xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cdb42a4cc4239c0b592fc82021c945ce02ebe5cc)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   if (CoverageMapping)
515     CoverageMapping->emit();
516   if (CodeGenOpts.SanitizeCfiCrossDso) {
517     CodeGenFunction(*this).EmitCfiCheckFail();
518     CodeGenFunction(*this).EmitCfiCheckStub();
519   }
520   emitAtAvailableLinkGuard();
521   if (Context.getTargetInfo().getTriple().isWasm() &&
522       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
523     EmitMainVoidAlias();
524   }
525   emitLLVMUsed();
526   if (SanStats)
527     SanStats->finish();
528 
529   if (CodeGenOpts.Autolink &&
530       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
531     EmitModuleLinkOptions();
532   }
533 
534   // On ELF we pass the dependent library specifiers directly to the linker
535   // without manipulating them. This is in contrast to other platforms where
536   // they are mapped to a specific linker option by the compiler. This
537   // difference is a result of the greater variety of ELF linkers and the fact
538   // that ELF linkers tend to handle libraries in a more complicated fashion
539   // than on other platforms. This forces us to defer handling the dependent
540   // libs to the linker.
541   //
542   // CUDA/HIP device and host libraries are different. Currently there is no
543   // way to differentiate dependent libraries for host or device. Existing
544   // usage of #pragma comment(lib, *) is intended for host libraries on
545   // Windows. Therefore emit llvm.dependent-libraries only for host.
546   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
547     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
548     for (auto *MD : ELFDependentLibraries)
549       NMD->addOperand(MD);
550   }
551 
552   // Record mregparm value now so it is visible through rest of codegen.
553   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
554     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
555                               CodeGenOpts.NumRegisterParameters);
556 
557   if (CodeGenOpts.DwarfVersion) {
558     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
559                               CodeGenOpts.DwarfVersion);
560   }
561 
562   if (CodeGenOpts.Dwarf64)
563     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
564 
565   if (Context.getLangOpts().SemanticInterposition)
566     // Require various optimization to respect semantic interposition.
567     getModule().setSemanticInterposition(1);
568 
569   if (CodeGenOpts.EmitCodeView) {
570     // Indicate that we want CodeView in the metadata.
571     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
572   }
573   if (CodeGenOpts.CodeViewGHash) {
574     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
575   }
576   if (CodeGenOpts.ControlFlowGuard) {
577     // Function ID tables and checks for Control Flow Guard (cfguard=2).
578     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
579   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
580     // Function ID tables for Control Flow Guard (cfguard=1).
581     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
582   }
583   if (CodeGenOpts.EHContGuard) {
584     // Function ID tables for EH Continuation Guard.
585     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
586   }
587   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
588     // We don't support LTO with 2 with different StrictVTablePointers
589     // FIXME: we could support it by stripping all the information introduced
590     // by StrictVTablePointers.
591 
592     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
593 
594     llvm::Metadata *Ops[2] = {
595               llvm::MDString::get(VMContext, "StrictVTablePointers"),
596               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
597                   llvm::Type::getInt32Ty(VMContext), 1))};
598 
599     getModule().addModuleFlag(llvm::Module::Require,
600                               "StrictVTablePointersRequirement",
601                               llvm::MDNode::get(VMContext, Ops));
602   }
603   if (getModuleDebugInfo())
604     // We support a single version in the linked module. The LLVM
605     // parser will drop debug info with a different version number
606     // (and warn about it, too).
607     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
608                               llvm::DEBUG_METADATA_VERSION);
609 
610   // We need to record the widths of enums and wchar_t, so that we can generate
611   // the correct build attributes in the ARM backend. wchar_size is also used by
612   // TargetLibraryInfo.
613   uint64_t WCharWidth =
614       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
615   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
616 
617   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
618   if (   Arch == llvm::Triple::arm
619       || Arch == llvm::Triple::armeb
620       || Arch == llvm::Triple::thumb
621       || Arch == llvm::Triple::thumbeb) {
622     // The minimum width of an enum in bytes
623     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
624     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
625   }
626 
627   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
628     StringRef ABIStr = Target.getABI();
629     llvm::LLVMContext &Ctx = TheModule.getContext();
630     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
631                               llvm::MDString::get(Ctx, ABIStr));
632   }
633 
634   if (CodeGenOpts.SanitizeCfiCrossDso) {
635     // Indicate that we want cross-DSO control flow integrity checks.
636     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
637   }
638 
639   if (CodeGenOpts.WholeProgramVTables) {
640     // Indicate whether VFE was enabled for this module, so that the
641     // vcall_visibility metadata added under whole program vtables is handled
642     // appropriately in the optimizer.
643     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
644                               CodeGenOpts.VirtualFunctionElimination);
645   }
646 
647   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
648     getModule().addModuleFlag(llvm::Module::Override,
649                               "CFI Canonical Jump Tables",
650                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
651   }
652 
653   if (CodeGenOpts.CFProtectionReturn &&
654       Target.checkCFProtectionReturnSupported(getDiags())) {
655     // Indicate that we want to instrument return control flow protection.
656     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
657                               1);
658   }
659 
660   if (CodeGenOpts.CFProtectionBranch &&
661       Target.checkCFProtectionBranchSupported(getDiags())) {
662     // Indicate that we want to instrument branch control flow protection.
663     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
664                               1);
665   }
666 
667   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
668       Arch == llvm::Triple::aarch64_be) {
669     getModule().addModuleFlag(llvm::Module::Error,
670                               "branch-target-enforcement",
671                               LangOpts.BranchTargetEnforcement);
672 
673     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
674                               LangOpts.hasSignReturnAddress());
675 
676     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
677                               LangOpts.isSignReturnAddressScopeAll());
678 
679     getModule().addModuleFlag(llvm::Module::Error,
680                               "sign-return-address-with-bkey",
681                               !LangOpts.isSignReturnAddressWithAKey());
682   }
683 
684   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
685     llvm::LLVMContext &Ctx = TheModule.getContext();
686     getModule().addModuleFlag(
687         llvm::Module::Error, "MemProfProfileFilename",
688         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
689   }
690 
691   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
692     // Indicate whether __nvvm_reflect should be configured to flush denormal
693     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
694     // property.)
695     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
696                               CodeGenOpts.FP32DenormalMode.Output !=
697                                   llvm::DenormalMode::IEEE);
698   }
699 
700   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
701   if (LangOpts.OpenCL) {
702     EmitOpenCLMetadata();
703     // Emit SPIR version.
704     if (getTriple().isSPIR()) {
705       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
706       // opencl.spir.version named metadata.
707       // C++ is backwards compatible with OpenCL v2.0.
708       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
709       llvm::Metadata *SPIRVerElts[] = {
710           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
711               Int32Ty, Version / 100)),
712           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
713               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
714       llvm::NamedMDNode *SPIRVerMD =
715           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
716       llvm::LLVMContext &Ctx = TheModule.getContext();
717       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
718     }
719   }
720 
721   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
722     assert(PLevel < 3 && "Invalid PIC Level");
723     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
724     if (Context.getLangOpts().PIE)
725       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
726   }
727 
728   if (getCodeGenOpts().CodeModel.size() > 0) {
729     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
730                   .Case("tiny", llvm::CodeModel::Tiny)
731                   .Case("small", llvm::CodeModel::Small)
732                   .Case("kernel", llvm::CodeModel::Kernel)
733                   .Case("medium", llvm::CodeModel::Medium)
734                   .Case("large", llvm::CodeModel::Large)
735                   .Default(~0u);
736     if (CM != ~0u) {
737       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
738       getModule().setCodeModel(codeModel);
739     }
740   }
741 
742   if (CodeGenOpts.NoPLT)
743     getModule().setRtLibUseGOT();
744 
745   SimplifyPersonality();
746 
747   if (getCodeGenOpts().EmitDeclMetadata)
748     EmitDeclMetadata();
749 
750   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
751     EmitCoverageFile();
752 
753   if (CGDebugInfo *DI = getModuleDebugInfo())
754     DI->finalize();
755 
756   if (getCodeGenOpts().EmitVersionIdentMetadata)
757     EmitVersionIdentMetadata();
758 
759   if (!getCodeGenOpts().RecordCommandLine.empty())
760     EmitCommandLineMetadata();
761 
762   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
763 
764   EmitBackendOptionsMetadata(getCodeGenOpts());
765 
766   // Set visibility from DLL storage class
767   // We do this at the end of LLVM IR generation; after any operation
768   // that might affect the DLL storage class or the visibility, and
769   // before anything that might act on these.
770   setVisibilityFromDLLStorageClass(LangOpts, getModule());
771 }
772 
773 void CodeGenModule::EmitOpenCLMetadata() {
774   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
775   // opencl.ocl.version named metadata node.
776   // C++ is backwards compatible with OpenCL v2.0.
777   // FIXME: We might need to add CXX version at some point too?
778   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
779   llvm::Metadata *OCLVerElts[] = {
780       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
781           Int32Ty, Version / 100)),
782       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
783           Int32Ty, (Version % 100) / 10))};
784   llvm::NamedMDNode *OCLVerMD =
785       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
786   llvm::LLVMContext &Ctx = TheModule.getContext();
787   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
788 }
789 
790 void CodeGenModule::EmitBackendOptionsMetadata(
791     const CodeGenOptions CodeGenOpts) {
792   switch (getTriple().getArch()) {
793   default:
794     break;
795   case llvm::Triple::riscv32:
796   case llvm::Triple::riscv64:
797     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
798                               CodeGenOpts.SmallDataLimit);
799     break;
800   }
801 }
802 
803 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
804   // Make sure that this type is translated.
805   Types.UpdateCompletedType(TD);
806 }
807 
808 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
809   // Make sure that this type is translated.
810   Types.RefreshTypeCacheForClass(RD);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTypeInfo(QTy);
817 }
818 
819 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
820   if (!TBAA)
821     return TBAAAccessInfo();
822   if (getLangOpts().CUDAIsDevice) {
823     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
824     // access info.
825     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
826       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
827           nullptr)
828         return TBAAAccessInfo();
829     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
830       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
831           nullptr)
832         return TBAAAccessInfo();
833     }
834   }
835   return TBAA->getAccessInfo(AccessType);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
840   if (!TBAA)
841     return TBAAAccessInfo();
842   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
843 }
844 
845 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
846   if (!TBAA)
847     return nullptr;
848   return TBAA->getTBAAStructInfo(QTy);
849 }
850 
851 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
852   if (!TBAA)
853     return nullptr;
854   return TBAA->getBaseTypeInfo(QTy);
855 }
856 
857 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
858   if (!TBAA)
859     return nullptr;
860   return TBAA->getAccessTagInfo(Info);
861 }
862 
863 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
864                                                    TBAAAccessInfo TargetInfo) {
865   if (!TBAA)
866     return TBAAAccessInfo();
867   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
868 }
869 
870 TBAAAccessInfo
871 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
872                                                    TBAAAccessInfo InfoB) {
873   if (!TBAA)
874     return TBAAAccessInfo();
875   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
876 }
877 
878 TBAAAccessInfo
879 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
880                                               TBAAAccessInfo SrcInfo) {
881   if (!TBAA)
882     return TBAAAccessInfo();
883   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
884 }
885 
886 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
887                                                 TBAAAccessInfo TBAAInfo) {
888   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
889     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
890 }
891 
892 void CodeGenModule::DecorateInstructionWithInvariantGroup(
893     llvm::Instruction *I, const CXXRecordDecl *RD) {
894   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
895                  llvm::MDNode::get(getLLVMContext(), {}));
896 }
897 
898 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
899   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
900   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
901 }
902 
903 /// ErrorUnsupported - Print out an error that codegen doesn't support the
904 /// specified stmt yet.
905 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
906   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
907                                                "cannot compile this %0 yet");
908   std::string Msg = Type;
909   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
910       << Msg << S->getSourceRange();
911 }
912 
913 /// ErrorUnsupported - Print out an error that codegen doesn't support the
914 /// specified decl yet.
915 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
916   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
917                                                "cannot compile this %0 yet");
918   std::string Msg = Type;
919   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
920 }
921 
922 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
923   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
924 }
925 
926 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
927                                         const NamedDecl *D) const {
928   if (GV->hasDLLImportStorageClass())
929     return;
930   // Internal definitions always have default visibility.
931   if (GV->hasLocalLinkage()) {
932     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
933     return;
934   }
935   if (!D)
936     return;
937   // Set visibility for definitions, and for declarations if requested globally
938   // or set explicitly.
939   LinkageInfo LV = D->getLinkageAndVisibility();
940   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
941       !GV->isDeclarationForLinker())
942     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
943 }
944 
945 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
946                                  llvm::GlobalValue *GV) {
947   if (GV->hasLocalLinkage())
948     return true;
949 
950   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
951     return true;
952 
953   // DLLImport explicitly marks the GV as external.
954   if (GV->hasDLLImportStorageClass())
955     return false;
956 
957   const llvm::Triple &TT = CGM.getTriple();
958   if (TT.isWindowsGNUEnvironment()) {
959     // In MinGW, variables without DLLImport can still be automatically
960     // imported from a DLL by the linker; don't mark variables that
961     // potentially could come from another DLL as DSO local.
962     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
963         !GV->isThreadLocal())
964       return false;
965   }
966 
967   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
968   // remain unresolved in the link, they can be resolved to zero, which is
969   // outside the current DSO.
970   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
971     return false;
972 
973   // Every other GV is local on COFF.
974   // Make an exception for windows OS in the triple: Some firmware builds use
975   // *-win32-macho triples. This (accidentally?) produced windows relocations
976   // without GOT tables in older clang versions; Keep this behaviour.
977   // FIXME: even thread local variables?
978   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
979     return true;
980 
981   const auto &CGOpts = CGM.getCodeGenOpts();
982   llvm::Reloc::Model RM = CGOpts.RelocationModel;
983   const auto &LOpts = CGM.getLangOpts();
984 
985   if (TT.isOSBinFormatMachO()) {
986     if (RM == llvm::Reloc::Static)
987       return true;
988     return GV->isStrongDefinitionForLinker();
989   }
990 
991   // Only handle COFF and ELF for now.
992   if (!TT.isOSBinFormatELF())
993     return false;
994 
995   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
996     // On ELF, if -fno-semantic-interposition is specified and the target
997     // supports local aliases, there will be neither CC1
998     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
999     // dso_local if using a local alias is preferable (can avoid GOT
1000     // indirection).
1001     if (!GV->canBenefitFromLocalAlias())
1002       return false;
1003     return !(CGM.getLangOpts().SemanticInterposition ||
1004              CGM.getLangOpts().HalfNoSemanticInterposition);
1005   }
1006 
1007   // A definition cannot be preempted from an executable.
1008   if (!GV->isDeclarationForLinker())
1009     return true;
1010 
1011   // Most PIC code sequences that assume that a symbol is local cannot produce a
1012   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1013   // depended, it seems worth it to handle it here.
1014   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1015     return false;
1016 
1017   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1018   if (TT.isPPC64())
1019     return false;
1020 
1021   if (CGOpts.DirectAccessExternalData) {
1022     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1023     // for non-thread-local variables. If the symbol is not defined in the
1024     // executable, a copy relocation will be needed at link time. dso_local is
1025     // excluded for thread-local variables because they generally don't support
1026     // copy relocations.
1027     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1028       if (!Var->isThreadLocal())
1029         return true;
1030 
1031     // -fno-pic sets dso_local on a function declaration to allow direct
1032     // accesses when taking its address (similar to a data symbol). If the
1033     // function is not defined in the executable, a canonical PLT entry will be
1034     // needed at link time. -fno-direct-access-external-data can avoid the
1035     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1036     // it could just cause trouble without providing perceptible benefits.
1037     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1038       return true;
1039   }
1040 
1041   // If we can use copy relocations we can assume it is local.
1042 
1043   // Otherwise don't assume it is local.
1044   return false;
1045 }
1046 
1047 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1048   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1049 }
1050 
1051 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1052                                           GlobalDecl GD) const {
1053   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1054   // C++ destructors have a few C++ ABI specific special cases.
1055   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1056     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1057     return;
1058   }
1059   setDLLImportDLLExport(GV, D);
1060 }
1061 
1062 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1063                                           const NamedDecl *D) const {
1064   if (D && D->isExternallyVisible()) {
1065     if (D->hasAttr<DLLImportAttr>())
1066       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1067     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1068       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1069   }
1070 }
1071 
1072 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1073                                     GlobalDecl GD) const {
1074   setDLLImportDLLExport(GV, GD);
1075   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1076 }
1077 
1078 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1079                                     const NamedDecl *D) const {
1080   setDLLImportDLLExport(GV, D);
1081   setGVPropertiesAux(GV, D);
1082 }
1083 
1084 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1085                                        const NamedDecl *D) const {
1086   setGlobalVisibility(GV, D);
1087   setDSOLocal(GV);
1088   GV->setPartition(CodeGenOpts.SymbolPartition);
1089 }
1090 
1091 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1092   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1093       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1094       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1095       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1096       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1097 }
1098 
1099 llvm::GlobalVariable::ThreadLocalMode
1100 CodeGenModule::GetDefaultLLVMTLSModel() const {
1101   switch (CodeGenOpts.getDefaultTLSModel()) {
1102   case CodeGenOptions::GeneralDynamicTLSModel:
1103     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1104   case CodeGenOptions::LocalDynamicTLSModel:
1105     return llvm::GlobalVariable::LocalDynamicTLSModel;
1106   case CodeGenOptions::InitialExecTLSModel:
1107     return llvm::GlobalVariable::InitialExecTLSModel;
1108   case CodeGenOptions::LocalExecTLSModel:
1109     return llvm::GlobalVariable::LocalExecTLSModel;
1110   }
1111   llvm_unreachable("Invalid TLS model!");
1112 }
1113 
1114 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1115   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1116 
1117   llvm::GlobalValue::ThreadLocalMode TLM;
1118   TLM = GetDefaultLLVMTLSModel();
1119 
1120   // Override the TLS model if it is explicitly specified.
1121   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1122     TLM = GetLLVMTLSModel(Attr->getModel());
1123   }
1124 
1125   GV->setThreadLocalMode(TLM);
1126 }
1127 
1128 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1129                                           StringRef Name) {
1130   const TargetInfo &Target = CGM.getTarget();
1131   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1132 }
1133 
1134 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1135                                                  const CPUSpecificAttr *Attr,
1136                                                  unsigned CPUIndex,
1137                                                  raw_ostream &Out) {
1138   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1139   // supported.
1140   if (Attr)
1141     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1142   else if (CGM.getTarget().supportsIFunc())
1143     Out << ".resolver";
1144 }
1145 
1146 static void AppendTargetMangling(const CodeGenModule &CGM,
1147                                  const TargetAttr *Attr, raw_ostream &Out) {
1148   if (Attr->isDefaultVersion())
1149     return;
1150 
1151   Out << '.';
1152   const TargetInfo &Target = CGM.getTarget();
1153   ParsedTargetAttr Info =
1154       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1155         // Multiversioning doesn't allow "no-${feature}", so we can
1156         // only have "+" prefixes here.
1157         assert(LHS.startswith("+") && RHS.startswith("+") &&
1158                "Features should always have a prefix.");
1159         return Target.multiVersionSortPriority(LHS.substr(1)) >
1160                Target.multiVersionSortPriority(RHS.substr(1));
1161       });
1162 
1163   bool IsFirst = true;
1164 
1165   if (!Info.Architecture.empty()) {
1166     IsFirst = false;
1167     Out << "arch_" << Info.Architecture;
1168   }
1169 
1170   for (StringRef Feat : Info.Features) {
1171     if (!IsFirst)
1172       Out << '_';
1173     IsFirst = false;
1174     Out << Feat.substr(1);
1175   }
1176 }
1177 
1178 // Returns true if GD is a function decl with internal linkage and
1179 // needs a unique suffix after the mangled name.
1180 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1181                                         CodeGenModule &CGM) {
1182   const Decl *D = GD.getDecl();
1183   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1184          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1185 }
1186 
1187 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1188                                       const NamedDecl *ND,
1189                                       bool OmitMultiVersionMangling = false) {
1190   SmallString<256> Buffer;
1191   llvm::raw_svector_ostream Out(Buffer);
1192   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1193   if (!CGM.getModuleNameHash().empty())
1194     MC.needsUniqueInternalLinkageNames();
1195   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1196   if (ShouldMangle)
1197     MC.mangleName(GD.getWithDecl(ND), Out);
1198   else {
1199     IdentifierInfo *II = ND->getIdentifier();
1200     assert(II && "Attempt to mangle unnamed decl.");
1201     const auto *FD = dyn_cast<FunctionDecl>(ND);
1202 
1203     if (FD &&
1204         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1205       Out << "__regcall3__" << II->getName();
1206     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1207                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1208       Out << "__device_stub__" << II->getName();
1209     } else {
1210       Out << II->getName();
1211     }
1212   }
1213 
1214   // Check if the module name hash should be appended for internal linkage
1215   // symbols.   This should come before multi-version target suffixes are
1216   // appended. This is to keep the name and module hash suffix of the
1217   // internal linkage function together.  The unique suffix should only be
1218   // added when name mangling is done to make sure that the final name can
1219   // be properly demangled.  For example, for C functions without prototypes,
1220   // name mangling is not done and the unique suffix should not be appeneded
1221   // then.
1222   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1223     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1224            "Hash computed when not explicitly requested");
1225     Out << CGM.getModuleNameHash();
1226   }
1227 
1228   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1229     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1230       switch (FD->getMultiVersionKind()) {
1231       case MultiVersionKind::CPUDispatch:
1232       case MultiVersionKind::CPUSpecific:
1233         AppendCPUSpecificCPUDispatchMangling(CGM,
1234                                              FD->getAttr<CPUSpecificAttr>(),
1235                                              GD.getMultiVersionIndex(), Out);
1236         break;
1237       case MultiVersionKind::Target:
1238         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1239         break;
1240       case MultiVersionKind::None:
1241         llvm_unreachable("None multiversion type isn't valid here");
1242       }
1243     }
1244 
1245   // Make unique name for device side static file-scope variable for HIP.
1246   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1247       CGM.getLangOpts().GPURelocatableDeviceCode &&
1248       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1249     CGM.printPostfixForExternalizedStaticVar(Out);
1250   return std::string(Out.str());
1251 }
1252 
1253 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1254                                             const FunctionDecl *FD) {
1255   if (!FD->isMultiVersion())
1256     return;
1257 
1258   // Get the name of what this would be without the 'target' attribute.  This
1259   // allows us to lookup the version that was emitted when this wasn't a
1260   // multiversion function.
1261   std::string NonTargetName =
1262       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1263   GlobalDecl OtherGD;
1264   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1265     assert(OtherGD.getCanonicalDecl()
1266                .getDecl()
1267                ->getAsFunction()
1268                ->isMultiVersion() &&
1269            "Other GD should now be a multiversioned function");
1270     // OtherFD is the version of this function that was mangled BEFORE
1271     // becoming a MultiVersion function.  It potentially needs to be updated.
1272     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1273                                       .getDecl()
1274                                       ->getAsFunction()
1275                                       ->getMostRecentDecl();
1276     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1277     // This is so that if the initial version was already the 'default'
1278     // version, we don't try to update it.
1279     if (OtherName != NonTargetName) {
1280       // Remove instead of erase, since others may have stored the StringRef
1281       // to this.
1282       const auto ExistingRecord = Manglings.find(NonTargetName);
1283       if (ExistingRecord != std::end(Manglings))
1284         Manglings.remove(&(*ExistingRecord));
1285       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1286       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1287       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1288         Entry->setName(OtherName);
1289     }
1290   }
1291 }
1292 
1293 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1294   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1295 
1296   // Some ABIs don't have constructor variants.  Make sure that base and
1297   // complete constructors get mangled the same.
1298   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1299     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1300       CXXCtorType OrigCtorType = GD.getCtorType();
1301       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1302       if (OrigCtorType == Ctor_Base)
1303         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1304     }
1305   }
1306 
1307   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1308   // static device variable depends on whether the variable is referenced by
1309   // a host or device host function. Therefore the mangled name cannot be
1310   // cached.
1311   if (!LangOpts.CUDAIsDevice ||
1312       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1313     auto FoundName = MangledDeclNames.find(CanonicalGD);
1314     if (FoundName != MangledDeclNames.end())
1315       return FoundName->second;
1316   }
1317 
1318   // Keep the first result in the case of a mangling collision.
1319   const auto *ND = cast<NamedDecl>(GD.getDecl());
1320   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1321 
1322   // Ensure either we have different ABIs between host and device compilations,
1323   // says host compilation following MSVC ABI but device compilation follows
1324   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1325   // mangling should be the same after name stubbing. The later checking is
1326   // very important as the device kernel name being mangled in host-compilation
1327   // is used to resolve the device binaries to be executed. Inconsistent naming
1328   // result in undefined behavior. Even though we cannot check that naming
1329   // directly between host- and device-compilations, the host- and
1330   // device-mangling in host compilation could help catching certain ones.
1331   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1332          getLangOpts().CUDAIsDevice ||
1333          (getContext().getAuxTargetInfo() &&
1334           (getContext().getAuxTargetInfo()->getCXXABI() !=
1335            getContext().getTargetInfo().getCXXABI())) ||
1336          getCUDARuntime().getDeviceSideName(ND) ==
1337              getMangledNameImpl(
1338                  *this,
1339                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1340                  ND));
1341 
1342   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1343   return MangledDeclNames[CanonicalGD] = Result.first->first();
1344 }
1345 
1346 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1347                                              const BlockDecl *BD) {
1348   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1349   const Decl *D = GD.getDecl();
1350 
1351   SmallString<256> Buffer;
1352   llvm::raw_svector_ostream Out(Buffer);
1353   if (!D)
1354     MangleCtx.mangleGlobalBlock(BD,
1355       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1356   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1357     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1358   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1359     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1360   else
1361     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1362 
1363   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1364   return Result.first->first();
1365 }
1366 
1367 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1368   return getModule().getNamedValue(Name);
1369 }
1370 
1371 /// AddGlobalCtor - Add a function to the list that will be called before
1372 /// main() runs.
1373 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1374                                   llvm::Constant *AssociatedData) {
1375   // FIXME: Type coercion of void()* types.
1376   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1377 }
1378 
1379 /// AddGlobalDtor - Add a function to the list that will be called
1380 /// when the module is unloaded.
1381 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1382                                   bool IsDtorAttrFunc) {
1383   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1384       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1385     DtorsUsingAtExit[Priority].push_back(Dtor);
1386     return;
1387   }
1388 
1389   // FIXME: Type coercion of void()* types.
1390   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1391 }
1392 
1393 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1394   if (Fns.empty()) return;
1395 
1396   // Ctor function type is void()*.
1397   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1398   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1399       TheModule.getDataLayout().getProgramAddressSpace());
1400 
1401   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1402   llvm::StructType *CtorStructTy = llvm::StructType::get(
1403       Int32Ty, CtorPFTy, VoidPtrTy);
1404 
1405   // Construct the constructor and destructor arrays.
1406   ConstantInitBuilder builder(*this);
1407   auto ctors = builder.beginArray(CtorStructTy);
1408   for (const auto &I : Fns) {
1409     auto ctor = ctors.beginStruct(CtorStructTy);
1410     ctor.addInt(Int32Ty, I.Priority);
1411     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1412     if (I.AssociatedData)
1413       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1414     else
1415       ctor.addNullPointer(VoidPtrTy);
1416     ctor.finishAndAddTo(ctors);
1417   }
1418 
1419   auto list =
1420     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1421                                 /*constant*/ false,
1422                                 llvm::GlobalValue::AppendingLinkage);
1423 
1424   // The LTO linker doesn't seem to like it when we set an alignment
1425   // on appending variables.  Take it off as a workaround.
1426   list->setAlignment(llvm::None);
1427 
1428   Fns.clear();
1429 }
1430 
1431 llvm::GlobalValue::LinkageTypes
1432 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1433   const auto *D = cast<FunctionDecl>(GD.getDecl());
1434 
1435   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1436 
1437   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1438     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1439 
1440   if (isa<CXXConstructorDecl>(D) &&
1441       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1442       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1443     // Our approach to inheriting constructors is fundamentally different from
1444     // that used by the MS ABI, so keep our inheriting constructor thunks
1445     // internal rather than trying to pick an unambiguous mangling for them.
1446     return llvm::GlobalValue::InternalLinkage;
1447   }
1448 
1449   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1450 }
1451 
1452 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1453   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1454   if (!MDS) return nullptr;
1455 
1456   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1457 }
1458 
1459 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1460                                               const CGFunctionInfo &Info,
1461                                               llvm::Function *F) {
1462   unsigned CallingConv;
1463   llvm::AttributeList PAL;
1464   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1465   F->setAttributes(PAL);
1466   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1467 }
1468 
1469 static void removeImageAccessQualifier(std::string& TyName) {
1470   std::string ReadOnlyQual("__read_only");
1471   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1472   if (ReadOnlyPos != std::string::npos)
1473     // "+ 1" for the space after access qualifier.
1474     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1475   else {
1476     std::string WriteOnlyQual("__write_only");
1477     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1478     if (WriteOnlyPos != std::string::npos)
1479       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1480     else {
1481       std::string ReadWriteQual("__read_write");
1482       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1483       if (ReadWritePos != std::string::npos)
1484         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1485     }
1486   }
1487 }
1488 
1489 // Returns the address space id that should be produced to the
1490 // kernel_arg_addr_space metadata. This is always fixed to the ids
1491 // as specified in the SPIR 2.0 specification in order to differentiate
1492 // for example in clGetKernelArgInfo() implementation between the address
1493 // spaces with targets without unique mapping to the OpenCL address spaces
1494 // (basically all single AS CPUs).
1495 static unsigned ArgInfoAddressSpace(LangAS AS) {
1496   switch (AS) {
1497   case LangAS::opencl_global:
1498     return 1;
1499   case LangAS::opencl_constant:
1500     return 2;
1501   case LangAS::opencl_local:
1502     return 3;
1503   case LangAS::opencl_generic:
1504     return 4; // Not in SPIR 2.0 specs.
1505   case LangAS::opencl_global_device:
1506     return 5;
1507   case LangAS::opencl_global_host:
1508     return 6;
1509   default:
1510     return 0; // Assume private.
1511   }
1512 }
1513 
1514 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1515                                          const FunctionDecl *FD,
1516                                          CodeGenFunction *CGF) {
1517   assert(((FD && CGF) || (!FD && !CGF)) &&
1518          "Incorrect use - FD and CGF should either be both null or not!");
1519   // Create MDNodes that represent the kernel arg metadata.
1520   // Each MDNode is a list in the form of "key", N number of values which is
1521   // the same number of values as their are kernel arguments.
1522 
1523   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1524 
1525   // MDNode for the kernel argument address space qualifiers.
1526   SmallVector<llvm::Metadata *, 8> addressQuals;
1527 
1528   // MDNode for the kernel argument access qualifiers (images only).
1529   SmallVector<llvm::Metadata *, 8> accessQuals;
1530 
1531   // MDNode for the kernel argument type names.
1532   SmallVector<llvm::Metadata *, 8> argTypeNames;
1533 
1534   // MDNode for the kernel argument base type names.
1535   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1536 
1537   // MDNode for the kernel argument type qualifiers.
1538   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1539 
1540   // MDNode for the kernel argument names.
1541   SmallVector<llvm::Metadata *, 8> argNames;
1542 
1543   if (FD && CGF)
1544     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1545       const ParmVarDecl *parm = FD->getParamDecl(i);
1546       QualType ty = parm->getType();
1547       std::string typeQuals;
1548 
1549       // Get image and pipe access qualifier:
1550       if (ty->isImageType() || ty->isPipeType()) {
1551         const Decl *PDecl = parm;
1552         if (auto *TD = dyn_cast<TypedefType>(ty))
1553           PDecl = TD->getDecl();
1554         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1555         if (A && A->isWriteOnly())
1556           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1557         else if (A && A->isReadWrite())
1558           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1559         else
1560           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1561       } else
1562         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1563 
1564       // Get argument name.
1565       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1566 
1567       auto getTypeSpelling = [&](QualType Ty) {
1568         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1569 
1570         if (Ty.isCanonical()) {
1571           StringRef typeNameRef = typeName;
1572           // Turn "unsigned type" to "utype"
1573           if (typeNameRef.consume_front("unsigned "))
1574             return std::string("u") + typeNameRef.str();
1575           if (typeNameRef.consume_front("signed "))
1576             return typeNameRef.str();
1577         }
1578 
1579         return typeName;
1580       };
1581 
1582       if (ty->isPointerType()) {
1583         QualType pointeeTy = ty->getPointeeType();
1584 
1585         // Get address qualifier.
1586         addressQuals.push_back(
1587             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1588                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1589 
1590         // Get argument type name.
1591         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1592         std::string baseTypeName =
1593             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1594         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1595         argBaseTypeNames.push_back(
1596             llvm::MDString::get(VMContext, baseTypeName));
1597 
1598         // Get argument type qualifiers:
1599         if (ty.isRestrictQualified())
1600           typeQuals = "restrict";
1601         if (pointeeTy.isConstQualified() ||
1602             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1603           typeQuals += typeQuals.empty() ? "const" : " const";
1604         if (pointeeTy.isVolatileQualified())
1605           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1606       } else {
1607         uint32_t AddrSpc = 0;
1608         bool isPipe = ty->isPipeType();
1609         if (ty->isImageType() || isPipe)
1610           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1611 
1612         addressQuals.push_back(
1613             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1614 
1615         // Get argument type name.
1616         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1617         std::string typeName = getTypeSpelling(ty);
1618         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1619 
1620         // Remove access qualifiers on images
1621         // (as they are inseparable from type in clang implementation,
1622         // but OpenCL spec provides a special query to get access qualifier
1623         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1624         if (ty->isImageType()) {
1625           removeImageAccessQualifier(typeName);
1626           removeImageAccessQualifier(baseTypeName);
1627         }
1628 
1629         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1630         argBaseTypeNames.push_back(
1631             llvm::MDString::get(VMContext, baseTypeName));
1632 
1633         if (isPipe)
1634           typeQuals = "pipe";
1635       }
1636       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1637     }
1638 
1639   Fn->setMetadata("kernel_arg_addr_space",
1640                   llvm::MDNode::get(VMContext, addressQuals));
1641   Fn->setMetadata("kernel_arg_access_qual",
1642                   llvm::MDNode::get(VMContext, accessQuals));
1643   Fn->setMetadata("kernel_arg_type",
1644                   llvm::MDNode::get(VMContext, argTypeNames));
1645   Fn->setMetadata("kernel_arg_base_type",
1646                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1647   Fn->setMetadata("kernel_arg_type_qual",
1648                   llvm::MDNode::get(VMContext, argTypeQuals));
1649   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1650     Fn->setMetadata("kernel_arg_name",
1651                     llvm::MDNode::get(VMContext, argNames));
1652 }
1653 
1654 /// Determines whether the language options require us to model
1655 /// unwind exceptions.  We treat -fexceptions as mandating this
1656 /// except under the fragile ObjC ABI with only ObjC exceptions
1657 /// enabled.  This means, for example, that C with -fexceptions
1658 /// enables this.
1659 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1660   // If exceptions are completely disabled, obviously this is false.
1661   if (!LangOpts.Exceptions) return false;
1662 
1663   // If C++ exceptions are enabled, this is true.
1664   if (LangOpts.CXXExceptions) return true;
1665 
1666   // If ObjC exceptions are enabled, this depends on the ABI.
1667   if (LangOpts.ObjCExceptions) {
1668     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1669   }
1670 
1671   return true;
1672 }
1673 
1674 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1675                                                       const CXXMethodDecl *MD) {
1676   // Check that the type metadata can ever actually be used by a call.
1677   if (!CGM.getCodeGenOpts().LTOUnit ||
1678       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1679     return false;
1680 
1681   // Only functions whose address can be taken with a member function pointer
1682   // need this sort of type metadata.
1683   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1684          !isa<CXXDestructorDecl>(MD);
1685 }
1686 
1687 std::vector<const CXXRecordDecl *>
1688 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1689   llvm::SetVector<const CXXRecordDecl *> MostBases;
1690 
1691   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1692   CollectMostBases = [&](const CXXRecordDecl *RD) {
1693     if (RD->getNumBases() == 0)
1694       MostBases.insert(RD);
1695     for (const CXXBaseSpecifier &B : RD->bases())
1696       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1697   };
1698   CollectMostBases(RD);
1699   return MostBases.takeVector();
1700 }
1701 
1702 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1703                                                            llvm::Function *F) {
1704   llvm::AttrBuilder B;
1705 
1706   if (CodeGenOpts.UnwindTables)
1707     B.addAttribute(llvm::Attribute::UWTable);
1708 
1709   if (CodeGenOpts.StackClashProtector)
1710     B.addAttribute("probe-stack", "inline-asm");
1711 
1712   if (!hasUnwindExceptions(LangOpts))
1713     B.addAttribute(llvm::Attribute::NoUnwind);
1714 
1715   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1716     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1717       B.addAttribute(llvm::Attribute::StackProtect);
1718     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1719       B.addAttribute(llvm::Attribute::StackProtectStrong);
1720     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1721       B.addAttribute(llvm::Attribute::StackProtectReq);
1722   }
1723 
1724   if (!D) {
1725     // If we don't have a declaration to control inlining, the function isn't
1726     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1727     // disabled, mark the function as noinline.
1728     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1729         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1730       B.addAttribute(llvm::Attribute::NoInline);
1731 
1732     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1733     return;
1734   }
1735 
1736   // Track whether we need to add the optnone LLVM attribute,
1737   // starting with the default for this optimization level.
1738   bool ShouldAddOptNone =
1739       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1740   // We can't add optnone in the following cases, it won't pass the verifier.
1741   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1742   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1743 
1744   // Add optnone, but do so only if the function isn't always_inline.
1745   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1746       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1747     B.addAttribute(llvm::Attribute::OptimizeNone);
1748 
1749     // OptimizeNone implies noinline; we should not be inlining such functions.
1750     B.addAttribute(llvm::Attribute::NoInline);
1751 
1752     // We still need to handle naked functions even though optnone subsumes
1753     // much of their semantics.
1754     if (D->hasAttr<NakedAttr>())
1755       B.addAttribute(llvm::Attribute::Naked);
1756 
1757     // OptimizeNone wins over OptimizeForSize and MinSize.
1758     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1759     F->removeFnAttr(llvm::Attribute::MinSize);
1760   } else if (D->hasAttr<NakedAttr>()) {
1761     // Naked implies noinline: we should not be inlining such functions.
1762     B.addAttribute(llvm::Attribute::Naked);
1763     B.addAttribute(llvm::Attribute::NoInline);
1764   } else if (D->hasAttr<NoDuplicateAttr>()) {
1765     B.addAttribute(llvm::Attribute::NoDuplicate);
1766   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1767     // Add noinline if the function isn't always_inline.
1768     B.addAttribute(llvm::Attribute::NoInline);
1769   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1770              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1771     // (noinline wins over always_inline, and we can't specify both in IR)
1772     B.addAttribute(llvm::Attribute::AlwaysInline);
1773   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1774     // If we're not inlining, then force everything that isn't always_inline to
1775     // carry an explicit noinline attribute.
1776     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1777       B.addAttribute(llvm::Attribute::NoInline);
1778   } else {
1779     // Otherwise, propagate the inline hint attribute and potentially use its
1780     // absence to mark things as noinline.
1781     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1782       // Search function and template pattern redeclarations for inline.
1783       auto CheckForInline = [](const FunctionDecl *FD) {
1784         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1785           return Redecl->isInlineSpecified();
1786         };
1787         if (any_of(FD->redecls(), CheckRedeclForInline))
1788           return true;
1789         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1790         if (!Pattern)
1791           return false;
1792         return any_of(Pattern->redecls(), CheckRedeclForInline);
1793       };
1794       if (CheckForInline(FD)) {
1795         B.addAttribute(llvm::Attribute::InlineHint);
1796       } else if (CodeGenOpts.getInlining() ==
1797                      CodeGenOptions::OnlyHintInlining &&
1798                  !FD->isInlined() &&
1799                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1800         B.addAttribute(llvm::Attribute::NoInline);
1801       }
1802     }
1803   }
1804 
1805   // Add other optimization related attributes if we are optimizing this
1806   // function.
1807   if (!D->hasAttr<OptimizeNoneAttr>()) {
1808     if (D->hasAttr<ColdAttr>()) {
1809       if (!ShouldAddOptNone)
1810         B.addAttribute(llvm::Attribute::OptimizeForSize);
1811       B.addAttribute(llvm::Attribute::Cold);
1812     }
1813     if (D->hasAttr<HotAttr>())
1814       B.addAttribute(llvm::Attribute::Hot);
1815     if (D->hasAttr<MinSizeAttr>())
1816       B.addAttribute(llvm::Attribute::MinSize);
1817   }
1818 
1819   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1820 
1821   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1822   if (alignment)
1823     F->setAlignment(llvm::Align(alignment));
1824 
1825   if (!D->hasAttr<AlignedAttr>())
1826     if (LangOpts.FunctionAlignment)
1827       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1828 
1829   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1830   // reserve a bit for differentiating between virtual and non-virtual member
1831   // functions. If the current target's C++ ABI requires this and this is a
1832   // member function, set its alignment accordingly.
1833   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1834     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1835       F->setAlignment(llvm::Align(2));
1836   }
1837 
1838   // In the cross-dso CFI mode with canonical jump tables, we want !type
1839   // attributes on definitions only.
1840   if (CodeGenOpts.SanitizeCfiCrossDso &&
1841       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1842     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1843       // Skip available_externally functions. They won't be codegen'ed in the
1844       // current module anyway.
1845       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1846         CreateFunctionTypeMetadataForIcall(FD, F);
1847     }
1848   }
1849 
1850   // Emit type metadata on member functions for member function pointer checks.
1851   // These are only ever necessary on definitions; we're guaranteed that the
1852   // definition will be present in the LTO unit as a result of LTO visibility.
1853   auto *MD = dyn_cast<CXXMethodDecl>(D);
1854   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1855     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1856       llvm::Metadata *Id =
1857           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1858               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1859       F->addTypeMetadata(0, Id);
1860     }
1861   }
1862 }
1863 
1864 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1865                                                   llvm::Function *F) {
1866   if (D->hasAttr<StrictFPAttr>()) {
1867     llvm::AttrBuilder FuncAttrs;
1868     FuncAttrs.addAttribute("strictfp");
1869     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1870   }
1871 }
1872 
1873 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1874   const Decl *D = GD.getDecl();
1875   if (dyn_cast_or_null<NamedDecl>(D))
1876     setGVProperties(GV, GD);
1877   else
1878     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1879 
1880   if (D && D->hasAttr<UsedAttr>())
1881     addUsedOrCompilerUsedGlobal(GV);
1882 
1883   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1884     const auto *VD = cast<VarDecl>(D);
1885     if (VD->getType().isConstQualified() &&
1886         VD->getStorageDuration() == SD_Static)
1887       addUsedOrCompilerUsedGlobal(GV);
1888   }
1889 }
1890 
1891 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1892                                                 llvm::AttrBuilder &Attrs) {
1893   // Add target-cpu and target-features attributes to functions. If
1894   // we have a decl for the function and it has a target attribute then
1895   // parse that and add it to the feature set.
1896   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1897   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1898   std::vector<std::string> Features;
1899   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1900   FD = FD ? FD->getMostRecentDecl() : FD;
1901   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1902   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1903   bool AddedAttr = false;
1904   if (TD || SD) {
1905     llvm::StringMap<bool> FeatureMap;
1906     getContext().getFunctionFeatureMap(FeatureMap, GD);
1907 
1908     // Produce the canonical string for this set of features.
1909     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1910       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1911 
1912     // Now add the target-cpu and target-features to the function.
1913     // While we populated the feature map above, we still need to
1914     // get and parse the target attribute so we can get the cpu for
1915     // the function.
1916     if (TD) {
1917       ParsedTargetAttr ParsedAttr = TD->parse();
1918       if (!ParsedAttr.Architecture.empty() &&
1919           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1920         TargetCPU = ParsedAttr.Architecture;
1921         TuneCPU = ""; // Clear the tune CPU.
1922       }
1923       if (!ParsedAttr.Tune.empty() &&
1924           getTarget().isValidCPUName(ParsedAttr.Tune))
1925         TuneCPU = ParsedAttr.Tune;
1926     }
1927   } else {
1928     // Otherwise just add the existing target cpu and target features to the
1929     // function.
1930     Features = getTarget().getTargetOpts().Features;
1931   }
1932 
1933   if (!TargetCPU.empty()) {
1934     Attrs.addAttribute("target-cpu", TargetCPU);
1935     AddedAttr = true;
1936   }
1937   if (!TuneCPU.empty()) {
1938     Attrs.addAttribute("tune-cpu", TuneCPU);
1939     AddedAttr = true;
1940   }
1941   if (!Features.empty()) {
1942     llvm::sort(Features);
1943     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1944     AddedAttr = true;
1945   }
1946 
1947   return AddedAttr;
1948 }
1949 
1950 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1951                                           llvm::GlobalObject *GO) {
1952   const Decl *D = GD.getDecl();
1953   SetCommonAttributes(GD, GO);
1954 
1955   if (D) {
1956     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1957       if (D->hasAttr<RetainAttr>())
1958         addUsedGlobal(GV);
1959       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1960         GV->addAttribute("bss-section", SA->getName());
1961       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1962         GV->addAttribute("data-section", SA->getName());
1963       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1964         GV->addAttribute("rodata-section", SA->getName());
1965       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1966         GV->addAttribute("relro-section", SA->getName());
1967     }
1968 
1969     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1970       if (D->hasAttr<RetainAttr>())
1971         addUsedGlobal(F);
1972       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1973         if (!D->getAttr<SectionAttr>())
1974           F->addFnAttr("implicit-section-name", SA->getName());
1975 
1976       llvm::AttrBuilder Attrs;
1977       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1978         // We know that GetCPUAndFeaturesAttributes will always have the
1979         // newest set, since it has the newest possible FunctionDecl, so the
1980         // new ones should replace the old.
1981         llvm::AttrBuilder RemoveAttrs;
1982         RemoveAttrs.addAttribute("target-cpu");
1983         RemoveAttrs.addAttribute("target-features");
1984         RemoveAttrs.addAttribute("tune-cpu");
1985         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1986         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1987       }
1988     }
1989 
1990     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1991       GO->setSection(CSA->getName());
1992     else if (const auto *SA = D->getAttr<SectionAttr>())
1993       GO->setSection(SA->getName());
1994   }
1995 
1996   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1997 }
1998 
1999 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2000                                                   llvm::Function *F,
2001                                                   const CGFunctionInfo &FI) {
2002   const Decl *D = GD.getDecl();
2003   SetLLVMFunctionAttributes(GD, FI, F);
2004   SetLLVMFunctionAttributesForDefinition(D, F);
2005 
2006   F->setLinkage(llvm::Function::InternalLinkage);
2007 
2008   setNonAliasAttributes(GD, F);
2009 }
2010 
2011 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2012   // Set linkage and visibility in case we never see a definition.
2013   LinkageInfo LV = ND->getLinkageAndVisibility();
2014   // Don't set internal linkage on declarations.
2015   // "extern_weak" is overloaded in LLVM; we probably should have
2016   // separate linkage types for this.
2017   if (isExternallyVisible(LV.getLinkage()) &&
2018       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2019     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2020 }
2021 
2022 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2023                                                        llvm::Function *F) {
2024   // Only if we are checking indirect calls.
2025   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2026     return;
2027 
2028   // Non-static class methods are handled via vtable or member function pointer
2029   // checks elsewhere.
2030   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2031     return;
2032 
2033   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2034   F->addTypeMetadata(0, MD);
2035   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2036 
2037   // Emit a hash-based bit set entry for cross-DSO calls.
2038   if (CodeGenOpts.SanitizeCfiCrossDso)
2039     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2040       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2041 }
2042 
2043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2044                                           bool IsIncompleteFunction,
2045                                           bool IsThunk) {
2046 
2047   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2048     // If this is an intrinsic function, set the function's attributes
2049     // to the intrinsic's attributes.
2050     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2051     return;
2052   }
2053 
2054   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2055 
2056   if (!IsIncompleteFunction)
2057     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
2058 
2059   // Add the Returned attribute for "this", except for iOS 5 and earlier
2060   // where substantial code, including the libstdc++ dylib, was compiled with
2061   // GCC and does not actually return "this".
2062   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2063       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2064     assert(!F->arg_empty() &&
2065            F->arg_begin()->getType()
2066              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2067            "unexpected this return");
2068     F->addAttribute(1, llvm::Attribute::Returned);
2069   }
2070 
2071   // Only a few attributes are set on declarations; these may later be
2072   // overridden by a definition.
2073 
2074   setLinkageForGV(F, FD);
2075   setGVProperties(F, FD);
2076 
2077   // Setup target-specific attributes.
2078   if (!IsIncompleteFunction && F->isDeclaration())
2079     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2080 
2081   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2082     F->setSection(CSA->getName());
2083   else if (const auto *SA = FD->getAttr<SectionAttr>())
2084      F->setSection(SA->getName());
2085 
2086   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2087   if (FD->isInlineBuiltinDeclaration()) {
2088     const FunctionDecl *FDBody;
2089     bool HasBody = FD->hasBody(FDBody);
2090     (void)HasBody;
2091     assert(HasBody && "Inline builtin declarations should always have an "
2092                       "available body!");
2093     if (shouldEmitFunction(FDBody))
2094       F->addAttribute(llvm::AttributeList::FunctionIndex,
2095                       llvm::Attribute::NoBuiltin);
2096   }
2097 
2098   if (FD->isReplaceableGlobalAllocationFunction()) {
2099     // A replaceable global allocation function does not act like a builtin by
2100     // default, only if it is invoked by a new-expression or delete-expression.
2101     F->addAttribute(llvm::AttributeList::FunctionIndex,
2102                     llvm::Attribute::NoBuiltin);
2103   }
2104 
2105   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2106     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2107   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2108     if (MD->isVirtual())
2109       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2110 
2111   // Don't emit entries for function declarations in the cross-DSO mode. This
2112   // is handled with better precision by the receiving DSO. But if jump tables
2113   // are non-canonical then we need type metadata in order to produce the local
2114   // jump table.
2115   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2116       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2117     CreateFunctionTypeMetadataForIcall(FD, F);
2118 
2119   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2120     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2121 
2122   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2123     // Annotate the callback behavior as metadata:
2124     //  - The callback callee (as argument number).
2125     //  - The callback payloads (as argument numbers).
2126     llvm::LLVMContext &Ctx = F->getContext();
2127     llvm::MDBuilder MDB(Ctx);
2128 
2129     // The payload indices are all but the first one in the encoding. The first
2130     // identifies the callback callee.
2131     int CalleeIdx = *CB->encoding_begin();
2132     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2133     F->addMetadata(llvm::LLVMContext::MD_callback,
2134                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2135                                                CalleeIdx, PayloadIndices,
2136                                                /* VarArgsArePassed */ false)}));
2137   }
2138 }
2139 
2140 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2141   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2142          "Only globals with definition can force usage.");
2143   LLVMUsed.emplace_back(GV);
2144 }
2145 
2146 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2147   assert(!GV->isDeclaration() &&
2148          "Only globals with definition can force usage.");
2149   LLVMCompilerUsed.emplace_back(GV);
2150 }
2151 
2152 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2153   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2154          "Only globals with definition can force usage.");
2155   if (getTriple().isOSBinFormatELF())
2156     LLVMCompilerUsed.emplace_back(GV);
2157   else
2158     LLVMUsed.emplace_back(GV);
2159 }
2160 
2161 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2162                      std::vector<llvm::WeakTrackingVH> &List) {
2163   // Don't create llvm.used if there is no need.
2164   if (List.empty())
2165     return;
2166 
2167   // Convert List to what ConstantArray needs.
2168   SmallVector<llvm::Constant*, 8> UsedArray;
2169   UsedArray.resize(List.size());
2170   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2171     UsedArray[i] =
2172         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2173             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2174   }
2175 
2176   if (UsedArray.empty())
2177     return;
2178   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2179 
2180   auto *GV = new llvm::GlobalVariable(
2181       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2182       llvm::ConstantArray::get(ATy, UsedArray), Name);
2183 
2184   GV->setSection("llvm.metadata");
2185 }
2186 
2187 void CodeGenModule::emitLLVMUsed() {
2188   emitUsed(*this, "llvm.used", LLVMUsed);
2189   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2190 }
2191 
2192 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2193   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2194   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2195 }
2196 
2197 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2198   llvm::SmallString<32> Opt;
2199   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2200   if (Opt.empty())
2201     return;
2202   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2203   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2204 }
2205 
2206 void CodeGenModule::AddDependentLib(StringRef Lib) {
2207   auto &C = getLLVMContext();
2208   if (getTarget().getTriple().isOSBinFormatELF()) {
2209       ELFDependentLibraries.push_back(
2210         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2211     return;
2212   }
2213 
2214   llvm::SmallString<24> Opt;
2215   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2216   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2217   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2218 }
2219 
2220 /// Add link options implied by the given module, including modules
2221 /// it depends on, using a postorder walk.
2222 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2223                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2224                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2225   // Import this module's parent.
2226   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2227     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2228   }
2229 
2230   // Import this module's dependencies.
2231   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2232     if (Visited.insert(Mod->Imports[I - 1]).second)
2233       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2234   }
2235 
2236   // Add linker options to link against the libraries/frameworks
2237   // described by this module.
2238   llvm::LLVMContext &Context = CGM.getLLVMContext();
2239   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2240 
2241   // For modules that use export_as for linking, use that module
2242   // name instead.
2243   if (Mod->UseExportAsModuleLinkName)
2244     return;
2245 
2246   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2247     // Link against a framework.  Frameworks are currently Darwin only, so we
2248     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2249     if (Mod->LinkLibraries[I-1].IsFramework) {
2250       llvm::Metadata *Args[2] = {
2251           llvm::MDString::get(Context, "-framework"),
2252           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2253 
2254       Metadata.push_back(llvm::MDNode::get(Context, Args));
2255       continue;
2256     }
2257 
2258     // Link against a library.
2259     if (IsELF) {
2260       llvm::Metadata *Args[2] = {
2261           llvm::MDString::get(Context, "lib"),
2262           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2263       };
2264       Metadata.push_back(llvm::MDNode::get(Context, Args));
2265     } else {
2266       llvm::SmallString<24> Opt;
2267       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2268           Mod->LinkLibraries[I - 1].Library, Opt);
2269       auto *OptString = llvm::MDString::get(Context, Opt);
2270       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2271     }
2272   }
2273 }
2274 
2275 void CodeGenModule::EmitModuleLinkOptions() {
2276   // Collect the set of all of the modules we want to visit to emit link
2277   // options, which is essentially the imported modules and all of their
2278   // non-explicit child modules.
2279   llvm::SetVector<clang::Module *> LinkModules;
2280   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2281   SmallVector<clang::Module *, 16> Stack;
2282 
2283   // Seed the stack with imported modules.
2284   for (Module *M : ImportedModules) {
2285     // Do not add any link flags when an implementation TU of a module imports
2286     // a header of that same module.
2287     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2288         !getLangOpts().isCompilingModule())
2289       continue;
2290     if (Visited.insert(M).second)
2291       Stack.push_back(M);
2292   }
2293 
2294   // Find all of the modules to import, making a little effort to prune
2295   // non-leaf modules.
2296   while (!Stack.empty()) {
2297     clang::Module *Mod = Stack.pop_back_val();
2298 
2299     bool AnyChildren = false;
2300 
2301     // Visit the submodules of this module.
2302     for (const auto &SM : Mod->submodules()) {
2303       // Skip explicit children; they need to be explicitly imported to be
2304       // linked against.
2305       if (SM->IsExplicit)
2306         continue;
2307 
2308       if (Visited.insert(SM).second) {
2309         Stack.push_back(SM);
2310         AnyChildren = true;
2311       }
2312     }
2313 
2314     // We didn't find any children, so add this module to the list of
2315     // modules to link against.
2316     if (!AnyChildren) {
2317       LinkModules.insert(Mod);
2318     }
2319   }
2320 
2321   // Add link options for all of the imported modules in reverse topological
2322   // order.  We don't do anything to try to order import link flags with respect
2323   // to linker options inserted by things like #pragma comment().
2324   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2325   Visited.clear();
2326   for (Module *M : LinkModules)
2327     if (Visited.insert(M).second)
2328       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2329   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2330   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2331 
2332   // Add the linker options metadata flag.
2333   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2334   for (auto *MD : LinkerOptionsMetadata)
2335     NMD->addOperand(MD);
2336 }
2337 
2338 void CodeGenModule::EmitDeferred() {
2339   // Emit deferred declare target declarations.
2340   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2341     getOpenMPRuntime().emitDeferredTargetDecls();
2342 
2343   // Emit code for any potentially referenced deferred decls.  Since a
2344   // previously unused static decl may become used during the generation of code
2345   // for a static function, iterate until no changes are made.
2346 
2347   if (!DeferredVTables.empty()) {
2348     EmitDeferredVTables();
2349 
2350     // Emitting a vtable doesn't directly cause more vtables to
2351     // become deferred, although it can cause functions to be
2352     // emitted that then need those vtables.
2353     assert(DeferredVTables.empty());
2354   }
2355 
2356   // Emit CUDA/HIP static device variables referenced by host code only.
2357   if (getLangOpts().CUDA)
2358     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2359       DeferredDeclsToEmit.push_back(V);
2360 
2361   // Stop if we're out of both deferred vtables and deferred declarations.
2362   if (DeferredDeclsToEmit.empty())
2363     return;
2364 
2365   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2366   // work, it will not interfere with this.
2367   std::vector<GlobalDecl> CurDeclsToEmit;
2368   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2369 
2370   for (GlobalDecl &D : CurDeclsToEmit) {
2371     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2372     // to get GlobalValue with exactly the type we need, not something that
2373     // might had been created for another decl with the same mangled name but
2374     // different type.
2375     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2376         GetAddrOfGlobal(D, ForDefinition));
2377 
2378     // In case of different address spaces, we may still get a cast, even with
2379     // IsForDefinition equal to true. Query mangled names table to get
2380     // GlobalValue.
2381     if (!GV)
2382       GV = GetGlobalValue(getMangledName(D));
2383 
2384     // Make sure GetGlobalValue returned non-null.
2385     assert(GV);
2386 
2387     // Check to see if we've already emitted this.  This is necessary
2388     // for a couple of reasons: first, decls can end up in the
2389     // deferred-decls queue multiple times, and second, decls can end
2390     // up with definitions in unusual ways (e.g. by an extern inline
2391     // function acquiring a strong function redefinition).  Just
2392     // ignore these cases.
2393     if (!GV->isDeclaration())
2394       continue;
2395 
2396     // If this is OpenMP, check if it is legal to emit this global normally.
2397     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2398       continue;
2399 
2400     // Otherwise, emit the definition and move on to the next one.
2401     EmitGlobalDefinition(D, GV);
2402 
2403     // If we found out that we need to emit more decls, do that recursively.
2404     // This has the advantage that the decls are emitted in a DFS and related
2405     // ones are close together, which is convenient for testing.
2406     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2407       EmitDeferred();
2408       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2409     }
2410   }
2411 }
2412 
2413 void CodeGenModule::EmitVTablesOpportunistically() {
2414   // Try to emit external vtables as available_externally if they have emitted
2415   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2416   // is not allowed to create new references to things that need to be emitted
2417   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2418 
2419   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2420          && "Only emit opportunistic vtables with optimizations");
2421 
2422   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2423     assert(getVTables().isVTableExternal(RD) &&
2424            "This queue should only contain external vtables");
2425     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2426       VTables.GenerateClassData(RD);
2427   }
2428   OpportunisticVTables.clear();
2429 }
2430 
2431 void CodeGenModule::EmitGlobalAnnotations() {
2432   if (Annotations.empty())
2433     return;
2434 
2435   // Create a new global variable for the ConstantStruct in the Module.
2436   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2437     Annotations[0]->getType(), Annotations.size()), Annotations);
2438   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2439                                       llvm::GlobalValue::AppendingLinkage,
2440                                       Array, "llvm.global.annotations");
2441   gv->setSection(AnnotationSection);
2442 }
2443 
2444 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2445   llvm::Constant *&AStr = AnnotationStrings[Str];
2446   if (AStr)
2447     return AStr;
2448 
2449   // Not found yet, create a new global.
2450   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2451   auto *gv =
2452       new llvm::GlobalVariable(getModule(), s->getType(), true,
2453                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2454   gv->setSection(AnnotationSection);
2455   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2456   AStr = gv;
2457   return gv;
2458 }
2459 
2460 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2461   SourceManager &SM = getContext().getSourceManager();
2462   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2463   if (PLoc.isValid())
2464     return EmitAnnotationString(PLoc.getFilename());
2465   return EmitAnnotationString(SM.getBufferName(Loc));
2466 }
2467 
2468 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2469   SourceManager &SM = getContext().getSourceManager();
2470   PresumedLoc PLoc = SM.getPresumedLoc(L);
2471   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2472     SM.getExpansionLineNumber(L);
2473   return llvm::ConstantInt::get(Int32Ty, LineNo);
2474 }
2475 
2476 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2477   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2478   if (Exprs.empty())
2479     return llvm::ConstantPointerNull::get(Int8PtrTy);
2480 
2481   llvm::FoldingSetNodeID ID;
2482   for (Expr *E : Exprs) {
2483     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2484   }
2485   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2486   if (Lookup)
2487     return Lookup;
2488 
2489   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2490   LLVMArgs.reserve(Exprs.size());
2491   ConstantEmitter ConstEmiter(*this);
2492   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2493     const auto *CE = cast<clang::ConstantExpr>(E);
2494     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2495                                     CE->getType());
2496   });
2497   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2498   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2499                                       llvm::GlobalValue::PrivateLinkage, Struct,
2500                                       ".args");
2501   GV->setSection(AnnotationSection);
2502   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2503   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2504 
2505   Lookup = Bitcasted;
2506   return Bitcasted;
2507 }
2508 
2509 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2510                                                 const AnnotateAttr *AA,
2511                                                 SourceLocation L) {
2512   // Get the globals for file name, annotation, and the line number.
2513   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2514                  *UnitGV = EmitAnnotationUnit(L),
2515                  *LineNoCst = EmitAnnotationLineNo(L),
2516                  *Args = EmitAnnotationArgs(AA);
2517 
2518   llvm::Constant *ASZeroGV = GV;
2519   if (GV->getAddressSpace() != 0) {
2520     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2521                    GV, GV->getValueType()->getPointerTo(0));
2522   }
2523 
2524   // Create the ConstantStruct for the global annotation.
2525   llvm::Constant *Fields[] = {
2526       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2527       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2528       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2529       LineNoCst,
2530       Args,
2531   };
2532   return llvm::ConstantStruct::getAnon(Fields);
2533 }
2534 
2535 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2536                                          llvm::GlobalValue *GV) {
2537   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2538   // Get the struct elements for these annotations.
2539   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2540     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2541 }
2542 
2543 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2544                                        SourceLocation Loc) const {
2545   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2546   // NoSanitize by function name.
2547   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2548     return true;
2549   // NoSanitize by location.
2550   if (Loc.isValid())
2551     return NoSanitizeL.containsLocation(Kind, Loc);
2552   // If location is unknown, this may be a compiler-generated function. Assume
2553   // it's located in the main file.
2554   auto &SM = Context.getSourceManager();
2555   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2556     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2557   }
2558   return false;
2559 }
2560 
2561 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2562                                        SourceLocation Loc, QualType Ty,
2563                                        StringRef Category) const {
2564   // For now globals can be ignored only in ASan and KASan.
2565   const SanitizerMask EnabledAsanMask =
2566       LangOpts.Sanitize.Mask &
2567       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2568        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2569        SanitizerKind::MemTag);
2570   if (!EnabledAsanMask)
2571     return false;
2572   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2573   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2574     return true;
2575   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2576     return true;
2577   // Check global type.
2578   if (!Ty.isNull()) {
2579     // Drill down the array types: if global variable of a fixed type is
2580     // not sanitized, we also don't instrument arrays of them.
2581     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2582       Ty = AT->getElementType();
2583     Ty = Ty.getCanonicalType().getUnqualifiedType();
2584     // Only record types (classes, structs etc.) are ignored.
2585     if (Ty->isRecordType()) {
2586       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2587       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2588         return true;
2589     }
2590   }
2591   return false;
2592 }
2593 
2594 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2595                                    StringRef Category) const {
2596   const auto &XRayFilter = getContext().getXRayFilter();
2597   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2598   auto Attr = ImbueAttr::NONE;
2599   if (Loc.isValid())
2600     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2601   if (Attr == ImbueAttr::NONE)
2602     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2603   switch (Attr) {
2604   case ImbueAttr::NONE:
2605     return false;
2606   case ImbueAttr::ALWAYS:
2607     Fn->addFnAttr("function-instrument", "xray-always");
2608     break;
2609   case ImbueAttr::ALWAYS_ARG1:
2610     Fn->addFnAttr("function-instrument", "xray-always");
2611     Fn->addFnAttr("xray-log-args", "1");
2612     break;
2613   case ImbueAttr::NEVER:
2614     Fn->addFnAttr("function-instrument", "xray-never");
2615     break;
2616   }
2617   return true;
2618 }
2619 
2620 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2621                                            SourceLocation Loc) const {
2622   const auto &ProfileList = getContext().getProfileList();
2623   // If the profile list is empty, then instrument everything.
2624   if (ProfileList.isEmpty())
2625     return false;
2626   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2627   // First, check the function name.
2628   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2629   if (V.hasValue())
2630     return *V;
2631   // Next, check the source location.
2632   if (Loc.isValid()) {
2633     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2634     if (V.hasValue())
2635       return *V;
2636   }
2637   // If location is unknown, this may be a compiler-generated function. Assume
2638   // it's located in the main file.
2639   auto &SM = Context.getSourceManager();
2640   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2641     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2642     if (V.hasValue())
2643       return *V;
2644   }
2645   return ProfileList.getDefault();
2646 }
2647 
2648 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2649   // Never defer when EmitAllDecls is specified.
2650   if (LangOpts.EmitAllDecls)
2651     return true;
2652 
2653   if (CodeGenOpts.KeepStaticConsts) {
2654     const auto *VD = dyn_cast<VarDecl>(Global);
2655     if (VD && VD->getType().isConstQualified() &&
2656         VD->getStorageDuration() == SD_Static)
2657       return true;
2658   }
2659 
2660   return getContext().DeclMustBeEmitted(Global);
2661 }
2662 
2663 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2664   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2665     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2666       // Implicit template instantiations may change linkage if they are later
2667       // explicitly instantiated, so they should not be emitted eagerly.
2668       return false;
2669     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2670     // not emit them eagerly unless we sure that the function must be emitted on
2671     // the host.
2672     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2673         !LangOpts.OpenMPIsDevice &&
2674         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2675         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2676       return false;
2677   }
2678   if (const auto *VD = dyn_cast<VarDecl>(Global))
2679     if (Context.getInlineVariableDefinitionKind(VD) ==
2680         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2681       // A definition of an inline constexpr static data member may change
2682       // linkage later if it's redeclared outside the class.
2683       return false;
2684   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2685   // codegen for global variables, because they may be marked as threadprivate.
2686   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2687       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2688       !isTypeConstant(Global->getType(), false) &&
2689       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2690     return false;
2691 
2692   return true;
2693 }
2694 
2695 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2696   StringRef Name = getMangledName(GD);
2697 
2698   // The UUID descriptor should be pointer aligned.
2699   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2700 
2701   // Look for an existing global.
2702   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2703     return ConstantAddress(GV, Alignment);
2704 
2705   ConstantEmitter Emitter(*this);
2706   llvm::Constant *Init;
2707 
2708   APValue &V = GD->getAsAPValue();
2709   if (!V.isAbsent()) {
2710     // If possible, emit the APValue version of the initializer. In particular,
2711     // this gets the type of the constant right.
2712     Init = Emitter.emitForInitializer(
2713         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2714   } else {
2715     // As a fallback, directly construct the constant.
2716     // FIXME: This may get padding wrong under esoteric struct layout rules.
2717     // MSVC appears to create a complete type 'struct __s_GUID' that it
2718     // presumably uses to represent these constants.
2719     MSGuidDecl::Parts Parts = GD->getParts();
2720     llvm::Constant *Fields[4] = {
2721         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2722         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2723         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2724         llvm::ConstantDataArray::getRaw(
2725             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2726             Int8Ty)};
2727     Init = llvm::ConstantStruct::getAnon(Fields);
2728   }
2729 
2730   auto *GV = new llvm::GlobalVariable(
2731       getModule(), Init->getType(),
2732       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2733   if (supportsCOMDAT())
2734     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2735   setDSOLocal(GV);
2736 
2737   llvm::Constant *Addr = GV;
2738   if (!V.isAbsent()) {
2739     Emitter.finalize(GV);
2740   } else {
2741     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2742     Addr = llvm::ConstantExpr::getBitCast(
2743         GV, Ty->getPointerTo(GV->getAddressSpace()));
2744   }
2745   return ConstantAddress(Addr, Alignment);
2746 }
2747 
2748 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2749     const TemplateParamObjectDecl *TPO) {
2750   StringRef Name = getMangledName(TPO);
2751   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2752 
2753   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2754     return ConstantAddress(GV, Alignment);
2755 
2756   ConstantEmitter Emitter(*this);
2757   llvm::Constant *Init = Emitter.emitForInitializer(
2758         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2759 
2760   if (!Init) {
2761     ErrorUnsupported(TPO, "template parameter object");
2762     return ConstantAddress::invalid();
2763   }
2764 
2765   auto *GV = new llvm::GlobalVariable(
2766       getModule(), Init->getType(),
2767       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2768   if (supportsCOMDAT())
2769     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2770   Emitter.finalize(GV);
2771 
2772   return ConstantAddress(GV, Alignment);
2773 }
2774 
2775 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2776   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2777   assert(AA && "No alias?");
2778 
2779   CharUnits Alignment = getContext().getDeclAlign(VD);
2780   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2781 
2782   // See if there is already something with the target's name in the module.
2783   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2784   if (Entry) {
2785     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2786     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2787     return ConstantAddress(Ptr, Alignment);
2788   }
2789 
2790   llvm::Constant *Aliasee;
2791   if (isa<llvm::FunctionType>(DeclTy))
2792     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2793                                       GlobalDecl(cast<FunctionDecl>(VD)),
2794                                       /*ForVTable=*/false);
2795   else
2796     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2797                                     llvm::PointerType::getUnqual(DeclTy),
2798                                     nullptr);
2799 
2800   auto *F = cast<llvm::GlobalValue>(Aliasee);
2801   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2802   WeakRefReferences.insert(F);
2803 
2804   return ConstantAddress(Aliasee, Alignment);
2805 }
2806 
2807 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2808   const auto *Global = cast<ValueDecl>(GD.getDecl());
2809 
2810   // Weak references don't produce any output by themselves.
2811   if (Global->hasAttr<WeakRefAttr>())
2812     return;
2813 
2814   // If this is an alias definition (which otherwise looks like a declaration)
2815   // emit it now.
2816   if (Global->hasAttr<AliasAttr>())
2817     return EmitAliasDefinition(GD);
2818 
2819   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2820   if (Global->hasAttr<IFuncAttr>())
2821     return emitIFuncDefinition(GD);
2822 
2823   // If this is a cpu_dispatch multiversion function, emit the resolver.
2824   if (Global->hasAttr<CPUDispatchAttr>())
2825     return emitCPUDispatchDefinition(GD);
2826 
2827   // If this is CUDA, be selective about which declarations we emit.
2828   if (LangOpts.CUDA) {
2829     if (LangOpts.CUDAIsDevice) {
2830       if (!Global->hasAttr<CUDADeviceAttr>() &&
2831           !Global->hasAttr<CUDAGlobalAttr>() &&
2832           !Global->hasAttr<CUDAConstantAttr>() &&
2833           !Global->hasAttr<CUDASharedAttr>() &&
2834           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2835           !Global->getType()->isCUDADeviceBuiltinTextureType())
2836         return;
2837     } else {
2838       // We need to emit host-side 'shadows' for all global
2839       // device-side variables because the CUDA runtime needs their
2840       // size and host-side address in order to provide access to
2841       // their device-side incarnations.
2842 
2843       // So device-only functions are the only things we skip.
2844       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2845           Global->hasAttr<CUDADeviceAttr>())
2846         return;
2847 
2848       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2849              "Expected Variable or Function");
2850     }
2851   }
2852 
2853   if (LangOpts.OpenMP) {
2854     // If this is OpenMP, check if it is legal to emit this global normally.
2855     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2856       return;
2857     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2858       if (MustBeEmitted(Global))
2859         EmitOMPDeclareReduction(DRD);
2860       return;
2861     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2862       if (MustBeEmitted(Global))
2863         EmitOMPDeclareMapper(DMD);
2864       return;
2865     }
2866   }
2867 
2868   // Ignore declarations, they will be emitted on their first use.
2869   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2870     // Forward declarations are emitted lazily on first use.
2871     if (!FD->doesThisDeclarationHaveABody()) {
2872       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2873         return;
2874 
2875       StringRef MangledName = getMangledName(GD);
2876 
2877       // Compute the function info and LLVM type.
2878       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2879       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2880 
2881       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2882                               /*DontDefer=*/false);
2883       return;
2884     }
2885   } else {
2886     const auto *VD = cast<VarDecl>(Global);
2887     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2888     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2889         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2890       if (LangOpts.OpenMP) {
2891         // Emit declaration of the must-be-emitted declare target variable.
2892         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2893                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2894           bool UnifiedMemoryEnabled =
2895               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2896           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2897               !UnifiedMemoryEnabled) {
2898             (void)GetAddrOfGlobalVar(VD);
2899           } else {
2900             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2901                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2902                      UnifiedMemoryEnabled)) &&
2903                    "Link clause or to clause with unified memory expected.");
2904             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2905           }
2906 
2907           return;
2908         }
2909       }
2910       // If this declaration may have caused an inline variable definition to
2911       // change linkage, make sure that it's emitted.
2912       if (Context.getInlineVariableDefinitionKind(VD) ==
2913           ASTContext::InlineVariableDefinitionKind::Strong)
2914         GetAddrOfGlobalVar(VD);
2915       return;
2916     }
2917   }
2918 
2919   // Defer code generation to first use when possible, e.g. if this is an inline
2920   // function. If the global must always be emitted, do it eagerly if possible
2921   // to benefit from cache locality.
2922   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2923     // Emit the definition if it can't be deferred.
2924     EmitGlobalDefinition(GD);
2925     return;
2926   }
2927 
2928   // If we're deferring emission of a C++ variable with an
2929   // initializer, remember the order in which it appeared in the file.
2930   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2931       cast<VarDecl>(Global)->hasInit()) {
2932     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2933     CXXGlobalInits.push_back(nullptr);
2934   }
2935 
2936   StringRef MangledName = getMangledName(GD);
2937   if (GetGlobalValue(MangledName) != nullptr) {
2938     // The value has already been used and should therefore be emitted.
2939     addDeferredDeclToEmit(GD);
2940   } else if (MustBeEmitted(Global)) {
2941     // The value must be emitted, but cannot be emitted eagerly.
2942     assert(!MayBeEmittedEagerly(Global));
2943     addDeferredDeclToEmit(GD);
2944   } else {
2945     // Otherwise, remember that we saw a deferred decl with this name.  The
2946     // first use of the mangled name will cause it to move into
2947     // DeferredDeclsToEmit.
2948     DeferredDecls[MangledName] = GD;
2949   }
2950 }
2951 
2952 // Check if T is a class type with a destructor that's not dllimport.
2953 static bool HasNonDllImportDtor(QualType T) {
2954   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2955     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2956       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2957         return true;
2958 
2959   return false;
2960 }
2961 
2962 namespace {
2963   struct FunctionIsDirectlyRecursive
2964       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2965     const StringRef Name;
2966     const Builtin::Context &BI;
2967     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2968         : Name(N), BI(C) {}
2969 
2970     bool VisitCallExpr(const CallExpr *E) {
2971       const FunctionDecl *FD = E->getDirectCallee();
2972       if (!FD)
2973         return false;
2974       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2975       if (Attr && Name == Attr->getLabel())
2976         return true;
2977       unsigned BuiltinID = FD->getBuiltinID();
2978       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2979         return false;
2980       StringRef BuiltinName = BI.getName(BuiltinID);
2981       if (BuiltinName.startswith("__builtin_") &&
2982           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2983         return true;
2984       }
2985       return false;
2986     }
2987 
2988     bool VisitStmt(const Stmt *S) {
2989       for (const Stmt *Child : S->children())
2990         if (Child && this->Visit(Child))
2991           return true;
2992       return false;
2993     }
2994   };
2995 
2996   // Make sure we're not referencing non-imported vars or functions.
2997   struct DLLImportFunctionVisitor
2998       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2999     bool SafeToInline = true;
3000 
3001     bool shouldVisitImplicitCode() const { return true; }
3002 
3003     bool VisitVarDecl(VarDecl *VD) {
3004       if (VD->getTLSKind()) {
3005         // A thread-local variable cannot be imported.
3006         SafeToInline = false;
3007         return SafeToInline;
3008       }
3009 
3010       // A variable definition might imply a destructor call.
3011       if (VD->isThisDeclarationADefinition())
3012         SafeToInline = !HasNonDllImportDtor(VD->getType());
3013 
3014       return SafeToInline;
3015     }
3016 
3017     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3018       if (const auto *D = E->getTemporary()->getDestructor())
3019         SafeToInline = D->hasAttr<DLLImportAttr>();
3020       return SafeToInline;
3021     }
3022 
3023     bool VisitDeclRefExpr(DeclRefExpr *E) {
3024       ValueDecl *VD = E->getDecl();
3025       if (isa<FunctionDecl>(VD))
3026         SafeToInline = VD->hasAttr<DLLImportAttr>();
3027       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3028         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3029       return SafeToInline;
3030     }
3031 
3032     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3033       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3034       return SafeToInline;
3035     }
3036 
3037     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3038       CXXMethodDecl *M = E->getMethodDecl();
3039       if (!M) {
3040         // Call through a pointer to member function. This is safe to inline.
3041         SafeToInline = true;
3042       } else {
3043         SafeToInline = M->hasAttr<DLLImportAttr>();
3044       }
3045       return SafeToInline;
3046     }
3047 
3048     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3049       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3050       return SafeToInline;
3051     }
3052 
3053     bool VisitCXXNewExpr(CXXNewExpr *E) {
3054       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3055       return SafeToInline;
3056     }
3057   };
3058 }
3059 
3060 // isTriviallyRecursive - Check if this function calls another
3061 // decl that, because of the asm attribute or the other decl being a builtin,
3062 // ends up pointing to itself.
3063 bool
3064 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3065   StringRef Name;
3066   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3067     // asm labels are a special kind of mangling we have to support.
3068     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3069     if (!Attr)
3070       return false;
3071     Name = Attr->getLabel();
3072   } else {
3073     Name = FD->getName();
3074   }
3075 
3076   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3077   const Stmt *Body = FD->getBody();
3078   return Body ? Walker.Visit(Body) : false;
3079 }
3080 
3081 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3082   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3083     return true;
3084   const auto *F = cast<FunctionDecl>(GD.getDecl());
3085   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3086     return false;
3087 
3088   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3089     // Check whether it would be safe to inline this dllimport function.
3090     DLLImportFunctionVisitor Visitor;
3091     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3092     if (!Visitor.SafeToInline)
3093       return false;
3094 
3095     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3096       // Implicit destructor invocations aren't captured in the AST, so the
3097       // check above can't see them. Check for them manually here.
3098       for (const Decl *Member : Dtor->getParent()->decls())
3099         if (isa<FieldDecl>(Member))
3100           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3101             return false;
3102       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3103         if (HasNonDllImportDtor(B.getType()))
3104           return false;
3105     }
3106   }
3107 
3108   // PR9614. Avoid cases where the source code is lying to us. An available
3109   // externally function should have an equivalent function somewhere else,
3110   // but a function that calls itself through asm label/`__builtin_` trickery is
3111   // clearly not equivalent to the real implementation.
3112   // This happens in glibc's btowc and in some configure checks.
3113   return !isTriviallyRecursive(F);
3114 }
3115 
3116 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3117   return CodeGenOpts.OptimizationLevel > 0;
3118 }
3119 
3120 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3121                                                        llvm::GlobalValue *GV) {
3122   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3123 
3124   if (FD->isCPUSpecificMultiVersion()) {
3125     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3126     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3127       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3128     // Requires multiple emits.
3129   } else
3130     EmitGlobalFunctionDefinition(GD, GV);
3131 }
3132 
3133 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3134   const auto *D = cast<ValueDecl>(GD.getDecl());
3135 
3136   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3137                                  Context.getSourceManager(),
3138                                  "Generating code for declaration");
3139 
3140   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3141     // At -O0, don't generate IR for functions with available_externally
3142     // linkage.
3143     if (!shouldEmitFunction(GD))
3144       return;
3145 
3146     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3147       std::string Name;
3148       llvm::raw_string_ostream OS(Name);
3149       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3150                                /*Qualified=*/true);
3151       return Name;
3152     });
3153 
3154     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3155       // Make sure to emit the definition(s) before we emit the thunks.
3156       // This is necessary for the generation of certain thunks.
3157       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3158         ABI->emitCXXStructor(GD);
3159       else if (FD->isMultiVersion())
3160         EmitMultiVersionFunctionDefinition(GD, GV);
3161       else
3162         EmitGlobalFunctionDefinition(GD, GV);
3163 
3164       if (Method->isVirtual())
3165         getVTables().EmitThunks(GD);
3166 
3167       return;
3168     }
3169 
3170     if (FD->isMultiVersion())
3171       return EmitMultiVersionFunctionDefinition(GD, GV);
3172     return EmitGlobalFunctionDefinition(GD, GV);
3173   }
3174 
3175   if (const auto *VD = dyn_cast<VarDecl>(D))
3176     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3177 
3178   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3179 }
3180 
3181 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3182                                                       llvm::Function *NewFn);
3183 
3184 static unsigned
3185 TargetMVPriority(const TargetInfo &TI,
3186                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3187   unsigned Priority = 0;
3188   for (StringRef Feat : RO.Conditions.Features)
3189     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3190 
3191   if (!RO.Conditions.Architecture.empty())
3192     Priority = std::max(
3193         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3194   return Priority;
3195 }
3196 
3197 void CodeGenModule::emitMultiVersionFunctions() {
3198   for (GlobalDecl GD : MultiVersionFuncs) {
3199     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3200     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3201     getContext().forEachMultiversionedFunctionVersion(
3202         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3203           GlobalDecl CurGD{
3204               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3205           StringRef MangledName = getMangledName(CurGD);
3206           llvm::Constant *Func = GetGlobalValue(MangledName);
3207           if (!Func) {
3208             if (CurFD->isDefined()) {
3209               EmitGlobalFunctionDefinition(CurGD, nullptr);
3210               Func = GetGlobalValue(MangledName);
3211             } else {
3212               const CGFunctionInfo &FI =
3213                   getTypes().arrangeGlobalDeclaration(GD);
3214               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3215               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3216                                        /*DontDefer=*/false, ForDefinition);
3217             }
3218             assert(Func && "This should have just been created");
3219           }
3220 
3221           const auto *TA = CurFD->getAttr<TargetAttr>();
3222           llvm::SmallVector<StringRef, 8> Feats;
3223           TA->getAddedFeatures(Feats);
3224 
3225           Options.emplace_back(cast<llvm::Function>(Func),
3226                                TA->getArchitecture(), Feats);
3227         });
3228 
3229     llvm::Function *ResolverFunc;
3230     const TargetInfo &TI = getTarget();
3231 
3232     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3233       ResolverFunc = cast<llvm::Function>(
3234           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3235       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3236     } else {
3237       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3238     }
3239 
3240     if (supportsCOMDAT())
3241       ResolverFunc->setComdat(
3242           getModule().getOrInsertComdat(ResolverFunc->getName()));
3243 
3244     llvm::stable_sort(
3245         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3246                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3247           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3248         });
3249     CodeGenFunction CGF(*this);
3250     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3251   }
3252 }
3253 
3254 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3255   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3256   assert(FD && "Not a FunctionDecl?");
3257   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3258   assert(DD && "Not a cpu_dispatch Function?");
3259   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3260 
3261   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3262     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3263     DeclTy = getTypes().GetFunctionType(FInfo);
3264   }
3265 
3266   StringRef ResolverName = getMangledName(GD);
3267 
3268   llvm::Type *ResolverType;
3269   GlobalDecl ResolverGD;
3270   if (getTarget().supportsIFunc())
3271     ResolverType = llvm::FunctionType::get(
3272         llvm::PointerType::get(DeclTy,
3273                                Context.getTargetAddressSpace(FD->getType())),
3274         false);
3275   else {
3276     ResolverType = DeclTy;
3277     ResolverGD = GD;
3278   }
3279 
3280   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3281       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3282   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3283   if (supportsCOMDAT())
3284     ResolverFunc->setComdat(
3285         getModule().getOrInsertComdat(ResolverFunc->getName()));
3286 
3287   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3288   const TargetInfo &Target = getTarget();
3289   unsigned Index = 0;
3290   for (const IdentifierInfo *II : DD->cpus()) {
3291     // Get the name of the target function so we can look it up/create it.
3292     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3293                               getCPUSpecificMangling(*this, II->getName());
3294 
3295     llvm::Constant *Func = GetGlobalValue(MangledName);
3296 
3297     if (!Func) {
3298       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3299       if (ExistingDecl.getDecl() &&
3300           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3301         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3302         Func = GetGlobalValue(MangledName);
3303       } else {
3304         if (!ExistingDecl.getDecl())
3305           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3306 
3307       Func = GetOrCreateLLVMFunction(
3308           MangledName, DeclTy, ExistingDecl,
3309           /*ForVTable=*/false, /*DontDefer=*/true,
3310           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3311       }
3312     }
3313 
3314     llvm::SmallVector<StringRef, 32> Features;
3315     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3316     llvm::transform(Features, Features.begin(),
3317                     [](StringRef Str) { return Str.substr(1); });
3318     Features.erase(std::remove_if(
3319         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3320           return !Target.validateCpuSupports(Feat);
3321         }), Features.end());
3322     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3323     ++Index;
3324   }
3325 
3326   llvm::sort(
3327       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3328                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3329         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3330                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3331       });
3332 
3333   // If the list contains multiple 'default' versions, such as when it contains
3334   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3335   // always run on at least a 'pentium'). We do this by deleting the 'least
3336   // advanced' (read, lowest mangling letter).
3337   while (Options.size() > 1 &&
3338          CodeGenFunction::GetX86CpuSupportsMask(
3339              (Options.end() - 2)->Conditions.Features) == 0) {
3340     StringRef LHSName = (Options.end() - 2)->Function->getName();
3341     StringRef RHSName = (Options.end() - 1)->Function->getName();
3342     if (LHSName.compare(RHSName) < 0)
3343       Options.erase(Options.end() - 2);
3344     else
3345       Options.erase(Options.end() - 1);
3346   }
3347 
3348   CodeGenFunction CGF(*this);
3349   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3350 
3351   if (getTarget().supportsIFunc()) {
3352     std::string AliasName = getMangledNameImpl(
3353         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3354     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3355     if (!AliasFunc) {
3356       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3357           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3358           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3359       auto *GA = llvm::GlobalAlias::create(
3360          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3361       GA->setLinkage(llvm::Function::WeakODRLinkage);
3362       SetCommonAttributes(GD, GA);
3363     }
3364   }
3365 }
3366 
3367 /// If a dispatcher for the specified mangled name is not in the module, create
3368 /// and return an llvm Function with the specified type.
3369 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3370     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3371   std::string MangledName =
3372       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3373 
3374   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3375   // a separate resolver).
3376   std::string ResolverName = MangledName;
3377   if (getTarget().supportsIFunc())
3378     ResolverName += ".ifunc";
3379   else if (FD->isTargetMultiVersion())
3380     ResolverName += ".resolver";
3381 
3382   // If this already exists, just return that one.
3383   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3384     return ResolverGV;
3385 
3386   // Since this is the first time we've created this IFunc, make sure
3387   // that we put this multiversioned function into the list to be
3388   // replaced later if necessary (target multiversioning only).
3389   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3390     MultiVersionFuncs.push_back(GD);
3391 
3392   if (getTarget().supportsIFunc()) {
3393     llvm::Type *ResolverType = llvm::FunctionType::get(
3394         llvm::PointerType::get(
3395             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3396         false);
3397     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3398         MangledName + ".resolver", ResolverType, GlobalDecl{},
3399         /*ForVTable=*/false);
3400     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3401         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3402     GIF->setName(ResolverName);
3403     SetCommonAttributes(FD, GIF);
3404 
3405     return GIF;
3406   }
3407 
3408   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3409       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3410   assert(isa<llvm::GlobalValue>(Resolver) &&
3411          "Resolver should be created for the first time");
3412   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3413   return Resolver;
3414 }
3415 
3416 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3417 /// module, create and return an llvm Function with the specified type. If there
3418 /// is something in the module with the specified name, return it potentially
3419 /// bitcasted to the right type.
3420 ///
3421 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3422 /// to set the attributes on the function when it is first created.
3423 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3424     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3425     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3426     ForDefinition_t IsForDefinition) {
3427   const Decl *D = GD.getDecl();
3428 
3429   // Any attempts to use a MultiVersion function should result in retrieving
3430   // the iFunc instead. Name Mangling will handle the rest of the changes.
3431   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3432     // For the device mark the function as one that should be emitted.
3433     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3434         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3435         !DontDefer && !IsForDefinition) {
3436       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3437         GlobalDecl GDDef;
3438         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3439           GDDef = GlobalDecl(CD, GD.getCtorType());
3440         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3441           GDDef = GlobalDecl(DD, GD.getDtorType());
3442         else
3443           GDDef = GlobalDecl(FDDef);
3444         EmitGlobal(GDDef);
3445       }
3446     }
3447 
3448     if (FD->isMultiVersion()) {
3449       if (FD->hasAttr<TargetAttr>())
3450         UpdateMultiVersionNames(GD, FD);
3451       if (!IsForDefinition)
3452         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3453     }
3454   }
3455 
3456   // Lookup the entry, lazily creating it if necessary.
3457   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3458   if (Entry) {
3459     if (WeakRefReferences.erase(Entry)) {
3460       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3461       if (FD && !FD->hasAttr<WeakAttr>())
3462         Entry->setLinkage(llvm::Function::ExternalLinkage);
3463     }
3464 
3465     // Handle dropped DLL attributes.
3466     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3467       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3468       setDSOLocal(Entry);
3469     }
3470 
3471     // If there are two attempts to define the same mangled name, issue an
3472     // error.
3473     if (IsForDefinition && !Entry->isDeclaration()) {
3474       GlobalDecl OtherGD;
3475       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3476       // to make sure that we issue an error only once.
3477       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3478           (GD.getCanonicalDecl().getDecl() !=
3479            OtherGD.getCanonicalDecl().getDecl()) &&
3480           DiagnosedConflictingDefinitions.insert(GD).second) {
3481         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3482             << MangledName;
3483         getDiags().Report(OtherGD.getDecl()->getLocation(),
3484                           diag::note_previous_definition);
3485       }
3486     }
3487 
3488     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3489         (Entry->getValueType() == Ty)) {
3490       return Entry;
3491     }
3492 
3493     // Make sure the result is of the correct type.
3494     // (If function is requested for a definition, we always need to create a new
3495     // function, not just return a bitcast.)
3496     if (!IsForDefinition)
3497       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3498   }
3499 
3500   // This function doesn't have a complete type (for example, the return
3501   // type is an incomplete struct). Use a fake type instead, and make
3502   // sure not to try to set attributes.
3503   bool IsIncompleteFunction = false;
3504 
3505   llvm::FunctionType *FTy;
3506   if (isa<llvm::FunctionType>(Ty)) {
3507     FTy = cast<llvm::FunctionType>(Ty);
3508   } else {
3509     FTy = llvm::FunctionType::get(VoidTy, false);
3510     IsIncompleteFunction = true;
3511   }
3512 
3513   llvm::Function *F =
3514       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3515                              Entry ? StringRef() : MangledName, &getModule());
3516 
3517   // If we already created a function with the same mangled name (but different
3518   // type) before, take its name and add it to the list of functions to be
3519   // replaced with F at the end of CodeGen.
3520   //
3521   // This happens if there is a prototype for a function (e.g. "int f()") and
3522   // then a definition of a different type (e.g. "int f(int x)").
3523   if (Entry) {
3524     F->takeName(Entry);
3525 
3526     // This might be an implementation of a function without a prototype, in
3527     // which case, try to do special replacement of calls which match the new
3528     // prototype.  The really key thing here is that we also potentially drop
3529     // arguments from the call site so as to make a direct call, which makes the
3530     // inliner happier and suppresses a number of optimizer warnings (!) about
3531     // dropping arguments.
3532     if (!Entry->use_empty()) {
3533       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3534       Entry->removeDeadConstantUsers();
3535     }
3536 
3537     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3538         F, Entry->getValueType()->getPointerTo());
3539     addGlobalValReplacement(Entry, BC);
3540   }
3541 
3542   assert(F->getName() == MangledName && "name was uniqued!");
3543   if (D)
3544     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3545   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3546     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3547     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3548   }
3549 
3550   if (!DontDefer) {
3551     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3552     // each other bottoming out with the base dtor.  Therefore we emit non-base
3553     // dtors on usage, even if there is no dtor definition in the TU.
3554     if (D && isa<CXXDestructorDecl>(D) &&
3555         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3556                                            GD.getDtorType()))
3557       addDeferredDeclToEmit(GD);
3558 
3559     // This is the first use or definition of a mangled name.  If there is a
3560     // deferred decl with this name, remember that we need to emit it at the end
3561     // of the file.
3562     auto DDI = DeferredDecls.find(MangledName);
3563     if (DDI != DeferredDecls.end()) {
3564       // Move the potentially referenced deferred decl to the
3565       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3566       // don't need it anymore).
3567       addDeferredDeclToEmit(DDI->second);
3568       DeferredDecls.erase(DDI);
3569 
3570       // Otherwise, there are cases we have to worry about where we're
3571       // using a declaration for which we must emit a definition but where
3572       // we might not find a top-level definition:
3573       //   - member functions defined inline in their classes
3574       //   - friend functions defined inline in some class
3575       //   - special member functions with implicit definitions
3576       // If we ever change our AST traversal to walk into class methods,
3577       // this will be unnecessary.
3578       //
3579       // We also don't emit a definition for a function if it's going to be an
3580       // entry in a vtable, unless it's already marked as used.
3581     } else if (getLangOpts().CPlusPlus && D) {
3582       // Look for a declaration that's lexically in a record.
3583       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3584            FD = FD->getPreviousDecl()) {
3585         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3586           if (FD->doesThisDeclarationHaveABody()) {
3587             addDeferredDeclToEmit(GD.getWithDecl(FD));
3588             break;
3589           }
3590         }
3591       }
3592     }
3593   }
3594 
3595   // Make sure the result is of the requested type.
3596   if (!IsIncompleteFunction) {
3597     assert(F->getFunctionType() == Ty);
3598     return F;
3599   }
3600 
3601   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3602   return llvm::ConstantExpr::getBitCast(F, PTy);
3603 }
3604 
3605 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3606 /// non-null, then this function will use the specified type if it has to
3607 /// create it (this occurs when we see a definition of the function).
3608 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3609                                                  llvm::Type *Ty,
3610                                                  bool ForVTable,
3611                                                  bool DontDefer,
3612                                               ForDefinition_t IsForDefinition) {
3613   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3614          "consteval function should never be emitted");
3615   // If there was no specific requested type, just convert it now.
3616   if (!Ty) {
3617     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3618     Ty = getTypes().ConvertType(FD->getType());
3619   }
3620 
3621   // Devirtualized destructor calls may come through here instead of via
3622   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3623   // of the complete destructor when necessary.
3624   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3625     if (getTarget().getCXXABI().isMicrosoft() &&
3626         GD.getDtorType() == Dtor_Complete &&
3627         DD->getParent()->getNumVBases() == 0)
3628       GD = GlobalDecl(DD, Dtor_Base);
3629   }
3630 
3631   StringRef MangledName = getMangledName(GD);
3632   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3633                                     /*IsThunk=*/false, llvm::AttributeList(),
3634                                     IsForDefinition);
3635   // Returns kernel handle for HIP kernel stub function.
3636   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3637       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3638     auto *Handle = getCUDARuntime().getKernelHandle(
3639         cast<llvm::Function>(F->stripPointerCasts()), GD);
3640     if (IsForDefinition)
3641       return F;
3642     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3643   }
3644   return F;
3645 }
3646 
3647 static const FunctionDecl *
3648 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3649   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3650   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3651 
3652   IdentifierInfo &CII = C.Idents.get(Name);
3653   for (const auto &Result : DC->lookup(&CII))
3654     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3655       return FD;
3656 
3657   if (!C.getLangOpts().CPlusPlus)
3658     return nullptr;
3659 
3660   // Demangle the premangled name from getTerminateFn()
3661   IdentifierInfo &CXXII =
3662       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3663           ? C.Idents.get("terminate")
3664           : C.Idents.get(Name);
3665 
3666   for (const auto &N : {"__cxxabiv1", "std"}) {
3667     IdentifierInfo &NS = C.Idents.get(N);
3668     for (const auto &Result : DC->lookup(&NS)) {
3669       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3670       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3671         for (const auto &Result : LSD->lookup(&NS))
3672           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3673             break;
3674 
3675       if (ND)
3676         for (const auto &Result : ND->lookup(&CXXII))
3677           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3678             return FD;
3679     }
3680   }
3681 
3682   return nullptr;
3683 }
3684 
3685 /// CreateRuntimeFunction - Create a new runtime function with the specified
3686 /// type and name.
3687 llvm::FunctionCallee
3688 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3689                                      llvm::AttributeList ExtraAttrs, bool Local,
3690                                      bool AssumeConvergent) {
3691   if (AssumeConvergent) {
3692     ExtraAttrs =
3693         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3694                                 llvm::Attribute::Convergent);
3695   }
3696 
3697   llvm::Constant *C =
3698       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3699                               /*DontDefer=*/false, /*IsThunk=*/false,
3700                               ExtraAttrs);
3701 
3702   if (auto *F = dyn_cast<llvm::Function>(C)) {
3703     if (F->empty()) {
3704       F->setCallingConv(getRuntimeCC());
3705 
3706       // In Windows Itanium environments, try to mark runtime functions
3707       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3708       // will link their standard library statically or dynamically. Marking
3709       // functions imported when they are not imported can cause linker errors
3710       // and warnings.
3711       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3712           !getCodeGenOpts().LTOVisibilityPublicStd) {
3713         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3714         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3715           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3716           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3717         }
3718       }
3719       setDSOLocal(F);
3720     }
3721   }
3722 
3723   return {FTy, C};
3724 }
3725 
3726 /// isTypeConstant - Determine whether an object of this type can be emitted
3727 /// as a constant.
3728 ///
3729 /// If ExcludeCtor is true, the duration when the object's constructor runs
3730 /// will not be considered. The caller will need to verify that the object is
3731 /// not written to during its construction.
3732 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3733   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3734     return false;
3735 
3736   if (Context.getLangOpts().CPlusPlus) {
3737     if (const CXXRecordDecl *Record
3738           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3739       return ExcludeCtor && !Record->hasMutableFields() &&
3740              Record->hasTrivialDestructor();
3741   }
3742 
3743   return true;
3744 }
3745 
3746 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3747 /// create and return an llvm GlobalVariable with the specified type.  If there
3748 /// is something in the module with the specified name, return it potentially
3749 /// bitcasted to the right type.
3750 ///
3751 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3752 /// to set the attributes on the global when it is first created.
3753 ///
3754 /// If IsForDefinition is true, it is guaranteed that an actual global with
3755 /// type Ty will be returned, not conversion of a variable with the same
3756 /// mangled name but some other type.
3757 llvm::Constant *
3758 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3759                                      llvm::PointerType *Ty,
3760                                      const VarDecl *D,
3761                                      ForDefinition_t IsForDefinition) {
3762   // Lookup the entry, lazily creating it if necessary.
3763   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3764   if (Entry) {
3765     if (WeakRefReferences.erase(Entry)) {
3766       if (D && !D->hasAttr<WeakAttr>())
3767         Entry->setLinkage(llvm::Function::ExternalLinkage);
3768     }
3769 
3770     // Handle dropped DLL attributes.
3771     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3772       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3773 
3774     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3775       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3776 
3777     if (Entry->getType() == Ty)
3778       return Entry;
3779 
3780     // If there are two attempts to define the same mangled name, issue an
3781     // error.
3782     if (IsForDefinition && !Entry->isDeclaration()) {
3783       GlobalDecl OtherGD;
3784       const VarDecl *OtherD;
3785 
3786       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3787       // to make sure that we issue an error only once.
3788       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3789           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3790           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3791           OtherD->hasInit() &&
3792           DiagnosedConflictingDefinitions.insert(D).second) {
3793         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3794             << MangledName;
3795         getDiags().Report(OtherGD.getDecl()->getLocation(),
3796                           diag::note_previous_definition);
3797       }
3798     }
3799 
3800     // Make sure the result is of the correct type.
3801     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3802       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3803 
3804     // (If global is requested for a definition, we always need to create a new
3805     // global, not just return a bitcast.)
3806     if (!IsForDefinition)
3807       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3808   }
3809 
3810   auto AddrSpace = GetGlobalVarAddressSpace(D);
3811   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3812 
3813   auto *GV = new llvm::GlobalVariable(
3814       getModule(), Ty->getElementType(), false,
3815       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3816       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3817 
3818   // If we already created a global with the same mangled name (but different
3819   // type) before, take its name and remove it from its parent.
3820   if (Entry) {
3821     GV->takeName(Entry);
3822 
3823     if (!Entry->use_empty()) {
3824       llvm::Constant *NewPtrForOldDecl =
3825           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3826       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3827     }
3828 
3829     Entry->eraseFromParent();
3830   }
3831 
3832   // This is the first use or definition of a mangled name.  If there is a
3833   // deferred decl with this name, remember that we need to emit it at the end
3834   // of the file.
3835   auto DDI = DeferredDecls.find(MangledName);
3836   if (DDI != DeferredDecls.end()) {
3837     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3838     // list, and remove it from DeferredDecls (since we don't need it anymore).
3839     addDeferredDeclToEmit(DDI->second);
3840     DeferredDecls.erase(DDI);
3841   }
3842 
3843   // Handle things which are present even on external declarations.
3844   if (D) {
3845     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3846       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3847 
3848     // FIXME: This code is overly simple and should be merged with other global
3849     // handling.
3850     GV->setConstant(isTypeConstant(D->getType(), false));
3851 
3852     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3853 
3854     setLinkageForGV(GV, D);
3855 
3856     if (D->getTLSKind()) {
3857       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3858         CXXThreadLocals.push_back(D);
3859       setTLSMode(GV, *D);
3860     }
3861 
3862     setGVProperties(GV, D);
3863 
3864     // If required by the ABI, treat declarations of static data members with
3865     // inline initializers as definitions.
3866     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3867       EmitGlobalVarDefinition(D);
3868     }
3869 
3870     // Emit section information for extern variables.
3871     if (D->hasExternalStorage()) {
3872       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3873         GV->setSection(SA->getName());
3874     }
3875 
3876     // Handle XCore specific ABI requirements.
3877     if (getTriple().getArch() == llvm::Triple::xcore &&
3878         D->getLanguageLinkage() == CLanguageLinkage &&
3879         D->getType().isConstant(Context) &&
3880         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3881       GV->setSection(".cp.rodata");
3882 
3883     // Check if we a have a const declaration with an initializer, we may be
3884     // able to emit it as available_externally to expose it's value to the
3885     // optimizer.
3886     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3887         D->getType().isConstQualified() && !GV->hasInitializer() &&
3888         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3889       const auto *Record =
3890           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3891       bool HasMutableFields = Record && Record->hasMutableFields();
3892       if (!HasMutableFields) {
3893         const VarDecl *InitDecl;
3894         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3895         if (InitExpr) {
3896           ConstantEmitter emitter(*this);
3897           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3898           if (Init) {
3899             auto *InitType = Init->getType();
3900             if (GV->getValueType() != InitType) {
3901               // The type of the initializer does not match the definition.
3902               // This happens when an initializer has a different type from
3903               // the type of the global (because of padding at the end of a
3904               // structure for instance).
3905               GV->setName(StringRef());
3906               // Make a new global with the correct type, this is now guaranteed
3907               // to work.
3908               auto *NewGV = cast<llvm::GlobalVariable>(
3909                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3910                       ->stripPointerCasts());
3911 
3912               // Erase the old global, since it is no longer used.
3913               GV->eraseFromParent();
3914               GV = NewGV;
3915             } else {
3916               GV->setInitializer(Init);
3917               GV->setConstant(true);
3918               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3919             }
3920             emitter.finalize(GV);
3921           }
3922         }
3923       }
3924     }
3925   }
3926 
3927   if (GV->isDeclaration()) {
3928     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3929     // External HIP managed variables needed to be recorded for transformation
3930     // in both device and host compilations.
3931     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3932         D->hasExternalStorage())
3933       getCUDARuntime().handleVarRegistration(D, *GV);
3934   }
3935 
3936   LangAS ExpectedAS =
3937       D ? D->getType().getAddressSpace()
3938         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3939   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3940          Ty->getPointerAddressSpace());
3941   if (AddrSpace != ExpectedAS)
3942     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3943                                                        ExpectedAS, Ty);
3944 
3945   return GV;
3946 }
3947 
3948 llvm::Constant *
3949 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3950   const Decl *D = GD.getDecl();
3951 
3952   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3953     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3954                                 /*DontDefer=*/false, IsForDefinition);
3955 
3956   if (isa<CXXMethodDecl>(D)) {
3957     auto FInfo =
3958         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3959     auto Ty = getTypes().GetFunctionType(*FInfo);
3960     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3961                              IsForDefinition);
3962   }
3963 
3964   if (isa<FunctionDecl>(D)) {
3965     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3966     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3967     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3968                              IsForDefinition);
3969   }
3970 
3971   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3972 }
3973 
3974 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3975     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3976     unsigned Alignment) {
3977   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3978   llvm::GlobalVariable *OldGV = nullptr;
3979 
3980   if (GV) {
3981     // Check if the variable has the right type.
3982     if (GV->getValueType() == Ty)
3983       return GV;
3984 
3985     // Because C++ name mangling, the only way we can end up with an already
3986     // existing global with the same name is if it has been declared extern "C".
3987     assert(GV->isDeclaration() && "Declaration has wrong type!");
3988     OldGV = GV;
3989   }
3990 
3991   // Create a new variable.
3992   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3993                                 Linkage, nullptr, Name);
3994 
3995   if (OldGV) {
3996     // Replace occurrences of the old variable if needed.
3997     GV->takeName(OldGV);
3998 
3999     if (!OldGV->use_empty()) {
4000       llvm::Constant *NewPtrForOldDecl =
4001       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4002       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4003     }
4004 
4005     OldGV->eraseFromParent();
4006   }
4007 
4008   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4009       !GV->hasAvailableExternallyLinkage())
4010     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4011 
4012   GV->setAlignment(llvm::MaybeAlign(Alignment));
4013 
4014   return GV;
4015 }
4016 
4017 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4018 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4019 /// then it will be created with the specified type instead of whatever the
4020 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4021 /// that an actual global with type Ty will be returned, not conversion of a
4022 /// variable with the same mangled name but some other type.
4023 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4024                                                   llvm::Type *Ty,
4025                                            ForDefinition_t IsForDefinition) {
4026   assert(D->hasGlobalStorage() && "Not a global variable");
4027   QualType ASTTy = D->getType();
4028   if (!Ty)
4029     Ty = getTypes().ConvertTypeForMem(ASTTy);
4030 
4031   llvm::PointerType *PTy =
4032     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4033 
4034   StringRef MangledName = getMangledName(D);
4035   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
4036 }
4037 
4038 /// CreateRuntimeVariable - Create a new runtime global variable with the
4039 /// specified type and name.
4040 llvm::Constant *
4041 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4042                                      StringRef Name) {
4043   auto PtrTy =
4044       getContext().getLangOpts().OpenCL
4045           ? llvm::PointerType::get(
4046                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
4047           : llvm::PointerType::getUnqual(Ty);
4048   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
4049   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4050   return Ret;
4051 }
4052 
4053 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4054   assert(!D->getInit() && "Cannot emit definite definitions here!");
4055 
4056   StringRef MangledName = getMangledName(D);
4057   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4058 
4059   // We already have a definition, not declaration, with the same mangled name.
4060   // Emitting of declaration is not required (and actually overwrites emitted
4061   // definition).
4062   if (GV && !GV->isDeclaration())
4063     return;
4064 
4065   // If we have not seen a reference to this variable yet, place it into the
4066   // deferred declarations table to be emitted if needed later.
4067   if (!MustBeEmitted(D) && !GV) {
4068       DeferredDecls[MangledName] = D;
4069       return;
4070   }
4071 
4072   // The tentative definition is the only definition.
4073   EmitGlobalVarDefinition(D);
4074 }
4075 
4076 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4077   EmitExternalVarDeclaration(D);
4078 }
4079 
4080 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4081   return Context.toCharUnitsFromBits(
4082       getDataLayout().getTypeStoreSizeInBits(Ty));
4083 }
4084 
4085 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4086   LangAS AddrSpace = LangAS::Default;
4087   if (LangOpts.OpenCL) {
4088     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4089     assert(AddrSpace == LangAS::opencl_global ||
4090            AddrSpace == LangAS::opencl_global_device ||
4091            AddrSpace == LangAS::opencl_global_host ||
4092            AddrSpace == LangAS::opencl_constant ||
4093            AddrSpace == LangAS::opencl_local ||
4094            AddrSpace >= LangAS::FirstTargetAddressSpace);
4095     return AddrSpace;
4096   }
4097 
4098   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4099     if (D && D->hasAttr<CUDAConstantAttr>())
4100       return LangAS::cuda_constant;
4101     else if (D && D->hasAttr<CUDASharedAttr>())
4102       return LangAS::cuda_shared;
4103     else if (D && D->hasAttr<CUDADeviceAttr>())
4104       return LangAS::cuda_device;
4105     else if (D && D->getType().isConstQualified())
4106       return LangAS::cuda_constant;
4107     else
4108       return LangAS::cuda_device;
4109   }
4110 
4111   if (LangOpts.OpenMP) {
4112     LangAS AS;
4113     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4114       return AS;
4115   }
4116   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4117 }
4118 
4119 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
4120   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4121   if (LangOpts.OpenCL)
4122     return LangAS::opencl_constant;
4123   if (auto AS = getTarget().getConstantAddressSpace())
4124     return AS.getValue();
4125   return LangAS::Default;
4126 }
4127 
4128 // In address space agnostic languages, string literals are in default address
4129 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4130 // emitted in constant address space in LLVM IR. To be consistent with other
4131 // parts of AST, string literal global variables in constant address space
4132 // need to be casted to default address space before being put into address
4133 // map and referenced by other part of CodeGen.
4134 // In OpenCL, string literals are in constant address space in AST, therefore
4135 // they should not be casted to default address space.
4136 static llvm::Constant *
4137 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4138                                        llvm::GlobalVariable *GV) {
4139   llvm::Constant *Cast = GV;
4140   if (!CGM.getLangOpts().OpenCL) {
4141     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4142       if (AS != LangAS::Default)
4143         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4144             CGM, GV, AS.getValue(), LangAS::Default,
4145             GV->getValueType()->getPointerTo(
4146                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4147     }
4148   }
4149   return Cast;
4150 }
4151 
4152 template<typename SomeDecl>
4153 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4154                                                llvm::GlobalValue *GV) {
4155   if (!getLangOpts().CPlusPlus)
4156     return;
4157 
4158   // Must have 'used' attribute, or else inline assembly can't rely on
4159   // the name existing.
4160   if (!D->template hasAttr<UsedAttr>())
4161     return;
4162 
4163   // Must have internal linkage and an ordinary name.
4164   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4165     return;
4166 
4167   // Must be in an extern "C" context. Entities declared directly within
4168   // a record are not extern "C" even if the record is in such a context.
4169   const SomeDecl *First = D->getFirstDecl();
4170   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4171     return;
4172 
4173   // OK, this is an internal linkage entity inside an extern "C" linkage
4174   // specification. Make a note of that so we can give it the "expected"
4175   // mangled name if nothing else is using that name.
4176   std::pair<StaticExternCMap::iterator, bool> R =
4177       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4178 
4179   // If we have multiple internal linkage entities with the same name
4180   // in extern "C" regions, none of them gets that name.
4181   if (!R.second)
4182     R.first->second = nullptr;
4183 }
4184 
4185 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4186   if (!CGM.supportsCOMDAT())
4187     return false;
4188 
4189   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4190   // them being "merged" by the COMDAT Folding linker optimization.
4191   if (D.hasAttr<CUDAGlobalAttr>())
4192     return false;
4193 
4194   if (D.hasAttr<SelectAnyAttr>())
4195     return true;
4196 
4197   GVALinkage Linkage;
4198   if (auto *VD = dyn_cast<VarDecl>(&D))
4199     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4200   else
4201     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4202 
4203   switch (Linkage) {
4204   case GVA_Internal:
4205   case GVA_AvailableExternally:
4206   case GVA_StrongExternal:
4207     return false;
4208   case GVA_DiscardableODR:
4209   case GVA_StrongODR:
4210     return true;
4211   }
4212   llvm_unreachable("No such linkage");
4213 }
4214 
4215 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4216                                           llvm::GlobalObject &GO) {
4217   if (!shouldBeInCOMDAT(*this, D))
4218     return;
4219   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4220 }
4221 
4222 /// Pass IsTentative as true if you want to create a tentative definition.
4223 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4224                                             bool IsTentative) {
4225   // OpenCL global variables of sampler type are translated to function calls,
4226   // therefore no need to be translated.
4227   QualType ASTTy = D->getType();
4228   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4229     return;
4230 
4231   // If this is OpenMP device, check if it is legal to emit this global
4232   // normally.
4233   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4234       OpenMPRuntime->emitTargetGlobalVariable(D))
4235     return;
4236 
4237   llvm::Constant *Init = nullptr;
4238   bool NeedsGlobalCtor = false;
4239   bool NeedsGlobalDtor =
4240       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4241 
4242   const VarDecl *InitDecl;
4243   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4244 
4245   Optional<ConstantEmitter> emitter;
4246 
4247   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4248   // as part of their declaration."  Sema has already checked for
4249   // error cases, so we just need to set Init to UndefValue.
4250   bool IsCUDASharedVar =
4251       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4252   // Shadows of initialized device-side global variables are also left
4253   // undefined.
4254   // Managed Variables should be initialized on both host side and device side.
4255   bool IsCUDAShadowVar =
4256       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4257       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4258        D->hasAttr<CUDASharedAttr>());
4259   bool IsCUDADeviceShadowVar =
4260       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4261       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4262        D->getType()->isCUDADeviceBuiltinTextureType());
4263   if (getLangOpts().CUDA &&
4264       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4265     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4266   else if (D->hasAttr<LoaderUninitializedAttr>())
4267     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4268   else if (!InitExpr) {
4269     // This is a tentative definition; tentative definitions are
4270     // implicitly initialized with { 0 }.
4271     //
4272     // Note that tentative definitions are only emitted at the end of
4273     // a translation unit, so they should never have incomplete
4274     // type. In addition, EmitTentativeDefinition makes sure that we
4275     // never attempt to emit a tentative definition if a real one
4276     // exists. A use may still exists, however, so we still may need
4277     // to do a RAUW.
4278     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4279     Init = EmitNullConstant(D->getType());
4280   } else {
4281     initializedGlobalDecl = GlobalDecl(D);
4282     emitter.emplace(*this);
4283     Init = emitter->tryEmitForInitializer(*InitDecl);
4284 
4285     if (!Init) {
4286       QualType T = InitExpr->getType();
4287       if (D->getType()->isReferenceType())
4288         T = D->getType();
4289 
4290       if (getLangOpts().CPlusPlus) {
4291         Init = EmitNullConstant(T);
4292         NeedsGlobalCtor = true;
4293       } else {
4294         ErrorUnsupported(D, "static initializer");
4295         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4296       }
4297     } else {
4298       // We don't need an initializer, so remove the entry for the delayed
4299       // initializer position (just in case this entry was delayed) if we
4300       // also don't need to register a destructor.
4301       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4302         DelayedCXXInitPosition.erase(D);
4303     }
4304   }
4305 
4306   llvm::Type* InitType = Init->getType();
4307   llvm::Constant *Entry =
4308       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4309 
4310   // Strip off pointer casts if we got them.
4311   Entry = Entry->stripPointerCasts();
4312 
4313   // Entry is now either a Function or GlobalVariable.
4314   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4315 
4316   // We have a definition after a declaration with the wrong type.
4317   // We must make a new GlobalVariable* and update everything that used OldGV
4318   // (a declaration or tentative definition) with the new GlobalVariable*
4319   // (which will be a definition).
4320   //
4321   // This happens if there is a prototype for a global (e.g.
4322   // "extern int x[];") and then a definition of a different type (e.g.
4323   // "int x[10];"). This also happens when an initializer has a different type
4324   // from the type of the global (this happens with unions).
4325   if (!GV || GV->getValueType() != InitType ||
4326       GV->getType()->getAddressSpace() !=
4327           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4328 
4329     // Move the old entry aside so that we'll create a new one.
4330     Entry->setName(StringRef());
4331 
4332     // Make a new global with the correct type, this is now guaranteed to work.
4333     GV = cast<llvm::GlobalVariable>(
4334         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4335             ->stripPointerCasts());
4336 
4337     // Replace all uses of the old global with the new global
4338     llvm::Constant *NewPtrForOldDecl =
4339         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4340     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4341 
4342     // Erase the old global, since it is no longer used.
4343     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4344   }
4345 
4346   MaybeHandleStaticInExternC(D, GV);
4347 
4348   if (D->hasAttr<AnnotateAttr>())
4349     AddGlobalAnnotations(D, GV);
4350 
4351   // Set the llvm linkage type as appropriate.
4352   llvm::GlobalValue::LinkageTypes Linkage =
4353       getLLVMLinkageVarDefinition(D, GV->isConstant());
4354 
4355   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4356   // the device. [...]"
4357   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4358   // __device__, declares a variable that: [...]
4359   // Is accessible from all the threads within the grid and from the host
4360   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4361   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4362   if (GV && LangOpts.CUDA) {
4363     if (LangOpts.CUDAIsDevice) {
4364       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4365           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4366         GV->setExternallyInitialized(true);
4367     } else {
4368       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4369     }
4370     getCUDARuntime().handleVarRegistration(D, *GV);
4371   }
4372 
4373   GV->setInitializer(Init);
4374   if (emitter)
4375     emitter->finalize(GV);
4376 
4377   // If it is safe to mark the global 'constant', do so now.
4378   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4379                   isTypeConstant(D->getType(), true));
4380 
4381   // If it is in a read-only section, mark it 'constant'.
4382   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4383     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4384     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4385       GV->setConstant(true);
4386   }
4387 
4388   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4389 
4390   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4391   // function is only defined alongside the variable, not also alongside
4392   // callers. Normally, all accesses to a thread_local go through the
4393   // thread-wrapper in order to ensure initialization has occurred, underlying
4394   // variable will never be used other than the thread-wrapper, so it can be
4395   // converted to internal linkage.
4396   //
4397   // However, if the variable has the 'constinit' attribute, it _can_ be
4398   // referenced directly, without calling the thread-wrapper, so the linkage
4399   // must not be changed.
4400   //
4401   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4402   // weak or linkonce, the de-duplication semantics are important to preserve,
4403   // so we don't change the linkage.
4404   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4405       Linkage == llvm::GlobalValue::ExternalLinkage &&
4406       Context.getTargetInfo().getTriple().isOSDarwin() &&
4407       !D->hasAttr<ConstInitAttr>())
4408     Linkage = llvm::GlobalValue::InternalLinkage;
4409 
4410   GV->setLinkage(Linkage);
4411   if (D->hasAttr<DLLImportAttr>())
4412     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4413   else if (D->hasAttr<DLLExportAttr>())
4414     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4415   else
4416     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4417 
4418   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4419     // common vars aren't constant even if declared const.
4420     GV->setConstant(false);
4421     // Tentative definition of global variables may be initialized with
4422     // non-zero null pointers. In this case they should have weak linkage
4423     // since common linkage must have zero initializer and must not have
4424     // explicit section therefore cannot have non-zero initial value.
4425     if (!GV->getInitializer()->isNullValue())
4426       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4427   }
4428 
4429   setNonAliasAttributes(D, GV);
4430 
4431   if (D->getTLSKind() && !GV->isThreadLocal()) {
4432     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4433       CXXThreadLocals.push_back(D);
4434     setTLSMode(GV, *D);
4435   }
4436 
4437   maybeSetTrivialComdat(*D, *GV);
4438 
4439   // Emit the initializer function if necessary.
4440   if (NeedsGlobalCtor || NeedsGlobalDtor)
4441     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4442 
4443   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4444 
4445   // Emit global variable debug information.
4446   if (CGDebugInfo *DI = getModuleDebugInfo())
4447     if (getCodeGenOpts().hasReducedDebugInfo())
4448       DI->EmitGlobalVariable(GV, D);
4449 }
4450 
4451 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4452   if (CGDebugInfo *DI = getModuleDebugInfo())
4453     if (getCodeGenOpts().hasReducedDebugInfo()) {
4454       QualType ASTTy = D->getType();
4455       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4456       llvm::PointerType *PTy =
4457           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4458       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4459       DI->EmitExternalVariable(
4460           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4461     }
4462 }
4463 
4464 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4465                                       CodeGenModule &CGM, const VarDecl *D,
4466                                       bool NoCommon) {
4467   // Don't give variables common linkage if -fno-common was specified unless it
4468   // was overridden by a NoCommon attribute.
4469   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4470     return true;
4471 
4472   // C11 6.9.2/2:
4473   //   A declaration of an identifier for an object that has file scope without
4474   //   an initializer, and without a storage-class specifier or with the
4475   //   storage-class specifier static, constitutes a tentative definition.
4476   if (D->getInit() || D->hasExternalStorage())
4477     return true;
4478 
4479   // A variable cannot be both common and exist in a section.
4480   if (D->hasAttr<SectionAttr>())
4481     return true;
4482 
4483   // A variable cannot be both common and exist in a section.
4484   // We don't try to determine which is the right section in the front-end.
4485   // If no specialized section name is applicable, it will resort to default.
4486   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4487       D->hasAttr<PragmaClangDataSectionAttr>() ||
4488       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4489       D->hasAttr<PragmaClangRodataSectionAttr>())
4490     return true;
4491 
4492   // Thread local vars aren't considered common linkage.
4493   if (D->getTLSKind())
4494     return true;
4495 
4496   // Tentative definitions marked with WeakImportAttr are true definitions.
4497   if (D->hasAttr<WeakImportAttr>())
4498     return true;
4499 
4500   // A variable cannot be both common and exist in a comdat.
4501   if (shouldBeInCOMDAT(CGM, *D))
4502     return true;
4503 
4504   // Declarations with a required alignment do not have common linkage in MSVC
4505   // mode.
4506   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4507     if (D->hasAttr<AlignedAttr>())
4508       return true;
4509     QualType VarType = D->getType();
4510     if (Context.isAlignmentRequired(VarType))
4511       return true;
4512 
4513     if (const auto *RT = VarType->getAs<RecordType>()) {
4514       const RecordDecl *RD = RT->getDecl();
4515       for (const FieldDecl *FD : RD->fields()) {
4516         if (FD->isBitField())
4517           continue;
4518         if (FD->hasAttr<AlignedAttr>())
4519           return true;
4520         if (Context.isAlignmentRequired(FD->getType()))
4521           return true;
4522       }
4523     }
4524   }
4525 
4526   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4527   // common symbols, so symbols with greater alignment requirements cannot be
4528   // common.
4529   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4530   // alignments for common symbols via the aligncomm directive, so this
4531   // restriction only applies to MSVC environments.
4532   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4533       Context.getTypeAlignIfKnown(D->getType()) >
4534           Context.toBits(CharUnits::fromQuantity(32)))
4535     return true;
4536 
4537   return false;
4538 }
4539 
4540 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4541     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4542   if (Linkage == GVA_Internal)
4543     return llvm::Function::InternalLinkage;
4544 
4545   if (D->hasAttr<WeakAttr>()) {
4546     if (IsConstantVariable)
4547       return llvm::GlobalVariable::WeakODRLinkage;
4548     else
4549       return llvm::GlobalVariable::WeakAnyLinkage;
4550   }
4551 
4552   if (const auto *FD = D->getAsFunction())
4553     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4554       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4555 
4556   // We are guaranteed to have a strong definition somewhere else,
4557   // so we can use available_externally linkage.
4558   if (Linkage == GVA_AvailableExternally)
4559     return llvm::GlobalValue::AvailableExternallyLinkage;
4560 
4561   // Note that Apple's kernel linker doesn't support symbol
4562   // coalescing, so we need to avoid linkonce and weak linkages there.
4563   // Normally, this means we just map to internal, but for explicit
4564   // instantiations we'll map to external.
4565 
4566   // In C++, the compiler has to emit a definition in every translation unit
4567   // that references the function.  We should use linkonce_odr because
4568   // a) if all references in this translation unit are optimized away, we
4569   // don't need to codegen it.  b) if the function persists, it needs to be
4570   // merged with other definitions. c) C++ has the ODR, so we know the
4571   // definition is dependable.
4572   if (Linkage == GVA_DiscardableODR)
4573     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4574                                             : llvm::Function::InternalLinkage;
4575 
4576   // An explicit instantiation of a template has weak linkage, since
4577   // explicit instantiations can occur in multiple translation units
4578   // and must all be equivalent. However, we are not allowed to
4579   // throw away these explicit instantiations.
4580   //
4581   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4582   // so say that CUDA templates are either external (for kernels) or internal.
4583   // This lets llvm perform aggressive inter-procedural optimizations. For
4584   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4585   // therefore we need to follow the normal linkage paradigm.
4586   if (Linkage == GVA_StrongODR) {
4587     if (getLangOpts().AppleKext)
4588       return llvm::Function::ExternalLinkage;
4589     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4590         !getLangOpts().GPURelocatableDeviceCode)
4591       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4592                                           : llvm::Function::InternalLinkage;
4593     return llvm::Function::WeakODRLinkage;
4594   }
4595 
4596   // C++ doesn't have tentative definitions and thus cannot have common
4597   // linkage.
4598   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4599       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4600                                  CodeGenOpts.NoCommon))
4601     return llvm::GlobalVariable::CommonLinkage;
4602 
4603   // selectany symbols are externally visible, so use weak instead of
4604   // linkonce.  MSVC optimizes away references to const selectany globals, so
4605   // all definitions should be the same and ODR linkage should be used.
4606   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4607   if (D->hasAttr<SelectAnyAttr>())
4608     return llvm::GlobalVariable::WeakODRLinkage;
4609 
4610   // Otherwise, we have strong external linkage.
4611   assert(Linkage == GVA_StrongExternal);
4612   return llvm::GlobalVariable::ExternalLinkage;
4613 }
4614 
4615 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4616     const VarDecl *VD, bool IsConstant) {
4617   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4618   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4619 }
4620 
4621 /// Replace the uses of a function that was declared with a non-proto type.
4622 /// We want to silently drop extra arguments from call sites
4623 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4624                                           llvm::Function *newFn) {
4625   // Fast path.
4626   if (old->use_empty()) return;
4627 
4628   llvm::Type *newRetTy = newFn->getReturnType();
4629   SmallVector<llvm::Value*, 4> newArgs;
4630 
4631   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4632          ui != ue; ) {
4633     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4634     llvm::User *user = use->getUser();
4635 
4636     // Recognize and replace uses of bitcasts.  Most calls to
4637     // unprototyped functions will use bitcasts.
4638     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4639       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4640         replaceUsesOfNonProtoConstant(bitcast, newFn);
4641       continue;
4642     }
4643 
4644     // Recognize calls to the function.
4645     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4646     if (!callSite) continue;
4647     if (!callSite->isCallee(&*use))
4648       continue;
4649 
4650     // If the return types don't match exactly, then we can't
4651     // transform this call unless it's dead.
4652     if (callSite->getType() != newRetTy && !callSite->use_empty())
4653       continue;
4654 
4655     // Get the call site's attribute list.
4656     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4657     llvm::AttributeList oldAttrs = callSite->getAttributes();
4658 
4659     // If the function was passed too few arguments, don't transform.
4660     unsigned newNumArgs = newFn->arg_size();
4661     if (callSite->arg_size() < newNumArgs)
4662       continue;
4663 
4664     // If extra arguments were passed, we silently drop them.
4665     // If any of the types mismatch, we don't transform.
4666     unsigned argNo = 0;
4667     bool dontTransform = false;
4668     for (llvm::Argument &A : newFn->args()) {
4669       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4670         dontTransform = true;
4671         break;
4672       }
4673 
4674       // Add any parameter attributes.
4675       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4676       argNo++;
4677     }
4678     if (dontTransform)
4679       continue;
4680 
4681     // Okay, we can transform this.  Create the new call instruction and copy
4682     // over the required information.
4683     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4684 
4685     // Copy over any operand bundles.
4686     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4687     callSite->getOperandBundlesAsDefs(newBundles);
4688 
4689     llvm::CallBase *newCall;
4690     if (dyn_cast<llvm::CallInst>(callSite)) {
4691       newCall =
4692           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4693     } else {
4694       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4695       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4696                                          oldInvoke->getUnwindDest(), newArgs,
4697                                          newBundles, "", callSite);
4698     }
4699     newArgs.clear(); // for the next iteration
4700 
4701     if (!newCall->getType()->isVoidTy())
4702       newCall->takeName(callSite);
4703     newCall->setAttributes(llvm::AttributeList::get(
4704         newFn->getContext(), oldAttrs.getFnAttributes(),
4705         oldAttrs.getRetAttributes(), newArgAttrs));
4706     newCall->setCallingConv(callSite->getCallingConv());
4707 
4708     // Finally, remove the old call, replacing any uses with the new one.
4709     if (!callSite->use_empty())
4710       callSite->replaceAllUsesWith(newCall);
4711 
4712     // Copy debug location attached to CI.
4713     if (callSite->getDebugLoc())
4714       newCall->setDebugLoc(callSite->getDebugLoc());
4715 
4716     callSite->eraseFromParent();
4717   }
4718 }
4719 
4720 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4721 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4722 /// existing call uses of the old function in the module, this adjusts them to
4723 /// call the new function directly.
4724 ///
4725 /// This is not just a cleanup: the always_inline pass requires direct calls to
4726 /// functions to be able to inline them.  If there is a bitcast in the way, it
4727 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4728 /// run at -O0.
4729 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4730                                                       llvm::Function *NewFn) {
4731   // If we're redefining a global as a function, don't transform it.
4732   if (!isa<llvm::Function>(Old)) return;
4733 
4734   replaceUsesOfNonProtoConstant(Old, NewFn);
4735 }
4736 
4737 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4738   auto DK = VD->isThisDeclarationADefinition();
4739   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4740     return;
4741 
4742   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4743   // If we have a definition, this might be a deferred decl. If the
4744   // instantiation is explicit, make sure we emit it at the end.
4745   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4746     GetAddrOfGlobalVar(VD);
4747 
4748   EmitTopLevelDecl(VD);
4749 }
4750 
4751 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4752                                                  llvm::GlobalValue *GV) {
4753   const auto *D = cast<FunctionDecl>(GD.getDecl());
4754 
4755   // Compute the function info and LLVM type.
4756   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4757   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4758 
4759   // Get or create the prototype for the function.
4760   if (!GV || (GV->getValueType() != Ty))
4761     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4762                                                    /*DontDefer=*/true,
4763                                                    ForDefinition));
4764 
4765   // Already emitted.
4766   if (!GV->isDeclaration())
4767     return;
4768 
4769   // We need to set linkage and visibility on the function before
4770   // generating code for it because various parts of IR generation
4771   // want to propagate this information down (e.g. to local static
4772   // declarations).
4773   auto *Fn = cast<llvm::Function>(GV);
4774   setFunctionLinkage(GD, Fn);
4775 
4776   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4777   setGVProperties(Fn, GD);
4778 
4779   MaybeHandleStaticInExternC(D, Fn);
4780 
4781   maybeSetTrivialComdat(*D, *Fn);
4782 
4783   // Set CodeGen attributes that represent floating point environment.
4784   setLLVMFunctionFEnvAttributes(D, Fn);
4785 
4786   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4787 
4788   setNonAliasAttributes(GD, Fn);
4789   SetLLVMFunctionAttributesForDefinition(D, Fn);
4790 
4791   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4792     AddGlobalCtor(Fn, CA->getPriority());
4793   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4794     AddGlobalDtor(Fn, DA->getPriority(), true);
4795   if (D->hasAttr<AnnotateAttr>())
4796     AddGlobalAnnotations(D, Fn);
4797 }
4798 
4799 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4800   const auto *D = cast<ValueDecl>(GD.getDecl());
4801   const AliasAttr *AA = D->getAttr<AliasAttr>();
4802   assert(AA && "Not an alias?");
4803 
4804   StringRef MangledName = getMangledName(GD);
4805 
4806   if (AA->getAliasee() == MangledName) {
4807     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4808     return;
4809   }
4810 
4811   // If there is a definition in the module, then it wins over the alias.
4812   // This is dubious, but allow it to be safe.  Just ignore the alias.
4813   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4814   if (Entry && !Entry->isDeclaration())
4815     return;
4816 
4817   Aliases.push_back(GD);
4818 
4819   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4820 
4821   // Create a reference to the named value.  This ensures that it is emitted
4822   // if a deferred decl.
4823   llvm::Constant *Aliasee;
4824   llvm::GlobalValue::LinkageTypes LT;
4825   if (isa<llvm::FunctionType>(DeclTy)) {
4826     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4827                                       /*ForVTable=*/false);
4828     LT = getFunctionLinkage(GD);
4829   } else {
4830     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4831                                     llvm::PointerType::getUnqual(DeclTy),
4832                                     /*D=*/nullptr);
4833     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4834       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4835     else
4836       LT = getFunctionLinkage(GD);
4837   }
4838 
4839   // Create the new alias itself, but don't set a name yet.
4840   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4841   auto *GA =
4842       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4843 
4844   if (Entry) {
4845     if (GA->getAliasee() == Entry) {
4846       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4847       return;
4848     }
4849 
4850     assert(Entry->isDeclaration());
4851 
4852     // If there is a declaration in the module, then we had an extern followed
4853     // by the alias, as in:
4854     //   extern int test6();
4855     //   ...
4856     //   int test6() __attribute__((alias("test7")));
4857     //
4858     // Remove it and replace uses of it with the alias.
4859     GA->takeName(Entry);
4860 
4861     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4862                                                           Entry->getType()));
4863     Entry->eraseFromParent();
4864   } else {
4865     GA->setName(MangledName);
4866   }
4867 
4868   // Set attributes which are particular to an alias; this is a
4869   // specialization of the attributes which may be set on a global
4870   // variable/function.
4871   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4872       D->isWeakImported()) {
4873     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4874   }
4875 
4876   if (const auto *VD = dyn_cast<VarDecl>(D))
4877     if (VD->getTLSKind())
4878       setTLSMode(GA, *VD);
4879 
4880   SetCommonAttributes(GD, GA);
4881 }
4882 
4883 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4884   const auto *D = cast<ValueDecl>(GD.getDecl());
4885   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4886   assert(IFA && "Not an ifunc?");
4887 
4888   StringRef MangledName = getMangledName(GD);
4889 
4890   if (IFA->getResolver() == MangledName) {
4891     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4892     return;
4893   }
4894 
4895   // Report an error if some definition overrides ifunc.
4896   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4897   if (Entry && !Entry->isDeclaration()) {
4898     GlobalDecl OtherGD;
4899     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4900         DiagnosedConflictingDefinitions.insert(GD).second) {
4901       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4902           << MangledName;
4903       Diags.Report(OtherGD.getDecl()->getLocation(),
4904                    diag::note_previous_definition);
4905     }
4906     return;
4907   }
4908 
4909   Aliases.push_back(GD);
4910 
4911   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4912   llvm::Constant *Resolver =
4913       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4914                               /*ForVTable=*/false);
4915   llvm::GlobalIFunc *GIF =
4916       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4917                                 "", Resolver, &getModule());
4918   if (Entry) {
4919     if (GIF->getResolver() == Entry) {
4920       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4921       return;
4922     }
4923     assert(Entry->isDeclaration());
4924 
4925     // If there is a declaration in the module, then we had an extern followed
4926     // by the ifunc, as in:
4927     //   extern int test();
4928     //   ...
4929     //   int test() __attribute__((ifunc("resolver")));
4930     //
4931     // Remove it and replace uses of it with the ifunc.
4932     GIF->takeName(Entry);
4933 
4934     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4935                                                           Entry->getType()));
4936     Entry->eraseFromParent();
4937   } else
4938     GIF->setName(MangledName);
4939 
4940   SetCommonAttributes(GD, GIF);
4941 }
4942 
4943 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4944                                             ArrayRef<llvm::Type*> Tys) {
4945   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4946                                          Tys);
4947 }
4948 
4949 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4950 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4951                          const StringLiteral *Literal, bool TargetIsLSB,
4952                          bool &IsUTF16, unsigned &StringLength) {
4953   StringRef String = Literal->getString();
4954   unsigned NumBytes = String.size();
4955 
4956   // Check for simple case.
4957   if (!Literal->containsNonAsciiOrNull()) {
4958     StringLength = NumBytes;
4959     return *Map.insert(std::make_pair(String, nullptr)).first;
4960   }
4961 
4962   // Otherwise, convert the UTF8 literals into a string of shorts.
4963   IsUTF16 = true;
4964 
4965   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4966   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4967   llvm::UTF16 *ToPtr = &ToBuf[0];
4968 
4969   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4970                                  ToPtr + NumBytes, llvm::strictConversion);
4971 
4972   // ConvertUTF8toUTF16 returns the length in ToPtr.
4973   StringLength = ToPtr - &ToBuf[0];
4974 
4975   // Add an explicit null.
4976   *ToPtr = 0;
4977   return *Map.insert(std::make_pair(
4978                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4979                                    (StringLength + 1) * 2),
4980                          nullptr)).first;
4981 }
4982 
4983 ConstantAddress
4984 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4985   unsigned StringLength = 0;
4986   bool isUTF16 = false;
4987   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4988       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4989                                getDataLayout().isLittleEndian(), isUTF16,
4990                                StringLength);
4991 
4992   if (auto *C = Entry.second)
4993     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4994 
4995   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4996   llvm::Constant *Zeros[] = { Zero, Zero };
4997 
4998   const ASTContext &Context = getContext();
4999   const llvm::Triple &Triple = getTriple();
5000 
5001   const auto CFRuntime = getLangOpts().CFRuntime;
5002   const bool IsSwiftABI =
5003       static_cast<unsigned>(CFRuntime) >=
5004       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5005   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5006 
5007   // If we don't already have it, get __CFConstantStringClassReference.
5008   if (!CFConstantStringClassRef) {
5009     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5010     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5011     Ty = llvm::ArrayType::get(Ty, 0);
5012 
5013     switch (CFRuntime) {
5014     default: break;
5015     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5016     case LangOptions::CoreFoundationABI::Swift5_0:
5017       CFConstantStringClassName =
5018           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5019                               : "$s10Foundation19_NSCFConstantStringCN";
5020       Ty = IntPtrTy;
5021       break;
5022     case LangOptions::CoreFoundationABI::Swift4_2:
5023       CFConstantStringClassName =
5024           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5025                               : "$S10Foundation19_NSCFConstantStringCN";
5026       Ty = IntPtrTy;
5027       break;
5028     case LangOptions::CoreFoundationABI::Swift4_1:
5029       CFConstantStringClassName =
5030           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5031                               : "__T010Foundation19_NSCFConstantStringCN";
5032       Ty = IntPtrTy;
5033       break;
5034     }
5035 
5036     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5037 
5038     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5039       llvm::GlobalValue *GV = nullptr;
5040 
5041       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5042         IdentifierInfo &II = Context.Idents.get(GV->getName());
5043         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5044         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5045 
5046         const VarDecl *VD = nullptr;
5047         for (const auto &Result : DC->lookup(&II))
5048           if ((VD = dyn_cast<VarDecl>(Result)))
5049             break;
5050 
5051         if (Triple.isOSBinFormatELF()) {
5052           if (!VD)
5053             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5054         } else {
5055           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5056           if (!VD || !VD->hasAttr<DLLExportAttr>())
5057             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5058           else
5059             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5060         }
5061 
5062         setDSOLocal(GV);
5063       }
5064     }
5065 
5066     // Decay array -> ptr
5067     CFConstantStringClassRef =
5068         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5069                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5070   }
5071 
5072   QualType CFTy = Context.getCFConstantStringType();
5073 
5074   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5075 
5076   ConstantInitBuilder Builder(*this);
5077   auto Fields = Builder.beginStruct(STy);
5078 
5079   // Class pointer.
5080   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5081 
5082   // Flags.
5083   if (IsSwiftABI) {
5084     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5085     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5086   } else {
5087     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5088   }
5089 
5090   // String pointer.
5091   llvm::Constant *C = nullptr;
5092   if (isUTF16) {
5093     auto Arr = llvm::makeArrayRef(
5094         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5095         Entry.first().size() / 2);
5096     C = llvm::ConstantDataArray::get(VMContext, Arr);
5097   } else {
5098     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5099   }
5100 
5101   // Note: -fwritable-strings doesn't make the backing store strings of
5102   // CFStrings writable. (See <rdar://problem/10657500>)
5103   auto *GV =
5104       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5105                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5106   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5107   // Don't enforce the target's minimum global alignment, since the only use
5108   // of the string is via this class initializer.
5109   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5110                             : Context.getTypeAlignInChars(Context.CharTy);
5111   GV->setAlignment(Align.getAsAlign());
5112 
5113   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5114   // Without it LLVM can merge the string with a non unnamed_addr one during
5115   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5116   if (Triple.isOSBinFormatMachO())
5117     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5118                            : "__TEXT,__cstring,cstring_literals");
5119   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5120   // the static linker to adjust permissions to read-only later on.
5121   else if (Triple.isOSBinFormatELF())
5122     GV->setSection(".rodata");
5123 
5124   // String.
5125   llvm::Constant *Str =
5126       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5127 
5128   if (isUTF16)
5129     // Cast the UTF16 string to the correct type.
5130     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5131   Fields.add(Str);
5132 
5133   // String length.
5134   llvm::IntegerType *LengthTy =
5135       llvm::IntegerType::get(getModule().getContext(),
5136                              Context.getTargetInfo().getLongWidth());
5137   if (IsSwiftABI) {
5138     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5139         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5140       LengthTy = Int32Ty;
5141     else
5142       LengthTy = IntPtrTy;
5143   }
5144   Fields.addInt(LengthTy, StringLength);
5145 
5146   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5147   // properly aligned on 32-bit platforms.
5148   CharUnits Alignment =
5149       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5150 
5151   // The struct.
5152   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5153                                     /*isConstant=*/false,
5154                                     llvm::GlobalVariable::PrivateLinkage);
5155   GV->addAttribute("objc_arc_inert");
5156   switch (Triple.getObjectFormat()) {
5157   case llvm::Triple::UnknownObjectFormat:
5158     llvm_unreachable("unknown file format");
5159   case llvm::Triple::GOFF:
5160     llvm_unreachable("GOFF is not yet implemented");
5161   case llvm::Triple::XCOFF:
5162     llvm_unreachable("XCOFF is not yet implemented");
5163   case llvm::Triple::COFF:
5164   case llvm::Triple::ELF:
5165   case llvm::Triple::Wasm:
5166     GV->setSection("cfstring");
5167     break;
5168   case llvm::Triple::MachO:
5169     GV->setSection("__DATA,__cfstring");
5170     break;
5171   }
5172   Entry.second = GV;
5173 
5174   return ConstantAddress(GV, Alignment);
5175 }
5176 
5177 bool CodeGenModule::getExpressionLocationsEnabled() const {
5178   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5179 }
5180 
5181 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5182   if (ObjCFastEnumerationStateType.isNull()) {
5183     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5184     D->startDefinition();
5185 
5186     QualType FieldTypes[] = {
5187       Context.UnsignedLongTy,
5188       Context.getPointerType(Context.getObjCIdType()),
5189       Context.getPointerType(Context.UnsignedLongTy),
5190       Context.getConstantArrayType(Context.UnsignedLongTy,
5191                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5192     };
5193 
5194     for (size_t i = 0; i < 4; ++i) {
5195       FieldDecl *Field = FieldDecl::Create(Context,
5196                                            D,
5197                                            SourceLocation(),
5198                                            SourceLocation(), nullptr,
5199                                            FieldTypes[i], /*TInfo=*/nullptr,
5200                                            /*BitWidth=*/nullptr,
5201                                            /*Mutable=*/false,
5202                                            ICIS_NoInit);
5203       Field->setAccess(AS_public);
5204       D->addDecl(Field);
5205     }
5206 
5207     D->completeDefinition();
5208     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5209   }
5210 
5211   return ObjCFastEnumerationStateType;
5212 }
5213 
5214 llvm::Constant *
5215 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5216   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5217 
5218   // Don't emit it as the address of the string, emit the string data itself
5219   // as an inline array.
5220   if (E->getCharByteWidth() == 1) {
5221     SmallString<64> Str(E->getString());
5222 
5223     // Resize the string to the right size, which is indicated by its type.
5224     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5225     Str.resize(CAT->getSize().getZExtValue());
5226     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5227   }
5228 
5229   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5230   llvm::Type *ElemTy = AType->getElementType();
5231   unsigned NumElements = AType->getNumElements();
5232 
5233   // Wide strings have either 2-byte or 4-byte elements.
5234   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5235     SmallVector<uint16_t, 32> Elements;
5236     Elements.reserve(NumElements);
5237 
5238     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5239       Elements.push_back(E->getCodeUnit(i));
5240     Elements.resize(NumElements);
5241     return llvm::ConstantDataArray::get(VMContext, Elements);
5242   }
5243 
5244   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5245   SmallVector<uint32_t, 32> Elements;
5246   Elements.reserve(NumElements);
5247 
5248   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5249     Elements.push_back(E->getCodeUnit(i));
5250   Elements.resize(NumElements);
5251   return llvm::ConstantDataArray::get(VMContext, Elements);
5252 }
5253 
5254 static llvm::GlobalVariable *
5255 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5256                       CodeGenModule &CGM, StringRef GlobalName,
5257                       CharUnits Alignment) {
5258   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5259       CGM.getStringLiteralAddressSpace());
5260 
5261   llvm::Module &M = CGM.getModule();
5262   // Create a global variable for this string
5263   auto *GV = new llvm::GlobalVariable(
5264       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5265       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5266   GV->setAlignment(Alignment.getAsAlign());
5267   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5268   if (GV->isWeakForLinker()) {
5269     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5270     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5271   }
5272   CGM.setDSOLocal(GV);
5273 
5274   return GV;
5275 }
5276 
5277 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5278 /// constant array for the given string literal.
5279 ConstantAddress
5280 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5281                                                   StringRef Name) {
5282   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5283 
5284   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5285   llvm::GlobalVariable **Entry = nullptr;
5286   if (!LangOpts.WritableStrings) {
5287     Entry = &ConstantStringMap[C];
5288     if (auto GV = *Entry) {
5289       if (Alignment.getQuantity() > GV->getAlignment())
5290         GV->setAlignment(Alignment.getAsAlign());
5291       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5292                              Alignment);
5293     }
5294   }
5295 
5296   SmallString<256> MangledNameBuffer;
5297   StringRef GlobalVariableName;
5298   llvm::GlobalValue::LinkageTypes LT;
5299 
5300   // Mangle the string literal if that's how the ABI merges duplicate strings.
5301   // Don't do it if they are writable, since we don't want writes in one TU to
5302   // affect strings in another.
5303   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5304       !LangOpts.WritableStrings) {
5305     llvm::raw_svector_ostream Out(MangledNameBuffer);
5306     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5307     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5308     GlobalVariableName = MangledNameBuffer;
5309   } else {
5310     LT = llvm::GlobalValue::PrivateLinkage;
5311     GlobalVariableName = Name;
5312   }
5313 
5314   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5315   if (Entry)
5316     *Entry = GV;
5317 
5318   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5319                                   QualType());
5320 
5321   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5322                          Alignment);
5323 }
5324 
5325 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5326 /// array for the given ObjCEncodeExpr node.
5327 ConstantAddress
5328 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5329   std::string Str;
5330   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5331 
5332   return GetAddrOfConstantCString(Str);
5333 }
5334 
5335 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5336 /// the literal and a terminating '\0' character.
5337 /// The result has pointer to array type.
5338 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5339     const std::string &Str, const char *GlobalName) {
5340   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5341   CharUnits Alignment =
5342     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5343 
5344   llvm::Constant *C =
5345       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5346 
5347   // Don't share any string literals if strings aren't constant.
5348   llvm::GlobalVariable **Entry = nullptr;
5349   if (!LangOpts.WritableStrings) {
5350     Entry = &ConstantStringMap[C];
5351     if (auto GV = *Entry) {
5352       if (Alignment.getQuantity() > GV->getAlignment())
5353         GV->setAlignment(Alignment.getAsAlign());
5354       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5355                              Alignment);
5356     }
5357   }
5358 
5359   // Get the default prefix if a name wasn't specified.
5360   if (!GlobalName)
5361     GlobalName = ".str";
5362   // Create a global variable for this.
5363   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5364                                   GlobalName, Alignment);
5365   if (Entry)
5366     *Entry = GV;
5367 
5368   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5369                          Alignment);
5370 }
5371 
5372 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5373     const MaterializeTemporaryExpr *E, const Expr *Init) {
5374   assert((E->getStorageDuration() == SD_Static ||
5375           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5376   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5377 
5378   // If we're not materializing a subobject of the temporary, keep the
5379   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5380   QualType MaterializedType = Init->getType();
5381   if (Init == E->getSubExpr())
5382     MaterializedType = E->getType();
5383 
5384   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5385 
5386   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5387   if (!InsertResult.second) {
5388     // We've seen this before: either we already created it or we're in the
5389     // process of doing so.
5390     if (!InsertResult.first->second) {
5391       // We recursively re-entered this function, probably during emission of
5392       // the initializer. Create a placeholder. We'll clean this up in the
5393       // outer call, at the end of this function.
5394       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5395       InsertResult.first->second = new llvm::GlobalVariable(
5396           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5397           nullptr);
5398     }
5399     return ConstantAddress(InsertResult.first->second, Align);
5400   }
5401 
5402   // FIXME: If an externally-visible declaration extends multiple temporaries,
5403   // we need to give each temporary the same name in every translation unit (and
5404   // we also need to make the temporaries externally-visible).
5405   SmallString<256> Name;
5406   llvm::raw_svector_ostream Out(Name);
5407   getCXXABI().getMangleContext().mangleReferenceTemporary(
5408       VD, E->getManglingNumber(), Out);
5409 
5410   APValue *Value = nullptr;
5411   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5412     // If the initializer of the extending declaration is a constant
5413     // initializer, we should have a cached constant initializer for this
5414     // temporary. Note that this might have a different value from the value
5415     // computed by evaluating the initializer if the surrounding constant
5416     // expression modifies the temporary.
5417     Value = E->getOrCreateValue(false);
5418   }
5419 
5420   // Try evaluating it now, it might have a constant initializer.
5421   Expr::EvalResult EvalResult;
5422   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5423       !EvalResult.hasSideEffects())
5424     Value = &EvalResult.Val;
5425 
5426   LangAS AddrSpace =
5427       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5428 
5429   Optional<ConstantEmitter> emitter;
5430   llvm::Constant *InitialValue = nullptr;
5431   bool Constant = false;
5432   llvm::Type *Type;
5433   if (Value) {
5434     // The temporary has a constant initializer, use it.
5435     emitter.emplace(*this);
5436     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5437                                                MaterializedType);
5438     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5439     Type = InitialValue->getType();
5440   } else {
5441     // No initializer, the initialization will be provided when we
5442     // initialize the declaration which performed lifetime extension.
5443     Type = getTypes().ConvertTypeForMem(MaterializedType);
5444   }
5445 
5446   // Create a global variable for this lifetime-extended temporary.
5447   llvm::GlobalValue::LinkageTypes Linkage =
5448       getLLVMLinkageVarDefinition(VD, Constant);
5449   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5450     const VarDecl *InitVD;
5451     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5452         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5453       // Temporaries defined inside a class get linkonce_odr linkage because the
5454       // class can be defined in multiple translation units.
5455       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5456     } else {
5457       // There is no need for this temporary to have external linkage if the
5458       // VarDecl has external linkage.
5459       Linkage = llvm::GlobalVariable::InternalLinkage;
5460     }
5461   }
5462   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5463   auto *GV = new llvm::GlobalVariable(
5464       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5465       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5466   if (emitter) emitter->finalize(GV);
5467   setGVProperties(GV, VD);
5468   GV->setAlignment(Align.getAsAlign());
5469   if (supportsCOMDAT() && GV->isWeakForLinker())
5470     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5471   if (VD->getTLSKind())
5472     setTLSMode(GV, *VD);
5473   llvm::Constant *CV = GV;
5474   if (AddrSpace != LangAS::Default)
5475     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5476         *this, GV, AddrSpace, LangAS::Default,
5477         Type->getPointerTo(
5478             getContext().getTargetAddressSpace(LangAS::Default)));
5479 
5480   // Update the map with the new temporary. If we created a placeholder above,
5481   // replace it with the new global now.
5482   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5483   if (Entry) {
5484     Entry->replaceAllUsesWith(
5485         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5486     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5487   }
5488   Entry = CV;
5489 
5490   return ConstantAddress(CV, Align);
5491 }
5492 
5493 /// EmitObjCPropertyImplementations - Emit information for synthesized
5494 /// properties for an implementation.
5495 void CodeGenModule::EmitObjCPropertyImplementations(const
5496                                                     ObjCImplementationDecl *D) {
5497   for (const auto *PID : D->property_impls()) {
5498     // Dynamic is just for type-checking.
5499     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5500       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5501 
5502       // Determine which methods need to be implemented, some may have
5503       // been overridden. Note that ::isPropertyAccessor is not the method
5504       // we want, that just indicates if the decl came from a
5505       // property. What we want to know is if the method is defined in
5506       // this implementation.
5507       auto *Getter = PID->getGetterMethodDecl();
5508       if (!Getter || Getter->isSynthesizedAccessorStub())
5509         CodeGenFunction(*this).GenerateObjCGetter(
5510             const_cast<ObjCImplementationDecl *>(D), PID);
5511       auto *Setter = PID->getSetterMethodDecl();
5512       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5513         CodeGenFunction(*this).GenerateObjCSetter(
5514                                  const_cast<ObjCImplementationDecl *>(D), PID);
5515     }
5516   }
5517 }
5518 
5519 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5520   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5521   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5522        ivar; ivar = ivar->getNextIvar())
5523     if (ivar->getType().isDestructedType())
5524       return true;
5525 
5526   return false;
5527 }
5528 
5529 static bool AllTrivialInitializers(CodeGenModule &CGM,
5530                                    ObjCImplementationDecl *D) {
5531   CodeGenFunction CGF(CGM);
5532   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5533        E = D->init_end(); B != E; ++B) {
5534     CXXCtorInitializer *CtorInitExp = *B;
5535     Expr *Init = CtorInitExp->getInit();
5536     if (!CGF.isTrivialInitializer(Init))
5537       return false;
5538   }
5539   return true;
5540 }
5541 
5542 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5543 /// for an implementation.
5544 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5545   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5546   if (needsDestructMethod(D)) {
5547     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5548     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5549     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5550         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5551         getContext().VoidTy, nullptr, D,
5552         /*isInstance=*/true, /*isVariadic=*/false,
5553         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5554         /*isImplicitlyDeclared=*/true,
5555         /*isDefined=*/false, ObjCMethodDecl::Required);
5556     D->addInstanceMethod(DTORMethod);
5557     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5558     D->setHasDestructors(true);
5559   }
5560 
5561   // If the implementation doesn't have any ivar initializers, we don't need
5562   // a .cxx_construct.
5563   if (D->getNumIvarInitializers() == 0 ||
5564       AllTrivialInitializers(*this, D))
5565     return;
5566 
5567   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5568   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5569   // The constructor returns 'self'.
5570   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5571       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5572       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5573       /*isVariadic=*/false,
5574       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5575       /*isImplicitlyDeclared=*/true,
5576       /*isDefined=*/false, ObjCMethodDecl::Required);
5577   D->addInstanceMethod(CTORMethod);
5578   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5579   D->setHasNonZeroConstructors(true);
5580 }
5581 
5582 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5583 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5584   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5585       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5586     ErrorUnsupported(LSD, "linkage spec");
5587     return;
5588   }
5589 
5590   EmitDeclContext(LSD);
5591 }
5592 
5593 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5594   for (auto *I : DC->decls()) {
5595     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5596     // are themselves considered "top-level", so EmitTopLevelDecl on an
5597     // ObjCImplDecl does not recursively visit them. We need to do that in
5598     // case they're nested inside another construct (LinkageSpecDecl /
5599     // ExportDecl) that does stop them from being considered "top-level".
5600     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5601       for (auto *M : OID->methods())
5602         EmitTopLevelDecl(M);
5603     }
5604 
5605     EmitTopLevelDecl(I);
5606   }
5607 }
5608 
5609 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5610 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5611   // Ignore dependent declarations.
5612   if (D->isTemplated())
5613     return;
5614 
5615   // Consteval function shouldn't be emitted.
5616   if (auto *FD = dyn_cast<FunctionDecl>(D))
5617     if (FD->isConsteval())
5618       return;
5619 
5620   switch (D->getKind()) {
5621   case Decl::CXXConversion:
5622   case Decl::CXXMethod:
5623   case Decl::Function:
5624     EmitGlobal(cast<FunctionDecl>(D));
5625     // Always provide some coverage mapping
5626     // even for the functions that aren't emitted.
5627     AddDeferredUnusedCoverageMapping(D);
5628     break;
5629 
5630   case Decl::CXXDeductionGuide:
5631     // Function-like, but does not result in code emission.
5632     break;
5633 
5634   case Decl::Var:
5635   case Decl::Decomposition:
5636   case Decl::VarTemplateSpecialization:
5637     EmitGlobal(cast<VarDecl>(D));
5638     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5639       for (auto *B : DD->bindings())
5640         if (auto *HD = B->getHoldingVar())
5641           EmitGlobal(HD);
5642     break;
5643 
5644   // Indirect fields from global anonymous structs and unions can be
5645   // ignored; only the actual variable requires IR gen support.
5646   case Decl::IndirectField:
5647     break;
5648 
5649   // C++ Decls
5650   case Decl::Namespace:
5651     EmitDeclContext(cast<NamespaceDecl>(D));
5652     break;
5653   case Decl::ClassTemplateSpecialization: {
5654     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5655     if (CGDebugInfo *DI = getModuleDebugInfo())
5656       if (Spec->getSpecializationKind() ==
5657               TSK_ExplicitInstantiationDefinition &&
5658           Spec->hasDefinition())
5659         DI->completeTemplateDefinition(*Spec);
5660   } LLVM_FALLTHROUGH;
5661   case Decl::CXXRecord: {
5662     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5663     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5664       if (CRD->hasDefinition())
5665         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5666       if (auto *ES = D->getASTContext().getExternalSource())
5667         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5668           DI->completeUnusedClass(*CRD);
5669     }
5670     // Emit any static data members, they may be definitions.
5671     for (auto *I : CRD->decls())
5672       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5673         EmitTopLevelDecl(I);
5674     break;
5675   }
5676     // No code generation needed.
5677   case Decl::UsingShadow:
5678   case Decl::ClassTemplate:
5679   case Decl::VarTemplate:
5680   case Decl::Concept:
5681   case Decl::VarTemplatePartialSpecialization:
5682   case Decl::FunctionTemplate:
5683   case Decl::TypeAliasTemplate:
5684   case Decl::Block:
5685   case Decl::Empty:
5686   case Decl::Binding:
5687     break;
5688   case Decl::Using:          // using X; [C++]
5689     if (CGDebugInfo *DI = getModuleDebugInfo())
5690         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5691     break;
5692   case Decl::NamespaceAlias:
5693     if (CGDebugInfo *DI = getModuleDebugInfo())
5694         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5695     break;
5696   case Decl::UsingDirective: // using namespace X; [C++]
5697     if (CGDebugInfo *DI = getModuleDebugInfo())
5698       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5699     break;
5700   case Decl::CXXConstructor:
5701     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5702     break;
5703   case Decl::CXXDestructor:
5704     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5705     break;
5706 
5707   case Decl::StaticAssert:
5708     // Nothing to do.
5709     break;
5710 
5711   // Objective-C Decls
5712 
5713   // Forward declarations, no (immediate) code generation.
5714   case Decl::ObjCInterface:
5715   case Decl::ObjCCategory:
5716     break;
5717 
5718   case Decl::ObjCProtocol: {
5719     auto *Proto = cast<ObjCProtocolDecl>(D);
5720     if (Proto->isThisDeclarationADefinition())
5721       ObjCRuntime->GenerateProtocol(Proto);
5722     break;
5723   }
5724 
5725   case Decl::ObjCCategoryImpl:
5726     // Categories have properties but don't support synthesize so we
5727     // can ignore them here.
5728     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5729     break;
5730 
5731   case Decl::ObjCImplementation: {
5732     auto *OMD = cast<ObjCImplementationDecl>(D);
5733     EmitObjCPropertyImplementations(OMD);
5734     EmitObjCIvarInitializations(OMD);
5735     ObjCRuntime->GenerateClass(OMD);
5736     // Emit global variable debug information.
5737     if (CGDebugInfo *DI = getModuleDebugInfo())
5738       if (getCodeGenOpts().hasReducedDebugInfo())
5739         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5740             OMD->getClassInterface()), OMD->getLocation());
5741     break;
5742   }
5743   case Decl::ObjCMethod: {
5744     auto *OMD = cast<ObjCMethodDecl>(D);
5745     // If this is not a prototype, emit the body.
5746     if (OMD->getBody())
5747       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5748     break;
5749   }
5750   case Decl::ObjCCompatibleAlias:
5751     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5752     break;
5753 
5754   case Decl::PragmaComment: {
5755     const auto *PCD = cast<PragmaCommentDecl>(D);
5756     switch (PCD->getCommentKind()) {
5757     case PCK_Unknown:
5758       llvm_unreachable("unexpected pragma comment kind");
5759     case PCK_Linker:
5760       AppendLinkerOptions(PCD->getArg());
5761       break;
5762     case PCK_Lib:
5763         AddDependentLib(PCD->getArg());
5764       break;
5765     case PCK_Compiler:
5766     case PCK_ExeStr:
5767     case PCK_User:
5768       break; // We ignore all of these.
5769     }
5770     break;
5771   }
5772 
5773   case Decl::PragmaDetectMismatch: {
5774     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5775     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5776     break;
5777   }
5778 
5779   case Decl::LinkageSpec:
5780     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5781     break;
5782 
5783   case Decl::FileScopeAsm: {
5784     // File-scope asm is ignored during device-side CUDA compilation.
5785     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5786       break;
5787     // File-scope asm is ignored during device-side OpenMP compilation.
5788     if (LangOpts.OpenMPIsDevice)
5789       break;
5790     // File-scope asm is ignored during device-side SYCL compilation.
5791     if (LangOpts.SYCLIsDevice)
5792       break;
5793     auto *AD = cast<FileScopeAsmDecl>(D);
5794     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5795     break;
5796   }
5797 
5798   case Decl::Import: {
5799     auto *Import = cast<ImportDecl>(D);
5800 
5801     // If we've already imported this module, we're done.
5802     if (!ImportedModules.insert(Import->getImportedModule()))
5803       break;
5804 
5805     // Emit debug information for direct imports.
5806     if (!Import->getImportedOwningModule()) {
5807       if (CGDebugInfo *DI = getModuleDebugInfo())
5808         DI->EmitImportDecl(*Import);
5809     }
5810 
5811     // Find all of the submodules and emit the module initializers.
5812     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5813     SmallVector<clang::Module *, 16> Stack;
5814     Visited.insert(Import->getImportedModule());
5815     Stack.push_back(Import->getImportedModule());
5816 
5817     while (!Stack.empty()) {
5818       clang::Module *Mod = Stack.pop_back_val();
5819       if (!EmittedModuleInitializers.insert(Mod).second)
5820         continue;
5821 
5822       for (auto *D : Context.getModuleInitializers(Mod))
5823         EmitTopLevelDecl(D);
5824 
5825       // Visit the submodules of this module.
5826       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5827                                              SubEnd = Mod->submodule_end();
5828            Sub != SubEnd; ++Sub) {
5829         // Skip explicit children; they need to be explicitly imported to emit
5830         // the initializers.
5831         if ((*Sub)->IsExplicit)
5832           continue;
5833 
5834         if (Visited.insert(*Sub).second)
5835           Stack.push_back(*Sub);
5836       }
5837     }
5838     break;
5839   }
5840 
5841   case Decl::Export:
5842     EmitDeclContext(cast<ExportDecl>(D));
5843     break;
5844 
5845   case Decl::OMPThreadPrivate:
5846     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5847     break;
5848 
5849   case Decl::OMPAllocate:
5850     break;
5851 
5852   case Decl::OMPDeclareReduction:
5853     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5854     break;
5855 
5856   case Decl::OMPDeclareMapper:
5857     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5858     break;
5859 
5860   case Decl::OMPRequires:
5861     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5862     break;
5863 
5864   case Decl::Typedef:
5865   case Decl::TypeAlias: // using foo = bar; [C++11]
5866     if (CGDebugInfo *DI = getModuleDebugInfo())
5867       DI->EmitAndRetainType(
5868           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5869     break;
5870 
5871   case Decl::Record:
5872     if (CGDebugInfo *DI = getModuleDebugInfo())
5873       if (cast<RecordDecl>(D)->getDefinition())
5874         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5875     break;
5876 
5877   case Decl::Enum:
5878     if (CGDebugInfo *DI = getModuleDebugInfo())
5879       if (cast<EnumDecl>(D)->getDefinition())
5880         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5881     break;
5882 
5883   default:
5884     // Make sure we handled everything we should, every other kind is a
5885     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5886     // function. Need to recode Decl::Kind to do that easily.
5887     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5888     break;
5889   }
5890 }
5891 
5892 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5893   // Do we need to generate coverage mapping?
5894   if (!CodeGenOpts.CoverageMapping)
5895     return;
5896   switch (D->getKind()) {
5897   case Decl::CXXConversion:
5898   case Decl::CXXMethod:
5899   case Decl::Function:
5900   case Decl::ObjCMethod:
5901   case Decl::CXXConstructor:
5902   case Decl::CXXDestructor: {
5903     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5904       break;
5905     SourceManager &SM = getContext().getSourceManager();
5906     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5907       break;
5908     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5909     if (I == DeferredEmptyCoverageMappingDecls.end())
5910       DeferredEmptyCoverageMappingDecls[D] = true;
5911     break;
5912   }
5913   default:
5914     break;
5915   };
5916 }
5917 
5918 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5919   // Do we need to generate coverage mapping?
5920   if (!CodeGenOpts.CoverageMapping)
5921     return;
5922   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5923     if (Fn->isTemplateInstantiation())
5924       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5925   }
5926   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5927   if (I == DeferredEmptyCoverageMappingDecls.end())
5928     DeferredEmptyCoverageMappingDecls[D] = false;
5929   else
5930     I->second = false;
5931 }
5932 
5933 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5934   // We call takeVector() here to avoid use-after-free.
5935   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5936   // we deserialize function bodies to emit coverage info for them, and that
5937   // deserializes more declarations. How should we handle that case?
5938   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5939     if (!Entry.second)
5940       continue;
5941     const Decl *D = Entry.first;
5942     switch (D->getKind()) {
5943     case Decl::CXXConversion:
5944     case Decl::CXXMethod:
5945     case Decl::Function:
5946     case Decl::ObjCMethod: {
5947       CodeGenPGO PGO(*this);
5948       GlobalDecl GD(cast<FunctionDecl>(D));
5949       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5950                                   getFunctionLinkage(GD));
5951       break;
5952     }
5953     case Decl::CXXConstructor: {
5954       CodeGenPGO PGO(*this);
5955       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5956       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5957                                   getFunctionLinkage(GD));
5958       break;
5959     }
5960     case Decl::CXXDestructor: {
5961       CodeGenPGO PGO(*this);
5962       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5963       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5964                                   getFunctionLinkage(GD));
5965       break;
5966     }
5967     default:
5968       break;
5969     };
5970   }
5971 }
5972 
5973 void CodeGenModule::EmitMainVoidAlias() {
5974   // In order to transition away from "__original_main" gracefully, emit an
5975   // alias for "main" in the no-argument case so that libc can detect when
5976   // new-style no-argument main is in used.
5977   if (llvm::Function *F = getModule().getFunction("main")) {
5978     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5979         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5980       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5981   }
5982 }
5983 
5984 /// Turns the given pointer into a constant.
5985 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5986                                           const void *Ptr) {
5987   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5988   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5989   return llvm::ConstantInt::get(i64, PtrInt);
5990 }
5991 
5992 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5993                                    llvm::NamedMDNode *&GlobalMetadata,
5994                                    GlobalDecl D,
5995                                    llvm::GlobalValue *Addr) {
5996   if (!GlobalMetadata)
5997     GlobalMetadata =
5998       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5999 
6000   // TODO: should we report variant information for ctors/dtors?
6001   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6002                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6003                                CGM.getLLVMContext(), D.getDecl()))};
6004   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6005 }
6006 
6007 /// For each function which is declared within an extern "C" region and marked
6008 /// as 'used', but has internal linkage, create an alias from the unmangled
6009 /// name to the mangled name if possible. People expect to be able to refer
6010 /// to such functions with an unmangled name from inline assembly within the
6011 /// same translation unit.
6012 void CodeGenModule::EmitStaticExternCAliases() {
6013   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6014     return;
6015   for (auto &I : StaticExternCValues) {
6016     IdentifierInfo *Name = I.first;
6017     llvm::GlobalValue *Val = I.second;
6018     if (Val && !getModule().getNamedValue(Name->getName()))
6019       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6020   }
6021 }
6022 
6023 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6024                                              GlobalDecl &Result) const {
6025   auto Res = Manglings.find(MangledName);
6026   if (Res == Manglings.end())
6027     return false;
6028   Result = Res->getValue();
6029   return true;
6030 }
6031 
6032 /// Emits metadata nodes associating all the global values in the
6033 /// current module with the Decls they came from.  This is useful for
6034 /// projects using IR gen as a subroutine.
6035 ///
6036 /// Since there's currently no way to associate an MDNode directly
6037 /// with an llvm::GlobalValue, we create a global named metadata
6038 /// with the name 'clang.global.decl.ptrs'.
6039 void CodeGenModule::EmitDeclMetadata() {
6040   llvm::NamedMDNode *GlobalMetadata = nullptr;
6041 
6042   for (auto &I : MangledDeclNames) {
6043     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6044     // Some mangled names don't necessarily have an associated GlobalValue
6045     // in this module, e.g. if we mangled it for DebugInfo.
6046     if (Addr)
6047       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6048   }
6049 }
6050 
6051 /// Emits metadata nodes for all the local variables in the current
6052 /// function.
6053 void CodeGenFunction::EmitDeclMetadata() {
6054   if (LocalDeclMap.empty()) return;
6055 
6056   llvm::LLVMContext &Context = getLLVMContext();
6057 
6058   // Find the unique metadata ID for this name.
6059   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6060 
6061   llvm::NamedMDNode *GlobalMetadata = nullptr;
6062 
6063   for (auto &I : LocalDeclMap) {
6064     const Decl *D = I.first;
6065     llvm::Value *Addr = I.second.getPointer();
6066     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6067       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6068       Alloca->setMetadata(
6069           DeclPtrKind, llvm::MDNode::get(
6070                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6071     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6072       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6073       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6074     }
6075   }
6076 }
6077 
6078 void CodeGenModule::EmitVersionIdentMetadata() {
6079   llvm::NamedMDNode *IdentMetadata =
6080     TheModule.getOrInsertNamedMetadata("llvm.ident");
6081   std::string Version = getClangFullVersion();
6082   llvm::LLVMContext &Ctx = TheModule.getContext();
6083 
6084   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6085   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6086 }
6087 
6088 void CodeGenModule::EmitCommandLineMetadata() {
6089   llvm::NamedMDNode *CommandLineMetadata =
6090     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6091   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6092   llvm::LLVMContext &Ctx = TheModule.getContext();
6093 
6094   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6095   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6096 }
6097 
6098 void CodeGenModule::EmitCoverageFile() {
6099   if (getCodeGenOpts().CoverageDataFile.empty() &&
6100       getCodeGenOpts().CoverageNotesFile.empty())
6101     return;
6102 
6103   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6104   if (!CUNode)
6105     return;
6106 
6107   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6108   llvm::LLVMContext &Ctx = TheModule.getContext();
6109   auto *CoverageDataFile =
6110       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6111   auto *CoverageNotesFile =
6112       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6113   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6114     llvm::MDNode *CU = CUNode->getOperand(i);
6115     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6116     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6117   }
6118 }
6119 
6120 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6121                                                        bool ForEH) {
6122   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6123   // FIXME: should we even be calling this method if RTTI is disabled
6124   // and it's not for EH?
6125   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6126       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6127        getTriple().isNVPTX()))
6128     return llvm::Constant::getNullValue(Int8PtrTy);
6129 
6130   if (ForEH && Ty->isObjCObjectPointerType() &&
6131       LangOpts.ObjCRuntime.isGNUFamily())
6132     return ObjCRuntime->GetEHType(Ty);
6133 
6134   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6135 }
6136 
6137 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6138   // Do not emit threadprivates in simd-only mode.
6139   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6140     return;
6141   for (auto RefExpr : D->varlists()) {
6142     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6143     bool PerformInit =
6144         VD->getAnyInitializer() &&
6145         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6146                                                         /*ForRef=*/false);
6147 
6148     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6149     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6150             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6151       CXXGlobalInits.push_back(InitFunction);
6152   }
6153 }
6154 
6155 llvm::Metadata *
6156 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6157                                             StringRef Suffix) {
6158   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6159   if (InternalId)
6160     return InternalId;
6161 
6162   if (isExternallyVisible(T->getLinkage())) {
6163     std::string OutName;
6164     llvm::raw_string_ostream Out(OutName);
6165     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6166     Out << Suffix;
6167 
6168     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6169   } else {
6170     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6171                                            llvm::ArrayRef<llvm::Metadata *>());
6172   }
6173 
6174   return InternalId;
6175 }
6176 
6177 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6178   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6179 }
6180 
6181 llvm::Metadata *
6182 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6183   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6184 }
6185 
6186 // Generalize pointer types to a void pointer with the qualifiers of the
6187 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6188 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6189 // 'void *'.
6190 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6191   if (!Ty->isPointerType())
6192     return Ty;
6193 
6194   return Ctx.getPointerType(
6195       QualType(Ctx.VoidTy).withCVRQualifiers(
6196           Ty->getPointeeType().getCVRQualifiers()));
6197 }
6198 
6199 // Apply type generalization to a FunctionType's return and argument types
6200 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6201   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6202     SmallVector<QualType, 8> GeneralizedParams;
6203     for (auto &Param : FnType->param_types())
6204       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6205 
6206     return Ctx.getFunctionType(
6207         GeneralizeType(Ctx, FnType->getReturnType()),
6208         GeneralizedParams, FnType->getExtProtoInfo());
6209   }
6210 
6211   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6212     return Ctx.getFunctionNoProtoType(
6213         GeneralizeType(Ctx, FnType->getReturnType()));
6214 
6215   llvm_unreachable("Encountered unknown FunctionType");
6216 }
6217 
6218 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6219   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6220                                       GeneralizedMetadataIdMap, ".generalized");
6221 }
6222 
6223 /// Returns whether this module needs the "all-vtables" type identifier.
6224 bool CodeGenModule::NeedAllVtablesTypeId() const {
6225   // Returns true if at least one of vtable-based CFI checkers is enabled and
6226   // is not in the trapping mode.
6227   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6228            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6229           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6230            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6231           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6232            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6233           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6234            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6235 }
6236 
6237 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6238                                           CharUnits Offset,
6239                                           const CXXRecordDecl *RD) {
6240   llvm::Metadata *MD =
6241       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6242   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6243 
6244   if (CodeGenOpts.SanitizeCfiCrossDso)
6245     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6246       VTable->addTypeMetadata(Offset.getQuantity(),
6247                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6248 
6249   if (NeedAllVtablesTypeId()) {
6250     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6251     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6252   }
6253 }
6254 
6255 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6256   if (!SanStats)
6257     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6258 
6259   return *SanStats;
6260 }
6261 llvm::Value *
6262 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6263                                                   CodeGenFunction &CGF) {
6264   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6265   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6266   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6267   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6268                                 "__translate_sampler_initializer"),
6269                                 {C});
6270 }
6271 
6272 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6273     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6274   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6275                                  /* forPointeeType= */ true);
6276 }
6277 
6278 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6279                                                  LValueBaseInfo *BaseInfo,
6280                                                  TBAAAccessInfo *TBAAInfo,
6281                                                  bool forPointeeType) {
6282   if (TBAAInfo)
6283     *TBAAInfo = getTBAAAccessInfo(T);
6284 
6285   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6286   // that doesn't return the information we need to compute BaseInfo.
6287 
6288   // Honor alignment typedef attributes even on incomplete types.
6289   // We also honor them straight for C++ class types, even as pointees;
6290   // there's an expressivity gap here.
6291   if (auto TT = T->getAs<TypedefType>()) {
6292     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6293       if (BaseInfo)
6294         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6295       return getContext().toCharUnitsFromBits(Align);
6296     }
6297   }
6298 
6299   bool AlignForArray = T->isArrayType();
6300 
6301   // Analyze the base element type, so we don't get confused by incomplete
6302   // array types.
6303   T = getContext().getBaseElementType(T);
6304 
6305   if (T->isIncompleteType()) {
6306     // We could try to replicate the logic from
6307     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6308     // type is incomplete, so it's impossible to test. We could try to reuse
6309     // getTypeAlignIfKnown, but that doesn't return the information we need
6310     // to set BaseInfo.  So just ignore the possibility that the alignment is
6311     // greater than one.
6312     if (BaseInfo)
6313       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6314     return CharUnits::One();
6315   }
6316 
6317   if (BaseInfo)
6318     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6319 
6320   CharUnits Alignment;
6321   const CXXRecordDecl *RD;
6322   if (T.getQualifiers().hasUnaligned()) {
6323     Alignment = CharUnits::One();
6324   } else if (forPointeeType && !AlignForArray &&
6325              (RD = T->getAsCXXRecordDecl())) {
6326     // For C++ class pointees, we don't know whether we're pointing at a
6327     // base or a complete object, so we generally need to use the
6328     // non-virtual alignment.
6329     Alignment = getClassPointerAlignment(RD);
6330   } else {
6331     Alignment = getContext().getTypeAlignInChars(T);
6332   }
6333 
6334   // Cap to the global maximum type alignment unless the alignment
6335   // was somehow explicit on the type.
6336   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6337     if (Alignment.getQuantity() > MaxAlign &&
6338         !getContext().isAlignmentRequired(T))
6339       Alignment = CharUnits::fromQuantity(MaxAlign);
6340   }
6341   return Alignment;
6342 }
6343 
6344 bool CodeGenModule::stopAutoInit() {
6345   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6346   if (StopAfter) {
6347     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6348     // used
6349     if (NumAutoVarInit >= StopAfter) {
6350       return true;
6351     }
6352     if (!NumAutoVarInit) {
6353       unsigned DiagID = getDiags().getCustomDiagID(
6354           DiagnosticsEngine::Warning,
6355           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6356           "number of times ftrivial-auto-var-init=%1 gets applied.");
6357       getDiags().Report(DiagID)
6358           << StopAfter
6359           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6360                       LangOptions::TrivialAutoVarInitKind::Zero
6361                   ? "zero"
6362                   : "pattern");
6363     }
6364     ++NumAutoVarInit;
6365   }
6366   return false;
6367 }
6368 
6369 void CodeGenModule::printPostfixForExternalizedStaticVar(
6370     llvm::raw_ostream &OS) const {
6371   OS << ".static." << getContext().getCUIDHash();
6372 }
6373