xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d157a9bc8ba1085cc4808c6941412322a7fd884e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 #include "llvm/Support/TimeProfiler.h"
62 
63 using namespace clang;
64 using namespace CodeGen;
65 
66 static llvm::cl::opt<bool> LimitedCoverage(
67     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
68     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
69     llvm::cl::init(false));
70 
71 static const char AnnotationSection[] = "llvm.metadata";
72 
73 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
74   switch (CGM.getTarget().getCXXABI().getKind()) {
75   case TargetCXXABI::GenericAArch64:
76   case TargetCXXABI::GenericARM:
77   case TargetCXXABI::iOS:
78   case TargetCXXABI::iOS64:
79   case TargetCXXABI::WatchOS:
80   case TargetCXXABI::GenericMIPS:
81   case TargetCXXABI::GenericItanium:
82   case TargetCXXABI::WebAssembly:
83     return CreateItaniumCXXABI(CGM);
84   case TargetCXXABI::Microsoft:
85     return CreateMicrosoftCXXABI(CGM);
86   }
87 
88   llvm_unreachable("invalid C++ ABI kind");
89 }
90 
91 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
92                              const PreprocessorOptions &PPO,
93                              const CodeGenOptions &CGO, llvm::Module &M,
94                              DiagnosticsEngine &diags,
95                              CoverageSourceInfo *CoverageInfo)
96     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
97       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
98       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
99       VMContext(M.getContext()), Types(*this), VTables(*this),
100       SanitizerMD(new SanitizerMetadata(*this)) {
101 
102   // Initialize the type cache.
103   llvm::LLVMContext &LLVMContext = M.getContext();
104   VoidTy = llvm::Type::getVoidTy(LLVMContext);
105   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
107   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
108   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
109   HalfTy = llvm::Type::getHalfTy(LLVMContext);
110   FloatTy = llvm::Type::getFloatTy(LLVMContext);
111   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
112   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
113   PointerAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
115   SizeSizeInBytes =
116     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
117   IntAlignInBytes =
118     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
119   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
120   IntPtrTy = llvm::IntegerType::get(LLVMContext,
121     C.getTargetInfo().getMaxPointerWidth());
122   Int8PtrTy = Int8Ty->getPointerTo(0);
123   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
124   AllocaInt8PtrTy = Int8Ty->getPointerTo(
125       M.getDataLayout().getAllocaAddrSpace());
126   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
127 
128   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
129 
130   if (LangOpts.ObjC)
131     createObjCRuntime();
132   if (LangOpts.OpenCL)
133     createOpenCLRuntime();
134   if (LangOpts.OpenMP)
135     createOpenMPRuntime();
136   if (LangOpts.CUDA)
137     createCUDARuntime();
138 
139   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
140   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
141       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
142     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
143                                getCXXABI().getMangleContext()));
144 
145   // If debug info or coverage generation is enabled, create the CGDebugInfo
146   // object.
147   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
148       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
149     DebugInfo.reset(new CGDebugInfo(*this));
150 
151   Block.GlobalUniqueCount = 0;
152 
153   if (C.getLangOpts().ObjC)
154     ObjCData.reset(new ObjCEntrypoints());
155 
156   if (CodeGenOpts.hasProfileClangUse()) {
157     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
158         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
159     if (auto E = ReaderOrErr.takeError()) {
160       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
161                                               "Could not read profile %0: %1");
162       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
163         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
164                                   << EI.message();
165       });
166     } else
167       PGOReader = std::move(ReaderOrErr.get());
168   }
169 
170   // If coverage mapping generation is enabled, create the
171   // CoverageMappingModuleGen object.
172   if (CodeGenOpts.CoverageMapping)
173     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
174 }
175 
176 CodeGenModule::~CodeGenModule() {}
177 
178 void CodeGenModule::createObjCRuntime() {
179   // This is just isGNUFamily(), but we want to force implementors of
180   // new ABIs to decide how best to do this.
181   switch (LangOpts.ObjCRuntime.getKind()) {
182   case ObjCRuntime::GNUstep:
183   case ObjCRuntime::GCC:
184   case ObjCRuntime::ObjFW:
185     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
186     return;
187 
188   case ObjCRuntime::FragileMacOSX:
189   case ObjCRuntime::MacOSX:
190   case ObjCRuntime::iOS:
191   case ObjCRuntime::WatchOS:
192     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
193     return;
194   }
195   llvm_unreachable("bad runtime kind");
196 }
197 
198 void CodeGenModule::createOpenCLRuntime() {
199   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
200 }
201 
202 void CodeGenModule::createOpenMPRuntime() {
203   // Select a specialized code generation class based on the target, if any.
204   // If it does not exist use the default implementation.
205   switch (getTriple().getArch()) {
206   case llvm::Triple::nvptx:
207   case llvm::Triple::nvptx64:
208     assert(getLangOpts().OpenMPIsDevice &&
209            "OpenMP NVPTX is only prepared to deal with device code.");
210     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
211     break;
212   default:
213     if (LangOpts.OpenMPSimd)
214       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
215     else
216       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
217     break;
218   }
219 }
220 
221 void CodeGenModule::createCUDARuntime() {
222   CUDARuntime.reset(CreateNVCUDARuntime(*this));
223 }
224 
225 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
226   Replacements[Name] = C;
227 }
228 
229 void CodeGenModule::applyReplacements() {
230   for (auto &I : Replacements) {
231     StringRef MangledName = I.first();
232     llvm::Constant *Replacement = I.second;
233     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
234     if (!Entry)
235       continue;
236     auto *OldF = cast<llvm::Function>(Entry);
237     auto *NewF = dyn_cast<llvm::Function>(Replacement);
238     if (!NewF) {
239       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
240         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
241       } else {
242         auto *CE = cast<llvm::ConstantExpr>(Replacement);
243         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
244                CE->getOpcode() == llvm::Instruction::GetElementPtr);
245         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
246       }
247     }
248 
249     // Replace old with new, but keep the old order.
250     OldF->replaceAllUsesWith(Replacement);
251     if (NewF) {
252       NewF->removeFromParent();
253       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
254                                                        NewF);
255     }
256     OldF->eraseFromParent();
257   }
258 }
259 
260 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
261   GlobalValReplacements.push_back(std::make_pair(GV, C));
262 }
263 
264 void CodeGenModule::applyGlobalValReplacements() {
265   for (auto &I : GlobalValReplacements) {
266     llvm::GlobalValue *GV = I.first;
267     llvm::Constant *C = I.second;
268 
269     GV->replaceAllUsesWith(C);
270     GV->eraseFromParent();
271   }
272 }
273 
274 // This is only used in aliases that we created and we know they have a
275 // linear structure.
276 static const llvm::GlobalObject *getAliasedGlobal(
277     const llvm::GlobalIndirectSymbol &GIS) {
278   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
279   const llvm::Constant *C = &GIS;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
286     if (!GIS2)
287       return nullptr;
288     if (!Visited.insert(GIS2).second)
289       return nullptr;
290     C = GIS2->getIndirectSymbol();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     SourceLocation Location;
303     bool IsIFunc = D->hasAttr<IFuncAttr>();
304     if (const Attr *A = D->getDefiningAttr())
305       Location = A->getLocation();
306     else
307       llvm_unreachable("Not an alias or ifunc?");
308     StringRef MangledName = getMangledName(GD);
309     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
310     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
311     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
312     if (!GV) {
313       Error = true;
314       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
315     } else if (GV->isDeclaration()) {
316       Error = true;
317       Diags.Report(Location, diag::err_alias_to_undefined)
318           << IsIFunc << IsIFunc;
319     } else if (IsIFunc) {
320       // Check resolver function type.
321       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
322           GV->getType()->getPointerElementType());
323       assert(FTy);
324       if (!FTy->getReturnType()->isPointerTy())
325         Diags.Report(Location, diag::err_ifunc_resolver_return);
326     }
327 
328     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
329     llvm::GlobalValue *AliaseeGV;
330     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
331       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
332     else
333       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
334 
335     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
336       StringRef AliasSection = SA->getName();
337       if (AliasSection != AliaseeGV->getSection())
338         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
339             << AliasSection << IsIFunc << IsIFunc;
340     }
341 
342     // We have to handle alias to weak aliases in here. LLVM itself disallows
343     // this since the object semantics would not match the IL one. For
344     // compatibility with gcc we implement it by just pointing the alias
345     // to its aliasee's aliasee. We also warn, since the user is probably
346     // expecting the link to be weak.
347     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
348       if (GA->isInterposable()) {
349         Diags.Report(Location, diag::warn_alias_to_weak_alias)
350             << GV->getName() << GA->getName() << IsIFunc;
351         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
352             GA->getIndirectSymbol(), Alias->getType());
353         Alias->setIndirectSymbol(Aliasee);
354       }
355     }
356   }
357   if (!Error)
358     return;
359 
360   for (const GlobalDecl &GD : Aliases) {
361     StringRef MangledName = getMangledName(GD);
362     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
363     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
364     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
365     Alias->eraseFromParent();
366   }
367 }
368 
369 void CodeGenModule::clear() {
370   DeferredDeclsToEmit.clear();
371   if (OpenMPRuntime)
372     OpenMPRuntime->clear();
373 }
374 
375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
376                                        StringRef MainFile) {
377   if (!hasDiagnostics())
378     return;
379   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
380     if (MainFile.empty())
381       MainFile = "<stdin>";
382     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
383   } else {
384     if (Mismatched > 0)
385       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
386 
387     if (Missing > 0)
388       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
389   }
390 }
391 
392 void CodeGenModule::Release() {
393   EmitDeferred();
394   EmitVTablesOpportunistically();
395   applyGlobalValReplacements();
396   applyReplacements();
397   checkAliases();
398   emitMultiVersionFunctions();
399   EmitCXXGlobalInitFunc();
400   EmitCXXGlobalDtorFunc();
401   registerGlobalDtorsWithAtExit();
402   EmitCXXThreadLocalInitFunc();
403   if (ObjCRuntime)
404     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
405       AddGlobalCtor(ObjCInitFunction);
406   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
407       CUDARuntime) {
408     if (llvm::Function *CudaCtorFunction =
409             CUDARuntime->makeModuleCtorFunction())
410       AddGlobalCtor(CudaCtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
414             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
415       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
416     }
417     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(
422         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
423         llvm::ProfileSummary::PSK_Instr);
424     if (PGOStats.hasDiagnostics())
425       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
426   }
427   EmitCtorList(GlobalCtors, "llvm.global_ctors");
428   EmitCtorList(GlobalDtors, "llvm.global_dtors");
429   EmitGlobalAnnotations();
430   EmitStaticExternCAliases();
431   EmitDeferredUnusedCoverageMappings();
432   if (CoverageMapping)
433     CoverageMapping->emit();
434   if (CodeGenOpts.SanitizeCfiCrossDso) {
435     CodeGenFunction(*this).EmitCfiCheckFail();
436     CodeGenFunction(*this).EmitCfiCheckStub();
437   }
438   emitAtAvailableLinkGuard();
439   emitLLVMUsed();
440   if (SanStats)
441     SanStats->finish();
442 
443   if (CodeGenOpts.Autolink &&
444       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
445     EmitModuleLinkOptions();
446   }
447 
448   // On ELF we pass the dependent library specifiers directly to the linker
449   // without manipulating them. This is in contrast to other platforms where
450   // they are mapped to a specific linker option by the compiler. This
451   // difference is a result of the greater variety of ELF linkers and the fact
452   // that ELF linkers tend to handle libraries in a more complicated fashion
453   // than on other platforms. This forces us to defer handling the dependent
454   // libs to the linker.
455   //
456   // CUDA/HIP device and host libraries are different. Currently there is no
457   // way to differentiate dependent libraries for host or device. Existing
458   // usage of #pragma comment(lib, *) is intended for host libraries on
459   // Windows. Therefore emit llvm.dependent-libraries only for host.
460   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
461     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
462     for (auto *MD : ELFDependentLibraries)
463       NMD->addOperand(MD);
464   }
465 
466   // Record mregparm value now so it is visible through rest of codegen.
467   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
468     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
469                               CodeGenOpts.NumRegisterParameters);
470 
471   if (CodeGenOpts.DwarfVersion) {
472     // We actually want the latest version when there are conflicts.
473     // We can change from Warning to Latest if such mode is supported.
474     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
475                               CodeGenOpts.DwarfVersion);
476   }
477   if (CodeGenOpts.EmitCodeView) {
478     // Indicate that we want CodeView in the metadata.
479     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
480   }
481   if (CodeGenOpts.CodeViewGHash) {
482     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
483   }
484   if (CodeGenOpts.ControlFlowGuard) {
485     // Function ID tables and checks for Control Flow Guard (cfguard=2).
486     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
487   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
488     // Function ID tables for Control Flow Guard (cfguard=1).
489     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
490   }
491   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
492     // We don't support LTO with 2 with different StrictVTablePointers
493     // FIXME: we could support it by stripping all the information introduced
494     // by StrictVTablePointers.
495 
496     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
497 
498     llvm::Metadata *Ops[2] = {
499               llvm::MDString::get(VMContext, "StrictVTablePointers"),
500               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
501                   llvm::Type::getInt32Ty(VMContext), 1))};
502 
503     getModule().addModuleFlag(llvm::Module::Require,
504                               "StrictVTablePointersRequirement",
505                               llvm::MDNode::get(VMContext, Ops));
506   }
507   if (DebugInfo)
508     // We support a single version in the linked module. The LLVM
509     // parser will drop debug info with a different version number
510     // (and warn about it, too).
511     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
512                               llvm::DEBUG_METADATA_VERSION);
513 
514   // We need to record the widths of enums and wchar_t, so that we can generate
515   // the correct build attributes in the ARM backend. wchar_size is also used by
516   // TargetLibraryInfo.
517   uint64_t WCharWidth =
518       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
519   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
520 
521   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
522   if (   Arch == llvm::Triple::arm
523       || Arch == llvm::Triple::armeb
524       || Arch == llvm::Triple::thumb
525       || Arch == llvm::Triple::thumbeb) {
526     // The minimum width of an enum in bytes
527     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
528     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
529   }
530 
531   if (CodeGenOpts.SanitizeCfiCrossDso) {
532     // Indicate that we want cross-DSO control flow integrity checks.
533     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
534   }
535 
536   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
537     getModule().addModuleFlag(llvm::Module::Override,
538                               "CFI Canonical Jump Tables",
539                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
540   }
541 
542   if (CodeGenOpts.CFProtectionReturn &&
543       Target.checkCFProtectionReturnSupported(getDiags())) {
544     // Indicate that we want to instrument return control flow protection.
545     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
546                               1);
547   }
548 
549   if (CodeGenOpts.CFProtectionBranch &&
550       Target.checkCFProtectionBranchSupported(getDiags())) {
551     // Indicate that we want to instrument branch control flow protection.
552     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
553                               1);
554   }
555 
556   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
557     // Indicate whether __nvvm_reflect should be configured to flush denormal
558     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
559     // property.)
560     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
561                               CodeGenOpts.FlushDenorm ? 1 : 0);
562   }
563 
564   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
565   if (LangOpts.OpenCL) {
566     EmitOpenCLMetadata();
567     // Emit SPIR version.
568     if (getTriple().isSPIR()) {
569       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
570       // opencl.spir.version named metadata.
571       // C++ is backwards compatible with OpenCL v2.0.
572       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
573       llvm::Metadata *SPIRVerElts[] = {
574           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
575               Int32Ty, Version / 100)),
576           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
577               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
578       llvm::NamedMDNode *SPIRVerMD =
579           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
580       llvm::LLVMContext &Ctx = TheModule.getContext();
581       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
582     }
583   }
584 
585   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
586     assert(PLevel < 3 && "Invalid PIC Level");
587     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
588     if (Context.getLangOpts().PIE)
589       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
590   }
591 
592   if (getCodeGenOpts().CodeModel.size() > 0) {
593     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
594                   .Case("tiny", llvm::CodeModel::Tiny)
595                   .Case("small", llvm::CodeModel::Small)
596                   .Case("kernel", llvm::CodeModel::Kernel)
597                   .Case("medium", llvm::CodeModel::Medium)
598                   .Case("large", llvm::CodeModel::Large)
599                   .Default(~0u);
600     if (CM != ~0u) {
601       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
602       getModule().setCodeModel(codeModel);
603     }
604   }
605 
606   if (CodeGenOpts.NoPLT)
607     getModule().setRtLibUseGOT();
608 
609   SimplifyPersonality();
610 
611   if (getCodeGenOpts().EmitDeclMetadata)
612     EmitDeclMetadata();
613 
614   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
615     EmitCoverageFile();
616 
617   if (DebugInfo)
618     DebugInfo->finalize();
619 
620   if (getCodeGenOpts().EmitVersionIdentMetadata)
621     EmitVersionIdentMetadata();
622 
623   if (!getCodeGenOpts().RecordCommandLine.empty())
624     EmitCommandLineMetadata();
625 
626   EmitTargetMetadata();
627 }
628 
629 void CodeGenModule::EmitOpenCLMetadata() {
630   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
631   // opencl.ocl.version named metadata node.
632   // C++ is backwards compatible with OpenCL v2.0.
633   // FIXME: We might need to add CXX version at some point too?
634   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
635   llvm::Metadata *OCLVerElts[] = {
636       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
637           Int32Ty, Version / 100)),
638       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
639           Int32Ty, (Version % 100) / 10))};
640   llvm::NamedMDNode *OCLVerMD =
641       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
642   llvm::LLVMContext &Ctx = TheModule.getContext();
643   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
644 }
645 
646 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
647   // Make sure that this type is translated.
648   Types.UpdateCompletedType(TD);
649 }
650 
651 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
652   // Make sure that this type is translated.
653   Types.RefreshTypeCacheForClass(RD);
654 }
655 
656 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
657   if (!TBAA)
658     return nullptr;
659   return TBAA->getTypeInfo(QTy);
660 }
661 
662 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
663   if (!TBAA)
664     return TBAAAccessInfo();
665   return TBAA->getAccessInfo(AccessType);
666 }
667 
668 TBAAAccessInfo
669 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
673 }
674 
675 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
676   if (!TBAA)
677     return nullptr;
678   return TBAA->getTBAAStructInfo(QTy);
679 }
680 
681 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
682   if (!TBAA)
683     return nullptr;
684   return TBAA->getBaseTypeInfo(QTy);
685 }
686 
687 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
688   if (!TBAA)
689     return nullptr;
690   return TBAA->getAccessTagInfo(Info);
691 }
692 
693 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
694                                                    TBAAAccessInfo TargetInfo) {
695   if (!TBAA)
696     return TBAAAccessInfo();
697   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
698 }
699 
700 TBAAAccessInfo
701 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
702                                                    TBAAAccessInfo InfoB) {
703   if (!TBAA)
704     return TBAAAccessInfo();
705   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
706 }
707 
708 TBAAAccessInfo
709 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
710                                               TBAAAccessInfo SrcInfo) {
711   if (!TBAA)
712     return TBAAAccessInfo();
713   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
714 }
715 
716 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
717                                                 TBAAAccessInfo TBAAInfo) {
718   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
719     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
720 }
721 
722 void CodeGenModule::DecorateInstructionWithInvariantGroup(
723     llvm::Instruction *I, const CXXRecordDecl *RD) {
724   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
725                  llvm::MDNode::get(getLLVMContext(), {}));
726 }
727 
728 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
729   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
730   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
731 }
732 
733 /// ErrorUnsupported - Print out an error that codegen doesn't support the
734 /// specified stmt yet.
735 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
736   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
737                                                "cannot compile this %0 yet");
738   std::string Msg = Type;
739   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
740       << Msg << S->getSourceRange();
741 }
742 
743 /// ErrorUnsupported - Print out an error that codegen doesn't support the
744 /// specified decl yet.
745 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
746   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
747                                                "cannot compile this %0 yet");
748   std::string Msg = Type;
749   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
750 }
751 
752 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
753   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
754 }
755 
756 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
757                                         const NamedDecl *D) const {
758   if (GV->hasDLLImportStorageClass())
759     return;
760   // Internal definitions always have default visibility.
761   if (GV->hasLocalLinkage()) {
762     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
763     return;
764   }
765   if (!D)
766     return;
767   // Set visibility for definitions, and for declarations if requested globally
768   // or set explicitly.
769   LinkageInfo LV = D->getLinkageAndVisibility();
770   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
771       !GV->isDeclarationForLinker())
772     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
773 }
774 
775 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
776                                  llvm::GlobalValue *GV) {
777   if (GV->hasLocalLinkage())
778     return true;
779 
780   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
781     return true;
782 
783   // DLLImport explicitly marks the GV as external.
784   if (GV->hasDLLImportStorageClass())
785     return false;
786 
787   const llvm::Triple &TT = CGM.getTriple();
788   if (TT.isWindowsGNUEnvironment()) {
789     // In MinGW, variables without DLLImport can still be automatically
790     // imported from a DLL by the linker; don't mark variables that
791     // potentially could come from another DLL as DSO local.
792     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
793         !GV->isThreadLocal())
794       return false;
795   }
796 
797   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
798   // remain unresolved in the link, they can be resolved to zero, which is
799   // outside the current DSO.
800   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
801     return false;
802 
803   // Every other GV is local on COFF.
804   // Make an exception for windows OS in the triple: Some firmware builds use
805   // *-win32-macho triples. This (accidentally?) produced windows relocations
806   // without GOT tables in older clang versions; Keep this behaviour.
807   // FIXME: even thread local variables?
808   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
809     return true;
810 
811   // Only handle COFF and ELF for now.
812   if (!TT.isOSBinFormatELF())
813     return false;
814 
815   // If this is not an executable, don't assume anything is local.
816   const auto &CGOpts = CGM.getCodeGenOpts();
817   llvm::Reloc::Model RM = CGOpts.RelocationModel;
818   const auto &LOpts = CGM.getLangOpts();
819   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
820     return false;
821 
822   // A definition cannot be preempted from an executable.
823   if (!GV->isDeclarationForLinker())
824     return true;
825 
826   // Most PIC code sequences that assume that a symbol is local cannot produce a
827   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
828   // depended, it seems worth it to handle it here.
829   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
830     return false;
831 
832   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
833   llvm::Triple::ArchType Arch = TT.getArch();
834   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
835       Arch == llvm::Triple::ppc64le)
836     return false;
837 
838   // If we can use copy relocations we can assume it is local.
839   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
840     if (!Var->isThreadLocal() &&
841         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
842       return true;
843 
844   // If we can use a plt entry as the symbol address we can assume it
845   // is local.
846   // FIXME: This should work for PIE, but the gold linker doesn't support it.
847   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
848     return true;
849 
850   // Otherwise don't assue it is local.
851   return false;
852 }
853 
854 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
855   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
856 }
857 
858 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
859                                           GlobalDecl GD) const {
860   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
861   // C++ destructors have a few C++ ABI specific special cases.
862   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
863     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
864     return;
865   }
866   setDLLImportDLLExport(GV, D);
867 }
868 
869 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
870                                           const NamedDecl *D) const {
871   if (D && D->isExternallyVisible()) {
872     if (D->hasAttr<DLLImportAttr>())
873       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
874     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
875       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
876   }
877 }
878 
879 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
880                                     GlobalDecl GD) const {
881   setDLLImportDLLExport(GV, GD);
882   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
883 }
884 
885 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
886                                     const NamedDecl *D) const {
887   setDLLImportDLLExport(GV, D);
888   setGVPropertiesAux(GV, D);
889 }
890 
891 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
892                                        const NamedDecl *D) const {
893   setGlobalVisibility(GV, D);
894   setDSOLocal(GV);
895   GV->setPartition(CodeGenOpts.SymbolPartition);
896 }
897 
898 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
899   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
900       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
901       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
902       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
903       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
904 }
905 
906 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
907     CodeGenOptions::TLSModel M) {
908   switch (M) {
909   case CodeGenOptions::GeneralDynamicTLSModel:
910     return llvm::GlobalVariable::GeneralDynamicTLSModel;
911   case CodeGenOptions::LocalDynamicTLSModel:
912     return llvm::GlobalVariable::LocalDynamicTLSModel;
913   case CodeGenOptions::InitialExecTLSModel:
914     return llvm::GlobalVariable::InitialExecTLSModel;
915   case CodeGenOptions::LocalExecTLSModel:
916     return llvm::GlobalVariable::LocalExecTLSModel;
917   }
918   llvm_unreachable("Invalid TLS model!");
919 }
920 
921 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
922   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
923 
924   llvm::GlobalValue::ThreadLocalMode TLM;
925   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
926 
927   // Override the TLS model if it is explicitly specified.
928   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
929     TLM = GetLLVMTLSModel(Attr->getModel());
930   }
931 
932   GV->setThreadLocalMode(TLM);
933 }
934 
935 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
936                                           StringRef Name) {
937   const TargetInfo &Target = CGM.getTarget();
938   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
939 }
940 
941 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
942                                                  const CPUSpecificAttr *Attr,
943                                                  unsigned CPUIndex,
944                                                  raw_ostream &Out) {
945   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
946   // supported.
947   if (Attr)
948     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
949   else if (CGM.getTarget().supportsIFunc())
950     Out << ".resolver";
951 }
952 
953 static void AppendTargetMangling(const CodeGenModule &CGM,
954                                  const TargetAttr *Attr, raw_ostream &Out) {
955   if (Attr->isDefaultVersion())
956     return;
957 
958   Out << '.';
959   const TargetInfo &Target = CGM.getTarget();
960   TargetAttr::ParsedTargetAttr Info =
961       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
962         // Multiversioning doesn't allow "no-${feature}", so we can
963         // only have "+" prefixes here.
964         assert(LHS.startswith("+") && RHS.startswith("+") &&
965                "Features should always have a prefix.");
966         return Target.multiVersionSortPriority(LHS.substr(1)) >
967                Target.multiVersionSortPriority(RHS.substr(1));
968       });
969 
970   bool IsFirst = true;
971 
972   if (!Info.Architecture.empty()) {
973     IsFirst = false;
974     Out << "arch_" << Info.Architecture;
975   }
976 
977   for (StringRef Feat : Info.Features) {
978     if (!IsFirst)
979       Out << '_';
980     IsFirst = false;
981     Out << Feat.substr(1);
982   }
983 }
984 
985 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
986                                       const NamedDecl *ND,
987                                       bool OmitMultiVersionMangling = false) {
988   SmallString<256> Buffer;
989   llvm::raw_svector_ostream Out(Buffer);
990   MangleContext &MC = CGM.getCXXABI().getMangleContext();
991   if (MC.shouldMangleDeclName(ND)) {
992     llvm::raw_svector_ostream Out(Buffer);
993     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
994       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
995     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
996       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
997     else
998       MC.mangleName(ND, Out);
999   } else {
1000     IdentifierInfo *II = ND->getIdentifier();
1001     assert(II && "Attempt to mangle unnamed decl.");
1002     const auto *FD = dyn_cast<FunctionDecl>(ND);
1003 
1004     if (FD &&
1005         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1006       llvm::raw_svector_ostream Out(Buffer);
1007       Out << "__regcall3__" << II->getName();
1008     } else {
1009       Out << II->getName();
1010     }
1011   }
1012 
1013   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1014     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1015       switch (FD->getMultiVersionKind()) {
1016       case MultiVersionKind::CPUDispatch:
1017       case MultiVersionKind::CPUSpecific:
1018         AppendCPUSpecificCPUDispatchMangling(CGM,
1019                                              FD->getAttr<CPUSpecificAttr>(),
1020                                              GD.getMultiVersionIndex(), Out);
1021         break;
1022       case MultiVersionKind::Target:
1023         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1024         break;
1025       case MultiVersionKind::None:
1026         llvm_unreachable("None multiversion type isn't valid here");
1027       }
1028     }
1029 
1030   return Out.str();
1031 }
1032 
1033 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1034                                             const FunctionDecl *FD) {
1035   if (!FD->isMultiVersion())
1036     return;
1037 
1038   // Get the name of what this would be without the 'target' attribute.  This
1039   // allows us to lookup the version that was emitted when this wasn't a
1040   // multiversion function.
1041   std::string NonTargetName =
1042       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1043   GlobalDecl OtherGD;
1044   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1045     assert(OtherGD.getCanonicalDecl()
1046                .getDecl()
1047                ->getAsFunction()
1048                ->isMultiVersion() &&
1049            "Other GD should now be a multiversioned function");
1050     // OtherFD is the version of this function that was mangled BEFORE
1051     // becoming a MultiVersion function.  It potentially needs to be updated.
1052     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1053                                       .getDecl()
1054                                       ->getAsFunction()
1055                                       ->getMostRecentDecl();
1056     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1057     // This is so that if the initial version was already the 'default'
1058     // version, we don't try to update it.
1059     if (OtherName != NonTargetName) {
1060       // Remove instead of erase, since others may have stored the StringRef
1061       // to this.
1062       const auto ExistingRecord = Manglings.find(NonTargetName);
1063       if (ExistingRecord != std::end(Manglings))
1064         Manglings.remove(&(*ExistingRecord));
1065       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1066       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1067       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1068         Entry->setName(OtherName);
1069     }
1070   }
1071 }
1072 
1073 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1074   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1075 
1076   // Some ABIs don't have constructor variants.  Make sure that base and
1077   // complete constructors get mangled the same.
1078   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1079     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1080       CXXCtorType OrigCtorType = GD.getCtorType();
1081       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1082       if (OrigCtorType == Ctor_Base)
1083         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1084     }
1085   }
1086 
1087   auto FoundName = MangledDeclNames.find(CanonicalGD);
1088   if (FoundName != MangledDeclNames.end())
1089     return FoundName->second;
1090 
1091   // Keep the first result in the case of a mangling collision.
1092   const auto *ND = cast<NamedDecl>(GD.getDecl());
1093   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1094 
1095   // Adjust kernel stub mangling as we may need to be able to differentiate
1096   // them from the kernel itself (e.g., for HIP).
1097   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1098     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1099       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1100 
1101   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1102   return MangledDeclNames[CanonicalGD] = Result.first->first();
1103 }
1104 
1105 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1106                                              const BlockDecl *BD) {
1107   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1108   const Decl *D = GD.getDecl();
1109 
1110   SmallString<256> Buffer;
1111   llvm::raw_svector_ostream Out(Buffer);
1112   if (!D)
1113     MangleCtx.mangleGlobalBlock(BD,
1114       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1115   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1116     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1117   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1118     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1119   else
1120     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1121 
1122   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1123   return Result.first->first();
1124 }
1125 
1126 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1127   return getModule().getNamedValue(Name);
1128 }
1129 
1130 /// AddGlobalCtor - Add a function to the list that will be called before
1131 /// main() runs.
1132 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1133                                   llvm::Constant *AssociatedData) {
1134   // FIXME: Type coercion of void()* types.
1135   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1136 }
1137 
1138 /// AddGlobalDtor - Add a function to the list that will be called
1139 /// when the module is unloaded.
1140 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1141   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1142     DtorsUsingAtExit[Priority].push_back(Dtor);
1143     return;
1144   }
1145 
1146   // FIXME: Type coercion of void()* types.
1147   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1148 }
1149 
1150 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1151   if (Fns.empty()) return;
1152 
1153   // Ctor function type is void()*.
1154   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1155   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1156       TheModule.getDataLayout().getProgramAddressSpace());
1157 
1158   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1159   llvm::StructType *CtorStructTy = llvm::StructType::get(
1160       Int32Ty, CtorPFTy, VoidPtrTy);
1161 
1162   // Construct the constructor and destructor arrays.
1163   ConstantInitBuilder builder(*this);
1164   auto ctors = builder.beginArray(CtorStructTy);
1165   for (const auto &I : Fns) {
1166     auto ctor = ctors.beginStruct(CtorStructTy);
1167     ctor.addInt(Int32Ty, I.Priority);
1168     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1169     if (I.AssociatedData)
1170       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1171     else
1172       ctor.addNullPointer(VoidPtrTy);
1173     ctor.finishAndAddTo(ctors);
1174   }
1175 
1176   auto list =
1177     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1178                                 /*constant*/ false,
1179                                 llvm::GlobalValue::AppendingLinkage);
1180 
1181   // The LTO linker doesn't seem to like it when we set an alignment
1182   // on appending variables.  Take it off as a workaround.
1183   list->setAlignment(llvm::None);
1184 
1185   Fns.clear();
1186 }
1187 
1188 llvm::GlobalValue::LinkageTypes
1189 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1190   const auto *D = cast<FunctionDecl>(GD.getDecl());
1191 
1192   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1193 
1194   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1195     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1196 
1197   if (isa<CXXConstructorDecl>(D) &&
1198       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1199       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1200     // Our approach to inheriting constructors is fundamentally different from
1201     // that used by the MS ABI, so keep our inheriting constructor thunks
1202     // internal rather than trying to pick an unambiguous mangling for them.
1203     return llvm::GlobalValue::InternalLinkage;
1204   }
1205 
1206   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1207 }
1208 
1209 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1210   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1211   if (!MDS) return nullptr;
1212 
1213   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1214 }
1215 
1216 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1217                                               const CGFunctionInfo &Info,
1218                                               llvm::Function *F) {
1219   unsigned CallingConv;
1220   llvm::AttributeList PAL;
1221   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1222   F->setAttributes(PAL);
1223   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1224 }
1225 
1226 static void removeImageAccessQualifier(std::string& TyName) {
1227   std::string ReadOnlyQual("__read_only");
1228   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1229   if (ReadOnlyPos != std::string::npos)
1230     // "+ 1" for the space after access qualifier.
1231     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1232   else {
1233     std::string WriteOnlyQual("__write_only");
1234     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1235     if (WriteOnlyPos != std::string::npos)
1236       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1237     else {
1238       std::string ReadWriteQual("__read_write");
1239       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1240       if (ReadWritePos != std::string::npos)
1241         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1242     }
1243   }
1244 }
1245 
1246 // Returns the address space id that should be produced to the
1247 // kernel_arg_addr_space metadata. This is always fixed to the ids
1248 // as specified in the SPIR 2.0 specification in order to differentiate
1249 // for example in clGetKernelArgInfo() implementation between the address
1250 // spaces with targets without unique mapping to the OpenCL address spaces
1251 // (basically all single AS CPUs).
1252 static unsigned ArgInfoAddressSpace(LangAS AS) {
1253   switch (AS) {
1254   case LangAS::opencl_global:   return 1;
1255   case LangAS::opencl_constant: return 2;
1256   case LangAS::opencl_local:    return 3;
1257   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1258   default:
1259     return 0; // Assume private.
1260   }
1261 }
1262 
1263 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1264                                          const FunctionDecl *FD,
1265                                          CodeGenFunction *CGF) {
1266   assert(((FD && CGF) || (!FD && !CGF)) &&
1267          "Incorrect use - FD and CGF should either be both null or not!");
1268   // Create MDNodes that represent the kernel arg metadata.
1269   // Each MDNode is a list in the form of "key", N number of values which is
1270   // the same number of values as their are kernel arguments.
1271 
1272   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1273 
1274   // MDNode for the kernel argument address space qualifiers.
1275   SmallVector<llvm::Metadata *, 8> addressQuals;
1276 
1277   // MDNode for the kernel argument access qualifiers (images only).
1278   SmallVector<llvm::Metadata *, 8> accessQuals;
1279 
1280   // MDNode for the kernel argument type names.
1281   SmallVector<llvm::Metadata *, 8> argTypeNames;
1282 
1283   // MDNode for the kernel argument base type names.
1284   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1285 
1286   // MDNode for the kernel argument type qualifiers.
1287   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1288 
1289   // MDNode for the kernel argument names.
1290   SmallVector<llvm::Metadata *, 8> argNames;
1291 
1292   if (FD && CGF)
1293     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1294       const ParmVarDecl *parm = FD->getParamDecl(i);
1295       QualType ty = parm->getType();
1296       std::string typeQuals;
1297 
1298       if (ty->isPointerType()) {
1299         QualType pointeeTy = ty->getPointeeType();
1300 
1301         // Get address qualifier.
1302         addressQuals.push_back(
1303             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1304                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1305 
1306         // Get argument type name.
1307         std::string typeName =
1308             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1309 
1310         // Turn "unsigned type" to "utype"
1311         std::string::size_type pos = typeName.find("unsigned");
1312         if (pointeeTy.isCanonical() && pos != std::string::npos)
1313           typeName.erase(pos + 1, 8);
1314 
1315         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1316 
1317         std::string baseTypeName =
1318             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1319                 Policy) +
1320             "*";
1321 
1322         // Turn "unsigned type" to "utype"
1323         pos = baseTypeName.find("unsigned");
1324         if (pos != std::string::npos)
1325           baseTypeName.erase(pos + 1, 8);
1326 
1327         argBaseTypeNames.push_back(
1328             llvm::MDString::get(VMContext, baseTypeName));
1329 
1330         // Get argument type qualifiers:
1331         if (ty.isRestrictQualified())
1332           typeQuals = "restrict";
1333         if (pointeeTy.isConstQualified() ||
1334             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1335           typeQuals += typeQuals.empty() ? "const" : " const";
1336         if (pointeeTy.isVolatileQualified())
1337           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1338       } else {
1339         uint32_t AddrSpc = 0;
1340         bool isPipe = ty->isPipeType();
1341         if (ty->isImageType() || isPipe)
1342           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1343 
1344         addressQuals.push_back(
1345             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1346 
1347         // Get argument type name.
1348         std::string typeName;
1349         if (isPipe)
1350           typeName = ty.getCanonicalType()
1351                          ->getAs<PipeType>()
1352                          ->getElementType()
1353                          .getAsString(Policy);
1354         else
1355           typeName = ty.getUnqualifiedType().getAsString(Policy);
1356 
1357         // Turn "unsigned type" to "utype"
1358         std::string::size_type pos = typeName.find("unsigned");
1359         if (ty.isCanonical() && pos != std::string::npos)
1360           typeName.erase(pos + 1, 8);
1361 
1362         std::string baseTypeName;
1363         if (isPipe)
1364           baseTypeName = ty.getCanonicalType()
1365                              ->getAs<PipeType>()
1366                              ->getElementType()
1367                              .getCanonicalType()
1368                              .getAsString(Policy);
1369         else
1370           baseTypeName =
1371               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1372 
1373         // Remove access qualifiers on images
1374         // (as they are inseparable from type in clang implementation,
1375         // but OpenCL spec provides a special query to get access qualifier
1376         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1377         if (ty->isImageType()) {
1378           removeImageAccessQualifier(typeName);
1379           removeImageAccessQualifier(baseTypeName);
1380         }
1381 
1382         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1383 
1384         // Turn "unsigned type" to "utype"
1385         pos = baseTypeName.find("unsigned");
1386         if (pos != std::string::npos)
1387           baseTypeName.erase(pos + 1, 8);
1388 
1389         argBaseTypeNames.push_back(
1390             llvm::MDString::get(VMContext, baseTypeName));
1391 
1392         if (isPipe)
1393           typeQuals = "pipe";
1394       }
1395 
1396       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1397 
1398       // Get image and pipe access qualifier:
1399       if (ty->isImageType() || ty->isPipeType()) {
1400         const Decl *PDecl = parm;
1401         if (auto *TD = dyn_cast<TypedefType>(ty))
1402           PDecl = TD->getDecl();
1403         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1404         if (A && A->isWriteOnly())
1405           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1406         else if (A && A->isReadWrite())
1407           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1408         else
1409           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1410       } else
1411         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1412 
1413       // Get argument name.
1414       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1415     }
1416 
1417   Fn->setMetadata("kernel_arg_addr_space",
1418                   llvm::MDNode::get(VMContext, addressQuals));
1419   Fn->setMetadata("kernel_arg_access_qual",
1420                   llvm::MDNode::get(VMContext, accessQuals));
1421   Fn->setMetadata("kernel_arg_type",
1422                   llvm::MDNode::get(VMContext, argTypeNames));
1423   Fn->setMetadata("kernel_arg_base_type",
1424                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1425   Fn->setMetadata("kernel_arg_type_qual",
1426                   llvm::MDNode::get(VMContext, argTypeQuals));
1427   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1428     Fn->setMetadata("kernel_arg_name",
1429                     llvm::MDNode::get(VMContext, argNames));
1430 }
1431 
1432 /// Determines whether the language options require us to model
1433 /// unwind exceptions.  We treat -fexceptions as mandating this
1434 /// except under the fragile ObjC ABI with only ObjC exceptions
1435 /// enabled.  This means, for example, that C with -fexceptions
1436 /// enables this.
1437 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1438   // If exceptions are completely disabled, obviously this is false.
1439   if (!LangOpts.Exceptions) return false;
1440 
1441   // If C++ exceptions are enabled, this is true.
1442   if (LangOpts.CXXExceptions) return true;
1443 
1444   // If ObjC exceptions are enabled, this depends on the ABI.
1445   if (LangOpts.ObjCExceptions) {
1446     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1447   }
1448 
1449   return true;
1450 }
1451 
1452 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1453                                                       const CXXMethodDecl *MD) {
1454   // Check that the type metadata can ever actually be used by a call.
1455   if (!CGM.getCodeGenOpts().LTOUnit ||
1456       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1457     return false;
1458 
1459   // Only functions whose address can be taken with a member function pointer
1460   // need this sort of type metadata.
1461   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1462          !isa<CXXDestructorDecl>(MD);
1463 }
1464 
1465 std::vector<const CXXRecordDecl *>
1466 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1467   llvm::SetVector<const CXXRecordDecl *> MostBases;
1468 
1469   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1470   CollectMostBases = [&](const CXXRecordDecl *RD) {
1471     if (RD->getNumBases() == 0)
1472       MostBases.insert(RD);
1473     for (const CXXBaseSpecifier &B : RD->bases())
1474       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1475   };
1476   CollectMostBases(RD);
1477   return MostBases.takeVector();
1478 }
1479 
1480 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1481                                                            llvm::Function *F) {
1482   llvm::AttrBuilder B;
1483 
1484   if (CodeGenOpts.UnwindTables)
1485     B.addAttribute(llvm::Attribute::UWTable);
1486 
1487   if (!hasUnwindExceptions(LangOpts))
1488     B.addAttribute(llvm::Attribute::NoUnwind);
1489 
1490   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1491     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1492       B.addAttribute(llvm::Attribute::StackProtect);
1493     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1494       B.addAttribute(llvm::Attribute::StackProtectStrong);
1495     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1496       B.addAttribute(llvm::Attribute::StackProtectReq);
1497   }
1498 
1499   if (!D) {
1500     // If we don't have a declaration to control inlining, the function isn't
1501     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1502     // disabled, mark the function as noinline.
1503     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1504         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1505       B.addAttribute(llvm::Attribute::NoInline);
1506 
1507     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1508     return;
1509   }
1510 
1511   // Track whether we need to add the optnone LLVM attribute,
1512   // starting with the default for this optimization level.
1513   bool ShouldAddOptNone =
1514       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1515   // We can't add optnone in the following cases, it won't pass the verifier.
1516   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1517   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1518   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1519 
1520   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1521     B.addAttribute(llvm::Attribute::OptimizeNone);
1522 
1523     // OptimizeNone implies noinline; we should not be inlining such functions.
1524     B.addAttribute(llvm::Attribute::NoInline);
1525     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1526            "OptimizeNone and AlwaysInline on same function!");
1527 
1528     // We still need to handle naked functions even though optnone subsumes
1529     // much of their semantics.
1530     if (D->hasAttr<NakedAttr>())
1531       B.addAttribute(llvm::Attribute::Naked);
1532 
1533     // OptimizeNone wins over OptimizeForSize and MinSize.
1534     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1535     F->removeFnAttr(llvm::Attribute::MinSize);
1536   } else if (D->hasAttr<NakedAttr>()) {
1537     // Naked implies noinline: we should not be inlining such functions.
1538     B.addAttribute(llvm::Attribute::Naked);
1539     B.addAttribute(llvm::Attribute::NoInline);
1540   } else if (D->hasAttr<NoDuplicateAttr>()) {
1541     B.addAttribute(llvm::Attribute::NoDuplicate);
1542   } else if (D->hasAttr<NoInlineAttr>()) {
1543     B.addAttribute(llvm::Attribute::NoInline);
1544   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1545              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1546     // (noinline wins over always_inline, and we can't specify both in IR)
1547     B.addAttribute(llvm::Attribute::AlwaysInline);
1548   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1549     // If we're not inlining, then force everything that isn't always_inline to
1550     // carry an explicit noinline attribute.
1551     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1552       B.addAttribute(llvm::Attribute::NoInline);
1553   } else {
1554     // Otherwise, propagate the inline hint attribute and potentially use its
1555     // absence to mark things as noinline.
1556     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1557       // Search function and template pattern redeclarations for inline.
1558       auto CheckForInline = [](const FunctionDecl *FD) {
1559         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1560           return Redecl->isInlineSpecified();
1561         };
1562         if (any_of(FD->redecls(), CheckRedeclForInline))
1563           return true;
1564         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1565         if (!Pattern)
1566           return false;
1567         return any_of(Pattern->redecls(), CheckRedeclForInline);
1568       };
1569       if (CheckForInline(FD)) {
1570         B.addAttribute(llvm::Attribute::InlineHint);
1571       } else if (CodeGenOpts.getInlining() ==
1572                      CodeGenOptions::OnlyHintInlining &&
1573                  !FD->isInlined() &&
1574                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1575         B.addAttribute(llvm::Attribute::NoInline);
1576       }
1577     }
1578   }
1579 
1580   // Add other optimization related attributes if we are optimizing this
1581   // function.
1582   if (!D->hasAttr<OptimizeNoneAttr>()) {
1583     if (D->hasAttr<ColdAttr>()) {
1584       if (!ShouldAddOptNone)
1585         B.addAttribute(llvm::Attribute::OptimizeForSize);
1586       B.addAttribute(llvm::Attribute::Cold);
1587     }
1588 
1589     if (D->hasAttr<MinSizeAttr>())
1590       B.addAttribute(llvm::Attribute::MinSize);
1591   }
1592 
1593   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1594 
1595   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1596   if (alignment)
1597     F->setAlignment(llvm::Align(alignment));
1598 
1599   if (!D->hasAttr<AlignedAttr>())
1600     if (LangOpts.FunctionAlignment)
1601       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1602 
1603   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1604   // reserve a bit for differentiating between virtual and non-virtual member
1605   // functions. If the current target's C++ ABI requires this and this is a
1606   // member function, set its alignment accordingly.
1607   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1608     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1609       F->setAlignment(llvm::Align(2));
1610   }
1611 
1612   // In the cross-dso CFI mode with canonical jump tables, we want !type
1613   // attributes on definitions only.
1614   if (CodeGenOpts.SanitizeCfiCrossDso &&
1615       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1616     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1617       // Skip available_externally functions. They won't be codegen'ed in the
1618       // current module anyway.
1619       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1620         CreateFunctionTypeMetadataForIcall(FD, F);
1621     }
1622   }
1623 
1624   // Emit type metadata on member functions for member function pointer checks.
1625   // These are only ever necessary on definitions; we're guaranteed that the
1626   // definition will be present in the LTO unit as a result of LTO visibility.
1627   auto *MD = dyn_cast<CXXMethodDecl>(D);
1628   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1629     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1630       llvm::Metadata *Id =
1631           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1632               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1633       F->addTypeMetadata(0, Id);
1634     }
1635   }
1636 }
1637 
1638 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1639   const Decl *D = GD.getDecl();
1640   if (dyn_cast_or_null<NamedDecl>(D))
1641     setGVProperties(GV, GD);
1642   else
1643     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1644 
1645   if (D && D->hasAttr<UsedAttr>())
1646     addUsedGlobal(GV);
1647 
1648   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1649     const auto *VD = cast<VarDecl>(D);
1650     if (VD->getType().isConstQualified() &&
1651         VD->getStorageDuration() == SD_Static)
1652       addUsedGlobal(GV);
1653   }
1654 }
1655 
1656 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1657                                                 llvm::AttrBuilder &Attrs) {
1658   // Add target-cpu and target-features attributes to functions. If
1659   // we have a decl for the function and it has a target attribute then
1660   // parse that and add it to the feature set.
1661   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1662   std::vector<std::string> Features;
1663   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1664   FD = FD ? FD->getMostRecentDecl() : FD;
1665   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1666   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1667   bool AddedAttr = false;
1668   if (TD || SD) {
1669     llvm::StringMap<bool> FeatureMap;
1670     getFunctionFeatureMap(FeatureMap, GD);
1671 
1672     // Produce the canonical string for this set of features.
1673     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1674       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1675 
1676     // Now add the target-cpu and target-features to the function.
1677     // While we populated the feature map above, we still need to
1678     // get and parse the target attribute so we can get the cpu for
1679     // the function.
1680     if (TD) {
1681       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1682       if (ParsedAttr.Architecture != "" &&
1683           getTarget().isValidCPUName(ParsedAttr.Architecture))
1684         TargetCPU = ParsedAttr.Architecture;
1685     }
1686   } else {
1687     // Otherwise just add the existing target cpu and target features to the
1688     // function.
1689     Features = getTarget().getTargetOpts().Features;
1690   }
1691 
1692   if (TargetCPU != "") {
1693     Attrs.addAttribute("target-cpu", TargetCPU);
1694     AddedAttr = true;
1695   }
1696   if (!Features.empty()) {
1697     llvm::sort(Features);
1698     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1699     AddedAttr = true;
1700   }
1701 
1702   return AddedAttr;
1703 }
1704 
1705 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1706                                           llvm::GlobalObject *GO) {
1707   const Decl *D = GD.getDecl();
1708   SetCommonAttributes(GD, GO);
1709 
1710   if (D) {
1711     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1712       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1713         GV->addAttribute("bss-section", SA->getName());
1714       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1715         GV->addAttribute("data-section", SA->getName());
1716       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1717         GV->addAttribute("rodata-section", SA->getName());
1718       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1719         GV->addAttribute("relro-section", SA->getName());
1720     }
1721 
1722     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1723       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1724         if (!D->getAttr<SectionAttr>())
1725           F->addFnAttr("implicit-section-name", SA->getName());
1726 
1727       llvm::AttrBuilder Attrs;
1728       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1729         // We know that GetCPUAndFeaturesAttributes will always have the
1730         // newest set, since it has the newest possible FunctionDecl, so the
1731         // new ones should replace the old.
1732         F->removeFnAttr("target-cpu");
1733         F->removeFnAttr("target-features");
1734         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1735       }
1736     }
1737 
1738     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1739       GO->setSection(CSA->getName());
1740     else if (const auto *SA = D->getAttr<SectionAttr>())
1741       GO->setSection(SA->getName());
1742   }
1743 
1744   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1745 }
1746 
1747 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1748                                                   llvm::Function *F,
1749                                                   const CGFunctionInfo &FI) {
1750   const Decl *D = GD.getDecl();
1751   SetLLVMFunctionAttributes(GD, FI, F);
1752   SetLLVMFunctionAttributesForDefinition(D, F);
1753 
1754   F->setLinkage(llvm::Function::InternalLinkage);
1755 
1756   setNonAliasAttributes(GD, F);
1757 }
1758 
1759 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1760   // Set linkage and visibility in case we never see a definition.
1761   LinkageInfo LV = ND->getLinkageAndVisibility();
1762   // Don't set internal linkage on declarations.
1763   // "extern_weak" is overloaded in LLVM; we probably should have
1764   // separate linkage types for this.
1765   if (isExternallyVisible(LV.getLinkage()) &&
1766       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1767     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1768 }
1769 
1770 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1771                                                        llvm::Function *F) {
1772   // Only if we are checking indirect calls.
1773   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1774     return;
1775 
1776   // Non-static class methods are handled via vtable or member function pointer
1777   // checks elsewhere.
1778   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1779     return;
1780 
1781   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1782   F->addTypeMetadata(0, MD);
1783   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1784 
1785   // Emit a hash-based bit set entry for cross-DSO calls.
1786   if (CodeGenOpts.SanitizeCfiCrossDso)
1787     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1788       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1789 }
1790 
1791 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1792                                           bool IsIncompleteFunction,
1793                                           bool IsThunk) {
1794 
1795   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1796     // If this is an intrinsic function, set the function's attributes
1797     // to the intrinsic's attributes.
1798     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1799     return;
1800   }
1801 
1802   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1803 
1804   if (!IsIncompleteFunction)
1805     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1806 
1807   // Add the Returned attribute for "this", except for iOS 5 and earlier
1808   // where substantial code, including the libstdc++ dylib, was compiled with
1809   // GCC and does not actually return "this".
1810   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1811       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1812     assert(!F->arg_empty() &&
1813            F->arg_begin()->getType()
1814              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1815            "unexpected this return");
1816     F->addAttribute(1, llvm::Attribute::Returned);
1817   }
1818 
1819   // Only a few attributes are set on declarations; these may later be
1820   // overridden by a definition.
1821 
1822   setLinkageForGV(F, FD);
1823   setGVProperties(F, FD);
1824 
1825   // Setup target-specific attributes.
1826   if (!IsIncompleteFunction && F->isDeclaration())
1827     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1828 
1829   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1830     F->setSection(CSA->getName());
1831   else if (const auto *SA = FD->getAttr<SectionAttr>())
1832      F->setSection(SA->getName());
1833 
1834   if (FD->isReplaceableGlobalAllocationFunction()) {
1835     // A replaceable global allocation function does not act like a builtin by
1836     // default, only if it is invoked by a new-expression or delete-expression.
1837     F->addAttribute(llvm::AttributeList::FunctionIndex,
1838                     llvm::Attribute::NoBuiltin);
1839 
1840     // A sane operator new returns a non-aliasing pointer.
1841     // FIXME: Also add NonNull attribute to the return value
1842     // for the non-nothrow forms?
1843     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1844     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1845         (Kind == OO_New || Kind == OO_Array_New))
1846       F->addAttribute(llvm::AttributeList::ReturnIndex,
1847                       llvm::Attribute::NoAlias);
1848   }
1849 
1850   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1851     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1852   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1853     if (MD->isVirtual())
1854       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1855 
1856   // Don't emit entries for function declarations in the cross-DSO mode. This
1857   // is handled with better precision by the receiving DSO. But if jump tables
1858   // are non-canonical then we need type metadata in order to produce the local
1859   // jump table.
1860   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1861       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1862     CreateFunctionTypeMetadataForIcall(FD, F);
1863 
1864   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1865     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1866 
1867   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1868     // Annotate the callback behavior as metadata:
1869     //  - The callback callee (as argument number).
1870     //  - The callback payloads (as argument numbers).
1871     llvm::LLVMContext &Ctx = F->getContext();
1872     llvm::MDBuilder MDB(Ctx);
1873 
1874     // The payload indices are all but the first one in the encoding. The first
1875     // identifies the callback callee.
1876     int CalleeIdx = *CB->encoding_begin();
1877     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1878     F->addMetadata(llvm::LLVMContext::MD_callback,
1879                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1880                                                CalleeIdx, PayloadIndices,
1881                                                /* VarArgsArePassed */ false)}));
1882   }
1883 }
1884 
1885 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1886   assert(!GV->isDeclaration() &&
1887          "Only globals with definition can force usage.");
1888   LLVMUsed.emplace_back(GV);
1889 }
1890 
1891 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1892   assert(!GV->isDeclaration() &&
1893          "Only globals with definition can force usage.");
1894   LLVMCompilerUsed.emplace_back(GV);
1895 }
1896 
1897 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1898                      std::vector<llvm::WeakTrackingVH> &List) {
1899   // Don't create llvm.used if there is no need.
1900   if (List.empty())
1901     return;
1902 
1903   // Convert List to what ConstantArray needs.
1904   SmallVector<llvm::Constant*, 8> UsedArray;
1905   UsedArray.resize(List.size());
1906   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1907     UsedArray[i] =
1908         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1909             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1910   }
1911 
1912   if (UsedArray.empty())
1913     return;
1914   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1915 
1916   auto *GV = new llvm::GlobalVariable(
1917       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1918       llvm::ConstantArray::get(ATy, UsedArray), Name);
1919 
1920   GV->setSection("llvm.metadata");
1921 }
1922 
1923 void CodeGenModule::emitLLVMUsed() {
1924   emitUsed(*this, "llvm.used", LLVMUsed);
1925   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1926 }
1927 
1928 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1929   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1930   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1931 }
1932 
1933 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1934   llvm::SmallString<32> Opt;
1935   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1936   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1937   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1938 }
1939 
1940 void CodeGenModule::AddDependentLib(StringRef Lib) {
1941   auto &C = getLLVMContext();
1942   if (getTarget().getTriple().isOSBinFormatELF()) {
1943       ELFDependentLibraries.push_back(
1944         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1945     return;
1946   }
1947 
1948   llvm::SmallString<24> Opt;
1949   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1950   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1951   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1952 }
1953 
1954 /// Add link options implied by the given module, including modules
1955 /// it depends on, using a postorder walk.
1956 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1957                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1958                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1959   // Import this module's parent.
1960   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1961     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1962   }
1963 
1964   // Import this module's dependencies.
1965   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1966     if (Visited.insert(Mod->Imports[I - 1]).second)
1967       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1968   }
1969 
1970   // Add linker options to link against the libraries/frameworks
1971   // described by this module.
1972   llvm::LLVMContext &Context = CGM.getLLVMContext();
1973   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1974 
1975   // For modules that use export_as for linking, use that module
1976   // name instead.
1977   if (Mod->UseExportAsModuleLinkName)
1978     return;
1979 
1980   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1981     // Link against a framework.  Frameworks are currently Darwin only, so we
1982     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1983     if (Mod->LinkLibraries[I-1].IsFramework) {
1984       llvm::Metadata *Args[2] = {
1985           llvm::MDString::get(Context, "-framework"),
1986           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1987 
1988       Metadata.push_back(llvm::MDNode::get(Context, Args));
1989       continue;
1990     }
1991 
1992     // Link against a library.
1993     if (IsELF) {
1994       llvm::Metadata *Args[2] = {
1995           llvm::MDString::get(Context, "lib"),
1996           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
1997       };
1998       Metadata.push_back(llvm::MDNode::get(Context, Args));
1999     } else {
2000       llvm::SmallString<24> Opt;
2001       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2002           Mod->LinkLibraries[I - 1].Library, Opt);
2003       auto *OptString = llvm::MDString::get(Context, Opt);
2004       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2005     }
2006   }
2007 }
2008 
2009 void CodeGenModule::EmitModuleLinkOptions() {
2010   // Collect the set of all of the modules we want to visit to emit link
2011   // options, which is essentially the imported modules and all of their
2012   // non-explicit child modules.
2013   llvm::SetVector<clang::Module *> LinkModules;
2014   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2015   SmallVector<clang::Module *, 16> Stack;
2016 
2017   // Seed the stack with imported modules.
2018   for (Module *M : ImportedModules) {
2019     // Do not add any link flags when an implementation TU of a module imports
2020     // a header of that same module.
2021     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2022         !getLangOpts().isCompilingModule())
2023       continue;
2024     if (Visited.insert(M).second)
2025       Stack.push_back(M);
2026   }
2027 
2028   // Find all of the modules to import, making a little effort to prune
2029   // non-leaf modules.
2030   while (!Stack.empty()) {
2031     clang::Module *Mod = Stack.pop_back_val();
2032 
2033     bool AnyChildren = false;
2034 
2035     // Visit the submodules of this module.
2036     for (const auto &SM : Mod->submodules()) {
2037       // Skip explicit children; they need to be explicitly imported to be
2038       // linked against.
2039       if (SM->IsExplicit)
2040         continue;
2041 
2042       if (Visited.insert(SM).second) {
2043         Stack.push_back(SM);
2044         AnyChildren = true;
2045       }
2046     }
2047 
2048     // We didn't find any children, so add this module to the list of
2049     // modules to link against.
2050     if (!AnyChildren) {
2051       LinkModules.insert(Mod);
2052     }
2053   }
2054 
2055   // Add link options for all of the imported modules in reverse topological
2056   // order.  We don't do anything to try to order import link flags with respect
2057   // to linker options inserted by things like #pragma comment().
2058   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2059   Visited.clear();
2060   for (Module *M : LinkModules)
2061     if (Visited.insert(M).second)
2062       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2063   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2064   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2065 
2066   // Add the linker options metadata flag.
2067   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2068   for (auto *MD : LinkerOptionsMetadata)
2069     NMD->addOperand(MD);
2070 }
2071 
2072 void CodeGenModule::EmitDeferred() {
2073   // Emit deferred declare target declarations.
2074   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2075     getOpenMPRuntime().emitDeferredTargetDecls();
2076 
2077   // Emit code for any potentially referenced deferred decls.  Since a
2078   // previously unused static decl may become used during the generation of code
2079   // for a static function, iterate until no changes are made.
2080 
2081   if (!DeferredVTables.empty()) {
2082     EmitDeferredVTables();
2083 
2084     // Emitting a vtable doesn't directly cause more vtables to
2085     // become deferred, although it can cause functions to be
2086     // emitted that then need those vtables.
2087     assert(DeferredVTables.empty());
2088   }
2089 
2090   // Stop if we're out of both deferred vtables and deferred declarations.
2091   if (DeferredDeclsToEmit.empty())
2092     return;
2093 
2094   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2095   // work, it will not interfere with this.
2096   std::vector<GlobalDecl> CurDeclsToEmit;
2097   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2098 
2099   for (GlobalDecl &D : CurDeclsToEmit) {
2100     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2101     // to get GlobalValue with exactly the type we need, not something that
2102     // might had been created for another decl with the same mangled name but
2103     // different type.
2104     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2105         GetAddrOfGlobal(D, ForDefinition));
2106 
2107     // In case of different address spaces, we may still get a cast, even with
2108     // IsForDefinition equal to true. Query mangled names table to get
2109     // GlobalValue.
2110     if (!GV)
2111       GV = GetGlobalValue(getMangledName(D));
2112 
2113     // Make sure GetGlobalValue returned non-null.
2114     assert(GV);
2115 
2116     // Check to see if we've already emitted this.  This is necessary
2117     // for a couple of reasons: first, decls can end up in the
2118     // deferred-decls queue multiple times, and second, decls can end
2119     // up with definitions in unusual ways (e.g. by an extern inline
2120     // function acquiring a strong function redefinition).  Just
2121     // ignore these cases.
2122     if (!GV->isDeclaration())
2123       continue;
2124 
2125     // If this is OpenMP, check if it is legal to emit this global normally.
2126     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2127       continue;
2128 
2129     // Otherwise, emit the definition and move on to the next one.
2130     EmitGlobalDefinition(D, GV);
2131 
2132     // If we found out that we need to emit more decls, do that recursively.
2133     // This has the advantage that the decls are emitted in a DFS and related
2134     // ones are close together, which is convenient for testing.
2135     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2136       EmitDeferred();
2137       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2138     }
2139   }
2140 }
2141 
2142 void CodeGenModule::EmitVTablesOpportunistically() {
2143   // Try to emit external vtables as available_externally if they have emitted
2144   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2145   // is not allowed to create new references to things that need to be emitted
2146   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2147 
2148   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2149          && "Only emit opportunistic vtables with optimizations");
2150 
2151   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2152     assert(getVTables().isVTableExternal(RD) &&
2153            "This queue should only contain external vtables");
2154     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2155       VTables.GenerateClassData(RD);
2156   }
2157   OpportunisticVTables.clear();
2158 }
2159 
2160 void CodeGenModule::EmitGlobalAnnotations() {
2161   if (Annotations.empty())
2162     return;
2163 
2164   // Create a new global variable for the ConstantStruct in the Module.
2165   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2166     Annotations[0]->getType(), Annotations.size()), Annotations);
2167   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2168                                       llvm::GlobalValue::AppendingLinkage,
2169                                       Array, "llvm.global.annotations");
2170   gv->setSection(AnnotationSection);
2171 }
2172 
2173 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2174   llvm::Constant *&AStr = AnnotationStrings[Str];
2175   if (AStr)
2176     return AStr;
2177 
2178   // Not found yet, create a new global.
2179   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2180   auto *gv =
2181       new llvm::GlobalVariable(getModule(), s->getType(), true,
2182                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2183   gv->setSection(AnnotationSection);
2184   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2185   AStr = gv;
2186   return gv;
2187 }
2188 
2189 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2190   SourceManager &SM = getContext().getSourceManager();
2191   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2192   if (PLoc.isValid())
2193     return EmitAnnotationString(PLoc.getFilename());
2194   return EmitAnnotationString(SM.getBufferName(Loc));
2195 }
2196 
2197 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2198   SourceManager &SM = getContext().getSourceManager();
2199   PresumedLoc PLoc = SM.getPresumedLoc(L);
2200   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2201     SM.getExpansionLineNumber(L);
2202   return llvm::ConstantInt::get(Int32Ty, LineNo);
2203 }
2204 
2205 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2206                                                 const AnnotateAttr *AA,
2207                                                 SourceLocation L) {
2208   // Get the globals for file name, annotation, and the line number.
2209   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2210                  *UnitGV = EmitAnnotationUnit(L),
2211                  *LineNoCst = EmitAnnotationLineNo(L);
2212 
2213   // Create the ConstantStruct for the global annotation.
2214   llvm::Constant *Fields[4] = {
2215     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2216     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2217     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2218     LineNoCst
2219   };
2220   return llvm::ConstantStruct::getAnon(Fields);
2221 }
2222 
2223 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2224                                          llvm::GlobalValue *GV) {
2225   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2226   // Get the struct elements for these annotations.
2227   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2228     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2229 }
2230 
2231 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2232                                            llvm::Function *Fn,
2233                                            SourceLocation Loc) const {
2234   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2235   // Blacklist by function name.
2236   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2237     return true;
2238   // Blacklist by location.
2239   if (Loc.isValid())
2240     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2241   // If location is unknown, this may be a compiler-generated function. Assume
2242   // it's located in the main file.
2243   auto &SM = Context.getSourceManager();
2244   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2245     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2246   }
2247   return false;
2248 }
2249 
2250 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2251                                            SourceLocation Loc, QualType Ty,
2252                                            StringRef Category) const {
2253   // For now globals can be blacklisted only in ASan and KASan.
2254   const SanitizerMask EnabledAsanMask =
2255       LangOpts.Sanitize.Mask &
2256       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2257        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2258        SanitizerKind::MemTag);
2259   if (!EnabledAsanMask)
2260     return false;
2261   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2262   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2263     return true;
2264   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2265     return true;
2266   // Check global type.
2267   if (!Ty.isNull()) {
2268     // Drill down the array types: if global variable of a fixed type is
2269     // blacklisted, we also don't instrument arrays of them.
2270     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2271       Ty = AT->getElementType();
2272     Ty = Ty.getCanonicalType().getUnqualifiedType();
2273     // We allow to blacklist only record types (classes, structs etc.)
2274     if (Ty->isRecordType()) {
2275       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2276       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2277         return true;
2278     }
2279   }
2280   return false;
2281 }
2282 
2283 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2284                                    StringRef Category) const {
2285   const auto &XRayFilter = getContext().getXRayFilter();
2286   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2287   auto Attr = ImbueAttr::NONE;
2288   if (Loc.isValid())
2289     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2290   if (Attr == ImbueAttr::NONE)
2291     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2292   switch (Attr) {
2293   case ImbueAttr::NONE:
2294     return false;
2295   case ImbueAttr::ALWAYS:
2296     Fn->addFnAttr("function-instrument", "xray-always");
2297     break;
2298   case ImbueAttr::ALWAYS_ARG1:
2299     Fn->addFnAttr("function-instrument", "xray-always");
2300     Fn->addFnAttr("xray-log-args", "1");
2301     break;
2302   case ImbueAttr::NEVER:
2303     Fn->addFnAttr("function-instrument", "xray-never");
2304     break;
2305   }
2306   return true;
2307 }
2308 
2309 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2310   // Never defer when EmitAllDecls is specified.
2311   if (LangOpts.EmitAllDecls)
2312     return true;
2313 
2314   if (CodeGenOpts.KeepStaticConsts) {
2315     const auto *VD = dyn_cast<VarDecl>(Global);
2316     if (VD && VD->getType().isConstQualified() &&
2317         VD->getStorageDuration() == SD_Static)
2318       return true;
2319   }
2320 
2321   return getContext().DeclMustBeEmitted(Global);
2322 }
2323 
2324 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2325   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2326     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2327       // Implicit template instantiations may change linkage if they are later
2328       // explicitly instantiated, so they should not be emitted eagerly.
2329       return false;
2330     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2331     // not emit them eagerly unless we sure that the function must be emitted on
2332     // the host.
2333     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2334         !LangOpts.OpenMPIsDevice &&
2335         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2336         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2337       return false;
2338   }
2339   if (const auto *VD = dyn_cast<VarDecl>(Global))
2340     if (Context.getInlineVariableDefinitionKind(VD) ==
2341         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2342       // A definition of an inline constexpr static data member may change
2343       // linkage later if it's redeclared outside the class.
2344       return false;
2345   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2346   // codegen for global variables, because they may be marked as threadprivate.
2347   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2348       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2349       !isTypeConstant(Global->getType(), false) &&
2350       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2351     return false;
2352 
2353   return true;
2354 }
2355 
2356 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2357     const CXXUuidofExpr* E) {
2358   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2359   // well-formed.
2360   StringRef Uuid = E->getUuidStr();
2361   std::string Name = "_GUID_" + Uuid.lower();
2362   std::replace(Name.begin(), Name.end(), '-', '_');
2363 
2364   // The UUID descriptor should be pointer aligned.
2365   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2366 
2367   // Look for an existing global.
2368   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2369     return ConstantAddress(GV, Alignment);
2370 
2371   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2372   assert(Init && "failed to initialize as constant");
2373 
2374   auto *GV = new llvm::GlobalVariable(
2375       getModule(), Init->getType(),
2376       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2377   if (supportsCOMDAT())
2378     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2379   setDSOLocal(GV);
2380   return ConstantAddress(GV, Alignment);
2381 }
2382 
2383 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2384   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2385   assert(AA && "No alias?");
2386 
2387   CharUnits Alignment = getContext().getDeclAlign(VD);
2388   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2389 
2390   // See if there is already something with the target's name in the module.
2391   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2392   if (Entry) {
2393     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2394     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2395     return ConstantAddress(Ptr, Alignment);
2396   }
2397 
2398   llvm::Constant *Aliasee;
2399   if (isa<llvm::FunctionType>(DeclTy))
2400     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2401                                       GlobalDecl(cast<FunctionDecl>(VD)),
2402                                       /*ForVTable=*/false);
2403   else
2404     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2405                                     llvm::PointerType::getUnqual(DeclTy),
2406                                     nullptr);
2407 
2408   auto *F = cast<llvm::GlobalValue>(Aliasee);
2409   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2410   WeakRefReferences.insert(F);
2411 
2412   return ConstantAddress(Aliasee, Alignment);
2413 }
2414 
2415 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2416   const auto *Global = cast<ValueDecl>(GD.getDecl());
2417 
2418   // Weak references don't produce any output by themselves.
2419   if (Global->hasAttr<WeakRefAttr>())
2420     return;
2421 
2422   // If this is an alias definition (which otherwise looks like a declaration)
2423   // emit it now.
2424   if (Global->hasAttr<AliasAttr>())
2425     return EmitAliasDefinition(GD);
2426 
2427   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2428   if (Global->hasAttr<IFuncAttr>())
2429     return emitIFuncDefinition(GD);
2430 
2431   // If this is a cpu_dispatch multiversion function, emit the resolver.
2432   if (Global->hasAttr<CPUDispatchAttr>())
2433     return emitCPUDispatchDefinition(GD);
2434 
2435   // If this is CUDA, be selective about which declarations we emit.
2436   if (LangOpts.CUDA) {
2437     if (LangOpts.CUDAIsDevice) {
2438       if (!Global->hasAttr<CUDADeviceAttr>() &&
2439           !Global->hasAttr<CUDAGlobalAttr>() &&
2440           !Global->hasAttr<CUDAConstantAttr>() &&
2441           !Global->hasAttr<CUDASharedAttr>() &&
2442           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2443         return;
2444     } else {
2445       // We need to emit host-side 'shadows' for all global
2446       // device-side variables because the CUDA runtime needs their
2447       // size and host-side address in order to provide access to
2448       // their device-side incarnations.
2449 
2450       // So device-only functions are the only things we skip.
2451       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2452           Global->hasAttr<CUDADeviceAttr>())
2453         return;
2454 
2455       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2456              "Expected Variable or Function");
2457     }
2458   }
2459 
2460   if (LangOpts.OpenMP) {
2461     // If this is OpenMP, check if it is legal to emit this global normally.
2462     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2463       return;
2464     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2465       if (MustBeEmitted(Global))
2466         EmitOMPDeclareReduction(DRD);
2467       return;
2468     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2469       if (MustBeEmitted(Global))
2470         EmitOMPDeclareMapper(DMD);
2471       return;
2472     }
2473   }
2474 
2475   // Ignore declarations, they will be emitted on their first use.
2476   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2477     // Forward declarations are emitted lazily on first use.
2478     if (!FD->doesThisDeclarationHaveABody()) {
2479       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2480         return;
2481 
2482       StringRef MangledName = getMangledName(GD);
2483 
2484       // Compute the function info and LLVM type.
2485       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2486       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2487 
2488       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2489                               /*DontDefer=*/false);
2490       return;
2491     }
2492   } else {
2493     const auto *VD = cast<VarDecl>(Global);
2494     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2495     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2496         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2497       if (LangOpts.OpenMP) {
2498         // Emit declaration of the must-be-emitted declare target variable.
2499         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2500                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2501           bool UnifiedMemoryEnabled =
2502               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2503           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2504               !UnifiedMemoryEnabled) {
2505             (void)GetAddrOfGlobalVar(VD);
2506           } else {
2507             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2508                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2509                      UnifiedMemoryEnabled)) &&
2510                    "Link clause or to clause with unified memory expected.");
2511             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2512           }
2513 
2514           return;
2515         }
2516       }
2517       // If this declaration may have caused an inline variable definition to
2518       // change linkage, make sure that it's emitted.
2519       if (Context.getInlineVariableDefinitionKind(VD) ==
2520           ASTContext::InlineVariableDefinitionKind::Strong)
2521         GetAddrOfGlobalVar(VD);
2522       return;
2523     }
2524   }
2525 
2526   // Defer code generation to first use when possible, e.g. if this is an inline
2527   // function. If the global must always be emitted, do it eagerly if possible
2528   // to benefit from cache locality.
2529   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2530     // Emit the definition if it can't be deferred.
2531     EmitGlobalDefinition(GD);
2532     return;
2533   }
2534 
2535     // Check if this must be emitted as declare variant.
2536   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2537       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2538     return;
2539 
2540   // If we're deferring emission of a C++ variable with an
2541   // initializer, remember the order in which it appeared in the file.
2542   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2543       cast<VarDecl>(Global)->hasInit()) {
2544     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2545     CXXGlobalInits.push_back(nullptr);
2546   }
2547 
2548   StringRef MangledName = getMangledName(GD);
2549   if (GetGlobalValue(MangledName) != nullptr) {
2550     // The value has already been used and should therefore be emitted.
2551     addDeferredDeclToEmit(GD);
2552   } else if (MustBeEmitted(Global)) {
2553     // The value must be emitted, but cannot be emitted eagerly.
2554     assert(!MayBeEmittedEagerly(Global));
2555     addDeferredDeclToEmit(GD);
2556   } else {
2557     // Otherwise, remember that we saw a deferred decl with this name.  The
2558     // first use of the mangled name will cause it to move into
2559     // DeferredDeclsToEmit.
2560     DeferredDecls[MangledName] = GD;
2561   }
2562 }
2563 
2564 // Check if T is a class type with a destructor that's not dllimport.
2565 static bool HasNonDllImportDtor(QualType T) {
2566   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2567     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2568       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2569         return true;
2570 
2571   return false;
2572 }
2573 
2574 namespace {
2575   struct FunctionIsDirectlyRecursive
2576       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2577     const StringRef Name;
2578     const Builtin::Context &BI;
2579     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2580         : Name(N), BI(C) {}
2581 
2582     bool VisitCallExpr(const CallExpr *E) {
2583       const FunctionDecl *FD = E->getDirectCallee();
2584       if (!FD)
2585         return false;
2586       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2587       if (Attr && Name == Attr->getLabel())
2588         return true;
2589       unsigned BuiltinID = FD->getBuiltinID();
2590       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2591         return false;
2592       StringRef BuiltinName = BI.getName(BuiltinID);
2593       if (BuiltinName.startswith("__builtin_") &&
2594           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2595         return true;
2596       }
2597       return false;
2598     }
2599 
2600     bool VisitStmt(const Stmt *S) {
2601       for (const Stmt *Child : S->children())
2602         if (Child && this->Visit(Child))
2603           return true;
2604       return false;
2605     }
2606   };
2607 
2608   // Make sure we're not referencing non-imported vars or functions.
2609   struct DLLImportFunctionVisitor
2610       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2611     bool SafeToInline = true;
2612 
2613     bool shouldVisitImplicitCode() const { return true; }
2614 
2615     bool VisitVarDecl(VarDecl *VD) {
2616       if (VD->getTLSKind()) {
2617         // A thread-local variable cannot be imported.
2618         SafeToInline = false;
2619         return SafeToInline;
2620       }
2621 
2622       // A variable definition might imply a destructor call.
2623       if (VD->isThisDeclarationADefinition())
2624         SafeToInline = !HasNonDllImportDtor(VD->getType());
2625 
2626       return SafeToInline;
2627     }
2628 
2629     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2630       if (const auto *D = E->getTemporary()->getDestructor())
2631         SafeToInline = D->hasAttr<DLLImportAttr>();
2632       return SafeToInline;
2633     }
2634 
2635     bool VisitDeclRefExpr(DeclRefExpr *E) {
2636       ValueDecl *VD = E->getDecl();
2637       if (isa<FunctionDecl>(VD))
2638         SafeToInline = VD->hasAttr<DLLImportAttr>();
2639       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2640         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2641       return SafeToInline;
2642     }
2643 
2644     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2645       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2646       return SafeToInline;
2647     }
2648 
2649     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2650       CXXMethodDecl *M = E->getMethodDecl();
2651       if (!M) {
2652         // Call through a pointer to member function. This is safe to inline.
2653         SafeToInline = true;
2654       } else {
2655         SafeToInline = M->hasAttr<DLLImportAttr>();
2656       }
2657       return SafeToInline;
2658     }
2659 
2660     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2661       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2662       return SafeToInline;
2663     }
2664 
2665     bool VisitCXXNewExpr(CXXNewExpr *E) {
2666       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2667       return SafeToInline;
2668     }
2669   };
2670 }
2671 
2672 // isTriviallyRecursive - Check if this function calls another
2673 // decl that, because of the asm attribute or the other decl being a builtin,
2674 // ends up pointing to itself.
2675 bool
2676 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2677   StringRef Name;
2678   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2679     // asm labels are a special kind of mangling we have to support.
2680     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2681     if (!Attr)
2682       return false;
2683     Name = Attr->getLabel();
2684   } else {
2685     Name = FD->getName();
2686   }
2687 
2688   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2689   const Stmt *Body = FD->getBody();
2690   return Body ? Walker.Visit(Body) : false;
2691 }
2692 
2693 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2694   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2695     return true;
2696   const auto *F = cast<FunctionDecl>(GD.getDecl());
2697   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2698     return false;
2699 
2700   if (F->hasAttr<DLLImportAttr>()) {
2701     // Check whether it would be safe to inline this dllimport function.
2702     DLLImportFunctionVisitor Visitor;
2703     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2704     if (!Visitor.SafeToInline)
2705       return false;
2706 
2707     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2708       // Implicit destructor invocations aren't captured in the AST, so the
2709       // check above can't see them. Check for them manually here.
2710       for (const Decl *Member : Dtor->getParent()->decls())
2711         if (isa<FieldDecl>(Member))
2712           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2713             return false;
2714       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2715         if (HasNonDllImportDtor(B.getType()))
2716           return false;
2717     }
2718   }
2719 
2720   // PR9614. Avoid cases where the source code is lying to us. An available
2721   // externally function should have an equivalent function somewhere else,
2722   // but a function that calls itself is clearly not equivalent to the real
2723   // implementation.
2724   // This happens in glibc's btowc and in some configure checks.
2725   return !isTriviallyRecursive(F);
2726 }
2727 
2728 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2729   return CodeGenOpts.OptimizationLevel > 0;
2730 }
2731 
2732 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2733                                                        llvm::GlobalValue *GV) {
2734   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2735 
2736   if (FD->isCPUSpecificMultiVersion()) {
2737     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2738     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2739       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2740     // Requires multiple emits.
2741   } else
2742     EmitGlobalFunctionDefinition(GD, GV);
2743 }
2744 
2745 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2746     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2747   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2748          OpenMPRuntime && "Expected OpenMP device mode.");
2749   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2750 
2751   // Compute the function info and LLVM type.
2752   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2753   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2754 
2755   // Get or create the prototype for the function.
2756   if (!GV || (GV->getType()->getElementType() != Ty)) {
2757     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2758         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2759         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2760         ForDefinition));
2761     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2762                           /*IsIncompleteFunction=*/false,
2763                           /*IsThunk=*/false);
2764   }
2765   // We need to set linkage and visibility on the function before
2766   // generating code for it because various parts of IR generation
2767   // want to propagate this information down (e.g. to local static
2768   // declarations).
2769   auto *Fn = cast<llvm::Function>(GV);
2770   setFunctionLinkage(OldGD, Fn);
2771 
2772   // FIXME: this is redundant with part of
2773   // setFunctionDefinitionAttributes
2774   setGVProperties(Fn, OldGD);
2775 
2776   MaybeHandleStaticInExternC(D, Fn);
2777 
2778   maybeSetTrivialComdat(*D, *Fn);
2779 
2780   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2781 
2782   setNonAliasAttributes(OldGD, Fn);
2783   SetLLVMFunctionAttributesForDefinition(D, Fn);
2784 
2785   if (D->hasAttr<AnnotateAttr>())
2786     AddGlobalAnnotations(D, Fn);
2787 }
2788 
2789 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2790   const auto *D = cast<ValueDecl>(GD.getDecl());
2791 
2792   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2793                                  Context.getSourceManager(),
2794                                  "Generating code for declaration");
2795 
2796   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2797     // At -O0, don't generate IR for functions with available_externally
2798     // linkage.
2799     if (!shouldEmitFunction(GD))
2800       return;
2801 
2802     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2803       std::string Name;
2804       llvm::raw_string_ostream OS(Name);
2805       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2806                                /*Qualified=*/true);
2807       return Name;
2808     });
2809 
2810     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2811       // Make sure to emit the definition(s) before we emit the thunks.
2812       // This is necessary for the generation of certain thunks.
2813       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2814         ABI->emitCXXStructor(GD);
2815       else if (FD->isMultiVersion())
2816         EmitMultiVersionFunctionDefinition(GD, GV);
2817       else
2818         EmitGlobalFunctionDefinition(GD, GV);
2819 
2820       if (Method->isVirtual())
2821         getVTables().EmitThunks(GD);
2822 
2823       return;
2824     }
2825 
2826     if (FD->isMultiVersion())
2827       return EmitMultiVersionFunctionDefinition(GD, GV);
2828     return EmitGlobalFunctionDefinition(GD, GV);
2829   }
2830 
2831   if (const auto *VD = dyn_cast<VarDecl>(D))
2832     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2833 
2834   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2835 }
2836 
2837 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2838                                                       llvm::Function *NewFn);
2839 
2840 static unsigned
2841 TargetMVPriority(const TargetInfo &TI,
2842                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2843   unsigned Priority = 0;
2844   for (StringRef Feat : RO.Conditions.Features)
2845     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2846 
2847   if (!RO.Conditions.Architecture.empty())
2848     Priority = std::max(
2849         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2850   return Priority;
2851 }
2852 
2853 void CodeGenModule::emitMultiVersionFunctions() {
2854   for (GlobalDecl GD : MultiVersionFuncs) {
2855     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2856     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2857     getContext().forEachMultiversionedFunctionVersion(
2858         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2859           GlobalDecl CurGD{
2860               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2861           StringRef MangledName = getMangledName(CurGD);
2862           llvm::Constant *Func = GetGlobalValue(MangledName);
2863           if (!Func) {
2864             if (CurFD->isDefined()) {
2865               EmitGlobalFunctionDefinition(CurGD, nullptr);
2866               Func = GetGlobalValue(MangledName);
2867             } else {
2868               const CGFunctionInfo &FI =
2869                   getTypes().arrangeGlobalDeclaration(GD);
2870               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2871               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2872                                        /*DontDefer=*/false, ForDefinition);
2873             }
2874             assert(Func && "This should have just been created");
2875           }
2876 
2877           const auto *TA = CurFD->getAttr<TargetAttr>();
2878           llvm::SmallVector<StringRef, 8> Feats;
2879           TA->getAddedFeatures(Feats);
2880 
2881           Options.emplace_back(cast<llvm::Function>(Func),
2882                                TA->getArchitecture(), Feats);
2883         });
2884 
2885     llvm::Function *ResolverFunc;
2886     const TargetInfo &TI = getTarget();
2887 
2888     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2889       ResolverFunc = cast<llvm::Function>(
2890           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2891       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2892     } else {
2893       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2894     }
2895 
2896     if (supportsCOMDAT())
2897       ResolverFunc->setComdat(
2898           getModule().getOrInsertComdat(ResolverFunc->getName()));
2899 
2900     llvm::stable_sort(
2901         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2902                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2903           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2904         });
2905     CodeGenFunction CGF(*this);
2906     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2907   }
2908 }
2909 
2910 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2911   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2912   assert(FD && "Not a FunctionDecl?");
2913   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2914   assert(DD && "Not a cpu_dispatch Function?");
2915   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2916 
2917   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2918     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2919     DeclTy = getTypes().GetFunctionType(FInfo);
2920   }
2921 
2922   StringRef ResolverName = getMangledName(GD);
2923 
2924   llvm::Type *ResolverType;
2925   GlobalDecl ResolverGD;
2926   if (getTarget().supportsIFunc())
2927     ResolverType = llvm::FunctionType::get(
2928         llvm::PointerType::get(DeclTy,
2929                                Context.getTargetAddressSpace(FD->getType())),
2930         false);
2931   else {
2932     ResolverType = DeclTy;
2933     ResolverGD = GD;
2934   }
2935 
2936   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2937       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2938   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2939   if (supportsCOMDAT())
2940     ResolverFunc->setComdat(
2941         getModule().getOrInsertComdat(ResolverFunc->getName()));
2942 
2943   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2944   const TargetInfo &Target = getTarget();
2945   unsigned Index = 0;
2946   for (const IdentifierInfo *II : DD->cpus()) {
2947     // Get the name of the target function so we can look it up/create it.
2948     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2949                               getCPUSpecificMangling(*this, II->getName());
2950 
2951     llvm::Constant *Func = GetGlobalValue(MangledName);
2952 
2953     if (!Func) {
2954       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2955       if (ExistingDecl.getDecl() &&
2956           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2957         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2958         Func = GetGlobalValue(MangledName);
2959       } else {
2960         if (!ExistingDecl.getDecl())
2961           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2962 
2963       Func = GetOrCreateLLVMFunction(
2964           MangledName, DeclTy, ExistingDecl,
2965           /*ForVTable=*/false, /*DontDefer=*/true,
2966           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2967       }
2968     }
2969 
2970     llvm::SmallVector<StringRef, 32> Features;
2971     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2972     llvm::transform(Features, Features.begin(),
2973                     [](StringRef Str) { return Str.substr(1); });
2974     Features.erase(std::remove_if(
2975         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2976           return !Target.validateCpuSupports(Feat);
2977         }), Features.end());
2978     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2979     ++Index;
2980   }
2981 
2982   llvm::sort(
2983       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2984                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2985         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2986                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2987       });
2988 
2989   // If the list contains multiple 'default' versions, such as when it contains
2990   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2991   // always run on at least a 'pentium'). We do this by deleting the 'least
2992   // advanced' (read, lowest mangling letter).
2993   while (Options.size() > 1 &&
2994          CodeGenFunction::GetX86CpuSupportsMask(
2995              (Options.end() - 2)->Conditions.Features) == 0) {
2996     StringRef LHSName = (Options.end() - 2)->Function->getName();
2997     StringRef RHSName = (Options.end() - 1)->Function->getName();
2998     if (LHSName.compare(RHSName) < 0)
2999       Options.erase(Options.end() - 2);
3000     else
3001       Options.erase(Options.end() - 1);
3002   }
3003 
3004   CodeGenFunction CGF(*this);
3005   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3006 
3007   if (getTarget().supportsIFunc()) {
3008     std::string AliasName = getMangledNameImpl(
3009         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3010     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3011     if (!AliasFunc) {
3012       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3013           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3014           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3015       auto *GA = llvm::GlobalAlias::create(
3016          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3017       GA->setLinkage(llvm::Function::WeakODRLinkage);
3018       SetCommonAttributes(GD, GA);
3019     }
3020   }
3021 }
3022 
3023 /// If a dispatcher for the specified mangled name is not in the module, create
3024 /// and return an llvm Function with the specified type.
3025 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3026     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3027   std::string MangledName =
3028       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3029 
3030   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3031   // a separate resolver).
3032   std::string ResolverName = MangledName;
3033   if (getTarget().supportsIFunc())
3034     ResolverName += ".ifunc";
3035   else if (FD->isTargetMultiVersion())
3036     ResolverName += ".resolver";
3037 
3038   // If this already exists, just return that one.
3039   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3040     return ResolverGV;
3041 
3042   // Since this is the first time we've created this IFunc, make sure
3043   // that we put this multiversioned function into the list to be
3044   // replaced later if necessary (target multiversioning only).
3045   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3046     MultiVersionFuncs.push_back(GD);
3047 
3048   if (getTarget().supportsIFunc()) {
3049     llvm::Type *ResolverType = llvm::FunctionType::get(
3050         llvm::PointerType::get(
3051             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3052         false);
3053     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3054         MangledName + ".resolver", ResolverType, GlobalDecl{},
3055         /*ForVTable=*/false);
3056     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3057         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3058     GIF->setName(ResolverName);
3059     SetCommonAttributes(FD, GIF);
3060 
3061     return GIF;
3062   }
3063 
3064   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3065       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3066   assert(isa<llvm::GlobalValue>(Resolver) &&
3067          "Resolver should be created for the first time");
3068   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3069   return Resolver;
3070 }
3071 
3072 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3073 /// module, create and return an llvm Function with the specified type. If there
3074 /// is something in the module with the specified name, return it potentially
3075 /// bitcasted to the right type.
3076 ///
3077 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3078 /// to set the attributes on the function when it is first created.
3079 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3080     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3081     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3082     ForDefinition_t IsForDefinition) {
3083   const Decl *D = GD.getDecl();
3084 
3085   // Any attempts to use a MultiVersion function should result in retrieving
3086   // the iFunc instead. Name Mangling will handle the rest of the changes.
3087   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3088     // For the device mark the function as one that should be emitted.
3089     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3090         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3091         !DontDefer && !IsForDefinition) {
3092       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3093         GlobalDecl GDDef;
3094         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3095           GDDef = GlobalDecl(CD, GD.getCtorType());
3096         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3097           GDDef = GlobalDecl(DD, GD.getDtorType());
3098         else
3099           GDDef = GlobalDecl(FDDef);
3100         EmitGlobal(GDDef);
3101       }
3102     }
3103     // Check if this must be emitted as declare variant and emit reference to
3104     // the the declare variant function.
3105     if (LangOpts.OpenMP && OpenMPRuntime)
3106       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3107 
3108     if (FD->isMultiVersion()) {
3109       const auto *TA = FD->getAttr<TargetAttr>();
3110       if (TA && TA->isDefaultVersion())
3111         UpdateMultiVersionNames(GD, FD);
3112       if (!IsForDefinition)
3113         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3114     }
3115   }
3116 
3117   // Lookup the entry, lazily creating it if necessary.
3118   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3119   if (Entry) {
3120     if (WeakRefReferences.erase(Entry)) {
3121       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3122       if (FD && !FD->hasAttr<WeakAttr>())
3123         Entry->setLinkage(llvm::Function::ExternalLinkage);
3124     }
3125 
3126     // Handle dropped DLL attributes.
3127     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3128       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3129       setDSOLocal(Entry);
3130     }
3131 
3132     // If there are two attempts to define the same mangled name, issue an
3133     // error.
3134     if (IsForDefinition && !Entry->isDeclaration()) {
3135       GlobalDecl OtherGD;
3136       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3137       // to make sure that we issue an error only once.
3138       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3139           (GD.getCanonicalDecl().getDecl() !=
3140            OtherGD.getCanonicalDecl().getDecl()) &&
3141           DiagnosedConflictingDefinitions.insert(GD).second) {
3142         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3143             << MangledName;
3144         getDiags().Report(OtherGD.getDecl()->getLocation(),
3145                           diag::note_previous_definition);
3146       }
3147     }
3148 
3149     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3150         (Entry->getType()->getElementType() == Ty)) {
3151       return Entry;
3152     }
3153 
3154     // Make sure the result is of the correct type.
3155     // (If function is requested for a definition, we always need to create a new
3156     // function, not just return a bitcast.)
3157     if (!IsForDefinition)
3158       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3159   }
3160 
3161   // This function doesn't have a complete type (for example, the return
3162   // type is an incomplete struct). Use a fake type instead, and make
3163   // sure not to try to set attributes.
3164   bool IsIncompleteFunction = false;
3165 
3166   llvm::FunctionType *FTy;
3167   if (isa<llvm::FunctionType>(Ty)) {
3168     FTy = cast<llvm::FunctionType>(Ty);
3169   } else {
3170     FTy = llvm::FunctionType::get(VoidTy, false);
3171     IsIncompleteFunction = true;
3172   }
3173 
3174   llvm::Function *F =
3175       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3176                              Entry ? StringRef() : MangledName, &getModule());
3177 
3178   // If we already created a function with the same mangled name (but different
3179   // type) before, take its name and add it to the list of functions to be
3180   // replaced with F at the end of CodeGen.
3181   //
3182   // This happens if there is a prototype for a function (e.g. "int f()") and
3183   // then a definition of a different type (e.g. "int f(int x)").
3184   if (Entry) {
3185     F->takeName(Entry);
3186 
3187     // This might be an implementation of a function without a prototype, in
3188     // which case, try to do special replacement of calls which match the new
3189     // prototype.  The really key thing here is that we also potentially drop
3190     // arguments from the call site so as to make a direct call, which makes the
3191     // inliner happier and suppresses a number of optimizer warnings (!) about
3192     // dropping arguments.
3193     if (!Entry->use_empty()) {
3194       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3195       Entry->removeDeadConstantUsers();
3196     }
3197 
3198     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3199         F, Entry->getType()->getElementType()->getPointerTo());
3200     addGlobalValReplacement(Entry, BC);
3201   }
3202 
3203   assert(F->getName() == MangledName && "name was uniqued!");
3204   if (D)
3205     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3206   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3207     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3208     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3209   }
3210 
3211   if (!DontDefer) {
3212     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3213     // each other bottoming out with the base dtor.  Therefore we emit non-base
3214     // dtors on usage, even if there is no dtor definition in the TU.
3215     if (D && isa<CXXDestructorDecl>(D) &&
3216         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3217                                            GD.getDtorType()))
3218       addDeferredDeclToEmit(GD);
3219 
3220     // This is the first use or definition of a mangled name.  If there is a
3221     // deferred decl with this name, remember that we need to emit it at the end
3222     // of the file.
3223     auto DDI = DeferredDecls.find(MangledName);
3224     if (DDI != DeferredDecls.end()) {
3225       // Move the potentially referenced deferred decl to the
3226       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3227       // don't need it anymore).
3228       addDeferredDeclToEmit(DDI->second);
3229       DeferredDecls.erase(DDI);
3230 
3231       // Otherwise, there are cases we have to worry about where we're
3232       // using a declaration for which we must emit a definition but where
3233       // we might not find a top-level definition:
3234       //   - member functions defined inline in their classes
3235       //   - friend functions defined inline in some class
3236       //   - special member functions with implicit definitions
3237       // If we ever change our AST traversal to walk into class methods,
3238       // this will be unnecessary.
3239       //
3240       // We also don't emit a definition for a function if it's going to be an
3241       // entry in a vtable, unless it's already marked as used.
3242     } else if (getLangOpts().CPlusPlus && D) {
3243       // Look for a declaration that's lexically in a record.
3244       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3245            FD = FD->getPreviousDecl()) {
3246         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3247           if (FD->doesThisDeclarationHaveABody()) {
3248             addDeferredDeclToEmit(GD.getWithDecl(FD));
3249             break;
3250           }
3251         }
3252       }
3253     }
3254   }
3255 
3256   // Make sure the result is of the requested type.
3257   if (!IsIncompleteFunction) {
3258     assert(F->getType()->getElementType() == Ty);
3259     return F;
3260   }
3261 
3262   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3263   return llvm::ConstantExpr::getBitCast(F, PTy);
3264 }
3265 
3266 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3267 /// non-null, then this function will use the specified type if it has to
3268 /// create it (this occurs when we see a definition of the function).
3269 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3270                                                  llvm::Type *Ty,
3271                                                  bool ForVTable,
3272                                                  bool DontDefer,
3273                                               ForDefinition_t IsForDefinition) {
3274   // If there was no specific requested type, just convert it now.
3275   if (!Ty) {
3276     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3277     Ty = getTypes().ConvertType(FD->getType());
3278   }
3279 
3280   // Devirtualized destructor calls may come through here instead of via
3281   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3282   // of the complete destructor when necessary.
3283   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3284     if (getTarget().getCXXABI().isMicrosoft() &&
3285         GD.getDtorType() == Dtor_Complete &&
3286         DD->getParent()->getNumVBases() == 0)
3287       GD = GlobalDecl(DD, Dtor_Base);
3288   }
3289 
3290   StringRef MangledName = getMangledName(GD);
3291   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3292                                  /*IsThunk=*/false, llvm::AttributeList(),
3293                                  IsForDefinition);
3294 }
3295 
3296 static const FunctionDecl *
3297 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3298   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3299   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3300 
3301   IdentifierInfo &CII = C.Idents.get(Name);
3302   for (const auto &Result : DC->lookup(&CII))
3303     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3304       return FD;
3305 
3306   if (!C.getLangOpts().CPlusPlus)
3307     return nullptr;
3308 
3309   // Demangle the premangled name from getTerminateFn()
3310   IdentifierInfo &CXXII =
3311       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3312           ? C.Idents.get("terminate")
3313           : C.Idents.get(Name);
3314 
3315   for (const auto &N : {"__cxxabiv1", "std"}) {
3316     IdentifierInfo &NS = C.Idents.get(N);
3317     for (const auto &Result : DC->lookup(&NS)) {
3318       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3319       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3320         for (const auto &Result : LSD->lookup(&NS))
3321           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3322             break;
3323 
3324       if (ND)
3325         for (const auto &Result : ND->lookup(&CXXII))
3326           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3327             return FD;
3328     }
3329   }
3330 
3331   return nullptr;
3332 }
3333 
3334 /// CreateRuntimeFunction - Create a new runtime function with the specified
3335 /// type and name.
3336 llvm::FunctionCallee
3337 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3338                                      llvm::AttributeList ExtraAttrs, bool Local,
3339                                      bool AssumeConvergent) {
3340   if (AssumeConvergent) {
3341     ExtraAttrs =
3342         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3343                                 llvm::Attribute::Convergent);
3344   }
3345 
3346   llvm::Constant *C =
3347       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3348                               /*DontDefer=*/false, /*IsThunk=*/false,
3349                               ExtraAttrs);
3350 
3351   if (auto *F = dyn_cast<llvm::Function>(C)) {
3352     if (F->empty()) {
3353       F->setCallingConv(getRuntimeCC());
3354 
3355       // In Windows Itanium environments, try to mark runtime functions
3356       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3357       // will link their standard library statically or dynamically. Marking
3358       // functions imported when they are not imported can cause linker errors
3359       // and warnings.
3360       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3361           !getCodeGenOpts().LTOVisibilityPublicStd) {
3362         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3363         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3364           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3365           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3366         }
3367       }
3368       setDSOLocal(F);
3369     }
3370   }
3371 
3372   return {FTy, C};
3373 }
3374 
3375 /// isTypeConstant - Determine whether an object of this type can be emitted
3376 /// as a constant.
3377 ///
3378 /// If ExcludeCtor is true, the duration when the object's constructor runs
3379 /// will not be considered. The caller will need to verify that the object is
3380 /// not written to during its construction.
3381 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3382   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3383     return false;
3384 
3385   if (Context.getLangOpts().CPlusPlus) {
3386     if (const CXXRecordDecl *Record
3387           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3388       return ExcludeCtor && !Record->hasMutableFields() &&
3389              Record->hasTrivialDestructor();
3390   }
3391 
3392   return true;
3393 }
3394 
3395 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3396 /// create and return an llvm GlobalVariable with the specified type.  If there
3397 /// is something in the module with the specified name, return it potentially
3398 /// bitcasted to the right type.
3399 ///
3400 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3401 /// to set the attributes on the global when it is first created.
3402 ///
3403 /// If IsForDefinition is true, it is guaranteed that an actual global with
3404 /// type Ty will be returned, not conversion of a variable with the same
3405 /// mangled name but some other type.
3406 llvm::Constant *
3407 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3408                                      llvm::PointerType *Ty,
3409                                      const VarDecl *D,
3410                                      ForDefinition_t IsForDefinition) {
3411   // Lookup the entry, lazily creating it if necessary.
3412   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3413   if (Entry) {
3414     if (WeakRefReferences.erase(Entry)) {
3415       if (D && !D->hasAttr<WeakAttr>())
3416         Entry->setLinkage(llvm::Function::ExternalLinkage);
3417     }
3418 
3419     // Handle dropped DLL attributes.
3420     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3421       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3422 
3423     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3424       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3425 
3426     if (Entry->getType() == Ty)
3427       return Entry;
3428 
3429     // If there are two attempts to define the same mangled name, issue an
3430     // error.
3431     if (IsForDefinition && !Entry->isDeclaration()) {
3432       GlobalDecl OtherGD;
3433       const VarDecl *OtherD;
3434 
3435       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3436       // to make sure that we issue an error only once.
3437       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3438           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3439           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3440           OtherD->hasInit() &&
3441           DiagnosedConflictingDefinitions.insert(D).second) {
3442         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3443             << MangledName;
3444         getDiags().Report(OtherGD.getDecl()->getLocation(),
3445                           diag::note_previous_definition);
3446       }
3447     }
3448 
3449     // Make sure the result is of the correct type.
3450     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3451       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3452 
3453     // (If global is requested for a definition, we always need to create a new
3454     // global, not just return a bitcast.)
3455     if (!IsForDefinition)
3456       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3457   }
3458 
3459   auto AddrSpace = GetGlobalVarAddressSpace(D);
3460   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3461 
3462   auto *GV = new llvm::GlobalVariable(
3463       getModule(), Ty->getElementType(), false,
3464       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3465       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3466 
3467   // If we already created a global with the same mangled name (but different
3468   // type) before, take its name and remove it from its parent.
3469   if (Entry) {
3470     GV->takeName(Entry);
3471 
3472     if (!Entry->use_empty()) {
3473       llvm::Constant *NewPtrForOldDecl =
3474           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3475       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3476     }
3477 
3478     Entry->eraseFromParent();
3479   }
3480 
3481   // This is the first use or definition of a mangled name.  If there is a
3482   // deferred decl with this name, remember that we need to emit it at the end
3483   // of the file.
3484   auto DDI = DeferredDecls.find(MangledName);
3485   if (DDI != DeferredDecls.end()) {
3486     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3487     // list, and remove it from DeferredDecls (since we don't need it anymore).
3488     addDeferredDeclToEmit(DDI->second);
3489     DeferredDecls.erase(DDI);
3490   }
3491 
3492   // Handle things which are present even on external declarations.
3493   if (D) {
3494     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3495       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3496 
3497     // FIXME: This code is overly simple and should be merged with other global
3498     // handling.
3499     GV->setConstant(isTypeConstant(D->getType(), false));
3500 
3501     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3502 
3503     setLinkageForGV(GV, D);
3504 
3505     if (D->getTLSKind()) {
3506       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3507         CXXThreadLocals.push_back(D);
3508       setTLSMode(GV, *D);
3509     }
3510 
3511     setGVProperties(GV, D);
3512 
3513     // If required by the ABI, treat declarations of static data members with
3514     // inline initializers as definitions.
3515     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3516       EmitGlobalVarDefinition(D);
3517     }
3518 
3519     // Emit section information for extern variables.
3520     if (D->hasExternalStorage()) {
3521       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3522         GV->setSection(SA->getName());
3523     }
3524 
3525     // Handle XCore specific ABI requirements.
3526     if (getTriple().getArch() == llvm::Triple::xcore &&
3527         D->getLanguageLinkage() == CLanguageLinkage &&
3528         D->getType().isConstant(Context) &&
3529         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3530       GV->setSection(".cp.rodata");
3531 
3532     // Check if we a have a const declaration with an initializer, we may be
3533     // able to emit it as available_externally to expose it's value to the
3534     // optimizer.
3535     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3536         D->getType().isConstQualified() && !GV->hasInitializer() &&
3537         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3538       const auto *Record =
3539           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3540       bool HasMutableFields = Record && Record->hasMutableFields();
3541       if (!HasMutableFields) {
3542         const VarDecl *InitDecl;
3543         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3544         if (InitExpr) {
3545           ConstantEmitter emitter(*this);
3546           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3547           if (Init) {
3548             auto *InitType = Init->getType();
3549             if (GV->getType()->getElementType() != InitType) {
3550               // The type of the initializer does not match the definition.
3551               // This happens when an initializer has a different type from
3552               // the type of the global (because of padding at the end of a
3553               // structure for instance).
3554               GV->setName(StringRef());
3555               // Make a new global with the correct type, this is now guaranteed
3556               // to work.
3557               auto *NewGV = cast<llvm::GlobalVariable>(
3558                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3559                       ->stripPointerCasts());
3560 
3561               // Erase the old global, since it is no longer used.
3562               GV->eraseFromParent();
3563               GV = NewGV;
3564             } else {
3565               GV->setInitializer(Init);
3566               GV->setConstant(true);
3567               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3568             }
3569             emitter.finalize(GV);
3570           }
3571         }
3572       }
3573     }
3574   }
3575 
3576   LangAS ExpectedAS =
3577       D ? D->getType().getAddressSpace()
3578         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3579   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3580          Ty->getPointerAddressSpace());
3581   if (AddrSpace != ExpectedAS)
3582     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3583                                                        ExpectedAS, Ty);
3584 
3585   if (GV->isDeclaration())
3586     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3587 
3588   return GV;
3589 }
3590 
3591 llvm::Constant *
3592 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3593                                ForDefinition_t IsForDefinition) {
3594   const Decl *D = GD.getDecl();
3595   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3596     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3597                                 /*DontDefer=*/false, IsForDefinition);
3598   else if (isa<CXXMethodDecl>(D)) {
3599     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3600         cast<CXXMethodDecl>(D));
3601     auto Ty = getTypes().GetFunctionType(*FInfo);
3602     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3603                              IsForDefinition);
3604   } else if (isa<FunctionDecl>(D)) {
3605     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3606     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3607     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3608                              IsForDefinition);
3609   } else
3610     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3611                               IsForDefinition);
3612 }
3613 
3614 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3615     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3616     unsigned Alignment) {
3617   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3618   llvm::GlobalVariable *OldGV = nullptr;
3619 
3620   if (GV) {
3621     // Check if the variable has the right type.
3622     if (GV->getType()->getElementType() == Ty)
3623       return GV;
3624 
3625     // Because C++ name mangling, the only way we can end up with an already
3626     // existing global with the same name is if it has been declared extern "C".
3627     assert(GV->isDeclaration() && "Declaration has wrong type!");
3628     OldGV = GV;
3629   }
3630 
3631   // Create a new variable.
3632   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3633                                 Linkage, nullptr, Name);
3634 
3635   if (OldGV) {
3636     // Replace occurrences of the old variable if needed.
3637     GV->takeName(OldGV);
3638 
3639     if (!OldGV->use_empty()) {
3640       llvm::Constant *NewPtrForOldDecl =
3641       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3642       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3643     }
3644 
3645     OldGV->eraseFromParent();
3646   }
3647 
3648   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3649       !GV->hasAvailableExternallyLinkage())
3650     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3651 
3652   GV->setAlignment(llvm::MaybeAlign(Alignment));
3653 
3654   return GV;
3655 }
3656 
3657 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3658 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3659 /// then it will be created with the specified type instead of whatever the
3660 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3661 /// that an actual global with type Ty will be returned, not conversion of a
3662 /// variable with the same mangled name but some other type.
3663 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3664                                                   llvm::Type *Ty,
3665                                            ForDefinition_t IsForDefinition) {
3666   assert(D->hasGlobalStorage() && "Not a global variable");
3667   QualType ASTTy = D->getType();
3668   if (!Ty)
3669     Ty = getTypes().ConvertTypeForMem(ASTTy);
3670 
3671   llvm::PointerType *PTy =
3672     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3673 
3674   StringRef MangledName = getMangledName(D);
3675   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3676 }
3677 
3678 /// CreateRuntimeVariable - Create a new runtime global variable with the
3679 /// specified type and name.
3680 llvm::Constant *
3681 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3682                                      StringRef Name) {
3683   auto PtrTy =
3684       getContext().getLangOpts().OpenCL
3685           ? llvm::PointerType::get(
3686                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3687           : llvm::PointerType::getUnqual(Ty);
3688   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3689   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3690   return Ret;
3691 }
3692 
3693 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3694   assert(!D->getInit() && "Cannot emit definite definitions here!");
3695 
3696   StringRef MangledName = getMangledName(D);
3697   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3698 
3699   // We already have a definition, not declaration, with the same mangled name.
3700   // Emitting of declaration is not required (and actually overwrites emitted
3701   // definition).
3702   if (GV && !GV->isDeclaration())
3703     return;
3704 
3705   // If we have not seen a reference to this variable yet, place it into the
3706   // deferred declarations table to be emitted if needed later.
3707   if (!MustBeEmitted(D) && !GV) {
3708       DeferredDecls[MangledName] = D;
3709       return;
3710   }
3711 
3712   // The tentative definition is the only definition.
3713   EmitGlobalVarDefinition(D);
3714 }
3715 
3716 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3717   return Context.toCharUnitsFromBits(
3718       getDataLayout().getTypeStoreSizeInBits(Ty));
3719 }
3720 
3721 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3722   LangAS AddrSpace = LangAS::Default;
3723   if (LangOpts.OpenCL) {
3724     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3725     assert(AddrSpace == LangAS::opencl_global ||
3726            AddrSpace == LangAS::opencl_constant ||
3727            AddrSpace == LangAS::opencl_local ||
3728            AddrSpace >= LangAS::FirstTargetAddressSpace);
3729     return AddrSpace;
3730   }
3731 
3732   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3733     if (D && D->hasAttr<CUDAConstantAttr>())
3734       return LangAS::cuda_constant;
3735     else if (D && D->hasAttr<CUDASharedAttr>())
3736       return LangAS::cuda_shared;
3737     else if (D && D->hasAttr<CUDADeviceAttr>())
3738       return LangAS::cuda_device;
3739     else if (D && D->getType().isConstQualified())
3740       return LangAS::cuda_constant;
3741     else
3742       return LangAS::cuda_device;
3743   }
3744 
3745   if (LangOpts.OpenMP) {
3746     LangAS AS;
3747     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3748       return AS;
3749   }
3750   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3751 }
3752 
3753 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3754   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3755   if (LangOpts.OpenCL)
3756     return LangAS::opencl_constant;
3757   if (auto AS = getTarget().getConstantAddressSpace())
3758     return AS.getValue();
3759   return LangAS::Default;
3760 }
3761 
3762 // In address space agnostic languages, string literals are in default address
3763 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3764 // emitted in constant address space in LLVM IR. To be consistent with other
3765 // parts of AST, string literal global variables in constant address space
3766 // need to be casted to default address space before being put into address
3767 // map and referenced by other part of CodeGen.
3768 // In OpenCL, string literals are in constant address space in AST, therefore
3769 // they should not be casted to default address space.
3770 static llvm::Constant *
3771 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3772                                        llvm::GlobalVariable *GV) {
3773   llvm::Constant *Cast = GV;
3774   if (!CGM.getLangOpts().OpenCL) {
3775     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3776       if (AS != LangAS::Default)
3777         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3778             CGM, GV, AS.getValue(), LangAS::Default,
3779             GV->getValueType()->getPointerTo(
3780                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3781     }
3782   }
3783   return Cast;
3784 }
3785 
3786 template<typename SomeDecl>
3787 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3788                                                llvm::GlobalValue *GV) {
3789   if (!getLangOpts().CPlusPlus)
3790     return;
3791 
3792   // Must have 'used' attribute, or else inline assembly can't rely on
3793   // the name existing.
3794   if (!D->template hasAttr<UsedAttr>())
3795     return;
3796 
3797   // Must have internal linkage and an ordinary name.
3798   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3799     return;
3800 
3801   // Must be in an extern "C" context. Entities declared directly within
3802   // a record are not extern "C" even if the record is in such a context.
3803   const SomeDecl *First = D->getFirstDecl();
3804   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3805     return;
3806 
3807   // OK, this is an internal linkage entity inside an extern "C" linkage
3808   // specification. Make a note of that so we can give it the "expected"
3809   // mangled name if nothing else is using that name.
3810   std::pair<StaticExternCMap::iterator, bool> R =
3811       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3812 
3813   // If we have multiple internal linkage entities with the same name
3814   // in extern "C" regions, none of them gets that name.
3815   if (!R.second)
3816     R.first->second = nullptr;
3817 }
3818 
3819 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3820   if (!CGM.supportsCOMDAT())
3821     return false;
3822 
3823   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3824   // them being "merged" by the COMDAT Folding linker optimization.
3825   if (D.hasAttr<CUDAGlobalAttr>())
3826     return false;
3827 
3828   if (D.hasAttr<SelectAnyAttr>())
3829     return true;
3830 
3831   GVALinkage Linkage;
3832   if (auto *VD = dyn_cast<VarDecl>(&D))
3833     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3834   else
3835     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3836 
3837   switch (Linkage) {
3838   case GVA_Internal:
3839   case GVA_AvailableExternally:
3840   case GVA_StrongExternal:
3841     return false;
3842   case GVA_DiscardableODR:
3843   case GVA_StrongODR:
3844     return true;
3845   }
3846   llvm_unreachable("No such linkage");
3847 }
3848 
3849 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3850                                           llvm::GlobalObject &GO) {
3851   if (!shouldBeInCOMDAT(*this, D))
3852     return;
3853   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3854 }
3855 
3856 /// Pass IsTentative as true if you want to create a tentative definition.
3857 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3858                                             bool IsTentative) {
3859   // OpenCL global variables of sampler type are translated to function calls,
3860   // therefore no need to be translated.
3861   QualType ASTTy = D->getType();
3862   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3863     return;
3864 
3865   // If this is OpenMP device, check if it is legal to emit this global
3866   // normally.
3867   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3868       OpenMPRuntime->emitTargetGlobalVariable(D))
3869     return;
3870 
3871   llvm::Constant *Init = nullptr;
3872   bool NeedsGlobalCtor = false;
3873   bool NeedsGlobalDtor =
3874       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3875 
3876   const VarDecl *InitDecl;
3877   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3878 
3879   Optional<ConstantEmitter> emitter;
3880 
3881   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3882   // as part of their declaration."  Sema has already checked for
3883   // error cases, so we just need to set Init to UndefValue.
3884   bool IsCUDASharedVar =
3885       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3886   // Shadows of initialized device-side global variables are also left
3887   // undefined.
3888   bool IsCUDAShadowVar =
3889       !getLangOpts().CUDAIsDevice &&
3890       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3891        D->hasAttr<CUDASharedAttr>());
3892   // HIP pinned shadow of initialized host-side global variables are also
3893   // left undefined.
3894   bool IsHIPPinnedShadowVar =
3895       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3896   if (getLangOpts().CUDA &&
3897       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3898     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3899   else if (!InitExpr) {
3900     // This is a tentative definition; tentative definitions are
3901     // implicitly initialized with { 0 }.
3902     //
3903     // Note that tentative definitions are only emitted at the end of
3904     // a translation unit, so they should never have incomplete
3905     // type. In addition, EmitTentativeDefinition makes sure that we
3906     // never attempt to emit a tentative definition if a real one
3907     // exists. A use may still exists, however, so we still may need
3908     // to do a RAUW.
3909     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3910     Init = EmitNullConstant(D->getType());
3911   } else {
3912     initializedGlobalDecl = GlobalDecl(D);
3913     emitter.emplace(*this);
3914     Init = emitter->tryEmitForInitializer(*InitDecl);
3915 
3916     if (!Init) {
3917       QualType T = InitExpr->getType();
3918       if (D->getType()->isReferenceType())
3919         T = D->getType();
3920 
3921       if (getLangOpts().CPlusPlus) {
3922         Init = EmitNullConstant(T);
3923         NeedsGlobalCtor = true;
3924       } else {
3925         ErrorUnsupported(D, "static initializer");
3926         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3927       }
3928     } else {
3929       // We don't need an initializer, so remove the entry for the delayed
3930       // initializer position (just in case this entry was delayed) if we
3931       // also don't need to register a destructor.
3932       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3933         DelayedCXXInitPosition.erase(D);
3934     }
3935   }
3936 
3937   llvm::Type* InitType = Init->getType();
3938   llvm::Constant *Entry =
3939       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3940 
3941   // Strip off pointer casts if we got them.
3942   Entry = Entry->stripPointerCasts();
3943 
3944   // Entry is now either a Function or GlobalVariable.
3945   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3946 
3947   // We have a definition after a declaration with the wrong type.
3948   // We must make a new GlobalVariable* and update everything that used OldGV
3949   // (a declaration or tentative definition) with the new GlobalVariable*
3950   // (which will be a definition).
3951   //
3952   // This happens if there is a prototype for a global (e.g.
3953   // "extern int x[];") and then a definition of a different type (e.g.
3954   // "int x[10];"). This also happens when an initializer has a different type
3955   // from the type of the global (this happens with unions).
3956   if (!GV || GV->getType()->getElementType() != InitType ||
3957       GV->getType()->getAddressSpace() !=
3958           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3959 
3960     // Move the old entry aside so that we'll create a new one.
3961     Entry->setName(StringRef());
3962 
3963     // Make a new global with the correct type, this is now guaranteed to work.
3964     GV = cast<llvm::GlobalVariable>(
3965         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3966             ->stripPointerCasts());
3967 
3968     // Replace all uses of the old global with the new global
3969     llvm::Constant *NewPtrForOldDecl =
3970         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3971     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3972 
3973     // Erase the old global, since it is no longer used.
3974     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3975   }
3976 
3977   MaybeHandleStaticInExternC(D, GV);
3978 
3979   if (D->hasAttr<AnnotateAttr>())
3980     AddGlobalAnnotations(D, GV);
3981 
3982   // Set the llvm linkage type as appropriate.
3983   llvm::GlobalValue::LinkageTypes Linkage =
3984       getLLVMLinkageVarDefinition(D, GV->isConstant());
3985 
3986   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3987   // the device. [...]"
3988   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3989   // __device__, declares a variable that: [...]
3990   // Is accessible from all the threads within the grid and from the host
3991   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3992   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3993   if (GV && LangOpts.CUDA) {
3994     if (LangOpts.CUDAIsDevice) {
3995       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3996           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
3997         GV->setExternallyInitialized(true);
3998     } else {
3999       // Host-side shadows of external declarations of device-side
4000       // global variables become internal definitions. These have to
4001       // be internal in order to prevent name conflicts with global
4002       // host variables with the same name in a different TUs.
4003       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4004           D->hasAttr<HIPPinnedShadowAttr>()) {
4005         Linkage = llvm::GlobalValue::InternalLinkage;
4006 
4007         // Shadow variables and their properties must be registered
4008         // with CUDA runtime.
4009         unsigned Flags = 0;
4010         if (!D->hasDefinition())
4011           Flags |= CGCUDARuntime::ExternDeviceVar;
4012         if (D->hasAttr<CUDAConstantAttr>())
4013           Flags |= CGCUDARuntime::ConstantDeviceVar;
4014         // Extern global variables will be registered in the TU where they are
4015         // defined.
4016         if (!D->hasExternalStorage())
4017           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4018       } else if (D->hasAttr<CUDASharedAttr>())
4019         // __shared__ variables are odd. Shadows do get created, but
4020         // they are not registered with the CUDA runtime, so they
4021         // can't really be used to access their device-side
4022         // counterparts. It's not clear yet whether it's nvcc's bug or
4023         // a feature, but we've got to do the same for compatibility.
4024         Linkage = llvm::GlobalValue::InternalLinkage;
4025     }
4026   }
4027 
4028   if (!IsHIPPinnedShadowVar)
4029     GV->setInitializer(Init);
4030   if (emitter) emitter->finalize(GV);
4031 
4032   // If it is safe to mark the global 'constant', do so now.
4033   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4034                   isTypeConstant(D->getType(), true));
4035 
4036   // If it is in a read-only section, mark it 'constant'.
4037   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4038     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4039     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4040       GV->setConstant(true);
4041   }
4042 
4043   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4044 
4045   // On Darwin, if the normal linkage of a C++ thread_local variable is
4046   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4047   // copies within a linkage unit; otherwise, the backing variable has
4048   // internal linkage and all accesses should just be calls to the
4049   // Itanium-specified entry point, which has the normal linkage of the
4050   // variable. This is to preserve the ability to change the implementation
4051   // behind the scenes.
4052   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4053       Context.getTargetInfo().getTriple().isOSDarwin() &&
4054       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4055       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4056     Linkage = llvm::GlobalValue::InternalLinkage;
4057 
4058   GV->setLinkage(Linkage);
4059   if (D->hasAttr<DLLImportAttr>())
4060     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4061   else if (D->hasAttr<DLLExportAttr>())
4062     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4063   else
4064     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4065 
4066   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4067     // common vars aren't constant even if declared const.
4068     GV->setConstant(false);
4069     // Tentative definition of global variables may be initialized with
4070     // non-zero null pointers. In this case they should have weak linkage
4071     // since common linkage must have zero initializer and must not have
4072     // explicit section therefore cannot have non-zero initial value.
4073     if (!GV->getInitializer()->isNullValue())
4074       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4075   }
4076 
4077   setNonAliasAttributes(D, GV);
4078 
4079   if (D->getTLSKind() && !GV->isThreadLocal()) {
4080     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4081       CXXThreadLocals.push_back(D);
4082     setTLSMode(GV, *D);
4083   }
4084 
4085   maybeSetTrivialComdat(*D, *GV);
4086 
4087   // Emit the initializer function if necessary.
4088   if (NeedsGlobalCtor || NeedsGlobalDtor)
4089     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4090 
4091   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4092 
4093   // Emit global variable debug information.
4094   if (CGDebugInfo *DI = getModuleDebugInfo())
4095     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4096       DI->EmitGlobalVariable(GV, D);
4097 }
4098 
4099 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4100                                       CodeGenModule &CGM, const VarDecl *D,
4101                                       bool NoCommon) {
4102   // Don't give variables common linkage if -fno-common was specified unless it
4103   // was overridden by a NoCommon attribute.
4104   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4105     return true;
4106 
4107   // C11 6.9.2/2:
4108   //   A declaration of an identifier for an object that has file scope without
4109   //   an initializer, and without a storage-class specifier or with the
4110   //   storage-class specifier static, constitutes a tentative definition.
4111   if (D->getInit() || D->hasExternalStorage())
4112     return true;
4113 
4114   // A variable cannot be both common and exist in a section.
4115   if (D->hasAttr<SectionAttr>())
4116     return true;
4117 
4118   // A variable cannot be both common and exist in a section.
4119   // We don't try to determine which is the right section in the front-end.
4120   // If no specialized section name is applicable, it will resort to default.
4121   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4122       D->hasAttr<PragmaClangDataSectionAttr>() ||
4123       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4124       D->hasAttr<PragmaClangRodataSectionAttr>())
4125     return true;
4126 
4127   // Thread local vars aren't considered common linkage.
4128   if (D->getTLSKind())
4129     return true;
4130 
4131   // Tentative definitions marked with WeakImportAttr are true definitions.
4132   if (D->hasAttr<WeakImportAttr>())
4133     return true;
4134 
4135   // A variable cannot be both common and exist in a comdat.
4136   if (shouldBeInCOMDAT(CGM, *D))
4137     return true;
4138 
4139   // Declarations with a required alignment do not have common linkage in MSVC
4140   // mode.
4141   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4142     if (D->hasAttr<AlignedAttr>())
4143       return true;
4144     QualType VarType = D->getType();
4145     if (Context.isAlignmentRequired(VarType))
4146       return true;
4147 
4148     if (const auto *RT = VarType->getAs<RecordType>()) {
4149       const RecordDecl *RD = RT->getDecl();
4150       for (const FieldDecl *FD : RD->fields()) {
4151         if (FD->isBitField())
4152           continue;
4153         if (FD->hasAttr<AlignedAttr>())
4154           return true;
4155         if (Context.isAlignmentRequired(FD->getType()))
4156           return true;
4157       }
4158     }
4159   }
4160 
4161   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4162   // common symbols, so symbols with greater alignment requirements cannot be
4163   // common.
4164   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4165   // alignments for common symbols via the aligncomm directive, so this
4166   // restriction only applies to MSVC environments.
4167   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4168       Context.getTypeAlignIfKnown(D->getType()) >
4169           Context.toBits(CharUnits::fromQuantity(32)))
4170     return true;
4171 
4172   return false;
4173 }
4174 
4175 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4176     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4177   if (Linkage == GVA_Internal)
4178     return llvm::Function::InternalLinkage;
4179 
4180   if (D->hasAttr<WeakAttr>()) {
4181     if (IsConstantVariable)
4182       return llvm::GlobalVariable::WeakODRLinkage;
4183     else
4184       return llvm::GlobalVariable::WeakAnyLinkage;
4185   }
4186 
4187   if (const auto *FD = D->getAsFunction())
4188     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4189       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4190 
4191   // We are guaranteed to have a strong definition somewhere else,
4192   // so we can use available_externally linkage.
4193   if (Linkage == GVA_AvailableExternally)
4194     return llvm::GlobalValue::AvailableExternallyLinkage;
4195 
4196   // Note that Apple's kernel linker doesn't support symbol
4197   // coalescing, so we need to avoid linkonce and weak linkages there.
4198   // Normally, this means we just map to internal, but for explicit
4199   // instantiations we'll map to external.
4200 
4201   // In C++, the compiler has to emit a definition in every translation unit
4202   // that references the function.  We should use linkonce_odr because
4203   // a) if all references in this translation unit are optimized away, we
4204   // don't need to codegen it.  b) if the function persists, it needs to be
4205   // merged with other definitions. c) C++ has the ODR, so we know the
4206   // definition is dependable.
4207   if (Linkage == GVA_DiscardableODR)
4208     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4209                                             : llvm::Function::InternalLinkage;
4210 
4211   // An explicit instantiation of a template has weak linkage, since
4212   // explicit instantiations can occur in multiple translation units
4213   // and must all be equivalent. However, we are not allowed to
4214   // throw away these explicit instantiations.
4215   //
4216   // We don't currently support CUDA device code spread out across multiple TUs,
4217   // so say that CUDA templates are either external (for kernels) or internal.
4218   // This lets llvm perform aggressive inter-procedural optimizations.
4219   if (Linkage == GVA_StrongODR) {
4220     if (Context.getLangOpts().AppleKext)
4221       return llvm::Function::ExternalLinkage;
4222     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4223       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4224                                           : llvm::Function::InternalLinkage;
4225     return llvm::Function::WeakODRLinkage;
4226   }
4227 
4228   // C++ doesn't have tentative definitions and thus cannot have common
4229   // linkage.
4230   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4231       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4232                                  CodeGenOpts.NoCommon))
4233     return llvm::GlobalVariable::CommonLinkage;
4234 
4235   // selectany symbols are externally visible, so use weak instead of
4236   // linkonce.  MSVC optimizes away references to const selectany globals, so
4237   // all definitions should be the same and ODR linkage should be used.
4238   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4239   if (D->hasAttr<SelectAnyAttr>())
4240     return llvm::GlobalVariable::WeakODRLinkage;
4241 
4242   // Otherwise, we have strong external linkage.
4243   assert(Linkage == GVA_StrongExternal);
4244   return llvm::GlobalVariable::ExternalLinkage;
4245 }
4246 
4247 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4248     const VarDecl *VD, bool IsConstant) {
4249   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4250   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4251 }
4252 
4253 /// Replace the uses of a function that was declared with a non-proto type.
4254 /// We want to silently drop extra arguments from call sites
4255 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4256                                           llvm::Function *newFn) {
4257   // Fast path.
4258   if (old->use_empty()) return;
4259 
4260   llvm::Type *newRetTy = newFn->getReturnType();
4261   SmallVector<llvm::Value*, 4> newArgs;
4262   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4263 
4264   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4265          ui != ue; ) {
4266     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4267     llvm::User *user = use->getUser();
4268 
4269     // Recognize and replace uses of bitcasts.  Most calls to
4270     // unprototyped functions will use bitcasts.
4271     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4272       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4273         replaceUsesOfNonProtoConstant(bitcast, newFn);
4274       continue;
4275     }
4276 
4277     // Recognize calls to the function.
4278     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4279     if (!callSite) continue;
4280     if (!callSite->isCallee(&*use))
4281       continue;
4282 
4283     // If the return types don't match exactly, then we can't
4284     // transform this call unless it's dead.
4285     if (callSite->getType() != newRetTy && !callSite->use_empty())
4286       continue;
4287 
4288     // Get the call site's attribute list.
4289     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4290     llvm::AttributeList oldAttrs = callSite->getAttributes();
4291 
4292     // If the function was passed too few arguments, don't transform.
4293     unsigned newNumArgs = newFn->arg_size();
4294     if (callSite->arg_size() < newNumArgs)
4295       continue;
4296 
4297     // If extra arguments were passed, we silently drop them.
4298     // If any of the types mismatch, we don't transform.
4299     unsigned argNo = 0;
4300     bool dontTransform = false;
4301     for (llvm::Argument &A : newFn->args()) {
4302       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4303         dontTransform = true;
4304         break;
4305       }
4306 
4307       // Add any parameter attributes.
4308       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4309       argNo++;
4310     }
4311     if (dontTransform)
4312       continue;
4313 
4314     // Okay, we can transform this.  Create the new call instruction and copy
4315     // over the required information.
4316     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4317 
4318     // Copy over any operand bundles.
4319     callSite->getOperandBundlesAsDefs(newBundles);
4320 
4321     llvm::CallBase *newCall;
4322     if (dyn_cast<llvm::CallInst>(callSite)) {
4323       newCall =
4324           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4325     } else {
4326       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4327       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4328                                          oldInvoke->getUnwindDest(), newArgs,
4329                                          newBundles, "", callSite);
4330     }
4331     newArgs.clear(); // for the next iteration
4332 
4333     if (!newCall->getType()->isVoidTy())
4334       newCall->takeName(callSite);
4335     newCall->setAttributes(llvm::AttributeList::get(
4336         newFn->getContext(), oldAttrs.getFnAttributes(),
4337         oldAttrs.getRetAttributes(), newArgAttrs));
4338     newCall->setCallingConv(callSite->getCallingConv());
4339 
4340     // Finally, remove the old call, replacing any uses with the new one.
4341     if (!callSite->use_empty())
4342       callSite->replaceAllUsesWith(newCall);
4343 
4344     // Copy debug location attached to CI.
4345     if (callSite->getDebugLoc())
4346       newCall->setDebugLoc(callSite->getDebugLoc());
4347 
4348     callSite->eraseFromParent();
4349   }
4350 }
4351 
4352 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4353 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4354 /// existing call uses of the old function in the module, this adjusts them to
4355 /// call the new function directly.
4356 ///
4357 /// This is not just a cleanup: the always_inline pass requires direct calls to
4358 /// functions to be able to inline them.  If there is a bitcast in the way, it
4359 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4360 /// run at -O0.
4361 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4362                                                       llvm::Function *NewFn) {
4363   // If we're redefining a global as a function, don't transform it.
4364   if (!isa<llvm::Function>(Old)) return;
4365 
4366   replaceUsesOfNonProtoConstant(Old, NewFn);
4367 }
4368 
4369 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4370   auto DK = VD->isThisDeclarationADefinition();
4371   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4372     return;
4373 
4374   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4375   // If we have a definition, this might be a deferred decl. If the
4376   // instantiation is explicit, make sure we emit it at the end.
4377   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4378     GetAddrOfGlobalVar(VD);
4379 
4380   EmitTopLevelDecl(VD);
4381 }
4382 
4383 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4384                                                  llvm::GlobalValue *GV) {
4385   // Check if this must be emitted as declare variant.
4386   if (LangOpts.OpenMP && OpenMPRuntime &&
4387       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4388     return;
4389 
4390   const auto *D = cast<FunctionDecl>(GD.getDecl());
4391 
4392   // Compute the function info and LLVM type.
4393   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4394   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4395 
4396   // Get or create the prototype for the function.
4397   if (!GV || (GV->getType()->getElementType() != Ty))
4398     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4399                                                    /*DontDefer=*/true,
4400                                                    ForDefinition));
4401 
4402   // Already emitted.
4403   if (!GV->isDeclaration())
4404     return;
4405 
4406   // We need to set linkage and visibility on the function before
4407   // generating code for it because various parts of IR generation
4408   // want to propagate this information down (e.g. to local static
4409   // declarations).
4410   auto *Fn = cast<llvm::Function>(GV);
4411   setFunctionLinkage(GD, Fn);
4412 
4413   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4414   setGVProperties(Fn, GD);
4415 
4416   MaybeHandleStaticInExternC(D, Fn);
4417 
4418 
4419   maybeSetTrivialComdat(*D, *Fn);
4420 
4421   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4422 
4423   setNonAliasAttributes(GD, Fn);
4424   SetLLVMFunctionAttributesForDefinition(D, Fn);
4425 
4426   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4427     AddGlobalCtor(Fn, CA->getPriority());
4428   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4429     AddGlobalDtor(Fn, DA->getPriority());
4430   if (D->hasAttr<AnnotateAttr>())
4431     AddGlobalAnnotations(D, Fn);
4432 }
4433 
4434 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4435   const auto *D = cast<ValueDecl>(GD.getDecl());
4436   const AliasAttr *AA = D->getAttr<AliasAttr>();
4437   assert(AA && "Not an alias?");
4438 
4439   StringRef MangledName = getMangledName(GD);
4440 
4441   if (AA->getAliasee() == MangledName) {
4442     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4443     return;
4444   }
4445 
4446   // If there is a definition in the module, then it wins over the alias.
4447   // This is dubious, but allow it to be safe.  Just ignore the alias.
4448   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4449   if (Entry && !Entry->isDeclaration())
4450     return;
4451 
4452   Aliases.push_back(GD);
4453 
4454   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4455 
4456   // Create a reference to the named value.  This ensures that it is emitted
4457   // if a deferred decl.
4458   llvm::Constant *Aliasee;
4459   llvm::GlobalValue::LinkageTypes LT;
4460   if (isa<llvm::FunctionType>(DeclTy)) {
4461     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4462                                       /*ForVTable=*/false);
4463     LT = getFunctionLinkage(GD);
4464   } else {
4465     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4466                                     llvm::PointerType::getUnqual(DeclTy),
4467                                     /*D=*/nullptr);
4468     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4469                                      D->getType().isConstQualified());
4470   }
4471 
4472   // Create the new alias itself, but don't set a name yet.
4473   auto *GA =
4474       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4475 
4476   if (Entry) {
4477     if (GA->getAliasee() == Entry) {
4478       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4479       return;
4480     }
4481 
4482     assert(Entry->isDeclaration());
4483 
4484     // If there is a declaration in the module, then we had an extern followed
4485     // by the alias, as in:
4486     //   extern int test6();
4487     //   ...
4488     //   int test6() __attribute__((alias("test7")));
4489     //
4490     // Remove it and replace uses of it with the alias.
4491     GA->takeName(Entry);
4492 
4493     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4494                                                           Entry->getType()));
4495     Entry->eraseFromParent();
4496   } else {
4497     GA->setName(MangledName);
4498   }
4499 
4500   // Set attributes which are particular to an alias; this is a
4501   // specialization of the attributes which may be set on a global
4502   // variable/function.
4503   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4504       D->isWeakImported()) {
4505     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4506   }
4507 
4508   if (const auto *VD = dyn_cast<VarDecl>(D))
4509     if (VD->getTLSKind())
4510       setTLSMode(GA, *VD);
4511 
4512   SetCommonAttributes(GD, GA);
4513 }
4514 
4515 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4516   const auto *D = cast<ValueDecl>(GD.getDecl());
4517   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4518   assert(IFA && "Not an ifunc?");
4519 
4520   StringRef MangledName = getMangledName(GD);
4521 
4522   if (IFA->getResolver() == MangledName) {
4523     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4524     return;
4525   }
4526 
4527   // Report an error if some definition overrides ifunc.
4528   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4529   if (Entry && !Entry->isDeclaration()) {
4530     GlobalDecl OtherGD;
4531     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4532         DiagnosedConflictingDefinitions.insert(GD).second) {
4533       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4534           << MangledName;
4535       Diags.Report(OtherGD.getDecl()->getLocation(),
4536                    diag::note_previous_definition);
4537     }
4538     return;
4539   }
4540 
4541   Aliases.push_back(GD);
4542 
4543   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4544   llvm::Constant *Resolver =
4545       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4546                               /*ForVTable=*/false);
4547   llvm::GlobalIFunc *GIF =
4548       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4549                                 "", Resolver, &getModule());
4550   if (Entry) {
4551     if (GIF->getResolver() == Entry) {
4552       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4553       return;
4554     }
4555     assert(Entry->isDeclaration());
4556 
4557     // If there is a declaration in the module, then we had an extern followed
4558     // by the ifunc, as in:
4559     //   extern int test();
4560     //   ...
4561     //   int test() __attribute__((ifunc("resolver")));
4562     //
4563     // Remove it and replace uses of it with the ifunc.
4564     GIF->takeName(Entry);
4565 
4566     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4567                                                           Entry->getType()));
4568     Entry->eraseFromParent();
4569   } else
4570     GIF->setName(MangledName);
4571 
4572   SetCommonAttributes(GD, GIF);
4573 }
4574 
4575 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4576                                             ArrayRef<llvm::Type*> Tys) {
4577   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4578                                          Tys);
4579 }
4580 
4581 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4582 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4583                          const StringLiteral *Literal, bool TargetIsLSB,
4584                          bool &IsUTF16, unsigned &StringLength) {
4585   StringRef String = Literal->getString();
4586   unsigned NumBytes = String.size();
4587 
4588   // Check for simple case.
4589   if (!Literal->containsNonAsciiOrNull()) {
4590     StringLength = NumBytes;
4591     return *Map.insert(std::make_pair(String, nullptr)).first;
4592   }
4593 
4594   // Otherwise, convert the UTF8 literals into a string of shorts.
4595   IsUTF16 = true;
4596 
4597   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4598   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4599   llvm::UTF16 *ToPtr = &ToBuf[0];
4600 
4601   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4602                                  ToPtr + NumBytes, llvm::strictConversion);
4603 
4604   // ConvertUTF8toUTF16 returns the length in ToPtr.
4605   StringLength = ToPtr - &ToBuf[0];
4606 
4607   // Add an explicit null.
4608   *ToPtr = 0;
4609   return *Map.insert(std::make_pair(
4610                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4611                                    (StringLength + 1) * 2),
4612                          nullptr)).first;
4613 }
4614 
4615 ConstantAddress
4616 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4617   unsigned StringLength = 0;
4618   bool isUTF16 = false;
4619   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4620       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4621                                getDataLayout().isLittleEndian(), isUTF16,
4622                                StringLength);
4623 
4624   if (auto *C = Entry.second)
4625     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4626 
4627   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4628   llvm::Constant *Zeros[] = { Zero, Zero };
4629 
4630   const ASTContext &Context = getContext();
4631   const llvm::Triple &Triple = getTriple();
4632 
4633   const auto CFRuntime = getLangOpts().CFRuntime;
4634   const bool IsSwiftABI =
4635       static_cast<unsigned>(CFRuntime) >=
4636       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4637   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4638 
4639   // If we don't already have it, get __CFConstantStringClassReference.
4640   if (!CFConstantStringClassRef) {
4641     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4642     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4643     Ty = llvm::ArrayType::get(Ty, 0);
4644 
4645     switch (CFRuntime) {
4646     default: break;
4647     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4648     case LangOptions::CoreFoundationABI::Swift5_0:
4649       CFConstantStringClassName =
4650           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4651                               : "$s10Foundation19_NSCFConstantStringCN";
4652       Ty = IntPtrTy;
4653       break;
4654     case LangOptions::CoreFoundationABI::Swift4_2:
4655       CFConstantStringClassName =
4656           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4657                               : "$S10Foundation19_NSCFConstantStringCN";
4658       Ty = IntPtrTy;
4659       break;
4660     case LangOptions::CoreFoundationABI::Swift4_1:
4661       CFConstantStringClassName =
4662           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4663                               : "__T010Foundation19_NSCFConstantStringCN";
4664       Ty = IntPtrTy;
4665       break;
4666     }
4667 
4668     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4669 
4670     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4671       llvm::GlobalValue *GV = nullptr;
4672 
4673       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4674         IdentifierInfo &II = Context.Idents.get(GV->getName());
4675         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4676         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4677 
4678         const VarDecl *VD = nullptr;
4679         for (const auto &Result : DC->lookup(&II))
4680           if ((VD = dyn_cast<VarDecl>(Result)))
4681             break;
4682 
4683         if (Triple.isOSBinFormatELF()) {
4684           if (!VD)
4685             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4686         } else {
4687           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4688           if (!VD || !VD->hasAttr<DLLExportAttr>())
4689             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4690           else
4691             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4692         }
4693 
4694         setDSOLocal(GV);
4695       }
4696     }
4697 
4698     // Decay array -> ptr
4699     CFConstantStringClassRef =
4700         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4701                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4702   }
4703 
4704   QualType CFTy = Context.getCFConstantStringType();
4705 
4706   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4707 
4708   ConstantInitBuilder Builder(*this);
4709   auto Fields = Builder.beginStruct(STy);
4710 
4711   // Class pointer.
4712   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4713 
4714   // Flags.
4715   if (IsSwiftABI) {
4716     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4717     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4718   } else {
4719     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4720   }
4721 
4722   // String pointer.
4723   llvm::Constant *C = nullptr;
4724   if (isUTF16) {
4725     auto Arr = llvm::makeArrayRef(
4726         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4727         Entry.first().size() / 2);
4728     C = llvm::ConstantDataArray::get(VMContext, Arr);
4729   } else {
4730     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4731   }
4732 
4733   // Note: -fwritable-strings doesn't make the backing store strings of
4734   // CFStrings writable. (See <rdar://problem/10657500>)
4735   auto *GV =
4736       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4737                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4738   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4739   // Don't enforce the target's minimum global alignment, since the only use
4740   // of the string is via this class initializer.
4741   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4742                             : Context.getTypeAlignInChars(Context.CharTy);
4743   GV->setAlignment(Align.getAsAlign());
4744 
4745   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4746   // Without it LLVM can merge the string with a non unnamed_addr one during
4747   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4748   if (Triple.isOSBinFormatMachO())
4749     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4750                            : "__TEXT,__cstring,cstring_literals");
4751   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4752   // the static linker to adjust permissions to read-only later on.
4753   else if (Triple.isOSBinFormatELF())
4754     GV->setSection(".rodata");
4755 
4756   // String.
4757   llvm::Constant *Str =
4758       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4759 
4760   if (isUTF16)
4761     // Cast the UTF16 string to the correct type.
4762     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4763   Fields.add(Str);
4764 
4765   // String length.
4766   llvm::IntegerType *LengthTy =
4767       llvm::IntegerType::get(getModule().getContext(),
4768                              Context.getTargetInfo().getLongWidth());
4769   if (IsSwiftABI) {
4770     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4771         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4772       LengthTy = Int32Ty;
4773     else
4774       LengthTy = IntPtrTy;
4775   }
4776   Fields.addInt(LengthTy, StringLength);
4777 
4778   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4779   // properly aligned on 32-bit platforms.
4780   CharUnits Alignment =
4781       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4782 
4783   // The struct.
4784   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4785                                     /*isConstant=*/false,
4786                                     llvm::GlobalVariable::PrivateLinkage);
4787   GV->addAttribute("objc_arc_inert");
4788   switch (Triple.getObjectFormat()) {
4789   case llvm::Triple::UnknownObjectFormat:
4790     llvm_unreachable("unknown file format");
4791   case llvm::Triple::XCOFF:
4792     llvm_unreachable("XCOFF is not yet implemented");
4793   case llvm::Triple::COFF:
4794   case llvm::Triple::ELF:
4795   case llvm::Triple::Wasm:
4796     GV->setSection("cfstring");
4797     break;
4798   case llvm::Triple::MachO:
4799     GV->setSection("__DATA,__cfstring");
4800     break;
4801   }
4802   Entry.second = GV;
4803 
4804   return ConstantAddress(GV, Alignment);
4805 }
4806 
4807 bool CodeGenModule::getExpressionLocationsEnabled() const {
4808   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4809 }
4810 
4811 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4812   if (ObjCFastEnumerationStateType.isNull()) {
4813     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4814     D->startDefinition();
4815 
4816     QualType FieldTypes[] = {
4817       Context.UnsignedLongTy,
4818       Context.getPointerType(Context.getObjCIdType()),
4819       Context.getPointerType(Context.UnsignedLongTy),
4820       Context.getConstantArrayType(Context.UnsignedLongTy,
4821                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4822     };
4823 
4824     for (size_t i = 0; i < 4; ++i) {
4825       FieldDecl *Field = FieldDecl::Create(Context,
4826                                            D,
4827                                            SourceLocation(),
4828                                            SourceLocation(), nullptr,
4829                                            FieldTypes[i], /*TInfo=*/nullptr,
4830                                            /*BitWidth=*/nullptr,
4831                                            /*Mutable=*/false,
4832                                            ICIS_NoInit);
4833       Field->setAccess(AS_public);
4834       D->addDecl(Field);
4835     }
4836 
4837     D->completeDefinition();
4838     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4839   }
4840 
4841   return ObjCFastEnumerationStateType;
4842 }
4843 
4844 llvm::Constant *
4845 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4846   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4847 
4848   // Don't emit it as the address of the string, emit the string data itself
4849   // as an inline array.
4850   if (E->getCharByteWidth() == 1) {
4851     SmallString<64> Str(E->getString());
4852 
4853     // Resize the string to the right size, which is indicated by its type.
4854     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4855     Str.resize(CAT->getSize().getZExtValue());
4856     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4857   }
4858 
4859   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4860   llvm::Type *ElemTy = AType->getElementType();
4861   unsigned NumElements = AType->getNumElements();
4862 
4863   // Wide strings have either 2-byte or 4-byte elements.
4864   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4865     SmallVector<uint16_t, 32> Elements;
4866     Elements.reserve(NumElements);
4867 
4868     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4869       Elements.push_back(E->getCodeUnit(i));
4870     Elements.resize(NumElements);
4871     return llvm::ConstantDataArray::get(VMContext, Elements);
4872   }
4873 
4874   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4875   SmallVector<uint32_t, 32> Elements;
4876   Elements.reserve(NumElements);
4877 
4878   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4879     Elements.push_back(E->getCodeUnit(i));
4880   Elements.resize(NumElements);
4881   return llvm::ConstantDataArray::get(VMContext, Elements);
4882 }
4883 
4884 static llvm::GlobalVariable *
4885 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4886                       CodeGenModule &CGM, StringRef GlobalName,
4887                       CharUnits Alignment) {
4888   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4889       CGM.getStringLiteralAddressSpace());
4890 
4891   llvm::Module &M = CGM.getModule();
4892   // Create a global variable for this string
4893   auto *GV = new llvm::GlobalVariable(
4894       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4895       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4896   GV->setAlignment(Alignment.getAsAlign());
4897   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4898   if (GV->isWeakForLinker()) {
4899     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4900     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4901   }
4902   CGM.setDSOLocal(GV);
4903 
4904   return GV;
4905 }
4906 
4907 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4908 /// constant array for the given string literal.
4909 ConstantAddress
4910 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4911                                                   StringRef Name) {
4912   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4913 
4914   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4915   llvm::GlobalVariable **Entry = nullptr;
4916   if (!LangOpts.WritableStrings) {
4917     Entry = &ConstantStringMap[C];
4918     if (auto GV = *Entry) {
4919       if (Alignment.getQuantity() > GV->getAlignment())
4920         GV->setAlignment(Alignment.getAsAlign());
4921       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4922                              Alignment);
4923     }
4924   }
4925 
4926   SmallString<256> MangledNameBuffer;
4927   StringRef GlobalVariableName;
4928   llvm::GlobalValue::LinkageTypes LT;
4929 
4930   // Mangle the string literal if that's how the ABI merges duplicate strings.
4931   // Don't do it if they are writable, since we don't want writes in one TU to
4932   // affect strings in another.
4933   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4934       !LangOpts.WritableStrings) {
4935     llvm::raw_svector_ostream Out(MangledNameBuffer);
4936     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4937     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4938     GlobalVariableName = MangledNameBuffer;
4939   } else {
4940     LT = llvm::GlobalValue::PrivateLinkage;
4941     GlobalVariableName = Name;
4942   }
4943 
4944   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4945   if (Entry)
4946     *Entry = GV;
4947 
4948   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4949                                   QualType());
4950 
4951   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4952                          Alignment);
4953 }
4954 
4955 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4956 /// array for the given ObjCEncodeExpr node.
4957 ConstantAddress
4958 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4959   std::string Str;
4960   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4961 
4962   return GetAddrOfConstantCString(Str);
4963 }
4964 
4965 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4966 /// the literal and a terminating '\0' character.
4967 /// The result has pointer to array type.
4968 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4969     const std::string &Str, const char *GlobalName) {
4970   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4971   CharUnits Alignment =
4972     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4973 
4974   llvm::Constant *C =
4975       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4976 
4977   // Don't share any string literals if strings aren't constant.
4978   llvm::GlobalVariable **Entry = nullptr;
4979   if (!LangOpts.WritableStrings) {
4980     Entry = &ConstantStringMap[C];
4981     if (auto GV = *Entry) {
4982       if (Alignment.getQuantity() > GV->getAlignment())
4983         GV->setAlignment(Alignment.getAsAlign());
4984       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4985                              Alignment);
4986     }
4987   }
4988 
4989   // Get the default prefix if a name wasn't specified.
4990   if (!GlobalName)
4991     GlobalName = ".str";
4992   // Create a global variable for this.
4993   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4994                                   GlobalName, Alignment);
4995   if (Entry)
4996     *Entry = GV;
4997 
4998   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4999                          Alignment);
5000 }
5001 
5002 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5003     const MaterializeTemporaryExpr *E, const Expr *Init) {
5004   assert((E->getStorageDuration() == SD_Static ||
5005           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5006   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5007 
5008   // If we're not materializing a subobject of the temporary, keep the
5009   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5010   QualType MaterializedType = Init->getType();
5011   if (Init == E->GetTemporaryExpr())
5012     MaterializedType = E->getType();
5013 
5014   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5015 
5016   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5017     return ConstantAddress(Slot, Align);
5018 
5019   // FIXME: If an externally-visible declaration extends multiple temporaries,
5020   // we need to give each temporary the same name in every translation unit (and
5021   // we also need to make the temporaries externally-visible).
5022   SmallString<256> Name;
5023   llvm::raw_svector_ostream Out(Name);
5024   getCXXABI().getMangleContext().mangleReferenceTemporary(
5025       VD, E->getManglingNumber(), Out);
5026 
5027   APValue *Value = nullptr;
5028   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5029     // If the initializer of the extending declaration is a constant
5030     // initializer, we should have a cached constant initializer for this
5031     // temporary. Note that this might have a different value from the value
5032     // computed by evaluating the initializer if the surrounding constant
5033     // expression modifies the temporary.
5034     Value = getContext().getMaterializedTemporaryValue(E, false);
5035   }
5036 
5037   // Try evaluating it now, it might have a constant initializer.
5038   Expr::EvalResult EvalResult;
5039   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5040       !EvalResult.hasSideEffects())
5041     Value = &EvalResult.Val;
5042 
5043   LangAS AddrSpace =
5044       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5045 
5046   Optional<ConstantEmitter> emitter;
5047   llvm::Constant *InitialValue = nullptr;
5048   bool Constant = false;
5049   llvm::Type *Type;
5050   if (Value) {
5051     // The temporary has a constant initializer, use it.
5052     emitter.emplace(*this);
5053     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5054                                                MaterializedType);
5055     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5056     Type = InitialValue->getType();
5057   } else {
5058     // No initializer, the initialization will be provided when we
5059     // initialize the declaration which performed lifetime extension.
5060     Type = getTypes().ConvertTypeForMem(MaterializedType);
5061   }
5062 
5063   // Create a global variable for this lifetime-extended temporary.
5064   llvm::GlobalValue::LinkageTypes Linkage =
5065       getLLVMLinkageVarDefinition(VD, Constant);
5066   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5067     const VarDecl *InitVD;
5068     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5069         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5070       // Temporaries defined inside a class get linkonce_odr linkage because the
5071       // class can be defined in multiple translation units.
5072       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5073     } else {
5074       // There is no need for this temporary to have external linkage if the
5075       // VarDecl has external linkage.
5076       Linkage = llvm::GlobalVariable::InternalLinkage;
5077     }
5078   }
5079   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5080   auto *GV = new llvm::GlobalVariable(
5081       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5082       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5083   if (emitter) emitter->finalize(GV);
5084   setGVProperties(GV, VD);
5085   GV->setAlignment(Align.getAsAlign());
5086   if (supportsCOMDAT() && GV->isWeakForLinker())
5087     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5088   if (VD->getTLSKind())
5089     setTLSMode(GV, *VD);
5090   llvm::Constant *CV = GV;
5091   if (AddrSpace != LangAS::Default)
5092     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5093         *this, GV, AddrSpace, LangAS::Default,
5094         Type->getPointerTo(
5095             getContext().getTargetAddressSpace(LangAS::Default)));
5096   MaterializedGlobalTemporaryMap[E] = CV;
5097   return ConstantAddress(CV, Align);
5098 }
5099 
5100 /// EmitObjCPropertyImplementations - Emit information for synthesized
5101 /// properties for an implementation.
5102 void CodeGenModule::EmitObjCPropertyImplementations(const
5103                                                     ObjCImplementationDecl *D) {
5104   for (const auto *PID : D->property_impls()) {
5105     // Dynamic is just for type-checking.
5106     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5107       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5108 
5109       // Determine which methods need to be implemented, some may have
5110       // been overridden. Note that ::isPropertyAccessor is not the method
5111       // we want, that just indicates if the decl came from a
5112       // property. What we want to know is if the method is defined in
5113       // this implementation.
5114       if (!D->getInstanceMethod(PD->getGetterName()))
5115         CodeGenFunction(*this).GenerateObjCGetter(
5116                                  const_cast<ObjCImplementationDecl *>(D), PID);
5117       if (!PD->isReadOnly() &&
5118           !D->getInstanceMethod(PD->getSetterName()))
5119         CodeGenFunction(*this).GenerateObjCSetter(
5120                                  const_cast<ObjCImplementationDecl *>(D), PID);
5121     }
5122   }
5123 }
5124 
5125 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5126   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5127   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5128        ivar; ivar = ivar->getNextIvar())
5129     if (ivar->getType().isDestructedType())
5130       return true;
5131 
5132   return false;
5133 }
5134 
5135 static bool AllTrivialInitializers(CodeGenModule &CGM,
5136                                    ObjCImplementationDecl *D) {
5137   CodeGenFunction CGF(CGM);
5138   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5139        E = D->init_end(); B != E; ++B) {
5140     CXXCtorInitializer *CtorInitExp = *B;
5141     Expr *Init = CtorInitExp->getInit();
5142     if (!CGF.isTrivialInitializer(Init))
5143       return false;
5144   }
5145   return true;
5146 }
5147 
5148 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5149 /// for an implementation.
5150 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5151   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5152   if (needsDestructMethod(D)) {
5153     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5154     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5155     ObjCMethodDecl *DTORMethod =
5156       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
5157                              cxxSelector, getContext().VoidTy, nullptr, D,
5158                              /*isInstance=*/true, /*isVariadic=*/false,
5159                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
5160                              /*isDefined=*/false, ObjCMethodDecl::Required);
5161     D->addInstanceMethod(DTORMethod);
5162     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5163     D->setHasDestructors(true);
5164   }
5165 
5166   // If the implementation doesn't have any ivar initializers, we don't need
5167   // a .cxx_construct.
5168   if (D->getNumIvarInitializers() == 0 ||
5169       AllTrivialInitializers(*this, D))
5170     return;
5171 
5172   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5173   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5174   // The constructor returns 'self'.
5175   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
5176                                                 D->getLocation(),
5177                                                 D->getLocation(),
5178                                                 cxxSelector,
5179                                                 getContext().getObjCIdType(),
5180                                                 nullptr, D, /*isInstance=*/true,
5181                                                 /*isVariadic=*/false,
5182                                                 /*isPropertyAccessor=*/true,
5183                                                 /*isImplicitlyDeclared=*/true,
5184                                                 /*isDefined=*/false,
5185                                                 ObjCMethodDecl::Required);
5186   D->addInstanceMethod(CTORMethod);
5187   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5188   D->setHasNonZeroConstructors(true);
5189 }
5190 
5191 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5192 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5193   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5194       LSD->getLanguage() != LinkageSpecDecl::lang_cxx &&
5195       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_11 &&
5196       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_14) {
5197     ErrorUnsupported(LSD, "linkage spec");
5198     return;
5199   }
5200 
5201   EmitDeclContext(LSD);
5202 }
5203 
5204 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5205   for (auto *I : DC->decls()) {
5206     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5207     // are themselves considered "top-level", so EmitTopLevelDecl on an
5208     // ObjCImplDecl does not recursively visit them. We need to do that in
5209     // case they're nested inside another construct (LinkageSpecDecl /
5210     // ExportDecl) that does stop them from being considered "top-level".
5211     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5212       for (auto *M : OID->methods())
5213         EmitTopLevelDecl(M);
5214     }
5215 
5216     EmitTopLevelDecl(I);
5217   }
5218 }
5219 
5220 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5221 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5222   // Ignore dependent declarations.
5223   if (D->isTemplated())
5224     return;
5225 
5226   switch (D->getKind()) {
5227   case Decl::CXXConversion:
5228   case Decl::CXXMethod:
5229   case Decl::Function:
5230     EmitGlobal(cast<FunctionDecl>(D));
5231     // Always provide some coverage mapping
5232     // even for the functions that aren't emitted.
5233     AddDeferredUnusedCoverageMapping(D);
5234     break;
5235 
5236   case Decl::CXXDeductionGuide:
5237     // Function-like, but does not result in code emission.
5238     break;
5239 
5240   case Decl::Var:
5241   case Decl::Decomposition:
5242   case Decl::VarTemplateSpecialization:
5243     EmitGlobal(cast<VarDecl>(D));
5244     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5245       for (auto *B : DD->bindings())
5246         if (auto *HD = B->getHoldingVar())
5247           EmitGlobal(HD);
5248     break;
5249 
5250   // Indirect fields from global anonymous structs and unions can be
5251   // ignored; only the actual variable requires IR gen support.
5252   case Decl::IndirectField:
5253     break;
5254 
5255   // C++ Decls
5256   case Decl::Namespace:
5257     EmitDeclContext(cast<NamespaceDecl>(D));
5258     break;
5259   case Decl::ClassTemplateSpecialization: {
5260     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5261     if (DebugInfo &&
5262         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5263         Spec->hasDefinition())
5264       DebugInfo->completeTemplateDefinition(*Spec);
5265   } LLVM_FALLTHROUGH;
5266   case Decl::CXXRecord:
5267     if (DebugInfo) {
5268       if (auto *ES = D->getASTContext().getExternalSource())
5269         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5270           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5271     }
5272     // Emit any static data members, they may be definitions.
5273     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5274       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5275         EmitTopLevelDecl(I);
5276     break;
5277     // No code generation needed.
5278   case Decl::UsingShadow:
5279   case Decl::ClassTemplate:
5280   case Decl::VarTemplate:
5281   case Decl::Concept:
5282   case Decl::VarTemplatePartialSpecialization:
5283   case Decl::FunctionTemplate:
5284   case Decl::TypeAliasTemplate:
5285   case Decl::Block:
5286   case Decl::Empty:
5287   case Decl::Binding:
5288     break;
5289   case Decl::Using:          // using X; [C++]
5290     if (CGDebugInfo *DI = getModuleDebugInfo())
5291         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5292     return;
5293   case Decl::NamespaceAlias:
5294     if (CGDebugInfo *DI = getModuleDebugInfo())
5295         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5296     return;
5297   case Decl::UsingDirective: // using namespace X; [C++]
5298     if (CGDebugInfo *DI = getModuleDebugInfo())
5299       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5300     return;
5301   case Decl::CXXConstructor:
5302     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5303     break;
5304   case Decl::CXXDestructor:
5305     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5306     break;
5307 
5308   case Decl::StaticAssert:
5309     // Nothing to do.
5310     break;
5311 
5312   // Objective-C Decls
5313 
5314   // Forward declarations, no (immediate) code generation.
5315   case Decl::ObjCInterface:
5316   case Decl::ObjCCategory:
5317     break;
5318 
5319   case Decl::ObjCProtocol: {
5320     auto *Proto = cast<ObjCProtocolDecl>(D);
5321     if (Proto->isThisDeclarationADefinition())
5322       ObjCRuntime->GenerateProtocol(Proto);
5323     break;
5324   }
5325 
5326   case Decl::ObjCCategoryImpl:
5327     // Categories have properties but don't support synthesize so we
5328     // can ignore them here.
5329     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5330     break;
5331 
5332   case Decl::ObjCImplementation: {
5333     auto *OMD = cast<ObjCImplementationDecl>(D);
5334     EmitObjCPropertyImplementations(OMD);
5335     EmitObjCIvarInitializations(OMD);
5336     ObjCRuntime->GenerateClass(OMD);
5337     // Emit global variable debug information.
5338     if (CGDebugInfo *DI = getModuleDebugInfo())
5339       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5340         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5341             OMD->getClassInterface()), OMD->getLocation());
5342     break;
5343   }
5344   case Decl::ObjCMethod: {
5345     auto *OMD = cast<ObjCMethodDecl>(D);
5346     // If this is not a prototype, emit the body.
5347     if (OMD->getBody())
5348       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5349     break;
5350   }
5351   case Decl::ObjCCompatibleAlias:
5352     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5353     break;
5354 
5355   case Decl::PragmaComment: {
5356     const auto *PCD = cast<PragmaCommentDecl>(D);
5357     switch (PCD->getCommentKind()) {
5358     case PCK_Unknown:
5359       llvm_unreachable("unexpected pragma comment kind");
5360     case PCK_Linker:
5361       AppendLinkerOptions(PCD->getArg());
5362       break;
5363     case PCK_Lib:
5364         AddDependentLib(PCD->getArg());
5365       break;
5366     case PCK_Compiler:
5367     case PCK_ExeStr:
5368     case PCK_User:
5369       break; // We ignore all of these.
5370     }
5371     break;
5372   }
5373 
5374   case Decl::PragmaDetectMismatch: {
5375     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5376     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5377     break;
5378   }
5379 
5380   case Decl::LinkageSpec:
5381     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5382     break;
5383 
5384   case Decl::FileScopeAsm: {
5385     // File-scope asm is ignored during device-side CUDA compilation.
5386     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5387       break;
5388     // File-scope asm is ignored during device-side OpenMP compilation.
5389     if (LangOpts.OpenMPIsDevice)
5390       break;
5391     auto *AD = cast<FileScopeAsmDecl>(D);
5392     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5393     break;
5394   }
5395 
5396   case Decl::Import: {
5397     auto *Import = cast<ImportDecl>(D);
5398 
5399     // If we've already imported this module, we're done.
5400     if (!ImportedModules.insert(Import->getImportedModule()))
5401       break;
5402 
5403     // Emit debug information for direct imports.
5404     if (!Import->getImportedOwningModule()) {
5405       if (CGDebugInfo *DI = getModuleDebugInfo())
5406         DI->EmitImportDecl(*Import);
5407     }
5408 
5409     // Find all of the submodules and emit the module initializers.
5410     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5411     SmallVector<clang::Module *, 16> Stack;
5412     Visited.insert(Import->getImportedModule());
5413     Stack.push_back(Import->getImportedModule());
5414 
5415     while (!Stack.empty()) {
5416       clang::Module *Mod = Stack.pop_back_val();
5417       if (!EmittedModuleInitializers.insert(Mod).second)
5418         continue;
5419 
5420       for (auto *D : Context.getModuleInitializers(Mod))
5421         EmitTopLevelDecl(D);
5422 
5423       // Visit the submodules of this module.
5424       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5425                                              SubEnd = Mod->submodule_end();
5426            Sub != SubEnd; ++Sub) {
5427         // Skip explicit children; they need to be explicitly imported to emit
5428         // the initializers.
5429         if ((*Sub)->IsExplicit)
5430           continue;
5431 
5432         if (Visited.insert(*Sub).second)
5433           Stack.push_back(*Sub);
5434       }
5435     }
5436     break;
5437   }
5438 
5439   case Decl::Export:
5440     EmitDeclContext(cast<ExportDecl>(D));
5441     break;
5442 
5443   case Decl::OMPThreadPrivate:
5444     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5445     break;
5446 
5447   case Decl::OMPAllocate:
5448     break;
5449 
5450   case Decl::OMPDeclareReduction:
5451     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5452     break;
5453 
5454   case Decl::OMPDeclareMapper:
5455     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5456     break;
5457 
5458   case Decl::OMPRequires:
5459     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5460     break;
5461 
5462   default:
5463     // Make sure we handled everything we should, every other kind is a
5464     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5465     // function. Need to recode Decl::Kind to do that easily.
5466     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5467     break;
5468   }
5469 }
5470 
5471 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5472   // Do we need to generate coverage mapping?
5473   if (!CodeGenOpts.CoverageMapping)
5474     return;
5475   switch (D->getKind()) {
5476   case Decl::CXXConversion:
5477   case Decl::CXXMethod:
5478   case Decl::Function:
5479   case Decl::ObjCMethod:
5480   case Decl::CXXConstructor:
5481   case Decl::CXXDestructor: {
5482     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5483       return;
5484     SourceManager &SM = getContext().getSourceManager();
5485     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5486       return;
5487     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5488     if (I == DeferredEmptyCoverageMappingDecls.end())
5489       DeferredEmptyCoverageMappingDecls[D] = true;
5490     break;
5491   }
5492   default:
5493     break;
5494   };
5495 }
5496 
5497 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5498   // Do we need to generate coverage mapping?
5499   if (!CodeGenOpts.CoverageMapping)
5500     return;
5501   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5502     if (Fn->isTemplateInstantiation())
5503       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5504   }
5505   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5506   if (I == DeferredEmptyCoverageMappingDecls.end())
5507     DeferredEmptyCoverageMappingDecls[D] = false;
5508   else
5509     I->second = false;
5510 }
5511 
5512 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5513   // We call takeVector() here to avoid use-after-free.
5514   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5515   // we deserialize function bodies to emit coverage info for them, and that
5516   // deserializes more declarations. How should we handle that case?
5517   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5518     if (!Entry.second)
5519       continue;
5520     const Decl *D = Entry.first;
5521     switch (D->getKind()) {
5522     case Decl::CXXConversion:
5523     case Decl::CXXMethod:
5524     case Decl::Function:
5525     case Decl::ObjCMethod: {
5526       CodeGenPGO PGO(*this);
5527       GlobalDecl GD(cast<FunctionDecl>(D));
5528       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5529                                   getFunctionLinkage(GD));
5530       break;
5531     }
5532     case Decl::CXXConstructor: {
5533       CodeGenPGO PGO(*this);
5534       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5535       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5536                                   getFunctionLinkage(GD));
5537       break;
5538     }
5539     case Decl::CXXDestructor: {
5540       CodeGenPGO PGO(*this);
5541       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5542       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5543                                   getFunctionLinkage(GD));
5544       break;
5545     }
5546     default:
5547       break;
5548     };
5549   }
5550 }
5551 
5552 /// Turns the given pointer into a constant.
5553 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5554                                           const void *Ptr) {
5555   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5556   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5557   return llvm::ConstantInt::get(i64, PtrInt);
5558 }
5559 
5560 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5561                                    llvm::NamedMDNode *&GlobalMetadata,
5562                                    GlobalDecl D,
5563                                    llvm::GlobalValue *Addr) {
5564   if (!GlobalMetadata)
5565     GlobalMetadata =
5566       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5567 
5568   // TODO: should we report variant information for ctors/dtors?
5569   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5570                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5571                                CGM.getLLVMContext(), D.getDecl()))};
5572   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5573 }
5574 
5575 /// For each function which is declared within an extern "C" region and marked
5576 /// as 'used', but has internal linkage, create an alias from the unmangled
5577 /// name to the mangled name if possible. People expect to be able to refer
5578 /// to such functions with an unmangled name from inline assembly within the
5579 /// same translation unit.
5580 void CodeGenModule::EmitStaticExternCAliases() {
5581   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5582     return;
5583   for (auto &I : StaticExternCValues) {
5584     IdentifierInfo *Name = I.first;
5585     llvm::GlobalValue *Val = I.second;
5586     if (Val && !getModule().getNamedValue(Name->getName()))
5587       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5588   }
5589 }
5590 
5591 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5592                                              GlobalDecl &Result) const {
5593   auto Res = Manglings.find(MangledName);
5594   if (Res == Manglings.end())
5595     return false;
5596   Result = Res->getValue();
5597   return true;
5598 }
5599 
5600 /// Emits metadata nodes associating all the global values in the
5601 /// current module with the Decls they came from.  This is useful for
5602 /// projects using IR gen as a subroutine.
5603 ///
5604 /// Since there's currently no way to associate an MDNode directly
5605 /// with an llvm::GlobalValue, we create a global named metadata
5606 /// with the name 'clang.global.decl.ptrs'.
5607 void CodeGenModule::EmitDeclMetadata() {
5608   llvm::NamedMDNode *GlobalMetadata = nullptr;
5609 
5610   for (auto &I : MangledDeclNames) {
5611     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5612     // Some mangled names don't necessarily have an associated GlobalValue
5613     // in this module, e.g. if we mangled it for DebugInfo.
5614     if (Addr)
5615       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5616   }
5617 }
5618 
5619 /// Emits metadata nodes for all the local variables in the current
5620 /// function.
5621 void CodeGenFunction::EmitDeclMetadata() {
5622   if (LocalDeclMap.empty()) return;
5623 
5624   llvm::LLVMContext &Context = getLLVMContext();
5625 
5626   // Find the unique metadata ID for this name.
5627   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5628 
5629   llvm::NamedMDNode *GlobalMetadata = nullptr;
5630 
5631   for (auto &I : LocalDeclMap) {
5632     const Decl *D = I.first;
5633     llvm::Value *Addr = I.second.getPointer();
5634     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5635       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5636       Alloca->setMetadata(
5637           DeclPtrKind, llvm::MDNode::get(
5638                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5639     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5640       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5641       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5642     }
5643   }
5644 }
5645 
5646 void CodeGenModule::EmitVersionIdentMetadata() {
5647   llvm::NamedMDNode *IdentMetadata =
5648     TheModule.getOrInsertNamedMetadata("llvm.ident");
5649   std::string Version = getClangFullVersion();
5650   llvm::LLVMContext &Ctx = TheModule.getContext();
5651 
5652   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5653   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5654 }
5655 
5656 void CodeGenModule::EmitCommandLineMetadata() {
5657   llvm::NamedMDNode *CommandLineMetadata =
5658     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5659   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5660   llvm::LLVMContext &Ctx = TheModule.getContext();
5661 
5662   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5663   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5664 }
5665 
5666 void CodeGenModule::EmitTargetMetadata() {
5667   // Warning, new MangledDeclNames may be appended within this loop.
5668   // We rely on MapVector insertions adding new elements to the end
5669   // of the container.
5670   // FIXME: Move this loop into the one target that needs it, and only
5671   // loop over those declarations for which we couldn't emit the target
5672   // metadata when we emitted the declaration.
5673   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5674     auto Val = *(MangledDeclNames.begin() + I);
5675     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5676     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5677     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5678   }
5679 }
5680 
5681 void CodeGenModule::EmitCoverageFile() {
5682   if (getCodeGenOpts().CoverageDataFile.empty() &&
5683       getCodeGenOpts().CoverageNotesFile.empty())
5684     return;
5685 
5686   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5687   if (!CUNode)
5688     return;
5689 
5690   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5691   llvm::LLVMContext &Ctx = TheModule.getContext();
5692   auto *CoverageDataFile =
5693       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5694   auto *CoverageNotesFile =
5695       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5696   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5697     llvm::MDNode *CU = CUNode->getOperand(i);
5698     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5699     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5700   }
5701 }
5702 
5703 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5704   // Sema has checked that all uuid strings are of the form
5705   // "12345678-1234-1234-1234-1234567890ab".
5706   assert(Uuid.size() == 36);
5707   for (unsigned i = 0; i < 36; ++i) {
5708     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5709     else                                         assert(isHexDigit(Uuid[i]));
5710   }
5711 
5712   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5713   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5714 
5715   llvm::Constant *Field3[8];
5716   for (unsigned Idx = 0; Idx < 8; ++Idx)
5717     Field3[Idx] = llvm::ConstantInt::get(
5718         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5719 
5720   llvm::Constant *Fields[4] = {
5721     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5722     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5723     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5724     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5725   };
5726 
5727   return llvm::ConstantStruct::getAnon(Fields);
5728 }
5729 
5730 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5731                                                        bool ForEH) {
5732   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5733   // FIXME: should we even be calling this method if RTTI is disabled
5734   // and it's not for EH?
5735   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5736     return llvm::Constant::getNullValue(Int8PtrTy);
5737 
5738   if (ForEH && Ty->isObjCObjectPointerType() &&
5739       LangOpts.ObjCRuntime.isGNUFamily())
5740     return ObjCRuntime->GetEHType(Ty);
5741 
5742   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5743 }
5744 
5745 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5746   // Do not emit threadprivates in simd-only mode.
5747   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5748     return;
5749   for (auto RefExpr : D->varlists()) {
5750     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5751     bool PerformInit =
5752         VD->getAnyInitializer() &&
5753         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5754                                                         /*ForRef=*/false);
5755 
5756     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5757     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5758             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5759       CXXGlobalInits.push_back(InitFunction);
5760   }
5761 }
5762 
5763 llvm::Metadata *
5764 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5765                                             StringRef Suffix) {
5766   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5767   if (InternalId)
5768     return InternalId;
5769 
5770   if (isExternallyVisible(T->getLinkage())) {
5771     std::string OutName;
5772     llvm::raw_string_ostream Out(OutName);
5773     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5774     Out << Suffix;
5775 
5776     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5777   } else {
5778     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5779                                            llvm::ArrayRef<llvm::Metadata *>());
5780   }
5781 
5782   return InternalId;
5783 }
5784 
5785 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5786   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5787 }
5788 
5789 llvm::Metadata *
5790 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5791   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5792 }
5793 
5794 // Generalize pointer types to a void pointer with the qualifiers of the
5795 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5796 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5797 // 'void *'.
5798 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5799   if (!Ty->isPointerType())
5800     return Ty;
5801 
5802   return Ctx.getPointerType(
5803       QualType(Ctx.VoidTy).withCVRQualifiers(
5804           Ty->getPointeeType().getCVRQualifiers()));
5805 }
5806 
5807 // Apply type generalization to a FunctionType's return and argument types
5808 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5809   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5810     SmallVector<QualType, 8> GeneralizedParams;
5811     for (auto &Param : FnType->param_types())
5812       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5813 
5814     return Ctx.getFunctionType(
5815         GeneralizeType(Ctx, FnType->getReturnType()),
5816         GeneralizedParams, FnType->getExtProtoInfo());
5817   }
5818 
5819   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5820     return Ctx.getFunctionNoProtoType(
5821         GeneralizeType(Ctx, FnType->getReturnType()));
5822 
5823   llvm_unreachable("Encountered unknown FunctionType");
5824 }
5825 
5826 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5827   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5828                                       GeneralizedMetadataIdMap, ".generalized");
5829 }
5830 
5831 /// Returns whether this module needs the "all-vtables" type identifier.
5832 bool CodeGenModule::NeedAllVtablesTypeId() const {
5833   // Returns true if at least one of vtable-based CFI checkers is enabled and
5834   // is not in the trapping mode.
5835   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5836            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5837           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5838            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5839           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5840            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5841           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5842            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5843 }
5844 
5845 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5846                                           CharUnits Offset,
5847                                           const CXXRecordDecl *RD) {
5848   llvm::Metadata *MD =
5849       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5850   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5851 
5852   if (CodeGenOpts.SanitizeCfiCrossDso)
5853     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5854       VTable->addTypeMetadata(Offset.getQuantity(),
5855                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5856 
5857   if (NeedAllVtablesTypeId()) {
5858     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5859     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5860   }
5861 }
5862 
5863 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5864   assert(TD != nullptr);
5865   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5866 
5867   ParsedAttr.Features.erase(
5868       llvm::remove_if(ParsedAttr.Features,
5869                       [&](const std::string &Feat) {
5870                         return !Target.isValidFeatureName(
5871                             StringRef{Feat}.substr(1));
5872                       }),
5873       ParsedAttr.Features.end());
5874   return ParsedAttr;
5875 }
5876 
5877 
5878 // Fills in the supplied string map with the set of target features for the
5879 // passed in function.
5880 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5881                                           GlobalDecl GD) {
5882   StringRef TargetCPU = Target.getTargetOpts().CPU;
5883   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5884   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5885     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5886 
5887     // Make a copy of the features as passed on the command line into the
5888     // beginning of the additional features from the function to override.
5889     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5890                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5891                             Target.getTargetOpts().FeaturesAsWritten.end());
5892 
5893     if (ParsedAttr.Architecture != "" &&
5894         Target.isValidCPUName(ParsedAttr.Architecture))
5895       TargetCPU = ParsedAttr.Architecture;
5896 
5897     // Now populate the feature map, first with the TargetCPU which is either
5898     // the default or a new one from the target attribute string. Then we'll use
5899     // the passed in features (FeaturesAsWritten) along with the new ones from
5900     // the attribute.
5901     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5902                           ParsedAttr.Features);
5903   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5904     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5905     Target.getCPUSpecificCPUDispatchFeatures(
5906         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5907     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5908     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5909   } else {
5910     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5911                           Target.getTargetOpts().Features);
5912   }
5913 }
5914 
5915 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5916   if (!SanStats)
5917     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5918 
5919   return *SanStats;
5920 }
5921 llvm::Value *
5922 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5923                                                   CodeGenFunction &CGF) {
5924   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5925   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5926   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5927   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5928                                 "__translate_sampler_initializer"),
5929                                 {C});
5930 }
5931