xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b8be93fc92c684a331a1ad40b30c77de3c18a67a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   // We need to call this first because it can add deferred declarations.
66   EmitCXXGlobalInitFunc();
67 
68   EmitDeferred();
69   if (Runtime)
70     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71       AddGlobalCtor(ObjCInitFunction);
72   EmitCtorList(GlobalCtors, "llvm.global_ctors");
73   EmitCtorList(GlobalDtors, "llvm.global_dtors");
74   EmitAnnotations();
75   EmitLLVMUsed();
76 }
77 
78 /// ErrorUnsupported - Print out an error that codegen doesn't support the
79 /// specified stmt yet.
80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                      bool OmitOnError) {
82   if (OmitOnError && getDiags().hasErrorOccurred())
83     return;
84   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                                "cannot compile this %0 yet");
86   std::string Msg = Type;
87   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88     << Msg << S->getSourceRange();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified decl yet.
93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101 }
102 
103 LangOptions::VisibilityMode
104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106     if (VD->getStorageClass() == VarDecl::PrivateExtern)
107       return LangOptions::Hidden;
108 
109   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110     switch (attr->getVisibility()) {
111     default: assert(0 && "Unknown visibility!");
112     case VisibilityAttr::DefaultVisibility:
113       return LangOptions::Default;
114     case VisibilityAttr::HiddenVisibility:
115       return LangOptions::Hidden;
116     case VisibilityAttr::ProtectedVisibility:
117       return LangOptions::Protected;
118     }
119   }
120 
121   return getLangOptions().getVisibilityMode();
122 }
123 
124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                         const Decl *D) const {
126   // Internal definitions always have default visibility.
127   if (GV->hasLocalLinkage()) {
128     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129     return;
130   }
131 
132   switch (getDeclVisibilityMode(D)) {
133   default: assert(0 && "Unknown visibility!");
134   case LangOptions::Default:
135     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136   case LangOptions::Hidden:
137     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138   case LangOptions::Protected:
139     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140   }
141 }
142 
143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144   const NamedDecl *ND = GD.getDecl();
145 
146   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147     return getMangledCXXCtorName(D, GD.getCtorType());
148   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149     return getMangledCXXDtorName(D, GD.getDtorType());
150 
151   return getMangledName(ND);
152 }
153 
154 /// \brief Retrieves the mangled name for the given declaration.
155 ///
156 /// If the given declaration requires a mangled name, returns an
157 /// const char* containing the mangled name.  Otherwise, returns
158 /// the unmangled name.
159 ///
160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161   // In C, functions with no attributes never need to be mangled. Fastpath them.
162   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164     return ND->getNameAsCString();
165   }
166 
167   llvm::SmallString<256> Name;
168   llvm::raw_svector_ostream Out(Name);
169   if (!mangleName(ND, Context, Out)) {
170     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171     return ND->getNameAsCString();
172   }
173 
174   Name += '\0';
175   return UniqueMangledName(Name.begin(), Name.end());
176 }
177 
178 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                              const char *NameEnd) {
180   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181 
182   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183 }
184 
185 /// AddGlobalCtor - Add a function to the list that will be called before
186 /// main() runs.
187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188   // FIXME: Type coercion of void()* types.
189   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190 }
191 
192 /// AddGlobalDtor - Add a function to the list that will be called
193 /// when the module is unloaded.
194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197 }
198 
199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200   // Ctor function type is void()*.
201   llvm::FunctionType* CtorFTy =
202     llvm::FunctionType::get(llvm::Type::VoidTy,
203                             std::vector<const llvm::Type*>(),
204                             false);
205   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206 
207   // Get the type of a ctor entry, { i32, void ()* }.
208   llvm::StructType* CtorStructTy =
209     llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
210                           llvm::PointerType::getUnqual(CtorFTy), NULL);
211 
212   // Construct the constructor and destructor arrays.
213   std::vector<llvm::Constant*> Ctors;
214   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215     std::vector<llvm::Constant*> S;
216     S.push_back(
217       llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
218     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220   }
221 
222   if (!Ctors.empty()) {
223     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224     new llvm::GlobalVariable(TheModule, AT, false,
225                              llvm::GlobalValue::AppendingLinkage,
226                              llvm::ConstantArray::get(AT, Ctors),
227                              GlobalName);
228   }
229 }
230 
231 void CodeGenModule::EmitAnnotations() {
232   if (Annotations.empty())
233     return;
234 
235   // Create a new global variable for the ConstantStruct in the Module.
236   llvm::Constant *Array =
237   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                 Annotations.size()),
239                            Annotations);
240   llvm::GlobalValue *gv =
241   new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                            llvm::GlobalValue::AppendingLinkage, Array,
243                            "llvm.global.annotations");
244   gv->setSection("llvm.metadata");
245 }
246 
247 static CodeGenModule::GVALinkage
248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                       const LangOptions &Features) {
250   // The kind of external linkage this function will have, if it is not
251   // inline or static.
252   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253   if (Context.getLangOptions().CPlusPlus &&
254       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
255       !FD->isExplicitSpecialization())
256     External = CodeGenModule::GVA_TemplateInstantiation;
257 
258   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
259     // C++ member functions defined inside the class are always inline.
260     if (MD->isInline() || !MD->isOutOfLine())
261       return CodeGenModule::GVA_CXXInline;
262 
263     return External;
264   }
265 
266   // "static" functions get internal linkage.
267   if (FD->getStorageClass() == FunctionDecl::Static)
268     return CodeGenModule::GVA_Internal;
269 
270   if (!FD->isInline())
271     return External;
272 
273   // If the inline function explicitly has the GNU inline attribute on it, or if
274   // this is C89 mode, we use to GNU semantics.
275   if (!Features.C99 && !Features.CPlusPlus) {
276     // extern inline in GNU mode is like C99 inline.
277     if (FD->getStorageClass() == FunctionDecl::Extern)
278       return CodeGenModule::GVA_C99Inline;
279     // Normal inline is a strong symbol.
280     return CodeGenModule::GVA_StrongExternal;
281   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
282     // GCC in C99 mode seems to use a different decision-making
283     // process for extern inline, which factors in previous
284     // declarations.
285     if (FD->isExternGNUInline(Context))
286       return CodeGenModule::GVA_C99Inline;
287     // Normal inline is a strong symbol.
288     return External;
289   }
290 
291   // The definition of inline changes based on the language.  Note that we
292   // have already handled "static inline" above, with the GVA_Internal case.
293   if (Features.CPlusPlus)  // inline and extern inline.
294     return CodeGenModule::GVA_CXXInline;
295 
296   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
297   if (FD->isC99InlineDefinition())
298     return CodeGenModule::GVA_C99Inline;
299 
300   return CodeGenModule::GVA_StrongExternal;
301 }
302 
303 /// SetFunctionDefinitionAttributes - Set attributes for a global.
304 ///
305 /// FIXME: This is currently only done for aliases and functions, but not for
306 /// variables (these details are set in EmitGlobalVarDefinition for variables).
307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
308                                                     llvm::GlobalValue *GV) {
309   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
310 
311   if (Linkage == GVA_Internal) {
312     GV->setLinkage(llvm::Function::InternalLinkage);
313   } else if (D->hasAttr<DLLExportAttr>()) {
314     GV->setLinkage(llvm::Function::DLLExportLinkage);
315   } else if (D->hasAttr<WeakAttr>()) {
316     GV->setLinkage(llvm::Function::WeakAnyLinkage);
317   } else if (Linkage == GVA_C99Inline) {
318     // In C99 mode, 'inline' functions are guaranteed to have a strong
319     // definition somewhere else, so we can use available_externally linkage.
320     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
321   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
322     // In C++, the compiler has to emit a definition in every translation unit
323     // that references the function.  We should use linkonce_odr because
324     // a) if all references in this translation unit are optimized away, we
325     // don't need to codegen it.  b) if the function persists, it needs to be
326     // merged with other definitions. c) C++ has the ODR, so we know the
327     // definition is dependable.
328     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
329   } else {
330     assert(Linkage == GVA_StrongExternal);
331     // Otherwise, we have strong external linkage.
332     GV->setLinkage(llvm::Function::ExternalLinkage);
333   }
334 
335   SetCommonAttributes(D, GV);
336 }
337 
338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
339                                               const CGFunctionInfo &Info,
340                                               llvm::Function *F) {
341   AttributeListType AttributeList;
342   ConstructAttributeList(Info, D, AttributeList);
343 
344   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
345                                         AttributeList.size()));
346 
347   // Set the appropriate calling convention for the Function.
348   if (D->hasAttr<FastCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_FastCall);
350 
351   if (D->hasAttr<StdCallAttr>())
352     F->setCallingConv(llvm::CallingConv::X86_StdCall);
353 }
354 
355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
356                                                            llvm::Function *F) {
357   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
358     F->addFnAttr(llvm::Attribute::NoUnwind);
359 
360   if (D->hasAttr<AlwaysInlineAttr>())
361     F->addFnAttr(llvm::Attribute::AlwaysInline);
362 
363   if (D->hasAttr<NoinlineAttr>())
364     F->addFnAttr(llvm::Attribute::NoInline);
365 }
366 
367 void CodeGenModule::SetCommonAttributes(const Decl *D,
368                                         llvm::GlobalValue *GV) {
369   setGlobalVisibility(GV, D);
370 
371   if (D->hasAttr<UsedAttr>())
372     AddUsedGlobal(GV);
373 
374   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
375     GV->setSection(SA->getName());
376 }
377 
378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
379                                                   llvm::Function *F,
380                                                   const CGFunctionInfo &FI) {
381   SetLLVMFunctionAttributes(D, FI, F);
382   SetLLVMFunctionAttributesForDefinition(D, F);
383 
384   F->setLinkage(llvm::Function::InternalLinkage);
385 
386   SetCommonAttributes(D, F);
387 }
388 
389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
390                                           llvm::Function *F,
391                                           bool IsIncompleteFunction) {
392   if (!IsIncompleteFunction)
393     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
394 
395   // Only a few attributes are set on declarations; these may later be
396   // overridden by a definition.
397 
398   if (FD->hasAttr<DLLImportAttr>()) {
399     F->setLinkage(llvm::Function::DLLImportLinkage);
400   } else if (FD->hasAttr<WeakAttr>() ||
401              FD->hasAttr<WeakImportAttr>()) {
402     // "extern_weak" is overloaded in LLVM; we probably should have
403     // separate linkage types for this.
404     F->setLinkage(llvm::Function::ExternalWeakLinkage);
405   } else {
406     F->setLinkage(llvm::Function::ExternalLinkage);
407   }
408 
409   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
410     F->setSection(SA->getName());
411 }
412 
413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
414   assert(!GV->isDeclaration() &&
415          "Only globals with definition can force usage.");
416   LLVMUsed.push_back(GV);
417 }
418 
419 void CodeGenModule::EmitLLVMUsed() {
420   // Don't create llvm.used if there is no need.
421   if (LLVMUsed.empty())
422     return;
423 
424   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
425 
426   // Convert LLVMUsed to what ConstantArray needs.
427   std::vector<llvm::Constant*> UsedArray;
428   UsedArray.resize(LLVMUsed.size());
429   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430     UsedArray[i] =
431      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                       i8PTy);
433   }
434 
435   if (UsedArray.empty())
436     return;
437   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438 
439   llvm::GlobalVariable *GV =
440     new llvm::GlobalVariable(getModule(), ATy, false,
441                              llvm::GlobalValue::AppendingLinkage,
442                              llvm::ConstantArray::get(ATy, UsedArray),
443                              "llvm.used");
444 
445   GV->setSection("llvm.metadata");
446 }
447 
448 void CodeGenModule::EmitDeferred() {
449   // Emit code for any potentially referenced deferred decls.  Since a
450   // previously unused static decl may become used during the generation of code
451   // for a static function, iterate until no  changes are made.
452   while (!DeferredDeclsToEmit.empty()) {
453     GlobalDecl D = DeferredDeclsToEmit.back();
454     DeferredDeclsToEmit.pop_back();
455 
456     // The mangled name for the decl must have been emitted in GlobalDeclMap.
457     // Look it up to see if it was defined with a stronger definition (e.g. an
458     // extern inline function with a strong function redefinition).  If so,
459     // just ignore the deferred decl.
460     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461     assert(CGRef && "Deferred decl wasn't referenced?");
462 
463     if (!CGRef->isDeclaration())
464       continue;
465 
466     // Otherwise, emit the definition and move on to the next one.
467     EmitGlobalDefinition(D);
468   }
469 }
470 
471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472 /// annotation information for a given GlobalValue.  The annotation struct is
473 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474 /// GlobalValue being annotated.  The second field is the constant string
475 /// created from the AnnotateAttr's annotation.  The third field is a constant
476 /// string containing the name of the translation unit.  The fourth field is
477 /// the line number in the file of the annotated value declaration.
478 ///
479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
480 ///        appears to.
481 ///
482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                 const AnnotateAttr *AA,
484                                                 unsigned LineNo) {
485   llvm::Module *M = &getModule();
486 
487   // get [N x i8] constants for the annotation string, and the filename string
488   // which are the 2nd and 3rd elements of the global annotation structure.
489   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
490   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
491   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
492                                                   true);
493 
494   // Get the two global values corresponding to the ConstantArrays we just
495   // created to hold the bytes of the strings.
496   llvm::GlobalValue *annoGV =
497     new llvm::GlobalVariable(*M, anno->getType(), false,
498                              llvm::GlobalValue::PrivateLinkage, anno,
499                              GV->getName());
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502     new llvm::GlobalVariable(*M, unit->getType(), false,
503                              llvm::GlobalValue::PrivateLinkage, unit,
504                              ".str");
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512   };
513   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = GD.getDecl();
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC(getContext())))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = GD.getDecl();
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646     // A called constructor which has no definition or declaration need be
647     // synthesized.
648     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
649       const CXXRecordDecl *ClassDecl =
650         cast<CXXRecordDecl>(CD->getDeclContext());
651       if (CD->isCopyConstructor(getContext()))
652         DeferredCopyConstructorToEmit(D);
653       else if (!ClassDecl->hasUserDeclaredConstructor())
654         DeferredDeclsToEmit.push_back(D);
655     }
656   }
657 
658   // This function doesn't have a complete type (for example, the return
659   // type is an incomplete struct). Use a fake type instead, and make
660   // sure not to try to set attributes.
661   bool IsIncompleteFunction = false;
662   if (!isa<llvm::FunctionType>(Ty)) {
663     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
664                                  std::vector<const llvm::Type*>(), false);
665     IsIncompleteFunction = true;
666   }
667   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
668                                              llvm::Function::ExternalLinkage,
669                                              "", &getModule());
670   F->setName(MangledName);
671   if (D.getDecl())
672     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
673                           IsIncompleteFunction);
674   Entry = F;
675   return F;
676 }
677 
678 /// Defer definition of copy constructor(s) which need be implicitly defined.
679 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
680   const CXXConstructorDecl *CD =
681     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
682   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
683   if (ClassDecl->hasTrivialCopyConstructor() ||
684       ClassDecl->hasUserDeclaredCopyConstructor())
685     return;
686 
687   // First make sure all direct base classes and virtual bases and non-static
688   // data mebers which need to have their copy constructors implicitly defined
689   // are defined. 12.8.p7
690   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
691        Base != ClassDecl->bases_end(); ++Base) {
692     CXXRecordDecl *BaseClassDecl
693       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
694     if (CXXConstructorDecl *BaseCopyCtor =
695         BaseClassDecl->getCopyConstructor(Context, 0))
696       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
697   }
698 
699   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
700        FieldEnd = ClassDecl->field_end();
701        Field != FieldEnd; ++Field) {
702     QualType FieldType = Context.getCanonicalType((*Field)->getType());
703     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
704       FieldType = Array->getElementType();
705     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
706       CXXRecordDecl *FieldClassDecl
707       = cast<CXXRecordDecl>(FieldClassType->getDecl());
708       if (CXXConstructorDecl *FieldCopyCtor =
709           FieldClassDecl->getCopyConstructor(Context, 0))
710         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
711     }
712   }
713   DeferredDeclsToEmit.push_back(CopyCtorDecl);
714 
715 }
716 
717 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
718 /// non-null, then this function will use the specified type if it has to
719 /// create it (this occurs when we see a definition of the function).
720 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
721                                                  const llvm::Type *Ty) {
722   // If there was no specific requested type, just convert it now.
723   if (!Ty)
724     Ty = getTypes().ConvertType(GD.getDecl()->getType());
725   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
726 }
727 
728 /// CreateRuntimeFunction - Create a new runtime function with the specified
729 /// type and name.
730 llvm::Constant *
731 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
732                                      const char *Name) {
733   // Convert Name to be a uniqued string from the IdentifierInfo table.
734   Name = getContext().Idents.get(Name).getName();
735   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
736 }
737 
738 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
739 /// create and return an llvm GlobalVariable with the specified type.  If there
740 /// is something in the module with the specified name, return it potentially
741 /// bitcasted to the right type.
742 ///
743 /// If D is non-null, it specifies a decl that correspond to this.  This is used
744 /// to set the attributes on the global when it is first created.
745 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
746                                                      const llvm::PointerType*Ty,
747                                                      const VarDecl *D) {
748   // Lookup the entry, lazily creating it if necessary.
749   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
750   if (Entry) {
751     if (Entry->getType() == Ty)
752       return Entry;
753 
754     // Make sure the result is of the correct type.
755     return llvm::ConstantExpr::getBitCast(Entry, Ty);
756   }
757 
758   // This is the first use or definition of a mangled name.  If there is a
759   // deferred decl with this name, remember that we need to emit it at the end
760   // of the file.
761   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
762     DeferredDecls.find(MangledName);
763   if (DDI != DeferredDecls.end()) {
764     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
765     // list, and remove it from DeferredDecls (since we don't need it anymore).
766     DeferredDeclsToEmit.push_back(DDI->second);
767     DeferredDecls.erase(DDI);
768   }
769 
770   llvm::GlobalVariable *GV =
771     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
772                              llvm::GlobalValue::ExternalLinkage,
773                              0, "", 0,
774                              false, Ty->getAddressSpace());
775   GV->setName(MangledName);
776 
777   // Handle things which are present even on external declarations.
778   if (D) {
779     // FIXME: This code is overly simple and should be merged with other global
780     // handling.
781     GV->setConstant(D->getType().isConstant(Context));
782 
783     // FIXME: Merge with other attribute handling code.
784     if (D->getStorageClass() == VarDecl::PrivateExtern)
785       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
786 
787     if (D->hasAttr<WeakAttr>() ||
788         D->hasAttr<WeakImportAttr>())
789       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
790 
791     GV->setThreadLocal(D->isThreadSpecified());
792   }
793 
794   return Entry = GV;
795 }
796 
797 
798 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
799 /// given global variable.  If Ty is non-null and if the global doesn't exist,
800 /// then it will be greated with the specified type instead of whatever the
801 /// normal requested type would be.
802 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
803                                                   const llvm::Type *Ty) {
804   assert(D->hasGlobalStorage() && "Not a global variable");
805   QualType ASTTy = D->getType();
806   if (Ty == 0)
807     Ty = getTypes().ConvertTypeForMem(ASTTy);
808 
809   const llvm::PointerType *PTy =
810     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
811   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
812 }
813 
814 /// CreateRuntimeVariable - Create a new runtime global variable with the
815 /// specified type and name.
816 llvm::Constant *
817 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
818                                      const char *Name) {
819   // Convert Name to be a uniqued string from the IdentifierInfo table.
820   Name = getContext().Idents.get(Name).getName();
821   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
822 }
823 
824 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
825   assert(!D->getInit() && "Cannot emit definite definitions here!");
826 
827   if (MayDeferGeneration(D)) {
828     // If we have not seen a reference to this variable yet, place it
829     // into the deferred declarations table to be emitted if needed
830     // later.
831     const char *MangledName = getMangledName(D);
832     if (GlobalDeclMap.count(MangledName) == 0) {
833       DeferredDecls[MangledName] = GlobalDecl(D);
834       return;
835     }
836   }
837 
838   // The tentative definition is the only definition.
839   EmitGlobalVarDefinition(D);
840 }
841 
842 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
843   llvm::Constant *Init = 0;
844   QualType ASTTy = D->getType();
845 
846   if (D->getInit() == 0) {
847     // This is a tentative definition; tentative definitions are
848     // implicitly initialized with { 0 }.
849     //
850     // Note that tentative definitions are only emitted at the end of
851     // a translation unit, so they should never have incomplete
852     // type. In addition, EmitTentativeDefinition makes sure that we
853     // never attempt to emit a tentative definition if a real one
854     // exists. A use may still exists, however, so we still may need
855     // to do a RAUW.
856     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
857     Init = EmitNullConstant(D->getType());
858   } else {
859     Init = EmitConstantExpr(D->getInit(), D->getType());
860 
861     if (!Init) {
862       QualType T = D->getInit()->getType();
863       if (getLangOptions().CPlusPlus) {
864         CXXGlobalInits.push_back(D);
865         Init = EmitNullConstant(T);
866       } else {
867         ErrorUnsupported(D, "static initializer");
868         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
869       }
870     }
871   }
872 
873   const llvm::Type* InitType = Init->getType();
874   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
875 
876   // Strip off a bitcast if we got one back.
877   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
878     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
879            // all zero index gep.
880            CE->getOpcode() == llvm::Instruction::GetElementPtr);
881     Entry = CE->getOperand(0);
882   }
883 
884   // Entry is now either a Function or GlobalVariable.
885   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
886 
887   // We have a definition after a declaration with the wrong type.
888   // We must make a new GlobalVariable* and update everything that used OldGV
889   // (a declaration or tentative definition) with the new GlobalVariable*
890   // (which will be a definition).
891   //
892   // This happens if there is a prototype for a global (e.g.
893   // "extern int x[];") and then a definition of a different type (e.g.
894   // "int x[10];"). This also happens when an initializer has a different type
895   // from the type of the global (this happens with unions).
896   if (GV == 0 ||
897       GV->getType()->getElementType() != InitType ||
898       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
899 
900     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
901     GlobalDeclMap.erase(getMangledName(D));
902 
903     // Make a new global with the correct type, this is now guaranteed to work.
904     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
905     GV->takeName(cast<llvm::GlobalValue>(Entry));
906 
907     // Replace all uses of the old global with the new global
908     llvm::Constant *NewPtrForOldDecl =
909         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
910     Entry->replaceAllUsesWith(NewPtrForOldDecl);
911 
912     // Erase the old global, since it is no longer used.
913     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
914   }
915 
916   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
917     SourceManager &SM = Context.getSourceManager();
918     AddAnnotation(EmitAnnotateAttr(GV, AA,
919                               SM.getInstantiationLineNumber(D->getLocation())));
920   }
921 
922   GV->setInitializer(Init);
923 
924   // If it is safe to mark the global 'constant', do so now.
925   GV->setConstant(false);
926   if (D->getType().isConstant(Context)) {
927     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
928     // members, it cannot be declared "LLVM const".
929     GV->setConstant(true);
930   }
931 
932   GV->setAlignment(getContext().getDeclAlignInBytes(D));
933 
934   // Set the llvm linkage type as appropriate.
935   if (D->getStorageClass() == VarDecl::Static)
936     GV->setLinkage(llvm::Function::InternalLinkage);
937   else if (D->hasAttr<DLLImportAttr>())
938     GV->setLinkage(llvm::Function::DLLImportLinkage);
939   else if (D->hasAttr<DLLExportAttr>())
940     GV->setLinkage(llvm::Function::DLLExportLinkage);
941   else if (D->hasAttr<WeakAttr>()) {
942     if (GV->isConstant())
943       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
944     else
945       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
946   } else if (!CompileOpts.NoCommon &&
947            !D->hasExternalStorage() && !D->getInit() &&
948            !D->getAttr<SectionAttr>()) {
949     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
950     // common vars aren't constant even if declared const.
951     GV->setConstant(false);
952   } else
953     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
954 
955   SetCommonAttributes(D, GV);
956 
957   // Emit global variable debug information.
958   if (CGDebugInfo *DI = getDebugInfo()) {
959     DI->setLocation(D->getLocation());
960     DI->EmitGlobalVariable(GV, D);
961   }
962 }
963 
964 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
965 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
966 /// existing call uses of the old function in the module, this adjusts them to
967 /// call the new function directly.
968 ///
969 /// This is not just a cleanup: the always_inline pass requires direct calls to
970 /// functions to be able to inline them.  If there is a bitcast in the way, it
971 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
972 /// run at -O0.
973 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
974                                                       llvm::Function *NewFn) {
975   // If we're redefining a global as a function, don't transform it.
976   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
977   if (OldFn == 0) return;
978 
979   const llvm::Type *NewRetTy = NewFn->getReturnType();
980   llvm::SmallVector<llvm::Value*, 4> ArgList;
981 
982   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
983        UI != E; ) {
984     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
985     unsigned OpNo = UI.getOperandNo();
986     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
987     if (!CI || OpNo != 0) continue;
988 
989     // If the return types don't match exactly, and if the call isn't dead, then
990     // we can't transform this call.
991     if (CI->getType() != NewRetTy && !CI->use_empty())
992       continue;
993 
994     // If the function was passed too few arguments, don't transform.  If extra
995     // arguments were passed, we silently drop them.  If any of the types
996     // mismatch, we don't transform.
997     unsigned ArgNo = 0;
998     bool DontTransform = false;
999     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1000          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1001       if (CI->getNumOperands()-1 == ArgNo ||
1002           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1003         DontTransform = true;
1004         break;
1005       }
1006     }
1007     if (DontTransform)
1008       continue;
1009 
1010     // Okay, we can transform this.  Create the new call instruction and copy
1011     // over the required information.
1012     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1013     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1014                                                      ArgList.end(), "", CI);
1015     ArgList.clear();
1016     if (NewCall->getType() != llvm::Type::VoidTy)
1017       NewCall->takeName(CI);
1018     NewCall->setCallingConv(CI->getCallingConv());
1019     NewCall->setAttributes(CI->getAttributes());
1020 
1021     // Finally, remove the old call, replacing any uses with the new one.
1022     if (!CI->use_empty())
1023       CI->replaceAllUsesWith(NewCall);
1024     CI->eraseFromParent();
1025   }
1026 }
1027 
1028 
1029 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1030   const llvm::FunctionType *Ty;
1031   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1032 
1033   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1034     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1035 
1036     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1037   } else {
1038     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1039 
1040     // As a special case, make sure that definitions of K&R function
1041     // "type foo()" aren't declared as varargs (which forces the backend
1042     // to do unnecessary work).
1043     if (D->getType()->isFunctionNoProtoType()) {
1044       assert(Ty->isVarArg() && "Didn't lower type as expected");
1045       // Due to stret, the lowered function could have arguments.
1046       // Just create the same type as was lowered by ConvertType
1047       // but strip off the varargs bit.
1048       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1049       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1050     }
1051   }
1052 
1053   // Get or create the prototype for the function.
1054   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1055 
1056   // Strip off a bitcast if we got one back.
1057   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1058     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1059     Entry = CE->getOperand(0);
1060   }
1061 
1062 
1063   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1064     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1065 
1066     // If the types mismatch then we have to rewrite the definition.
1067     assert(OldFn->isDeclaration() &&
1068            "Shouldn't replace non-declaration");
1069 
1070     // F is the Function* for the one with the wrong type, we must make a new
1071     // Function* and update everything that used F (a declaration) with the new
1072     // Function* (which will be a definition).
1073     //
1074     // This happens if there is a prototype for a function
1075     // (e.g. "int f()") and then a definition of a different type
1076     // (e.g. "int f(int x)").  Start by making a new function of the
1077     // correct type, RAUW, then steal the name.
1078     GlobalDeclMap.erase(getMangledName(D));
1079     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1080     NewFn->takeName(OldFn);
1081 
1082     // If this is an implementation of a function without a prototype, try to
1083     // replace any existing uses of the function (which may be calls) with uses
1084     // of the new function
1085     if (D->getType()->isFunctionNoProtoType()) {
1086       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1087       OldFn->removeDeadConstantUsers();
1088     }
1089 
1090     // Replace uses of F with the Function we will endow with a body.
1091     if (!Entry->use_empty()) {
1092       llvm::Constant *NewPtrForOldDecl =
1093         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1094       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1095     }
1096 
1097     // Ok, delete the old function now, which is dead.
1098     OldFn->eraseFromParent();
1099 
1100     Entry = NewFn;
1101   }
1102 
1103   llvm::Function *Fn = cast<llvm::Function>(Entry);
1104 
1105   CodeGenFunction(*this).GenerateCode(D, Fn);
1106 
1107   SetFunctionDefinitionAttributes(D, Fn);
1108   SetLLVMFunctionAttributesForDefinition(D, Fn);
1109 
1110   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1111     AddGlobalCtor(Fn, CA->getPriority());
1112   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1113     AddGlobalDtor(Fn, DA->getPriority());
1114 }
1115 
1116 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1117   const AliasAttr *AA = D->getAttr<AliasAttr>();
1118   assert(AA && "Not an alias?");
1119 
1120   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1121 
1122   // Unique the name through the identifier table.
1123   const char *AliaseeName = AA->getAliasee().c_str();
1124   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1125 
1126   // Create a reference to the named value.  This ensures that it is emitted
1127   // if a deferred decl.
1128   llvm::Constant *Aliasee;
1129   if (isa<llvm::FunctionType>(DeclTy))
1130     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1131   else
1132     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1133                                     llvm::PointerType::getUnqual(DeclTy), 0);
1134 
1135   // Create the new alias itself, but don't set a name yet.
1136   llvm::GlobalValue *GA =
1137     new llvm::GlobalAlias(Aliasee->getType(),
1138                           llvm::Function::ExternalLinkage,
1139                           "", Aliasee, &getModule());
1140 
1141   // See if there is already something with the alias' name in the module.
1142   const char *MangledName = getMangledName(D);
1143   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1144 
1145   if (Entry && !Entry->isDeclaration()) {
1146     // If there is a definition in the module, then it wins over the alias.
1147     // This is dubious, but allow it to be safe.  Just ignore the alias.
1148     GA->eraseFromParent();
1149     return;
1150   }
1151 
1152   if (Entry) {
1153     // If there is a declaration in the module, then we had an extern followed
1154     // by the alias, as in:
1155     //   extern int test6();
1156     //   ...
1157     //   int test6() __attribute__((alias("test7")));
1158     //
1159     // Remove it and replace uses of it with the alias.
1160 
1161     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1162                                                           Entry->getType()));
1163     Entry->eraseFromParent();
1164   }
1165 
1166   // Now we know that there is no conflict, set the name.
1167   Entry = GA;
1168   GA->setName(MangledName);
1169 
1170   // Set attributes which are particular to an alias; this is a
1171   // specialization of the attributes which may be set on a global
1172   // variable/function.
1173   if (D->hasAttr<DLLExportAttr>()) {
1174     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1175       // The dllexport attribute is ignored for undefined symbols.
1176       if (FD->getBody())
1177         GA->setLinkage(llvm::Function::DLLExportLinkage);
1178     } else {
1179       GA->setLinkage(llvm::Function::DLLExportLinkage);
1180     }
1181   } else if (D->hasAttr<WeakAttr>() ||
1182              D->hasAttr<WeakImportAttr>()) {
1183     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1184   }
1185 
1186   SetCommonAttributes(D, GA);
1187 }
1188 
1189 /// getBuiltinLibFunction - Given a builtin id for a function like
1190 /// "__builtin_fabsf", return a Function* for "fabsf".
1191 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1192   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1193           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1194          "isn't a lib fn");
1195 
1196   // Get the name, skip over the __builtin_ prefix (if necessary).
1197   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1198   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1199     Name += 10;
1200 
1201   // Get the type for the builtin.
1202   ASTContext::GetBuiltinTypeError Error;
1203   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1204   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1205 
1206   const llvm::FunctionType *Ty =
1207     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1208 
1209   // Unique the name through the identifier table.
1210   Name = getContext().Idents.get(Name).getName();
1211   // FIXME: param attributes for sext/zext etc.
1212   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1213 }
1214 
1215 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1216                                             unsigned NumTys) {
1217   return llvm::Intrinsic::getDeclaration(&getModule(),
1218                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1219 }
1220 
1221 llvm::Function *CodeGenModule::getMemCpyFn() {
1222   if (MemCpyFn) return MemCpyFn;
1223   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1224   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1225 }
1226 
1227 llvm::Function *CodeGenModule::getMemMoveFn() {
1228   if (MemMoveFn) return MemMoveFn;
1229   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1230   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1231 }
1232 
1233 llvm::Function *CodeGenModule::getMemSetFn() {
1234   if (MemSetFn) return MemSetFn;
1235   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1236   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1237 }
1238 
1239 static void appendFieldAndPadding(CodeGenModule &CGM,
1240                                   std::vector<llvm::Constant*>& Fields,
1241                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1242                                   llvm::Constant* Field,
1243                                   RecordDecl* RD, const llvm::StructType *STy) {
1244   // Append the field.
1245   Fields.push_back(Field);
1246 
1247   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1248 
1249   int NextStructFieldNo;
1250   if (!NextFieldD) {
1251     NextStructFieldNo = STy->getNumElements();
1252   } else {
1253     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1254   }
1255 
1256   // Append padding
1257   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1258     llvm::Constant *C =
1259       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1260 
1261     Fields.push_back(C);
1262   }
1263 }
1264 
1265 static llvm::StringMapEntry<llvm::Constant*> &
1266 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1267                          const StringLiteral *Literal,
1268                          bool TargetIsLSB,
1269                          bool &IsUTF16,
1270                          unsigned &StringLength) {
1271   unsigned NumBytes = Literal->getByteLength();
1272 
1273   // Check for simple case.
1274   if (!Literal->containsNonAsciiOrNull()) {
1275     StringLength = NumBytes;
1276     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1277                                                 StringLength));
1278   }
1279 
1280   // Otherwise, convert the UTF8 literals into a byte string.
1281   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1282   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1283   UTF16 *ToPtr = &ToBuf[0];
1284 
1285   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1286                                                &ToPtr, ToPtr + NumBytes,
1287                                                strictConversion);
1288 
1289   // Check for conversion failure.
1290   if (Result != conversionOK) {
1291     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1292     // this duplicate code.
1293     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1294     StringLength = NumBytes;
1295     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1296                                                 StringLength));
1297   }
1298 
1299   // ConvertUTF8toUTF16 returns the length in ToPtr.
1300   StringLength = ToPtr - &ToBuf[0];
1301 
1302   // Render the UTF-16 string into a byte array and convert to the target byte
1303   // order.
1304   //
1305   // FIXME: This isn't something we should need to do here.
1306   llvm::SmallString<128> AsBytes;
1307   AsBytes.reserve(StringLength * 2);
1308   for (unsigned i = 0; i != StringLength; ++i) {
1309     unsigned short Val = ToBuf[i];
1310     if (TargetIsLSB) {
1311       AsBytes.push_back(Val & 0xFF);
1312       AsBytes.push_back(Val >> 8);
1313     } else {
1314       AsBytes.push_back(Val >> 8);
1315       AsBytes.push_back(Val & 0xFF);
1316     }
1317   }
1318   // Append one extra null character, the second is automatically added by our
1319   // caller.
1320   AsBytes.push_back(0);
1321 
1322   IsUTF16 = true;
1323   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1324 }
1325 
1326 llvm::Constant *
1327 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1328   unsigned StringLength = 0;
1329   bool isUTF16 = false;
1330   llvm::StringMapEntry<llvm::Constant*> &Entry =
1331     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1332                              getTargetData().isLittleEndian(),
1333                              isUTF16, StringLength);
1334 
1335   if (llvm::Constant *C = Entry.getValue())
1336     return C;
1337 
1338   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1339   llvm::Constant *Zeros[] = { Zero, Zero };
1340 
1341   // If we don't already have it, get __CFConstantStringClassReference.
1342   if (!CFConstantStringClassRef) {
1343     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1344     Ty = llvm::ArrayType::get(Ty, 0);
1345     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1346                                            "__CFConstantStringClassReference");
1347     // Decay array -> ptr
1348     CFConstantStringClassRef =
1349       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1350   }
1351 
1352   QualType CFTy = getContext().getCFConstantStringType();
1353   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1354 
1355   const llvm::StructType *STy =
1356     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1357 
1358   std::vector<llvm::Constant*> Fields;
1359   RecordDecl::field_iterator Field = CFRD->field_begin();
1360 
1361   // Class pointer.
1362   FieldDecl *CurField = *Field++;
1363   FieldDecl *NextField = *Field++;
1364   appendFieldAndPadding(*this, Fields, CurField, NextField,
1365                         CFConstantStringClassRef, CFRD, STy);
1366 
1367   // Flags.
1368   CurField = NextField;
1369   NextField = *Field++;
1370   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1371   appendFieldAndPadding(*this, Fields, CurField, NextField,
1372                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1373                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1374                         CFRD, STy);
1375 
1376   // String pointer.
1377   CurField = NextField;
1378   NextField = *Field++;
1379   llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1380 
1381   const char *Sect, *Prefix;
1382   bool isConstant;
1383   llvm::GlobalValue::LinkageTypes Linkage;
1384   if (isUTF16) {
1385     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1386     Sect = getContext().Target.getUnicodeStringSection();
1387     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1388     Linkage = llvm::GlobalValue::InternalLinkage;
1389     // FIXME: Why does GCC not set constant here?
1390     isConstant = false;
1391   } else {
1392     Prefix = ".str";
1393     Sect = getContext().Target.getCFStringDataSection();
1394     Linkage = llvm::GlobalValue::PrivateLinkage;
1395     // FIXME: -fwritable-strings should probably affect this, but we
1396     // are following gcc here.
1397     isConstant = true;
1398   }
1399   llvm::GlobalVariable *GV =
1400     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1401                              Linkage, C, Prefix);
1402   if (Sect)
1403     GV->setSection(Sect);
1404   if (isUTF16) {
1405     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1406     GV->setAlignment(Align);
1407   }
1408   appendFieldAndPadding(*this, Fields, CurField, NextField,
1409                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1410                         CFRD, STy);
1411 
1412   // String length.
1413   CurField = NextField;
1414   NextField = 0;
1415   Ty = getTypes().ConvertType(getContext().LongTy);
1416   appendFieldAndPadding(*this, Fields, CurField, NextField,
1417                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1418 
1419   // The struct.
1420   C = llvm::ConstantStruct::get(STy, Fields);
1421   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1422                                 llvm::GlobalVariable::PrivateLinkage, C,
1423                                 "_unnamed_cfstring_");
1424   if (const char *Sect = getContext().Target.getCFStringSection())
1425     GV->setSection(Sect);
1426   Entry.setValue(GV);
1427 
1428   return GV;
1429 }
1430 
1431 /// GetStringForStringLiteral - Return the appropriate bytes for a
1432 /// string literal, properly padded to match the literal type.
1433 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1434   const char *StrData = E->getStrData();
1435   unsigned Len = E->getByteLength();
1436 
1437   const ConstantArrayType *CAT =
1438     getContext().getAsConstantArrayType(E->getType());
1439   assert(CAT && "String isn't pointer or array!");
1440 
1441   // Resize the string to the right size.
1442   std::string Str(StrData, StrData+Len);
1443   uint64_t RealLen = CAT->getSize().getZExtValue();
1444 
1445   if (E->isWide())
1446     RealLen *= getContext().Target.getWCharWidth()/8;
1447 
1448   Str.resize(RealLen, '\0');
1449 
1450   return Str;
1451 }
1452 
1453 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1454 /// constant array for the given string literal.
1455 llvm::Constant *
1456 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1457   // FIXME: This can be more efficient.
1458   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1459 }
1460 
1461 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1462 /// array for the given ObjCEncodeExpr node.
1463 llvm::Constant *
1464 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1465   std::string Str;
1466   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1467 
1468   return GetAddrOfConstantCString(Str);
1469 }
1470 
1471 
1472 /// GenerateWritableString -- Creates storage for a string literal.
1473 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1474                                              bool constant,
1475                                              CodeGenModule &CGM,
1476                                              const char *GlobalName) {
1477   // Create Constant for this string literal. Don't add a '\0'.
1478   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1479 
1480   // Create a global variable for this string
1481   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1482                                   llvm::GlobalValue::PrivateLinkage,
1483                                   C, GlobalName);
1484 }
1485 
1486 /// GetAddrOfConstantString - Returns a pointer to a character array
1487 /// containing the literal. This contents are exactly that of the
1488 /// given string, i.e. it will not be null terminated automatically;
1489 /// see GetAddrOfConstantCString. Note that whether the result is
1490 /// actually a pointer to an LLVM constant depends on
1491 /// Feature.WriteableStrings.
1492 ///
1493 /// The result has pointer to array type.
1494 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1495                                                        const char *GlobalName) {
1496   bool IsConstant = !Features.WritableStrings;
1497 
1498   // Get the default prefix if a name wasn't specified.
1499   if (!GlobalName)
1500     GlobalName = ".str";
1501 
1502   // Don't share any string literals if strings aren't constant.
1503   if (!IsConstant)
1504     return GenerateStringLiteral(str, false, *this, GlobalName);
1505 
1506   llvm::StringMapEntry<llvm::Constant *> &Entry =
1507     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1508 
1509   if (Entry.getValue())
1510     return Entry.getValue();
1511 
1512   // Create a global variable for this.
1513   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1514   Entry.setValue(C);
1515   return C;
1516 }
1517 
1518 /// GetAddrOfConstantCString - Returns a pointer to a character
1519 /// array containing the literal and a terminating '\-'
1520 /// character. The result has pointer to array type.
1521 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1522                                                         const char *GlobalName){
1523   return GetAddrOfConstantString(str + '\0', GlobalName);
1524 }
1525 
1526 /// EmitObjCPropertyImplementations - Emit information for synthesized
1527 /// properties for an implementation.
1528 void CodeGenModule::EmitObjCPropertyImplementations(const
1529                                                     ObjCImplementationDecl *D) {
1530   for (ObjCImplementationDecl::propimpl_iterator
1531          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1532     ObjCPropertyImplDecl *PID = *i;
1533 
1534     // Dynamic is just for type-checking.
1535     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1536       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1537 
1538       // Determine which methods need to be implemented, some may have
1539       // been overridden. Note that ::isSynthesized is not the method
1540       // we want, that just indicates if the decl came from a
1541       // property. What we want to know is if the method is defined in
1542       // this implementation.
1543       if (!D->getInstanceMethod(PD->getGetterName()))
1544         CodeGenFunction(*this).GenerateObjCGetter(
1545                                  const_cast<ObjCImplementationDecl *>(D), PID);
1546       if (!PD->isReadOnly() &&
1547           !D->getInstanceMethod(PD->getSetterName()))
1548         CodeGenFunction(*this).GenerateObjCSetter(
1549                                  const_cast<ObjCImplementationDecl *>(D), PID);
1550     }
1551   }
1552 }
1553 
1554 /// EmitNamespace - Emit all declarations in a namespace.
1555 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1556   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1557        I != E; ++I)
1558     EmitTopLevelDecl(*I);
1559 }
1560 
1561 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1562 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1563   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1564       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1565     ErrorUnsupported(LSD, "linkage spec");
1566     return;
1567   }
1568 
1569   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1570        I != E; ++I)
1571     EmitTopLevelDecl(*I);
1572 }
1573 
1574 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1575 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1576   // If an error has occurred, stop code generation, but continue
1577   // parsing and semantic analysis (to ensure all warnings and errors
1578   // are emitted).
1579   if (Diags.hasErrorOccurred())
1580     return;
1581 
1582   // Ignore dependent declarations.
1583   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1584     return;
1585 
1586   switch (D->getKind()) {
1587   case Decl::CXXMethod:
1588   case Decl::Function:
1589     // Skip function templates
1590     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1591       return;
1592 
1593     // Fall through
1594 
1595   case Decl::Var:
1596     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1597     break;
1598 
1599   // C++ Decls
1600   case Decl::Namespace:
1601     EmitNamespace(cast<NamespaceDecl>(D));
1602     break;
1603     // No code generation needed.
1604   case Decl::Using:
1605   case Decl::ClassTemplate:
1606   case Decl::FunctionTemplate:
1607     break;
1608   case Decl::CXXConstructor:
1609     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1610     break;
1611   case Decl::CXXDestructor:
1612     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1613     break;
1614 
1615   case Decl::StaticAssert:
1616     // Nothing to do.
1617     break;
1618 
1619   // Objective-C Decls
1620 
1621   // Forward declarations, no (immediate) code generation.
1622   case Decl::ObjCClass:
1623   case Decl::ObjCForwardProtocol:
1624   case Decl::ObjCCategory:
1625   case Decl::ObjCInterface:
1626     break;
1627 
1628   case Decl::ObjCProtocol:
1629     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1630     break;
1631 
1632   case Decl::ObjCCategoryImpl:
1633     // Categories have properties but don't support synthesize so we
1634     // can ignore them here.
1635     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1636     break;
1637 
1638   case Decl::ObjCImplementation: {
1639     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1640     EmitObjCPropertyImplementations(OMD);
1641     Runtime->GenerateClass(OMD);
1642     break;
1643   }
1644   case Decl::ObjCMethod: {
1645     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1646     // If this is not a prototype, emit the body.
1647     if (OMD->getBody())
1648       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1649     break;
1650   }
1651   case Decl::ObjCCompatibleAlias:
1652     // compatibility-alias is a directive and has no code gen.
1653     break;
1654 
1655   case Decl::LinkageSpec:
1656     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1657     break;
1658 
1659   case Decl::FileScopeAsm: {
1660     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1661     std::string AsmString(AD->getAsmString()->getStrData(),
1662                           AD->getAsmString()->getByteLength());
1663 
1664     const std::string &S = getModule().getModuleInlineAsm();
1665     if (S.empty())
1666       getModule().setModuleInlineAsm(AsmString);
1667     else
1668       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1669     break;
1670   }
1671 
1672   default:
1673     // Make sure we handled everything we should, every other kind is a
1674     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1675     // function. Need to recode Decl::Kind to do that easily.
1676     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1677   }
1678 }
1679