // we also need to make the temporaries externally-visible). 6324 SmallString<256> Name; 6325 llvm::raw_svector_ostream Out(Name); 6326 getCXXABI().getMangleContext().mangleReferenceTemporary( 6327 VD, E->getManglingNumber(), Out); 6328 6329 APValue *Value = nullptr; 6330 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6331 // If the initializer of the extending declaration is a constant 6332 // initializer, we should have a cached constant initializer for this 6333 // temporary. Note that this might have a different value from the value 6334 // computed by evaluating the initializer if the surrounding constant 6335 // expression modifies the temporary. 6336 Value = E->getOrCreateValue(false); 6337 } 6338 6339 // Try evaluating it now, it might have a constant initializer. 6340 Expr::EvalResult EvalResult; 6341 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6342 !EvalResult.hasSideEffects()) 6343 Value = &EvalResult.Val; 6344 6345 LangAS AddrSpace = 6346 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6347 6348 std::optional<ConstantEmitter> emitter; 6349 llvm::Constant *InitialValue = nullptr; 6350 bool Constant = false; 6351 llvm::Type *Type; 6352 if (Value) { 6353 // The temporary has a constant initializer, use it. 6354 emitter.emplace(*this); 6355 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6356 MaterializedType); 6357 Constant = 6358 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6359 /*ExcludeDtor*/ false); 6360 Type = InitialValue->getType(); 6361 } else { 6362 // No initializer, the initialization will be provided when we 6363 // initialize the declaration which performed lifetime extension. 6364 Type = getTypes().ConvertTypeForMem(MaterializedType); 6365 } 6366 6367 // Create a global variable for this lifetime-extended temporary. 6368 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6369 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6370 const VarDecl *InitVD; 6371 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6372 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6373 // Temporaries defined inside a class get linkonce_odr linkage because the 6374 // class can be defined in multiple translation units. 6375 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6376 } else { 6377 // There is no need for this temporary to have external linkage if the 6378 // VarDecl has external linkage. 6379 Linkage = llvm::GlobalVariable::InternalLinkage; 6380 } 6381 } 6382 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6383 auto *GV = new llvm::GlobalVariable( 6384 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6385 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6386 if (emitter) emitter->finalize(GV); 6387 // Don't assign dllimport or dllexport to local linkage globals. 6388 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6389 setGVProperties(GV, VD); 6390 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6391 // The reference temporary should never be dllexport. 6392 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6393 } 6394 GV->setAlignment(Align.getAsAlign()); 6395 if (supportsCOMDAT() && GV->isWeakForLinker()) 6396 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6397 if (VD->getTLSKind()) 6398 setTLSMode(GV, *VD); 6399 llvm::Constant *CV = GV; 6400 if (AddrSpace != LangAS::Default) 6401 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6402 *this, GV, AddrSpace, LangAS::Default, 6403 llvm::PointerType::get( 6404 getLLVMContext(), 6405 getContext().getTargetAddressSpace(LangAS::Default))); 6406 6407 // Update the map with the new temporary. If we created a placeholder above, 6408 // replace it with the new global now. 6409 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6410 if (Entry) { 6411 Entry->replaceAllUsesWith( 6412 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6413 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6414 } 6415 Entry = CV; 6416 6417 return ConstantAddress(CV, Type, Align); 6418 } 6419 6420 /// EmitObjCPropertyImplementations - Emit information for synthesized 6421 /// properties for an implementation. 6422 void CodeGenModule::EmitObjCPropertyImplementations(const 6423 ObjCImplementationDecl *D) { 6424 for (const auto *PID : D->property_impls()) { 6425 // Dynamic is just for type-checking. 6426 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6427 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6428 6429 // Determine which methods need to be implemented, some may have 6430 // been overridden. Note that ::isPropertyAccessor is not the method 6431 // we want, that just indicates if the decl came from a 6432 // property. What we want to know is if the method is defined in 6433 // this implementation. 6434 auto *Getter = PID->getGetterMethodDecl(); 6435 if (!Getter || Getter->isSynthesizedAccessorStub()) 6436 CodeGenFunction(*this).GenerateObjCGetter( 6437 const_cast<ObjCImplementationDecl *>(D), PID); 6438 auto *Setter = PID->getSetterMethodDecl(); 6439 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6440 CodeGenFunction(*this).GenerateObjCSetter( 6441 const_cast<ObjCImplementationDecl *>(D), PID); 6442 } 6443 } 6444 } 6445 6446 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6447 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6448 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6449 ivar; ivar = ivar->getNextIvar()) 6450 if (ivar->getType().isDestructedType()) 6451 return true; 6452 6453 return false; 6454 } 6455 6456 static bool AllTrivialInitializers(CodeGenModule &CGM, 6457 ObjCImplementationDecl *D) { 6458 CodeGenFunction CGF(CGM); 6459 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6460 E = D->init_end(); B != E; ++B) { 6461 CXXCtorInitializer *CtorInitExp = *B; 6462 Expr *Init = CtorInitExp->getInit(); 6463 if (!CGF.isTrivialInitializer(Init)) 6464 return false; 6465 } 6466 return true; 6467 } 6468 6469 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6470 /// for an implementation. 6471 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6472 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6473 if (needsDestructMethod(D)) { 6474 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6475 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6476 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6477 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6478 getContext().VoidTy, nullptr, D, 6479 /*isInstance=*/true, /*isVariadic=*/false, 6480 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6481 /*isImplicitlyDeclared=*/true, 6482 /*isDefined=*/false, ObjCMethodDecl::Required); 6483 D->addInstanceMethod(DTORMethod); 6484 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6485 D->setHasDestructors(true); 6486 } 6487 6488 // If the implementation doesn't have any ivar initializers, we don't need 6489 // a .cxx_construct. 6490 if (D->getNumIvarInitializers() == 0 || 6491 AllTrivialInitializers(*this, D)) 6492 return; 6493 6494 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6495 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6496 // The constructor returns 'self'. 6497 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6498 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6499 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6500 /*isVariadic=*/false, 6501 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6502 /*isImplicitlyDeclared=*/true, 6503 /*isDefined=*/false, ObjCMethodDecl::Required); 6504 D->addInstanceMethod(CTORMethod); 6505 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6506 D->setHasNonZeroConstructors(true); 6507 } 6508 6509 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6510 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6511 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6512 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6513 ErrorUnsupported(LSD, "linkage spec"); 6514 return; 6515 } 6516 6517 EmitDeclContext(LSD); 6518 } 6519 6520 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6521 // Device code should not be at top level. 6522 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6523 return; 6524 6525 std::unique_ptr<CodeGenFunction> &CurCGF = 6526 GlobalTopLevelStmtBlockInFlight.first; 6527 6528 // We emitted a top-level stmt but after it there is initialization. 6529 // Stop squashing the top-level stmts into a single function. 6530 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6531 CurCGF->FinishFunction(D->getEndLoc()); 6532 CurCGF = nullptr; 6533 } 6534 6535 if (!CurCGF) { 6536 // void __stmts__N(void) 6537 // FIXME: Ask the ABI name mangler to pick a name. 6538 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6539 FunctionArgList Args; 6540 QualType RetTy = getContext().VoidTy; 6541 const CGFunctionInfo &FnInfo = 6542 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6543 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6544 llvm::Function *Fn = llvm::Function::Create( 6545 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6546 6547 CurCGF.reset(new CodeGenFunction(*this)); 6548 GlobalTopLevelStmtBlockInFlight.second = D; 6549 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6550 D->getBeginLoc(), D->getBeginLoc()); 6551 CXXGlobalInits.push_back(Fn); 6552 } 6553 6554 CurCGF->EmitStmt(D->getStmt()); 6555 } 6556 6557 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6558 for (auto *I : DC->decls()) { 6559 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6560 // are themselves considered "top-level", so EmitTopLevelDecl on an 6561 // ObjCImplDecl does not recursively visit them. We need to do that in 6562 // case they're nested inside another construct (LinkageSpecDecl / 6563 // ExportDecl) that does stop them from being considered "top-level". 6564 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6565 for (auto *M : OID->methods()) 6566 EmitTopLevelDecl(M); 6567 } 6568 6569 EmitTopLevelDecl(I); 6570 } 6571 } 6572 6573 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6574 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6575 // Ignore dependent declarations. 6576 if (D->isTemplated()) 6577 return; 6578 6579 // Consteval function shouldn't be emitted. 6580 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6581 return; 6582 6583 switch (D->getKind()) { 6584 case Decl::CXXConversion: 6585 case Decl::CXXMethod: 6586 case Decl::Function: 6587 EmitGlobal(cast<FunctionDecl>(D)); 6588 // Always provide some coverage mapping 6589 // even for the functions that aren't emitted. 6590 AddDeferredUnusedCoverageMapping(D); 6591 break; 6592 6593 case Decl::CXXDeductionGuide: 6594 // Function-like, but does not result in code emission. 6595 break; 6596 6597 case Decl::Var: 6598 case Decl::Decomposition: 6599 case Decl::VarTemplateSpecialization: 6600 EmitGlobal(cast<VarDecl>(D)); 6601 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6602 for (auto *B : DD->bindings()) 6603 if (auto *HD = B->getHoldingVar()) 6604 EmitGlobal(HD); 6605 break; 6606 6607 // Indirect fields from global anonymous structs and unions can be 6608 // ignored; only the actual variable requires IR gen support. 6609 case Decl::IndirectField: 6610 break; 6611 6612 // C++ Decls 6613 case Decl::Namespace: 6614 EmitDeclContext(cast<NamespaceDecl>(D)); 6615 break; 6616 case Decl::ClassTemplateSpecialization: { 6617 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6618 if (CGDebugInfo *DI = getModuleDebugInfo()) 6619 if (Spec->getSpecializationKind() == 6620 TSK_ExplicitInstantiationDefinition && 6621 Spec->hasDefinition()) 6622 DI->completeTemplateDefinition(*Spec); 6623 } [[fallthrough]]; 6624 case Decl::CXXRecord: { 6625 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6626 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6627 if (CRD->hasDefinition()) 6628 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6629 if (auto *ES = D->getASTContext().getExternalSource()) 6630 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6631 DI->completeUnusedClass(*CRD); 6632 } 6633 // Emit any static data members, they may be definitions. 6634 for (auto *I : CRD->decls()) 6635 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6636 EmitTopLevelDecl(I); 6637 break; 6638 } 6639 // No code generation needed. 6640 case Decl::UsingShadow: 6641 case Decl::ClassTemplate: 6642 case Decl::VarTemplate: 6643 case Decl::Concept: 6644 case Decl::VarTemplatePartialSpecialization: 6645 case Decl::FunctionTemplate: 6646 case Decl::TypeAliasTemplate: 6647 case Decl::Block: 6648 case Decl::Empty: 6649 case Decl::Binding: 6650 break; 6651 case Decl::Using: // using X; [C++] 6652 if (CGDebugInfo *DI = getModuleDebugInfo()) 6653 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6654 break; 6655 case Decl::UsingEnum: // using enum X; [C++] 6656 if (CGDebugInfo *DI = getModuleDebugInfo()) 6657 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6658 break; 6659 case Decl::NamespaceAlias: 6660 if (CGDebugInfo *DI = getModuleDebugInfo()) 6661 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6662 break; 6663 case Decl::UsingDirective: // using namespace X; [C++] 6664 if (CGDebugInfo *DI = getModuleDebugInfo()) 6665 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6666 break; 6667 case Decl::CXXConstructor: 6668 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6669 break; 6670 case Decl::CXXDestructor: 6671 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6672 break; 6673 6674 case Decl::StaticAssert: 6675 // Nothing to do. 6676 break; 6677 6678 // Objective-C Decls 6679 6680 // Forward declarations, no (immediate) code generation. 6681 case Decl::ObjCInterface: 6682 case Decl::ObjCCategory: 6683 break; 6684 6685 case Decl::ObjCProtocol: { 6686 auto *Proto = cast<ObjCProtocolDecl>(D); 6687 if (Proto->isThisDeclarationADefinition()) 6688 ObjCRuntime->GenerateProtocol(Proto); 6689 break; 6690 } 6691 6692 case Decl::ObjCCategoryImpl: 6693 // Categories have properties but don't support synthesize so we 6694 // can ignore them here. 6695 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6696 break; 6697 6698 case Decl::ObjCImplementation: { 6699 auto *OMD = cast<ObjCImplementationDecl>(D); 6700 EmitObjCPropertyImplementations(OMD); 6701 EmitObjCIvarInitializations(OMD); 6702 ObjCRuntime->GenerateClass(OMD); 6703 // Emit global variable debug information. 6704 if (CGDebugInfo *DI = getModuleDebugInfo()) 6705 if (getCodeGenOpts().hasReducedDebugInfo()) 6706 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6707 OMD->getClassInterface()), OMD->getLocation()); 6708 break; 6709 } 6710 case Decl::ObjCMethod: { 6711 auto *OMD = cast<ObjCMethodDecl>(D); 6712 // If this is not a prototype, emit the body. 6713 if (OMD->getBody()) 6714 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6715 break; 6716 } 6717 case Decl::ObjCCompatibleAlias: 6718 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6719 break; 6720 6721 case Decl::PragmaComment: { 6722 const auto *PCD = cast<PragmaCommentDecl>(D); 6723 switch (PCD->getCommentKind()) { 6724 case PCK_Unknown: 6725 llvm_unreachable("unexpected pragma comment kind"); 6726 case PCK_Linker: 6727 AppendLinkerOptions(PCD->getArg()); 6728 break; 6729 case PCK_Lib: 6730 AddDependentLib(PCD->getArg()); 6731 break; 6732 case PCK_Compiler: 6733 case PCK_ExeStr: 6734 case PCK_User: 6735 break; // We ignore all of these. 6736 } 6737 break; 6738 } 6739 6740 case Decl::PragmaDetectMismatch: { 6741 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6742 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6743 break; 6744 } 6745 6746 case Decl::LinkageSpec: 6747 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6748 break; 6749 6750 case Decl::FileScopeAsm: { 6751 // File-scope asm is ignored during device-side CUDA compilation. 6752 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6753 break; 6754 // File-scope asm is ignored during device-side OpenMP compilation. 6755 if (LangOpts.OpenMPIsTargetDevice) 6756 break; 6757 // File-scope asm is ignored during device-side SYCL compilation. 6758 if (LangOpts.SYCLIsDevice) 6759 break; 6760 auto *AD = cast<FileScopeAsmDecl>(D); 6761 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6762 break; 6763 } 6764 6765 case Decl::TopLevelStmt: 6766 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6767 break; 6768 6769 case Decl::Import: { 6770 auto *Import = cast<ImportDecl>(D); 6771 6772 // If we've already imported this module, we're done. 6773 if (!ImportedModules.insert(Import->getImportedModule())) 6774 break; 6775 6776 // Emit debug information for direct imports. 6777 if (!Import->getImportedOwningModule()) { 6778 if (CGDebugInfo *DI = getModuleDebugInfo()) 6779 DI->EmitImportDecl(*Import); 6780 } 6781 6782 // For C++ standard modules we are done - we will call the module 6783 // initializer for imported modules, and that will likewise call those for 6784 // any imports it has. 6785 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6786 !Import->getImportedOwningModule()->isModuleMapModule()) 6787 break; 6788 6789 // For clang C++ module map modules the initializers for sub-modules are 6790 // emitted here. 6791 6792 // Find all of the submodules and emit the module initializers. 6793 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6794 SmallVector<clang::Module *, 16> Stack; 6795 Visited.insert(Import->getImportedModule()); 6796 Stack.push_back(Import->getImportedModule()); 6797 6798 while (!Stack.empty()) { 6799 clang::Module *Mod = Stack.pop_back_val(); 6800 if (!EmittedModuleInitializers.insert(Mod).second) 6801 continue; 6802 6803 for (auto *D : Context.getModuleInitializers(Mod)) 6804 EmitTopLevelDecl(D); 6805 6806 // Visit the submodules of this module. 6807 for (auto *Submodule : Mod->submodules()) { 6808 // Skip explicit children; they need to be explicitly imported to emit 6809 // the initializers. 6810 if (Submodule->IsExplicit) 6811 continue; 6812 6813 if (Visited.insert(Submodule).second) 6814 Stack.push_back(Submodule); 6815 } 6816 } 6817 break; 6818 } 6819 6820 case Decl::Export: 6821 EmitDeclContext(cast<ExportDecl>(D)); 6822 break; 6823 6824 case Decl::OMPThreadPrivate: 6825 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6826 break; 6827 6828 case Decl::OMPAllocate: 6829 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6830 break; 6831 6832 case Decl::OMPDeclareReduction: 6833 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6834 break; 6835 6836 case Decl::OMPDeclareMapper: 6837 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6838 break; 6839 6840 case Decl::OMPRequires: 6841 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6842 break; 6843 6844 case Decl::Typedef: 6845 case Decl::TypeAlias: // using foo = bar; [C++11] 6846 if (CGDebugInfo *DI = getModuleDebugInfo()) 6847 DI->EmitAndRetainType( 6848 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6849 break; 6850 6851 case Decl::Record: 6852 if (CGDebugInfo *DI = getModuleDebugInfo()) 6853 if (cast<RecordDecl>(D)->getDefinition()) 6854 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6855 break; 6856 6857 case Decl::Enum: 6858 if (CGDebugInfo *DI = getModuleDebugInfo()) 6859 if (cast<EnumDecl>(D)->getDefinition()) 6860 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6861 break; 6862 6863 case Decl::HLSLBuffer: 6864 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6865 break; 6866 6867 default: 6868 // Make sure we handled everything we should, every other kind is a 6869 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6870 // function. Need to recode Decl::Kind to do that easily. 6871 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6872 break; 6873 } 6874 } 6875 6876 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6877 // Do we need to generate coverage mapping? 6878 if (!CodeGenOpts.CoverageMapping) 6879 return; 6880 switch (D->getKind()) { 6881 case Decl::CXXConversion: 6882 case Decl::CXXMethod: 6883 case Decl::Function: 6884 case Decl::ObjCMethod: 6885 case Decl::CXXConstructor: 6886 case Decl::CXXDestructor: { 6887 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6888 break; 6889 SourceManager &SM = getContext().getSourceManager(); 6890 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6891 break; 6892 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6893 if (I == DeferredEmptyCoverageMappingDecls.end()) 6894 DeferredEmptyCoverageMappingDecls[D] = true; 6895 break; 6896 } 6897 default: 6898 break; 6899 }; 6900 } 6901 6902 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6903 // Do we need to generate coverage mapping? 6904 if (!CodeGenOpts.CoverageMapping) 6905 return; 6906 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6907 if (Fn->isTemplateInstantiation()) 6908 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6909 } 6910 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6911 if (I == DeferredEmptyCoverageMappingDecls.end()) 6912 DeferredEmptyCoverageMappingDecls[D] = false; 6913 else 6914 I->second = false; 6915 } 6916 6917 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6918 // We call takeVector() here to avoid use-after-free. 6919 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6920 // we deserialize function bodies to emit coverage info for them, and that 6921 // deserializes more declarations. How should we handle that case? 6922 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6923 if (!Entry.second) 6924 continue; 6925 const Decl *D = Entry.first; 6926 switch (D->getKind()) { 6927 case Decl::CXXConversion: 6928 case Decl::CXXMethod: 6929 case Decl::Function: 6930 case Decl::ObjCMethod: { 6931 CodeGenPGO PGO(*this); 6932 GlobalDecl GD(cast<FunctionDecl>(D)); 6933 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6934 getFunctionLinkage(GD)); 6935 break; 6936 } 6937 case Decl::CXXConstructor: { 6938 CodeGenPGO PGO(*this); 6939 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6940 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6941 getFunctionLinkage(GD)); 6942 break; 6943 } 6944 case Decl::CXXDestructor: { 6945 CodeGenPGO PGO(*this); 6946 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6947 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6948 getFunctionLinkage(GD)); 6949 break; 6950 } 6951 default: 6952 break; 6953 }; 6954 } 6955 } 6956 6957 void CodeGenModule::EmitMainVoidAlias() { 6958 // In order to transition away from "__original_main" gracefully, emit an 6959 // alias for "main" in the no-argument case so that libc can detect when 6960 // new-style no-argument main is in used. 6961 if (llvm::Function *F = getModule().getFunction("main")) { 6962 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6963 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6964 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6965 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6966 } 6967 } 6968 } 6969 6970 /// Turns the given pointer into a constant. 6971 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6972 const void *Ptr) { 6973 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6974 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6975 return llvm::ConstantInt::get(i64, PtrInt); 6976 } 6977 6978 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6979 llvm::NamedMDNode *&GlobalMetadata, 6980 GlobalDecl D, 6981 llvm::GlobalValue *Addr) { 6982 if (!GlobalMetadata) 6983 GlobalMetadata = 6984 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6985 6986 // TODO: should we report variant information for ctors/dtors? 6987 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6988 llvm::ConstantAsMetadata::get(GetPointerConstant( 6989 CGM.getLLVMContext(), D.getDecl()))}; 6990 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6991 } 6992 6993 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6994 llvm::GlobalValue *CppFunc) { 6995 // Store the list of ifuncs we need to replace uses in. 6996 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6997 // List of ConstantExprs that we should be able to delete when we're done 6998 // here. 6999 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7000 7001 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7002 if (Elem == CppFunc) 7003 return false; 7004 7005 // First make sure that all users of this are ifuncs (or ifuncs via a 7006 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7007 // later. 7008 for (llvm::User *User : Elem->users()) { 7009 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7010 // ifunc directly. In any other case, just give up, as we don't know what we 7011 // could break by changing those. 7012 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7013 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7014 return false; 7015 7016 for (llvm::User *CEUser : ConstExpr->users()) { 7017 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7018 IFuncs.push_back(IFunc); 7019 } else { 7020 return false; 7021 } 7022 } 7023 CEs.push_back(ConstExpr); 7024 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7025 IFuncs.push_back(IFunc); 7026 } else { 7027 // This user is one we don't know how to handle, so fail redirection. This 7028 // will result in an ifunc retaining a resolver name that will ultimately 7029 // fail to be resolved to a defined function. 7030 return false; 7031 } 7032 } 7033 7034 // Now we know this is a valid case where we can do this alias replacement, we 7035 // need to remove all of the references to Elem (and the bitcasts!) so we can 7036 // delete it. 7037 for (llvm::GlobalIFunc *IFunc : IFuncs) 7038 IFunc->setResolver(nullptr); 7039 for (llvm::ConstantExpr *ConstExpr : CEs) 7040 ConstExpr->destroyConstant(); 7041 7042 // We should now be out of uses for the 'old' version of this function, so we 7043 // can erase it as well. 7044 Elem->eraseFromParent(); 7045 7046 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7047 // The type of the resolver is always just a function-type that returns the 7048 // type of the IFunc, so create that here. If the type of the actual 7049 // resolver doesn't match, it just gets bitcast to the right thing. 7050 auto *ResolverTy = 7051 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7052 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7053 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7054 IFunc->setResolver(Resolver); 7055 } 7056 return true; 7057 } 7058 7059 /// For each function which is declared within an extern "C" region and marked 7060 /// as 'used', but has internal linkage, create an alias from the unmangled 7061 /// name to the mangled name if possible. People expect to be able to refer 7062 /// to such functions with an unmangled name from inline assembly within the 7063 /// same translation unit. 7064 void CodeGenModule::EmitStaticExternCAliases() { 7065 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7066 return; 7067 for (auto &I : StaticExternCValues) { 7068 IdentifierInfo *Name = I.first; 7069 llvm::GlobalValue *Val = I.second; 7070 7071 // If Val is null, that implies there were multiple declarations that each 7072 // had a claim to the unmangled name. In this case, generation of the alias 7073 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7074 if (!Val) 7075 break; 7076 7077 llvm::GlobalValue *ExistingElem = 7078 getModule().getNamedValue(Name->getName()); 7079 7080 // If there is either not something already by this name, or we were able to 7081 // replace all uses from IFuncs, create the alias. 7082 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7083 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7084 } 7085 } 7086 7087 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7088 GlobalDecl &Result) const { 7089 auto Res = Manglings.find(MangledName); 7090 if (Res == Manglings.end()) 7091 return false; 7092 Result = Res->getValue(); 7093 return true; 7094 } 7095 7096 /// Emits metadata nodes associating all the global values in the 7097 /// current module with the Decls they came from. This is useful for 7098 /// projects using IR gen as a subroutine. 7099 /// 7100 /// Since there's currently no way to associate an MDNode directly 7101 /// with an llvm::GlobalValue, we create a global named metadata 7102 /// with the name 'clang.global.decl.ptrs'. 7103 void CodeGenModule::EmitDeclMetadata() { 7104 llvm::NamedMDNode *GlobalMetadata = nullptr; 7105 7106 for (auto &I : MangledDeclNames) { 7107 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7108 // Some mangled names don't necessarily have an associated GlobalValue 7109 // in this module, e.g. if we mangled it for DebugInfo. 7110 if (Addr) 7111 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7112 } 7113 } 7114 7115 /// Emits metadata nodes for all the local variables in the current 7116 /// function. 7117 void CodeGenFunction::EmitDeclMetadata() { 7118 if (LocalDeclMap.empty()) return; 7119 7120 llvm::LLVMContext &Context = getLLVMContext(); 7121 7122 // Find the unique metadata ID for this name. 7123 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7124 7125 llvm::NamedMDNode *GlobalMetadata = nullptr; 7126 7127 for (auto &I : LocalDeclMap) { 7128 const Decl *D = I.first; 7129 llvm::Value *Addr = I.second.getPointer(); 7130 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7131 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7132 Alloca->setMetadata( 7133 DeclPtrKind, llvm::MDNode::get( 7134 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7135 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7136 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7137 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7138 } 7139 } 7140 } 7141 7142 void CodeGenModule::EmitVersionIdentMetadata() { 7143 llvm::NamedMDNode *IdentMetadata = 7144 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7145 std::string Version = getClangFullVersion(); 7146 llvm::LLVMContext &Ctx = TheModule.getContext(); 7147 7148 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7149 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7150 } 7151 7152 void CodeGenModule::EmitCommandLineMetadata() { 7153 llvm::NamedMDNode *CommandLineMetadata = 7154 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7155 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7156 llvm::LLVMContext &Ctx = TheModule.getContext(); 7157 7158 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7159 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7160 } 7161 7162 void CodeGenModule::EmitCoverageFile() { 7163 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7164 if (!CUNode) 7165 return; 7166 7167 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7168 llvm::LLVMContext &Ctx = TheModule.getContext(); 7169 auto *CoverageDataFile = 7170 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7171 auto *CoverageNotesFile = 7172 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7173 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7174 llvm::MDNode *CU = CUNode->getOperand(i); 7175 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7176 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7177 } 7178 } 7179 7180 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7181 bool ForEH) { 7182 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7183 // FIXME: should we even be calling this method if RTTI is disabled 7184 // and it's not for EH? 7185 if (!shouldEmitRTTI(ForEH)) 7186 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7187 7188 if (ForEH && Ty->isObjCObjectPointerType() && 7189 LangOpts.ObjCRuntime.isGNUFamily()) 7190 return ObjCRuntime->GetEHType(Ty); 7191 7192 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7193 } 7194 7195 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7196 // Do not emit threadprivates in simd-only mode. 7197 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7198 return; 7199 for (auto RefExpr : D->varlists()) { 7200 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7201 bool PerformInit = 7202 VD->getAnyInitializer() && 7203 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7204 /*ForRef=*/false); 7205 7206 Address Addr(GetAddrOfGlobalVar(VD), 7207 getTypes().ConvertTypeForMem(VD->getType()), 7208 getContext().getDeclAlign(VD)); 7209 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7210 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7211 CXXGlobalInits.push_back(InitFunction); 7212 } 7213 } 7214 7215 llvm::Metadata * 7216 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7217 StringRef Suffix) { 7218 if (auto *FnType = T->getAs<FunctionProtoType>()) 7219 T = getContext().getFunctionType( 7220 FnType->getReturnType(), FnType->getParamTypes(), 7221 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7222 7223 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7224 if (InternalId) 7225 return InternalId; 7226 7227 if (isExternallyVisible(T->getLinkage())) { 7228 std::string OutName; 7229 llvm::raw_string_ostream Out(OutName); 7230 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7231 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7232 7233 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7234 Out << ".normalized"; 7235 7236 Out << Suffix; 7237 7238 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7239 } else { 7240 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7241 llvm::ArrayRef<llvm::Metadata *>()); 7242 } 7243 7244 return InternalId; 7245 } 7246 7247 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7248 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7249 } 7250 7251 llvm::Metadata * 7252 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7253 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7254 } 7255 7256 // Generalize pointer types to a void pointer with the qualifiers of the 7257 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7258 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7259 // 'void *'. 7260 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7261 if (!Ty->isPointerType()) 7262 return Ty; 7263 7264 return Ctx.getPointerType( 7265 QualType(Ctx.VoidTy).withCVRQualifiers( 7266 Ty->getPointeeType().getCVRQualifiers())); 7267 } 7268 7269 // Apply type generalization to a FunctionType's return and argument types 7270 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7271 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7272 SmallVector<QualType, 8> GeneralizedParams; 7273 for (auto &Param : FnType->param_types()) 7274 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7275 7276 return Ctx.getFunctionType( 7277 GeneralizeType(Ctx, FnType->getReturnType()), 7278 GeneralizedParams, FnType->getExtProtoInfo()); 7279 } 7280 7281 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7282 return Ctx.getFunctionNoProtoType( 7283 GeneralizeType(Ctx, FnType->getReturnType())); 7284 7285 llvm_unreachable("Encountered unknown FunctionType"); 7286 } 7287 7288 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7289 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7290 GeneralizedMetadataIdMap, ".generalized"); 7291 } 7292 7293 /// Returns whether this module needs the "all-vtables" type identifier. 7294 bool CodeGenModule::NeedAllVtablesTypeId() const { 7295 // Returns true if at least one of vtable-based CFI checkers is enabled and 7296 // is not in the trapping mode. 7297 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7298 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7299 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7300 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7301 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7302 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7303 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7304 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7305 } 7306 7307 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7308 CharUnits Offset, 7309 const CXXRecordDecl *RD) { 7310 llvm::Metadata *MD = 7311 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7312 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7313 7314 if (CodeGenOpts.SanitizeCfiCrossDso) 7315 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7316 VTable->addTypeMetadata(Offset.getQuantity(), 7317 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7318 7319 if (NeedAllVtablesTypeId()) { 7320 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7321 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7322 } 7323 } 7324 7325 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7326 if (!SanStats) 7327 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7328 7329 return *SanStats; 7330 } 7331 7332 llvm::Value * 7333 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7334 CodeGenFunction &CGF) { 7335 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7336 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7337 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7338 auto *Call = CGF.EmitRuntimeCall( 7339 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7340 return Call; 7341 } 7342 7343 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7344 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7345 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7346 /* forPointeeType= */ true); 7347 } 7348 7349 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7350 LValueBaseInfo *BaseInfo, 7351 TBAAAccessInfo *TBAAInfo, 7352 bool forPointeeType) { 7353 if (TBAAInfo) 7354 *TBAAInfo = getTBAAAccessInfo(T); 7355 7356 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7357 // that doesn't return the information we need to compute BaseInfo. 7358 7359 // Honor alignment typedef attributes even on incomplete types. 7360 // We also honor them straight for C++ class types, even as pointees; 7361 // there's an expressivity gap here. 7362 if (auto TT = T->getAs<TypedefType>()) { 7363 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7364 if (BaseInfo) 7365 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7366 return getContext().toCharUnitsFromBits(Align); 7367 } 7368 } 7369 7370 bool AlignForArray = T->isArrayType(); 7371 7372 // Analyze the base element type, so we don't get confused by incomplete 7373 // array types. 7374 T = getContext().getBaseElementType(T); 7375 7376 if (T->isIncompleteType()) { 7377 // We could try to replicate the logic from 7378 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7379 // type is incomplete, so it's impossible to test. We could try to reuse 7380 // getTypeAlignIfKnown, but that doesn't return the information we need 7381 // to set BaseInfo. So just ignore the possibility that the alignment is 7382 // greater than one. 7383 if (BaseInfo) 7384 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7385 return CharUnits::One(); 7386 } 7387 7388 if (BaseInfo) 7389 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7390 7391 CharUnits Alignment; 7392 const CXXRecordDecl *RD; 7393 if (T.getQualifiers().hasUnaligned()) { 7394 Alignment = CharUnits::One(); 7395 } else if (forPointeeType && !AlignForArray && 7396 (RD = T->getAsCXXRecordDecl())) { 7397 // For C++ class pointees, we don't know whether we're pointing at a 7398 // base or a complete object, so we generally need to use the 7399 // non-virtual alignment. 7400 Alignment = getClassPointerAlignment(RD); 7401 } else { 7402 Alignment = getContext().getTypeAlignInChars(T); 7403 } 7404 7405 // Cap to the global maximum type alignment unless the alignment 7406 // was somehow explicit on the type. 7407 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7408 if (Alignment.getQuantity() > MaxAlign && 7409 !getContext().isAlignmentRequired(T)) 7410 Alignment = CharUnits::fromQuantity(MaxAlign); 7411 } 7412 return Alignment; 7413 } 7414 7415 bool CodeGenModule::stopAutoInit() { 7416 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7417 if (StopAfter) { 7418 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7419 // used 7420 if (NumAutoVarInit >= StopAfter) { 7421 return true; 7422 } 7423 if (!NumAutoVarInit) { 7424 unsigned DiagID = getDiags().getCustomDiagID( 7425 DiagnosticsEngine::Warning, 7426 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7427 "number of times ftrivial-auto-var-init=%1 gets applied."); 7428 getDiags().Report(DiagID) 7429 << StopAfter 7430 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7431 LangOptions::TrivialAutoVarInitKind::Zero 7432 ? "zero" 7433 : "pattern"); 7434 } 7435 ++NumAutoVarInit; 7436 } 7437 return false; 7438 } 7439 7440 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7441 const Decl *D) const { 7442 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7443 // postfix beginning with '.' since the symbol name can be demangled. 7444 if (LangOpts.HIP) 7445 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7446 else 7447 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7448 7449 // If the CUID is not specified we try to generate a unique postfix. 7450 if (getLangOpts().CUID.empty()) { 7451 SourceManager &SM = getContext().getSourceManager(); 7452 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7453 assert(PLoc.isValid() && "Source location is expected to be valid."); 7454 7455 // Get the hash of the user defined macros. 7456 llvm::MD5 Hash; 7457 llvm::MD5::MD5Result Result; 7458 for (const auto &Arg : PreprocessorOpts.Macros) 7459 Hash.update(Arg.first); 7460 Hash.final(Result); 7461 7462 // Get the UniqueID for the file containing the decl. 7463 llvm::sys::fs::UniqueID ID; 7464 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7465 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7466 assert(PLoc.isValid() && "Source location is expected to be valid."); 7467 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7468 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7469 << PLoc.getFilename() << EC.message(); 7470 } 7471 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7472 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7473 } else { 7474 OS << getContext().getCUIDHash(); 7475 } 7476 } 7477 7478 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7479 assert(DeferredDeclsToEmit.empty() && 7480 "Should have emitted all decls deferred to emit."); 7481 assert(NewBuilder->DeferredDecls.empty() && 7482 "Newly created module should not have deferred decls"); 7483 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7484 assert(EmittedDeferredDecls.empty() && 7485 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7486 7487 assert(NewBuilder->DeferredVTables.empty() && 7488 "Newly created module should not have deferred vtables"); 7489 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7490 7491 assert(NewBuilder->MangledDeclNames.empty() && 7492 "Newly created module should not have mangled decl names"); 7493 assert(NewBuilder->Manglings.empty() && 7494 "Newly created module should not have manglings"); 7495 NewBuilder->Manglings = std::move(Manglings); 7496 7497 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7498 7499 NewBuilder->TBAA = std::move(TBAA); 7500 7501 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7502 } 7503