xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cc2ab0cdc97a72fd5efe0ada69d8094eabddf1be)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VTables(*this), Runtime(0), CFConstantStringClassRef(0),
51     VMContext(M.getContext()) {
52 
53   if (!Features.ObjC1)
54     Runtime = 0;
55   else if (!Features.NeXTRuntime)
56     Runtime = CreateGNUObjCRuntime(*this);
57   else if (Features.ObjCNonFragileABI)
58     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59   else
60     Runtime = CreateMacObjCRuntime(*this);
61 
62   // If debug info generation is enabled, create the CGDebugInfo object.
63   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64 }
65 
66 CodeGenModule::~CodeGenModule() {
67   delete Runtime;
68   delete DebugInfo;
69 }
70 
71 void CodeGenModule::createObjCRuntime() {
72   if (!Features.NeXTRuntime)
73     Runtime = CreateGNUObjCRuntime(*this);
74   else if (Features.ObjCNonFragileABI)
75     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76   else
77     Runtime = CreateMacObjCRuntime(*this);
78 }
79 
80 void CodeGenModule::Release() {
81   EmitFundamentalRTTIDescriptors();
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   EmitCXXGlobalDtorFunc();
85   if (Runtime)
86     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
87       AddGlobalCtor(ObjCInitFunction);
88   EmitCtorList(GlobalCtors, "llvm.global_ctors");
89   EmitCtorList(GlobalDtors, "llvm.global_dtors");
90   EmitAnnotations();
91   EmitLLVMUsed();
92 }
93 
94 bool CodeGenModule::isTargetDarwin() const {
95   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
96 }
97 
98 /// ErrorUnsupported - Print out an error that codegen doesn't support the
99 /// specified stmt yet.
100 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
101                                      bool OmitOnError) {
102   if (OmitOnError && getDiags().hasErrorOccurred())
103     return;
104   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
105                                                "cannot compile this %0 yet");
106   std::string Msg = Type;
107   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
108     << Msg << S->getSourceRange();
109 }
110 
111 /// ErrorUnsupported - Print out an error that codegen doesn't support the
112 /// specified decl yet.
113 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
114                                      bool OmitOnError) {
115   if (OmitOnError && getDiags().hasErrorOccurred())
116     return;
117   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
118                                                "cannot compile this %0 yet");
119   std::string Msg = Type;
120   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
121 }
122 
123 LangOptions::VisibilityMode
124 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
125   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
126     if (VD->getStorageClass() == VarDecl::PrivateExtern)
127       return LangOptions::Hidden;
128 
129   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
130     switch (attr->getVisibility()) {
131     default: assert(0 && "Unknown visibility!");
132     case VisibilityAttr::DefaultVisibility:
133       return LangOptions::Default;
134     case VisibilityAttr::HiddenVisibility:
135       return LangOptions::Hidden;
136     case VisibilityAttr::ProtectedVisibility:
137       return LangOptions::Protected;
138     }
139   }
140 
141   // This decl should have the same visibility as its parent.
142   if (const DeclContext *DC = D->getDeclContext())
143     return getDeclVisibilityMode(cast<Decl>(DC));
144 
145   return getLangOptions().getVisibilityMode();
146 }
147 
148 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
149                                         const Decl *D) const {
150   // Internal definitions always have default visibility.
151   if (GV->hasLocalLinkage()) {
152     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
153     return;
154   }
155 
156   switch (getDeclVisibilityMode(D)) {
157   default: assert(0 && "Unknown visibility!");
158   case LangOptions::Default:
159     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
160   case LangOptions::Hidden:
161     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
162   case LangOptions::Protected:
163     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
164   }
165 }
166 
167 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
168   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
169 
170   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
171     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
172   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
173     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
174 
175   return getMangledName(Buffer, ND);
176 }
177 
178 /// \brief Retrieves the mangled name for the given declaration.
179 ///
180 /// If the given declaration requires a mangled name, returns an
181 /// const char* containing the mangled name.  Otherwise, returns
182 /// the unmangled name.
183 ///
184 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
185                                    const NamedDecl *ND) {
186   if (!getMangleContext().shouldMangleDeclName(ND)) {
187     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
188     Buffer.setString(ND->getNameAsCString());
189     return;
190   }
191 
192   getMangleContext().mangleName(ND, Buffer.getBuffer());
193 }
194 
195 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
196   return getModule().getNamedValue(Name);
197 }
198 
199 /// AddGlobalCtor - Add a function to the list that will be called before
200 /// main() runs.
201 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
202   // FIXME: Type coercion of void()* types.
203   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
204 }
205 
206 /// AddGlobalDtor - Add a function to the list that will be called
207 /// when the module is unloaded.
208 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
209   // FIXME: Type coercion of void()* types.
210   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
211 }
212 
213 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
214   // Ctor function type is void()*.
215   llvm::FunctionType* CtorFTy =
216     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
217                             std::vector<const llvm::Type*>(),
218                             false);
219   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
220 
221   // Get the type of a ctor entry, { i32, void ()* }.
222   llvm::StructType* CtorStructTy =
223     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
224                           llvm::PointerType::getUnqual(CtorFTy), NULL);
225 
226   // Construct the constructor and destructor arrays.
227   std::vector<llvm::Constant*> Ctors;
228   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
229     std::vector<llvm::Constant*> S;
230     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
231                 I->second, false));
232     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
233     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
234   }
235 
236   if (!Ctors.empty()) {
237     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
238     new llvm::GlobalVariable(TheModule, AT, false,
239                              llvm::GlobalValue::AppendingLinkage,
240                              llvm::ConstantArray::get(AT, Ctors),
241                              GlobalName);
242   }
243 }
244 
245 void CodeGenModule::EmitAnnotations() {
246   if (Annotations.empty())
247     return;
248 
249   // Create a new global variable for the ConstantStruct in the Module.
250   llvm::Constant *Array =
251   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
252                                                 Annotations.size()),
253                            Annotations);
254   llvm::GlobalValue *gv =
255   new llvm::GlobalVariable(TheModule, Array->getType(), false,
256                            llvm::GlobalValue::AppendingLinkage, Array,
257                            "llvm.global.annotations");
258   gv->setSection("llvm.metadata");
259 }
260 
261 static CodeGenModule::GVALinkage
262 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
263                       const LangOptions &Features) {
264   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
265 
266   Linkage L = FD->getLinkage();
267   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
268       FD->getType()->getLinkage() == UniqueExternalLinkage)
269     L = UniqueExternalLinkage;
270 
271   switch (L) {
272   case NoLinkage:
273   case InternalLinkage:
274   case UniqueExternalLinkage:
275     return CodeGenModule::GVA_Internal;
276 
277   case ExternalLinkage:
278     switch (FD->getTemplateSpecializationKind()) {
279     case TSK_Undeclared:
280     case TSK_ExplicitSpecialization:
281       External = CodeGenModule::GVA_StrongExternal;
282       break;
283 
284     case TSK_ExplicitInstantiationDefinition:
285       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
286 
287     case TSK_ExplicitInstantiationDeclaration:
288     case TSK_ImplicitInstantiation:
289       External = CodeGenModule::GVA_TemplateInstantiation;
290       break;
291     }
292   }
293 
294   if (!FD->isInlined())
295     return External;
296 
297   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
298     // GNU or C99 inline semantics. Determine whether this symbol should be
299     // externally visible.
300     if (FD->isInlineDefinitionExternallyVisible())
301       return External;
302 
303     // C99 inline semantics, where the symbol is not externally visible.
304     return CodeGenModule::GVA_C99Inline;
305   }
306 
307   // C++0x [temp.explicit]p9:
308   //   [ Note: The intent is that an inline function that is the subject of
309   //   an explicit instantiation declaration will still be implicitly
310   //   instantiated when used so that the body can be considered for
311   //   inlining, but that no out-of-line copy of the inline function would be
312   //   generated in the translation unit. -- end note ]
313   if (FD->getTemplateSpecializationKind()
314                                        == TSK_ExplicitInstantiationDeclaration)
315     return CodeGenModule::GVA_C99Inline;
316 
317   return CodeGenModule::GVA_CXXInline;
318 }
319 
320 llvm::GlobalValue::LinkageTypes
321 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
322   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
323 
324   if (Linkage == GVA_Internal) {
325     return llvm::Function::InternalLinkage;
326   } else if (D->hasAttr<DLLExportAttr>()) {
327     return llvm::Function::DLLExportLinkage;
328   } else if (D->hasAttr<WeakAttr>()) {
329     return llvm::Function::WeakAnyLinkage;
330   } else if (Linkage == GVA_C99Inline) {
331     // In C99 mode, 'inline' functions are guaranteed to have a strong
332     // definition somewhere else, so we can use available_externally linkage.
333     return llvm::Function::AvailableExternallyLinkage;
334   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
335     // In C++, the compiler has to emit a definition in every translation unit
336     // that references the function.  We should use linkonce_odr because
337     // a) if all references in this translation unit are optimized away, we
338     // don't need to codegen it.  b) if the function persists, it needs to be
339     // merged with other definitions. c) C++ has the ODR, so we know the
340     // definition is dependable.
341     return llvm::Function::LinkOnceODRLinkage;
342   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
343     // An explicit instantiation of a template has weak linkage, since
344     // explicit instantiations can occur in multiple translation units
345     // and must all be equivalent. However, we are not allowed to
346     // throw away these explicit instantiations.
347     return llvm::Function::WeakODRLinkage;
348   } else {
349     assert(Linkage == GVA_StrongExternal);
350     // Otherwise, we have strong external linkage.
351     return llvm::Function::ExternalLinkage;
352   }
353 }
354 
355 
356 /// SetFunctionDefinitionAttributes - Set attributes for a global.
357 ///
358 /// FIXME: This is currently only done for aliases and functions, but not for
359 /// variables (these details are set in EmitGlobalVarDefinition for variables).
360 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
361                                                     llvm::GlobalValue *GV) {
362   GV->setLinkage(getFunctionLinkage(D));
363   SetCommonAttributes(D, GV);
364 }
365 
366 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
367                                               const CGFunctionInfo &Info,
368                                               llvm::Function *F) {
369   unsigned CallingConv;
370   AttributeListType AttributeList;
371   ConstructAttributeList(Info, D, AttributeList, CallingConv);
372   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
373                                           AttributeList.size()));
374   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
375 }
376 
377 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
378                                                            llvm::Function *F) {
379   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
380     F->addFnAttr(llvm::Attribute::NoUnwind);
381 
382   if (D->hasAttr<AlwaysInlineAttr>())
383     F->addFnAttr(llvm::Attribute::AlwaysInline);
384 
385   if (D->hasAttr<NoInlineAttr>())
386     F->addFnAttr(llvm::Attribute::NoInline);
387 
388   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
389     F->addFnAttr(llvm::Attribute::StackProtect);
390   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
391     F->addFnAttr(llvm::Attribute::StackProtectReq);
392 
393   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
394     unsigned width = Context.Target.getCharWidth();
395     F->setAlignment(AA->getAlignment() / width);
396     while ((AA = AA->getNext<AlignedAttr>()))
397       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
398   }
399   // C++ ABI requires 2-byte alignment for member functions.
400   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
401     F->setAlignment(2);
402 }
403 
404 void CodeGenModule::SetCommonAttributes(const Decl *D,
405                                         llvm::GlobalValue *GV) {
406   setGlobalVisibility(GV, D);
407 
408   if (D->hasAttr<UsedAttr>())
409     AddUsedGlobal(GV);
410 
411   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
412     GV->setSection(SA->getName());
413 
414   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
415 }
416 
417 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
418                                                   llvm::Function *F,
419                                                   const CGFunctionInfo &FI) {
420   SetLLVMFunctionAttributes(D, FI, F);
421   SetLLVMFunctionAttributesForDefinition(D, F);
422 
423   F->setLinkage(llvm::Function::InternalLinkage);
424 
425   SetCommonAttributes(D, F);
426 }
427 
428 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
429                                           llvm::Function *F,
430                                           bool IsIncompleteFunction) {
431   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
432 
433   if (!IsIncompleteFunction)
434     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
435 
436   // Only a few attributes are set on declarations; these may later be
437   // overridden by a definition.
438 
439   if (FD->hasAttr<DLLImportAttr>()) {
440     F->setLinkage(llvm::Function::DLLImportLinkage);
441   } else if (FD->hasAttr<WeakAttr>() ||
442              FD->hasAttr<WeakImportAttr>()) {
443     // "extern_weak" is overloaded in LLVM; we probably should have
444     // separate linkage types for this.
445     F->setLinkage(llvm::Function::ExternalWeakLinkage);
446   } else {
447     F->setLinkage(llvm::Function::ExternalLinkage);
448   }
449 
450   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
451     F->setSection(SA->getName());
452 }
453 
454 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
455   assert(!GV->isDeclaration() &&
456          "Only globals with definition can force usage.");
457   LLVMUsed.push_back(GV);
458 }
459 
460 void CodeGenModule::EmitLLVMUsed() {
461   // Don't create llvm.used if there is no need.
462   if (LLVMUsed.empty())
463     return;
464 
465   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
466 
467   // Convert LLVMUsed to what ConstantArray needs.
468   std::vector<llvm::Constant*> UsedArray;
469   UsedArray.resize(LLVMUsed.size());
470   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
471     UsedArray[i] =
472      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
473                                       i8PTy);
474   }
475 
476   if (UsedArray.empty())
477     return;
478   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
479 
480   llvm::GlobalVariable *GV =
481     new llvm::GlobalVariable(getModule(), ATy, false,
482                              llvm::GlobalValue::AppendingLinkage,
483                              llvm::ConstantArray::get(ATy, UsedArray),
484                              "llvm.used");
485 
486   GV->setSection("llvm.metadata");
487 }
488 
489 void CodeGenModule::EmitDeferred() {
490   // Emit code for any potentially referenced deferred decls.  Since a
491   // previously unused static decl may become used during the generation of code
492   // for a static function, iterate until no  changes are made.
493 
494   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
495     if (!DeferredVtables.empty()) {
496       const CXXRecordDecl *RD = DeferredVtables.back();
497       DeferredVtables.pop_back();
498       getVTables().GenerateClassData(getVtableLinkage(RD), RD);
499       continue;
500     }
501 
502     GlobalDecl D = DeferredDeclsToEmit.back();
503     DeferredDeclsToEmit.pop_back();
504 
505     // Look it up to see if it was defined with a stronger definition (e.g. an
506     // extern inline function with a strong function redefinition).  If so,
507     // just ignore the deferred decl.
508     MangleBuffer Name;
509     getMangledName(Name, D);
510     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
511     assert(CGRef && "Deferred decl wasn't referenced?");
512 
513     if (!CGRef->isDeclaration())
514       continue;
515 
516     // Otherwise, emit the definition and move on to the next one.
517     EmitGlobalDefinition(D);
518   }
519 }
520 
521 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
522 /// annotation information for a given GlobalValue.  The annotation struct is
523 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
524 /// GlobalValue being annotated.  The second field is the constant string
525 /// created from the AnnotateAttr's annotation.  The third field is a constant
526 /// string containing the name of the translation unit.  The fourth field is
527 /// the line number in the file of the annotated value declaration.
528 ///
529 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
530 ///        appears to.
531 ///
532 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
533                                                 const AnnotateAttr *AA,
534                                                 unsigned LineNo) {
535   llvm::Module *M = &getModule();
536 
537   // get [N x i8] constants for the annotation string, and the filename string
538   // which are the 2nd and 3rd elements of the global annotation structure.
539   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
540   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
541                                                   AA->getAnnotation(), true);
542   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
543                                                   M->getModuleIdentifier(),
544                                                   true);
545 
546   // Get the two global values corresponding to the ConstantArrays we just
547   // created to hold the bytes of the strings.
548   llvm::GlobalValue *annoGV =
549     new llvm::GlobalVariable(*M, anno->getType(), false,
550                              llvm::GlobalValue::PrivateLinkage, anno,
551                              GV->getName());
552   // translation unit name string, emitted into the llvm.metadata section.
553   llvm::GlobalValue *unitGV =
554     new llvm::GlobalVariable(*M, unit->getType(), false,
555                              llvm::GlobalValue::PrivateLinkage, unit,
556                              ".str");
557 
558   // Create the ConstantStruct for the global annotation.
559   llvm::Constant *Fields[4] = {
560     llvm::ConstantExpr::getBitCast(GV, SBP),
561     llvm::ConstantExpr::getBitCast(annoGV, SBP),
562     llvm::ConstantExpr::getBitCast(unitGV, SBP),
563     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
564   };
565   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
566 }
567 
568 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
569   // Never defer when EmitAllDecls is specified or the decl has
570   // attribute used.
571   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
572     return false;
573 
574   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
575     // Constructors and destructors should never be deferred.
576     if (FD->hasAttr<ConstructorAttr>() ||
577         FD->hasAttr<DestructorAttr>())
578       return false;
579 
580     // The key function for a class must never be deferred.
581     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
582       const CXXRecordDecl *RD = MD->getParent();
583       if (MD->isOutOfLine() && RD->isDynamicClass()) {
584         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
585         if (KeyFunction &&
586             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
587           return false;
588       }
589     }
590 
591     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
592 
593     // static, static inline, always_inline, and extern inline functions can
594     // always be deferred.  Normal inline functions can be deferred in C99/C++.
595     // Implicit template instantiations can also be deferred in C++.
596     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
597         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
598       return true;
599     return false;
600   }
601 
602   const VarDecl *VD = cast<VarDecl>(Global);
603   assert(VD->isFileVarDecl() && "Invalid decl");
604 
605   // We never want to defer structs that have non-trivial constructors or
606   // destructors.
607 
608   // FIXME: Handle references.
609   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
610     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
611       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
612         return false;
613     }
614   }
615 
616   // Static data may be deferred, but out-of-line static data members
617   // cannot be.
618   Linkage L = VD->getLinkage();
619   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
620       VD->getType()->getLinkage() == UniqueExternalLinkage)
621     L = UniqueExternalLinkage;
622 
623   switch (L) {
624   case NoLinkage:
625   case InternalLinkage:
626   case UniqueExternalLinkage:
627     // Initializer has side effects?
628     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
629       return false;
630     return !(VD->isStaticDataMember() && VD->isOutOfLine());
631 
632   case ExternalLinkage:
633     break;
634   }
635 
636   return false;
637 }
638 
639 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640   const AliasAttr *AA = VD->getAttr<AliasAttr>();
641   assert(AA && "No alias?");
642 
643   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644 
645   // See if there is already something with the target's name in the module.
646   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647 
648   llvm::Constant *Aliasee;
649   if (isa<llvm::FunctionType>(DeclTy))
650     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651   else
652     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                     llvm::PointerType::getUnqual(DeclTy), 0);
654   if (!Entry) {
655     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657     WeakRefReferences.insert(F);
658   }
659 
660   return Aliasee;
661 }
662 
663 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665 
666   // Weak references don't produce any output by themselves.
667   if (Global->hasAttr<WeakRefAttr>())
668     return;
669 
670   // If this is an alias definition (which otherwise looks like a declaration)
671   // emit it now.
672   if (Global->hasAttr<AliasAttr>())
673     return EmitAliasDefinition(GD);
674 
675   // Ignore declarations, they will be emitted on their first use.
676   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677     // Forward declarations are emitted lazily on first use.
678     if (!FD->isThisDeclarationADefinition())
679       return;
680   } else {
681     const VarDecl *VD = cast<VarDecl>(Global);
682     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
683 
684     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
685       return;
686   }
687 
688   // Defer code generation when possible if this is a static definition, inline
689   // function etc.  These we only want to emit if they are used.
690   if (MayDeferGeneration(Global)) {
691     // If the value has already been used, add it directly to the
692     // DeferredDeclsToEmit list.
693     MangleBuffer MangledName;
694     getMangledName(MangledName, GD);
695     if (GetGlobalValue(MangledName))
696       DeferredDeclsToEmit.push_back(GD);
697     else {
698       // Otherwise, remember that we saw a deferred decl with this name.  The
699       // first use of the mangled name will cause it to move into
700       // DeferredDeclsToEmit.
701       DeferredDecls[MangledName] = GD;
702     }
703     return;
704   }
705 
706   // Otherwise emit the definition.
707   EmitGlobalDefinition(GD);
708 }
709 
710 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
711   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
712 
713   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
714                                  Context.getSourceManager(),
715                                  "Generating code for declaration");
716 
717   if (isa<CXXMethodDecl>(D))
718     getVTables().EmitVTableRelatedData(GD);
719 
720   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
721     EmitCXXConstructor(CD, GD.getCtorType());
722   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
723     EmitCXXDestructor(DD, GD.getDtorType());
724   else if (isa<FunctionDecl>(D))
725     EmitGlobalFunctionDefinition(GD);
726   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
727     EmitGlobalVarDefinition(VD);
728   else {
729     assert(0 && "Invalid argument to EmitGlobalDefinition()");
730   }
731 }
732 
733 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
734 /// module, create and return an llvm Function with the specified type. If there
735 /// is something in the module with the specified name, return it potentially
736 /// bitcasted to the right type.
737 ///
738 /// If D is non-null, it specifies a decl that correspond to this.  This is used
739 /// to set the attributes on the function when it is first created.
740 llvm::Constant *
741 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
742                                        const llvm::Type *Ty,
743                                        GlobalDecl D) {
744   // Lookup the entry, lazily creating it if necessary.
745   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
746   if (Entry) {
747     if (WeakRefReferences.count(Entry)) {
748       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
749       if (FD && !FD->hasAttr<WeakAttr>())
750         Entry->setLinkage(llvm::Function::ExternalLinkage);
751 
752       WeakRefReferences.erase(Entry);
753     }
754 
755     if (Entry->getType()->getElementType() == Ty)
756       return Entry;
757 
758     // Make sure the result is of the correct type.
759     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
760     return llvm::ConstantExpr::getBitCast(Entry, PTy);
761   }
762 
763   // This function doesn't have a complete type (for example, the return
764   // type is an incomplete struct). Use a fake type instead, and make
765   // sure not to try to set attributes.
766   bool IsIncompleteFunction = false;
767   if (!isa<llvm::FunctionType>(Ty)) {
768     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
769                                  std::vector<const llvm::Type*>(), false);
770     IsIncompleteFunction = true;
771   }
772   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
773                                              llvm::Function::ExternalLinkage,
774                                              MangledName, &getModule());
775   assert(F->getName() == MangledName && "name was uniqued!");
776   if (D.getDecl())
777     SetFunctionAttributes(D, F, IsIncompleteFunction);
778 
779   // This is the first use or definition of a mangled name.  If there is a
780   // deferred decl with this name, remember that we need to emit it at the end
781   // of the file.
782   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
783   if (DDI != DeferredDecls.end()) {
784     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
785     // list, and remove it from DeferredDecls (since we don't need it anymore).
786     DeferredDeclsToEmit.push_back(DDI->second);
787     DeferredDecls.erase(DDI);
788   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
789     // If this the first reference to a C++ inline function in a class, queue up
790     // the deferred function body for emission.  These are not seen as
791     // top-level declarations.
792     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
793       DeferredDeclsToEmit.push_back(D);
794     // A called constructor which has no definition or declaration need be
795     // synthesized.
796     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
797       if (CD->isImplicit()) {
798         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
799         DeferredDeclsToEmit.push_back(D);
800       }
801     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
802       if (DD->isImplicit()) {
803         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
804         DeferredDeclsToEmit.push_back(D);
805       }
806     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
807       if (MD->isCopyAssignment() && MD->isImplicit()) {
808         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
809         DeferredDeclsToEmit.push_back(D);
810       }
811     }
812   }
813 
814   return F;
815 }
816 
817 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
818 /// non-null, then this function will use the specified type if it has to
819 /// create it (this occurs when we see a definition of the function).
820 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
821                                                  const llvm::Type *Ty) {
822   // If there was no specific requested type, just convert it now.
823   if (!Ty)
824     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
825   MangleBuffer MangledName;
826   getMangledName(MangledName, GD);
827   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
828 }
829 
830 /// CreateRuntimeFunction - Create a new runtime function with the specified
831 /// type and name.
832 llvm::Constant *
833 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
834                                      llvm::StringRef Name) {
835   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
836 }
837 
838 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
839   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
840     return false;
841   if (Context.getLangOptions().CPlusPlus &&
842       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
843     // FIXME: We should do something fancier here!
844     return false;
845   }
846   return true;
847 }
848 
849 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
850 /// create and return an llvm GlobalVariable with the specified type.  If there
851 /// is something in the module with the specified name, return it potentially
852 /// bitcasted to the right type.
853 ///
854 /// If D is non-null, it specifies a decl that correspond to this.  This is used
855 /// to set the attributes on the global when it is first created.
856 llvm::Constant *
857 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
858                                      const llvm::PointerType *Ty,
859                                      const VarDecl *D) {
860   // Lookup the entry, lazily creating it if necessary.
861   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
862   if (Entry) {
863     if (WeakRefReferences.count(Entry)) {
864       if (D && !D->hasAttr<WeakAttr>())
865         Entry->setLinkage(llvm::Function::ExternalLinkage);
866 
867       WeakRefReferences.erase(Entry);
868     }
869 
870     if (Entry->getType() == Ty)
871       return Entry;
872 
873     // Make sure the result is of the correct type.
874     return llvm::ConstantExpr::getBitCast(Entry, Ty);
875   }
876 
877   // This is the first use or definition of a mangled name.  If there is a
878   // deferred decl with this name, remember that we need to emit it at the end
879   // of the file.
880   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
881   if (DDI != DeferredDecls.end()) {
882     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
883     // list, and remove it from DeferredDecls (since we don't need it anymore).
884     DeferredDeclsToEmit.push_back(DDI->second);
885     DeferredDecls.erase(DDI);
886   }
887 
888   llvm::GlobalVariable *GV =
889     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
890                              llvm::GlobalValue::ExternalLinkage,
891                              0, MangledName, 0,
892                              false, Ty->getAddressSpace());
893 
894   // Handle things which are present even on external declarations.
895   if (D) {
896     // FIXME: This code is overly simple and should be merged with other global
897     // handling.
898     GV->setConstant(DeclIsConstantGlobal(Context, D));
899 
900     // FIXME: Merge with other attribute handling code.
901     if (D->getStorageClass() == VarDecl::PrivateExtern)
902       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
903 
904     if (D->hasAttr<WeakAttr>() ||
905         D->hasAttr<WeakImportAttr>())
906       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
907 
908     GV->setThreadLocal(D->isThreadSpecified());
909   }
910 
911   return GV;
912 }
913 
914 
915 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
916 /// given global variable.  If Ty is non-null and if the global doesn't exist,
917 /// then it will be greated with the specified type instead of whatever the
918 /// normal requested type would be.
919 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
920                                                   const llvm::Type *Ty) {
921   assert(D->hasGlobalStorage() && "Not a global variable");
922   QualType ASTTy = D->getType();
923   if (Ty == 0)
924     Ty = getTypes().ConvertTypeForMem(ASTTy);
925 
926   const llvm::PointerType *PTy =
927     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
928 
929   MangleBuffer MangledName;
930   getMangledName(MangledName, D);
931   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
932 }
933 
934 /// CreateRuntimeVariable - Create a new runtime global variable with the
935 /// specified type and name.
936 llvm::Constant *
937 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
938                                      llvm::StringRef Name) {
939   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
940 }
941 
942 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
943   assert(!D->getInit() && "Cannot emit definite definitions here!");
944 
945   if (MayDeferGeneration(D)) {
946     // If we have not seen a reference to this variable yet, place it
947     // into the deferred declarations table to be emitted if needed
948     // later.
949     MangleBuffer MangledName;
950     getMangledName(MangledName, D);
951     if (!GetGlobalValue(MangledName)) {
952       DeferredDecls[MangledName] = D;
953       return;
954     }
955   }
956 
957   // The tentative definition is the only definition.
958   EmitGlobalVarDefinition(D);
959 }
960 
961 llvm::GlobalVariable::LinkageTypes
962 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
963   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
964     return llvm::GlobalVariable::InternalLinkage;
965 
966   if (const CXXMethodDecl *KeyFunction
967                                     = RD->getASTContext().getKeyFunction(RD)) {
968     // If this class has a key function, use that to determine the linkage of
969     // the vtable.
970     const FunctionDecl *Def = 0;
971     if (KeyFunction->getBody(Def))
972       KeyFunction = cast<CXXMethodDecl>(Def);
973 
974     switch (KeyFunction->getTemplateSpecializationKind()) {
975       case TSK_Undeclared:
976       case TSK_ExplicitSpecialization:
977         if (KeyFunction->isInlined())
978           return llvm::GlobalVariable::WeakODRLinkage;
979 
980         return llvm::GlobalVariable::ExternalLinkage;
981 
982       case TSK_ImplicitInstantiation:
983       case TSK_ExplicitInstantiationDefinition:
984         return llvm::GlobalVariable::WeakODRLinkage;
985 
986       case TSK_ExplicitInstantiationDeclaration:
987         // FIXME: Use available_externally linkage. However, this currently
988         // breaks LLVM's build due to undefined symbols.
989         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
990         return llvm::GlobalVariable::WeakODRLinkage;
991     }
992   }
993 
994   switch (RD->getTemplateSpecializationKind()) {
995   case TSK_Undeclared:
996   case TSK_ExplicitSpecialization:
997   case TSK_ImplicitInstantiation:
998   case TSK_ExplicitInstantiationDefinition:
999     return llvm::GlobalVariable::WeakODRLinkage;
1000 
1001   case TSK_ExplicitInstantiationDeclaration:
1002     // FIXME: Use available_externally linkage. However, this currently
1003     // breaks LLVM's build due to undefined symbols.
1004     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1005     return llvm::GlobalVariable::WeakODRLinkage;
1006   }
1007 
1008   // Silence GCC warning.
1009   return llvm::GlobalVariable::WeakODRLinkage;
1010 }
1011 
1012 static CodeGenModule::GVALinkage
1013 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1014   // If this is a static data member, compute the kind of template
1015   // specialization. Otherwise, this variable is not part of a
1016   // template.
1017   TemplateSpecializationKind TSK = TSK_Undeclared;
1018   if (VD->isStaticDataMember())
1019     TSK = VD->getTemplateSpecializationKind();
1020 
1021   Linkage L = VD->getLinkage();
1022   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1023       VD->getType()->getLinkage() == UniqueExternalLinkage)
1024     L = UniqueExternalLinkage;
1025 
1026   switch (L) {
1027   case NoLinkage:
1028   case InternalLinkage:
1029   case UniqueExternalLinkage:
1030     return CodeGenModule::GVA_Internal;
1031 
1032   case ExternalLinkage:
1033     switch (TSK) {
1034     case TSK_Undeclared:
1035     case TSK_ExplicitSpecialization:
1036       return CodeGenModule::GVA_StrongExternal;
1037 
1038     case TSK_ExplicitInstantiationDeclaration:
1039       llvm_unreachable("Variable should not be instantiated");
1040       // Fall through to treat this like any other instantiation.
1041 
1042     case TSK_ExplicitInstantiationDefinition:
1043       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1044 
1045     case TSK_ImplicitInstantiation:
1046       return CodeGenModule::GVA_TemplateInstantiation;
1047     }
1048   }
1049 
1050   return CodeGenModule::GVA_StrongExternal;
1051 }
1052 
1053 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1054     return CharUnits::fromQuantity(
1055       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1056 }
1057 
1058 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1059   llvm::Constant *Init = 0;
1060   QualType ASTTy = D->getType();
1061   bool NonConstInit = false;
1062 
1063   const Expr *InitExpr = D->getAnyInitializer();
1064 
1065   if (!InitExpr) {
1066     // This is a tentative definition; tentative definitions are
1067     // implicitly initialized with { 0 }.
1068     //
1069     // Note that tentative definitions are only emitted at the end of
1070     // a translation unit, so they should never have incomplete
1071     // type. In addition, EmitTentativeDefinition makes sure that we
1072     // never attempt to emit a tentative definition if a real one
1073     // exists. A use may still exists, however, so we still may need
1074     // to do a RAUW.
1075     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1076     Init = EmitNullConstant(D->getType());
1077   } else {
1078     Init = EmitConstantExpr(InitExpr, D->getType());
1079 
1080     if (!Init) {
1081       QualType T = InitExpr->getType();
1082       if (getLangOptions().CPlusPlus) {
1083         EmitCXXGlobalVarDeclInitFunc(D);
1084         Init = EmitNullConstant(T);
1085         NonConstInit = true;
1086       } else {
1087         ErrorUnsupported(D, "static initializer");
1088         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1089       }
1090     }
1091   }
1092 
1093   const llvm::Type* InitType = Init->getType();
1094   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1095 
1096   // Strip off a bitcast if we got one back.
1097   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1098     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1099            // all zero index gep.
1100            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1101     Entry = CE->getOperand(0);
1102   }
1103 
1104   // Entry is now either a Function or GlobalVariable.
1105   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1106 
1107   // We have a definition after a declaration with the wrong type.
1108   // We must make a new GlobalVariable* and update everything that used OldGV
1109   // (a declaration or tentative definition) with the new GlobalVariable*
1110   // (which will be a definition).
1111   //
1112   // This happens if there is a prototype for a global (e.g.
1113   // "extern int x[];") and then a definition of a different type (e.g.
1114   // "int x[10];"). This also happens when an initializer has a different type
1115   // from the type of the global (this happens with unions).
1116   if (GV == 0 ||
1117       GV->getType()->getElementType() != InitType ||
1118       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1119 
1120     // Move the old entry aside so that we'll create a new one.
1121     Entry->setName(llvm::StringRef());
1122 
1123     // Make a new global with the correct type, this is now guaranteed to work.
1124     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1125 
1126     // Replace all uses of the old global with the new global
1127     llvm::Constant *NewPtrForOldDecl =
1128         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1129     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1130 
1131     // Erase the old global, since it is no longer used.
1132     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1133   }
1134 
1135   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1136     SourceManager &SM = Context.getSourceManager();
1137     AddAnnotation(EmitAnnotateAttr(GV, AA,
1138                               SM.getInstantiationLineNumber(D->getLocation())));
1139   }
1140 
1141   GV->setInitializer(Init);
1142 
1143   // If it is safe to mark the global 'constant', do so now.
1144   GV->setConstant(false);
1145   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1146     GV->setConstant(true);
1147 
1148   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1149 
1150   // Set the llvm linkage type as appropriate.
1151   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1152   if (Linkage == GVA_Internal)
1153     GV->setLinkage(llvm::Function::InternalLinkage);
1154   else if (D->hasAttr<DLLImportAttr>())
1155     GV->setLinkage(llvm::Function::DLLImportLinkage);
1156   else if (D->hasAttr<DLLExportAttr>())
1157     GV->setLinkage(llvm::Function::DLLExportLinkage);
1158   else if (D->hasAttr<WeakAttr>()) {
1159     if (GV->isConstant())
1160       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1161     else
1162       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1163   } else if (Linkage == GVA_TemplateInstantiation ||
1164              Linkage == GVA_ExplicitTemplateInstantiation)
1165     // FIXME: It seems like we can provide more specific linkage here
1166     // (LinkOnceODR, WeakODR).
1167     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1168   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1169            !D->hasExternalStorage() && !D->getInit() &&
1170            !D->getAttr<SectionAttr>()) {
1171     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1172     // common vars aren't constant even if declared const.
1173     GV->setConstant(false);
1174   } else
1175     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1176 
1177   SetCommonAttributes(D, GV);
1178 
1179   // Emit global variable debug information.
1180   if (CGDebugInfo *DI = getDebugInfo()) {
1181     DI->setLocation(D->getLocation());
1182     DI->EmitGlobalVariable(GV, D);
1183   }
1184 }
1185 
1186 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1187 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1188 /// existing call uses of the old function in the module, this adjusts them to
1189 /// call the new function directly.
1190 ///
1191 /// This is not just a cleanup: the always_inline pass requires direct calls to
1192 /// functions to be able to inline them.  If there is a bitcast in the way, it
1193 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1194 /// run at -O0.
1195 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1196                                                       llvm::Function *NewFn) {
1197   // If we're redefining a global as a function, don't transform it.
1198   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1199   if (OldFn == 0) return;
1200 
1201   const llvm::Type *NewRetTy = NewFn->getReturnType();
1202   llvm::SmallVector<llvm::Value*, 4> ArgList;
1203 
1204   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1205        UI != E; ) {
1206     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1207     unsigned OpNo = UI.getOperandNo();
1208     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1209     if (!CI || OpNo != 0) continue;
1210 
1211     // If the return types don't match exactly, and if the call isn't dead, then
1212     // we can't transform this call.
1213     if (CI->getType() != NewRetTy && !CI->use_empty())
1214       continue;
1215 
1216     // If the function was passed too few arguments, don't transform.  If extra
1217     // arguments were passed, we silently drop them.  If any of the types
1218     // mismatch, we don't transform.
1219     unsigned ArgNo = 0;
1220     bool DontTransform = false;
1221     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1222          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1223       if (CI->getNumOperands()-1 == ArgNo ||
1224           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1225         DontTransform = true;
1226         break;
1227       }
1228     }
1229     if (DontTransform)
1230       continue;
1231 
1232     // Okay, we can transform this.  Create the new call instruction and copy
1233     // over the required information.
1234     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1235     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1236                                                      ArgList.end(), "", CI);
1237     ArgList.clear();
1238     if (!NewCall->getType()->isVoidTy())
1239       NewCall->takeName(CI);
1240     NewCall->setAttributes(CI->getAttributes());
1241     NewCall->setCallingConv(CI->getCallingConv());
1242 
1243     // Finally, remove the old call, replacing any uses with the new one.
1244     if (!CI->use_empty())
1245       CI->replaceAllUsesWith(NewCall);
1246 
1247     // Copy debug location attached to CI.
1248     if (!CI->getDebugLoc().isUnknown())
1249       NewCall->setDebugLoc(CI->getDebugLoc());
1250     CI->eraseFromParent();
1251   }
1252 }
1253 
1254 
1255 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1256   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1257   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1258   getMangleContext().mangleInitDiscriminator();
1259   // Get or create the prototype for the function.
1260   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1261 
1262   // Strip off a bitcast if we got one back.
1263   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1264     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1265     Entry = CE->getOperand(0);
1266   }
1267 
1268 
1269   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1270     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1271 
1272     // If the types mismatch then we have to rewrite the definition.
1273     assert(OldFn->isDeclaration() &&
1274            "Shouldn't replace non-declaration");
1275 
1276     // F is the Function* for the one with the wrong type, we must make a new
1277     // Function* and update everything that used F (a declaration) with the new
1278     // Function* (which will be a definition).
1279     //
1280     // This happens if there is a prototype for a function
1281     // (e.g. "int f()") and then a definition of a different type
1282     // (e.g. "int f(int x)").  Move the old function aside so that it
1283     // doesn't interfere with GetAddrOfFunction.
1284     OldFn->setName(llvm::StringRef());
1285     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1286 
1287     // If this is an implementation of a function without a prototype, try to
1288     // replace any existing uses of the function (which may be calls) with uses
1289     // of the new function
1290     if (D->getType()->isFunctionNoProtoType()) {
1291       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1292       OldFn->removeDeadConstantUsers();
1293     }
1294 
1295     // Replace uses of F with the Function we will endow with a body.
1296     if (!Entry->use_empty()) {
1297       llvm::Constant *NewPtrForOldDecl =
1298         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1299       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1300     }
1301 
1302     // Ok, delete the old function now, which is dead.
1303     OldFn->eraseFromParent();
1304 
1305     Entry = NewFn;
1306   }
1307 
1308   llvm::Function *Fn = cast<llvm::Function>(Entry);
1309 
1310   CodeGenFunction(*this).GenerateCode(D, Fn);
1311 
1312   SetFunctionDefinitionAttributes(D, Fn);
1313   SetLLVMFunctionAttributesForDefinition(D, Fn);
1314 
1315   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1316     AddGlobalCtor(Fn, CA->getPriority());
1317   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1318     AddGlobalDtor(Fn, DA->getPriority());
1319 }
1320 
1321 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1322   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1323   const AliasAttr *AA = D->getAttr<AliasAttr>();
1324   assert(AA && "Not an alias?");
1325 
1326   MangleBuffer MangledName;
1327   getMangledName(MangledName, GD);
1328 
1329   // If there is a definition in the module, then it wins over the alias.
1330   // This is dubious, but allow it to be safe.  Just ignore the alias.
1331   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1332   if (Entry && !Entry->isDeclaration())
1333     return;
1334 
1335   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1336 
1337   // Create a reference to the named value.  This ensures that it is emitted
1338   // if a deferred decl.
1339   llvm::Constant *Aliasee;
1340   if (isa<llvm::FunctionType>(DeclTy))
1341     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1342   else
1343     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1344                                     llvm::PointerType::getUnqual(DeclTy), 0);
1345 
1346   // Create the new alias itself, but don't set a name yet.
1347   llvm::GlobalValue *GA =
1348     new llvm::GlobalAlias(Aliasee->getType(),
1349                           llvm::Function::ExternalLinkage,
1350                           "", Aliasee, &getModule());
1351 
1352   if (Entry) {
1353     assert(Entry->isDeclaration());
1354 
1355     // If there is a declaration in the module, then we had an extern followed
1356     // by the alias, as in:
1357     //   extern int test6();
1358     //   ...
1359     //   int test6() __attribute__((alias("test7")));
1360     //
1361     // Remove it and replace uses of it with the alias.
1362     GA->takeName(Entry);
1363 
1364     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1365                                                           Entry->getType()));
1366     Entry->eraseFromParent();
1367   } else {
1368     GA->setName(MangledName.getString());
1369   }
1370 
1371   // Set attributes which are particular to an alias; this is a
1372   // specialization of the attributes which may be set on a global
1373   // variable/function.
1374   if (D->hasAttr<DLLExportAttr>()) {
1375     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1376       // The dllexport attribute is ignored for undefined symbols.
1377       if (FD->getBody())
1378         GA->setLinkage(llvm::Function::DLLExportLinkage);
1379     } else {
1380       GA->setLinkage(llvm::Function::DLLExportLinkage);
1381     }
1382   } else if (D->hasAttr<WeakAttr>() ||
1383              D->hasAttr<WeakRefAttr>() ||
1384              D->hasAttr<WeakImportAttr>()) {
1385     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1386   }
1387 
1388   SetCommonAttributes(D, GA);
1389 }
1390 
1391 /// getBuiltinLibFunction - Given a builtin id for a function like
1392 /// "__builtin_fabsf", return a Function* for "fabsf".
1393 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1394                                                   unsigned BuiltinID) {
1395   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1396           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1397          "isn't a lib fn");
1398 
1399   // Get the name, skip over the __builtin_ prefix (if necessary).
1400   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1401   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1402     Name += 10;
1403 
1404   const llvm::FunctionType *Ty =
1405     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1406 
1407   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1408 }
1409 
1410 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1411                                             unsigned NumTys) {
1412   return llvm::Intrinsic::getDeclaration(&getModule(),
1413                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1414 }
1415 
1416 
1417 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1418                                            const llvm::Type *SrcType,
1419                                            const llvm::Type *SizeType) {
1420   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1421   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1422 }
1423 
1424 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1425                                             const llvm::Type *SrcType,
1426                                             const llvm::Type *SizeType) {
1427   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1428   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1429 }
1430 
1431 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1432                                            const llvm::Type *SizeType) {
1433   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1434   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1435 }
1436 
1437 static llvm::StringMapEntry<llvm::Constant*> &
1438 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1439                          const StringLiteral *Literal,
1440                          bool TargetIsLSB,
1441                          bool &IsUTF16,
1442                          unsigned &StringLength) {
1443   unsigned NumBytes = Literal->getByteLength();
1444 
1445   // Check for simple case.
1446   if (!Literal->containsNonAsciiOrNull()) {
1447     StringLength = NumBytes;
1448     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1449                                                 StringLength));
1450   }
1451 
1452   // Otherwise, convert the UTF8 literals into a byte string.
1453   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1454   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1455   UTF16 *ToPtr = &ToBuf[0];
1456 
1457   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1458                                                &ToPtr, ToPtr + NumBytes,
1459                                                strictConversion);
1460 
1461   // Check for conversion failure.
1462   if (Result != conversionOK) {
1463     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1464     // this duplicate code.
1465     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1466     StringLength = NumBytes;
1467     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1468                                                 StringLength));
1469   }
1470 
1471   // ConvertUTF8toUTF16 returns the length in ToPtr.
1472   StringLength = ToPtr - &ToBuf[0];
1473 
1474   // Render the UTF-16 string into a byte array and convert to the target byte
1475   // order.
1476   //
1477   // FIXME: This isn't something we should need to do here.
1478   llvm::SmallString<128> AsBytes;
1479   AsBytes.reserve(StringLength * 2);
1480   for (unsigned i = 0; i != StringLength; ++i) {
1481     unsigned short Val = ToBuf[i];
1482     if (TargetIsLSB) {
1483       AsBytes.push_back(Val & 0xFF);
1484       AsBytes.push_back(Val >> 8);
1485     } else {
1486       AsBytes.push_back(Val >> 8);
1487       AsBytes.push_back(Val & 0xFF);
1488     }
1489   }
1490   // Append one extra null character, the second is automatically added by our
1491   // caller.
1492   AsBytes.push_back(0);
1493 
1494   IsUTF16 = true;
1495   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1496 }
1497 
1498 llvm::Constant *
1499 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1500   unsigned StringLength = 0;
1501   bool isUTF16 = false;
1502   llvm::StringMapEntry<llvm::Constant*> &Entry =
1503     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1504                              getTargetData().isLittleEndian(),
1505                              isUTF16, StringLength);
1506 
1507   if (llvm::Constant *C = Entry.getValue())
1508     return C;
1509 
1510   llvm::Constant *Zero =
1511       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1512   llvm::Constant *Zeros[] = { Zero, Zero };
1513 
1514   // If we don't already have it, get __CFConstantStringClassReference.
1515   if (!CFConstantStringClassRef) {
1516     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1517     Ty = llvm::ArrayType::get(Ty, 0);
1518     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1519                                            "__CFConstantStringClassReference");
1520     // Decay array -> ptr
1521     CFConstantStringClassRef =
1522       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1523   }
1524 
1525   QualType CFTy = getContext().getCFConstantStringType();
1526 
1527   const llvm::StructType *STy =
1528     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1529 
1530   std::vector<llvm::Constant*> Fields(4);
1531 
1532   // Class pointer.
1533   Fields[0] = CFConstantStringClassRef;
1534 
1535   // Flags.
1536   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1537   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1538     llvm::ConstantInt::get(Ty, 0x07C8);
1539 
1540   // String pointer.
1541   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1542 
1543   llvm::GlobalValue::LinkageTypes Linkage;
1544   bool isConstant;
1545   if (isUTF16) {
1546     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1547     Linkage = llvm::GlobalValue::InternalLinkage;
1548     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1549     // does make plain ascii ones writable.
1550     isConstant = true;
1551   } else {
1552     Linkage = llvm::GlobalValue::PrivateLinkage;
1553     isConstant = !Features.WritableStrings;
1554   }
1555 
1556   llvm::GlobalVariable *GV =
1557     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1558                              ".str");
1559   if (isUTF16) {
1560     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1561     GV->setAlignment(Align.getQuantity());
1562   }
1563   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1564 
1565   // String length.
1566   Ty = getTypes().ConvertType(getContext().LongTy);
1567   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1568 
1569   // The struct.
1570   C = llvm::ConstantStruct::get(STy, Fields);
1571   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1572                                 llvm::GlobalVariable::PrivateLinkage, C,
1573                                 "_unnamed_cfstring_");
1574   if (const char *Sect = getContext().Target.getCFStringSection())
1575     GV->setSection(Sect);
1576   Entry.setValue(GV);
1577 
1578   return GV;
1579 }
1580 
1581 /// GetStringForStringLiteral - Return the appropriate bytes for a
1582 /// string literal, properly padded to match the literal type.
1583 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1584   const char *StrData = E->getStrData();
1585   unsigned Len = E->getByteLength();
1586 
1587   const ConstantArrayType *CAT =
1588     getContext().getAsConstantArrayType(E->getType());
1589   assert(CAT && "String isn't pointer or array!");
1590 
1591   // Resize the string to the right size.
1592   std::string Str(StrData, StrData+Len);
1593   uint64_t RealLen = CAT->getSize().getZExtValue();
1594 
1595   if (E->isWide())
1596     RealLen *= getContext().Target.getWCharWidth()/8;
1597 
1598   Str.resize(RealLen, '\0');
1599 
1600   return Str;
1601 }
1602 
1603 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1604 /// constant array for the given string literal.
1605 llvm::Constant *
1606 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1607   // FIXME: This can be more efficient.
1608   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1609   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1610   if (S->isWide()) {
1611     llvm::Type *DestTy =
1612         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1613     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1614   }
1615   return C;
1616 }
1617 
1618 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1619 /// array for the given ObjCEncodeExpr node.
1620 llvm::Constant *
1621 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1622   std::string Str;
1623   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1624 
1625   return GetAddrOfConstantCString(Str);
1626 }
1627 
1628 
1629 /// GenerateWritableString -- Creates storage for a string literal.
1630 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1631                                              bool constant,
1632                                              CodeGenModule &CGM,
1633                                              const char *GlobalName) {
1634   // Create Constant for this string literal. Don't add a '\0'.
1635   llvm::Constant *C =
1636       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1637 
1638   // Create a global variable for this string
1639   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1640                                   llvm::GlobalValue::PrivateLinkage,
1641                                   C, GlobalName);
1642 }
1643 
1644 /// GetAddrOfConstantString - Returns a pointer to a character array
1645 /// containing the literal. This contents are exactly that of the
1646 /// given string, i.e. it will not be null terminated automatically;
1647 /// see GetAddrOfConstantCString. Note that whether the result is
1648 /// actually a pointer to an LLVM constant depends on
1649 /// Feature.WriteableStrings.
1650 ///
1651 /// The result has pointer to array type.
1652 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1653                                                        const char *GlobalName) {
1654   bool IsConstant = !Features.WritableStrings;
1655 
1656   // Get the default prefix if a name wasn't specified.
1657   if (!GlobalName)
1658     GlobalName = ".str";
1659 
1660   // Don't share any string literals if strings aren't constant.
1661   if (!IsConstant)
1662     return GenerateStringLiteral(str, false, *this, GlobalName);
1663 
1664   llvm::StringMapEntry<llvm::Constant *> &Entry =
1665     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1666 
1667   if (Entry.getValue())
1668     return Entry.getValue();
1669 
1670   // Create a global variable for this.
1671   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1672   Entry.setValue(C);
1673   return C;
1674 }
1675 
1676 /// GetAddrOfConstantCString - Returns a pointer to a character
1677 /// array containing the literal and a terminating '\-'
1678 /// character. The result has pointer to array type.
1679 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1680                                                         const char *GlobalName){
1681   return GetAddrOfConstantString(str + '\0', GlobalName);
1682 }
1683 
1684 /// EmitObjCPropertyImplementations - Emit information for synthesized
1685 /// properties for an implementation.
1686 void CodeGenModule::EmitObjCPropertyImplementations(const
1687                                                     ObjCImplementationDecl *D) {
1688   for (ObjCImplementationDecl::propimpl_iterator
1689          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1690     ObjCPropertyImplDecl *PID = *i;
1691 
1692     // Dynamic is just for type-checking.
1693     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1694       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1695 
1696       // Determine which methods need to be implemented, some may have
1697       // been overridden. Note that ::isSynthesized is not the method
1698       // we want, that just indicates if the decl came from a
1699       // property. What we want to know is if the method is defined in
1700       // this implementation.
1701       if (!D->getInstanceMethod(PD->getGetterName()))
1702         CodeGenFunction(*this).GenerateObjCGetter(
1703                                  const_cast<ObjCImplementationDecl *>(D), PID);
1704       if (!PD->isReadOnly() &&
1705           !D->getInstanceMethod(PD->getSetterName()))
1706         CodeGenFunction(*this).GenerateObjCSetter(
1707                                  const_cast<ObjCImplementationDecl *>(D), PID);
1708     }
1709   }
1710 }
1711 
1712 /// EmitNamespace - Emit all declarations in a namespace.
1713 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1714   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1715        I != E; ++I)
1716     EmitTopLevelDecl(*I);
1717 }
1718 
1719 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1720 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1721   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1722       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1723     ErrorUnsupported(LSD, "linkage spec");
1724     return;
1725   }
1726 
1727   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1728        I != E; ++I)
1729     EmitTopLevelDecl(*I);
1730 }
1731 
1732 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1733 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1734   // If an error has occurred, stop code generation, but continue
1735   // parsing and semantic analysis (to ensure all warnings and errors
1736   // are emitted).
1737   if (Diags.hasErrorOccurred())
1738     return;
1739 
1740   // Ignore dependent declarations.
1741   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1742     return;
1743 
1744   switch (D->getKind()) {
1745   case Decl::CXXConversion:
1746   case Decl::CXXMethod:
1747   case Decl::Function:
1748     // Skip function templates
1749     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1750       return;
1751 
1752     EmitGlobal(cast<FunctionDecl>(D));
1753     break;
1754 
1755   case Decl::Var:
1756     EmitGlobal(cast<VarDecl>(D));
1757     break;
1758 
1759   // C++ Decls
1760   case Decl::Namespace:
1761     EmitNamespace(cast<NamespaceDecl>(D));
1762     break;
1763     // No code generation needed.
1764   case Decl::UsingShadow:
1765   case Decl::Using:
1766   case Decl::UsingDirective:
1767   case Decl::ClassTemplate:
1768   case Decl::FunctionTemplate:
1769   case Decl::NamespaceAlias:
1770     break;
1771   case Decl::CXXConstructor:
1772     // Skip function templates
1773     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1774       return;
1775 
1776     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1777     break;
1778   case Decl::CXXDestructor:
1779     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1780     break;
1781 
1782   case Decl::StaticAssert:
1783     // Nothing to do.
1784     break;
1785 
1786   // Objective-C Decls
1787 
1788   // Forward declarations, no (immediate) code generation.
1789   case Decl::ObjCClass:
1790   case Decl::ObjCForwardProtocol:
1791   case Decl::ObjCCategory:
1792   case Decl::ObjCInterface:
1793     break;
1794 
1795   case Decl::ObjCProtocol:
1796     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1797     break;
1798 
1799   case Decl::ObjCCategoryImpl:
1800     // Categories have properties but don't support synthesize so we
1801     // can ignore them here.
1802     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1803     break;
1804 
1805   case Decl::ObjCImplementation: {
1806     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1807     EmitObjCPropertyImplementations(OMD);
1808     Runtime->GenerateClass(OMD);
1809     break;
1810   }
1811   case Decl::ObjCMethod: {
1812     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1813     // If this is not a prototype, emit the body.
1814     if (OMD->getBody())
1815       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1816     break;
1817   }
1818   case Decl::ObjCCompatibleAlias:
1819     // compatibility-alias is a directive and has no code gen.
1820     break;
1821 
1822   case Decl::LinkageSpec:
1823     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1824     break;
1825 
1826   case Decl::FileScopeAsm: {
1827     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1828     llvm::StringRef AsmString = AD->getAsmString()->getString();
1829 
1830     const std::string &S = getModule().getModuleInlineAsm();
1831     if (S.empty())
1832       getModule().setModuleInlineAsm(AsmString);
1833     else
1834       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1835     break;
1836   }
1837 
1838   default:
1839     // Make sure we handled everything we should, every other kind is a
1840     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1841     // function. Need to recode Decl::Kind to do that easily.
1842     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1843   }
1844 }
1845