xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d755e6ac4828d6de90afca6eb64a7f90a33f603c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   if (C.getLangOptions().ObjCAutoRefCount)
92     ARCData = new ARCEntrypoints();
93   RRData = new RREntrypoints();
94 
95   // Initialize the type cache.
96   llvm::LLVMContext &LLVMContext = M.getContext();
97   VoidTy = llvm::Type::getVoidTy(LLVMContext);
98   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   PointerWidthInBits = C.Target.getPointerWidth(0);
102   PointerAlignInBytes =
103     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106   Int8PtrTy = Int8Ty->getPointerTo(0);
107   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108 }
109 
110 CodeGenModule::~CodeGenModule() {
111   delete Runtime;
112   delete &ABI;
113   delete TBAA;
114   delete DebugInfo;
115   delete ARCData;
116   delete RRData;
117 }
118 
119 void CodeGenModule::createObjCRuntime() {
120   if (!Features.NeXTRuntime)
121     Runtime = CreateGNUObjCRuntime(*this);
122   else
123     Runtime = CreateMacObjCRuntime(*this);
124 }
125 
126 void CodeGenModule::Release() {
127   EmitDeferred();
128   EmitCXXGlobalInitFunc();
129   EmitCXXGlobalDtorFunc();
130   if (Runtime)
131     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132       AddGlobalCtor(ObjCInitFunction);
133   EmitCtorList(GlobalCtors, "llvm.global_ctors");
134   EmitCtorList(GlobalDtors, "llvm.global_dtors");
135   EmitAnnotations();
136   EmitLLVMUsed();
137 
138   SimplifyPersonality();
139 
140   if (getCodeGenOpts().EmitDeclMetadata)
141     EmitDeclMetadata();
142 
143   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144     EmitCoverageFile();
145 }
146 
147 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148   // Make sure that this type is translated.
149   Types.UpdateCompletedType(TD);
150   if (DebugInfo)
151     DebugInfo->UpdateCompletedType(TD);
152 }
153 
154 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155   if (!TBAA)
156     return 0;
157   return TBAA->getTBAAInfo(QTy);
158 }
159 
160 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                         llvm::MDNode *TBAAInfo) {
162   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163 }
164 
165 bool CodeGenModule::isTargetDarwin() const {
166   return getContext().Target.getTriple().isOSDarwin();
167 }
168 
169 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171   getDiags().Report(Context.getFullLoc(loc), diagID);
172 }
173 
174 /// ErrorUnsupported - Print out an error that codegen doesn't support the
175 /// specified stmt yet.
176 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                      bool OmitOnError) {
178   if (OmitOnError && getDiags().hasErrorOccurred())
179     return;
180   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                                "cannot compile this %0 yet");
182   std::string Msg = Type;
183   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184     << Msg << S->getSourceRange();
185 }
186 
187 /// ErrorUnsupported - Print out an error that codegen doesn't support the
188 /// specified decl yet.
189 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                      bool OmitOnError) {
191   if (OmitOnError && getDiags().hasErrorOccurred())
192     return;
193   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                                "cannot compile this %0 yet");
195   std::string Msg = Type;
196   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197 }
198 
199 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201 }
202 
203 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                         const NamedDecl *D) const {
205   // Internal definitions always have default visibility.
206   if (GV->hasLocalLinkage()) {
207     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208     return;
209   }
210 
211   // Set visibility for definitions.
212   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215 }
216 
217 /// Set the symbol visibility of type information (vtable and RTTI)
218 /// associated with the given type.
219 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220                                       const CXXRecordDecl *RD,
221                                       TypeVisibilityKind TVK) const {
222   setGlobalVisibility(GV, RD);
223 
224   if (!CodeGenOpts.HiddenWeakVTables)
225     return;
226 
227   // We never want to drop the visibility for RTTI names.
228   if (TVK == TVK_ForRTTIName)
229     return;
230 
231   // We want to drop the visibility to hidden for weak type symbols.
232   // This isn't possible if there might be unresolved references
233   // elsewhere that rely on this symbol being visible.
234 
235   // This should be kept roughly in sync with setThunkVisibility
236   // in CGVTables.cpp.
237 
238   // Preconditions.
239   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241     return;
242 
243   // Don't override an explicit visibility attribute.
244   if (RD->getExplicitVisibility())
245     return;
246 
247   switch (RD->getTemplateSpecializationKind()) {
248   // We have to disable the optimization if this is an EI definition
249   // because there might be EI declarations in other shared objects.
250   case TSK_ExplicitInstantiationDefinition:
251   case TSK_ExplicitInstantiationDeclaration:
252     return;
253 
254   // Every use of a non-template class's type information has to emit it.
255   case TSK_Undeclared:
256     break;
257 
258   // In theory, implicit instantiations can ignore the possibility of
259   // an explicit instantiation declaration because there necessarily
260   // must be an EI definition somewhere with default visibility.  In
261   // practice, it's possible to have an explicit instantiation for
262   // an arbitrary template class, and linkers aren't necessarily able
263   // to deal with mixed-visibility symbols.
264   case TSK_ExplicitSpecialization:
265   case TSK_ImplicitInstantiation:
266     if (!CodeGenOpts.HiddenWeakTemplateVTables)
267       return;
268     break;
269   }
270 
271   // If there's a key function, there may be translation units
272   // that don't have the key function's definition.  But ignore
273   // this if we're emitting RTTI under -fno-rtti.
274   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275     if (Context.getKeyFunction(RD))
276       return;
277   }
278 
279   // Otherwise, drop the visibility to hidden.
280   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281   GV->setUnnamedAddr(true);
282 }
283 
284 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286 
287   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288   if (!Str.empty())
289     return Str;
290 
291   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292     IdentifierInfo *II = ND->getIdentifier();
293     assert(II && "Attempt to mangle unnamed decl.");
294 
295     Str = II->getName();
296     return Str;
297   }
298 
299   llvm::SmallString<256> Buffer;
300   llvm::raw_svector_ostream Out(Buffer);
301   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306     getCXXABI().getMangleContext().mangleBlock(BD, Out);
307   else
308     getCXXABI().getMangleContext().mangleName(ND, Out);
309 
310   // Allocate space for the mangled name.
311   Out.flush();
312   size_t Length = Buffer.size();
313   char *Name = MangledNamesAllocator.Allocate<char>(Length);
314   std::copy(Buffer.begin(), Buffer.end(), Name);
315 
316   Str = llvm::StringRef(Name, Length);
317 
318   return Str;
319 }
320 
321 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                         const BlockDecl *BD) {
323   MangleContext &MangleCtx = getCXXABI().getMangleContext();
324   const Decl *D = GD.getDecl();
325   llvm::raw_svector_ostream Out(Buffer.getBuffer());
326   if (D == 0)
327     MangleCtx.mangleGlobalBlock(BD, Out);
328   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332   else
333     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334 }
335 
336 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337   return getModule().getNamedValue(Name);
338 }
339 
340 /// AddGlobalCtor - Add a function to the list that will be called before
341 /// main() runs.
342 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343   // FIXME: Type coercion of void()* types.
344   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345 }
346 
347 /// AddGlobalDtor - Add a function to the list that will be called
348 /// when the module is unloaded.
349 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350   // FIXME: Type coercion of void()* types.
351   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352 }
353 
354 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355   // Ctor function type is void()*.
356   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358 
359   // Get the type of a ctor entry, { i32, void ()* }.
360   llvm::StructType *CtorStructTy =
361     llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362                           llvm::PointerType::getUnqual(CtorFTy), NULL);
363 
364   // Construct the constructor and destructor arrays.
365   std::vector<llvm::Constant*> Ctors;
366   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367     std::vector<llvm::Constant*> S;
368     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369                 I->second, false));
370     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372   }
373 
374   if (!Ctors.empty()) {
375     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376     new llvm::GlobalVariable(TheModule, AT, false,
377                              llvm::GlobalValue::AppendingLinkage,
378                              llvm::ConstantArray::get(AT, Ctors),
379                              GlobalName);
380   }
381 }
382 
383 void CodeGenModule::EmitAnnotations() {
384   if (Annotations.empty())
385     return;
386 
387   // Create a new global variable for the ConstantStruct in the Module.
388   llvm::Constant *Array =
389   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390                                                 Annotations.size()),
391                            Annotations);
392   llvm::GlobalValue *gv =
393   new llvm::GlobalVariable(TheModule, Array->getType(), false,
394                            llvm::GlobalValue::AppendingLinkage, Array,
395                            "llvm.global.annotations");
396   gv->setSection("llvm.metadata");
397 }
398 
399 llvm::GlobalValue::LinkageTypes
400 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402 
403   if (Linkage == GVA_Internal)
404     return llvm::Function::InternalLinkage;
405 
406   if (D->hasAttr<DLLExportAttr>())
407     return llvm::Function::DLLExportLinkage;
408 
409   if (D->hasAttr<WeakAttr>())
410     return llvm::Function::WeakAnyLinkage;
411 
412   // In C99 mode, 'inline' functions are guaranteed to have a strong
413   // definition somewhere else, so we can use available_externally linkage.
414   if (Linkage == GVA_C99Inline)
415     return llvm::Function::AvailableExternallyLinkage;
416 
417   // In C++, the compiler has to emit a definition in every translation unit
418   // that references the function.  We should use linkonce_odr because
419   // a) if all references in this translation unit are optimized away, we
420   // don't need to codegen it.  b) if the function persists, it needs to be
421   // merged with other definitions. c) C++ has the ODR, so we know the
422   // definition is dependable.
423   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424     return !Context.getLangOptions().AppleKext
425              ? llvm::Function::LinkOnceODRLinkage
426              : llvm::Function::InternalLinkage;
427 
428   // An explicit instantiation of a template has weak linkage, since
429   // explicit instantiations can occur in multiple translation units
430   // and must all be equivalent. However, we are not allowed to
431   // throw away these explicit instantiations.
432   if (Linkage == GVA_ExplicitTemplateInstantiation)
433     return !Context.getLangOptions().AppleKext
434              ? llvm::Function::WeakODRLinkage
435              : llvm::Function::InternalLinkage;
436 
437   // Otherwise, we have strong external linkage.
438   assert(Linkage == GVA_StrongExternal);
439   return llvm::Function::ExternalLinkage;
440 }
441 
442 
443 /// SetFunctionDefinitionAttributes - Set attributes for a global.
444 ///
445 /// FIXME: This is currently only done for aliases and functions, but not for
446 /// variables (these details are set in EmitGlobalVarDefinition for variables).
447 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448                                                     llvm::GlobalValue *GV) {
449   SetCommonAttributes(D, GV);
450 }
451 
452 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453                                               const CGFunctionInfo &Info,
454                                               llvm::Function *F) {
455   unsigned CallingConv;
456   AttributeListType AttributeList;
457   ConstructAttributeList(Info, D, AttributeList, CallingConv);
458   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459                                           AttributeList.size()));
460   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461 }
462 
463 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464                                                            llvm::Function *F) {
465   if (CodeGenOpts.UnwindTables)
466     F->setHasUWTable();
467 
468   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469     F->addFnAttr(llvm::Attribute::NoUnwind);
470 
471   if (D->hasAttr<AlwaysInlineAttr>())
472     F->addFnAttr(llvm::Attribute::AlwaysInline);
473 
474   if (D->hasAttr<NakedAttr>())
475     F->addFnAttr(llvm::Attribute::Naked);
476 
477   if (D->hasAttr<NoInlineAttr>())
478     F->addFnAttr(llvm::Attribute::NoInline);
479 
480   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481     F->setUnnamedAddr(true);
482 
483   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484     F->addFnAttr(llvm::Attribute::StackProtect);
485   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486     F->addFnAttr(llvm::Attribute::StackProtectReq);
487 
488   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489   if (alignment)
490     F->setAlignment(alignment);
491 
492   // C++ ABI requires 2-byte alignment for member functions.
493   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494     F->setAlignment(2);
495 }
496 
497 void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                         llvm::GlobalValue *GV) {
499   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500     setGlobalVisibility(GV, ND);
501   else
502     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503 
504   if (D->hasAttr<UsedAttr>())
505     AddUsedGlobal(GV);
506 
507   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508     GV->setSection(SA->getName());
509 
510   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511 }
512 
513 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514                                                   llvm::Function *F,
515                                                   const CGFunctionInfo &FI) {
516   SetLLVMFunctionAttributes(D, FI, F);
517   SetLLVMFunctionAttributesForDefinition(D, F);
518 
519   F->setLinkage(llvm::Function::InternalLinkage);
520 
521   SetCommonAttributes(D, F);
522 }
523 
524 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525                                           llvm::Function *F,
526                                           bool IsIncompleteFunction) {
527   if (unsigned IID = F->getIntrinsicID()) {
528     // If this is an intrinsic function, set the function's attributes
529     // to the intrinsic's attributes.
530     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531     return;
532   }
533 
534   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535 
536   if (!IsIncompleteFunction)
537     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538 
539   // Only a few attributes are set on declarations; these may later be
540   // overridden by a definition.
541 
542   if (FD->hasAttr<DLLImportAttr>()) {
543     F->setLinkage(llvm::Function::DLLImportLinkage);
544   } else if (FD->hasAttr<WeakAttr>() ||
545              FD->isWeakImported()) {
546     // "extern_weak" is overloaded in LLVM; we probably should have
547     // separate linkage types for this.
548     F->setLinkage(llvm::Function::ExternalWeakLinkage);
549   } else {
550     F->setLinkage(llvm::Function::ExternalLinkage);
551 
552     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554       F->setVisibility(GetLLVMVisibility(LV.visibility()));
555     }
556   }
557 
558   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559     F->setSection(SA->getName());
560 }
561 
562 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563   assert(!GV->isDeclaration() &&
564          "Only globals with definition can force usage.");
565   LLVMUsed.push_back(GV);
566 }
567 
568 void CodeGenModule::EmitLLVMUsed() {
569   // Don't create llvm.used if there is no need.
570   if (LLVMUsed.empty())
571     return;
572 
573   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574 
575   // Convert LLVMUsed to what ConstantArray needs.
576   std::vector<llvm::Constant*> UsedArray;
577   UsedArray.resize(LLVMUsed.size());
578   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579     UsedArray[i] =
580      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581                                       i8PTy);
582   }
583 
584   if (UsedArray.empty())
585     return;
586   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587 
588   llvm::GlobalVariable *GV =
589     new llvm::GlobalVariable(getModule(), ATy, false,
590                              llvm::GlobalValue::AppendingLinkage,
591                              llvm::ConstantArray::get(ATy, UsedArray),
592                              "llvm.used");
593 
594   GV->setSection("llvm.metadata");
595 }
596 
597 void CodeGenModule::EmitDeferred() {
598   // Emit code for any potentially referenced deferred decls.  Since a
599   // previously unused static decl may become used during the generation of code
600   // for a static function, iterate until no changes are made.
601 
602   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603     if (!DeferredVTables.empty()) {
604       const CXXRecordDecl *RD = DeferredVTables.back();
605       DeferredVTables.pop_back();
606       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607       continue;
608     }
609 
610     GlobalDecl D = DeferredDeclsToEmit.back();
611     DeferredDeclsToEmit.pop_back();
612 
613     // Check to see if we've already emitted this.  This is necessary
614     // for a couple of reasons: first, decls can end up in the
615     // deferred-decls queue multiple times, and second, decls can end
616     // up with definitions in unusual ways (e.g. by an extern inline
617     // function acquiring a strong function redefinition).  Just
618     // ignore these cases.
619     //
620     // TODO: That said, looking this up multiple times is very wasteful.
621     llvm::StringRef Name = getMangledName(D);
622     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623     assert(CGRef && "Deferred decl wasn't referenced?");
624 
625     if (!CGRef->isDeclaration())
626       continue;
627 
628     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629     // purposes an alias counts as a definition.
630     if (isa<llvm::GlobalAlias>(CGRef))
631       continue;
632 
633     // Otherwise, emit the definition and move on to the next one.
634     EmitGlobalDefinition(D);
635   }
636 }
637 
638 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639 /// annotation information for a given GlobalValue.  The annotation struct is
640 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
641 /// GlobalValue being annotated.  The second field is the constant string
642 /// created from the AnnotateAttr's annotation.  The third field is a constant
643 /// string containing the name of the translation unit.  The fourth field is
644 /// the line number in the file of the annotated value declaration.
645 ///
646 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
647 ///        appears to.
648 ///
649 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650                                                 const AnnotateAttr *AA,
651                                                 unsigned LineNo) {
652   llvm::Module *M = &getModule();
653 
654   // get [N x i8] constants for the annotation string, and the filename string
655   // which are the 2nd and 3rd elements of the global annotation structure.
656   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658                                                   AA->getAnnotation(), true);
659   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660                                                   M->getModuleIdentifier(),
661                                                   true);
662 
663   // Get the two global values corresponding to the ConstantArrays we just
664   // created to hold the bytes of the strings.
665   llvm::GlobalValue *annoGV =
666     new llvm::GlobalVariable(*M, anno->getType(), false,
667                              llvm::GlobalValue::PrivateLinkage, anno,
668                              GV->getName());
669   // translation unit name string, emitted into the llvm.metadata section.
670   llvm::GlobalValue *unitGV =
671     new llvm::GlobalVariable(*M, unit->getType(), false,
672                              llvm::GlobalValue::PrivateLinkage, unit,
673                              ".str");
674   unitGV->setUnnamedAddr(true);
675 
676   // Create the ConstantStruct for the global annotation.
677   llvm::Constant *Fields[4] = {
678     llvm::ConstantExpr::getBitCast(GV, SBP),
679     llvm::ConstantExpr::getBitCast(annoGV, SBP),
680     llvm::ConstantExpr::getBitCast(unitGV, SBP),
681     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682   };
683   return llvm::ConstantStruct::getAnon(Fields);
684 }
685 
686 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687   // Never defer when EmitAllDecls is specified.
688   if (Features.EmitAllDecls)
689     return false;
690 
691   return !getContext().DeclMustBeEmitted(Global);
692 }
693 
694 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695   const AliasAttr *AA = VD->getAttr<AliasAttr>();
696   assert(AA && "No alias?");
697 
698   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699 
700   // See if there is already something with the target's name in the module.
701   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702 
703   llvm::Constant *Aliasee;
704   if (isa<llvm::FunctionType>(DeclTy))
705     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706                                       /*ForVTable=*/false);
707   else
708     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709                                     llvm::PointerType::getUnqual(DeclTy), 0);
710   if (!Entry) {
711     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712     F->setLinkage(llvm::Function::ExternalWeakLinkage);
713     WeakRefReferences.insert(F);
714   }
715 
716   return Aliasee;
717 }
718 
719 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721 
722   // Weak references don't produce any output by themselves.
723   if (Global->hasAttr<WeakRefAttr>())
724     return;
725 
726   // If this is an alias definition (which otherwise looks like a declaration)
727   // emit it now.
728   if (Global->hasAttr<AliasAttr>())
729     return EmitAliasDefinition(GD);
730 
731   // Ignore declarations, they will be emitted on their first use.
732   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733     if (FD->getIdentifier()) {
734       llvm::StringRef Name = FD->getName();
735       if (Name == "_Block_object_assign") {
736         BlockObjectAssignDecl = FD;
737       } else if (Name == "_Block_object_dispose") {
738         BlockObjectDisposeDecl = FD;
739       }
740     }
741 
742     // Forward declarations are emitted lazily on first use.
743     if (!FD->doesThisDeclarationHaveABody()) {
744       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
745         return;
746 
747       const FunctionDecl *InlineDefinition = 0;
748       FD->getBody(InlineDefinition);
749 
750       llvm::StringRef MangledName = getMangledName(GD);
751       llvm::StringMap<GlobalDecl>::iterator DDI =
752           DeferredDecls.find(MangledName);
753       if (DDI != DeferredDecls.end())
754         DeferredDecls.erase(DDI);
755       EmitGlobalDefinition(InlineDefinition);
756       return;
757     }
758   } else {
759     const VarDecl *VD = cast<VarDecl>(Global);
760     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
761 
762     if (VD->getIdentifier()) {
763       llvm::StringRef Name = VD->getName();
764       if (Name == "_NSConcreteGlobalBlock") {
765         NSConcreteGlobalBlockDecl = VD;
766       } else if (Name == "_NSConcreteStackBlock") {
767         NSConcreteStackBlockDecl = VD;
768       }
769     }
770 
771 
772     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
773       return;
774   }
775 
776   // Defer code generation when possible if this is a static definition, inline
777   // function etc.  These we only want to emit if they are used.
778   if (!MayDeferGeneration(Global)) {
779     // Emit the definition if it can't be deferred.
780     EmitGlobalDefinition(GD);
781     return;
782   }
783 
784   // If we're deferring emission of a C++ variable with an
785   // initializer, remember the order in which it appeared in the file.
786   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
787       cast<VarDecl>(Global)->hasInit()) {
788     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
789     CXXGlobalInits.push_back(0);
790   }
791 
792   // If the value has already been used, add it directly to the
793   // DeferredDeclsToEmit list.
794   llvm::StringRef MangledName = getMangledName(GD);
795   if (GetGlobalValue(MangledName))
796     DeferredDeclsToEmit.push_back(GD);
797   else {
798     // Otherwise, remember that we saw a deferred decl with this name.  The
799     // first use of the mangled name will cause it to move into
800     // DeferredDeclsToEmit.
801     DeferredDecls[MangledName] = GD;
802   }
803 }
804 
805 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
806   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
807 
808   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
809                                  Context.getSourceManager(),
810                                  "Generating code for declaration");
811 
812   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
813     // At -O0, don't generate IR for functions with available_externally
814     // linkage.
815     if (CodeGenOpts.OptimizationLevel == 0 &&
816         !Function->hasAttr<AlwaysInlineAttr>() &&
817         getFunctionLinkage(Function)
818                                   == llvm::Function::AvailableExternallyLinkage)
819       return;
820 
821     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
822       // Make sure to emit the definition(s) before we emit the thunks.
823       // This is necessary for the generation of certain thunks.
824       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
825         EmitCXXConstructor(CD, GD.getCtorType());
826       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
827         EmitCXXDestructor(DD, GD.getDtorType());
828       else
829         EmitGlobalFunctionDefinition(GD);
830 
831       if (Method->isVirtual())
832         getVTables().EmitThunks(GD);
833 
834       return;
835     }
836 
837     return EmitGlobalFunctionDefinition(GD);
838   }
839 
840   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
841     return EmitGlobalVarDefinition(VD);
842 
843   assert(0 && "Invalid argument to EmitGlobalDefinition()");
844 }
845 
846 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
847 /// module, create and return an llvm Function with the specified type. If there
848 /// is something in the module with the specified name, return it potentially
849 /// bitcasted to the right type.
850 ///
851 /// If D is non-null, it specifies a decl that correspond to this.  This is used
852 /// to set the attributes on the function when it is first created.
853 llvm::Constant *
854 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
855                                        const llvm::Type *Ty,
856                                        GlobalDecl D, bool ForVTable,
857                                        llvm::Attributes ExtraAttrs) {
858   // Lookup the entry, lazily creating it if necessary.
859   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
860   if (Entry) {
861     if (WeakRefReferences.count(Entry)) {
862       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
863       if (FD && !FD->hasAttr<WeakAttr>())
864         Entry->setLinkage(llvm::Function::ExternalLinkage);
865 
866       WeakRefReferences.erase(Entry);
867     }
868 
869     if (Entry->getType()->getElementType() == Ty)
870       return Entry;
871 
872     // Make sure the result is of the correct type.
873     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
874     return llvm::ConstantExpr::getBitCast(Entry, PTy);
875   }
876 
877   // This function doesn't have a complete type (for example, the return
878   // type is an incomplete struct). Use a fake type instead, and make
879   // sure not to try to set attributes.
880   bool IsIncompleteFunction = false;
881 
882   const llvm::FunctionType *FTy;
883   if (isa<llvm::FunctionType>(Ty)) {
884     FTy = cast<llvm::FunctionType>(Ty);
885   } else {
886     FTy = llvm::FunctionType::get(VoidTy, false);
887     IsIncompleteFunction = true;
888   }
889 
890   llvm::Function *F = llvm::Function::Create(FTy,
891                                              llvm::Function::ExternalLinkage,
892                                              MangledName, &getModule());
893   assert(F->getName() == MangledName && "name was uniqued!");
894   if (D.getDecl())
895     SetFunctionAttributes(D, F, IsIncompleteFunction);
896   if (ExtraAttrs != llvm::Attribute::None)
897     F->addFnAttr(ExtraAttrs);
898 
899   // This is the first use or definition of a mangled name.  If there is a
900   // deferred decl with this name, remember that we need to emit it at the end
901   // of the file.
902   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
903   if (DDI != DeferredDecls.end()) {
904     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
905     // list, and remove it from DeferredDecls (since we don't need it anymore).
906     DeferredDeclsToEmit.push_back(DDI->second);
907     DeferredDecls.erase(DDI);
908 
909   // Otherwise, there are cases we have to worry about where we're
910   // using a declaration for which we must emit a definition but where
911   // we might not find a top-level definition:
912   //   - member functions defined inline in their classes
913   //   - friend functions defined inline in some class
914   //   - special member functions with implicit definitions
915   // If we ever change our AST traversal to walk into class methods,
916   // this will be unnecessary.
917   //
918   // We also don't emit a definition for a function if it's going to be an entry
919   // in a vtable, unless it's already marked as used.
920   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
921     // Look for a declaration that's lexically in a record.
922     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
923     do {
924       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
925         if (FD->isImplicit() && !ForVTable) {
926           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
927           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
928           break;
929         } else if (FD->doesThisDeclarationHaveABody()) {
930           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
931           break;
932         }
933       }
934       FD = FD->getPreviousDeclaration();
935     } while (FD);
936   }
937 
938   // Make sure the result is of the requested type.
939   if (!IsIncompleteFunction) {
940     assert(F->getType()->getElementType() == Ty);
941     return F;
942   }
943 
944   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
945   return llvm::ConstantExpr::getBitCast(F, PTy);
946 }
947 
948 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
949 /// non-null, then this function will use the specified type if it has to
950 /// create it (this occurs when we see a definition of the function).
951 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
952                                                  const llvm::Type *Ty,
953                                                  bool ForVTable) {
954   // If there was no specific requested type, just convert it now.
955   if (!Ty)
956     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
957 
958   llvm::StringRef MangledName = getMangledName(GD);
959   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
960 }
961 
962 /// CreateRuntimeFunction - Create a new runtime function with the specified
963 /// type and name.
964 llvm::Constant *
965 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
966                                      llvm::StringRef Name,
967                                      llvm::Attributes ExtraAttrs) {
968   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
969                                  ExtraAttrs);
970 }
971 
972 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
973                                  bool ConstantInit) {
974   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
975     return false;
976 
977   if (Context.getLangOptions().CPlusPlus) {
978     if (const RecordType *Record
979           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
980       return ConstantInit &&
981              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
982              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
983   }
984 
985   return true;
986 }
987 
988 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
989 /// create and return an llvm GlobalVariable with the specified type.  If there
990 /// is something in the module with the specified name, return it potentially
991 /// bitcasted to the right type.
992 ///
993 /// If D is non-null, it specifies a decl that correspond to this.  This is used
994 /// to set the attributes on the global when it is first created.
995 llvm::Constant *
996 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
997                                      const llvm::PointerType *Ty,
998                                      const VarDecl *D,
999                                      bool UnnamedAddr) {
1000   // Lookup the entry, lazily creating it if necessary.
1001   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1002   if (Entry) {
1003     if (WeakRefReferences.count(Entry)) {
1004       if (D && !D->hasAttr<WeakAttr>())
1005         Entry->setLinkage(llvm::Function::ExternalLinkage);
1006 
1007       WeakRefReferences.erase(Entry);
1008     }
1009 
1010     if (UnnamedAddr)
1011       Entry->setUnnamedAddr(true);
1012 
1013     if (Entry->getType() == Ty)
1014       return Entry;
1015 
1016     // Make sure the result is of the correct type.
1017     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1018   }
1019 
1020   // This is the first use or definition of a mangled name.  If there is a
1021   // deferred decl with this name, remember that we need to emit it at the end
1022   // of the file.
1023   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1024   if (DDI != DeferredDecls.end()) {
1025     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1026     // list, and remove it from DeferredDecls (since we don't need it anymore).
1027     DeferredDeclsToEmit.push_back(DDI->second);
1028     DeferredDecls.erase(DDI);
1029   }
1030 
1031   llvm::GlobalVariable *GV =
1032     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1033                              llvm::GlobalValue::ExternalLinkage,
1034                              0, MangledName, 0,
1035                              false, Ty->getAddressSpace());
1036 
1037   // Handle things which are present even on external declarations.
1038   if (D) {
1039     // FIXME: This code is overly simple and should be merged with other global
1040     // handling.
1041     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1042 
1043     // Set linkage and visibility in case we never see a definition.
1044     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1045     if (LV.linkage() != ExternalLinkage) {
1046       // Don't set internal linkage on declarations.
1047     } else {
1048       if (D->hasAttr<DLLImportAttr>())
1049         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1050       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1051         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1052 
1053       // Set visibility on a declaration only if it's explicit.
1054       if (LV.visibilityExplicit())
1055         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1056     }
1057 
1058     GV->setThreadLocal(D->isThreadSpecified());
1059   }
1060 
1061   return GV;
1062 }
1063 
1064 
1065 llvm::GlobalVariable *
1066 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1067                                       const llvm::Type *Ty,
1068                                       llvm::GlobalValue::LinkageTypes Linkage) {
1069   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1070   llvm::GlobalVariable *OldGV = 0;
1071 
1072 
1073   if (GV) {
1074     // Check if the variable has the right type.
1075     if (GV->getType()->getElementType() == Ty)
1076       return GV;
1077 
1078     // Because C++ name mangling, the only way we can end up with an already
1079     // existing global with the same name is if it has been declared extern "C".
1080       assert(GV->isDeclaration() && "Declaration has wrong type!");
1081     OldGV = GV;
1082   }
1083 
1084   // Create a new variable.
1085   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1086                                 Linkage, 0, Name);
1087 
1088   if (OldGV) {
1089     // Replace occurrences of the old variable if needed.
1090     GV->takeName(OldGV);
1091 
1092     if (!OldGV->use_empty()) {
1093       llvm::Constant *NewPtrForOldDecl =
1094       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1095       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1096     }
1097 
1098     OldGV->eraseFromParent();
1099   }
1100 
1101   return GV;
1102 }
1103 
1104 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1105 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1106 /// then it will be greated with the specified type instead of whatever the
1107 /// normal requested type would be.
1108 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1109                                                   const llvm::Type *Ty) {
1110   assert(D->hasGlobalStorage() && "Not a global variable");
1111   QualType ASTTy = D->getType();
1112   if (Ty == 0)
1113     Ty = getTypes().ConvertTypeForMem(ASTTy);
1114 
1115   const llvm::PointerType *PTy =
1116     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1117 
1118   llvm::StringRef MangledName = getMangledName(D);
1119   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1120 }
1121 
1122 /// CreateRuntimeVariable - Create a new runtime global variable with the
1123 /// specified type and name.
1124 llvm::Constant *
1125 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1126                                      llvm::StringRef Name) {
1127   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1128                                true);
1129 }
1130 
1131 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1132   assert(!D->getInit() && "Cannot emit definite definitions here!");
1133 
1134   if (MayDeferGeneration(D)) {
1135     // If we have not seen a reference to this variable yet, place it
1136     // into the deferred declarations table to be emitted if needed
1137     // later.
1138     llvm::StringRef MangledName = getMangledName(D);
1139     if (!GetGlobalValue(MangledName)) {
1140       DeferredDecls[MangledName] = D;
1141       return;
1142     }
1143   }
1144 
1145   // The tentative definition is the only definition.
1146   EmitGlobalVarDefinition(D);
1147 }
1148 
1149 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1150   if (DefinitionRequired)
1151     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1152 }
1153 
1154 llvm::GlobalVariable::LinkageTypes
1155 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1156   if (RD->getLinkage() != ExternalLinkage)
1157     return llvm::GlobalVariable::InternalLinkage;
1158 
1159   if (const CXXMethodDecl *KeyFunction
1160                                     = RD->getASTContext().getKeyFunction(RD)) {
1161     // If this class has a key function, use that to determine the linkage of
1162     // the vtable.
1163     const FunctionDecl *Def = 0;
1164     if (KeyFunction->hasBody(Def))
1165       KeyFunction = cast<CXXMethodDecl>(Def);
1166 
1167     switch (KeyFunction->getTemplateSpecializationKind()) {
1168       case TSK_Undeclared:
1169       case TSK_ExplicitSpecialization:
1170         // When compiling with optimizations turned on, we emit all vtables,
1171         // even if the key function is not defined in the current translation
1172         // unit. If this is the case, use available_externally linkage.
1173         if (!Def && CodeGenOpts.OptimizationLevel)
1174           return llvm::GlobalVariable::AvailableExternallyLinkage;
1175 
1176         if (KeyFunction->isInlined())
1177           return !Context.getLangOptions().AppleKext ?
1178                    llvm::GlobalVariable::LinkOnceODRLinkage :
1179                    llvm::Function::InternalLinkage;
1180 
1181         return llvm::GlobalVariable::ExternalLinkage;
1182 
1183       case TSK_ImplicitInstantiation:
1184         return !Context.getLangOptions().AppleKext ?
1185                  llvm::GlobalVariable::LinkOnceODRLinkage :
1186                  llvm::Function::InternalLinkage;
1187 
1188       case TSK_ExplicitInstantiationDefinition:
1189         return !Context.getLangOptions().AppleKext ?
1190                  llvm::GlobalVariable::WeakODRLinkage :
1191                  llvm::Function::InternalLinkage;
1192 
1193       case TSK_ExplicitInstantiationDeclaration:
1194         // FIXME: Use available_externally linkage. However, this currently
1195         // breaks LLVM's build due to undefined symbols.
1196         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1197         return !Context.getLangOptions().AppleKext ?
1198                  llvm::GlobalVariable::LinkOnceODRLinkage :
1199                  llvm::Function::InternalLinkage;
1200     }
1201   }
1202 
1203   if (Context.getLangOptions().AppleKext)
1204     return llvm::Function::InternalLinkage;
1205 
1206   switch (RD->getTemplateSpecializationKind()) {
1207   case TSK_Undeclared:
1208   case TSK_ExplicitSpecialization:
1209   case TSK_ImplicitInstantiation:
1210     // FIXME: Use available_externally linkage. However, this currently
1211     // breaks LLVM's build due to undefined symbols.
1212     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1213   case TSK_ExplicitInstantiationDeclaration:
1214     return llvm::GlobalVariable::LinkOnceODRLinkage;
1215 
1216   case TSK_ExplicitInstantiationDefinition:
1217       return llvm::GlobalVariable::WeakODRLinkage;
1218   }
1219 
1220   // Silence GCC warning.
1221   return llvm::GlobalVariable::LinkOnceODRLinkage;
1222 }
1223 
1224 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1225     return Context.toCharUnitsFromBits(
1226       TheTargetData.getTypeStoreSizeInBits(Ty));
1227 }
1228 
1229 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1230   llvm::Constant *Init = 0;
1231   QualType ASTTy = D->getType();
1232   bool NonConstInit = false;
1233 
1234   const Expr *InitExpr = D->getAnyInitializer();
1235 
1236   if (!InitExpr) {
1237     // This is a tentative definition; tentative definitions are
1238     // implicitly initialized with { 0 }.
1239     //
1240     // Note that tentative definitions are only emitted at the end of
1241     // a translation unit, so they should never have incomplete
1242     // type. In addition, EmitTentativeDefinition makes sure that we
1243     // never attempt to emit a tentative definition if a real one
1244     // exists. A use may still exists, however, so we still may need
1245     // to do a RAUW.
1246     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1247     Init = EmitNullConstant(D->getType());
1248   } else {
1249     Init = EmitConstantExpr(InitExpr, D->getType());
1250     if (!Init) {
1251       QualType T = InitExpr->getType();
1252       if (D->getType()->isReferenceType())
1253         T = D->getType();
1254 
1255       if (getLangOptions().CPlusPlus) {
1256         Init = EmitNullConstant(T);
1257         NonConstInit = true;
1258       } else {
1259         ErrorUnsupported(D, "static initializer");
1260         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1261       }
1262     } else {
1263       // We don't need an initializer, so remove the entry for the delayed
1264       // initializer position (just in case this entry was delayed).
1265       if (getLangOptions().CPlusPlus)
1266         DelayedCXXInitPosition.erase(D);
1267     }
1268   }
1269 
1270   const llvm::Type* InitType = Init->getType();
1271   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1272 
1273   // Strip off a bitcast if we got one back.
1274   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1275     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1276            // all zero index gep.
1277            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1278     Entry = CE->getOperand(0);
1279   }
1280 
1281   // Entry is now either a Function or GlobalVariable.
1282   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1283 
1284   // We have a definition after a declaration with the wrong type.
1285   // We must make a new GlobalVariable* and update everything that used OldGV
1286   // (a declaration or tentative definition) with the new GlobalVariable*
1287   // (which will be a definition).
1288   //
1289   // This happens if there is a prototype for a global (e.g.
1290   // "extern int x[];") and then a definition of a different type (e.g.
1291   // "int x[10];"). This also happens when an initializer has a different type
1292   // from the type of the global (this happens with unions).
1293   if (GV == 0 ||
1294       GV->getType()->getElementType() != InitType ||
1295       GV->getType()->getAddressSpace() !=
1296         getContext().getTargetAddressSpace(ASTTy)) {
1297 
1298     // Move the old entry aside so that we'll create a new one.
1299     Entry->setName(llvm::StringRef());
1300 
1301     // Make a new global with the correct type, this is now guaranteed to work.
1302     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1303 
1304     // Replace all uses of the old global with the new global
1305     llvm::Constant *NewPtrForOldDecl =
1306         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1307     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1308 
1309     // Erase the old global, since it is no longer used.
1310     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1311   }
1312 
1313   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1314     SourceManager &SM = Context.getSourceManager();
1315     AddAnnotation(EmitAnnotateAttr(GV, AA,
1316                               SM.getInstantiationLineNumber(D->getLocation())));
1317   }
1318 
1319   GV->setInitializer(Init);
1320 
1321   // If it is safe to mark the global 'constant', do so now.
1322   GV->setConstant(false);
1323   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1324     GV->setConstant(true);
1325 
1326   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1327 
1328   // Set the llvm linkage type as appropriate.
1329   llvm::GlobalValue::LinkageTypes Linkage =
1330     GetLLVMLinkageVarDefinition(D, GV);
1331   GV->setLinkage(Linkage);
1332   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1333     // common vars aren't constant even if declared const.
1334     GV->setConstant(false);
1335 
1336   SetCommonAttributes(D, GV);
1337 
1338   // Emit the initializer function if necessary.
1339   if (NonConstInit)
1340     EmitCXXGlobalVarDeclInitFunc(D, GV);
1341 
1342   // Emit global variable debug information.
1343   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1344     DI->setLocation(D->getLocation());
1345     DI->EmitGlobalVariable(GV, D);
1346   }
1347 }
1348 
1349 llvm::GlobalValue::LinkageTypes
1350 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1351                                            llvm::GlobalVariable *GV) {
1352   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1353   if (Linkage == GVA_Internal)
1354     return llvm::Function::InternalLinkage;
1355   else if (D->hasAttr<DLLImportAttr>())
1356     return llvm::Function::DLLImportLinkage;
1357   else if (D->hasAttr<DLLExportAttr>())
1358     return llvm::Function::DLLExportLinkage;
1359   else if (D->hasAttr<WeakAttr>()) {
1360     if (GV->isConstant())
1361       return llvm::GlobalVariable::WeakODRLinkage;
1362     else
1363       return llvm::GlobalVariable::WeakAnyLinkage;
1364   } else if (Linkage == GVA_TemplateInstantiation ||
1365              Linkage == GVA_ExplicitTemplateInstantiation)
1366     return llvm::GlobalVariable::WeakODRLinkage;
1367   else if (!getLangOptions().CPlusPlus &&
1368            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1369              D->getAttr<CommonAttr>()) &&
1370            !D->hasExternalStorage() && !D->getInit() &&
1371            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1372            !D->getAttr<WeakImportAttr>()) {
1373     // Thread local vars aren't considered common linkage.
1374     return llvm::GlobalVariable::CommonLinkage;
1375   }
1376   return llvm::GlobalVariable::ExternalLinkage;
1377 }
1378 
1379 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1380 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1381 /// existing call uses of the old function in the module, this adjusts them to
1382 /// call the new function directly.
1383 ///
1384 /// This is not just a cleanup: the always_inline pass requires direct calls to
1385 /// functions to be able to inline them.  If there is a bitcast in the way, it
1386 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1387 /// run at -O0.
1388 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1389                                                       llvm::Function *NewFn) {
1390   // If we're redefining a global as a function, don't transform it.
1391   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1392   if (OldFn == 0) return;
1393 
1394   const llvm::Type *NewRetTy = NewFn->getReturnType();
1395   llvm::SmallVector<llvm::Value*, 4> ArgList;
1396 
1397   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1398        UI != E; ) {
1399     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1400     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1401     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1402     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1403     llvm::CallSite CS(CI);
1404     if (!CI || !CS.isCallee(I)) continue;
1405 
1406     // If the return types don't match exactly, and if the call isn't dead, then
1407     // we can't transform this call.
1408     if (CI->getType() != NewRetTy && !CI->use_empty())
1409       continue;
1410 
1411     // If the function was passed too few arguments, don't transform.  If extra
1412     // arguments were passed, we silently drop them.  If any of the types
1413     // mismatch, we don't transform.
1414     unsigned ArgNo = 0;
1415     bool DontTransform = false;
1416     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1417          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1418       if (CS.arg_size() == ArgNo ||
1419           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1420         DontTransform = true;
1421         break;
1422       }
1423     }
1424     if (DontTransform)
1425       continue;
1426 
1427     // Okay, we can transform this.  Create the new call instruction and copy
1428     // over the required information.
1429     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1430     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1431                                                      ArgList.end(), "", CI);
1432     ArgList.clear();
1433     if (!NewCall->getType()->isVoidTy())
1434       NewCall->takeName(CI);
1435     NewCall->setAttributes(CI->getAttributes());
1436     NewCall->setCallingConv(CI->getCallingConv());
1437 
1438     // Finally, remove the old call, replacing any uses with the new one.
1439     if (!CI->use_empty())
1440       CI->replaceAllUsesWith(NewCall);
1441 
1442     // Copy debug location attached to CI.
1443     if (!CI->getDebugLoc().isUnknown())
1444       NewCall->setDebugLoc(CI->getDebugLoc());
1445     CI->eraseFromParent();
1446   }
1447 }
1448 
1449 
1450 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1451   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1452 
1453   // Compute the function info and LLVM type.
1454   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1455   bool variadic = false;
1456   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1457     variadic = fpt->isVariadic();
1458   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1459 
1460   // Get or create the prototype for the function.
1461   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1462 
1463   // Strip off a bitcast if we got one back.
1464   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1465     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1466     Entry = CE->getOperand(0);
1467   }
1468 
1469 
1470   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1471     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1472 
1473     // If the types mismatch then we have to rewrite the definition.
1474     assert(OldFn->isDeclaration() &&
1475            "Shouldn't replace non-declaration");
1476 
1477     // F is the Function* for the one with the wrong type, we must make a new
1478     // Function* and update everything that used F (a declaration) with the new
1479     // Function* (which will be a definition).
1480     //
1481     // This happens if there is a prototype for a function
1482     // (e.g. "int f()") and then a definition of a different type
1483     // (e.g. "int f(int x)").  Move the old function aside so that it
1484     // doesn't interfere with GetAddrOfFunction.
1485     OldFn->setName(llvm::StringRef());
1486     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1487 
1488     // If this is an implementation of a function without a prototype, try to
1489     // replace any existing uses of the function (which may be calls) with uses
1490     // of the new function
1491     if (D->getType()->isFunctionNoProtoType()) {
1492       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1493       OldFn->removeDeadConstantUsers();
1494     }
1495 
1496     // Replace uses of F with the Function we will endow with a body.
1497     if (!Entry->use_empty()) {
1498       llvm::Constant *NewPtrForOldDecl =
1499         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1500       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1501     }
1502 
1503     // Ok, delete the old function now, which is dead.
1504     OldFn->eraseFromParent();
1505 
1506     Entry = NewFn;
1507   }
1508 
1509   // We need to set linkage and visibility on the function before
1510   // generating code for it because various parts of IR generation
1511   // want to propagate this information down (e.g. to local static
1512   // declarations).
1513   llvm::Function *Fn = cast<llvm::Function>(Entry);
1514   setFunctionLinkage(D, Fn);
1515 
1516   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1517   setGlobalVisibility(Fn, D);
1518 
1519   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1520 
1521   SetFunctionDefinitionAttributes(D, Fn);
1522   SetLLVMFunctionAttributesForDefinition(D, Fn);
1523 
1524   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1525     AddGlobalCtor(Fn, CA->getPriority());
1526   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1527     AddGlobalDtor(Fn, DA->getPriority());
1528 }
1529 
1530 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1531   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1532   const AliasAttr *AA = D->getAttr<AliasAttr>();
1533   assert(AA && "Not an alias?");
1534 
1535   llvm::StringRef MangledName = getMangledName(GD);
1536 
1537   // If there is a definition in the module, then it wins over the alias.
1538   // This is dubious, but allow it to be safe.  Just ignore the alias.
1539   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1540   if (Entry && !Entry->isDeclaration())
1541     return;
1542 
1543   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1544 
1545   // Create a reference to the named value.  This ensures that it is emitted
1546   // if a deferred decl.
1547   llvm::Constant *Aliasee;
1548   if (isa<llvm::FunctionType>(DeclTy))
1549     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1550                                       /*ForVTable=*/false);
1551   else
1552     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1553                                     llvm::PointerType::getUnqual(DeclTy), 0);
1554 
1555   // Create the new alias itself, but don't set a name yet.
1556   llvm::GlobalValue *GA =
1557     new llvm::GlobalAlias(Aliasee->getType(),
1558                           llvm::Function::ExternalLinkage,
1559                           "", Aliasee, &getModule());
1560 
1561   if (Entry) {
1562     assert(Entry->isDeclaration());
1563 
1564     // If there is a declaration in the module, then we had an extern followed
1565     // by the alias, as in:
1566     //   extern int test6();
1567     //   ...
1568     //   int test6() __attribute__((alias("test7")));
1569     //
1570     // Remove it and replace uses of it with the alias.
1571     GA->takeName(Entry);
1572 
1573     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1574                                                           Entry->getType()));
1575     Entry->eraseFromParent();
1576   } else {
1577     GA->setName(MangledName);
1578   }
1579 
1580   // Set attributes which are particular to an alias; this is a
1581   // specialization of the attributes which may be set on a global
1582   // variable/function.
1583   if (D->hasAttr<DLLExportAttr>()) {
1584     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1585       // The dllexport attribute is ignored for undefined symbols.
1586       if (FD->hasBody())
1587         GA->setLinkage(llvm::Function::DLLExportLinkage);
1588     } else {
1589       GA->setLinkage(llvm::Function::DLLExportLinkage);
1590     }
1591   } else if (D->hasAttr<WeakAttr>() ||
1592              D->hasAttr<WeakRefAttr>() ||
1593              D->isWeakImported()) {
1594     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1595   }
1596 
1597   SetCommonAttributes(D, GA);
1598 }
1599 
1600 /// getBuiltinLibFunction - Given a builtin id for a function like
1601 /// "__builtin_fabsf", return a Function* for "fabsf".
1602 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1603                                                   unsigned BuiltinID) {
1604   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1605           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1606          "isn't a lib fn");
1607 
1608   // Get the name, skip over the __builtin_ prefix (if necessary).
1609   llvm::StringRef Name;
1610   GlobalDecl D(FD);
1611 
1612   // If the builtin has been declared explicitly with an assembler label,
1613   // use the mangled name. This differs from the plain label on platforms
1614   // that prefix labels.
1615   if (FD->hasAttr<AsmLabelAttr>())
1616     Name = getMangledName(D);
1617   else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1618     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1619   else
1620     Name = Context.BuiltinInfo.GetName(BuiltinID);
1621 
1622 
1623   const llvm::FunctionType *Ty =
1624     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1625 
1626   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1627 }
1628 
1629 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1630                                             unsigned NumTys) {
1631   return llvm::Intrinsic::getDeclaration(&getModule(),
1632                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1633 }
1634 
1635 static llvm::StringMapEntry<llvm::Constant*> &
1636 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1637                          const StringLiteral *Literal,
1638                          bool TargetIsLSB,
1639                          bool &IsUTF16,
1640                          unsigned &StringLength) {
1641   llvm::StringRef String = Literal->getString();
1642   unsigned NumBytes = String.size();
1643 
1644   // Check for simple case.
1645   if (!Literal->containsNonAsciiOrNull()) {
1646     StringLength = NumBytes;
1647     return Map.GetOrCreateValue(String);
1648   }
1649 
1650   // Otherwise, convert the UTF8 literals into a byte string.
1651   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1652   const UTF8 *FromPtr = (UTF8 *)String.data();
1653   UTF16 *ToPtr = &ToBuf[0];
1654 
1655   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1656                            &ToPtr, ToPtr + NumBytes,
1657                            strictConversion);
1658 
1659   // ConvertUTF8toUTF16 returns the length in ToPtr.
1660   StringLength = ToPtr - &ToBuf[0];
1661 
1662   // Render the UTF-16 string into a byte array and convert to the target byte
1663   // order.
1664   //
1665   // FIXME: This isn't something we should need to do here.
1666   llvm::SmallString<128> AsBytes;
1667   AsBytes.reserve(StringLength * 2);
1668   for (unsigned i = 0; i != StringLength; ++i) {
1669     unsigned short Val = ToBuf[i];
1670     if (TargetIsLSB) {
1671       AsBytes.push_back(Val & 0xFF);
1672       AsBytes.push_back(Val >> 8);
1673     } else {
1674       AsBytes.push_back(Val >> 8);
1675       AsBytes.push_back(Val & 0xFF);
1676     }
1677   }
1678   // Append one extra null character, the second is automatically added by our
1679   // caller.
1680   AsBytes.push_back(0);
1681 
1682   IsUTF16 = true;
1683   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1684 }
1685 
1686 static llvm::StringMapEntry<llvm::Constant*> &
1687 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1688 		       const StringLiteral *Literal,
1689 		       unsigned &StringLength)
1690 {
1691 	llvm::StringRef String = Literal->getString();
1692 	StringLength = String.size();
1693 	return Map.GetOrCreateValue(String);
1694 }
1695 
1696 llvm::Constant *
1697 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1698   unsigned StringLength = 0;
1699   bool isUTF16 = false;
1700   llvm::StringMapEntry<llvm::Constant*> &Entry =
1701     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1702                              getTargetData().isLittleEndian(),
1703                              isUTF16, StringLength);
1704 
1705   if (llvm::Constant *C = Entry.getValue())
1706     return C;
1707 
1708   llvm::Constant *Zero =
1709       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1710   llvm::Constant *Zeros[] = { Zero, Zero };
1711 
1712   // If we don't already have it, get __CFConstantStringClassReference.
1713   if (!CFConstantStringClassRef) {
1714     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1715     Ty = llvm::ArrayType::get(Ty, 0);
1716     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1717                                            "__CFConstantStringClassReference");
1718     // Decay array -> ptr
1719     CFConstantStringClassRef =
1720       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1721   }
1722 
1723   QualType CFTy = getContext().getCFConstantStringType();
1724 
1725   const llvm::StructType *STy =
1726     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1727 
1728   std::vector<llvm::Constant*> Fields(4);
1729 
1730   // Class pointer.
1731   Fields[0] = CFConstantStringClassRef;
1732 
1733   // Flags.
1734   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1735   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1736     llvm::ConstantInt::get(Ty, 0x07C8);
1737 
1738   // String pointer.
1739   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1740 
1741   llvm::GlobalValue::LinkageTypes Linkage;
1742   bool isConstant;
1743   if (isUTF16) {
1744     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1745     Linkage = llvm::GlobalValue::InternalLinkage;
1746     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1747     // does make plain ascii ones writable.
1748     isConstant = true;
1749   } else {
1750     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1751     // when using private linkage. It is not clear if this is a bug in ld
1752     // or a reasonable new restriction.
1753     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1754     isConstant = !Features.WritableStrings;
1755   }
1756 
1757   llvm::GlobalVariable *GV =
1758     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1759                              ".str");
1760   GV->setUnnamedAddr(true);
1761   if (isUTF16) {
1762     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1763     GV->setAlignment(Align.getQuantity());
1764   } else {
1765     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1766     GV->setAlignment(Align.getQuantity());
1767   }
1768   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1769 
1770   // String length.
1771   Ty = getTypes().ConvertType(getContext().LongTy);
1772   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1773 
1774   // The struct.
1775   C = llvm::ConstantStruct::get(STy, Fields);
1776   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1777                                 llvm::GlobalVariable::PrivateLinkage, C,
1778                                 "_unnamed_cfstring_");
1779   if (const char *Sect = getContext().Target.getCFStringSection())
1780     GV->setSection(Sect);
1781   Entry.setValue(GV);
1782 
1783   return GV;
1784 }
1785 
1786 llvm::Constant *
1787 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1788   unsigned StringLength = 0;
1789   llvm::StringMapEntry<llvm::Constant*> &Entry =
1790     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1791 
1792   if (llvm::Constant *C = Entry.getValue())
1793     return C;
1794 
1795   llvm::Constant *Zero =
1796   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1797   llvm::Constant *Zeros[] = { Zero, Zero };
1798 
1799   // If we don't already have it, get _NSConstantStringClassReference.
1800   if (!ConstantStringClassRef) {
1801     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1802     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1803     llvm::Constant *GV;
1804     if (Features.ObjCNonFragileABI) {
1805       std::string str =
1806         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1807                             : "OBJC_CLASS_$_" + StringClass;
1808       GV = getObjCRuntime().GetClassGlobal(str);
1809       // Make sure the result is of the correct type.
1810       const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1811       ConstantStringClassRef =
1812         llvm::ConstantExpr::getBitCast(GV, PTy);
1813     } else {
1814       std::string str =
1815         StringClass.empty() ? "_NSConstantStringClassReference"
1816                             : "_" + StringClass + "ClassReference";
1817       const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1818       GV = CreateRuntimeVariable(PTy, str);
1819       // Decay array -> ptr
1820       ConstantStringClassRef =
1821         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1822     }
1823   }
1824 
1825   QualType NSTy = getContext().getNSConstantStringType();
1826 
1827   const llvm::StructType *STy =
1828   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1829 
1830   std::vector<llvm::Constant*> Fields(3);
1831 
1832   // Class pointer.
1833   Fields[0] = ConstantStringClassRef;
1834 
1835   // String pointer.
1836   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1837 
1838   llvm::GlobalValue::LinkageTypes Linkage;
1839   bool isConstant;
1840   Linkage = llvm::GlobalValue::PrivateLinkage;
1841   isConstant = !Features.WritableStrings;
1842 
1843   llvm::GlobalVariable *GV =
1844   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1845                            ".str");
1846   GV->setUnnamedAddr(true);
1847   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1848   GV->setAlignment(Align.getQuantity());
1849   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1850 
1851   // String length.
1852   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1853   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1854 
1855   // The struct.
1856   C = llvm::ConstantStruct::get(STy, Fields);
1857   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1858                                 llvm::GlobalVariable::PrivateLinkage, C,
1859                                 "_unnamed_nsstring_");
1860   // FIXME. Fix section.
1861   if (const char *Sect =
1862         Features.ObjCNonFragileABI
1863           ? getContext().Target.getNSStringNonFragileABISection()
1864           : getContext().Target.getNSStringSection())
1865     GV->setSection(Sect);
1866   Entry.setValue(GV);
1867 
1868   return GV;
1869 }
1870 
1871 /// GetStringForStringLiteral - Return the appropriate bytes for a
1872 /// string literal, properly padded to match the literal type.
1873 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1874   const ASTContext &Context = getContext();
1875   const ConstantArrayType *CAT =
1876     Context.getAsConstantArrayType(E->getType());
1877   assert(CAT && "String isn't pointer or array!");
1878 
1879   // Resize the string to the right size.
1880   uint64_t RealLen = CAT->getSize().getZExtValue();
1881 
1882   if (E->isWide())
1883     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1884 
1885   std::string Str = E->getString().str();
1886   Str.resize(RealLen, '\0');
1887 
1888   return Str;
1889 }
1890 
1891 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1892 /// constant array for the given string literal.
1893 llvm::Constant *
1894 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1895   // FIXME: This can be more efficient.
1896   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1897   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1898   if (S->isWide()) {
1899     llvm::Type *DestTy =
1900         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1901     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1902   }
1903   return C;
1904 }
1905 
1906 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1907 /// array for the given ObjCEncodeExpr node.
1908 llvm::Constant *
1909 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1910   std::string Str;
1911   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1912 
1913   return GetAddrOfConstantCString(Str);
1914 }
1915 
1916 
1917 /// GenerateWritableString -- Creates storage for a string literal.
1918 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1919                                              bool constant,
1920                                              CodeGenModule &CGM,
1921                                              const char *GlobalName) {
1922   // Create Constant for this string literal. Don't add a '\0'.
1923   llvm::Constant *C =
1924       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1925 
1926   // Create a global variable for this string
1927   llvm::GlobalVariable *GV =
1928     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1929                              llvm::GlobalValue::PrivateLinkage,
1930                              C, GlobalName);
1931   GV->setAlignment(1);
1932   GV->setUnnamedAddr(true);
1933   return GV;
1934 }
1935 
1936 /// GetAddrOfConstantString - Returns a pointer to a character array
1937 /// containing the literal. This contents are exactly that of the
1938 /// given string, i.e. it will not be null terminated automatically;
1939 /// see GetAddrOfConstantCString. Note that whether the result is
1940 /// actually a pointer to an LLVM constant depends on
1941 /// Feature.WriteableStrings.
1942 ///
1943 /// The result has pointer to array type.
1944 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1945                                                        const char *GlobalName) {
1946   bool IsConstant = !Features.WritableStrings;
1947 
1948   // Get the default prefix if a name wasn't specified.
1949   if (!GlobalName)
1950     GlobalName = ".str";
1951 
1952   // Don't share any string literals if strings aren't constant.
1953   if (!IsConstant)
1954     return GenerateStringLiteral(Str, false, *this, GlobalName);
1955 
1956   llvm::StringMapEntry<llvm::Constant *> &Entry =
1957     ConstantStringMap.GetOrCreateValue(Str);
1958 
1959   if (Entry.getValue())
1960     return Entry.getValue();
1961 
1962   // Create a global variable for this.
1963   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1964   Entry.setValue(C);
1965   return C;
1966 }
1967 
1968 /// GetAddrOfConstantCString - Returns a pointer to a character
1969 /// array containing the literal and a terminating '\0'
1970 /// character. The result has pointer to array type.
1971 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1972                                                         const char *GlobalName){
1973   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1974   return GetAddrOfConstantString(StrWithNull, GlobalName);
1975 }
1976 
1977 /// EmitObjCPropertyImplementations - Emit information for synthesized
1978 /// properties for an implementation.
1979 void CodeGenModule::EmitObjCPropertyImplementations(const
1980                                                     ObjCImplementationDecl *D) {
1981   for (ObjCImplementationDecl::propimpl_iterator
1982          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1983     ObjCPropertyImplDecl *PID = *i;
1984 
1985     // Dynamic is just for type-checking.
1986     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1987       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1988 
1989       // Determine which methods need to be implemented, some may have
1990       // been overridden. Note that ::isSynthesized is not the method
1991       // we want, that just indicates if the decl came from a
1992       // property. What we want to know is if the method is defined in
1993       // this implementation.
1994       if (!D->getInstanceMethod(PD->getGetterName()))
1995         CodeGenFunction(*this).GenerateObjCGetter(
1996                                  const_cast<ObjCImplementationDecl *>(D), PID);
1997       if (!PD->isReadOnly() &&
1998           !D->getInstanceMethod(PD->getSetterName()))
1999         CodeGenFunction(*this).GenerateObjCSetter(
2000                                  const_cast<ObjCImplementationDecl *>(D), PID);
2001     }
2002   }
2003 }
2004 
2005 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2006   ObjCInterfaceDecl *iface
2007     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
2008   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2009        ivar; ivar = ivar->getNextIvar())
2010     if (ivar->getType().isDestructedType())
2011       return true;
2012 
2013   return false;
2014 }
2015 
2016 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2017 /// for an implementation.
2018 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2019   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2020   if (needsDestructMethod(D)) {
2021     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2022     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2023     ObjCMethodDecl *DTORMethod =
2024       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2025                              cxxSelector, getContext().VoidTy, 0, D, true,
2026                              false, true, false, ObjCMethodDecl::Required);
2027     D->addInstanceMethod(DTORMethod);
2028     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2029     D->setHasCXXStructors(true);
2030   }
2031 
2032   // If the implementation doesn't have any ivar initializers, we don't need
2033   // a .cxx_construct.
2034   if (D->getNumIvarInitializers() == 0)
2035     return;
2036 
2037   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2038   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2039   // The constructor returns 'self'.
2040   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2041                                                 D->getLocation(),
2042                                                 D->getLocation(), cxxSelector,
2043                                                 getContext().getObjCIdType(), 0,
2044                                                 D, true, false, true, false,
2045                                                 ObjCMethodDecl::Required);
2046   D->addInstanceMethod(CTORMethod);
2047   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2048   D->setHasCXXStructors(true);
2049 }
2050 
2051 /// EmitNamespace - Emit all declarations in a namespace.
2052 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2053   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2054        I != E; ++I)
2055     EmitTopLevelDecl(*I);
2056 }
2057 
2058 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2059 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2060   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2061       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2062     ErrorUnsupported(LSD, "linkage spec");
2063     return;
2064   }
2065 
2066   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2067        I != E; ++I)
2068     EmitTopLevelDecl(*I);
2069 }
2070 
2071 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2072 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2073   // If an error has occurred, stop code generation, but continue
2074   // parsing and semantic analysis (to ensure all warnings and errors
2075   // are emitted).
2076   if (Diags.hasErrorOccurred())
2077     return;
2078 
2079   // Ignore dependent declarations.
2080   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2081     return;
2082 
2083   switch (D->getKind()) {
2084   case Decl::CXXConversion:
2085   case Decl::CXXMethod:
2086   case Decl::Function:
2087     // Skip function templates
2088     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2089         cast<FunctionDecl>(D)->isLateTemplateParsed())
2090       return;
2091 
2092     EmitGlobal(cast<FunctionDecl>(D));
2093     break;
2094 
2095   case Decl::Var:
2096     EmitGlobal(cast<VarDecl>(D));
2097     break;
2098 
2099   // Indirect fields from global anonymous structs and unions can be
2100   // ignored; only the actual variable requires IR gen support.
2101   case Decl::IndirectField:
2102     break;
2103 
2104   // C++ Decls
2105   case Decl::Namespace:
2106     EmitNamespace(cast<NamespaceDecl>(D));
2107     break;
2108     // No code generation needed.
2109   case Decl::UsingShadow:
2110   case Decl::Using:
2111   case Decl::UsingDirective:
2112   case Decl::ClassTemplate:
2113   case Decl::FunctionTemplate:
2114   case Decl::TypeAliasTemplate:
2115   case Decl::NamespaceAlias:
2116   case Decl::Block:
2117     break;
2118   case Decl::CXXConstructor:
2119     // Skip function templates
2120     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2121         cast<FunctionDecl>(D)->isLateTemplateParsed())
2122       return;
2123 
2124     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2125     break;
2126   case Decl::CXXDestructor:
2127     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2128       return;
2129     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2130     break;
2131 
2132   case Decl::StaticAssert:
2133     // Nothing to do.
2134     break;
2135 
2136   // Objective-C Decls
2137 
2138   // Forward declarations, no (immediate) code generation.
2139   case Decl::ObjCClass:
2140   case Decl::ObjCForwardProtocol:
2141   case Decl::ObjCInterface:
2142     break;
2143 
2144   case Decl::ObjCCategory: {
2145     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2146     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2147       Context.ResetObjCLayout(CD->getClassInterface());
2148     break;
2149   }
2150 
2151   case Decl::ObjCProtocol:
2152     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2153     break;
2154 
2155   case Decl::ObjCCategoryImpl:
2156     // Categories have properties but don't support synthesize so we
2157     // can ignore them here.
2158     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2159     break;
2160 
2161   case Decl::ObjCImplementation: {
2162     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2163     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2164       Context.ResetObjCLayout(OMD->getClassInterface());
2165     EmitObjCPropertyImplementations(OMD);
2166     EmitObjCIvarInitializations(OMD);
2167     Runtime->GenerateClass(OMD);
2168     break;
2169   }
2170   case Decl::ObjCMethod: {
2171     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2172     // If this is not a prototype, emit the body.
2173     if (OMD->getBody())
2174       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2175     break;
2176   }
2177   case Decl::ObjCCompatibleAlias:
2178     // compatibility-alias is a directive and has no code gen.
2179     break;
2180 
2181   case Decl::LinkageSpec:
2182     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2183     break;
2184 
2185   case Decl::FileScopeAsm: {
2186     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2187     llvm::StringRef AsmString = AD->getAsmString()->getString();
2188 
2189     const std::string &S = getModule().getModuleInlineAsm();
2190     if (S.empty())
2191       getModule().setModuleInlineAsm(AsmString);
2192     else
2193       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2194     break;
2195   }
2196 
2197   default:
2198     // Make sure we handled everything we should, every other kind is a
2199     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2200     // function. Need to recode Decl::Kind to do that easily.
2201     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2202   }
2203 }
2204 
2205 /// Turns the given pointer into a constant.
2206 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2207                                           const void *Ptr) {
2208   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2209   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2210   return llvm::ConstantInt::get(i64, PtrInt);
2211 }
2212 
2213 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2214                                    llvm::NamedMDNode *&GlobalMetadata,
2215                                    GlobalDecl D,
2216                                    llvm::GlobalValue *Addr) {
2217   if (!GlobalMetadata)
2218     GlobalMetadata =
2219       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2220 
2221   // TODO: should we report variant information for ctors/dtors?
2222   llvm::Value *Ops[] = {
2223     Addr,
2224     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2225   };
2226   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2227 }
2228 
2229 /// Emits metadata nodes associating all the global values in the
2230 /// current module with the Decls they came from.  This is useful for
2231 /// projects using IR gen as a subroutine.
2232 ///
2233 /// Since there's currently no way to associate an MDNode directly
2234 /// with an llvm::GlobalValue, we create a global named metadata
2235 /// with the name 'clang.global.decl.ptrs'.
2236 void CodeGenModule::EmitDeclMetadata() {
2237   llvm::NamedMDNode *GlobalMetadata = 0;
2238 
2239   // StaticLocalDeclMap
2240   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2241          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2242        I != E; ++I) {
2243     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2244     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2245   }
2246 }
2247 
2248 /// Emits metadata nodes for all the local variables in the current
2249 /// function.
2250 void CodeGenFunction::EmitDeclMetadata() {
2251   if (LocalDeclMap.empty()) return;
2252 
2253   llvm::LLVMContext &Context = getLLVMContext();
2254 
2255   // Find the unique metadata ID for this name.
2256   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2257 
2258   llvm::NamedMDNode *GlobalMetadata = 0;
2259 
2260   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2261          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2262     const Decl *D = I->first;
2263     llvm::Value *Addr = I->second;
2264 
2265     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2266       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2267       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2268     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2269       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2270       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2271     }
2272   }
2273 }
2274 
2275 void CodeGenModule::EmitCoverageFile() {
2276   if (!getCodeGenOpts().CoverageFile.empty()) {
2277     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2278       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2279       llvm::LLVMContext &Ctx = TheModule.getContext();
2280       llvm::MDString *CoverageFile =
2281           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2282       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2283         llvm::MDNode *CU = CUNode->getOperand(i);
2284         llvm::Value *node[] = { CoverageFile, CU };
2285         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2286         GCov->addOperand(N);
2287       }
2288     }
2289   }
2290 }
2291 
2292 ///@name Custom Runtime Function Interfaces
2293 ///@{
2294 //
2295 // FIXME: These can be eliminated once we can have clients just get the required
2296 // AST nodes from the builtin tables.
2297 
2298 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2299   if (BlockObjectDispose)
2300     return BlockObjectDispose;
2301 
2302   // If we saw an explicit decl, use that.
2303   if (BlockObjectDisposeDecl) {
2304     return BlockObjectDispose = GetAddrOfFunction(
2305       BlockObjectDisposeDecl,
2306       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2307   }
2308 
2309   // Otherwise construct the function by hand.
2310   const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2311   const llvm::FunctionType *fty
2312     = llvm::FunctionType::get(VoidTy, args, false);
2313   return BlockObjectDispose =
2314     CreateRuntimeFunction(fty, "_Block_object_dispose");
2315 }
2316 
2317 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2318   if (BlockObjectAssign)
2319     return BlockObjectAssign;
2320 
2321   // If we saw an explicit decl, use that.
2322   if (BlockObjectAssignDecl) {
2323     return BlockObjectAssign = GetAddrOfFunction(
2324       BlockObjectAssignDecl,
2325       getTypes().GetFunctionType(BlockObjectAssignDecl));
2326   }
2327 
2328   // Otherwise construct the function by hand.
2329   const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2330   const llvm::FunctionType *fty
2331     = llvm::FunctionType::get(VoidTy, args, false);
2332   return BlockObjectAssign =
2333     CreateRuntimeFunction(fty, "_Block_object_assign");
2334 }
2335 
2336 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2337   if (NSConcreteGlobalBlock)
2338     return NSConcreteGlobalBlock;
2339 
2340   // If we saw an explicit decl, use that.
2341   if (NSConcreteGlobalBlockDecl) {
2342     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2343       NSConcreteGlobalBlockDecl,
2344       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2345   }
2346 
2347   // Otherwise construct the variable by hand.
2348   return NSConcreteGlobalBlock =
2349     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2350 }
2351 
2352 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2353   if (NSConcreteStackBlock)
2354     return NSConcreteStackBlock;
2355 
2356   // If we saw an explicit decl, use that.
2357   if (NSConcreteStackBlockDecl) {
2358     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2359       NSConcreteStackBlockDecl,
2360       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2361   }
2362 
2363   // Otherwise construct the variable by hand.
2364   return NSConcreteStackBlock =
2365     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2366 }
2367 
2368 ///@}
2369