xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision bb4934601d731465e01e2e22c80ce2dbe687d73f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   // Emit reference of __amdgpu_device_library_preserve_asan_functions to
556   // preserve ASAN functions in bitcode libraries.
557   if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) {
558     auto *FT = llvm::FunctionType::get(VoidTy, {});
559     auto *F = llvm::Function::Create(
560         FT, llvm::GlobalValue::ExternalLinkage,
561         "__amdgpu_device_library_preserve_asan_functions", &getModule());
562     auto *Var = new llvm::GlobalVariable(
563         getModule(), FT->getPointerTo(),
564         /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
565         "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
566         llvm::GlobalVariable::NotThreadLocal);
567     addCompilerUsedGlobal(Var);
568     getModule().addModuleFlag(llvm::Module::Override, "amdgpu_hostcall", 1);
569   }
570 
571   emitLLVMUsed();
572   if (SanStats)
573     SanStats->finish();
574 
575   if (CodeGenOpts.Autolink &&
576       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
577     EmitModuleLinkOptions();
578   }
579 
580   // On ELF we pass the dependent library specifiers directly to the linker
581   // without manipulating them. This is in contrast to other platforms where
582   // they are mapped to a specific linker option by the compiler. This
583   // difference is a result of the greater variety of ELF linkers and the fact
584   // that ELF linkers tend to handle libraries in a more complicated fashion
585   // than on other platforms. This forces us to defer handling the dependent
586   // libs to the linker.
587   //
588   // CUDA/HIP device and host libraries are different. Currently there is no
589   // way to differentiate dependent libraries for host or device. Existing
590   // usage of #pragma comment(lib, *) is intended for host libraries on
591   // Windows. Therefore emit llvm.dependent-libraries only for host.
592   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
593     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
594     for (auto *MD : ELFDependentLibraries)
595       NMD->addOperand(MD);
596   }
597 
598   // Record mregparm value now so it is visible through rest of codegen.
599   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
600     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
601                               CodeGenOpts.NumRegisterParameters);
602 
603   if (CodeGenOpts.DwarfVersion) {
604     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
605                               CodeGenOpts.DwarfVersion);
606   }
607 
608   if (CodeGenOpts.Dwarf64)
609     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
610 
611   if (Context.getLangOpts().SemanticInterposition)
612     // Require various optimization to respect semantic interposition.
613     getModule().setSemanticInterposition(1);
614 
615   if (CodeGenOpts.EmitCodeView) {
616     // Indicate that we want CodeView in the metadata.
617     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
618   }
619   if (CodeGenOpts.CodeViewGHash) {
620     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
621   }
622   if (CodeGenOpts.ControlFlowGuard) {
623     // Function ID tables and checks for Control Flow Guard (cfguard=2).
624     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
625   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
626     // Function ID tables for Control Flow Guard (cfguard=1).
627     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
628   }
629   if (CodeGenOpts.EHContGuard) {
630     // Function ID tables for EH Continuation Guard.
631     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
632   }
633   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
634     // We don't support LTO with 2 with different StrictVTablePointers
635     // FIXME: we could support it by stripping all the information introduced
636     // by StrictVTablePointers.
637 
638     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
639 
640     llvm::Metadata *Ops[2] = {
641               llvm::MDString::get(VMContext, "StrictVTablePointers"),
642               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
643                   llvm::Type::getInt32Ty(VMContext), 1))};
644 
645     getModule().addModuleFlag(llvm::Module::Require,
646                               "StrictVTablePointersRequirement",
647                               llvm::MDNode::get(VMContext, Ops));
648   }
649   if (getModuleDebugInfo())
650     // We support a single version in the linked module. The LLVM
651     // parser will drop debug info with a different version number
652     // (and warn about it, too).
653     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
654                               llvm::DEBUG_METADATA_VERSION);
655 
656   // We need to record the widths of enums and wchar_t, so that we can generate
657   // the correct build attributes in the ARM backend. wchar_size is also used by
658   // TargetLibraryInfo.
659   uint64_t WCharWidth =
660       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
661   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
662 
663   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
664   if (   Arch == llvm::Triple::arm
665       || Arch == llvm::Triple::armeb
666       || Arch == llvm::Triple::thumb
667       || Arch == llvm::Triple::thumbeb) {
668     // The minimum width of an enum in bytes
669     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
670     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
671   }
672 
673   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
674     StringRef ABIStr = Target.getABI();
675     llvm::LLVMContext &Ctx = TheModule.getContext();
676     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
677                               llvm::MDString::get(Ctx, ABIStr));
678   }
679 
680   if (CodeGenOpts.SanitizeCfiCrossDso) {
681     // Indicate that we want cross-DSO control flow integrity checks.
682     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
683   }
684 
685   if (CodeGenOpts.WholeProgramVTables) {
686     // Indicate whether VFE was enabled for this module, so that the
687     // vcall_visibility metadata added under whole program vtables is handled
688     // appropriately in the optimizer.
689     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
690                               CodeGenOpts.VirtualFunctionElimination);
691   }
692 
693   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
694     getModule().addModuleFlag(llvm::Module::Override,
695                               "CFI Canonical Jump Tables",
696                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
697   }
698 
699   if (CodeGenOpts.CFProtectionReturn &&
700       Target.checkCFProtectionReturnSupported(getDiags())) {
701     // Indicate that we want to instrument return control flow protection.
702     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
703                               1);
704   }
705 
706   if (CodeGenOpts.CFProtectionBranch &&
707       Target.checkCFProtectionBranchSupported(getDiags())) {
708     // Indicate that we want to instrument branch control flow protection.
709     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
710                               1);
711   }
712 
713   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
714       Arch == llvm::Triple::aarch64_be) {
715     getModule().addModuleFlag(llvm::Module::Error,
716                               "branch-target-enforcement",
717                               LangOpts.BranchTargetEnforcement);
718 
719     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
720                               LangOpts.hasSignReturnAddress());
721 
722     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
723                               LangOpts.isSignReturnAddressScopeAll());
724 
725     getModule().addModuleFlag(llvm::Module::Error,
726                               "sign-return-address-with-bkey",
727                               !LangOpts.isSignReturnAddressWithAKey());
728   }
729 
730   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
731     llvm::LLVMContext &Ctx = TheModule.getContext();
732     getModule().addModuleFlag(
733         llvm::Module::Error, "MemProfProfileFilename",
734         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
735   }
736 
737   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
738     // Indicate whether __nvvm_reflect should be configured to flush denormal
739     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
740     // property.)
741     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
742                               CodeGenOpts.FP32DenormalMode.Output !=
743                                   llvm::DenormalMode::IEEE);
744   }
745 
746   if (LangOpts.EHAsynch)
747     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
748 
749   // Indicate whether this Module was compiled with -fopenmp
750   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
751     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
752   if (getLangOpts().OpenMPIsDevice)
753     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
754                               LangOpts.OpenMP);
755 
756   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
757   if (LangOpts.OpenCL) {
758     EmitOpenCLMetadata();
759     // Emit SPIR version.
760     if (getTriple().isSPIR()) {
761       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
762       // opencl.spir.version named metadata.
763       // C++ for OpenCL has a distinct mapping for version compatibility with
764       // OpenCL.
765       auto Version = LangOpts.getOpenCLCompatibleVersion();
766       llvm::Metadata *SPIRVerElts[] = {
767           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
768               Int32Ty, Version / 100)),
769           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
770               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
771       llvm::NamedMDNode *SPIRVerMD =
772           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
773       llvm::LLVMContext &Ctx = TheModule.getContext();
774       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
775     }
776   }
777 
778   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
779     assert(PLevel < 3 && "Invalid PIC Level");
780     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
781     if (Context.getLangOpts().PIE)
782       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
783   }
784 
785   if (getCodeGenOpts().CodeModel.size() > 0) {
786     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
787                   .Case("tiny", llvm::CodeModel::Tiny)
788                   .Case("small", llvm::CodeModel::Small)
789                   .Case("kernel", llvm::CodeModel::Kernel)
790                   .Case("medium", llvm::CodeModel::Medium)
791                   .Case("large", llvm::CodeModel::Large)
792                   .Default(~0u);
793     if (CM != ~0u) {
794       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
795       getModule().setCodeModel(codeModel);
796     }
797   }
798 
799   if (CodeGenOpts.NoPLT)
800     getModule().setRtLibUseGOT();
801   if (CodeGenOpts.UnwindTables)
802     getModule().setUwtable();
803 
804   switch (CodeGenOpts.getFramePointer()) {
805   case CodeGenOptions::FramePointerKind::None:
806     // 0 ("none") is the default.
807     break;
808   case CodeGenOptions::FramePointerKind::NonLeaf:
809     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
810     break;
811   case CodeGenOptions::FramePointerKind::All:
812     getModule().setFramePointer(llvm::FramePointerKind::All);
813     break;
814   }
815 
816   SimplifyPersonality();
817 
818   if (getCodeGenOpts().EmitDeclMetadata)
819     EmitDeclMetadata();
820 
821   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
822     EmitCoverageFile();
823 
824   if (CGDebugInfo *DI = getModuleDebugInfo())
825     DI->finalize();
826 
827   if (getCodeGenOpts().EmitVersionIdentMetadata)
828     EmitVersionIdentMetadata();
829 
830   if (!getCodeGenOpts().RecordCommandLine.empty())
831     EmitCommandLineMetadata();
832 
833   if (!getCodeGenOpts().StackProtectorGuard.empty())
834     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
835   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
836     getModule().setStackProtectorGuardReg(
837         getCodeGenOpts().StackProtectorGuardReg);
838   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
839     getModule().setStackProtectorGuardOffset(
840         getCodeGenOpts().StackProtectorGuardOffset);
841   if (getCodeGenOpts().StackAlignment)
842     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
843 
844   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
845 
846   EmitBackendOptionsMetadata(getCodeGenOpts());
847 
848   // Set visibility from DLL storage class
849   // We do this at the end of LLVM IR generation; after any operation
850   // that might affect the DLL storage class or the visibility, and
851   // before anything that might act on these.
852   setVisibilityFromDLLStorageClass(LangOpts, getModule());
853 }
854 
855 void CodeGenModule::EmitOpenCLMetadata() {
856   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
857   // opencl.ocl.version named metadata node.
858   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
859   auto Version = LangOpts.getOpenCLCompatibleVersion();
860   llvm::Metadata *OCLVerElts[] = {
861       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
862           Int32Ty, Version / 100)),
863       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
864           Int32Ty, (Version % 100) / 10))};
865   llvm::NamedMDNode *OCLVerMD =
866       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
867   llvm::LLVMContext &Ctx = TheModule.getContext();
868   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
869 }
870 
871 void CodeGenModule::EmitBackendOptionsMetadata(
872     const CodeGenOptions CodeGenOpts) {
873   switch (getTriple().getArch()) {
874   default:
875     break;
876   case llvm::Triple::riscv32:
877   case llvm::Triple::riscv64:
878     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
879                               CodeGenOpts.SmallDataLimit);
880     break;
881   }
882 }
883 
884 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
885   // Make sure that this type is translated.
886   Types.UpdateCompletedType(TD);
887 }
888 
889 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
890   // Make sure that this type is translated.
891   Types.RefreshTypeCacheForClass(RD);
892 }
893 
894 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
895   if (!TBAA)
896     return nullptr;
897   return TBAA->getTypeInfo(QTy);
898 }
899 
900 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
901   if (!TBAA)
902     return TBAAAccessInfo();
903   if (getLangOpts().CUDAIsDevice) {
904     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
905     // access info.
906     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
907       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
908           nullptr)
909         return TBAAAccessInfo();
910     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
911       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
912           nullptr)
913         return TBAAAccessInfo();
914     }
915   }
916   return TBAA->getAccessInfo(AccessType);
917 }
918 
919 TBAAAccessInfo
920 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
921   if (!TBAA)
922     return TBAAAccessInfo();
923   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
924 }
925 
926 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
927   if (!TBAA)
928     return nullptr;
929   return TBAA->getTBAAStructInfo(QTy);
930 }
931 
932 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
933   if (!TBAA)
934     return nullptr;
935   return TBAA->getBaseTypeInfo(QTy);
936 }
937 
938 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
939   if (!TBAA)
940     return nullptr;
941   return TBAA->getAccessTagInfo(Info);
942 }
943 
944 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
945                                                    TBAAAccessInfo TargetInfo) {
946   if (!TBAA)
947     return TBAAAccessInfo();
948   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
949 }
950 
951 TBAAAccessInfo
952 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
953                                                    TBAAAccessInfo InfoB) {
954   if (!TBAA)
955     return TBAAAccessInfo();
956   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
957 }
958 
959 TBAAAccessInfo
960 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
961                                               TBAAAccessInfo SrcInfo) {
962   if (!TBAA)
963     return TBAAAccessInfo();
964   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
965 }
966 
967 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
968                                                 TBAAAccessInfo TBAAInfo) {
969   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
970     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
971 }
972 
973 void CodeGenModule::DecorateInstructionWithInvariantGroup(
974     llvm::Instruction *I, const CXXRecordDecl *RD) {
975   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
976                  llvm::MDNode::get(getLLVMContext(), {}));
977 }
978 
979 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
980   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
981   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
982 }
983 
984 /// ErrorUnsupported - Print out an error that codegen doesn't support the
985 /// specified stmt yet.
986 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
987   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
988                                                "cannot compile this %0 yet");
989   std::string Msg = Type;
990   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
991       << Msg << S->getSourceRange();
992 }
993 
994 /// ErrorUnsupported - Print out an error that codegen doesn't support the
995 /// specified decl yet.
996 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
997   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
998                                                "cannot compile this %0 yet");
999   std::string Msg = Type;
1000   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1001 }
1002 
1003 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1004   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1005 }
1006 
1007 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1008                                         const NamedDecl *D) const {
1009   if (GV->hasDLLImportStorageClass())
1010     return;
1011   // Internal definitions always have default visibility.
1012   if (GV->hasLocalLinkage()) {
1013     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1014     return;
1015   }
1016   if (!D)
1017     return;
1018   // Set visibility for definitions, and for declarations if requested globally
1019   // or set explicitly.
1020   LinkageInfo LV = D->getLinkageAndVisibility();
1021   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1022       !GV->isDeclarationForLinker())
1023     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1024 }
1025 
1026 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1027                                  llvm::GlobalValue *GV) {
1028   if (GV->hasLocalLinkage())
1029     return true;
1030 
1031   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1032     return true;
1033 
1034   // DLLImport explicitly marks the GV as external.
1035   if (GV->hasDLLImportStorageClass())
1036     return false;
1037 
1038   const llvm::Triple &TT = CGM.getTriple();
1039   if (TT.isWindowsGNUEnvironment()) {
1040     // In MinGW, variables without DLLImport can still be automatically
1041     // imported from a DLL by the linker; don't mark variables that
1042     // potentially could come from another DLL as DSO local.
1043 
1044     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1045     // (and this actually happens in the public interface of libstdc++), so
1046     // such variables can't be marked as DSO local. (Native TLS variables
1047     // can't be dllimported at all, though.)
1048     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1049         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1050       return false;
1051   }
1052 
1053   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1054   // remain unresolved in the link, they can be resolved to zero, which is
1055   // outside the current DSO.
1056   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1057     return false;
1058 
1059   // Every other GV is local on COFF.
1060   // Make an exception for windows OS in the triple: Some firmware builds use
1061   // *-win32-macho triples. This (accidentally?) produced windows relocations
1062   // without GOT tables in older clang versions; Keep this behaviour.
1063   // FIXME: even thread local variables?
1064   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1065     return true;
1066 
1067   // Only handle COFF and ELF for now.
1068   if (!TT.isOSBinFormatELF())
1069     return false;
1070 
1071   // If this is not an executable, don't assume anything is local.
1072   const auto &CGOpts = CGM.getCodeGenOpts();
1073   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1074   const auto &LOpts = CGM.getLangOpts();
1075   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1076     // On ELF, if -fno-semantic-interposition is specified and the target
1077     // supports local aliases, there will be neither CC1
1078     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1079     // dso_local on the function if using a local alias is preferable (can avoid
1080     // PLT indirection).
1081     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1082       return false;
1083     return !(CGM.getLangOpts().SemanticInterposition ||
1084              CGM.getLangOpts().HalfNoSemanticInterposition);
1085   }
1086 
1087   // A definition cannot be preempted from an executable.
1088   if (!GV->isDeclarationForLinker())
1089     return true;
1090 
1091   // Most PIC code sequences that assume that a symbol is local cannot produce a
1092   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1093   // depended, it seems worth it to handle it here.
1094   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1095     return false;
1096 
1097   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1098   if (TT.isPPC64())
1099     return false;
1100 
1101   if (CGOpts.DirectAccessExternalData) {
1102     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1103     // for non-thread-local variables. If the symbol is not defined in the
1104     // executable, a copy relocation will be needed at link time. dso_local is
1105     // excluded for thread-local variables because they generally don't support
1106     // copy relocations.
1107     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1108       if (!Var->isThreadLocal())
1109         return true;
1110 
1111     // -fno-pic sets dso_local on a function declaration to allow direct
1112     // accesses when taking its address (similar to a data symbol). If the
1113     // function is not defined in the executable, a canonical PLT entry will be
1114     // needed at link time. -fno-direct-access-external-data can avoid the
1115     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1116     // it could just cause trouble without providing perceptible benefits.
1117     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1118       return true;
1119   }
1120 
1121   // If we can use copy relocations we can assume it is local.
1122 
1123   // Otherwise don't assume it is local.
1124   return false;
1125 }
1126 
1127 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1128   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1129 }
1130 
1131 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1132                                           GlobalDecl GD) const {
1133   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1134   // C++ destructors have a few C++ ABI specific special cases.
1135   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1136     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1137     return;
1138   }
1139   setDLLImportDLLExport(GV, D);
1140 }
1141 
1142 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1143                                           const NamedDecl *D) const {
1144   if (D && D->isExternallyVisible()) {
1145     if (D->hasAttr<DLLImportAttr>())
1146       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1147     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1148       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1149   }
1150 }
1151 
1152 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1153                                     GlobalDecl GD) const {
1154   setDLLImportDLLExport(GV, GD);
1155   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1156 }
1157 
1158 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1159                                     const NamedDecl *D) const {
1160   setDLLImportDLLExport(GV, D);
1161   setGVPropertiesAux(GV, D);
1162 }
1163 
1164 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1165                                        const NamedDecl *D) const {
1166   setGlobalVisibility(GV, D);
1167   setDSOLocal(GV);
1168   GV->setPartition(CodeGenOpts.SymbolPartition);
1169 }
1170 
1171 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1172   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1173       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1174       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1175       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1176       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1177 }
1178 
1179 llvm::GlobalVariable::ThreadLocalMode
1180 CodeGenModule::GetDefaultLLVMTLSModel() const {
1181   switch (CodeGenOpts.getDefaultTLSModel()) {
1182   case CodeGenOptions::GeneralDynamicTLSModel:
1183     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1184   case CodeGenOptions::LocalDynamicTLSModel:
1185     return llvm::GlobalVariable::LocalDynamicTLSModel;
1186   case CodeGenOptions::InitialExecTLSModel:
1187     return llvm::GlobalVariable::InitialExecTLSModel;
1188   case CodeGenOptions::LocalExecTLSModel:
1189     return llvm::GlobalVariable::LocalExecTLSModel;
1190   }
1191   llvm_unreachable("Invalid TLS model!");
1192 }
1193 
1194 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1195   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1196 
1197   llvm::GlobalValue::ThreadLocalMode TLM;
1198   TLM = GetDefaultLLVMTLSModel();
1199 
1200   // Override the TLS model if it is explicitly specified.
1201   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1202     TLM = GetLLVMTLSModel(Attr->getModel());
1203   }
1204 
1205   GV->setThreadLocalMode(TLM);
1206 }
1207 
1208 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1209                                           StringRef Name) {
1210   const TargetInfo &Target = CGM.getTarget();
1211   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1212 }
1213 
1214 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1215                                                  const CPUSpecificAttr *Attr,
1216                                                  unsigned CPUIndex,
1217                                                  raw_ostream &Out) {
1218   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1219   // supported.
1220   if (Attr)
1221     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1222   else if (CGM.getTarget().supportsIFunc())
1223     Out << ".resolver";
1224 }
1225 
1226 static void AppendTargetMangling(const CodeGenModule &CGM,
1227                                  const TargetAttr *Attr, raw_ostream &Out) {
1228   if (Attr->isDefaultVersion())
1229     return;
1230 
1231   Out << '.';
1232   const TargetInfo &Target = CGM.getTarget();
1233   ParsedTargetAttr Info =
1234       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1235         // Multiversioning doesn't allow "no-${feature}", so we can
1236         // only have "+" prefixes here.
1237         assert(LHS.startswith("+") && RHS.startswith("+") &&
1238                "Features should always have a prefix.");
1239         return Target.multiVersionSortPriority(LHS.substr(1)) >
1240                Target.multiVersionSortPriority(RHS.substr(1));
1241       });
1242 
1243   bool IsFirst = true;
1244 
1245   if (!Info.Architecture.empty()) {
1246     IsFirst = false;
1247     Out << "arch_" << Info.Architecture;
1248   }
1249 
1250   for (StringRef Feat : Info.Features) {
1251     if (!IsFirst)
1252       Out << '_';
1253     IsFirst = false;
1254     Out << Feat.substr(1);
1255   }
1256 }
1257 
1258 // Returns true if GD is a function decl with internal linkage and
1259 // needs a unique suffix after the mangled name.
1260 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1261                                         CodeGenModule &CGM) {
1262   const Decl *D = GD.getDecl();
1263   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1264          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1265 }
1266 
1267 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1268                                       const NamedDecl *ND,
1269                                       bool OmitMultiVersionMangling = false) {
1270   SmallString<256> Buffer;
1271   llvm::raw_svector_ostream Out(Buffer);
1272   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1273   if (!CGM.getModuleNameHash().empty())
1274     MC.needsUniqueInternalLinkageNames();
1275   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1276   if (ShouldMangle)
1277     MC.mangleName(GD.getWithDecl(ND), Out);
1278   else {
1279     IdentifierInfo *II = ND->getIdentifier();
1280     assert(II && "Attempt to mangle unnamed decl.");
1281     const auto *FD = dyn_cast<FunctionDecl>(ND);
1282 
1283     if (FD &&
1284         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1285       Out << "__regcall3__" << II->getName();
1286     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1287                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1288       Out << "__device_stub__" << II->getName();
1289     } else {
1290       Out << II->getName();
1291     }
1292   }
1293 
1294   // Check if the module name hash should be appended for internal linkage
1295   // symbols.   This should come before multi-version target suffixes are
1296   // appended. This is to keep the name and module hash suffix of the
1297   // internal linkage function together.  The unique suffix should only be
1298   // added when name mangling is done to make sure that the final name can
1299   // be properly demangled.  For example, for C functions without prototypes,
1300   // name mangling is not done and the unique suffix should not be appeneded
1301   // then.
1302   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1303     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1304            "Hash computed when not explicitly requested");
1305     Out << CGM.getModuleNameHash();
1306   }
1307 
1308   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1309     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1310       switch (FD->getMultiVersionKind()) {
1311       case MultiVersionKind::CPUDispatch:
1312       case MultiVersionKind::CPUSpecific:
1313         AppendCPUSpecificCPUDispatchMangling(CGM,
1314                                              FD->getAttr<CPUSpecificAttr>(),
1315                                              GD.getMultiVersionIndex(), Out);
1316         break;
1317       case MultiVersionKind::Target:
1318         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1319         break;
1320       case MultiVersionKind::None:
1321         llvm_unreachable("None multiversion type isn't valid here");
1322       }
1323     }
1324 
1325   // Make unique name for device side static file-scope variable for HIP.
1326   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1327       CGM.getLangOpts().GPURelocatableDeviceCode &&
1328       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1329     CGM.printPostfixForExternalizedStaticVar(Out);
1330   return std::string(Out.str());
1331 }
1332 
1333 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1334                                             const FunctionDecl *FD) {
1335   if (!FD->isMultiVersion())
1336     return;
1337 
1338   // Get the name of what this would be without the 'target' attribute.  This
1339   // allows us to lookup the version that was emitted when this wasn't a
1340   // multiversion function.
1341   std::string NonTargetName =
1342       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1343   GlobalDecl OtherGD;
1344   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1345     assert(OtherGD.getCanonicalDecl()
1346                .getDecl()
1347                ->getAsFunction()
1348                ->isMultiVersion() &&
1349            "Other GD should now be a multiversioned function");
1350     // OtherFD is the version of this function that was mangled BEFORE
1351     // becoming a MultiVersion function.  It potentially needs to be updated.
1352     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1353                                       .getDecl()
1354                                       ->getAsFunction()
1355                                       ->getMostRecentDecl();
1356     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1357     // This is so that if the initial version was already the 'default'
1358     // version, we don't try to update it.
1359     if (OtherName != NonTargetName) {
1360       // Remove instead of erase, since others may have stored the StringRef
1361       // to this.
1362       const auto ExistingRecord = Manglings.find(NonTargetName);
1363       if (ExistingRecord != std::end(Manglings))
1364         Manglings.remove(&(*ExistingRecord));
1365       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1366       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1367       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1368         Entry->setName(OtherName);
1369     }
1370   }
1371 }
1372 
1373 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1374   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1375 
1376   // Some ABIs don't have constructor variants.  Make sure that base and
1377   // complete constructors get mangled the same.
1378   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1379     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1380       CXXCtorType OrigCtorType = GD.getCtorType();
1381       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1382       if (OrigCtorType == Ctor_Base)
1383         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1384     }
1385   }
1386 
1387   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1388   // static device variable depends on whether the variable is referenced by
1389   // a host or device host function. Therefore the mangled name cannot be
1390   // cached.
1391   if (!LangOpts.CUDAIsDevice ||
1392       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1393     auto FoundName = MangledDeclNames.find(CanonicalGD);
1394     if (FoundName != MangledDeclNames.end())
1395       return FoundName->second;
1396   }
1397 
1398   // Keep the first result in the case of a mangling collision.
1399   const auto *ND = cast<NamedDecl>(GD.getDecl());
1400   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1401 
1402   // Ensure either we have different ABIs between host and device compilations,
1403   // says host compilation following MSVC ABI but device compilation follows
1404   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1405   // mangling should be the same after name stubbing. The later checking is
1406   // very important as the device kernel name being mangled in host-compilation
1407   // is used to resolve the device binaries to be executed. Inconsistent naming
1408   // result in undefined behavior. Even though we cannot check that naming
1409   // directly between host- and device-compilations, the host- and
1410   // device-mangling in host compilation could help catching certain ones.
1411   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1412          getLangOpts().CUDAIsDevice ||
1413          (getContext().getAuxTargetInfo() &&
1414           (getContext().getAuxTargetInfo()->getCXXABI() !=
1415            getContext().getTargetInfo().getCXXABI())) ||
1416          getCUDARuntime().getDeviceSideName(ND) ==
1417              getMangledNameImpl(
1418                  *this,
1419                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1420                  ND));
1421 
1422   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1423   return MangledDeclNames[CanonicalGD] = Result.first->first();
1424 }
1425 
1426 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1427                                              const BlockDecl *BD) {
1428   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1429   const Decl *D = GD.getDecl();
1430 
1431   SmallString<256> Buffer;
1432   llvm::raw_svector_ostream Out(Buffer);
1433   if (!D)
1434     MangleCtx.mangleGlobalBlock(BD,
1435       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1436   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1437     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1438   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1439     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1440   else
1441     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1442 
1443   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1444   return Result.first->first();
1445 }
1446 
1447 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1448   return getModule().getNamedValue(Name);
1449 }
1450 
1451 /// AddGlobalCtor - Add a function to the list that will be called before
1452 /// main() runs.
1453 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1454                                   llvm::Constant *AssociatedData) {
1455   // FIXME: Type coercion of void()* types.
1456   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1457 }
1458 
1459 /// AddGlobalDtor - Add a function to the list that will be called
1460 /// when the module is unloaded.
1461 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1462                                   bool IsDtorAttrFunc) {
1463   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1464       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1465     DtorsUsingAtExit[Priority].push_back(Dtor);
1466     return;
1467   }
1468 
1469   // FIXME: Type coercion of void()* types.
1470   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1471 }
1472 
1473 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1474   if (Fns.empty()) return;
1475 
1476   // Ctor function type is void()*.
1477   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1478   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1479       TheModule.getDataLayout().getProgramAddressSpace());
1480 
1481   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1482   llvm::StructType *CtorStructTy = llvm::StructType::get(
1483       Int32Ty, CtorPFTy, VoidPtrTy);
1484 
1485   // Construct the constructor and destructor arrays.
1486   ConstantInitBuilder builder(*this);
1487   auto ctors = builder.beginArray(CtorStructTy);
1488   for (const auto &I : Fns) {
1489     auto ctor = ctors.beginStruct(CtorStructTy);
1490     ctor.addInt(Int32Ty, I.Priority);
1491     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1492     if (I.AssociatedData)
1493       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1494     else
1495       ctor.addNullPointer(VoidPtrTy);
1496     ctor.finishAndAddTo(ctors);
1497   }
1498 
1499   auto list =
1500     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1501                                 /*constant*/ false,
1502                                 llvm::GlobalValue::AppendingLinkage);
1503 
1504   // The LTO linker doesn't seem to like it when we set an alignment
1505   // on appending variables.  Take it off as a workaround.
1506   list->setAlignment(llvm::None);
1507 
1508   Fns.clear();
1509 }
1510 
1511 llvm::GlobalValue::LinkageTypes
1512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1513   const auto *D = cast<FunctionDecl>(GD.getDecl());
1514 
1515   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1516 
1517   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1518     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1519 
1520   if (isa<CXXConstructorDecl>(D) &&
1521       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1522       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1523     // Our approach to inheriting constructors is fundamentally different from
1524     // that used by the MS ABI, so keep our inheriting constructor thunks
1525     // internal rather than trying to pick an unambiguous mangling for them.
1526     return llvm::GlobalValue::InternalLinkage;
1527   }
1528 
1529   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1530 }
1531 
1532 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1533   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1534   if (!MDS) return nullptr;
1535 
1536   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1537 }
1538 
1539 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1540                                               const CGFunctionInfo &Info,
1541                                               llvm::Function *F, bool IsThunk) {
1542   unsigned CallingConv;
1543   llvm::AttributeList PAL;
1544   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1545                          /*AttrOnCallSite=*/false, IsThunk);
1546   F->setAttributes(PAL);
1547   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1548 }
1549 
1550 static void removeImageAccessQualifier(std::string& TyName) {
1551   std::string ReadOnlyQual("__read_only");
1552   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1553   if (ReadOnlyPos != std::string::npos)
1554     // "+ 1" for the space after access qualifier.
1555     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1556   else {
1557     std::string WriteOnlyQual("__write_only");
1558     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1559     if (WriteOnlyPos != std::string::npos)
1560       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1561     else {
1562       std::string ReadWriteQual("__read_write");
1563       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1564       if (ReadWritePos != std::string::npos)
1565         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1566     }
1567   }
1568 }
1569 
1570 // Returns the address space id that should be produced to the
1571 // kernel_arg_addr_space metadata. This is always fixed to the ids
1572 // as specified in the SPIR 2.0 specification in order to differentiate
1573 // for example in clGetKernelArgInfo() implementation between the address
1574 // spaces with targets without unique mapping to the OpenCL address spaces
1575 // (basically all single AS CPUs).
1576 static unsigned ArgInfoAddressSpace(LangAS AS) {
1577   switch (AS) {
1578   case LangAS::opencl_global:
1579     return 1;
1580   case LangAS::opencl_constant:
1581     return 2;
1582   case LangAS::opencl_local:
1583     return 3;
1584   case LangAS::opencl_generic:
1585     return 4; // Not in SPIR 2.0 specs.
1586   case LangAS::opencl_global_device:
1587     return 5;
1588   case LangAS::opencl_global_host:
1589     return 6;
1590   default:
1591     return 0; // Assume private.
1592   }
1593 }
1594 
1595 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1596                                          const FunctionDecl *FD,
1597                                          CodeGenFunction *CGF) {
1598   assert(((FD && CGF) || (!FD && !CGF)) &&
1599          "Incorrect use - FD and CGF should either be both null or not!");
1600   // Create MDNodes that represent the kernel arg metadata.
1601   // Each MDNode is a list in the form of "key", N number of values which is
1602   // the same number of values as their are kernel arguments.
1603 
1604   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1605 
1606   // MDNode for the kernel argument address space qualifiers.
1607   SmallVector<llvm::Metadata *, 8> addressQuals;
1608 
1609   // MDNode for the kernel argument access qualifiers (images only).
1610   SmallVector<llvm::Metadata *, 8> accessQuals;
1611 
1612   // MDNode for the kernel argument type names.
1613   SmallVector<llvm::Metadata *, 8> argTypeNames;
1614 
1615   // MDNode for the kernel argument base type names.
1616   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1617 
1618   // MDNode for the kernel argument type qualifiers.
1619   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1620 
1621   // MDNode for the kernel argument names.
1622   SmallVector<llvm::Metadata *, 8> argNames;
1623 
1624   if (FD && CGF)
1625     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1626       const ParmVarDecl *parm = FD->getParamDecl(i);
1627       QualType ty = parm->getType();
1628       std::string typeQuals;
1629 
1630       // Get image and pipe access qualifier:
1631       if (ty->isImageType() || ty->isPipeType()) {
1632         const Decl *PDecl = parm;
1633         if (auto *TD = dyn_cast<TypedefType>(ty))
1634           PDecl = TD->getDecl();
1635         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1636         if (A && A->isWriteOnly())
1637           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1638         else if (A && A->isReadWrite())
1639           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1640         else
1641           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1642       } else
1643         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1644 
1645       // Get argument name.
1646       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1647 
1648       auto getTypeSpelling = [&](QualType Ty) {
1649         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1650 
1651         if (Ty.isCanonical()) {
1652           StringRef typeNameRef = typeName;
1653           // Turn "unsigned type" to "utype"
1654           if (typeNameRef.consume_front("unsigned "))
1655             return std::string("u") + typeNameRef.str();
1656           if (typeNameRef.consume_front("signed "))
1657             return typeNameRef.str();
1658         }
1659 
1660         return typeName;
1661       };
1662 
1663       if (ty->isPointerType()) {
1664         QualType pointeeTy = ty->getPointeeType();
1665 
1666         // Get address qualifier.
1667         addressQuals.push_back(
1668             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1669                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1670 
1671         // Get argument type name.
1672         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1673         std::string baseTypeName =
1674             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1675         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1676         argBaseTypeNames.push_back(
1677             llvm::MDString::get(VMContext, baseTypeName));
1678 
1679         // Get argument type qualifiers:
1680         if (ty.isRestrictQualified())
1681           typeQuals = "restrict";
1682         if (pointeeTy.isConstQualified() ||
1683             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1684           typeQuals += typeQuals.empty() ? "const" : " const";
1685         if (pointeeTy.isVolatileQualified())
1686           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1687       } else {
1688         uint32_t AddrSpc = 0;
1689         bool isPipe = ty->isPipeType();
1690         if (ty->isImageType() || isPipe)
1691           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1692 
1693         addressQuals.push_back(
1694             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1695 
1696         // Get argument type name.
1697         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1698         std::string typeName = getTypeSpelling(ty);
1699         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1700 
1701         // Remove access qualifiers on images
1702         // (as they are inseparable from type in clang implementation,
1703         // but OpenCL spec provides a special query to get access qualifier
1704         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1705         if (ty->isImageType()) {
1706           removeImageAccessQualifier(typeName);
1707           removeImageAccessQualifier(baseTypeName);
1708         }
1709 
1710         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1711         argBaseTypeNames.push_back(
1712             llvm::MDString::get(VMContext, baseTypeName));
1713 
1714         if (isPipe)
1715           typeQuals = "pipe";
1716       }
1717       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1718     }
1719 
1720   Fn->setMetadata("kernel_arg_addr_space",
1721                   llvm::MDNode::get(VMContext, addressQuals));
1722   Fn->setMetadata("kernel_arg_access_qual",
1723                   llvm::MDNode::get(VMContext, accessQuals));
1724   Fn->setMetadata("kernel_arg_type",
1725                   llvm::MDNode::get(VMContext, argTypeNames));
1726   Fn->setMetadata("kernel_arg_base_type",
1727                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1728   Fn->setMetadata("kernel_arg_type_qual",
1729                   llvm::MDNode::get(VMContext, argTypeQuals));
1730   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1731     Fn->setMetadata("kernel_arg_name",
1732                     llvm::MDNode::get(VMContext, argNames));
1733 }
1734 
1735 /// Determines whether the language options require us to model
1736 /// unwind exceptions.  We treat -fexceptions as mandating this
1737 /// except under the fragile ObjC ABI with only ObjC exceptions
1738 /// enabled.  This means, for example, that C with -fexceptions
1739 /// enables this.
1740 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1741   // If exceptions are completely disabled, obviously this is false.
1742   if (!LangOpts.Exceptions) return false;
1743 
1744   // If C++ exceptions are enabled, this is true.
1745   if (LangOpts.CXXExceptions) return true;
1746 
1747   // If ObjC exceptions are enabled, this depends on the ABI.
1748   if (LangOpts.ObjCExceptions) {
1749     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1750   }
1751 
1752   return true;
1753 }
1754 
1755 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1756                                                       const CXXMethodDecl *MD) {
1757   // Check that the type metadata can ever actually be used by a call.
1758   if (!CGM.getCodeGenOpts().LTOUnit ||
1759       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1760     return false;
1761 
1762   // Only functions whose address can be taken with a member function pointer
1763   // need this sort of type metadata.
1764   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1765          !isa<CXXDestructorDecl>(MD);
1766 }
1767 
1768 std::vector<const CXXRecordDecl *>
1769 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1770   llvm::SetVector<const CXXRecordDecl *> MostBases;
1771 
1772   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1773   CollectMostBases = [&](const CXXRecordDecl *RD) {
1774     if (RD->getNumBases() == 0)
1775       MostBases.insert(RD);
1776     for (const CXXBaseSpecifier &B : RD->bases())
1777       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1778   };
1779   CollectMostBases(RD);
1780   return MostBases.takeVector();
1781 }
1782 
1783 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1784                                                            llvm::Function *F) {
1785   llvm::AttrBuilder B;
1786 
1787   if (CodeGenOpts.UnwindTables)
1788     B.addAttribute(llvm::Attribute::UWTable);
1789 
1790   if (CodeGenOpts.StackClashProtector)
1791     B.addAttribute("probe-stack", "inline-asm");
1792 
1793   if (!hasUnwindExceptions(LangOpts))
1794     B.addAttribute(llvm::Attribute::NoUnwind);
1795 
1796   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1797     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1798       B.addAttribute(llvm::Attribute::StackProtect);
1799     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1800       B.addAttribute(llvm::Attribute::StackProtectStrong);
1801     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1802       B.addAttribute(llvm::Attribute::StackProtectReq);
1803   }
1804 
1805   if (!D) {
1806     // If we don't have a declaration to control inlining, the function isn't
1807     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1808     // disabled, mark the function as noinline.
1809     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1810         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1811       B.addAttribute(llvm::Attribute::NoInline);
1812 
1813     F->addFnAttrs(B);
1814     return;
1815   }
1816 
1817   // Track whether we need to add the optnone LLVM attribute,
1818   // starting with the default for this optimization level.
1819   bool ShouldAddOptNone =
1820       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1821   // We can't add optnone in the following cases, it won't pass the verifier.
1822   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1823   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1824 
1825   // Add optnone, but do so only if the function isn't always_inline.
1826   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1827       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1828     B.addAttribute(llvm::Attribute::OptimizeNone);
1829 
1830     // OptimizeNone implies noinline; we should not be inlining such functions.
1831     B.addAttribute(llvm::Attribute::NoInline);
1832 
1833     // We still need to handle naked functions even though optnone subsumes
1834     // much of their semantics.
1835     if (D->hasAttr<NakedAttr>())
1836       B.addAttribute(llvm::Attribute::Naked);
1837 
1838     // OptimizeNone wins over OptimizeForSize and MinSize.
1839     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1840     F->removeFnAttr(llvm::Attribute::MinSize);
1841   } else if (D->hasAttr<NakedAttr>()) {
1842     // Naked implies noinline: we should not be inlining such functions.
1843     B.addAttribute(llvm::Attribute::Naked);
1844     B.addAttribute(llvm::Attribute::NoInline);
1845   } else if (D->hasAttr<NoDuplicateAttr>()) {
1846     B.addAttribute(llvm::Attribute::NoDuplicate);
1847   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1848     // Add noinline if the function isn't always_inline.
1849     B.addAttribute(llvm::Attribute::NoInline);
1850   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1851              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1852     // (noinline wins over always_inline, and we can't specify both in IR)
1853     B.addAttribute(llvm::Attribute::AlwaysInline);
1854   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1855     // If we're not inlining, then force everything that isn't always_inline to
1856     // carry an explicit noinline attribute.
1857     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1858       B.addAttribute(llvm::Attribute::NoInline);
1859   } else {
1860     // Otherwise, propagate the inline hint attribute and potentially use its
1861     // absence to mark things as noinline.
1862     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1863       // Search function and template pattern redeclarations for inline.
1864       auto CheckForInline = [](const FunctionDecl *FD) {
1865         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1866           return Redecl->isInlineSpecified();
1867         };
1868         if (any_of(FD->redecls(), CheckRedeclForInline))
1869           return true;
1870         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1871         if (!Pattern)
1872           return false;
1873         return any_of(Pattern->redecls(), CheckRedeclForInline);
1874       };
1875       if (CheckForInline(FD)) {
1876         B.addAttribute(llvm::Attribute::InlineHint);
1877       } else if (CodeGenOpts.getInlining() ==
1878                      CodeGenOptions::OnlyHintInlining &&
1879                  !FD->isInlined() &&
1880                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1881         B.addAttribute(llvm::Attribute::NoInline);
1882       }
1883     }
1884   }
1885 
1886   // Add other optimization related attributes if we are optimizing this
1887   // function.
1888   if (!D->hasAttr<OptimizeNoneAttr>()) {
1889     if (D->hasAttr<ColdAttr>()) {
1890       if (!ShouldAddOptNone)
1891         B.addAttribute(llvm::Attribute::OptimizeForSize);
1892       B.addAttribute(llvm::Attribute::Cold);
1893     }
1894     if (D->hasAttr<HotAttr>())
1895       B.addAttribute(llvm::Attribute::Hot);
1896     if (D->hasAttr<MinSizeAttr>())
1897       B.addAttribute(llvm::Attribute::MinSize);
1898   }
1899 
1900   F->addFnAttrs(B);
1901 
1902   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1903   if (alignment)
1904     F->setAlignment(llvm::Align(alignment));
1905 
1906   if (!D->hasAttr<AlignedAttr>())
1907     if (LangOpts.FunctionAlignment)
1908       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1909 
1910   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1911   // reserve a bit for differentiating between virtual and non-virtual member
1912   // functions. If the current target's C++ ABI requires this and this is a
1913   // member function, set its alignment accordingly.
1914   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1915     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1916       F->setAlignment(llvm::Align(2));
1917   }
1918 
1919   // In the cross-dso CFI mode with canonical jump tables, we want !type
1920   // attributes on definitions only.
1921   if (CodeGenOpts.SanitizeCfiCrossDso &&
1922       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1923     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1924       // Skip available_externally functions. They won't be codegen'ed in the
1925       // current module anyway.
1926       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1927         CreateFunctionTypeMetadataForIcall(FD, F);
1928     }
1929   }
1930 
1931   // Emit type metadata on member functions for member function pointer checks.
1932   // These are only ever necessary on definitions; we're guaranteed that the
1933   // definition will be present in the LTO unit as a result of LTO visibility.
1934   auto *MD = dyn_cast<CXXMethodDecl>(D);
1935   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1936     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1937       llvm::Metadata *Id =
1938           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1939               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1940       F->addTypeMetadata(0, Id);
1941     }
1942   }
1943 }
1944 
1945 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1946                                                   llvm::Function *F) {
1947   if (D->hasAttr<StrictFPAttr>()) {
1948     llvm::AttrBuilder FuncAttrs;
1949     FuncAttrs.addAttribute("strictfp");
1950     F->addFnAttrs(FuncAttrs);
1951   }
1952 }
1953 
1954 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1955   const Decl *D = GD.getDecl();
1956   if (dyn_cast_or_null<NamedDecl>(D))
1957     setGVProperties(GV, GD);
1958   else
1959     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1960 
1961   if (D && D->hasAttr<UsedAttr>())
1962     addUsedOrCompilerUsedGlobal(GV);
1963 
1964   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1965     const auto *VD = cast<VarDecl>(D);
1966     if (VD->getType().isConstQualified() &&
1967         VD->getStorageDuration() == SD_Static)
1968       addUsedOrCompilerUsedGlobal(GV);
1969   }
1970 }
1971 
1972 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1973                                                 llvm::AttrBuilder &Attrs) {
1974   // Add target-cpu and target-features attributes to functions. If
1975   // we have a decl for the function and it has a target attribute then
1976   // parse that and add it to the feature set.
1977   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1978   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1979   std::vector<std::string> Features;
1980   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1981   FD = FD ? FD->getMostRecentDecl() : FD;
1982   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1983   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1984   bool AddedAttr = false;
1985   if (TD || SD) {
1986     llvm::StringMap<bool> FeatureMap;
1987     getContext().getFunctionFeatureMap(FeatureMap, GD);
1988 
1989     // Produce the canonical string for this set of features.
1990     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1991       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1992 
1993     // Now add the target-cpu and target-features to the function.
1994     // While we populated the feature map above, we still need to
1995     // get and parse the target attribute so we can get the cpu for
1996     // the function.
1997     if (TD) {
1998       ParsedTargetAttr ParsedAttr = TD->parse();
1999       if (!ParsedAttr.Architecture.empty() &&
2000           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2001         TargetCPU = ParsedAttr.Architecture;
2002         TuneCPU = ""; // Clear the tune CPU.
2003       }
2004       if (!ParsedAttr.Tune.empty() &&
2005           getTarget().isValidCPUName(ParsedAttr.Tune))
2006         TuneCPU = ParsedAttr.Tune;
2007     }
2008   } else {
2009     // Otherwise just add the existing target cpu and target features to the
2010     // function.
2011     Features = getTarget().getTargetOpts().Features;
2012   }
2013 
2014   if (!TargetCPU.empty()) {
2015     Attrs.addAttribute("target-cpu", TargetCPU);
2016     AddedAttr = true;
2017   }
2018   if (!TuneCPU.empty()) {
2019     Attrs.addAttribute("tune-cpu", TuneCPU);
2020     AddedAttr = true;
2021   }
2022   if (!Features.empty()) {
2023     llvm::sort(Features);
2024     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2025     AddedAttr = true;
2026   }
2027 
2028   return AddedAttr;
2029 }
2030 
2031 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2032                                           llvm::GlobalObject *GO) {
2033   const Decl *D = GD.getDecl();
2034   SetCommonAttributes(GD, GO);
2035 
2036   if (D) {
2037     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2038       if (D->hasAttr<RetainAttr>())
2039         addUsedGlobal(GV);
2040       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2041         GV->addAttribute("bss-section", SA->getName());
2042       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2043         GV->addAttribute("data-section", SA->getName());
2044       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2045         GV->addAttribute("rodata-section", SA->getName());
2046       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2047         GV->addAttribute("relro-section", SA->getName());
2048     }
2049 
2050     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2051       if (D->hasAttr<RetainAttr>())
2052         addUsedGlobal(F);
2053       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2054         if (!D->getAttr<SectionAttr>())
2055           F->addFnAttr("implicit-section-name", SA->getName());
2056 
2057       llvm::AttrBuilder Attrs;
2058       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2059         // We know that GetCPUAndFeaturesAttributes will always have the
2060         // newest set, since it has the newest possible FunctionDecl, so the
2061         // new ones should replace the old.
2062         llvm::AttrBuilder RemoveAttrs;
2063         RemoveAttrs.addAttribute("target-cpu");
2064         RemoveAttrs.addAttribute("target-features");
2065         RemoveAttrs.addAttribute("tune-cpu");
2066         F->removeFnAttrs(RemoveAttrs);
2067         F->addFnAttrs(Attrs);
2068       }
2069     }
2070 
2071     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2072       GO->setSection(CSA->getName());
2073     else if (const auto *SA = D->getAttr<SectionAttr>())
2074       GO->setSection(SA->getName());
2075   }
2076 
2077   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2078 }
2079 
2080 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2081                                                   llvm::Function *F,
2082                                                   const CGFunctionInfo &FI) {
2083   const Decl *D = GD.getDecl();
2084   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2085   SetLLVMFunctionAttributesForDefinition(D, F);
2086 
2087   F->setLinkage(llvm::Function::InternalLinkage);
2088 
2089   setNonAliasAttributes(GD, F);
2090 }
2091 
2092 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2093   // Set linkage and visibility in case we never see a definition.
2094   LinkageInfo LV = ND->getLinkageAndVisibility();
2095   // Don't set internal linkage on declarations.
2096   // "extern_weak" is overloaded in LLVM; we probably should have
2097   // separate linkage types for this.
2098   if (isExternallyVisible(LV.getLinkage()) &&
2099       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2100     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2101 }
2102 
2103 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2104                                                        llvm::Function *F) {
2105   // Only if we are checking indirect calls.
2106   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2107     return;
2108 
2109   // Non-static class methods are handled via vtable or member function pointer
2110   // checks elsewhere.
2111   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2112     return;
2113 
2114   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2115   F->addTypeMetadata(0, MD);
2116   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2117 
2118   // Emit a hash-based bit set entry for cross-DSO calls.
2119   if (CodeGenOpts.SanitizeCfiCrossDso)
2120     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2121       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2122 }
2123 
2124 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2125                                           bool IsIncompleteFunction,
2126                                           bool IsThunk) {
2127 
2128   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2129     // If this is an intrinsic function, set the function's attributes
2130     // to the intrinsic's attributes.
2131     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2132     return;
2133   }
2134 
2135   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2136 
2137   if (!IsIncompleteFunction)
2138     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2139                               IsThunk);
2140 
2141   // Add the Returned attribute for "this", except for iOS 5 and earlier
2142   // where substantial code, including the libstdc++ dylib, was compiled with
2143   // GCC and does not actually return "this".
2144   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2145       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2146     assert(!F->arg_empty() &&
2147            F->arg_begin()->getType()
2148              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2149            "unexpected this return");
2150     F->addParamAttr(0, llvm::Attribute::Returned);
2151   }
2152 
2153   // Only a few attributes are set on declarations; these may later be
2154   // overridden by a definition.
2155 
2156   setLinkageForGV(F, FD);
2157   setGVProperties(F, FD);
2158 
2159   // Setup target-specific attributes.
2160   if (!IsIncompleteFunction && F->isDeclaration())
2161     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2162 
2163   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2164     F->setSection(CSA->getName());
2165   else if (const auto *SA = FD->getAttr<SectionAttr>())
2166      F->setSection(SA->getName());
2167 
2168   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2169     if (EA->isError())
2170       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2171     else if (EA->isWarning())
2172       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2173   }
2174 
2175   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2176   if (FD->isInlineBuiltinDeclaration()) {
2177     const FunctionDecl *FDBody;
2178     bool HasBody = FD->hasBody(FDBody);
2179     (void)HasBody;
2180     assert(HasBody && "Inline builtin declarations should always have an "
2181                       "available body!");
2182     if (shouldEmitFunction(FDBody))
2183       F->addFnAttr(llvm::Attribute::NoBuiltin);
2184   }
2185 
2186   if (FD->isReplaceableGlobalAllocationFunction()) {
2187     // A replaceable global allocation function does not act like a builtin by
2188     // default, only if it is invoked by a new-expression or delete-expression.
2189     F->addFnAttr(llvm::Attribute::NoBuiltin);
2190   }
2191 
2192   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2193     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2194   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2195     if (MD->isVirtual())
2196       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2197 
2198   // Don't emit entries for function declarations in the cross-DSO mode. This
2199   // is handled with better precision by the receiving DSO. But if jump tables
2200   // are non-canonical then we need type metadata in order to produce the local
2201   // jump table.
2202   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2203       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2204     CreateFunctionTypeMetadataForIcall(FD, F);
2205 
2206   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2207     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2208 
2209   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2210     // Annotate the callback behavior as metadata:
2211     //  - The callback callee (as argument number).
2212     //  - The callback payloads (as argument numbers).
2213     llvm::LLVMContext &Ctx = F->getContext();
2214     llvm::MDBuilder MDB(Ctx);
2215 
2216     // The payload indices are all but the first one in the encoding. The first
2217     // identifies the callback callee.
2218     int CalleeIdx = *CB->encoding_begin();
2219     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2220     F->addMetadata(llvm::LLVMContext::MD_callback,
2221                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2222                                                CalleeIdx, PayloadIndices,
2223                                                /* VarArgsArePassed */ false)}));
2224   }
2225 }
2226 
2227 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2228   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2229          "Only globals with definition can force usage.");
2230   LLVMUsed.emplace_back(GV);
2231 }
2232 
2233 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2234   assert(!GV->isDeclaration() &&
2235          "Only globals with definition can force usage.");
2236   LLVMCompilerUsed.emplace_back(GV);
2237 }
2238 
2239 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2240   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2241          "Only globals with definition can force usage.");
2242   if (getTriple().isOSBinFormatELF())
2243     LLVMCompilerUsed.emplace_back(GV);
2244   else
2245     LLVMUsed.emplace_back(GV);
2246 }
2247 
2248 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2249                      std::vector<llvm::WeakTrackingVH> &List) {
2250   // Don't create llvm.used if there is no need.
2251   if (List.empty())
2252     return;
2253 
2254   // Convert List to what ConstantArray needs.
2255   SmallVector<llvm::Constant*, 8> UsedArray;
2256   UsedArray.resize(List.size());
2257   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2258     UsedArray[i] =
2259         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2260             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2261   }
2262 
2263   if (UsedArray.empty())
2264     return;
2265   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2266 
2267   auto *GV = new llvm::GlobalVariable(
2268       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2269       llvm::ConstantArray::get(ATy, UsedArray), Name);
2270 
2271   GV->setSection("llvm.metadata");
2272 }
2273 
2274 void CodeGenModule::emitLLVMUsed() {
2275   emitUsed(*this, "llvm.used", LLVMUsed);
2276   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2277 }
2278 
2279 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2280   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2281   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2282 }
2283 
2284 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2285   llvm::SmallString<32> Opt;
2286   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2287   if (Opt.empty())
2288     return;
2289   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2290   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2291 }
2292 
2293 void CodeGenModule::AddDependentLib(StringRef Lib) {
2294   auto &C = getLLVMContext();
2295   if (getTarget().getTriple().isOSBinFormatELF()) {
2296       ELFDependentLibraries.push_back(
2297         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2298     return;
2299   }
2300 
2301   llvm::SmallString<24> Opt;
2302   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2303   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2304   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2305 }
2306 
2307 /// Add link options implied by the given module, including modules
2308 /// it depends on, using a postorder walk.
2309 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2310                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2311                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2312   // Import this module's parent.
2313   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2314     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2315   }
2316 
2317   // Import this module's dependencies.
2318   for (Module *Import : llvm::reverse(Mod->Imports)) {
2319     if (Visited.insert(Import).second)
2320       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2321   }
2322 
2323   // Add linker options to link against the libraries/frameworks
2324   // described by this module.
2325   llvm::LLVMContext &Context = CGM.getLLVMContext();
2326   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2327 
2328   // For modules that use export_as for linking, use that module
2329   // name instead.
2330   if (Mod->UseExportAsModuleLinkName)
2331     return;
2332 
2333   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2334     // Link against a framework.  Frameworks are currently Darwin only, so we
2335     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2336     if (LL.IsFramework) {
2337       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2338                                  llvm::MDString::get(Context, LL.Library)};
2339 
2340       Metadata.push_back(llvm::MDNode::get(Context, Args));
2341       continue;
2342     }
2343 
2344     // Link against a library.
2345     if (IsELF) {
2346       llvm::Metadata *Args[2] = {
2347           llvm::MDString::get(Context, "lib"),
2348           llvm::MDString::get(Context, LL.Library),
2349       };
2350       Metadata.push_back(llvm::MDNode::get(Context, Args));
2351     } else {
2352       llvm::SmallString<24> Opt;
2353       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2354       auto *OptString = llvm::MDString::get(Context, Opt);
2355       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2356     }
2357   }
2358 }
2359 
2360 void CodeGenModule::EmitModuleLinkOptions() {
2361   // Collect the set of all of the modules we want to visit to emit link
2362   // options, which is essentially the imported modules and all of their
2363   // non-explicit child modules.
2364   llvm::SetVector<clang::Module *> LinkModules;
2365   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2366   SmallVector<clang::Module *, 16> Stack;
2367 
2368   // Seed the stack with imported modules.
2369   for (Module *M : ImportedModules) {
2370     // Do not add any link flags when an implementation TU of a module imports
2371     // a header of that same module.
2372     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2373         !getLangOpts().isCompilingModule())
2374       continue;
2375     if (Visited.insert(M).second)
2376       Stack.push_back(M);
2377   }
2378 
2379   // Find all of the modules to import, making a little effort to prune
2380   // non-leaf modules.
2381   while (!Stack.empty()) {
2382     clang::Module *Mod = Stack.pop_back_val();
2383 
2384     bool AnyChildren = false;
2385 
2386     // Visit the submodules of this module.
2387     for (const auto &SM : Mod->submodules()) {
2388       // Skip explicit children; they need to be explicitly imported to be
2389       // linked against.
2390       if (SM->IsExplicit)
2391         continue;
2392 
2393       if (Visited.insert(SM).second) {
2394         Stack.push_back(SM);
2395         AnyChildren = true;
2396       }
2397     }
2398 
2399     // We didn't find any children, so add this module to the list of
2400     // modules to link against.
2401     if (!AnyChildren) {
2402       LinkModules.insert(Mod);
2403     }
2404   }
2405 
2406   // Add link options for all of the imported modules in reverse topological
2407   // order.  We don't do anything to try to order import link flags with respect
2408   // to linker options inserted by things like #pragma comment().
2409   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2410   Visited.clear();
2411   for (Module *M : LinkModules)
2412     if (Visited.insert(M).second)
2413       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2414   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2415   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2416 
2417   // Add the linker options metadata flag.
2418   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2419   for (auto *MD : LinkerOptionsMetadata)
2420     NMD->addOperand(MD);
2421 }
2422 
2423 void CodeGenModule::EmitDeferred() {
2424   // Emit deferred declare target declarations.
2425   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2426     getOpenMPRuntime().emitDeferredTargetDecls();
2427 
2428   // Emit code for any potentially referenced deferred decls.  Since a
2429   // previously unused static decl may become used during the generation of code
2430   // for a static function, iterate until no changes are made.
2431 
2432   if (!DeferredVTables.empty()) {
2433     EmitDeferredVTables();
2434 
2435     // Emitting a vtable doesn't directly cause more vtables to
2436     // become deferred, although it can cause functions to be
2437     // emitted that then need those vtables.
2438     assert(DeferredVTables.empty());
2439   }
2440 
2441   // Emit CUDA/HIP static device variables referenced by host code only.
2442   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2443   // needed for further handling.
2444   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2445     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2446       DeferredDeclsToEmit.push_back(V);
2447 
2448   // Stop if we're out of both deferred vtables and deferred declarations.
2449   if (DeferredDeclsToEmit.empty())
2450     return;
2451 
2452   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2453   // work, it will not interfere with this.
2454   std::vector<GlobalDecl> CurDeclsToEmit;
2455   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2456 
2457   for (GlobalDecl &D : CurDeclsToEmit) {
2458     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2459     // to get GlobalValue with exactly the type we need, not something that
2460     // might had been created for another decl with the same mangled name but
2461     // different type.
2462     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2463         GetAddrOfGlobal(D, ForDefinition));
2464 
2465     // In case of different address spaces, we may still get a cast, even with
2466     // IsForDefinition equal to true. Query mangled names table to get
2467     // GlobalValue.
2468     if (!GV)
2469       GV = GetGlobalValue(getMangledName(D));
2470 
2471     // Make sure GetGlobalValue returned non-null.
2472     assert(GV);
2473 
2474     // Check to see if we've already emitted this.  This is necessary
2475     // for a couple of reasons: first, decls can end up in the
2476     // deferred-decls queue multiple times, and second, decls can end
2477     // up with definitions in unusual ways (e.g. by an extern inline
2478     // function acquiring a strong function redefinition).  Just
2479     // ignore these cases.
2480     if (!GV->isDeclaration())
2481       continue;
2482 
2483     // If this is OpenMP, check if it is legal to emit this global normally.
2484     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2485       continue;
2486 
2487     // Otherwise, emit the definition and move on to the next one.
2488     EmitGlobalDefinition(D, GV);
2489 
2490     // If we found out that we need to emit more decls, do that recursively.
2491     // This has the advantage that the decls are emitted in a DFS and related
2492     // ones are close together, which is convenient for testing.
2493     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2494       EmitDeferred();
2495       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2496     }
2497   }
2498 }
2499 
2500 void CodeGenModule::EmitVTablesOpportunistically() {
2501   // Try to emit external vtables as available_externally if they have emitted
2502   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2503   // is not allowed to create new references to things that need to be emitted
2504   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2505 
2506   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2507          && "Only emit opportunistic vtables with optimizations");
2508 
2509   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2510     assert(getVTables().isVTableExternal(RD) &&
2511            "This queue should only contain external vtables");
2512     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2513       VTables.GenerateClassData(RD);
2514   }
2515   OpportunisticVTables.clear();
2516 }
2517 
2518 void CodeGenModule::EmitGlobalAnnotations() {
2519   if (Annotations.empty())
2520     return;
2521 
2522   // Create a new global variable for the ConstantStruct in the Module.
2523   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2524     Annotations[0]->getType(), Annotations.size()), Annotations);
2525   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2526                                       llvm::GlobalValue::AppendingLinkage,
2527                                       Array, "llvm.global.annotations");
2528   gv->setSection(AnnotationSection);
2529 }
2530 
2531 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2532   llvm::Constant *&AStr = AnnotationStrings[Str];
2533   if (AStr)
2534     return AStr;
2535 
2536   // Not found yet, create a new global.
2537   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2538   auto *gv =
2539       new llvm::GlobalVariable(getModule(), s->getType(), true,
2540                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2541   gv->setSection(AnnotationSection);
2542   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2543   AStr = gv;
2544   return gv;
2545 }
2546 
2547 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2548   SourceManager &SM = getContext().getSourceManager();
2549   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2550   if (PLoc.isValid())
2551     return EmitAnnotationString(PLoc.getFilename());
2552   return EmitAnnotationString(SM.getBufferName(Loc));
2553 }
2554 
2555 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2556   SourceManager &SM = getContext().getSourceManager();
2557   PresumedLoc PLoc = SM.getPresumedLoc(L);
2558   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2559     SM.getExpansionLineNumber(L);
2560   return llvm::ConstantInt::get(Int32Ty, LineNo);
2561 }
2562 
2563 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2564   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2565   if (Exprs.empty())
2566     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2567 
2568   llvm::FoldingSetNodeID ID;
2569   for (Expr *E : Exprs) {
2570     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2571   }
2572   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2573   if (Lookup)
2574     return Lookup;
2575 
2576   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2577   LLVMArgs.reserve(Exprs.size());
2578   ConstantEmitter ConstEmiter(*this);
2579   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2580     const auto *CE = cast<clang::ConstantExpr>(E);
2581     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2582                                     CE->getType());
2583   });
2584   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2585   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2586                                       llvm::GlobalValue::PrivateLinkage, Struct,
2587                                       ".args");
2588   GV->setSection(AnnotationSection);
2589   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2590   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2591 
2592   Lookup = Bitcasted;
2593   return Bitcasted;
2594 }
2595 
2596 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2597                                                 const AnnotateAttr *AA,
2598                                                 SourceLocation L) {
2599   // Get the globals for file name, annotation, and the line number.
2600   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2601                  *UnitGV = EmitAnnotationUnit(L),
2602                  *LineNoCst = EmitAnnotationLineNo(L),
2603                  *Args = EmitAnnotationArgs(AA);
2604 
2605   llvm::Constant *GVInGlobalsAS = GV;
2606   if (GV->getAddressSpace() !=
2607       getDataLayout().getDefaultGlobalsAddressSpace()) {
2608     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2609         GV, GV->getValueType()->getPointerTo(
2610                 getDataLayout().getDefaultGlobalsAddressSpace()));
2611   }
2612 
2613   // Create the ConstantStruct for the global annotation.
2614   llvm::Constant *Fields[] = {
2615       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2616       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2617       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2618       LineNoCst,
2619       Args,
2620   };
2621   return llvm::ConstantStruct::getAnon(Fields);
2622 }
2623 
2624 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2625                                          llvm::GlobalValue *GV) {
2626   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2627   // Get the struct elements for these annotations.
2628   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2629     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2630 }
2631 
2632 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2633                                        SourceLocation Loc) const {
2634   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2635   // NoSanitize by function name.
2636   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2637     return true;
2638   // NoSanitize by location.
2639   if (Loc.isValid())
2640     return NoSanitizeL.containsLocation(Kind, Loc);
2641   // If location is unknown, this may be a compiler-generated function. Assume
2642   // it's located in the main file.
2643   auto &SM = Context.getSourceManager();
2644   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2645     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2646   }
2647   return false;
2648 }
2649 
2650 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2651                                        SourceLocation Loc, QualType Ty,
2652                                        StringRef Category) const {
2653   // For now globals can be ignored only in ASan and KASan.
2654   const SanitizerMask EnabledAsanMask =
2655       LangOpts.Sanitize.Mask &
2656       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2657        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2658        SanitizerKind::MemTag);
2659   if (!EnabledAsanMask)
2660     return false;
2661   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2662   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2663     return true;
2664   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2665     return true;
2666   // Check global type.
2667   if (!Ty.isNull()) {
2668     // Drill down the array types: if global variable of a fixed type is
2669     // not sanitized, we also don't instrument arrays of them.
2670     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2671       Ty = AT->getElementType();
2672     Ty = Ty.getCanonicalType().getUnqualifiedType();
2673     // Only record types (classes, structs etc.) are ignored.
2674     if (Ty->isRecordType()) {
2675       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2676       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2677         return true;
2678     }
2679   }
2680   return false;
2681 }
2682 
2683 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2684                                    StringRef Category) const {
2685   const auto &XRayFilter = getContext().getXRayFilter();
2686   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2687   auto Attr = ImbueAttr::NONE;
2688   if (Loc.isValid())
2689     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2690   if (Attr == ImbueAttr::NONE)
2691     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2692   switch (Attr) {
2693   case ImbueAttr::NONE:
2694     return false;
2695   case ImbueAttr::ALWAYS:
2696     Fn->addFnAttr("function-instrument", "xray-always");
2697     break;
2698   case ImbueAttr::ALWAYS_ARG1:
2699     Fn->addFnAttr("function-instrument", "xray-always");
2700     Fn->addFnAttr("xray-log-args", "1");
2701     break;
2702   case ImbueAttr::NEVER:
2703     Fn->addFnAttr("function-instrument", "xray-never");
2704     break;
2705   }
2706   return true;
2707 }
2708 
2709 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2710                                            SourceLocation Loc) const {
2711   const auto &ProfileList = getContext().getProfileList();
2712   // If the profile list is empty, then instrument everything.
2713   if (ProfileList.isEmpty())
2714     return false;
2715   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2716   // First, check the function name.
2717   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2718   if (V.hasValue())
2719     return *V;
2720   // Next, check the source location.
2721   if (Loc.isValid()) {
2722     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2723     if (V.hasValue())
2724       return *V;
2725   }
2726   // If location is unknown, this may be a compiler-generated function. Assume
2727   // it's located in the main file.
2728   auto &SM = Context.getSourceManager();
2729   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2730     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2731     if (V.hasValue())
2732       return *V;
2733   }
2734   return ProfileList.getDefault();
2735 }
2736 
2737 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2738   // Never defer when EmitAllDecls is specified.
2739   if (LangOpts.EmitAllDecls)
2740     return true;
2741 
2742   if (CodeGenOpts.KeepStaticConsts) {
2743     const auto *VD = dyn_cast<VarDecl>(Global);
2744     if (VD && VD->getType().isConstQualified() &&
2745         VD->getStorageDuration() == SD_Static)
2746       return true;
2747   }
2748 
2749   return getContext().DeclMustBeEmitted(Global);
2750 }
2751 
2752 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2753   // In OpenMP 5.0 variables and function may be marked as
2754   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2755   // that they must be emitted on the host/device. To be sure we need to have
2756   // seen a declare target with an explicit mentioning of the function, we know
2757   // we have if the level of the declare target attribute is -1. Note that we
2758   // check somewhere else if we should emit this at all.
2759   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2760     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2761         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2762     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2763       return false;
2764   }
2765 
2766   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2767     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2768       // Implicit template instantiations may change linkage if they are later
2769       // explicitly instantiated, so they should not be emitted eagerly.
2770       return false;
2771   }
2772   if (const auto *VD = dyn_cast<VarDecl>(Global))
2773     if (Context.getInlineVariableDefinitionKind(VD) ==
2774         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2775       // A definition of an inline constexpr static data member may change
2776       // linkage later if it's redeclared outside the class.
2777       return false;
2778   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2779   // codegen for global variables, because they may be marked as threadprivate.
2780   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2781       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2782       !isTypeConstant(Global->getType(), false) &&
2783       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2784     return false;
2785 
2786   return true;
2787 }
2788 
2789 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2790   StringRef Name = getMangledName(GD);
2791 
2792   // The UUID descriptor should be pointer aligned.
2793   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2794 
2795   // Look for an existing global.
2796   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2797     return ConstantAddress(GV, Alignment);
2798 
2799   ConstantEmitter Emitter(*this);
2800   llvm::Constant *Init;
2801 
2802   APValue &V = GD->getAsAPValue();
2803   if (!V.isAbsent()) {
2804     // If possible, emit the APValue version of the initializer. In particular,
2805     // this gets the type of the constant right.
2806     Init = Emitter.emitForInitializer(
2807         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2808   } else {
2809     // As a fallback, directly construct the constant.
2810     // FIXME: This may get padding wrong under esoteric struct layout rules.
2811     // MSVC appears to create a complete type 'struct __s_GUID' that it
2812     // presumably uses to represent these constants.
2813     MSGuidDecl::Parts Parts = GD->getParts();
2814     llvm::Constant *Fields[4] = {
2815         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2816         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2817         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2818         llvm::ConstantDataArray::getRaw(
2819             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2820             Int8Ty)};
2821     Init = llvm::ConstantStruct::getAnon(Fields);
2822   }
2823 
2824   auto *GV = new llvm::GlobalVariable(
2825       getModule(), Init->getType(),
2826       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2827   if (supportsCOMDAT())
2828     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2829   setDSOLocal(GV);
2830 
2831   llvm::Constant *Addr = GV;
2832   if (!V.isAbsent()) {
2833     Emitter.finalize(GV);
2834   } else {
2835     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2836     Addr = llvm::ConstantExpr::getBitCast(
2837         GV, Ty->getPointerTo(GV->getAddressSpace()));
2838   }
2839   return ConstantAddress(Addr, Alignment);
2840 }
2841 
2842 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2843     const TemplateParamObjectDecl *TPO) {
2844   StringRef Name = getMangledName(TPO);
2845   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2846 
2847   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2848     return ConstantAddress(GV, Alignment);
2849 
2850   ConstantEmitter Emitter(*this);
2851   llvm::Constant *Init = Emitter.emitForInitializer(
2852         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2853 
2854   if (!Init) {
2855     ErrorUnsupported(TPO, "template parameter object");
2856     return ConstantAddress::invalid();
2857   }
2858 
2859   auto *GV = new llvm::GlobalVariable(
2860       getModule(), Init->getType(),
2861       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2862   if (supportsCOMDAT())
2863     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2864   Emitter.finalize(GV);
2865 
2866   return ConstantAddress(GV, Alignment);
2867 }
2868 
2869 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2870   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2871   assert(AA && "No alias?");
2872 
2873   CharUnits Alignment = getContext().getDeclAlign(VD);
2874   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2875 
2876   // See if there is already something with the target's name in the module.
2877   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2878   if (Entry) {
2879     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2880     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2881     return ConstantAddress(Ptr, Alignment);
2882   }
2883 
2884   llvm::Constant *Aliasee;
2885   if (isa<llvm::FunctionType>(DeclTy))
2886     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2887                                       GlobalDecl(cast<FunctionDecl>(VD)),
2888                                       /*ForVTable=*/false);
2889   else
2890     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2891                                     nullptr);
2892 
2893   auto *F = cast<llvm::GlobalValue>(Aliasee);
2894   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2895   WeakRefReferences.insert(F);
2896 
2897   return ConstantAddress(Aliasee, Alignment);
2898 }
2899 
2900 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2901   const auto *Global = cast<ValueDecl>(GD.getDecl());
2902 
2903   // Weak references don't produce any output by themselves.
2904   if (Global->hasAttr<WeakRefAttr>())
2905     return;
2906 
2907   // If this is an alias definition (which otherwise looks like a declaration)
2908   // emit it now.
2909   if (Global->hasAttr<AliasAttr>())
2910     return EmitAliasDefinition(GD);
2911 
2912   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2913   if (Global->hasAttr<IFuncAttr>())
2914     return emitIFuncDefinition(GD);
2915 
2916   // If this is a cpu_dispatch multiversion function, emit the resolver.
2917   if (Global->hasAttr<CPUDispatchAttr>())
2918     return emitCPUDispatchDefinition(GD);
2919 
2920   // If this is CUDA, be selective about which declarations we emit.
2921   if (LangOpts.CUDA) {
2922     if (LangOpts.CUDAIsDevice) {
2923       if (!Global->hasAttr<CUDADeviceAttr>() &&
2924           !Global->hasAttr<CUDAGlobalAttr>() &&
2925           !Global->hasAttr<CUDAConstantAttr>() &&
2926           !Global->hasAttr<CUDASharedAttr>() &&
2927           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2928           !Global->getType()->isCUDADeviceBuiltinTextureType())
2929         return;
2930     } else {
2931       // We need to emit host-side 'shadows' for all global
2932       // device-side variables because the CUDA runtime needs their
2933       // size and host-side address in order to provide access to
2934       // their device-side incarnations.
2935 
2936       // So device-only functions are the only things we skip.
2937       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2938           Global->hasAttr<CUDADeviceAttr>())
2939         return;
2940 
2941       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2942              "Expected Variable or Function");
2943     }
2944   }
2945 
2946   if (LangOpts.OpenMP) {
2947     // If this is OpenMP, check if it is legal to emit this global normally.
2948     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2949       return;
2950     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2951       if (MustBeEmitted(Global))
2952         EmitOMPDeclareReduction(DRD);
2953       return;
2954     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2955       if (MustBeEmitted(Global))
2956         EmitOMPDeclareMapper(DMD);
2957       return;
2958     }
2959   }
2960 
2961   // Ignore declarations, they will be emitted on their first use.
2962   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2963     // Forward declarations are emitted lazily on first use.
2964     if (!FD->doesThisDeclarationHaveABody()) {
2965       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2966         return;
2967 
2968       StringRef MangledName = getMangledName(GD);
2969 
2970       // Compute the function info and LLVM type.
2971       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2972       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2973 
2974       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2975                               /*DontDefer=*/false);
2976       return;
2977     }
2978   } else {
2979     const auto *VD = cast<VarDecl>(Global);
2980     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2981     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2982         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2983       if (LangOpts.OpenMP) {
2984         // Emit declaration of the must-be-emitted declare target variable.
2985         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2986                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2987           bool UnifiedMemoryEnabled =
2988               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2989           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2990               !UnifiedMemoryEnabled) {
2991             (void)GetAddrOfGlobalVar(VD);
2992           } else {
2993             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2994                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2995                      UnifiedMemoryEnabled)) &&
2996                    "Link clause or to clause with unified memory expected.");
2997             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2998           }
2999 
3000           return;
3001         }
3002       }
3003       // If this declaration may have caused an inline variable definition to
3004       // change linkage, make sure that it's emitted.
3005       if (Context.getInlineVariableDefinitionKind(VD) ==
3006           ASTContext::InlineVariableDefinitionKind::Strong)
3007         GetAddrOfGlobalVar(VD);
3008       return;
3009     }
3010   }
3011 
3012   // Defer code generation to first use when possible, e.g. if this is an inline
3013   // function. If the global must always be emitted, do it eagerly if possible
3014   // to benefit from cache locality.
3015   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3016     // Emit the definition if it can't be deferred.
3017     EmitGlobalDefinition(GD);
3018     return;
3019   }
3020 
3021   // If we're deferring emission of a C++ variable with an
3022   // initializer, remember the order in which it appeared in the file.
3023   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3024       cast<VarDecl>(Global)->hasInit()) {
3025     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3026     CXXGlobalInits.push_back(nullptr);
3027   }
3028 
3029   StringRef MangledName = getMangledName(GD);
3030   if (GetGlobalValue(MangledName) != nullptr) {
3031     // The value has already been used and should therefore be emitted.
3032     addDeferredDeclToEmit(GD);
3033   } else if (MustBeEmitted(Global)) {
3034     // The value must be emitted, but cannot be emitted eagerly.
3035     assert(!MayBeEmittedEagerly(Global));
3036     addDeferredDeclToEmit(GD);
3037   } else {
3038     // Otherwise, remember that we saw a deferred decl with this name.  The
3039     // first use of the mangled name will cause it to move into
3040     // DeferredDeclsToEmit.
3041     DeferredDecls[MangledName] = GD;
3042   }
3043 }
3044 
3045 // Check if T is a class type with a destructor that's not dllimport.
3046 static bool HasNonDllImportDtor(QualType T) {
3047   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3048     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3049       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3050         return true;
3051 
3052   return false;
3053 }
3054 
3055 namespace {
3056   struct FunctionIsDirectlyRecursive
3057       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3058     const StringRef Name;
3059     const Builtin::Context &BI;
3060     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3061         : Name(N), BI(C) {}
3062 
3063     bool VisitCallExpr(const CallExpr *E) {
3064       const FunctionDecl *FD = E->getDirectCallee();
3065       if (!FD)
3066         return false;
3067       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3068       if (Attr && Name == Attr->getLabel())
3069         return true;
3070       unsigned BuiltinID = FD->getBuiltinID();
3071       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3072         return false;
3073       StringRef BuiltinName = BI.getName(BuiltinID);
3074       if (BuiltinName.startswith("__builtin_") &&
3075           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3076         return true;
3077       }
3078       return false;
3079     }
3080 
3081     bool VisitStmt(const Stmt *S) {
3082       for (const Stmt *Child : S->children())
3083         if (Child && this->Visit(Child))
3084           return true;
3085       return false;
3086     }
3087   };
3088 
3089   // Make sure we're not referencing non-imported vars or functions.
3090   struct DLLImportFunctionVisitor
3091       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3092     bool SafeToInline = true;
3093 
3094     bool shouldVisitImplicitCode() const { return true; }
3095 
3096     bool VisitVarDecl(VarDecl *VD) {
3097       if (VD->getTLSKind()) {
3098         // A thread-local variable cannot be imported.
3099         SafeToInline = false;
3100         return SafeToInline;
3101       }
3102 
3103       // A variable definition might imply a destructor call.
3104       if (VD->isThisDeclarationADefinition())
3105         SafeToInline = !HasNonDllImportDtor(VD->getType());
3106 
3107       return SafeToInline;
3108     }
3109 
3110     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3111       if (const auto *D = E->getTemporary()->getDestructor())
3112         SafeToInline = D->hasAttr<DLLImportAttr>();
3113       return SafeToInline;
3114     }
3115 
3116     bool VisitDeclRefExpr(DeclRefExpr *E) {
3117       ValueDecl *VD = E->getDecl();
3118       if (isa<FunctionDecl>(VD))
3119         SafeToInline = VD->hasAttr<DLLImportAttr>();
3120       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3121         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3122       return SafeToInline;
3123     }
3124 
3125     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3126       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3127       return SafeToInline;
3128     }
3129 
3130     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3131       CXXMethodDecl *M = E->getMethodDecl();
3132       if (!M) {
3133         // Call through a pointer to member function. This is safe to inline.
3134         SafeToInline = true;
3135       } else {
3136         SafeToInline = M->hasAttr<DLLImportAttr>();
3137       }
3138       return SafeToInline;
3139     }
3140 
3141     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3142       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3143       return SafeToInline;
3144     }
3145 
3146     bool VisitCXXNewExpr(CXXNewExpr *E) {
3147       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3148       return SafeToInline;
3149     }
3150   };
3151 }
3152 
3153 // isTriviallyRecursive - Check if this function calls another
3154 // decl that, because of the asm attribute or the other decl being a builtin,
3155 // ends up pointing to itself.
3156 bool
3157 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3158   StringRef Name;
3159   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3160     // asm labels are a special kind of mangling we have to support.
3161     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3162     if (!Attr)
3163       return false;
3164     Name = Attr->getLabel();
3165   } else {
3166     Name = FD->getName();
3167   }
3168 
3169   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3170   const Stmt *Body = FD->getBody();
3171   return Body ? Walker.Visit(Body) : false;
3172 }
3173 
3174 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3175   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3176     return true;
3177   const auto *F = cast<FunctionDecl>(GD.getDecl());
3178   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3179     return false;
3180 
3181   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3182     // Check whether it would be safe to inline this dllimport function.
3183     DLLImportFunctionVisitor Visitor;
3184     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3185     if (!Visitor.SafeToInline)
3186       return false;
3187 
3188     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3189       // Implicit destructor invocations aren't captured in the AST, so the
3190       // check above can't see them. Check for them manually here.
3191       for (const Decl *Member : Dtor->getParent()->decls())
3192         if (isa<FieldDecl>(Member))
3193           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3194             return false;
3195       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3196         if (HasNonDllImportDtor(B.getType()))
3197           return false;
3198     }
3199   }
3200 
3201   // Inline builtins declaration must be emitted. They often are fortified
3202   // functions.
3203   if (F->isInlineBuiltinDeclaration())
3204     return true;
3205 
3206   // PR9614. Avoid cases where the source code is lying to us. An available
3207   // externally function should have an equivalent function somewhere else,
3208   // but a function that calls itself through asm label/`__builtin_` trickery is
3209   // clearly not equivalent to the real implementation.
3210   // This happens in glibc's btowc and in some configure checks.
3211   return !isTriviallyRecursive(F);
3212 }
3213 
3214 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3215   return CodeGenOpts.OptimizationLevel > 0;
3216 }
3217 
3218 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3219                                                        llvm::GlobalValue *GV) {
3220   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3221 
3222   if (FD->isCPUSpecificMultiVersion()) {
3223     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3224     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3225       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3226     // Requires multiple emits.
3227   } else
3228     EmitGlobalFunctionDefinition(GD, GV);
3229 }
3230 
3231 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3232   const auto *D = cast<ValueDecl>(GD.getDecl());
3233 
3234   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3235                                  Context.getSourceManager(),
3236                                  "Generating code for declaration");
3237 
3238   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3239     // At -O0, don't generate IR for functions with available_externally
3240     // linkage.
3241     if (!shouldEmitFunction(GD))
3242       return;
3243 
3244     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3245       std::string Name;
3246       llvm::raw_string_ostream OS(Name);
3247       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3248                                /*Qualified=*/true);
3249       return Name;
3250     });
3251 
3252     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3253       // Make sure to emit the definition(s) before we emit the thunks.
3254       // This is necessary for the generation of certain thunks.
3255       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3256         ABI->emitCXXStructor(GD);
3257       else if (FD->isMultiVersion())
3258         EmitMultiVersionFunctionDefinition(GD, GV);
3259       else
3260         EmitGlobalFunctionDefinition(GD, GV);
3261 
3262       if (Method->isVirtual())
3263         getVTables().EmitThunks(GD);
3264 
3265       return;
3266     }
3267 
3268     if (FD->isMultiVersion())
3269       return EmitMultiVersionFunctionDefinition(GD, GV);
3270     return EmitGlobalFunctionDefinition(GD, GV);
3271   }
3272 
3273   if (const auto *VD = dyn_cast<VarDecl>(D))
3274     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3275 
3276   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3277 }
3278 
3279 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3280                                                       llvm::Function *NewFn);
3281 
3282 static unsigned
3283 TargetMVPriority(const TargetInfo &TI,
3284                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3285   unsigned Priority = 0;
3286   for (StringRef Feat : RO.Conditions.Features)
3287     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3288 
3289   if (!RO.Conditions.Architecture.empty())
3290     Priority = std::max(
3291         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3292   return Priority;
3293 }
3294 
3295 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3296 // TU can forward declare the function without causing problems.  Particularly
3297 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3298 // work with internal linkage functions, so that the same function name can be
3299 // used with internal linkage in multiple TUs.
3300 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3301                                                        GlobalDecl GD) {
3302   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3303   if (FD->getFormalLinkage() == InternalLinkage)
3304     return llvm::GlobalValue::InternalLinkage;
3305   return llvm::GlobalValue::WeakODRLinkage;
3306 }
3307 
3308 void CodeGenModule::emitMultiVersionFunctions() {
3309   std::vector<GlobalDecl> MVFuncsToEmit;
3310   MultiVersionFuncs.swap(MVFuncsToEmit);
3311   for (GlobalDecl GD : MVFuncsToEmit) {
3312     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3313     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3314     getContext().forEachMultiversionedFunctionVersion(
3315         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3316           GlobalDecl CurGD{
3317               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3318           StringRef MangledName = getMangledName(CurGD);
3319           llvm::Constant *Func = GetGlobalValue(MangledName);
3320           if (!Func) {
3321             if (CurFD->isDefined()) {
3322               EmitGlobalFunctionDefinition(CurGD, nullptr);
3323               Func = GetGlobalValue(MangledName);
3324             } else {
3325               const CGFunctionInfo &FI =
3326                   getTypes().arrangeGlobalDeclaration(GD);
3327               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3328               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3329                                        /*DontDefer=*/false, ForDefinition);
3330             }
3331             assert(Func && "This should have just been created");
3332           }
3333 
3334           const auto *TA = CurFD->getAttr<TargetAttr>();
3335           llvm::SmallVector<StringRef, 8> Feats;
3336           TA->getAddedFeatures(Feats);
3337 
3338           Options.emplace_back(cast<llvm::Function>(Func),
3339                                TA->getArchitecture(), Feats);
3340         });
3341 
3342     llvm::Function *ResolverFunc;
3343     const TargetInfo &TI = getTarget();
3344 
3345     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3346       ResolverFunc = cast<llvm::Function>(
3347           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3348       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3349     } else {
3350       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3351     }
3352 
3353     if (supportsCOMDAT())
3354       ResolverFunc->setComdat(
3355           getModule().getOrInsertComdat(ResolverFunc->getName()));
3356 
3357     llvm::stable_sort(
3358         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3359                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3360           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3361         });
3362     CodeGenFunction CGF(*this);
3363     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3364   }
3365 
3366   // Ensure that any additions to the deferred decls list caused by emitting a
3367   // variant are emitted.  This can happen when the variant itself is inline and
3368   // calls a function without linkage.
3369   if (!MVFuncsToEmit.empty())
3370     EmitDeferred();
3371 
3372   // Ensure that any additions to the multiversion funcs list from either the
3373   // deferred decls or the multiversion functions themselves are emitted.
3374   if (!MultiVersionFuncs.empty())
3375     emitMultiVersionFunctions();
3376 }
3377 
3378 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3379   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3380   assert(FD && "Not a FunctionDecl?");
3381   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3382   assert(DD && "Not a cpu_dispatch Function?");
3383   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3384 
3385   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3386     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3387     DeclTy = getTypes().GetFunctionType(FInfo);
3388   }
3389 
3390   StringRef ResolverName = getMangledName(GD);
3391 
3392   llvm::Type *ResolverType;
3393   GlobalDecl ResolverGD;
3394   if (getTarget().supportsIFunc())
3395     ResolverType = llvm::FunctionType::get(
3396         llvm::PointerType::get(DeclTy,
3397                                Context.getTargetAddressSpace(FD->getType())),
3398         false);
3399   else {
3400     ResolverType = DeclTy;
3401     ResolverGD = GD;
3402   }
3403 
3404   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3405       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3406   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3407   if (supportsCOMDAT())
3408     ResolverFunc->setComdat(
3409         getModule().getOrInsertComdat(ResolverFunc->getName()));
3410 
3411   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3412   const TargetInfo &Target = getTarget();
3413   unsigned Index = 0;
3414   for (const IdentifierInfo *II : DD->cpus()) {
3415     // Get the name of the target function so we can look it up/create it.
3416     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3417                               getCPUSpecificMangling(*this, II->getName());
3418 
3419     llvm::Constant *Func = GetGlobalValue(MangledName);
3420 
3421     if (!Func) {
3422       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3423       if (ExistingDecl.getDecl() &&
3424           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3425         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3426         Func = GetGlobalValue(MangledName);
3427       } else {
3428         if (!ExistingDecl.getDecl())
3429           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3430 
3431       Func = GetOrCreateLLVMFunction(
3432           MangledName, DeclTy, ExistingDecl,
3433           /*ForVTable=*/false, /*DontDefer=*/true,
3434           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3435       }
3436     }
3437 
3438     llvm::SmallVector<StringRef, 32> Features;
3439     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3440     llvm::transform(Features, Features.begin(),
3441                     [](StringRef Str) { return Str.substr(1); });
3442     llvm::erase_if(Features, [&Target](StringRef Feat) {
3443       return !Target.validateCpuSupports(Feat);
3444     });
3445     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3446     ++Index;
3447   }
3448 
3449   llvm::stable_sort(
3450       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3451                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3452         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3453                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3454       });
3455 
3456   // If the list contains multiple 'default' versions, such as when it contains
3457   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3458   // always run on at least a 'pentium'). We do this by deleting the 'least
3459   // advanced' (read, lowest mangling letter).
3460   while (Options.size() > 1 &&
3461          llvm::X86::getCpuSupportsMask(
3462              (Options.end() - 2)->Conditions.Features) == 0) {
3463     StringRef LHSName = (Options.end() - 2)->Function->getName();
3464     StringRef RHSName = (Options.end() - 1)->Function->getName();
3465     if (LHSName.compare(RHSName) < 0)
3466       Options.erase(Options.end() - 2);
3467     else
3468       Options.erase(Options.end() - 1);
3469   }
3470 
3471   CodeGenFunction CGF(*this);
3472   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3473 
3474   if (getTarget().supportsIFunc()) {
3475     std::string AliasName = getMangledNameImpl(
3476         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3477     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3478     if (!AliasFunc) {
3479       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3480           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3481           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3482       auto *GA = llvm::GlobalAlias::create(DeclTy, 0,
3483                                            getMultiversionLinkage(*this, GD),
3484                                            AliasName, IFunc, &getModule());
3485       SetCommonAttributes(GD, GA);
3486     }
3487   }
3488 }
3489 
3490 /// If a dispatcher for the specified mangled name is not in the module, create
3491 /// and return an llvm Function with the specified type.
3492 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3493     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3494   std::string MangledName =
3495       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3496 
3497   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3498   // a separate resolver).
3499   std::string ResolverName = MangledName;
3500   if (getTarget().supportsIFunc())
3501     ResolverName += ".ifunc";
3502   else if (FD->isTargetMultiVersion())
3503     ResolverName += ".resolver";
3504 
3505   // If this already exists, just return that one.
3506   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3507     return ResolverGV;
3508 
3509   // Since this is the first time we've created this IFunc, make sure
3510   // that we put this multiversioned function into the list to be
3511   // replaced later if necessary (target multiversioning only).
3512   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3513     MultiVersionFuncs.push_back(GD);
3514 
3515   if (getTarget().supportsIFunc()) {
3516     llvm::Type *ResolverType = llvm::FunctionType::get(
3517         llvm::PointerType::get(
3518             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3519         false);
3520     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3521         MangledName + ".resolver", ResolverType, GlobalDecl{},
3522         /*ForVTable=*/false);
3523     llvm::GlobalIFunc *GIF =
3524         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3525                                   "", Resolver, &getModule());
3526     GIF->setName(ResolverName);
3527     SetCommonAttributes(FD, GIF);
3528 
3529     return GIF;
3530   }
3531 
3532   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3533       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3534   assert(isa<llvm::GlobalValue>(Resolver) &&
3535          "Resolver should be created for the first time");
3536   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3537   return Resolver;
3538 }
3539 
3540 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3541 /// module, create and return an llvm Function with the specified type. If there
3542 /// is something in the module with the specified name, return it potentially
3543 /// bitcasted to the right type.
3544 ///
3545 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3546 /// to set the attributes on the function when it is first created.
3547 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3548     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3549     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3550     ForDefinition_t IsForDefinition) {
3551   const Decl *D = GD.getDecl();
3552 
3553   // Any attempts to use a MultiVersion function should result in retrieving
3554   // the iFunc instead. Name Mangling will handle the rest of the changes.
3555   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3556     // For the device mark the function as one that should be emitted.
3557     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3558         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3559         !DontDefer && !IsForDefinition) {
3560       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3561         GlobalDecl GDDef;
3562         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3563           GDDef = GlobalDecl(CD, GD.getCtorType());
3564         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3565           GDDef = GlobalDecl(DD, GD.getDtorType());
3566         else
3567           GDDef = GlobalDecl(FDDef);
3568         EmitGlobal(GDDef);
3569       }
3570     }
3571 
3572     if (FD->isMultiVersion()) {
3573       if (FD->hasAttr<TargetAttr>())
3574         UpdateMultiVersionNames(GD, FD);
3575       if (!IsForDefinition)
3576         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3577     }
3578   }
3579 
3580   // Lookup the entry, lazily creating it if necessary.
3581   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3582   if (Entry) {
3583     if (WeakRefReferences.erase(Entry)) {
3584       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3585       if (FD && !FD->hasAttr<WeakAttr>())
3586         Entry->setLinkage(llvm::Function::ExternalLinkage);
3587     }
3588 
3589     // Handle dropped DLL attributes.
3590     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3591       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3592       setDSOLocal(Entry);
3593     }
3594 
3595     // If there are two attempts to define the same mangled name, issue an
3596     // error.
3597     if (IsForDefinition && !Entry->isDeclaration()) {
3598       GlobalDecl OtherGD;
3599       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3600       // to make sure that we issue an error only once.
3601       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3602           (GD.getCanonicalDecl().getDecl() !=
3603            OtherGD.getCanonicalDecl().getDecl()) &&
3604           DiagnosedConflictingDefinitions.insert(GD).second) {
3605         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3606             << MangledName;
3607         getDiags().Report(OtherGD.getDecl()->getLocation(),
3608                           diag::note_previous_definition);
3609       }
3610     }
3611 
3612     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3613         (Entry->getValueType() == Ty)) {
3614       return Entry;
3615     }
3616 
3617     // Make sure the result is of the correct type.
3618     // (If function is requested for a definition, we always need to create a new
3619     // function, not just return a bitcast.)
3620     if (!IsForDefinition)
3621       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3622   }
3623 
3624   // This function doesn't have a complete type (for example, the return
3625   // type is an incomplete struct). Use a fake type instead, and make
3626   // sure not to try to set attributes.
3627   bool IsIncompleteFunction = false;
3628 
3629   llvm::FunctionType *FTy;
3630   if (isa<llvm::FunctionType>(Ty)) {
3631     FTy = cast<llvm::FunctionType>(Ty);
3632   } else {
3633     FTy = llvm::FunctionType::get(VoidTy, false);
3634     IsIncompleteFunction = true;
3635   }
3636 
3637   llvm::Function *F =
3638       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3639                              Entry ? StringRef() : MangledName, &getModule());
3640 
3641   // If we already created a function with the same mangled name (but different
3642   // type) before, take its name and add it to the list of functions to be
3643   // replaced with F at the end of CodeGen.
3644   //
3645   // This happens if there is a prototype for a function (e.g. "int f()") and
3646   // then a definition of a different type (e.g. "int f(int x)").
3647   if (Entry) {
3648     F->takeName(Entry);
3649 
3650     // This might be an implementation of a function without a prototype, in
3651     // which case, try to do special replacement of calls which match the new
3652     // prototype.  The really key thing here is that we also potentially drop
3653     // arguments from the call site so as to make a direct call, which makes the
3654     // inliner happier and suppresses a number of optimizer warnings (!) about
3655     // dropping arguments.
3656     if (!Entry->use_empty()) {
3657       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3658       Entry->removeDeadConstantUsers();
3659     }
3660 
3661     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3662         F, Entry->getValueType()->getPointerTo());
3663     addGlobalValReplacement(Entry, BC);
3664   }
3665 
3666   assert(F->getName() == MangledName && "name was uniqued!");
3667   if (D)
3668     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3669   if (ExtraAttrs.hasFnAttrs()) {
3670     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3671     F->addFnAttrs(B);
3672   }
3673 
3674   if (!DontDefer) {
3675     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3676     // each other bottoming out with the base dtor.  Therefore we emit non-base
3677     // dtors on usage, even if there is no dtor definition in the TU.
3678     if (D && isa<CXXDestructorDecl>(D) &&
3679         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3680                                            GD.getDtorType()))
3681       addDeferredDeclToEmit(GD);
3682 
3683     // This is the first use or definition of a mangled name.  If there is a
3684     // deferred decl with this name, remember that we need to emit it at the end
3685     // of the file.
3686     auto DDI = DeferredDecls.find(MangledName);
3687     if (DDI != DeferredDecls.end()) {
3688       // Move the potentially referenced deferred decl to the
3689       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3690       // don't need it anymore).
3691       addDeferredDeclToEmit(DDI->second);
3692       DeferredDecls.erase(DDI);
3693 
3694       // Otherwise, there are cases we have to worry about where we're
3695       // using a declaration for which we must emit a definition but where
3696       // we might not find a top-level definition:
3697       //   - member functions defined inline in their classes
3698       //   - friend functions defined inline in some class
3699       //   - special member functions with implicit definitions
3700       // If we ever change our AST traversal to walk into class methods,
3701       // this will be unnecessary.
3702       //
3703       // We also don't emit a definition for a function if it's going to be an
3704       // entry in a vtable, unless it's already marked as used.
3705     } else if (getLangOpts().CPlusPlus && D) {
3706       // Look for a declaration that's lexically in a record.
3707       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3708            FD = FD->getPreviousDecl()) {
3709         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3710           if (FD->doesThisDeclarationHaveABody()) {
3711             addDeferredDeclToEmit(GD.getWithDecl(FD));
3712             break;
3713           }
3714         }
3715       }
3716     }
3717   }
3718 
3719   // Make sure the result is of the requested type.
3720   if (!IsIncompleteFunction) {
3721     assert(F->getFunctionType() == Ty);
3722     return F;
3723   }
3724 
3725   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3726   return llvm::ConstantExpr::getBitCast(F, PTy);
3727 }
3728 
3729 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3730 /// non-null, then this function will use the specified type if it has to
3731 /// create it (this occurs when we see a definition of the function).
3732 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3733                                                  llvm::Type *Ty,
3734                                                  bool ForVTable,
3735                                                  bool DontDefer,
3736                                               ForDefinition_t IsForDefinition) {
3737   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3738          "consteval function should never be emitted");
3739   // If there was no specific requested type, just convert it now.
3740   if (!Ty) {
3741     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3742     Ty = getTypes().ConvertType(FD->getType());
3743   }
3744 
3745   // Devirtualized destructor calls may come through here instead of via
3746   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3747   // of the complete destructor when necessary.
3748   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3749     if (getTarget().getCXXABI().isMicrosoft() &&
3750         GD.getDtorType() == Dtor_Complete &&
3751         DD->getParent()->getNumVBases() == 0)
3752       GD = GlobalDecl(DD, Dtor_Base);
3753   }
3754 
3755   StringRef MangledName = getMangledName(GD);
3756   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3757                                     /*IsThunk=*/false, llvm::AttributeList(),
3758                                     IsForDefinition);
3759   // Returns kernel handle for HIP kernel stub function.
3760   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3761       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3762     auto *Handle = getCUDARuntime().getKernelHandle(
3763         cast<llvm::Function>(F->stripPointerCasts()), GD);
3764     if (IsForDefinition)
3765       return F;
3766     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3767   }
3768   return F;
3769 }
3770 
3771 static const FunctionDecl *
3772 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3773   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3774   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3775 
3776   IdentifierInfo &CII = C.Idents.get(Name);
3777   for (const auto *Result : DC->lookup(&CII))
3778     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3779       return FD;
3780 
3781   if (!C.getLangOpts().CPlusPlus)
3782     return nullptr;
3783 
3784   // Demangle the premangled name from getTerminateFn()
3785   IdentifierInfo &CXXII =
3786       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3787           ? C.Idents.get("terminate")
3788           : C.Idents.get(Name);
3789 
3790   for (const auto &N : {"__cxxabiv1", "std"}) {
3791     IdentifierInfo &NS = C.Idents.get(N);
3792     for (const auto *Result : DC->lookup(&NS)) {
3793       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3794       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3795         for (const auto *Result : LSD->lookup(&NS))
3796           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3797             break;
3798 
3799       if (ND)
3800         for (const auto *Result : ND->lookup(&CXXII))
3801           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3802             return FD;
3803     }
3804   }
3805 
3806   return nullptr;
3807 }
3808 
3809 /// CreateRuntimeFunction - Create a new runtime function with the specified
3810 /// type and name.
3811 llvm::FunctionCallee
3812 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3813                                      llvm::AttributeList ExtraAttrs, bool Local,
3814                                      bool AssumeConvergent) {
3815   if (AssumeConvergent) {
3816     ExtraAttrs =
3817         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3818   }
3819 
3820   llvm::Constant *C =
3821       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3822                               /*DontDefer=*/false, /*IsThunk=*/false,
3823                               ExtraAttrs);
3824 
3825   if (auto *F = dyn_cast<llvm::Function>(C)) {
3826     if (F->empty()) {
3827       F->setCallingConv(getRuntimeCC());
3828 
3829       // In Windows Itanium environments, try to mark runtime functions
3830       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3831       // will link their standard library statically or dynamically. Marking
3832       // functions imported when they are not imported can cause linker errors
3833       // and warnings.
3834       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3835           !getCodeGenOpts().LTOVisibilityPublicStd) {
3836         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3837         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3838           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3839           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3840         }
3841       }
3842       setDSOLocal(F);
3843     }
3844   }
3845 
3846   return {FTy, C};
3847 }
3848 
3849 /// isTypeConstant - Determine whether an object of this type can be emitted
3850 /// as a constant.
3851 ///
3852 /// If ExcludeCtor is true, the duration when the object's constructor runs
3853 /// will not be considered. The caller will need to verify that the object is
3854 /// not written to during its construction.
3855 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3856   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3857     return false;
3858 
3859   if (Context.getLangOpts().CPlusPlus) {
3860     if (const CXXRecordDecl *Record
3861           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3862       return ExcludeCtor && !Record->hasMutableFields() &&
3863              Record->hasTrivialDestructor();
3864   }
3865 
3866   return true;
3867 }
3868 
3869 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3870 /// create and return an llvm GlobalVariable with the specified type and address
3871 /// space. If there is something in the module with the specified name, return
3872 /// it potentially bitcasted to the right type.
3873 ///
3874 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3875 /// to set the attributes on the global when it is first created.
3876 ///
3877 /// If IsForDefinition is true, it is guaranteed that an actual global with
3878 /// type Ty will be returned, not conversion of a variable with the same
3879 /// mangled name but some other type.
3880 llvm::Constant *
3881 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3882                                      LangAS AddrSpace, const VarDecl *D,
3883                                      ForDefinition_t IsForDefinition) {
3884   // Lookup the entry, lazily creating it if necessary.
3885   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3886   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
3887   if (Entry) {
3888     if (WeakRefReferences.erase(Entry)) {
3889       if (D && !D->hasAttr<WeakAttr>())
3890         Entry->setLinkage(llvm::Function::ExternalLinkage);
3891     }
3892 
3893     // Handle dropped DLL attributes.
3894     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3895       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3896 
3897     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3898       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3899 
3900     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
3901       return Entry;
3902 
3903     // If there are two attempts to define the same mangled name, issue an
3904     // error.
3905     if (IsForDefinition && !Entry->isDeclaration()) {
3906       GlobalDecl OtherGD;
3907       const VarDecl *OtherD;
3908 
3909       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3910       // to make sure that we issue an error only once.
3911       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3912           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3913           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3914           OtherD->hasInit() &&
3915           DiagnosedConflictingDefinitions.insert(D).second) {
3916         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3917             << MangledName;
3918         getDiags().Report(OtherGD.getDecl()->getLocation(),
3919                           diag::note_previous_definition);
3920       }
3921     }
3922 
3923     // Make sure the result is of the correct type.
3924     if (Entry->getType()->getAddressSpace() != TargetAS) {
3925       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3926                                                   Ty->getPointerTo(TargetAS));
3927     }
3928 
3929     // (If global is requested for a definition, we always need to create a new
3930     // global, not just return a bitcast.)
3931     if (!IsForDefinition)
3932       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
3933   }
3934 
3935   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3936 
3937   auto *GV = new llvm::GlobalVariable(
3938       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3939       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3940       getContext().getTargetAddressSpace(DAddrSpace));
3941 
3942   // If we already created a global with the same mangled name (but different
3943   // type) before, take its name and remove it from its parent.
3944   if (Entry) {
3945     GV->takeName(Entry);
3946 
3947     if (!Entry->use_empty()) {
3948       llvm::Constant *NewPtrForOldDecl =
3949           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3950       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3951     }
3952 
3953     Entry->eraseFromParent();
3954   }
3955 
3956   // This is the first use or definition of a mangled name.  If there is a
3957   // deferred decl with this name, remember that we need to emit it at the end
3958   // of the file.
3959   auto DDI = DeferredDecls.find(MangledName);
3960   if (DDI != DeferredDecls.end()) {
3961     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3962     // list, and remove it from DeferredDecls (since we don't need it anymore).
3963     addDeferredDeclToEmit(DDI->second);
3964     DeferredDecls.erase(DDI);
3965   }
3966 
3967   // Handle things which are present even on external declarations.
3968   if (D) {
3969     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3970       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3971 
3972     // FIXME: This code is overly simple and should be merged with other global
3973     // handling.
3974     GV->setConstant(isTypeConstant(D->getType(), false));
3975 
3976     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3977 
3978     setLinkageForGV(GV, D);
3979 
3980     if (D->getTLSKind()) {
3981       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3982         CXXThreadLocals.push_back(D);
3983       setTLSMode(GV, *D);
3984     }
3985 
3986     setGVProperties(GV, D);
3987 
3988     // If required by the ABI, treat declarations of static data members with
3989     // inline initializers as definitions.
3990     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3991       EmitGlobalVarDefinition(D);
3992     }
3993 
3994     // Emit section information for extern variables.
3995     if (D->hasExternalStorage()) {
3996       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3997         GV->setSection(SA->getName());
3998     }
3999 
4000     // Handle XCore specific ABI requirements.
4001     if (getTriple().getArch() == llvm::Triple::xcore &&
4002         D->getLanguageLinkage() == CLanguageLinkage &&
4003         D->getType().isConstant(Context) &&
4004         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4005       GV->setSection(".cp.rodata");
4006 
4007     // Check if we a have a const declaration with an initializer, we may be
4008     // able to emit it as available_externally to expose it's value to the
4009     // optimizer.
4010     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4011         D->getType().isConstQualified() && !GV->hasInitializer() &&
4012         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4013       const auto *Record =
4014           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4015       bool HasMutableFields = Record && Record->hasMutableFields();
4016       if (!HasMutableFields) {
4017         const VarDecl *InitDecl;
4018         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4019         if (InitExpr) {
4020           ConstantEmitter emitter(*this);
4021           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4022           if (Init) {
4023             auto *InitType = Init->getType();
4024             if (GV->getValueType() != InitType) {
4025               // The type of the initializer does not match the definition.
4026               // This happens when an initializer has a different type from
4027               // the type of the global (because of padding at the end of a
4028               // structure for instance).
4029               GV->setName(StringRef());
4030               // Make a new global with the correct type, this is now guaranteed
4031               // to work.
4032               auto *NewGV = cast<llvm::GlobalVariable>(
4033                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4034                       ->stripPointerCasts());
4035 
4036               // Erase the old global, since it is no longer used.
4037               GV->eraseFromParent();
4038               GV = NewGV;
4039             } else {
4040               GV->setInitializer(Init);
4041               GV->setConstant(true);
4042               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4043             }
4044             emitter.finalize(GV);
4045           }
4046         }
4047       }
4048     }
4049   }
4050 
4051   if (GV->isDeclaration()) {
4052     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4053     // External HIP managed variables needed to be recorded for transformation
4054     // in both device and host compilations.
4055     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4056         D->hasExternalStorage())
4057       getCUDARuntime().handleVarRegistration(D, *GV);
4058   }
4059 
4060   LangAS ExpectedAS =
4061       D ? D->getType().getAddressSpace()
4062         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4063   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4064   if (DAddrSpace != ExpectedAS) {
4065     return getTargetCodeGenInfo().performAddrSpaceCast(
4066         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4067   }
4068 
4069   return GV;
4070 }
4071 
4072 llvm::Constant *
4073 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4074   const Decl *D = GD.getDecl();
4075 
4076   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4077     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4078                                 /*DontDefer=*/false, IsForDefinition);
4079 
4080   if (isa<CXXMethodDecl>(D)) {
4081     auto FInfo =
4082         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4083     auto Ty = getTypes().GetFunctionType(*FInfo);
4084     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4085                              IsForDefinition);
4086   }
4087 
4088   if (isa<FunctionDecl>(D)) {
4089     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4090     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4091     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4092                              IsForDefinition);
4093   }
4094 
4095   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4096 }
4097 
4098 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4099     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4100     unsigned Alignment) {
4101   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4102   llvm::GlobalVariable *OldGV = nullptr;
4103 
4104   if (GV) {
4105     // Check if the variable has the right type.
4106     if (GV->getValueType() == Ty)
4107       return GV;
4108 
4109     // Because C++ name mangling, the only way we can end up with an already
4110     // existing global with the same name is if it has been declared extern "C".
4111     assert(GV->isDeclaration() && "Declaration has wrong type!");
4112     OldGV = GV;
4113   }
4114 
4115   // Create a new variable.
4116   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4117                                 Linkage, nullptr, Name);
4118 
4119   if (OldGV) {
4120     // Replace occurrences of the old variable if needed.
4121     GV->takeName(OldGV);
4122 
4123     if (!OldGV->use_empty()) {
4124       llvm::Constant *NewPtrForOldDecl =
4125       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4126       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4127     }
4128 
4129     OldGV->eraseFromParent();
4130   }
4131 
4132   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4133       !GV->hasAvailableExternallyLinkage())
4134     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4135 
4136   GV->setAlignment(llvm::MaybeAlign(Alignment));
4137 
4138   return GV;
4139 }
4140 
4141 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4142 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4143 /// then it will be created with the specified type instead of whatever the
4144 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4145 /// that an actual global with type Ty will be returned, not conversion of a
4146 /// variable with the same mangled name but some other type.
4147 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4148                                                   llvm::Type *Ty,
4149                                            ForDefinition_t IsForDefinition) {
4150   assert(D->hasGlobalStorage() && "Not a global variable");
4151   QualType ASTTy = D->getType();
4152   if (!Ty)
4153     Ty = getTypes().ConvertTypeForMem(ASTTy);
4154 
4155   StringRef MangledName = getMangledName(D);
4156   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4157                                IsForDefinition);
4158 }
4159 
4160 /// CreateRuntimeVariable - Create a new runtime global variable with the
4161 /// specified type and name.
4162 llvm::Constant *
4163 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4164                                      StringRef Name) {
4165   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4166                                                        : LangAS::Default;
4167   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4168   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4169   return Ret;
4170 }
4171 
4172 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4173   assert(!D->getInit() && "Cannot emit definite definitions here!");
4174 
4175   StringRef MangledName = getMangledName(D);
4176   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4177 
4178   // We already have a definition, not declaration, with the same mangled name.
4179   // Emitting of declaration is not required (and actually overwrites emitted
4180   // definition).
4181   if (GV && !GV->isDeclaration())
4182     return;
4183 
4184   // If we have not seen a reference to this variable yet, place it into the
4185   // deferred declarations table to be emitted if needed later.
4186   if (!MustBeEmitted(D) && !GV) {
4187       DeferredDecls[MangledName] = D;
4188       return;
4189   }
4190 
4191   // The tentative definition is the only definition.
4192   EmitGlobalVarDefinition(D);
4193 }
4194 
4195 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4196   EmitExternalVarDeclaration(D);
4197 }
4198 
4199 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4200   return Context.toCharUnitsFromBits(
4201       getDataLayout().getTypeStoreSizeInBits(Ty));
4202 }
4203 
4204 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4205   if (LangOpts.OpenCL) {
4206     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4207     assert(AS == LangAS::opencl_global ||
4208            AS == LangAS::opencl_global_device ||
4209            AS == LangAS::opencl_global_host ||
4210            AS == LangAS::opencl_constant ||
4211            AS == LangAS::opencl_local ||
4212            AS >= LangAS::FirstTargetAddressSpace);
4213     return AS;
4214   }
4215 
4216   if (LangOpts.SYCLIsDevice &&
4217       (!D || D->getType().getAddressSpace() == LangAS::Default))
4218     return LangAS::sycl_global;
4219 
4220   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4221     if (D && D->hasAttr<CUDAConstantAttr>())
4222       return LangAS::cuda_constant;
4223     else if (D && D->hasAttr<CUDASharedAttr>())
4224       return LangAS::cuda_shared;
4225     else if (D && D->hasAttr<CUDADeviceAttr>())
4226       return LangAS::cuda_device;
4227     else if (D && D->getType().isConstQualified())
4228       return LangAS::cuda_constant;
4229     else
4230       return LangAS::cuda_device;
4231   }
4232 
4233   if (LangOpts.OpenMP) {
4234     LangAS AS;
4235     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4236       return AS;
4237   }
4238   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4239 }
4240 
4241 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4242   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4243   if (LangOpts.OpenCL)
4244     return LangAS::opencl_constant;
4245   if (LangOpts.SYCLIsDevice)
4246     return LangAS::sycl_global;
4247   if (auto AS = getTarget().getConstantAddressSpace())
4248     return AS.getValue();
4249   return LangAS::Default;
4250 }
4251 
4252 // In address space agnostic languages, string literals are in default address
4253 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4254 // emitted in constant address space in LLVM IR. To be consistent with other
4255 // parts of AST, string literal global variables in constant address space
4256 // need to be casted to default address space before being put into address
4257 // map and referenced by other part of CodeGen.
4258 // In OpenCL, string literals are in constant address space in AST, therefore
4259 // they should not be casted to default address space.
4260 static llvm::Constant *
4261 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4262                                        llvm::GlobalVariable *GV) {
4263   llvm::Constant *Cast = GV;
4264   if (!CGM.getLangOpts().OpenCL) {
4265     auto AS = CGM.GetGlobalConstantAddressSpace();
4266     if (AS != LangAS::Default)
4267       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4268           CGM, GV, AS, LangAS::Default,
4269           GV->getValueType()->getPointerTo(
4270               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4271   }
4272   return Cast;
4273 }
4274 
4275 template<typename SomeDecl>
4276 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4277                                                llvm::GlobalValue *GV) {
4278   if (!getLangOpts().CPlusPlus)
4279     return;
4280 
4281   // Must have 'used' attribute, or else inline assembly can't rely on
4282   // the name existing.
4283   if (!D->template hasAttr<UsedAttr>())
4284     return;
4285 
4286   // Must have internal linkage and an ordinary name.
4287   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4288     return;
4289 
4290   // Must be in an extern "C" context. Entities declared directly within
4291   // a record are not extern "C" even if the record is in such a context.
4292   const SomeDecl *First = D->getFirstDecl();
4293   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4294     return;
4295 
4296   // OK, this is an internal linkage entity inside an extern "C" linkage
4297   // specification. Make a note of that so we can give it the "expected"
4298   // mangled name if nothing else is using that name.
4299   std::pair<StaticExternCMap::iterator, bool> R =
4300       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4301 
4302   // If we have multiple internal linkage entities with the same name
4303   // in extern "C" regions, none of them gets that name.
4304   if (!R.second)
4305     R.first->second = nullptr;
4306 }
4307 
4308 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4309   if (!CGM.supportsCOMDAT())
4310     return false;
4311 
4312   if (D.hasAttr<SelectAnyAttr>())
4313     return true;
4314 
4315   GVALinkage Linkage;
4316   if (auto *VD = dyn_cast<VarDecl>(&D))
4317     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4318   else
4319     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4320 
4321   switch (Linkage) {
4322   case GVA_Internal:
4323   case GVA_AvailableExternally:
4324   case GVA_StrongExternal:
4325     return false;
4326   case GVA_DiscardableODR:
4327   case GVA_StrongODR:
4328     return true;
4329   }
4330   llvm_unreachable("No such linkage");
4331 }
4332 
4333 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4334                                           llvm::GlobalObject &GO) {
4335   if (!shouldBeInCOMDAT(*this, D))
4336     return;
4337   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4338 }
4339 
4340 /// Pass IsTentative as true if you want to create a tentative definition.
4341 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4342                                             bool IsTentative) {
4343   // OpenCL global variables of sampler type are translated to function calls,
4344   // therefore no need to be translated.
4345   QualType ASTTy = D->getType();
4346   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4347     return;
4348 
4349   // If this is OpenMP device, check if it is legal to emit this global
4350   // normally.
4351   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4352       OpenMPRuntime->emitTargetGlobalVariable(D))
4353     return;
4354 
4355   llvm::TrackingVH<llvm::Constant> Init;
4356   bool NeedsGlobalCtor = false;
4357   bool NeedsGlobalDtor =
4358       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4359 
4360   const VarDecl *InitDecl;
4361   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4362 
4363   Optional<ConstantEmitter> emitter;
4364 
4365   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4366   // as part of their declaration."  Sema has already checked for
4367   // error cases, so we just need to set Init to UndefValue.
4368   bool IsCUDASharedVar =
4369       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4370   // Shadows of initialized device-side global variables are also left
4371   // undefined.
4372   // Managed Variables should be initialized on both host side and device side.
4373   bool IsCUDAShadowVar =
4374       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4375       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4376        D->hasAttr<CUDASharedAttr>());
4377   bool IsCUDADeviceShadowVar =
4378       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4379       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4380        D->getType()->isCUDADeviceBuiltinTextureType());
4381   if (getLangOpts().CUDA &&
4382       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4383     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4384   else if (D->hasAttr<LoaderUninitializedAttr>())
4385     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4386   else if (!InitExpr) {
4387     // This is a tentative definition; tentative definitions are
4388     // implicitly initialized with { 0 }.
4389     //
4390     // Note that tentative definitions are only emitted at the end of
4391     // a translation unit, so they should never have incomplete
4392     // type. In addition, EmitTentativeDefinition makes sure that we
4393     // never attempt to emit a tentative definition if a real one
4394     // exists. A use may still exists, however, so we still may need
4395     // to do a RAUW.
4396     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4397     Init = EmitNullConstant(D->getType());
4398   } else {
4399     initializedGlobalDecl = GlobalDecl(D);
4400     emitter.emplace(*this);
4401     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4402     if (!Initializer) {
4403       QualType T = InitExpr->getType();
4404       if (D->getType()->isReferenceType())
4405         T = D->getType();
4406 
4407       if (getLangOpts().CPlusPlus) {
4408         Init = EmitNullConstant(T);
4409         NeedsGlobalCtor = true;
4410       } else {
4411         ErrorUnsupported(D, "static initializer");
4412         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4413       }
4414     } else {
4415       Init = Initializer;
4416       // We don't need an initializer, so remove the entry for the delayed
4417       // initializer position (just in case this entry was delayed) if we
4418       // also don't need to register a destructor.
4419       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4420         DelayedCXXInitPosition.erase(D);
4421     }
4422   }
4423 
4424   llvm::Type* InitType = Init->getType();
4425   llvm::Constant *Entry =
4426       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4427 
4428   // Strip off pointer casts if we got them.
4429   Entry = Entry->stripPointerCasts();
4430 
4431   // Entry is now either a Function or GlobalVariable.
4432   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4433 
4434   // We have a definition after a declaration with the wrong type.
4435   // We must make a new GlobalVariable* and update everything that used OldGV
4436   // (a declaration or tentative definition) with the new GlobalVariable*
4437   // (which will be a definition).
4438   //
4439   // This happens if there is a prototype for a global (e.g.
4440   // "extern int x[];") and then a definition of a different type (e.g.
4441   // "int x[10];"). This also happens when an initializer has a different type
4442   // from the type of the global (this happens with unions).
4443   if (!GV || GV->getValueType() != InitType ||
4444       GV->getType()->getAddressSpace() !=
4445           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4446 
4447     // Move the old entry aside so that we'll create a new one.
4448     Entry->setName(StringRef());
4449 
4450     // Make a new global with the correct type, this is now guaranteed to work.
4451     GV = cast<llvm::GlobalVariable>(
4452         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4453             ->stripPointerCasts());
4454 
4455     // Replace all uses of the old global with the new global
4456     llvm::Constant *NewPtrForOldDecl =
4457         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4458                                                              Entry->getType());
4459     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4460 
4461     // Erase the old global, since it is no longer used.
4462     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4463   }
4464 
4465   MaybeHandleStaticInExternC(D, GV);
4466 
4467   if (D->hasAttr<AnnotateAttr>())
4468     AddGlobalAnnotations(D, GV);
4469 
4470   // Set the llvm linkage type as appropriate.
4471   llvm::GlobalValue::LinkageTypes Linkage =
4472       getLLVMLinkageVarDefinition(D, GV->isConstant());
4473 
4474   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4475   // the device. [...]"
4476   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4477   // __device__, declares a variable that: [...]
4478   // Is accessible from all the threads within the grid and from the host
4479   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4480   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4481   if (GV && LangOpts.CUDA) {
4482     if (LangOpts.CUDAIsDevice) {
4483       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4484           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4485            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4486            D->getType()->isCUDADeviceBuiltinTextureType()))
4487         GV->setExternallyInitialized(true);
4488     } else {
4489       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4490     }
4491     getCUDARuntime().handleVarRegistration(D, *GV);
4492   }
4493 
4494   GV->setInitializer(Init);
4495   if (emitter)
4496     emitter->finalize(GV);
4497 
4498   // If it is safe to mark the global 'constant', do so now.
4499   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4500                   isTypeConstant(D->getType(), true));
4501 
4502   // If it is in a read-only section, mark it 'constant'.
4503   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4504     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4505     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4506       GV->setConstant(true);
4507   }
4508 
4509   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4510 
4511   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4512   // function is only defined alongside the variable, not also alongside
4513   // callers. Normally, all accesses to a thread_local go through the
4514   // thread-wrapper in order to ensure initialization has occurred, underlying
4515   // variable will never be used other than the thread-wrapper, so it can be
4516   // converted to internal linkage.
4517   //
4518   // However, if the variable has the 'constinit' attribute, it _can_ be
4519   // referenced directly, without calling the thread-wrapper, so the linkage
4520   // must not be changed.
4521   //
4522   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4523   // weak or linkonce, the de-duplication semantics are important to preserve,
4524   // so we don't change the linkage.
4525   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4526       Linkage == llvm::GlobalValue::ExternalLinkage &&
4527       Context.getTargetInfo().getTriple().isOSDarwin() &&
4528       !D->hasAttr<ConstInitAttr>())
4529     Linkage = llvm::GlobalValue::InternalLinkage;
4530 
4531   GV->setLinkage(Linkage);
4532   if (D->hasAttr<DLLImportAttr>())
4533     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4534   else if (D->hasAttr<DLLExportAttr>())
4535     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4536   else
4537     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4538 
4539   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4540     // common vars aren't constant even if declared const.
4541     GV->setConstant(false);
4542     // Tentative definition of global variables may be initialized with
4543     // non-zero null pointers. In this case they should have weak linkage
4544     // since common linkage must have zero initializer and must not have
4545     // explicit section therefore cannot have non-zero initial value.
4546     if (!GV->getInitializer()->isNullValue())
4547       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4548   }
4549 
4550   setNonAliasAttributes(D, GV);
4551 
4552   if (D->getTLSKind() && !GV->isThreadLocal()) {
4553     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4554       CXXThreadLocals.push_back(D);
4555     setTLSMode(GV, *D);
4556   }
4557 
4558   maybeSetTrivialComdat(*D, *GV);
4559 
4560   // Emit the initializer function if necessary.
4561   if (NeedsGlobalCtor || NeedsGlobalDtor)
4562     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4563 
4564   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4565 
4566   // Emit global variable debug information.
4567   if (CGDebugInfo *DI = getModuleDebugInfo())
4568     if (getCodeGenOpts().hasReducedDebugInfo())
4569       DI->EmitGlobalVariable(GV, D);
4570 }
4571 
4572 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4573   if (CGDebugInfo *DI = getModuleDebugInfo())
4574     if (getCodeGenOpts().hasReducedDebugInfo()) {
4575       QualType ASTTy = D->getType();
4576       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4577       llvm::Constant *GV =
4578           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4579       DI->EmitExternalVariable(
4580           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4581     }
4582 }
4583 
4584 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4585                                       CodeGenModule &CGM, const VarDecl *D,
4586                                       bool NoCommon) {
4587   // Don't give variables common linkage if -fno-common was specified unless it
4588   // was overridden by a NoCommon attribute.
4589   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4590     return true;
4591 
4592   // C11 6.9.2/2:
4593   //   A declaration of an identifier for an object that has file scope without
4594   //   an initializer, and without a storage-class specifier or with the
4595   //   storage-class specifier static, constitutes a tentative definition.
4596   if (D->getInit() || D->hasExternalStorage())
4597     return true;
4598 
4599   // A variable cannot be both common and exist in a section.
4600   if (D->hasAttr<SectionAttr>())
4601     return true;
4602 
4603   // A variable cannot be both common and exist in a section.
4604   // We don't try to determine which is the right section in the front-end.
4605   // If no specialized section name is applicable, it will resort to default.
4606   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4607       D->hasAttr<PragmaClangDataSectionAttr>() ||
4608       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4609       D->hasAttr<PragmaClangRodataSectionAttr>())
4610     return true;
4611 
4612   // Thread local vars aren't considered common linkage.
4613   if (D->getTLSKind())
4614     return true;
4615 
4616   // Tentative definitions marked with WeakImportAttr are true definitions.
4617   if (D->hasAttr<WeakImportAttr>())
4618     return true;
4619 
4620   // A variable cannot be both common and exist in a comdat.
4621   if (shouldBeInCOMDAT(CGM, *D))
4622     return true;
4623 
4624   // Declarations with a required alignment do not have common linkage in MSVC
4625   // mode.
4626   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4627     if (D->hasAttr<AlignedAttr>())
4628       return true;
4629     QualType VarType = D->getType();
4630     if (Context.isAlignmentRequired(VarType))
4631       return true;
4632 
4633     if (const auto *RT = VarType->getAs<RecordType>()) {
4634       const RecordDecl *RD = RT->getDecl();
4635       for (const FieldDecl *FD : RD->fields()) {
4636         if (FD->isBitField())
4637           continue;
4638         if (FD->hasAttr<AlignedAttr>())
4639           return true;
4640         if (Context.isAlignmentRequired(FD->getType()))
4641           return true;
4642       }
4643     }
4644   }
4645 
4646   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4647   // common symbols, so symbols with greater alignment requirements cannot be
4648   // common.
4649   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4650   // alignments for common symbols via the aligncomm directive, so this
4651   // restriction only applies to MSVC environments.
4652   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4653       Context.getTypeAlignIfKnown(D->getType()) >
4654           Context.toBits(CharUnits::fromQuantity(32)))
4655     return true;
4656 
4657   return false;
4658 }
4659 
4660 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4661     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4662   if (Linkage == GVA_Internal)
4663     return llvm::Function::InternalLinkage;
4664 
4665   if (D->hasAttr<WeakAttr>()) {
4666     if (IsConstantVariable)
4667       return llvm::GlobalVariable::WeakODRLinkage;
4668     else
4669       return llvm::GlobalVariable::WeakAnyLinkage;
4670   }
4671 
4672   if (const auto *FD = D->getAsFunction())
4673     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4674       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4675 
4676   // We are guaranteed to have a strong definition somewhere else,
4677   // so we can use available_externally linkage.
4678   if (Linkage == GVA_AvailableExternally)
4679     return llvm::GlobalValue::AvailableExternallyLinkage;
4680 
4681   // Note that Apple's kernel linker doesn't support symbol
4682   // coalescing, so we need to avoid linkonce and weak linkages there.
4683   // Normally, this means we just map to internal, but for explicit
4684   // instantiations we'll map to external.
4685 
4686   // In C++, the compiler has to emit a definition in every translation unit
4687   // that references the function.  We should use linkonce_odr because
4688   // a) if all references in this translation unit are optimized away, we
4689   // don't need to codegen it.  b) if the function persists, it needs to be
4690   // merged with other definitions. c) C++ has the ODR, so we know the
4691   // definition is dependable.
4692   if (Linkage == GVA_DiscardableODR)
4693     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4694                                             : llvm::Function::InternalLinkage;
4695 
4696   // An explicit instantiation of a template has weak linkage, since
4697   // explicit instantiations can occur in multiple translation units
4698   // and must all be equivalent. However, we are not allowed to
4699   // throw away these explicit instantiations.
4700   //
4701   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4702   // so say that CUDA templates are either external (for kernels) or internal.
4703   // This lets llvm perform aggressive inter-procedural optimizations. For
4704   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4705   // therefore we need to follow the normal linkage paradigm.
4706   if (Linkage == GVA_StrongODR) {
4707     if (getLangOpts().AppleKext)
4708       return llvm::Function::ExternalLinkage;
4709     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4710         !getLangOpts().GPURelocatableDeviceCode)
4711       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4712                                           : llvm::Function::InternalLinkage;
4713     return llvm::Function::WeakODRLinkage;
4714   }
4715 
4716   // C++ doesn't have tentative definitions and thus cannot have common
4717   // linkage.
4718   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4719       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4720                                  CodeGenOpts.NoCommon))
4721     return llvm::GlobalVariable::CommonLinkage;
4722 
4723   // selectany symbols are externally visible, so use weak instead of
4724   // linkonce.  MSVC optimizes away references to const selectany globals, so
4725   // all definitions should be the same and ODR linkage should be used.
4726   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4727   if (D->hasAttr<SelectAnyAttr>())
4728     return llvm::GlobalVariable::WeakODRLinkage;
4729 
4730   // Otherwise, we have strong external linkage.
4731   assert(Linkage == GVA_StrongExternal);
4732   return llvm::GlobalVariable::ExternalLinkage;
4733 }
4734 
4735 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4736     const VarDecl *VD, bool IsConstant) {
4737   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4738   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4739 }
4740 
4741 /// Replace the uses of a function that was declared with a non-proto type.
4742 /// We want to silently drop extra arguments from call sites
4743 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4744                                           llvm::Function *newFn) {
4745   // Fast path.
4746   if (old->use_empty()) return;
4747 
4748   llvm::Type *newRetTy = newFn->getReturnType();
4749   SmallVector<llvm::Value*, 4> newArgs;
4750 
4751   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4752          ui != ue; ) {
4753     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4754     llvm::User *user = use->getUser();
4755 
4756     // Recognize and replace uses of bitcasts.  Most calls to
4757     // unprototyped functions will use bitcasts.
4758     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4759       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4760         replaceUsesOfNonProtoConstant(bitcast, newFn);
4761       continue;
4762     }
4763 
4764     // Recognize calls to the function.
4765     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4766     if (!callSite) continue;
4767     if (!callSite->isCallee(&*use))
4768       continue;
4769 
4770     // If the return types don't match exactly, then we can't
4771     // transform this call unless it's dead.
4772     if (callSite->getType() != newRetTy && !callSite->use_empty())
4773       continue;
4774 
4775     // Get the call site's attribute list.
4776     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4777     llvm::AttributeList oldAttrs = callSite->getAttributes();
4778 
4779     // If the function was passed too few arguments, don't transform.
4780     unsigned newNumArgs = newFn->arg_size();
4781     if (callSite->arg_size() < newNumArgs)
4782       continue;
4783 
4784     // If extra arguments were passed, we silently drop them.
4785     // If any of the types mismatch, we don't transform.
4786     unsigned argNo = 0;
4787     bool dontTransform = false;
4788     for (llvm::Argument &A : newFn->args()) {
4789       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4790         dontTransform = true;
4791         break;
4792       }
4793 
4794       // Add any parameter attributes.
4795       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4796       argNo++;
4797     }
4798     if (dontTransform)
4799       continue;
4800 
4801     // Okay, we can transform this.  Create the new call instruction and copy
4802     // over the required information.
4803     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4804 
4805     // Copy over any operand bundles.
4806     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4807     callSite->getOperandBundlesAsDefs(newBundles);
4808 
4809     llvm::CallBase *newCall;
4810     if (dyn_cast<llvm::CallInst>(callSite)) {
4811       newCall =
4812           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4813     } else {
4814       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4815       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4816                                          oldInvoke->getUnwindDest(), newArgs,
4817                                          newBundles, "", callSite);
4818     }
4819     newArgs.clear(); // for the next iteration
4820 
4821     if (!newCall->getType()->isVoidTy())
4822       newCall->takeName(callSite);
4823     newCall->setAttributes(
4824         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4825                                  oldAttrs.getRetAttrs(), newArgAttrs));
4826     newCall->setCallingConv(callSite->getCallingConv());
4827 
4828     // Finally, remove the old call, replacing any uses with the new one.
4829     if (!callSite->use_empty())
4830       callSite->replaceAllUsesWith(newCall);
4831 
4832     // Copy debug location attached to CI.
4833     if (callSite->getDebugLoc())
4834       newCall->setDebugLoc(callSite->getDebugLoc());
4835 
4836     callSite->eraseFromParent();
4837   }
4838 }
4839 
4840 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4841 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4842 /// existing call uses of the old function in the module, this adjusts them to
4843 /// call the new function directly.
4844 ///
4845 /// This is not just a cleanup: the always_inline pass requires direct calls to
4846 /// functions to be able to inline them.  If there is a bitcast in the way, it
4847 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4848 /// run at -O0.
4849 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4850                                                       llvm::Function *NewFn) {
4851   // If we're redefining a global as a function, don't transform it.
4852   if (!isa<llvm::Function>(Old)) return;
4853 
4854   replaceUsesOfNonProtoConstant(Old, NewFn);
4855 }
4856 
4857 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4858   auto DK = VD->isThisDeclarationADefinition();
4859   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4860     return;
4861 
4862   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4863   // If we have a definition, this might be a deferred decl. If the
4864   // instantiation is explicit, make sure we emit it at the end.
4865   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4866     GetAddrOfGlobalVar(VD);
4867 
4868   EmitTopLevelDecl(VD);
4869 }
4870 
4871 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4872                                                  llvm::GlobalValue *GV) {
4873   const auto *D = cast<FunctionDecl>(GD.getDecl());
4874 
4875   // Compute the function info and LLVM type.
4876   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4877   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4878 
4879   // Get or create the prototype for the function.
4880   if (!GV || (GV->getValueType() != Ty))
4881     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4882                                                    /*DontDefer=*/true,
4883                                                    ForDefinition));
4884 
4885   // Already emitted.
4886   if (!GV->isDeclaration())
4887     return;
4888 
4889   // We need to set linkage and visibility on the function before
4890   // generating code for it because various parts of IR generation
4891   // want to propagate this information down (e.g. to local static
4892   // declarations).
4893   auto *Fn = cast<llvm::Function>(GV);
4894   setFunctionLinkage(GD, Fn);
4895 
4896   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4897   setGVProperties(Fn, GD);
4898 
4899   MaybeHandleStaticInExternC(D, Fn);
4900 
4901   maybeSetTrivialComdat(*D, *Fn);
4902 
4903   // Set CodeGen attributes that represent floating point environment.
4904   setLLVMFunctionFEnvAttributes(D, Fn);
4905 
4906   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4907 
4908   setNonAliasAttributes(GD, Fn);
4909   SetLLVMFunctionAttributesForDefinition(D, Fn);
4910 
4911   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4912     AddGlobalCtor(Fn, CA->getPriority());
4913   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4914     AddGlobalDtor(Fn, DA->getPriority(), true);
4915   if (D->hasAttr<AnnotateAttr>())
4916     AddGlobalAnnotations(D, Fn);
4917 }
4918 
4919 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4920   const auto *D = cast<ValueDecl>(GD.getDecl());
4921   const AliasAttr *AA = D->getAttr<AliasAttr>();
4922   assert(AA && "Not an alias?");
4923 
4924   StringRef MangledName = getMangledName(GD);
4925 
4926   if (AA->getAliasee() == MangledName) {
4927     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4928     return;
4929   }
4930 
4931   // If there is a definition in the module, then it wins over the alias.
4932   // This is dubious, but allow it to be safe.  Just ignore the alias.
4933   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4934   if (Entry && !Entry->isDeclaration())
4935     return;
4936 
4937   Aliases.push_back(GD);
4938 
4939   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4940 
4941   // Create a reference to the named value.  This ensures that it is emitted
4942   // if a deferred decl.
4943   llvm::Constant *Aliasee;
4944   llvm::GlobalValue::LinkageTypes LT;
4945   if (isa<llvm::FunctionType>(DeclTy)) {
4946     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4947                                       /*ForVTable=*/false);
4948     LT = getFunctionLinkage(GD);
4949   } else {
4950     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
4951                                     /*D=*/nullptr);
4952     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4953       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4954     else
4955       LT = getFunctionLinkage(GD);
4956   }
4957 
4958   // Create the new alias itself, but don't set a name yet.
4959   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4960   auto *GA =
4961       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4962 
4963   if (Entry) {
4964     if (GA->getAliasee() == Entry) {
4965       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4966       return;
4967     }
4968 
4969     assert(Entry->isDeclaration());
4970 
4971     // If there is a declaration in the module, then we had an extern followed
4972     // by the alias, as in:
4973     //   extern int test6();
4974     //   ...
4975     //   int test6() __attribute__((alias("test7")));
4976     //
4977     // Remove it and replace uses of it with the alias.
4978     GA->takeName(Entry);
4979 
4980     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4981                                                           Entry->getType()));
4982     Entry->eraseFromParent();
4983   } else {
4984     GA->setName(MangledName);
4985   }
4986 
4987   // Set attributes which are particular to an alias; this is a
4988   // specialization of the attributes which may be set on a global
4989   // variable/function.
4990   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4991       D->isWeakImported()) {
4992     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4993   }
4994 
4995   if (const auto *VD = dyn_cast<VarDecl>(D))
4996     if (VD->getTLSKind())
4997       setTLSMode(GA, *VD);
4998 
4999   SetCommonAttributes(GD, GA);
5000 }
5001 
5002 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5003   const auto *D = cast<ValueDecl>(GD.getDecl());
5004   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5005   assert(IFA && "Not an ifunc?");
5006 
5007   StringRef MangledName = getMangledName(GD);
5008 
5009   if (IFA->getResolver() == MangledName) {
5010     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5011     return;
5012   }
5013 
5014   // Report an error if some definition overrides ifunc.
5015   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5016   if (Entry && !Entry->isDeclaration()) {
5017     GlobalDecl OtherGD;
5018     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5019         DiagnosedConflictingDefinitions.insert(GD).second) {
5020       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5021           << MangledName;
5022       Diags.Report(OtherGD.getDecl()->getLocation(),
5023                    diag::note_previous_definition);
5024     }
5025     return;
5026   }
5027 
5028   Aliases.push_back(GD);
5029 
5030   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5031   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5032   llvm::Constant *Resolver =
5033       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5034                               /*ForVTable=*/false);
5035   llvm::GlobalIFunc *GIF =
5036       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5037                                 "", Resolver, &getModule());
5038   if (Entry) {
5039     if (GIF->getResolver() == Entry) {
5040       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5041       return;
5042     }
5043     assert(Entry->isDeclaration());
5044 
5045     // If there is a declaration in the module, then we had an extern followed
5046     // by the ifunc, as in:
5047     //   extern int test();
5048     //   ...
5049     //   int test() __attribute__((ifunc("resolver")));
5050     //
5051     // Remove it and replace uses of it with the ifunc.
5052     GIF->takeName(Entry);
5053 
5054     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5055                                                           Entry->getType()));
5056     Entry->eraseFromParent();
5057   } else
5058     GIF->setName(MangledName);
5059 
5060   SetCommonAttributes(GD, GIF);
5061 }
5062 
5063 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5064                                             ArrayRef<llvm::Type*> Tys) {
5065   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5066                                          Tys);
5067 }
5068 
5069 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5070 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5071                          const StringLiteral *Literal, bool TargetIsLSB,
5072                          bool &IsUTF16, unsigned &StringLength) {
5073   StringRef String = Literal->getString();
5074   unsigned NumBytes = String.size();
5075 
5076   // Check for simple case.
5077   if (!Literal->containsNonAsciiOrNull()) {
5078     StringLength = NumBytes;
5079     return *Map.insert(std::make_pair(String, nullptr)).first;
5080   }
5081 
5082   // Otherwise, convert the UTF8 literals into a string of shorts.
5083   IsUTF16 = true;
5084 
5085   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5086   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5087   llvm::UTF16 *ToPtr = &ToBuf[0];
5088 
5089   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5090                                  ToPtr + NumBytes, llvm::strictConversion);
5091 
5092   // ConvertUTF8toUTF16 returns the length in ToPtr.
5093   StringLength = ToPtr - &ToBuf[0];
5094 
5095   // Add an explicit null.
5096   *ToPtr = 0;
5097   return *Map.insert(std::make_pair(
5098                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5099                                    (StringLength + 1) * 2),
5100                          nullptr)).first;
5101 }
5102 
5103 ConstantAddress
5104 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5105   unsigned StringLength = 0;
5106   bool isUTF16 = false;
5107   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5108       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5109                                getDataLayout().isLittleEndian(), isUTF16,
5110                                StringLength);
5111 
5112   if (auto *C = Entry.second)
5113     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5114 
5115   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5116   llvm::Constant *Zeros[] = { Zero, Zero };
5117 
5118   const ASTContext &Context = getContext();
5119   const llvm::Triple &Triple = getTriple();
5120 
5121   const auto CFRuntime = getLangOpts().CFRuntime;
5122   const bool IsSwiftABI =
5123       static_cast<unsigned>(CFRuntime) >=
5124       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5125   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5126 
5127   // If we don't already have it, get __CFConstantStringClassReference.
5128   if (!CFConstantStringClassRef) {
5129     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5130     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5131     Ty = llvm::ArrayType::get(Ty, 0);
5132 
5133     switch (CFRuntime) {
5134     default: break;
5135     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5136     case LangOptions::CoreFoundationABI::Swift5_0:
5137       CFConstantStringClassName =
5138           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5139                               : "$s10Foundation19_NSCFConstantStringCN";
5140       Ty = IntPtrTy;
5141       break;
5142     case LangOptions::CoreFoundationABI::Swift4_2:
5143       CFConstantStringClassName =
5144           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5145                               : "$S10Foundation19_NSCFConstantStringCN";
5146       Ty = IntPtrTy;
5147       break;
5148     case LangOptions::CoreFoundationABI::Swift4_1:
5149       CFConstantStringClassName =
5150           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5151                               : "__T010Foundation19_NSCFConstantStringCN";
5152       Ty = IntPtrTy;
5153       break;
5154     }
5155 
5156     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5157 
5158     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5159       llvm::GlobalValue *GV = nullptr;
5160 
5161       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5162         IdentifierInfo &II = Context.Idents.get(GV->getName());
5163         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5164         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5165 
5166         const VarDecl *VD = nullptr;
5167         for (const auto *Result : DC->lookup(&II))
5168           if ((VD = dyn_cast<VarDecl>(Result)))
5169             break;
5170 
5171         if (Triple.isOSBinFormatELF()) {
5172           if (!VD)
5173             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5174         } else {
5175           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5176           if (!VD || !VD->hasAttr<DLLExportAttr>())
5177             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5178           else
5179             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5180         }
5181 
5182         setDSOLocal(GV);
5183       }
5184     }
5185 
5186     // Decay array -> ptr
5187     CFConstantStringClassRef =
5188         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5189                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5190   }
5191 
5192   QualType CFTy = Context.getCFConstantStringType();
5193 
5194   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5195 
5196   ConstantInitBuilder Builder(*this);
5197   auto Fields = Builder.beginStruct(STy);
5198 
5199   // Class pointer.
5200   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5201 
5202   // Flags.
5203   if (IsSwiftABI) {
5204     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5205     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5206   } else {
5207     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5208   }
5209 
5210   // String pointer.
5211   llvm::Constant *C = nullptr;
5212   if (isUTF16) {
5213     auto Arr = llvm::makeArrayRef(
5214         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5215         Entry.first().size() / 2);
5216     C = llvm::ConstantDataArray::get(VMContext, Arr);
5217   } else {
5218     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5219   }
5220 
5221   // Note: -fwritable-strings doesn't make the backing store strings of
5222   // CFStrings writable. (See <rdar://problem/10657500>)
5223   auto *GV =
5224       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5225                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5226   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5227   // Don't enforce the target's minimum global alignment, since the only use
5228   // of the string is via this class initializer.
5229   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5230                             : Context.getTypeAlignInChars(Context.CharTy);
5231   GV->setAlignment(Align.getAsAlign());
5232 
5233   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5234   // Without it LLVM can merge the string with a non unnamed_addr one during
5235   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5236   if (Triple.isOSBinFormatMachO())
5237     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5238                            : "__TEXT,__cstring,cstring_literals");
5239   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5240   // the static linker to adjust permissions to read-only later on.
5241   else if (Triple.isOSBinFormatELF())
5242     GV->setSection(".rodata");
5243 
5244   // String.
5245   llvm::Constant *Str =
5246       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5247 
5248   if (isUTF16)
5249     // Cast the UTF16 string to the correct type.
5250     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5251   Fields.add(Str);
5252 
5253   // String length.
5254   llvm::IntegerType *LengthTy =
5255       llvm::IntegerType::get(getModule().getContext(),
5256                              Context.getTargetInfo().getLongWidth());
5257   if (IsSwiftABI) {
5258     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5259         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5260       LengthTy = Int32Ty;
5261     else
5262       LengthTy = IntPtrTy;
5263   }
5264   Fields.addInt(LengthTy, StringLength);
5265 
5266   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5267   // properly aligned on 32-bit platforms.
5268   CharUnits Alignment =
5269       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5270 
5271   // The struct.
5272   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5273                                     /*isConstant=*/false,
5274                                     llvm::GlobalVariable::PrivateLinkage);
5275   GV->addAttribute("objc_arc_inert");
5276   switch (Triple.getObjectFormat()) {
5277   case llvm::Triple::UnknownObjectFormat:
5278     llvm_unreachable("unknown file format");
5279   case llvm::Triple::GOFF:
5280     llvm_unreachable("GOFF is not yet implemented");
5281   case llvm::Triple::XCOFF:
5282     llvm_unreachable("XCOFF is not yet implemented");
5283   case llvm::Triple::COFF:
5284   case llvm::Triple::ELF:
5285   case llvm::Triple::Wasm:
5286     GV->setSection("cfstring");
5287     break;
5288   case llvm::Triple::MachO:
5289     GV->setSection("__DATA,__cfstring");
5290     break;
5291   }
5292   Entry.second = GV;
5293 
5294   return ConstantAddress(GV, Alignment);
5295 }
5296 
5297 bool CodeGenModule::getExpressionLocationsEnabled() const {
5298   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5299 }
5300 
5301 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5302   if (ObjCFastEnumerationStateType.isNull()) {
5303     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5304     D->startDefinition();
5305 
5306     QualType FieldTypes[] = {
5307       Context.UnsignedLongTy,
5308       Context.getPointerType(Context.getObjCIdType()),
5309       Context.getPointerType(Context.UnsignedLongTy),
5310       Context.getConstantArrayType(Context.UnsignedLongTy,
5311                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5312     };
5313 
5314     for (size_t i = 0; i < 4; ++i) {
5315       FieldDecl *Field = FieldDecl::Create(Context,
5316                                            D,
5317                                            SourceLocation(),
5318                                            SourceLocation(), nullptr,
5319                                            FieldTypes[i], /*TInfo=*/nullptr,
5320                                            /*BitWidth=*/nullptr,
5321                                            /*Mutable=*/false,
5322                                            ICIS_NoInit);
5323       Field->setAccess(AS_public);
5324       D->addDecl(Field);
5325     }
5326 
5327     D->completeDefinition();
5328     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5329   }
5330 
5331   return ObjCFastEnumerationStateType;
5332 }
5333 
5334 llvm::Constant *
5335 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5336   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5337 
5338   // Don't emit it as the address of the string, emit the string data itself
5339   // as an inline array.
5340   if (E->getCharByteWidth() == 1) {
5341     SmallString<64> Str(E->getString());
5342 
5343     // Resize the string to the right size, which is indicated by its type.
5344     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5345     Str.resize(CAT->getSize().getZExtValue());
5346     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5347   }
5348 
5349   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5350   llvm::Type *ElemTy = AType->getElementType();
5351   unsigned NumElements = AType->getNumElements();
5352 
5353   // Wide strings have either 2-byte or 4-byte elements.
5354   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5355     SmallVector<uint16_t, 32> Elements;
5356     Elements.reserve(NumElements);
5357 
5358     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5359       Elements.push_back(E->getCodeUnit(i));
5360     Elements.resize(NumElements);
5361     return llvm::ConstantDataArray::get(VMContext, Elements);
5362   }
5363 
5364   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5365   SmallVector<uint32_t, 32> Elements;
5366   Elements.reserve(NumElements);
5367 
5368   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5369     Elements.push_back(E->getCodeUnit(i));
5370   Elements.resize(NumElements);
5371   return llvm::ConstantDataArray::get(VMContext, Elements);
5372 }
5373 
5374 static llvm::GlobalVariable *
5375 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5376                       CodeGenModule &CGM, StringRef GlobalName,
5377                       CharUnits Alignment) {
5378   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5379       CGM.GetGlobalConstantAddressSpace());
5380 
5381   llvm::Module &M = CGM.getModule();
5382   // Create a global variable for this string
5383   auto *GV = new llvm::GlobalVariable(
5384       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5385       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5386   GV->setAlignment(Alignment.getAsAlign());
5387   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5388   if (GV->isWeakForLinker()) {
5389     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5390     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5391   }
5392   CGM.setDSOLocal(GV);
5393 
5394   return GV;
5395 }
5396 
5397 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5398 /// constant array for the given string literal.
5399 ConstantAddress
5400 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5401                                                   StringRef Name) {
5402   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5403 
5404   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5405   llvm::GlobalVariable **Entry = nullptr;
5406   if (!LangOpts.WritableStrings) {
5407     Entry = &ConstantStringMap[C];
5408     if (auto GV = *Entry) {
5409       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5410         GV->setAlignment(Alignment.getAsAlign());
5411       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5412                              Alignment);
5413     }
5414   }
5415 
5416   SmallString<256> MangledNameBuffer;
5417   StringRef GlobalVariableName;
5418   llvm::GlobalValue::LinkageTypes LT;
5419 
5420   // Mangle the string literal if that's how the ABI merges duplicate strings.
5421   // Don't do it if they are writable, since we don't want writes in one TU to
5422   // affect strings in another.
5423   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5424       !LangOpts.WritableStrings) {
5425     llvm::raw_svector_ostream Out(MangledNameBuffer);
5426     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5427     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5428     GlobalVariableName = MangledNameBuffer;
5429   } else {
5430     LT = llvm::GlobalValue::PrivateLinkage;
5431     GlobalVariableName = Name;
5432   }
5433 
5434   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5435   if (Entry)
5436     *Entry = GV;
5437 
5438   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5439                                   QualType());
5440 
5441   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5442                          Alignment);
5443 }
5444 
5445 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5446 /// array for the given ObjCEncodeExpr node.
5447 ConstantAddress
5448 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5449   std::string Str;
5450   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5451 
5452   return GetAddrOfConstantCString(Str);
5453 }
5454 
5455 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5456 /// the literal and a terminating '\0' character.
5457 /// The result has pointer to array type.
5458 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5459     const std::string &Str, const char *GlobalName) {
5460   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5461   CharUnits Alignment =
5462     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5463 
5464   llvm::Constant *C =
5465       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5466 
5467   // Don't share any string literals if strings aren't constant.
5468   llvm::GlobalVariable **Entry = nullptr;
5469   if (!LangOpts.WritableStrings) {
5470     Entry = &ConstantStringMap[C];
5471     if (auto GV = *Entry) {
5472       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5473         GV->setAlignment(Alignment.getAsAlign());
5474       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5475                              Alignment);
5476     }
5477   }
5478 
5479   // Get the default prefix if a name wasn't specified.
5480   if (!GlobalName)
5481     GlobalName = ".str";
5482   // Create a global variable for this.
5483   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5484                                   GlobalName, Alignment);
5485   if (Entry)
5486     *Entry = GV;
5487 
5488   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5489                          Alignment);
5490 }
5491 
5492 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5493     const MaterializeTemporaryExpr *E, const Expr *Init) {
5494   assert((E->getStorageDuration() == SD_Static ||
5495           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5496   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5497 
5498   // If we're not materializing a subobject of the temporary, keep the
5499   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5500   QualType MaterializedType = Init->getType();
5501   if (Init == E->getSubExpr())
5502     MaterializedType = E->getType();
5503 
5504   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5505 
5506   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5507   if (!InsertResult.second) {
5508     // We've seen this before: either we already created it or we're in the
5509     // process of doing so.
5510     if (!InsertResult.first->second) {
5511       // We recursively re-entered this function, probably during emission of
5512       // the initializer. Create a placeholder. We'll clean this up in the
5513       // outer call, at the end of this function.
5514       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5515       InsertResult.first->second = new llvm::GlobalVariable(
5516           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5517           nullptr);
5518     }
5519     return ConstantAddress(InsertResult.first->second, Align);
5520   }
5521 
5522   // FIXME: If an externally-visible declaration extends multiple temporaries,
5523   // we need to give each temporary the same name in every translation unit (and
5524   // we also need to make the temporaries externally-visible).
5525   SmallString<256> Name;
5526   llvm::raw_svector_ostream Out(Name);
5527   getCXXABI().getMangleContext().mangleReferenceTemporary(
5528       VD, E->getManglingNumber(), Out);
5529 
5530   APValue *Value = nullptr;
5531   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5532     // If the initializer of the extending declaration is a constant
5533     // initializer, we should have a cached constant initializer for this
5534     // temporary. Note that this might have a different value from the value
5535     // computed by evaluating the initializer if the surrounding constant
5536     // expression modifies the temporary.
5537     Value = E->getOrCreateValue(false);
5538   }
5539 
5540   // Try evaluating it now, it might have a constant initializer.
5541   Expr::EvalResult EvalResult;
5542   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5543       !EvalResult.hasSideEffects())
5544     Value = &EvalResult.Val;
5545 
5546   LangAS AddrSpace =
5547       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5548 
5549   Optional<ConstantEmitter> emitter;
5550   llvm::Constant *InitialValue = nullptr;
5551   bool Constant = false;
5552   llvm::Type *Type;
5553   if (Value) {
5554     // The temporary has a constant initializer, use it.
5555     emitter.emplace(*this);
5556     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5557                                                MaterializedType);
5558     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5559     Type = InitialValue->getType();
5560   } else {
5561     // No initializer, the initialization will be provided when we
5562     // initialize the declaration which performed lifetime extension.
5563     Type = getTypes().ConvertTypeForMem(MaterializedType);
5564   }
5565 
5566   // Create a global variable for this lifetime-extended temporary.
5567   llvm::GlobalValue::LinkageTypes Linkage =
5568       getLLVMLinkageVarDefinition(VD, Constant);
5569   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5570     const VarDecl *InitVD;
5571     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5572         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5573       // Temporaries defined inside a class get linkonce_odr linkage because the
5574       // class can be defined in multiple translation units.
5575       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5576     } else {
5577       // There is no need for this temporary to have external linkage if the
5578       // VarDecl has external linkage.
5579       Linkage = llvm::GlobalVariable::InternalLinkage;
5580     }
5581   }
5582   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5583   auto *GV = new llvm::GlobalVariable(
5584       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5585       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5586   if (emitter) emitter->finalize(GV);
5587   setGVProperties(GV, VD);
5588   GV->setAlignment(Align.getAsAlign());
5589   if (supportsCOMDAT() && GV->isWeakForLinker())
5590     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5591   if (VD->getTLSKind())
5592     setTLSMode(GV, *VD);
5593   llvm::Constant *CV = GV;
5594   if (AddrSpace != LangAS::Default)
5595     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5596         *this, GV, AddrSpace, LangAS::Default,
5597         Type->getPointerTo(
5598             getContext().getTargetAddressSpace(LangAS::Default)));
5599 
5600   // Update the map with the new temporary. If we created a placeholder above,
5601   // replace it with the new global now.
5602   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5603   if (Entry) {
5604     Entry->replaceAllUsesWith(
5605         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5606     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5607   }
5608   Entry = CV;
5609 
5610   return ConstantAddress(CV, Align);
5611 }
5612 
5613 /// EmitObjCPropertyImplementations - Emit information for synthesized
5614 /// properties for an implementation.
5615 void CodeGenModule::EmitObjCPropertyImplementations(const
5616                                                     ObjCImplementationDecl *D) {
5617   for (const auto *PID : D->property_impls()) {
5618     // Dynamic is just for type-checking.
5619     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5620       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5621 
5622       // Determine which methods need to be implemented, some may have
5623       // been overridden. Note that ::isPropertyAccessor is not the method
5624       // we want, that just indicates if the decl came from a
5625       // property. What we want to know is if the method is defined in
5626       // this implementation.
5627       auto *Getter = PID->getGetterMethodDecl();
5628       if (!Getter || Getter->isSynthesizedAccessorStub())
5629         CodeGenFunction(*this).GenerateObjCGetter(
5630             const_cast<ObjCImplementationDecl *>(D), PID);
5631       auto *Setter = PID->getSetterMethodDecl();
5632       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5633         CodeGenFunction(*this).GenerateObjCSetter(
5634                                  const_cast<ObjCImplementationDecl *>(D), PID);
5635     }
5636   }
5637 }
5638 
5639 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5640   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5641   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5642        ivar; ivar = ivar->getNextIvar())
5643     if (ivar->getType().isDestructedType())
5644       return true;
5645 
5646   return false;
5647 }
5648 
5649 static bool AllTrivialInitializers(CodeGenModule &CGM,
5650                                    ObjCImplementationDecl *D) {
5651   CodeGenFunction CGF(CGM);
5652   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5653        E = D->init_end(); B != E; ++B) {
5654     CXXCtorInitializer *CtorInitExp = *B;
5655     Expr *Init = CtorInitExp->getInit();
5656     if (!CGF.isTrivialInitializer(Init))
5657       return false;
5658   }
5659   return true;
5660 }
5661 
5662 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5663 /// for an implementation.
5664 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5665   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5666   if (needsDestructMethod(D)) {
5667     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5668     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5669     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5670         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5671         getContext().VoidTy, nullptr, D,
5672         /*isInstance=*/true, /*isVariadic=*/false,
5673         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5674         /*isImplicitlyDeclared=*/true,
5675         /*isDefined=*/false, ObjCMethodDecl::Required);
5676     D->addInstanceMethod(DTORMethod);
5677     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5678     D->setHasDestructors(true);
5679   }
5680 
5681   // If the implementation doesn't have any ivar initializers, we don't need
5682   // a .cxx_construct.
5683   if (D->getNumIvarInitializers() == 0 ||
5684       AllTrivialInitializers(*this, D))
5685     return;
5686 
5687   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5688   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5689   // The constructor returns 'self'.
5690   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5691       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5692       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5693       /*isVariadic=*/false,
5694       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5695       /*isImplicitlyDeclared=*/true,
5696       /*isDefined=*/false, ObjCMethodDecl::Required);
5697   D->addInstanceMethod(CTORMethod);
5698   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5699   D->setHasNonZeroConstructors(true);
5700 }
5701 
5702 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5703 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5704   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5705       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5706     ErrorUnsupported(LSD, "linkage spec");
5707     return;
5708   }
5709 
5710   EmitDeclContext(LSD);
5711 }
5712 
5713 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5714   for (auto *I : DC->decls()) {
5715     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5716     // are themselves considered "top-level", so EmitTopLevelDecl on an
5717     // ObjCImplDecl does not recursively visit them. We need to do that in
5718     // case they're nested inside another construct (LinkageSpecDecl /
5719     // ExportDecl) that does stop them from being considered "top-level".
5720     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5721       for (auto *M : OID->methods())
5722         EmitTopLevelDecl(M);
5723     }
5724 
5725     EmitTopLevelDecl(I);
5726   }
5727 }
5728 
5729 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5730 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5731   // Ignore dependent declarations.
5732   if (D->isTemplated())
5733     return;
5734 
5735   // Consteval function shouldn't be emitted.
5736   if (auto *FD = dyn_cast<FunctionDecl>(D))
5737     if (FD->isConsteval())
5738       return;
5739 
5740   switch (D->getKind()) {
5741   case Decl::CXXConversion:
5742   case Decl::CXXMethod:
5743   case Decl::Function:
5744     EmitGlobal(cast<FunctionDecl>(D));
5745     // Always provide some coverage mapping
5746     // even for the functions that aren't emitted.
5747     AddDeferredUnusedCoverageMapping(D);
5748     break;
5749 
5750   case Decl::CXXDeductionGuide:
5751     // Function-like, but does not result in code emission.
5752     break;
5753 
5754   case Decl::Var:
5755   case Decl::Decomposition:
5756   case Decl::VarTemplateSpecialization:
5757     EmitGlobal(cast<VarDecl>(D));
5758     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5759       for (auto *B : DD->bindings())
5760         if (auto *HD = B->getHoldingVar())
5761           EmitGlobal(HD);
5762     break;
5763 
5764   // Indirect fields from global anonymous structs and unions can be
5765   // ignored; only the actual variable requires IR gen support.
5766   case Decl::IndirectField:
5767     break;
5768 
5769   // C++ Decls
5770   case Decl::Namespace:
5771     EmitDeclContext(cast<NamespaceDecl>(D));
5772     break;
5773   case Decl::ClassTemplateSpecialization: {
5774     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5775     if (CGDebugInfo *DI = getModuleDebugInfo())
5776       if (Spec->getSpecializationKind() ==
5777               TSK_ExplicitInstantiationDefinition &&
5778           Spec->hasDefinition())
5779         DI->completeTemplateDefinition(*Spec);
5780   } LLVM_FALLTHROUGH;
5781   case Decl::CXXRecord: {
5782     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5783     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5784       if (CRD->hasDefinition())
5785         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5786       if (auto *ES = D->getASTContext().getExternalSource())
5787         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5788           DI->completeUnusedClass(*CRD);
5789     }
5790     // Emit any static data members, they may be definitions.
5791     for (auto *I : CRD->decls())
5792       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5793         EmitTopLevelDecl(I);
5794     break;
5795   }
5796     // No code generation needed.
5797   case Decl::UsingShadow:
5798   case Decl::ClassTemplate:
5799   case Decl::VarTemplate:
5800   case Decl::Concept:
5801   case Decl::VarTemplatePartialSpecialization:
5802   case Decl::FunctionTemplate:
5803   case Decl::TypeAliasTemplate:
5804   case Decl::Block:
5805   case Decl::Empty:
5806   case Decl::Binding:
5807     break;
5808   case Decl::Using:          // using X; [C++]
5809     if (CGDebugInfo *DI = getModuleDebugInfo())
5810         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5811     break;
5812   case Decl::UsingEnum: // using enum X; [C++]
5813     if (CGDebugInfo *DI = getModuleDebugInfo())
5814       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5815     break;
5816   case Decl::NamespaceAlias:
5817     if (CGDebugInfo *DI = getModuleDebugInfo())
5818         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5819     break;
5820   case Decl::UsingDirective: // using namespace X; [C++]
5821     if (CGDebugInfo *DI = getModuleDebugInfo())
5822       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5823     break;
5824   case Decl::CXXConstructor:
5825     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5826     break;
5827   case Decl::CXXDestructor:
5828     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5829     break;
5830 
5831   case Decl::StaticAssert:
5832     // Nothing to do.
5833     break;
5834 
5835   // Objective-C Decls
5836 
5837   // Forward declarations, no (immediate) code generation.
5838   case Decl::ObjCInterface:
5839   case Decl::ObjCCategory:
5840     break;
5841 
5842   case Decl::ObjCProtocol: {
5843     auto *Proto = cast<ObjCProtocolDecl>(D);
5844     if (Proto->isThisDeclarationADefinition())
5845       ObjCRuntime->GenerateProtocol(Proto);
5846     break;
5847   }
5848 
5849   case Decl::ObjCCategoryImpl:
5850     // Categories have properties but don't support synthesize so we
5851     // can ignore them here.
5852     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5853     break;
5854 
5855   case Decl::ObjCImplementation: {
5856     auto *OMD = cast<ObjCImplementationDecl>(D);
5857     EmitObjCPropertyImplementations(OMD);
5858     EmitObjCIvarInitializations(OMD);
5859     ObjCRuntime->GenerateClass(OMD);
5860     // Emit global variable debug information.
5861     if (CGDebugInfo *DI = getModuleDebugInfo())
5862       if (getCodeGenOpts().hasReducedDebugInfo())
5863         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5864             OMD->getClassInterface()), OMD->getLocation());
5865     break;
5866   }
5867   case Decl::ObjCMethod: {
5868     auto *OMD = cast<ObjCMethodDecl>(D);
5869     // If this is not a prototype, emit the body.
5870     if (OMD->getBody())
5871       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5872     break;
5873   }
5874   case Decl::ObjCCompatibleAlias:
5875     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5876     break;
5877 
5878   case Decl::PragmaComment: {
5879     const auto *PCD = cast<PragmaCommentDecl>(D);
5880     switch (PCD->getCommentKind()) {
5881     case PCK_Unknown:
5882       llvm_unreachable("unexpected pragma comment kind");
5883     case PCK_Linker:
5884       AppendLinkerOptions(PCD->getArg());
5885       break;
5886     case PCK_Lib:
5887         AddDependentLib(PCD->getArg());
5888       break;
5889     case PCK_Compiler:
5890     case PCK_ExeStr:
5891     case PCK_User:
5892       break; // We ignore all of these.
5893     }
5894     break;
5895   }
5896 
5897   case Decl::PragmaDetectMismatch: {
5898     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5899     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5900     break;
5901   }
5902 
5903   case Decl::LinkageSpec:
5904     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5905     break;
5906 
5907   case Decl::FileScopeAsm: {
5908     // File-scope asm is ignored during device-side CUDA compilation.
5909     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5910       break;
5911     // File-scope asm is ignored during device-side OpenMP compilation.
5912     if (LangOpts.OpenMPIsDevice)
5913       break;
5914     // File-scope asm is ignored during device-side SYCL compilation.
5915     if (LangOpts.SYCLIsDevice)
5916       break;
5917     auto *AD = cast<FileScopeAsmDecl>(D);
5918     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5919     break;
5920   }
5921 
5922   case Decl::Import: {
5923     auto *Import = cast<ImportDecl>(D);
5924 
5925     // If we've already imported this module, we're done.
5926     if (!ImportedModules.insert(Import->getImportedModule()))
5927       break;
5928 
5929     // Emit debug information for direct imports.
5930     if (!Import->getImportedOwningModule()) {
5931       if (CGDebugInfo *DI = getModuleDebugInfo())
5932         DI->EmitImportDecl(*Import);
5933     }
5934 
5935     // Find all of the submodules and emit the module initializers.
5936     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5937     SmallVector<clang::Module *, 16> Stack;
5938     Visited.insert(Import->getImportedModule());
5939     Stack.push_back(Import->getImportedModule());
5940 
5941     while (!Stack.empty()) {
5942       clang::Module *Mod = Stack.pop_back_val();
5943       if (!EmittedModuleInitializers.insert(Mod).second)
5944         continue;
5945 
5946       for (auto *D : Context.getModuleInitializers(Mod))
5947         EmitTopLevelDecl(D);
5948 
5949       // Visit the submodules of this module.
5950       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5951                                              SubEnd = Mod->submodule_end();
5952            Sub != SubEnd; ++Sub) {
5953         // Skip explicit children; they need to be explicitly imported to emit
5954         // the initializers.
5955         if ((*Sub)->IsExplicit)
5956           continue;
5957 
5958         if (Visited.insert(*Sub).second)
5959           Stack.push_back(*Sub);
5960       }
5961     }
5962     break;
5963   }
5964 
5965   case Decl::Export:
5966     EmitDeclContext(cast<ExportDecl>(D));
5967     break;
5968 
5969   case Decl::OMPThreadPrivate:
5970     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5971     break;
5972 
5973   case Decl::OMPAllocate:
5974     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5975     break;
5976 
5977   case Decl::OMPDeclareReduction:
5978     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5979     break;
5980 
5981   case Decl::OMPDeclareMapper:
5982     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5983     break;
5984 
5985   case Decl::OMPRequires:
5986     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5987     break;
5988 
5989   case Decl::Typedef:
5990   case Decl::TypeAlias: // using foo = bar; [C++11]
5991     if (CGDebugInfo *DI = getModuleDebugInfo())
5992       DI->EmitAndRetainType(
5993           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5994     break;
5995 
5996   case Decl::Record:
5997     if (CGDebugInfo *DI = getModuleDebugInfo())
5998       if (cast<RecordDecl>(D)->getDefinition())
5999         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6000     break;
6001 
6002   case Decl::Enum:
6003     if (CGDebugInfo *DI = getModuleDebugInfo())
6004       if (cast<EnumDecl>(D)->getDefinition())
6005         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6006     break;
6007 
6008   default:
6009     // Make sure we handled everything we should, every other kind is a
6010     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6011     // function. Need to recode Decl::Kind to do that easily.
6012     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6013     break;
6014   }
6015 }
6016 
6017 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6018   // Do we need to generate coverage mapping?
6019   if (!CodeGenOpts.CoverageMapping)
6020     return;
6021   switch (D->getKind()) {
6022   case Decl::CXXConversion:
6023   case Decl::CXXMethod:
6024   case Decl::Function:
6025   case Decl::ObjCMethod:
6026   case Decl::CXXConstructor:
6027   case Decl::CXXDestructor: {
6028     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6029       break;
6030     SourceManager &SM = getContext().getSourceManager();
6031     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6032       break;
6033     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6034     if (I == DeferredEmptyCoverageMappingDecls.end())
6035       DeferredEmptyCoverageMappingDecls[D] = true;
6036     break;
6037   }
6038   default:
6039     break;
6040   };
6041 }
6042 
6043 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6044   // Do we need to generate coverage mapping?
6045   if (!CodeGenOpts.CoverageMapping)
6046     return;
6047   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6048     if (Fn->isTemplateInstantiation())
6049       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6050   }
6051   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6052   if (I == DeferredEmptyCoverageMappingDecls.end())
6053     DeferredEmptyCoverageMappingDecls[D] = false;
6054   else
6055     I->second = false;
6056 }
6057 
6058 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6059   // We call takeVector() here to avoid use-after-free.
6060   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6061   // we deserialize function bodies to emit coverage info for them, and that
6062   // deserializes more declarations. How should we handle that case?
6063   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6064     if (!Entry.second)
6065       continue;
6066     const Decl *D = Entry.first;
6067     switch (D->getKind()) {
6068     case Decl::CXXConversion:
6069     case Decl::CXXMethod:
6070     case Decl::Function:
6071     case Decl::ObjCMethod: {
6072       CodeGenPGO PGO(*this);
6073       GlobalDecl GD(cast<FunctionDecl>(D));
6074       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6075                                   getFunctionLinkage(GD));
6076       break;
6077     }
6078     case Decl::CXXConstructor: {
6079       CodeGenPGO PGO(*this);
6080       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6081       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6082                                   getFunctionLinkage(GD));
6083       break;
6084     }
6085     case Decl::CXXDestructor: {
6086       CodeGenPGO PGO(*this);
6087       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6088       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6089                                   getFunctionLinkage(GD));
6090       break;
6091     }
6092     default:
6093       break;
6094     };
6095   }
6096 }
6097 
6098 void CodeGenModule::EmitMainVoidAlias() {
6099   // In order to transition away from "__original_main" gracefully, emit an
6100   // alias for "main" in the no-argument case so that libc can detect when
6101   // new-style no-argument main is in used.
6102   if (llvm::Function *F = getModule().getFunction("main")) {
6103     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6104         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6105       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6106   }
6107 }
6108 
6109 /// Turns the given pointer into a constant.
6110 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6111                                           const void *Ptr) {
6112   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6113   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6114   return llvm::ConstantInt::get(i64, PtrInt);
6115 }
6116 
6117 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6118                                    llvm::NamedMDNode *&GlobalMetadata,
6119                                    GlobalDecl D,
6120                                    llvm::GlobalValue *Addr) {
6121   if (!GlobalMetadata)
6122     GlobalMetadata =
6123       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6124 
6125   // TODO: should we report variant information for ctors/dtors?
6126   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6127                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6128                                CGM.getLLVMContext(), D.getDecl()))};
6129   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6130 }
6131 
6132 /// For each function which is declared within an extern "C" region and marked
6133 /// as 'used', but has internal linkage, create an alias from the unmangled
6134 /// name to the mangled name if possible. People expect to be able to refer
6135 /// to such functions with an unmangled name from inline assembly within the
6136 /// same translation unit.
6137 void CodeGenModule::EmitStaticExternCAliases() {
6138   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6139     return;
6140   for (auto &I : StaticExternCValues) {
6141     IdentifierInfo *Name = I.first;
6142     llvm::GlobalValue *Val = I.second;
6143     if (Val && !getModule().getNamedValue(Name->getName()))
6144       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6145   }
6146 }
6147 
6148 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6149                                              GlobalDecl &Result) const {
6150   auto Res = Manglings.find(MangledName);
6151   if (Res == Manglings.end())
6152     return false;
6153   Result = Res->getValue();
6154   return true;
6155 }
6156 
6157 /// Emits metadata nodes associating all the global values in the
6158 /// current module with the Decls they came from.  This is useful for
6159 /// projects using IR gen as a subroutine.
6160 ///
6161 /// Since there's currently no way to associate an MDNode directly
6162 /// with an llvm::GlobalValue, we create a global named metadata
6163 /// with the name 'clang.global.decl.ptrs'.
6164 void CodeGenModule::EmitDeclMetadata() {
6165   llvm::NamedMDNode *GlobalMetadata = nullptr;
6166 
6167   for (auto &I : MangledDeclNames) {
6168     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6169     // Some mangled names don't necessarily have an associated GlobalValue
6170     // in this module, e.g. if we mangled it for DebugInfo.
6171     if (Addr)
6172       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6173   }
6174 }
6175 
6176 /// Emits metadata nodes for all the local variables in the current
6177 /// function.
6178 void CodeGenFunction::EmitDeclMetadata() {
6179   if (LocalDeclMap.empty()) return;
6180 
6181   llvm::LLVMContext &Context = getLLVMContext();
6182 
6183   // Find the unique metadata ID for this name.
6184   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6185 
6186   llvm::NamedMDNode *GlobalMetadata = nullptr;
6187 
6188   for (auto &I : LocalDeclMap) {
6189     const Decl *D = I.first;
6190     llvm::Value *Addr = I.second.getPointer();
6191     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6192       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6193       Alloca->setMetadata(
6194           DeclPtrKind, llvm::MDNode::get(
6195                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6196     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6197       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6198       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6199     }
6200   }
6201 }
6202 
6203 void CodeGenModule::EmitVersionIdentMetadata() {
6204   llvm::NamedMDNode *IdentMetadata =
6205     TheModule.getOrInsertNamedMetadata("llvm.ident");
6206   std::string Version = getClangFullVersion();
6207   llvm::LLVMContext &Ctx = TheModule.getContext();
6208 
6209   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6210   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6211 }
6212 
6213 void CodeGenModule::EmitCommandLineMetadata() {
6214   llvm::NamedMDNode *CommandLineMetadata =
6215     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6216   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6217   llvm::LLVMContext &Ctx = TheModule.getContext();
6218 
6219   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6220   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6221 }
6222 
6223 void CodeGenModule::EmitCoverageFile() {
6224   if (getCodeGenOpts().CoverageDataFile.empty() &&
6225       getCodeGenOpts().CoverageNotesFile.empty())
6226     return;
6227 
6228   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6229   if (!CUNode)
6230     return;
6231 
6232   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6233   llvm::LLVMContext &Ctx = TheModule.getContext();
6234   auto *CoverageDataFile =
6235       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6236   auto *CoverageNotesFile =
6237       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6238   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6239     llvm::MDNode *CU = CUNode->getOperand(i);
6240     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6241     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6242   }
6243 }
6244 
6245 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6246                                                        bool ForEH) {
6247   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6248   // FIXME: should we even be calling this method if RTTI is disabled
6249   // and it's not for EH?
6250   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6251       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6252        getTriple().isNVPTX()))
6253     return llvm::Constant::getNullValue(Int8PtrTy);
6254 
6255   if (ForEH && Ty->isObjCObjectPointerType() &&
6256       LangOpts.ObjCRuntime.isGNUFamily())
6257     return ObjCRuntime->GetEHType(Ty);
6258 
6259   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6260 }
6261 
6262 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6263   // Do not emit threadprivates in simd-only mode.
6264   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6265     return;
6266   for (auto RefExpr : D->varlists()) {
6267     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6268     bool PerformInit =
6269         VD->getAnyInitializer() &&
6270         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6271                                                         /*ForRef=*/false);
6272 
6273     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6274     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6275             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6276       CXXGlobalInits.push_back(InitFunction);
6277   }
6278 }
6279 
6280 llvm::Metadata *
6281 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6282                                             StringRef Suffix) {
6283   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6284   if (InternalId)
6285     return InternalId;
6286 
6287   if (isExternallyVisible(T->getLinkage())) {
6288     std::string OutName;
6289     llvm::raw_string_ostream Out(OutName);
6290     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6291     Out << Suffix;
6292 
6293     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6294   } else {
6295     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6296                                            llvm::ArrayRef<llvm::Metadata *>());
6297   }
6298 
6299   return InternalId;
6300 }
6301 
6302 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6303   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6304 }
6305 
6306 llvm::Metadata *
6307 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6308   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6309 }
6310 
6311 // Generalize pointer types to a void pointer with the qualifiers of the
6312 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6313 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6314 // 'void *'.
6315 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6316   if (!Ty->isPointerType())
6317     return Ty;
6318 
6319   return Ctx.getPointerType(
6320       QualType(Ctx.VoidTy).withCVRQualifiers(
6321           Ty->getPointeeType().getCVRQualifiers()));
6322 }
6323 
6324 // Apply type generalization to a FunctionType's return and argument types
6325 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6326   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6327     SmallVector<QualType, 8> GeneralizedParams;
6328     for (auto &Param : FnType->param_types())
6329       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6330 
6331     return Ctx.getFunctionType(
6332         GeneralizeType(Ctx, FnType->getReturnType()),
6333         GeneralizedParams, FnType->getExtProtoInfo());
6334   }
6335 
6336   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6337     return Ctx.getFunctionNoProtoType(
6338         GeneralizeType(Ctx, FnType->getReturnType()));
6339 
6340   llvm_unreachable("Encountered unknown FunctionType");
6341 }
6342 
6343 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6344   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6345                                       GeneralizedMetadataIdMap, ".generalized");
6346 }
6347 
6348 /// Returns whether this module needs the "all-vtables" type identifier.
6349 bool CodeGenModule::NeedAllVtablesTypeId() const {
6350   // Returns true if at least one of vtable-based CFI checkers is enabled and
6351   // is not in the trapping mode.
6352   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6353            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6354           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6355            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6356           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6357            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6358           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6359            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6360 }
6361 
6362 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6363                                           CharUnits Offset,
6364                                           const CXXRecordDecl *RD) {
6365   llvm::Metadata *MD =
6366       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6367   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6368 
6369   if (CodeGenOpts.SanitizeCfiCrossDso)
6370     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6371       VTable->addTypeMetadata(Offset.getQuantity(),
6372                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6373 
6374   if (NeedAllVtablesTypeId()) {
6375     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6376     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6377   }
6378 }
6379 
6380 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6381   if (!SanStats)
6382     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6383 
6384   return *SanStats;
6385 }
6386 
6387 llvm::Value *
6388 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6389                                                   CodeGenFunction &CGF) {
6390   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6391   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6392   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6393   auto *Call = CGF.EmitRuntimeCall(
6394       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6395   return Call;
6396 }
6397 
6398 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6399     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6400   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6401                                  /* forPointeeType= */ true);
6402 }
6403 
6404 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6405                                                  LValueBaseInfo *BaseInfo,
6406                                                  TBAAAccessInfo *TBAAInfo,
6407                                                  bool forPointeeType) {
6408   if (TBAAInfo)
6409     *TBAAInfo = getTBAAAccessInfo(T);
6410 
6411   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6412   // that doesn't return the information we need to compute BaseInfo.
6413 
6414   // Honor alignment typedef attributes even on incomplete types.
6415   // We also honor them straight for C++ class types, even as pointees;
6416   // there's an expressivity gap here.
6417   if (auto TT = T->getAs<TypedefType>()) {
6418     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6419       if (BaseInfo)
6420         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6421       return getContext().toCharUnitsFromBits(Align);
6422     }
6423   }
6424 
6425   bool AlignForArray = T->isArrayType();
6426 
6427   // Analyze the base element type, so we don't get confused by incomplete
6428   // array types.
6429   T = getContext().getBaseElementType(T);
6430 
6431   if (T->isIncompleteType()) {
6432     // We could try to replicate the logic from
6433     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6434     // type is incomplete, so it's impossible to test. We could try to reuse
6435     // getTypeAlignIfKnown, but that doesn't return the information we need
6436     // to set BaseInfo.  So just ignore the possibility that the alignment is
6437     // greater than one.
6438     if (BaseInfo)
6439       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6440     return CharUnits::One();
6441   }
6442 
6443   if (BaseInfo)
6444     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6445 
6446   CharUnits Alignment;
6447   const CXXRecordDecl *RD;
6448   if (T.getQualifiers().hasUnaligned()) {
6449     Alignment = CharUnits::One();
6450   } else if (forPointeeType && !AlignForArray &&
6451              (RD = T->getAsCXXRecordDecl())) {
6452     // For C++ class pointees, we don't know whether we're pointing at a
6453     // base or a complete object, so we generally need to use the
6454     // non-virtual alignment.
6455     Alignment = getClassPointerAlignment(RD);
6456   } else {
6457     Alignment = getContext().getTypeAlignInChars(T);
6458   }
6459 
6460   // Cap to the global maximum type alignment unless the alignment
6461   // was somehow explicit on the type.
6462   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6463     if (Alignment.getQuantity() > MaxAlign &&
6464         !getContext().isAlignmentRequired(T))
6465       Alignment = CharUnits::fromQuantity(MaxAlign);
6466   }
6467   return Alignment;
6468 }
6469 
6470 bool CodeGenModule::stopAutoInit() {
6471   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6472   if (StopAfter) {
6473     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6474     // used
6475     if (NumAutoVarInit >= StopAfter) {
6476       return true;
6477     }
6478     if (!NumAutoVarInit) {
6479       unsigned DiagID = getDiags().getCustomDiagID(
6480           DiagnosticsEngine::Warning,
6481           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6482           "number of times ftrivial-auto-var-init=%1 gets applied.");
6483       getDiags().Report(DiagID)
6484           << StopAfter
6485           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6486                       LangOptions::TrivialAutoVarInitKind::Zero
6487                   ? "zero"
6488                   : "pattern");
6489     }
6490     ++NumAutoVarInit;
6491   }
6492   return false;
6493 }
6494 
6495 void CodeGenModule::printPostfixForExternalizedStaticVar(
6496     llvm::raw_ostream &OS) const {
6497   OS << "__static__" << getContext().getCUIDHash();
6498 }
6499