1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "TargetInfo.h" 22 #include "clang/Frontend/CodeGenOptions.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/DeclTemplate.h" 28 #include "clang/AST/Mangle.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/Mangler.h" 41 #include "llvm/Target/TargetData.h" 42 #include "llvm/Support/CallSite.h" 43 #include "llvm/Support/ErrorHandling.h" 44 using namespace clang; 45 using namespace CodeGen; 46 47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 48 switch (CGM.getContext().Target.getCXXABI()) { 49 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 50 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 51 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 52 } 53 54 llvm_unreachable("invalid C++ ABI kind"); 55 return *CreateItaniumCXXABI(CGM); 56 } 57 58 59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 60 llvm::Module &M, const llvm::TargetData &TD, 61 Diagnostic &diags) 62 : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO), 66 TBAA(0), 67 VTables(*this), ObjCRuntime(0), DebugInfo(0), ARCData(0), RRData(0), 68 CFConstantStringClassRef(0), ConstantStringClassRef(0), 69 NSConstantStringType(0), 70 VMContext(M.getContext()), 71 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 72 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 73 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 74 BlockObjectAssign(0), BlockObjectDispose(0), 75 BlockDescriptorType(0), GenericBlockLiteralType(0) { 76 if (Features.ObjC1) 77 createObjCRuntime(); 78 79 // Enable TBAA unless it's suppressed. 80 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 81 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(), 82 ABI.getMangleContext()); 83 84 // If debug info or coverage generation is enabled, create the CGDebugInfo 85 // object. 86 if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs || 87 CodeGenOpts.EmitGcovNotes) 88 DebugInfo = new CGDebugInfo(*this); 89 90 Block.GlobalUniqueCount = 0; 91 92 if (C.getLangOptions().ObjCAutoRefCount) 93 ARCData = new ARCEntrypoints(); 94 RRData = new RREntrypoints(); 95 96 // Initialize the type cache. 97 llvm::LLVMContext &LLVMContext = M.getContext(); 98 VoidTy = llvm::Type::getVoidTy(LLVMContext); 99 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 PointerWidthInBits = C.Target.getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 } 110 111 CodeGenModule::~CodeGenModule() { 112 delete ObjCRuntime; 113 delete &ABI; 114 delete TBAA; 115 delete DebugInfo; 116 delete ARCData; 117 delete RRData; 118 } 119 120 void CodeGenModule::createObjCRuntime() { 121 if (!Features.NeXTRuntime) 122 ObjCRuntime = CreateGNUObjCRuntime(*this); 123 else 124 ObjCRuntime = CreateMacObjCRuntime(*this); 125 } 126 127 void CodeGenModule::Release() { 128 EmitDeferred(); 129 EmitCXXGlobalInitFunc(); 130 EmitCXXGlobalDtorFunc(); 131 if (ObjCRuntime) 132 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 133 AddGlobalCtor(ObjCInitFunction); 134 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 135 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 136 EmitAnnotations(); 137 EmitLLVMUsed(); 138 139 SimplifyPersonality(); 140 141 if (getCodeGenOpts().EmitDeclMetadata) 142 EmitDeclMetadata(); 143 144 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 145 EmitCoverageFile(); 146 147 if (DebugInfo) 148 DebugInfo->finalize(); 149 } 150 151 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 152 // Make sure that this type is translated. 153 Types.UpdateCompletedType(TD); 154 if (DebugInfo) 155 DebugInfo->UpdateCompletedType(TD); 156 } 157 158 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 159 if (!TBAA) 160 return 0; 161 return TBAA->getTBAAInfo(QTy); 162 } 163 164 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 165 llvm::MDNode *TBAAInfo) { 166 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 167 } 168 169 bool CodeGenModule::isTargetDarwin() const { 170 return getContext().Target.getTriple().isOSDarwin(); 171 } 172 173 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 174 unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error); 175 getDiags().Report(Context.getFullLoc(loc), diagID); 176 } 177 178 /// ErrorUnsupported - Print out an error that codegen doesn't support the 179 /// specified stmt yet. 180 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 181 bool OmitOnError) { 182 if (OmitOnError && getDiags().hasErrorOccurred()) 183 return; 184 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 185 "cannot compile this %0 yet"); 186 std::string Msg = Type; 187 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 188 << Msg << S->getSourceRange(); 189 } 190 191 /// ErrorUnsupported - Print out an error that codegen doesn't support the 192 /// specified decl yet. 193 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 194 bool OmitOnError) { 195 if (OmitOnError && getDiags().hasErrorOccurred()) 196 return; 197 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 198 "cannot compile this %0 yet"); 199 std::string Msg = Type; 200 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 201 } 202 203 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 204 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 205 } 206 207 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 208 const NamedDecl *D) const { 209 // Internal definitions always have default visibility. 210 if (GV->hasLocalLinkage()) { 211 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 212 return; 213 } 214 215 // Set visibility for definitions. 216 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 217 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 218 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 219 } 220 221 /// Set the symbol visibility of type information (vtable and RTTI) 222 /// associated with the given type. 223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 224 const CXXRecordDecl *RD, 225 TypeVisibilityKind TVK) const { 226 setGlobalVisibility(GV, RD); 227 228 if (!CodeGenOpts.HiddenWeakVTables) 229 return; 230 231 // We never want to drop the visibility for RTTI names. 232 if (TVK == TVK_ForRTTIName) 233 return; 234 235 // We want to drop the visibility to hidden for weak type symbols. 236 // This isn't possible if there might be unresolved references 237 // elsewhere that rely on this symbol being visible. 238 239 // This should be kept roughly in sync with setThunkVisibility 240 // in CGVTables.cpp. 241 242 // Preconditions. 243 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 244 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 245 return; 246 247 // Don't override an explicit visibility attribute. 248 if (RD->getExplicitVisibility()) 249 return; 250 251 switch (RD->getTemplateSpecializationKind()) { 252 // We have to disable the optimization if this is an EI definition 253 // because there might be EI declarations in other shared objects. 254 case TSK_ExplicitInstantiationDefinition: 255 case TSK_ExplicitInstantiationDeclaration: 256 return; 257 258 // Every use of a non-template class's type information has to emit it. 259 case TSK_Undeclared: 260 break; 261 262 // In theory, implicit instantiations can ignore the possibility of 263 // an explicit instantiation declaration because there necessarily 264 // must be an EI definition somewhere with default visibility. In 265 // practice, it's possible to have an explicit instantiation for 266 // an arbitrary template class, and linkers aren't necessarily able 267 // to deal with mixed-visibility symbols. 268 case TSK_ExplicitSpecialization: 269 case TSK_ImplicitInstantiation: 270 if (!CodeGenOpts.HiddenWeakTemplateVTables) 271 return; 272 break; 273 } 274 275 // If there's a key function, there may be translation units 276 // that don't have the key function's definition. But ignore 277 // this if we're emitting RTTI under -fno-rtti. 278 if (!(TVK != TVK_ForRTTI) || Features.RTTI) { 279 if (Context.getKeyFunction(RD)) 280 return; 281 } 282 283 // Otherwise, drop the visibility to hidden. 284 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 285 GV->setUnnamedAddr(true); 286 } 287 288 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 289 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 290 291 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 292 if (!Str.empty()) 293 return Str; 294 295 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 296 IdentifierInfo *II = ND->getIdentifier(); 297 assert(II && "Attempt to mangle unnamed decl."); 298 299 Str = II->getName(); 300 return Str; 301 } 302 303 llvm::SmallString<256> Buffer; 304 llvm::raw_svector_ostream Out(Buffer); 305 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 306 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 307 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 308 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 309 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 310 getCXXABI().getMangleContext().mangleBlock(BD, Out); 311 else 312 getCXXABI().getMangleContext().mangleName(ND, Out); 313 314 // Allocate space for the mangled name. 315 Out.flush(); 316 size_t Length = Buffer.size(); 317 char *Name = MangledNamesAllocator.Allocate<char>(Length); 318 std::copy(Buffer.begin(), Buffer.end(), Name); 319 320 Str = StringRef(Name, Length); 321 322 return Str; 323 } 324 325 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 326 const BlockDecl *BD) { 327 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 328 const Decl *D = GD.getDecl(); 329 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 330 if (D == 0) 331 MangleCtx.mangleGlobalBlock(BD, Out); 332 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 333 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 334 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 335 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 336 else 337 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 338 } 339 340 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 341 return getModule().getNamedValue(Name); 342 } 343 344 /// AddGlobalCtor - Add a function to the list that will be called before 345 /// main() runs. 346 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 347 // FIXME: Type coercion of void()* types. 348 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 349 } 350 351 /// AddGlobalDtor - Add a function to the list that will be called 352 /// when the module is unloaded. 353 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 354 // FIXME: Type coercion of void()* types. 355 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 356 } 357 358 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 359 // Ctor function type is void()*. 360 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 361 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 362 363 // Get the type of a ctor entry, { i32, void ()* }. 364 llvm::StructType *CtorStructTy = 365 llvm::StructType::get(llvm::Type::getInt32Ty(VMContext), 366 llvm::PointerType::getUnqual(CtorFTy), NULL); 367 368 // Construct the constructor and destructor arrays. 369 std::vector<llvm::Constant*> Ctors; 370 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 371 std::vector<llvm::Constant*> S; 372 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 373 I->second, false)); 374 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 375 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 376 } 377 378 if (!Ctors.empty()) { 379 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 380 new llvm::GlobalVariable(TheModule, AT, false, 381 llvm::GlobalValue::AppendingLinkage, 382 llvm::ConstantArray::get(AT, Ctors), 383 GlobalName); 384 } 385 } 386 387 void CodeGenModule::EmitAnnotations() { 388 if (Annotations.empty()) 389 return; 390 391 // Create a new global variable for the ConstantStruct in the Module. 392 llvm::Constant *Array = 393 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 394 Annotations.size()), 395 Annotations); 396 llvm::GlobalValue *gv = 397 new llvm::GlobalVariable(TheModule, Array->getType(), false, 398 llvm::GlobalValue::AppendingLinkage, Array, 399 "llvm.global.annotations"); 400 gv->setSection("llvm.metadata"); 401 } 402 403 llvm::GlobalValue::LinkageTypes 404 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 405 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 406 407 if (Linkage == GVA_Internal) 408 return llvm::Function::InternalLinkage; 409 410 if (D->hasAttr<DLLExportAttr>()) 411 return llvm::Function::DLLExportLinkage; 412 413 if (D->hasAttr<WeakAttr>()) 414 return llvm::Function::WeakAnyLinkage; 415 416 // In C99 mode, 'inline' functions are guaranteed to have a strong 417 // definition somewhere else, so we can use available_externally linkage. 418 if (Linkage == GVA_C99Inline) 419 return llvm::Function::AvailableExternallyLinkage; 420 421 // In C++, the compiler has to emit a definition in every translation unit 422 // that references the function. We should use linkonce_odr because 423 // a) if all references in this translation unit are optimized away, we 424 // don't need to codegen it. b) if the function persists, it needs to be 425 // merged with other definitions. c) C++ has the ODR, so we know the 426 // definition is dependable. 427 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 428 return !Context.getLangOptions().AppleKext 429 ? llvm::Function::LinkOnceODRLinkage 430 : llvm::Function::InternalLinkage; 431 432 // An explicit instantiation of a template has weak linkage, since 433 // explicit instantiations can occur in multiple translation units 434 // and must all be equivalent. However, we are not allowed to 435 // throw away these explicit instantiations. 436 if (Linkage == GVA_ExplicitTemplateInstantiation) 437 return !Context.getLangOptions().AppleKext 438 ? llvm::Function::WeakODRLinkage 439 : llvm::Function::InternalLinkage; 440 441 // Otherwise, we have strong external linkage. 442 assert(Linkage == GVA_StrongExternal); 443 return llvm::Function::ExternalLinkage; 444 } 445 446 447 /// SetFunctionDefinitionAttributes - Set attributes for a global. 448 /// 449 /// FIXME: This is currently only done for aliases and functions, but not for 450 /// variables (these details are set in EmitGlobalVarDefinition for variables). 451 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 452 llvm::GlobalValue *GV) { 453 SetCommonAttributes(D, GV); 454 } 455 456 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 457 const CGFunctionInfo &Info, 458 llvm::Function *F) { 459 unsigned CallingConv; 460 AttributeListType AttributeList; 461 ConstructAttributeList(Info, D, AttributeList, CallingConv); 462 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 463 AttributeList.size())); 464 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 465 } 466 467 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 468 llvm::Function *F) { 469 if (CodeGenOpts.UnwindTables) 470 F->setHasUWTable(); 471 472 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 473 F->addFnAttr(llvm::Attribute::NoUnwind); 474 475 if (D->hasAttr<NakedAttr>()) { 476 // Naked implies noinline: we should not be inlining such functions. 477 F->addFnAttr(llvm::Attribute::Naked); 478 F->addFnAttr(llvm::Attribute::NoInline); 479 } 480 481 if (D->hasAttr<NoInlineAttr>()) 482 F->addFnAttr(llvm::Attribute::NoInline); 483 484 // (noinline wins over always_inline, and we can't specify both in IR) 485 if (D->hasAttr<AlwaysInlineAttr>() && 486 !F->hasFnAttr(llvm::Attribute::NoInline)) 487 F->addFnAttr(llvm::Attribute::AlwaysInline); 488 489 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 490 F->setUnnamedAddr(true); 491 492 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 493 F->addFnAttr(llvm::Attribute::StackProtect); 494 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 495 F->addFnAttr(llvm::Attribute::StackProtectReq); 496 497 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 498 if (alignment) 499 F->setAlignment(alignment); 500 501 // C++ ABI requires 2-byte alignment for member functions. 502 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 503 F->setAlignment(2); 504 } 505 506 void CodeGenModule::SetCommonAttributes(const Decl *D, 507 llvm::GlobalValue *GV) { 508 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 509 setGlobalVisibility(GV, ND); 510 else 511 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 512 513 if (D->hasAttr<UsedAttr>()) 514 AddUsedGlobal(GV); 515 516 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 517 GV->setSection(SA->getName()); 518 519 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 520 } 521 522 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 523 llvm::Function *F, 524 const CGFunctionInfo &FI) { 525 SetLLVMFunctionAttributes(D, FI, F); 526 SetLLVMFunctionAttributesForDefinition(D, F); 527 528 F->setLinkage(llvm::Function::InternalLinkage); 529 530 SetCommonAttributes(D, F); 531 } 532 533 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 534 llvm::Function *F, 535 bool IsIncompleteFunction) { 536 if (unsigned IID = F->getIntrinsicID()) { 537 // If this is an intrinsic function, set the function's attributes 538 // to the intrinsic's attributes. 539 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 540 return; 541 } 542 543 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 544 545 if (!IsIncompleteFunction) 546 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 547 548 // Only a few attributes are set on declarations; these may later be 549 // overridden by a definition. 550 551 if (FD->hasAttr<DLLImportAttr>()) { 552 F->setLinkage(llvm::Function::DLLImportLinkage); 553 } else if (FD->hasAttr<WeakAttr>() || 554 FD->isWeakImported()) { 555 // "extern_weak" is overloaded in LLVM; we probably should have 556 // separate linkage types for this. 557 F->setLinkage(llvm::Function::ExternalWeakLinkage); 558 } else { 559 F->setLinkage(llvm::Function::ExternalLinkage); 560 561 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 562 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 563 F->setVisibility(GetLLVMVisibility(LV.visibility())); 564 } 565 } 566 567 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 568 F->setSection(SA->getName()); 569 } 570 571 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 572 assert(!GV->isDeclaration() && 573 "Only globals with definition can force usage."); 574 LLVMUsed.push_back(GV); 575 } 576 577 void CodeGenModule::EmitLLVMUsed() { 578 // Don't create llvm.used if there is no need. 579 if (LLVMUsed.empty()) 580 return; 581 582 llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 583 584 // Convert LLVMUsed to what ConstantArray needs. 585 std::vector<llvm::Constant*> UsedArray; 586 UsedArray.resize(LLVMUsed.size()); 587 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 588 UsedArray[i] = 589 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 590 i8PTy); 591 } 592 593 if (UsedArray.empty()) 594 return; 595 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 596 597 llvm::GlobalVariable *GV = 598 new llvm::GlobalVariable(getModule(), ATy, false, 599 llvm::GlobalValue::AppendingLinkage, 600 llvm::ConstantArray::get(ATy, UsedArray), 601 "llvm.used"); 602 603 GV->setSection("llvm.metadata"); 604 } 605 606 void CodeGenModule::EmitDeferred() { 607 // Emit code for any potentially referenced deferred decls. Since a 608 // previously unused static decl may become used during the generation of code 609 // for a static function, iterate until no changes are made. 610 611 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 612 if (!DeferredVTables.empty()) { 613 const CXXRecordDecl *RD = DeferredVTables.back(); 614 DeferredVTables.pop_back(); 615 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 616 continue; 617 } 618 619 GlobalDecl D = DeferredDeclsToEmit.back(); 620 DeferredDeclsToEmit.pop_back(); 621 622 // Check to see if we've already emitted this. This is necessary 623 // for a couple of reasons: first, decls can end up in the 624 // deferred-decls queue multiple times, and second, decls can end 625 // up with definitions in unusual ways (e.g. by an extern inline 626 // function acquiring a strong function redefinition). Just 627 // ignore these cases. 628 // 629 // TODO: That said, looking this up multiple times is very wasteful. 630 StringRef Name = getMangledName(D); 631 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 632 assert(CGRef && "Deferred decl wasn't referenced?"); 633 634 if (!CGRef->isDeclaration()) 635 continue; 636 637 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 638 // purposes an alias counts as a definition. 639 if (isa<llvm::GlobalAlias>(CGRef)) 640 continue; 641 642 // Otherwise, emit the definition and move on to the next one. 643 EmitGlobalDefinition(D); 644 } 645 } 646 647 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 648 /// annotation information for a given GlobalValue. The annotation struct is 649 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 650 /// GlobalValue being annotated. The second field is the constant string 651 /// created from the AnnotateAttr's annotation. The third field is a constant 652 /// string containing the name of the translation unit. The fourth field is 653 /// the line number in the file of the annotated value declaration. 654 /// 655 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 656 /// appears to. 657 /// 658 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 659 const AnnotateAttr *AA, 660 unsigned LineNo) { 661 llvm::Module *M = &getModule(); 662 663 // get [N x i8] constants for the annotation string, and the filename string 664 // which are the 2nd and 3rd elements of the global annotation structure. 665 llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 666 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 667 AA->getAnnotation(), true); 668 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 669 M->getModuleIdentifier(), 670 true); 671 672 // Get the two global values corresponding to the ConstantArrays we just 673 // created to hold the bytes of the strings. 674 llvm::GlobalValue *annoGV = 675 new llvm::GlobalVariable(*M, anno->getType(), false, 676 llvm::GlobalValue::PrivateLinkage, anno, 677 GV->getName()); 678 // translation unit name string, emitted into the llvm.metadata section. 679 llvm::GlobalValue *unitGV = 680 new llvm::GlobalVariable(*M, unit->getType(), false, 681 llvm::GlobalValue::PrivateLinkage, unit, 682 ".str"); 683 unitGV->setUnnamedAddr(true); 684 685 // Create the ConstantStruct for the global annotation. 686 llvm::Constant *Fields[4] = { 687 llvm::ConstantExpr::getBitCast(GV, SBP), 688 llvm::ConstantExpr::getBitCast(annoGV, SBP), 689 llvm::ConstantExpr::getBitCast(unitGV, SBP), 690 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 691 }; 692 return llvm::ConstantStruct::getAnon(Fields); 693 } 694 695 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 696 // Never defer when EmitAllDecls is specified. 697 if (Features.EmitAllDecls) 698 return false; 699 700 return !getContext().DeclMustBeEmitted(Global); 701 } 702 703 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 704 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 705 assert(AA && "No alias?"); 706 707 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 708 709 // See if there is already something with the target's name in the module. 710 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 711 712 llvm::Constant *Aliasee; 713 if (isa<llvm::FunctionType>(DeclTy)) 714 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 715 /*ForVTable=*/false); 716 else 717 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 718 llvm::PointerType::getUnqual(DeclTy), 0); 719 if (!Entry) { 720 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 721 F->setLinkage(llvm::Function::ExternalWeakLinkage); 722 WeakRefReferences.insert(F); 723 } 724 725 return Aliasee; 726 } 727 728 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 729 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 730 731 // Weak references don't produce any output by themselves. 732 if (Global->hasAttr<WeakRefAttr>()) 733 return; 734 735 // If this is an alias definition (which otherwise looks like a declaration) 736 // emit it now. 737 if (Global->hasAttr<AliasAttr>()) 738 return EmitAliasDefinition(GD); 739 740 // Ignore declarations, they will be emitted on their first use. 741 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 742 if (FD->getIdentifier()) { 743 StringRef Name = FD->getName(); 744 if (Name == "_Block_object_assign") { 745 BlockObjectAssignDecl = FD; 746 } else if (Name == "_Block_object_dispose") { 747 BlockObjectDisposeDecl = FD; 748 } 749 } 750 751 // Forward declarations are emitted lazily on first use. 752 if (!FD->doesThisDeclarationHaveABody()) { 753 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 754 return; 755 756 const FunctionDecl *InlineDefinition = 0; 757 FD->getBody(InlineDefinition); 758 759 StringRef MangledName = getMangledName(GD); 760 llvm::StringMap<GlobalDecl>::iterator DDI = 761 DeferredDecls.find(MangledName); 762 if (DDI != DeferredDecls.end()) 763 DeferredDecls.erase(DDI); 764 EmitGlobalDefinition(InlineDefinition); 765 return; 766 } 767 } else { 768 const VarDecl *VD = cast<VarDecl>(Global); 769 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 770 771 if (VD->getIdentifier()) { 772 StringRef Name = VD->getName(); 773 if (Name == "_NSConcreteGlobalBlock") { 774 NSConcreteGlobalBlockDecl = VD; 775 } else if (Name == "_NSConcreteStackBlock") { 776 NSConcreteStackBlockDecl = VD; 777 } 778 } 779 780 781 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 782 return; 783 } 784 785 // Defer code generation when possible if this is a static definition, inline 786 // function etc. These we only want to emit if they are used. 787 if (!MayDeferGeneration(Global)) { 788 // Emit the definition if it can't be deferred. 789 EmitGlobalDefinition(GD); 790 return; 791 } 792 793 // If we're deferring emission of a C++ variable with an 794 // initializer, remember the order in which it appeared in the file. 795 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 796 cast<VarDecl>(Global)->hasInit()) { 797 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 798 CXXGlobalInits.push_back(0); 799 } 800 801 // If the value has already been used, add it directly to the 802 // DeferredDeclsToEmit list. 803 StringRef MangledName = getMangledName(GD); 804 if (GetGlobalValue(MangledName)) 805 DeferredDeclsToEmit.push_back(GD); 806 else { 807 // Otherwise, remember that we saw a deferred decl with this name. The 808 // first use of the mangled name will cause it to move into 809 // DeferredDeclsToEmit. 810 DeferredDecls[MangledName] = GD; 811 } 812 } 813 814 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 815 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 816 817 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 818 Context.getSourceManager(), 819 "Generating code for declaration"); 820 821 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 822 // At -O0, don't generate IR for functions with available_externally 823 // linkage. 824 if (CodeGenOpts.OptimizationLevel == 0 && 825 !Function->hasAttr<AlwaysInlineAttr>() && 826 getFunctionLinkage(Function) 827 == llvm::Function::AvailableExternallyLinkage) 828 return; 829 830 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 831 // Make sure to emit the definition(s) before we emit the thunks. 832 // This is necessary for the generation of certain thunks. 833 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 834 EmitCXXConstructor(CD, GD.getCtorType()); 835 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 836 EmitCXXDestructor(DD, GD.getDtorType()); 837 else 838 EmitGlobalFunctionDefinition(GD); 839 840 if (Method->isVirtual()) 841 getVTables().EmitThunks(GD); 842 843 return; 844 } 845 846 return EmitGlobalFunctionDefinition(GD); 847 } 848 849 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 850 return EmitGlobalVarDefinition(VD); 851 852 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 853 } 854 855 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 856 /// module, create and return an llvm Function with the specified type. If there 857 /// is something in the module with the specified name, return it potentially 858 /// bitcasted to the right type. 859 /// 860 /// If D is non-null, it specifies a decl that correspond to this. This is used 861 /// to set the attributes on the function when it is first created. 862 llvm::Constant * 863 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 864 llvm::Type *Ty, 865 GlobalDecl D, bool ForVTable, 866 llvm::Attributes ExtraAttrs) { 867 // Lookup the entry, lazily creating it if necessary. 868 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 869 if (Entry) { 870 if (WeakRefReferences.count(Entry)) { 871 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 872 if (FD && !FD->hasAttr<WeakAttr>()) 873 Entry->setLinkage(llvm::Function::ExternalLinkage); 874 875 WeakRefReferences.erase(Entry); 876 } 877 878 if (Entry->getType()->getElementType() == Ty) 879 return Entry; 880 881 // Make sure the result is of the correct type. 882 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 883 } 884 885 // This function doesn't have a complete type (for example, the return 886 // type is an incomplete struct). Use a fake type instead, and make 887 // sure not to try to set attributes. 888 bool IsIncompleteFunction = false; 889 890 llvm::FunctionType *FTy; 891 if (isa<llvm::FunctionType>(Ty)) { 892 FTy = cast<llvm::FunctionType>(Ty); 893 } else { 894 FTy = llvm::FunctionType::get(VoidTy, false); 895 IsIncompleteFunction = true; 896 } 897 898 llvm::Function *F = llvm::Function::Create(FTy, 899 llvm::Function::ExternalLinkage, 900 MangledName, &getModule()); 901 assert(F->getName() == MangledName && "name was uniqued!"); 902 if (D.getDecl()) 903 SetFunctionAttributes(D, F, IsIncompleteFunction); 904 if (ExtraAttrs != llvm::Attribute::None) 905 F->addFnAttr(ExtraAttrs); 906 907 // This is the first use or definition of a mangled name. If there is a 908 // deferred decl with this name, remember that we need to emit it at the end 909 // of the file. 910 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 911 if (DDI != DeferredDecls.end()) { 912 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 913 // list, and remove it from DeferredDecls (since we don't need it anymore). 914 DeferredDeclsToEmit.push_back(DDI->second); 915 DeferredDecls.erase(DDI); 916 917 // Otherwise, there are cases we have to worry about where we're 918 // using a declaration for which we must emit a definition but where 919 // we might not find a top-level definition: 920 // - member functions defined inline in their classes 921 // - friend functions defined inline in some class 922 // - special member functions with implicit definitions 923 // If we ever change our AST traversal to walk into class methods, 924 // this will be unnecessary. 925 // 926 // We also don't emit a definition for a function if it's going to be an entry 927 // in a vtable, unless it's already marked as used. 928 } else if (getLangOptions().CPlusPlus && D.getDecl()) { 929 // Look for a declaration that's lexically in a record. 930 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 931 do { 932 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 933 if (FD->isImplicit() && !ForVTable) { 934 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 935 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 936 break; 937 } else if (FD->doesThisDeclarationHaveABody()) { 938 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 939 break; 940 } 941 } 942 FD = FD->getPreviousDeclaration(); 943 } while (FD); 944 } 945 946 // Make sure the result is of the requested type. 947 if (!IsIncompleteFunction) { 948 assert(F->getType()->getElementType() == Ty); 949 return F; 950 } 951 952 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 953 return llvm::ConstantExpr::getBitCast(F, PTy); 954 } 955 956 /// GetAddrOfFunction - Return the address of the given function. If Ty is 957 /// non-null, then this function will use the specified type if it has to 958 /// create it (this occurs when we see a definition of the function). 959 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 960 llvm::Type *Ty, 961 bool ForVTable) { 962 // If there was no specific requested type, just convert it now. 963 if (!Ty) 964 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 965 966 StringRef MangledName = getMangledName(GD); 967 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 968 } 969 970 /// CreateRuntimeFunction - Create a new runtime function with the specified 971 /// type and name. 972 llvm::Constant * 973 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 974 StringRef Name, 975 llvm::Attributes ExtraAttrs) { 976 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 977 ExtraAttrs); 978 } 979 980 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D, 981 bool ConstantInit) { 982 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 983 return false; 984 985 if (Context.getLangOptions().CPlusPlus) { 986 if (const RecordType *Record 987 = Context.getBaseElementType(D->getType())->getAs<RecordType>()) 988 return ConstantInit && 989 cast<CXXRecordDecl>(Record->getDecl())->isPOD() && 990 !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields(); 991 } 992 993 return true; 994 } 995 996 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 997 /// create and return an llvm GlobalVariable with the specified type. If there 998 /// is something in the module with the specified name, return it potentially 999 /// bitcasted to the right type. 1000 /// 1001 /// If D is non-null, it specifies a decl that correspond to this. This is used 1002 /// to set the attributes on the global when it is first created. 1003 llvm::Constant * 1004 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1005 llvm::PointerType *Ty, 1006 const VarDecl *D, 1007 bool UnnamedAddr) { 1008 // Lookup the entry, lazily creating it if necessary. 1009 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1010 if (Entry) { 1011 if (WeakRefReferences.count(Entry)) { 1012 if (D && !D->hasAttr<WeakAttr>()) 1013 Entry->setLinkage(llvm::Function::ExternalLinkage); 1014 1015 WeakRefReferences.erase(Entry); 1016 } 1017 1018 if (UnnamedAddr) 1019 Entry->setUnnamedAddr(true); 1020 1021 if (Entry->getType() == Ty) 1022 return Entry; 1023 1024 // Make sure the result is of the correct type. 1025 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1026 } 1027 1028 // This is the first use or definition of a mangled name. If there is a 1029 // deferred decl with this name, remember that we need to emit it at the end 1030 // of the file. 1031 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1032 if (DDI != DeferredDecls.end()) { 1033 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1034 // list, and remove it from DeferredDecls (since we don't need it anymore). 1035 DeferredDeclsToEmit.push_back(DDI->second); 1036 DeferredDecls.erase(DDI); 1037 } 1038 1039 llvm::GlobalVariable *GV = 1040 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1041 llvm::GlobalValue::ExternalLinkage, 1042 0, MangledName, 0, 1043 false, Ty->getAddressSpace()); 1044 1045 // Handle things which are present even on external declarations. 1046 if (D) { 1047 // FIXME: This code is overly simple and should be merged with other global 1048 // handling. 1049 GV->setConstant(DeclIsConstantGlobal(Context, D, false)); 1050 1051 // Set linkage and visibility in case we never see a definition. 1052 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1053 if (LV.linkage() != ExternalLinkage) { 1054 // Don't set internal linkage on declarations. 1055 } else { 1056 if (D->hasAttr<DLLImportAttr>()) 1057 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1058 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1059 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1060 1061 // Set visibility on a declaration only if it's explicit. 1062 if (LV.visibilityExplicit()) 1063 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1064 } 1065 1066 GV->setThreadLocal(D->isThreadSpecified()); 1067 } 1068 1069 return GV; 1070 } 1071 1072 1073 llvm::GlobalVariable * 1074 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1075 llvm::Type *Ty, 1076 llvm::GlobalValue::LinkageTypes Linkage) { 1077 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1078 llvm::GlobalVariable *OldGV = 0; 1079 1080 1081 if (GV) { 1082 // Check if the variable has the right type. 1083 if (GV->getType()->getElementType() == Ty) 1084 return GV; 1085 1086 // Because C++ name mangling, the only way we can end up with an already 1087 // existing global with the same name is if it has been declared extern "C". 1088 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1089 OldGV = GV; 1090 } 1091 1092 // Create a new variable. 1093 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1094 Linkage, 0, Name); 1095 1096 if (OldGV) { 1097 // Replace occurrences of the old variable if needed. 1098 GV->takeName(OldGV); 1099 1100 if (!OldGV->use_empty()) { 1101 llvm::Constant *NewPtrForOldDecl = 1102 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1103 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1104 } 1105 1106 OldGV->eraseFromParent(); 1107 } 1108 1109 return GV; 1110 } 1111 1112 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1113 /// given global variable. If Ty is non-null and if the global doesn't exist, 1114 /// then it will be greated with the specified type instead of whatever the 1115 /// normal requested type would be. 1116 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1117 llvm::Type *Ty) { 1118 assert(D->hasGlobalStorage() && "Not a global variable"); 1119 QualType ASTTy = D->getType(); 1120 if (Ty == 0) 1121 Ty = getTypes().ConvertTypeForMem(ASTTy); 1122 1123 llvm::PointerType *PTy = 1124 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1125 1126 StringRef MangledName = getMangledName(D); 1127 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1128 } 1129 1130 /// CreateRuntimeVariable - Create a new runtime global variable with the 1131 /// specified type and name. 1132 llvm::Constant * 1133 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1134 StringRef Name) { 1135 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1136 true); 1137 } 1138 1139 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1140 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1141 1142 if (MayDeferGeneration(D)) { 1143 // If we have not seen a reference to this variable yet, place it 1144 // into the deferred declarations table to be emitted if needed 1145 // later. 1146 StringRef MangledName = getMangledName(D); 1147 if (!GetGlobalValue(MangledName)) { 1148 DeferredDecls[MangledName] = D; 1149 return; 1150 } 1151 } 1152 1153 // The tentative definition is the only definition. 1154 EmitGlobalVarDefinition(D); 1155 } 1156 1157 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1158 if (DefinitionRequired) 1159 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1160 } 1161 1162 llvm::GlobalVariable::LinkageTypes 1163 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1164 if (RD->getLinkage() != ExternalLinkage) 1165 return llvm::GlobalVariable::InternalLinkage; 1166 1167 if (const CXXMethodDecl *KeyFunction 1168 = RD->getASTContext().getKeyFunction(RD)) { 1169 // If this class has a key function, use that to determine the linkage of 1170 // the vtable. 1171 const FunctionDecl *Def = 0; 1172 if (KeyFunction->hasBody(Def)) 1173 KeyFunction = cast<CXXMethodDecl>(Def); 1174 1175 switch (KeyFunction->getTemplateSpecializationKind()) { 1176 case TSK_Undeclared: 1177 case TSK_ExplicitSpecialization: 1178 // When compiling with optimizations turned on, we emit all vtables, 1179 // even if the key function is not defined in the current translation 1180 // unit. If this is the case, use available_externally linkage. 1181 if (!Def && CodeGenOpts.OptimizationLevel) 1182 return llvm::GlobalVariable::AvailableExternallyLinkage; 1183 1184 if (KeyFunction->isInlined()) 1185 return !Context.getLangOptions().AppleKext ? 1186 llvm::GlobalVariable::LinkOnceODRLinkage : 1187 llvm::Function::InternalLinkage; 1188 1189 return llvm::GlobalVariable::ExternalLinkage; 1190 1191 case TSK_ImplicitInstantiation: 1192 return !Context.getLangOptions().AppleKext ? 1193 llvm::GlobalVariable::LinkOnceODRLinkage : 1194 llvm::Function::InternalLinkage; 1195 1196 case TSK_ExplicitInstantiationDefinition: 1197 return !Context.getLangOptions().AppleKext ? 1198 llvm::GlobalVariable::WeakODRLinkage : 1199 llvm::Function::InternalLinkage; 1200 1201 case TSK_ExplicitInstantiationDeclaration: 1202 // FIXME: Use available_externally linkage. However, this currently 1203 // breaks LLVM's build due to undefined symbols. 1204 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1205 return !Context.getLangOptions().AppleKext ? 1206 llvm::GlobalVariable::LinkOnceODRLinkage : 1207 llvm::Function::InternalLinkage; 1208 } 1209 } 1210 1211 if (Context.getLangOptions().AppleKext) 1212 return llvm::Function::InternalLinkage; 1213 1214 switch (RD->getTemplateSpecializationKind()) { 1215 case TSK_Undeclared: 1216 case TSK_ExplicitSpecialization: 1217 case TSK_ImplicitInstantiation: 1218 // FIXME: Use available_externally linkage. However, this currently 1219 // breaks LLVM's build due to undefined symbols. 1220 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1221 case TSK_ExplicitInstantiationDeclaration: 1222 return llvm::GlobalVariable::LinkOnceODRLinkage; 1223 1224 case TSK_ExplicitInstantiationDefinition: 1225 return llvm::GlobalVariable::WeakODRLinkage; 1226 } 1227 1228 // Silence GCC warning. 1229 return llvm::GlobalVariable::LinkOnceODRLinkage; 1230 } 1231 1232 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1233 return Context.toCharUnitsFromBits( 1234 TheTargetData.getTypeStoreSizeInBits(Ty)); 1235 } 1236 1237 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1238 llvm::Constant *Init = 0; 1239 QualType ASTTy = D->getType(); 1240 bool NonConstInit = false; 1241 1242 const Expr *InitExpr = D->getAnyInitializer(); 1243 1244 if (!InitExpr) { 1245 // This is a tentative definition; tentative definitions are 1246 // implicitly initialized with { 0 }. 1247 // 1248 // Note that tentative definitions are only emitted at the end of 1249 // a translation unit, so they should never have incomplete 1250 // type. In addition, EmitTentativeDefinition makes sure that we 1251 // never attempt to emit a tentative definition if a real one 1252 // exists. A use may still exists, however, so we still may need 1253 // to do a RAUW. 1254 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1255 Init = EmitNullConstant(D->getType()); 1256 } else { 1257 Init = EmitConstantExpr(InitExpr, D->getType()); 1258 if (!Init) { 1259 QualType T = InitExpr->getType(); 1260 if (D->getType()->isReferenceType()) 1261 T = D->getType(); 1262 1263 if (getLangOptions().CPlusPlus) { 1264 Init = EmitNullConstant(T); 1265 NonConstInit = true; 1266 } else { 1267 ErrorUnsupported(D, "static initializer"); 1268 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1269 } 1270 } else { 1271 // We don't need an initializer, so remove the entry for the delayed 1272 // initializer position (just in case this entry was delayed). 1273 if (getLangOptions().CPlusPlus) 1274 DelayedCXXInitPosition.erase(D); 1275 } 1276 } 1277 1278 llvm::Type* InitType = Init->getType(); 1279 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1280 1281 // Strip off a bitcast if we got one back. 1282 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1283 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1284 // all zero index gep. 1285 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1286 Entry = CE->getOperand(0); 1287 } 1288 1289 // Entry is now either a Function or GlobalVariable. 1290 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1291 1292 // We have a definition after a declaration with the wrong type. 1293 // We must make a new GlobalVariable* and update everything that used OldGV 1294 // (a declaration or tentative definition) with the new GlobalVariable* 1295 // (which will be a definition). 1296 // 1297 // This happens if there is a prototype for a global (e.g. 1298 // "extern int x[];") and then a definition of a different type (e.g. 1299 // "int x[10];"). This also happens when an initializer has a different type 1300 // from the type of the global (this happens with unions). 1301 if (GV == 0 || 1302 GV->getType()->getElementType() != InitType || 1303 GV->getType()->getAddressSpace() != 1304 getContext().getTargetAddressSpace(ASTTy)) { 1305 1306 // Move the old entry aside so that we'll create a new one. 1307 Entry->setName(StringRef()); 1308 1309 // Make a new global with the correct type, this is now guaranteed to work. 1310 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1311 1312 // Replace all uses of the old global with the new global 1313 llvm::Constant *NewPtrForOldDecl = 1314 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1315 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1316 1317 // Erase the old global, since it is no longer used. 1318 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1319 } 1320 1321 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1322 SourceManager &SM = Context.getSourceManager(); 1323 AddAnnotation(EmitAnnotateAttr( 1324 GV, AA, SM.getExpansionLineNumber(D->getLocation()))); 1325 } 1326 1327 GV->setInitializer(Init); 1328 1329 // If it is safe to mark the global 'constant', do so now. 1330 GV->setConstant(false); 1331 if (!NonConstInit && DeclIsConstantGlobal(Context, D, true)) 1332 GV->setConstant(true); 1333 1334 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1335 1336 // Set the llvm linkage type as appropriate. 1337 llvm::GlobalValue::LinkageTypes Linkage = 1338 GetLLVMLinkageVarDefinition(D, GV); 1339 GV->setLinkage(Linkage); 1340 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1341 // common vars aren't constant even if declared const. 1342 GV->setConstant(false); 1343 1344 SetCommonAttributes(D, GV); 1345 1346 // Emit the initializer function if necessary. 1347 if (NonConstInit) 1348 EmitCXXGlobalVarDeclInitFunc(D, GV); 1349 1350 // Emit global variable debug information. 1351 if (CGDebugInfo *DI = getModuleDebugInfo()) { 1352 DI->setLocation(D->getLocation()); 1353 DI->EmitGlobalVariable(GV, D); 1354 } 1355 } 1356 1357 llvm::GlobalValue::LinkageTypes 1358 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1359 llvm::GlobalVariable *GV) { 1360 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1361 if (Linkage == GVA_Internal) 1362 return llvm::Function::InternalLinkage; 1363 else if (D->hasAttr<DLLImportAttr>()) 1364 return llvm::Function::DLLImportLinkage; 1365 else if (D->hasAttr<DLLExportAttr>()) 1366 return llvm::Function::DLLExportLinkage; 1367 else if (D->hasAttr<WeakAttr>()) { 1368 if (GV->isConstant()) 1369 return llvm::GlobalVariable::WeakODRLinkage; 1370 else 1371 return llvm::GlobalVariable::WeakAnyLinkage; 1372 } else if (Linkage == GVA_TemplateInstantiation || 1373 Linkage == GVA_ExplicitTemplateInstantiation) 1374 return llvm::GlobalVariable::WeakODRLinkage; 1375 else if (!getLangOptions().CPlusPlus && 1376 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1377 D->getAttr<CommonAttr>()) && 1378 !D->hasExternalStorage() && !D->getInit() && 1379 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1380 !D->getAttr<WeakImportAttr>()) { 1381 // Thread local vars aren't considered common linkage. 1382 return llvm::GlobalVariable::CommonLinkage; 1383 } 1384 return llvm::GlobalVariable::ExternalLinkage; 1385 } 1386 1387 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1388 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1389 /// existing call uses of the old function in the module, this adjusts them to 1390 /// call the new function directly. 1391 /// 1392 /// This is not just a cleanup: the always_inline pass requires direct calls to 1393 /// functions to be able to inline them. If there is a bitcast in the way, it 1394 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1395 /// run at -O0. 1396 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1397 llvm::Function *NewFn) { 1398 // If we're redefining a global as a function, don't transform it. 1399 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1400 if (OldFn == 0) return; 1401 1402 llvm::Type *NewRetTy = NewFn->getReturnType(); 1403 SmallVector<llvm::Value*, 4> ArgList; 1404 1405 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1406 UI != E; ) { 1407 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1408 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1409 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1410 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1411 llvm::CallSite CS(CI); 1412 if (!CI || !CS.isCallee(I)) continue; 1413 1414 // If the return types don't match exactly, and if the call isn't dead, then 1415 // we can't transform this call. 1416 if (CI->getType() != NewRetTy && !CI->use_empty()) 1417 continue; 1418 1419 // Get the attribute list. 1420 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1421 llvm::AttrListPtr AttrList = CI->getAttributes(); 1422 1423 // Get any return attributes. 1424 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1425 1426 // Add the return attributes. 1427 if (RAttrs) 1428 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1429 1430 // If the function was passed too few arguments, don't transform. If extra 1431 // arguments were passed, we silently drop them. If any of the types 1432 // mismatch, we don't transform. 1433 unsigned ArgNo = 0; 1434 bool DontTransform = false; 1435 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1436 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1437 if (CS.arg_size() == ArgNo || 1438 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1439 DontTransform = true; 1440 break; 1441 } 1442 1443 // Add any parameter attributes. 1444 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1445 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1446 } 1447 if (DontTransform) 1448 continue; 1449 1450 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1451 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1452 1453 // Okay, we can transform this. Create the new call instruction and copy 1454 // over the required information. 1455 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1456 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1457 ArgList.clear(); 1458 if (!NewCall->getType()->isVoidTy()) 1459 NewCall->takeName(CI); 1460 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(), 1461 AttrVec.end())); 1462 NewCall->setCallingConv(CI->getCallingConv()); 1463 1464 // Finally, remove the old call, replacing any uses with the new one. 1465 if (!CI->use_empty()) 1466 CI->replaceAllUsesWith(NewCall); 1467 1468 // Copy debug location attached to CI. 1469 if (!CI->getDebugLoc().isUnknown()) 1470 NewCall->setDebugLoc(CI->getDebugLoc()); 1471 CI->eraseFromParent(); 1472 } 1473 } 1474 1475 1476 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1477 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1478 1479 // Compute the function info and LLVM type. 1480 const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD); 1481 bool variadic = false; 1482 if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>()) 1483 variadic = fpt->isVariadic(); 1484 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic); 1485 1486 // Get or create the prototype for the function. 1487 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1488 1489 // Strip off a bitcast if we got one back. 1490 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1491 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1492 Entry = CE->getOperand(0); 1493 } 1494 1495 1496 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1497 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1498 1499 // If the types mismatch then we have to rewrite the definition. 1500 assert(OldFn->isDeclaration() && 1501 "Shouldn't replace non-declaration"); 1502 1503 // F is the Function* for the one with the wrong type, we must make a new 1504 // Function* and update everything that used F (a declaration) with the new 1505 // Function* (which will be a definition). 1506 // 1507 // This happens if there is a prototype for a function 1508 // (e.g. "int f()") and then a definition of a different type 1509 // (e.g. "int f(int x)"). Move the old function aside so that it 1510 // doesn't interfere with GetAddrOfFunction. 1511 OldFn->setName(StringRef()); 1512 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1513 1514 // If this is an implementation of a function without a prototype, try to 1515 // replace any existing uses of the function (which may be calls) with uses 1516 // of the new function 1517 if (D->getType()->isFunctionNoProtoType()) { 1518 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1519 OldFn->removeDeadConstantUsers(); 1520 } 1521 1522 // Replace uses of F with the Function we will endow with a body. 1523 if (!Entry->use_empty()) { 1524 llvm::Constant *NewPtrForOldDecl = 1525 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1526 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1527 } 1528 1529 // Ok, delete the old function now, which is dead. 1530 OldFn->eraseFromParent(); 1531 1532 Entry = NewFn; 1533 } 1534 1535 // We need to set linkage and visibility on the function before 1536 // generating code for it because various parts of IR generation 1537 // want to propagate this information down (e.g. to local static 1538 // declarations). 1539 llvm::Function *Fn = cast<llvm::Function>(Entry); 1540 setFunctionLinkage(D, Fn); 1541 1542 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1543 setGlobalVisibility(Fn, D); 1544 1545 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1546 1547 SetFunctionDefinitionAttributes(D, Fn); 1548 SetLLVMFunctionAttributesForDefinition(D, Fn); 1549 1550 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1551 AddGlobalCtor(Fn, CA->getPriority()); 1552 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1553 AddGlobalDtor(Fn, DA->getPriority()); 1554 } 1555 1556 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1557 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1558 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1559 assert(AA && "Not an alias?"); 1560 1561 StringRef MangledName = getMangledName(GD); 1562 1563 // If there is a definition in the module, then it wins over the alias. 1564 // This is dubious, but allow it to be safe. Just ignore the alias. 1565 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1566 if (Entry && !Entry->isDeclaration()) 1567 return; 1568 1569 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1570 1571 // Create a reference to the named value. This ensures that it is emitted 1572 // if a deferred decl. 1573 llvm::Constant *Aliasee; 1574 if (isa<llvm::FunctionType>(DeclTy)) 1575 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1576 /*ForVTable=*/false); 1577 else 1578 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1579 llvm::PointerType::getUnqual(DeclTy), 0); 1580 1581 // Create the new alias itself, but don't set a name yet. 1582 llvm::GlobalValue *GA = 1583 new llvm::GlobalAlias(Aliasee->getType(), 1584 llvm::Function::ExternalLinkage, 1585 "", Aliasee, &getModule()); 1586 1587 if (Entry) { 1588 assert(Entry->isDeclaration()); 1589 1590 // If there is a declaration in the module, then we had an extern followed 1591 // by the alias, as in: 1592 // extern int test6(); 1593 // ... 1594 // int test6() __attribute__((alias("test7"))); 1595 // 1596 // Remove it and replace uses of it with the alias. 1597 GA->takeName(Entry); 1598 1599 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1600 Entry->getType())); 1601 Entry->eraseFromParent(); 1602 } else { 1603 GA->setName(MangledName); 1604 } 1605 1606 // Set attributes which are particular to an alias; this is a 1607 // specialization of the attributes which may be set on a global 1608 // variable/function. 1609 if (D->hasAttr<DLLExportAttr>()) { 1610 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1611 // The dllexport attribute is ignored for undefined symbols. 1612 if (FD->hasBody()) 1613 GA->setLinkage(llvm::Function::DLLExportLinkage); 1614 } else { 1615 GA->setLinkage(llvm::Function::DLLExportLinkage); 1616 } 1617 } else if (D->hasAttr<WeakAttr>() || 1618 D->hasAttr<WeakRefAttr>() || 1619 D->isWeakImported()) { 1620 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1621 } 1622 1623 SetCommonAttributes(D, GA); 1624 } 1625 1626 /// getBuiltinLibFunction - Given a builtin id for a function like 1627 /// "__builtin_fabsf", return a Function* for "fabsf". 1628 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1629 unsigned BuiltinID) { 1630 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1631 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1632 "isn't a lib fn"); 1633 1634 // Get the name, skip over the __builtin_ prefix (if necessary). 1635 StringRef Name; 1636 GlobalDecl D(FD); 1637 1638 // If the builtin has been declared explicitly with an assembler label, 1639 // use the mangled name. This differs from the plain label on platforms 1640 // that prefix labels. 1641 if (FD->hasAttr<AsmLabelAttr>()) 1642 Name = getMangledName(D); 1643 else if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1644 Name = Context.BuiltinInfo.GetName(BuiltinID) + 10; 1645 else 1646 Name = Context.BuiltinInfo.GetName(BuiltinID); 1647 1648 1649 llvm::FunctionType *Ty = 1650 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1651 1652 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 1653 } 1654 1655 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1656 ArrayRef<llvm::Type*> Tys) { 1657 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1658 Tys); 1659 } 1660 1661 static llvm::StringMapEntry<llvm::Constant*> & 1662 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1663 const StringLiteral *Literal, 1664 bool TargetIsLSB, 1665 bool &IsUTF16, 1666 unsigned &StringLength) { 1667 StringRef String = Literal->getString(); 1668 unsigned NumBytes = String.size(); 1669 1670 // Check for simple case. 1671 if (!Literal->containsNonAsciiOrNull()) { 1672 StringLength = NumBytes; 1673 return Map.GetOrCreateValue(String); 1674 } 1675 1676 // Otherwise, convert the UTF8 literals into a byte string. 1677 SmallVector<UTF16, 128> ToBuf(NumBytes); 1678 const UTF8 *FromPtr = (UTF8 *)String.data(); 1679 UTF16 *ToPtr = &ToBuf[0]; 1680 1681 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1682 &ToPtr, ToPtr + NumBytes, 1683 strictConversion); 1684 1685 // ConvertUTF8toUTF16 returns the length in ToPtr. 1686 StringLength = ToPtr - &ToBuf[0]; 1687 1688 // Render the UTF-16 string into a byte array and convert to the target byte 1689 // order. 1690 // 1691 // FIXME: This isn't something we should need to do here. 1692 llvm::SmallString<128> AsBytes; 1693 AsBytes.reserve(StringLength * 2); 1694 for (unsigned i = 0; i != StringLength; ++i) { 1695 unsigned short Val = ToBuf[i]; 1696 if (TargetIsLSB) { 1697 AsBytes.push_back(Val & 0xFF); 1698 AsBytes.push_back(Val >> 8); 1699 } else { 1700 AsBytes.push_back(Val >> 8); 1701 AsBytes.push_back(Val & 0xFF); 1702 } 1703 } 1704 // Append one extra null character, the second is automatically added by our 1705 // caller. 1706 AsBytes.push_back(0); 1707 1708 IsUTF16 = true; 1709 return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size())); 1710 } 1711 1712 static llvm::StringMapEntry<llvm::Constant*> & 1713 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1714 const StringLiteral *Literal, 1715 unsigned &StringLength) 1716 { 1717 StringRef String = Literal->getString(); 1718 StringLength = String.size(); 1719 return Map.GetOrCreateValue(String); 1720 } 1721 1722 llvm::Constant * 1723 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1724 unsigned StringLength = 0; 1725 bool isUTF16 = false; 1726 llvm::StringMapEntry<llvm::Constant*> &Entry = 1727 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1728 getTargetData().isLittleEndian(), 1729 isUTF16, StringLength); 1730 1731 if (llvm::Constant *C = Entry.getValue()) 1732 return C; 1733 1734 llvm::Constant *Zero = 1735 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1736 llvm::Constant *Zeros[] = { Zero, Zero }; 1737 1738 // If we don't already have it, get __CFConstantStringClassReference. 1739 if (!CFConstantStringClassRef) { 1740 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1741 Ty = llvm::ArrayType::get(Ty, 0); 1742 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1743 "__CFConstantStringClassReference"); 1744 // Decay array -> ptr 1745 CFConstantStringClassRef = 1746 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1747 } 1748 1749 QualType CFTy = getContext().getCFConstantStringType(); 1750 1751 llvm::StructType *STy = 1752 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1753 1754 std::vector<llvm::Constant*> Fields(4); 1755 1756 // Class pointer. 1757 Fields[0] = CFConstantStringClassRef; 1758 1759 // Flags. 1760 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1761 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1762 llvm::ConstantInt::get(Ty, 0x07C8); 1763 1764 // String pointer. 1765 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1766 1767 llvm::GlobalValue::LinkageTypes Linkage; 1768 bool isConstant; 1769 if (isUTF16) { 1770 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1771 Linkage = llvm::GlobalValue::InternalLinkage; 1772 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1773 // does make plain ascii ones writable. 1774 isConstant = true; 1775 } else { 1776 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 1777 // when using private linkage. It is not clear if this is a bug in ld 1778 // or a reasonable new restriction. 1779 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 1780 isConstant = !Features.WritableStrings; 1781 } 1782 1783 llvm::GlobalVariable *GV = 1784 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1785 ".str"); 1786 GV->setUnnamedAddr(true); 1787 if (isUTF16) { 1788 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1789 GV->setAlignment(Align.getQuantity()); 1790 } else { 1791 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1792 GV->setAlignment(Align.getQuantity()); 1793 } 1794 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1795 1796 // String length. 1797 Ty = getTypes().ConvertType(getContext().LongTy); 1798 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1799 1800 // The struct. 1801 C = llvm::ConstantStruct::get(STy, Fields); 1802 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1803 llvm::GlobalVariable::PrivateLinkage, C, 1804 "_unnamed_cfstring_"); 1805 if (const char *Sect = getContext().Target.getCFStringSection()) 1806 GV->setSection(Sect); 1807 Entry.setValue(GV); 1808 1809 return GV; 1810 } 1811 1812 static RecordDecl * 1813 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 1814 DeclContext *DC, IdentifierInfo *Id) { 1815 SourceLocation Loc; 1816 if (Ctx.getLangOptions().CPlusPlus) 1817 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1818 else 1819 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 1820 } 1821 1822 llvm::Constant * 1823 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 1824 unsigned StringLength = 0; 1825 llvm::StringMapEntry<llvm::Constant*> &Entry = 1826 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 1827 1828 if (llvm::Constant *C = Entry.getValue()) 1829 return C; 1830 1831 llvm::Constant *Zero = 1832 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1833 llvm::Constant *Zeros[] = { Zero, Zero }; 1834 1835 // If we don't already have it, get _NSConstantStringClassReference. 1836 if (!ConstantStringClassRef) { 1837 std::string StringClass(getLangOptions().ObjCConstantStringClass); 1838 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1839 llvm::Constant *GV; 1840 if (Features.ObjCNonFragileABI) { 1841 std::string str = 1842 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 1843 : "OBJC_CLASS_$_" + StringClass; 1844 GV = getObjCRuntime().GetClassGlobal(str); 1845 // Make sure the result is of the correct type. 1846 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1847 ConstantStringClassRef = 1848 llvm::ConstantExpr::getBitCast(GV, PTy); 1849 } else { 1850 std::string str = 1851 StringClass.empty() ? "_NSConstantStringClassReference" 1852 : "_" + StringClass + "ClassReference"; 1853 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 1854 GV = CreateRuntimeVariable(PTy, str); 1855 // Decay array -> ptr 1856 ConstantStringClassRef = 1857 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1858 } 1859 } 1860 1861 if (!NSConstantStringType) { 1862 // Construct the type for a constant NSString. 1863 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1864 Context.getTranslationUnitDecl(), 1865 &Context.Idents.get("__builtin_NSString")); 1866 D->startDefinition(); 1867 1868 QualType FieldTypes[3]; 1869 1870 // const int *isa; 1871 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 1872 // const char *str; 1873 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 1874 // unsigned int length; 1875 FieldTypes[2] = Context.UnsignedIntTy; 1876 1877 // Create fields 1878 for (unsigned i = 0; i < 3; ++i) { 1879 FieldDecl *Field = FieldDecl::Create(Context, D, 1880 SourceLocation(), 1881 SourceLocation(), 0, 1882 FieldTypes[i], /*TInfo=*/0, 1883 /*BitWidth=*/0, 1884 /*Mutable=*/false, 1885 /*HasInit=*/false); 1886 Field->setAccess(AS_public); 1887 D->addDecl(Field); 1888 } 1889 1890 D->completeDefinition(); 1891 QualType NSTy = Context.getTagDeclType(D); 1892 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1893 } 1894 1895 std::vector<llvm::Constant*> Fields(3); 1896 1897 // Class pointer. 1898 Fields[0] = ConstantStringClassRef; 1899 1900 // String pointer. 1901 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1902 1903 llvm::GlobalValue::LinkageTypes Linkage; 1904 bool isConstant; 1905 Linkage = llvm::GlobalValue::PrivateLinkage; 1906 isConstant = !Features.WritableStrings; 1907 1908 llvm::GlobalVariable *GV = 1909 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1910 ".str"); 1911 GV->setUnnamedAddr(true); 1912 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 1913 GV->setAlignment(Align.getQuantity()); 1914 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 1915 1916 // String length. 1917 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1918 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1919 1920 // The struct. 1921 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 1922 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1923 llvm::GlobalVariable::PrivateLinkage, C, 1924 "_unnamed_nsstring_"); 1925 // FIXME. Fix section. 1926 if (const char *Sect = 1927 Features.ObjCNonFragileABI 1928 ? getContext().Target.getNSStringNonFragileABISection() 1929 : getContext().Target.getNSStringSection()) 1930 GV->setSection(Sect); 1931 Entry.setValue(GV); 1932 1933 return GV; 1934 } 1935 1936 QualType CodeGenModule::getObjCFastEnumerationStateType() { 1937 if (ObjCFastEnumerationStateType.isNull()) { 1938 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 1939 Context.getTranslationUnitDecl(), 1940 &Context.Idents.get("__objcFastEnumerationState")); 1941 D->startDefinition(); 1942 1943 QualType FieldTypes[] = { 1944 Context.UnsignedLongTy, 1945 Context.getPointerType(Context.getObjCIdType()), 1946 Context.getPointerType(Context.UnsignedLongTy), 1947 Context.getConstantArrayType(Context.UnsignedLongTy, 1948 llvm::APInt(32, 5), ArrayType::Normal, 0) 1949 }; 1950 1951 for (size_t i = 0; i < 4; ++i) { 1952 FieldDecl *Field = FieldDecl::Create(Context, 1953 D, 1954 SourceLocation(), 1955 SourceLocation(), 0, 1956 FieldTypes[i], /*TInfo=*/0, 1957 /*BitWidth=*/0, 1958 /*Mutable=*/false, 1959 /*HasInit=*/false); 1960 Field->setAccess(AS_public); 1961 D->addDecl(Field); 1962 } 1963 1964 D->completeDefinition(); 1965 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 1966 } 1967 1968 return ObjCFastEnumerationStateType; 1969 } 1970 1971 /// GetStringForStringLiteral - Return the appropriate bytes for a 1972 /// string literal, properly padded to match the literal type. 1973 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1974 const ASTContext &Context = getContext(); 1975 const ConstantArrayType *CAT = 1976 Context.getAsConstantArrayType(E->getType()); 1977 assert(CAT && "String isn't pointer or array!"); 1978 1979 // Resize the string to the right size. 1980 uint64_t RealLen = CAT->getSize().getZExtValue(); 1981 1982 switch (E->getKind()) { 1983 case StringLiteral::Ascii: 1984 case StringLiteral::UTF8: 1985 break; 1986 case StringLiteral::Wide: 1987 RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth(); 1988 break; 1989 case StringLiteral::UTF16: 1990 RealLen *= Context.Target.getChar16Width() / Context.getCharWidth(); 1991 break; 1992 case StringLiteral::UTF32: 1993 RealLen *= Context.Target.getChar32Width() / Context.getCharWidth(); 1994 break; 1995 } 1996 1997 std::string Str = E->getString().str(); 1998 Str.resize(RealLen, '\0'); 1999 2000 return Str; 2001 } 2002 2003 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2004 /// constant array for the given string literal. 2005 llvm::Constant * 2006 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2007 // FIXME: This can be more efficient. 2008 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 2009 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2010 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S), 2011 /* GlobalName */ 0, 2012 Align.getQuantity()); 2013 if (S->isWide() || S->isUTF16() || S->isUTF32()) { 2014 llvm::Type *DestTy = 2015 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 2016 C = llvm::ConstantExpr::getBitCast(C, DestTy); 2017 } 2018 return C; 2019 } 2020 2021 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2022 /// array for the given ObjCEncodeExpr node. 2023 llvm::Constant * 2024 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2025 std::string Str; 2026 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2027 2028 return GetAddrOfConstantCString(Str); 2029 } 2030 2031 2032 /// GenerateWritableString -- Creates storage for a string literal. 2033 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2034 bool constant, 2035 CodeGenModule &CGM, 2036 const char *GlobalName, 2037 unsigned Alignment) { 2038 // Create Constant for this string literal. Don't add a '\0'. 2039 llvm::Constant *C = 2040 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 2041 2042 // Create a global variable for this string 2043 llvm::GlobalVariable *GV = 2044 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2045 llvm::GlobalValue::PrivateLinkage, 2046 C, GlobalName); 2047 GV->setAlignment(Alignment); 2048 GV->setUnnamedAddr(true); 2049 return GV; 2050 } 2051 2052 /// GetAddrOfConstantString - Returns a pointer to a character array 2053 /// containing the literal. This contents are exactly that of the 2054 /// given string, i.e. it will not be null terminated automatically; 2055 /// see GetAddrOfConstantCString. Note that whether the result is 2056 /// actually a pointer to an LLVM constant depends on 2057 /// Feature.WriteableStrings. 2058 /// 2059 /// The result has pointer to array type. 2060 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2061 const char *GlobalName, 2062 unsigned Alignment) { 2063 bool IsConstant = !Features.WritableStrings; 2064 2065 // Get the default prefix if a name wasn't specified. 2066 if (!GlobalName) 2067 GlobalName = ".str"; 2068 2069 // Don't share any string literals if strings aren't constant. 2070 if (!IsConstant) 2071 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2072 2073 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2074 ConstantStringMap.GetOrCreateValue(Str); 2075 2076 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2077 if (Alignment > GV->getAlignment()) { 2078 GV->setAlignment(Alignment); 2079 } 2080 return GV; 2081 } 2082 2083 // Create a global variable for this. 2084 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment); 2085 Entry.setValue(GV); 2086 return GV; 2087 } 2088 2089 /// GetAddrOfConstantCString - Returns a pointer to a character 2090 /// array containing the literal and a terminating '\0' 2091 /// character. The result has pointer to array type. 2092 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2093 const char *GlobalName, 2094 unsigned Alignment) { 2095 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2096 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2097 } 2098 2099 /// EmitObjCPropertyImplementations - Emit information for synthesized 2100 /// properties for an implementation. 2101 void CodeGenModule::EmitObjCPropertyImplementations(const 2102 ObjCImplementationDecl *D) { 2103 for (ObjCImplementationDecl::propimpl_iterator 2104 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2105 ObjCPropertyImplDecl *PID = *i; 2106 2107 // Dynamic is just for type-checking. 2108 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2109 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2110 2111 // Determine which methods need to be implemented, some may have 2112 // been overridden. Note that ::isSynthesized is not the method 2113 // we want, that just indicates if the decl came from a 2114 // property. What we want to know is if the method is defined in 2115 // this implementation. 2116 if (!D->getInstanceMethod(PD->getGetterName())) 2117 CodeGenFunction(*this).GenerateObjCGetter( 2118 const_cast<ObjCImplementationDecl *>(D), PID); 2119 if (!PD->isReadOnly() && 2120 !D->getInstanceMethod(PD->getSetterName())) 2121 CodeGenFunction(*this).GenerateObjCSetter( 2122 const_cast<ObjCImplementationDecl *>(D), PID); 2123 } 2124 } 2125 } 2126 2127 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2128 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2129 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2130 ivar; ivar = ivar->getNextIvar()) 2131 if (ivar->getType().isDestructedType()) 2132 return true; 2133 2134 return false; 2135 } 2136 2137 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2138 /// for an implementation. 2139 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2140 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2141 if (needsDestructMethod(D)) { 2142 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2143 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2144 ObjCMethodDecl *DTORMethod = 2145 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2146 cxxSelector, getContext().VoidTy, 0, D, 2147 /*isInstance=*/true, /*isVariadic=*/false, 2148 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2149 /*isDefined=*/false, ObjCMethodDecl::Required); 2150 D->addInstanceMethod(DTORMethod); 2151 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2152 D->setHasCXXStructors(true); 2153 } 2154 2155 // If the implementation doesn't have any ivar initializers, we don't need 2156 // a .cxx_construct. 2157 if (D->getNumIvarInitializers() == 0) 2158 return; 2159 2160 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2161 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2162 // The constructor returns 'self'. 2163 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2164 D->getLocation(), 2165 D->getLocation(), cxxSelector, 2166 getContext().getObjCIdType(), 0, 2167 D, /*isInstance=*/true, 2168 /*isVariadic=*/false, 2169 /*isSynthesized=*/true, 2170 /*isImplicitlyDeclared=*/true, 2171 /*isDefined=*/false, 2172 ObjCMethodDecl::Required); 2173 D->addInstanceMethod(CTORMethod); 2174 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2175 D->setHasCXXStructors(true); 2176 } 2177 2178 /// EmitNamespace - Emit all declarations in a namespace. 2179 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2180 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2181 I != E; ++I) 2182 EmitTopLevelDecl(*I); 2183 } 2184 2185 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2186 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2187 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2188 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2189 ErrorUnsupported(LSD, "linkage spec"); 2190 return; 2191 } 2192 2193 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2194 I != E; ++I) 2195 EmitTopLevelDecl(*I); 2196 } 2197 2198 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2199 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2200 // If an error has occurred, stop code generation, but continue 2201 // parsing and semantic analysis (to ensure all warnings and errors 2202 // are emitted). 2203 if (Diags.hasErrorOccurred()) 2204 return; 2205 2206 // Ignore dependent declarations. 2207 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2208 return; 2209 2210 switch (D->getKind()) { 2211 case Decl::CXXConversion: 2212 case Decl::CXXMethod: 2213 case Decl::Function: 2214 // Skip function templates 2215 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2216 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2217 return; 2218 2219 EmitGlobal(cast<FunctionDecl>(D)); 2220 break; 2221 2222 case Decl::Var: 2223 EmitGlobal(cast<VarDecl>(D)); 2224 break; 2225 2226 // Indirect fields from global anonymous structs and unions can be 2227 // ignored; only the actual variable requires IR gen support. 2228 case Decl::IndirectField: 2229 break; 2230 2231 // C++ Decls 2232 case Decl::Namespace: 2233 EmitNamespace(cast<NamespaceDecl>(D)); 2234 break; 2235 // No code generation needed. 2236 case Decl::UsingShadow: 2237 case Decl::Using: 2238 case Decl::UsingDirective: 2239 case Decl::ClassTemplate: 2240 case Decl::FunctionTemplate: 2241 case Decl::TypeAliasTemplate: 2242 case Decl::NamespaceAlias: 2243 case Decl::Block: 2244 break; 2245 case Decl::CXXConstructor: 2246 // Skip function templates 2247 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2248 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2249 return; 2250 2251 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2252 break; 2253 case Decl::CXXDestructor: 2254 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2255 return; 2256 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2257 break; 2258 2259 case Decl::StaticAssert: 2260 // Nothing to do. 2261 break; 2262 2263 // Objective-C Decls 2264 2265 // Forward declarations, no (immediate) code generation. 2266 case Decl::ObjCClass: 2267 case Decl::ObjCForwardProtocol: 2268 case Decl::ObjCInterface: 2269 break; 2270 2271 case Decl::ObjCCategory: { 2272 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2273 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2274 Context.ResetObjCLayout(CD->getClassInterface()); 2275 break; 2276 } 2277 2278 case Decl::ObjCProtocol: 2279 ObjCRuntime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2280 break; 2281 2282 case Decl::ObjCCategoryImpl: 2283 // Categories have properties but don't support synthesize so we 2284 // can ignore them here. 2285 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2286 break; 2287 2288 case Decl::ObjCImplementation: { 2289 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2290 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 2291 Context.ResetObjCLayout(OMD->getClassInterface()); 2292 EmitObjCPropertyImplementations(OMD); 2293 EmitObjCIvarInitializations(OMD); 2294 ObjCRuntime->GenerateClass(OMD); 2295 break; 2296 } 2297 case Decl::ObjCMethod: { 2298 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2299 // If this is not a prototype, emit the body. 2300 if (OMD->getBody()) 2301 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2302 break; 2303 } 2304 case Decl::ObjCCompatibleAlias: 2305 // compatibility-alias is a directive and has no code gen. 2306 break; 2307 2308 case Decl::LinkageSpec: 2309 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2310 break; 2311 2312 case Decl::FileScopeAsm: { 2313 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2314 StringRef AsmString = AD->getAsmString()->getString(); 2315 2316 const std::string &S = getModule().getModuleInlineAsm(); 2317 if (S.empty()) 2318 getModule().setModuleInlineAsm(AsmString); 2319 else if (*--S.end() == '\n') 2320 getModule().setModuleInlineAsm(S + AsmString.str()); 2321 else 2322 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2323 break; 2324 } 2325 2326 default: 2327 // Make sure we handled everything we should, every other kind is a 2328 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2329 // function. Need to recode Decl::Kind to do that easily. 2330 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2331 } 2332 } 2333 2334 /// Turns the given pointer into a constant. 2335 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2336 const void *Ptr) { 2337 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2338 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2339 return llvm::ConstantInt::get(i64, PtrInt); 2340 } 2341 2342 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2343 llvm::NamedMDNode *&GlobalMetadata, 2344 GlobalDecl D, 2345 llvm::GlobalValue *Addr) { 2346 if (!GlobalMetadata) 2347 GlobalMetadata = 2348 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2349 2350 // TODO: should we report variant information for ctors/dtors? 2351 llvm::Value *Ops[] = { 2352 Addr, 2353 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2354 }; 2355 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2356 } 2357 2358 /// Emits metadata nodes associating all the global values in the 2359 /// current module with the Decls they came from. This is useful for 2360 /// projects using IR gen as a subroutine. 2361 /// 2362 /// Since there's currently no way to associate an MDNode directly 2363 /// with an llvm::GlobalValue, we create a global named metadata 2364 /// with the name 'clang.global.decl.ptrs'. 2365 void CodeGenModule::EmitDeclMetadata() { 2366 llvm::NamedMDNode *GlobalMetadata = 0; 2367 2368 // StaticLocalDeclMap 2369 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2370 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2371 I != E; ++I) { 2372 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2373 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2374 } 2375 } 2376 2377 /// Emits metadata nodes for all the local variables in the current 2378 /// function. 2379 void CodeGenFunction::EmitDeclMetadata() { 2380 if (LocalDeclMap.empty()) return; 2381 2382 llvm::LLVMContext &Context = getLLVMContext(); 2383 2384 // Find the unique metadata ID for this name. 2385 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2386 2387 llvm::NamedMDNode *GlobalMetadata = 0; 2388 2389 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2390 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2391 const Decl *D = I->first; 2392 llvm::Value *Addr = I->second; 2393 2394 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2395 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2396 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2397 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2398 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2399 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2400 } 2401 } 2402 } 2403 2404 void CodeGenModule::EmitCoverageFile() { 2405 if (!getCodeGenOpts().CoverageFile.empty()) { 2406 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2407 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2408 llvm::LLVMContext &Ctx = TheModule.getContext(); 2409 llvm::MDString *CoverageFile = 2410 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2411 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2412 llvm::MDNode *CU = CUNode->getOperand(i); 2413 llvm::Value *node[] = { CoverageFile, CU }; 2414 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2415 GCov->addOperand(N); 2416 } 2417 } 2418 } 2419 } 2420 2421 ///@name Custom Runtime Function Interfaces 2422 ///@{ 2423 // 2424 // FIXME: These can be eliminated once we can have clients just get the required 2425 // AST nodes from the builtin tables. 2426 2427 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2428 if (BlockObjectDispose) 2429 return BlockObjectDispose; 2430 2431 // If we saw an explicit decl, use that. 2432 if (BlockObjectDisposeDecl) { 2433 return BlockObjectDispose = GetAddrOfFunction( 2434 BlockObjectDisposeDecl, 2435 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2436 } 2437 2438 // Otherwise construct the function by hand. 2439 llvm::Type *args[] = { Int8PtrTy, Int32Ty }; 2440 llvm::FunctionType *fty 2441 = llvm::FunctionType::get(VoidTy, args, false); 2442 return BlockObjectDispose = 2443 CreateRuntimeFunction(fty, "_Block_object_dispose"); 2444 } 2445 2446 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2447 if (BlockObjectAssign) 2448 return BlockObjectAssign; 2449 2450 // If we saw an explicit decl, use that. 2451 if (BlockObjectAssignDecl) { 2452 return BlockObjectAssign = GetAddrOfFunction( 2453 BlockObjectAssignDecl, 2454 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2455 } 2456 2457 // Otherwise construct the function by hand. 2458 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty }; 2459 llvm::FunctionType *fty 2460 = llvm::FunctionType::get(VoidTy, args, false); 2461 return BlockObjectAssign = 2462 CreateRuntimeFunction(fty, "_Block_object_assign"); 2463 } 2464 2465 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2466 if (NSConcreteGlobalBlock) 2467 return NSConcreteGlobalBlock; 2468 2469 // If we saw an explicit decl, use that. 2470 if (NSConcreteGlobalBlockDecl) { 2471 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2472 NSConcreteGlobalBlockDecl, 2473 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2474 } 2475 2476 // Otherwise construct the variable by hand. 2477 return NSConcreteGlobalBlock = 2478 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock"); 2479 } 2480 2481 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2482 if (NSConcreteStackBlock) 2483 return NSConcreteStackBlock; 2484 2485 // If we saw an explicit decl, use that. 2486 if (NSConcreteStackBlockDecl) { 2487 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2488 NSConcreteStackBlockDecl, 2489 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2490 } 2491 2492 // Otherwise construct the variable by hand. 2493 return NSConcreteStackBlock = 2494 CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock"); 2495 } 2496 2497 ///@} 2498