1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = GD.getDecl(); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::VoidTy, 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::Int32Ty, 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back( 217 llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 255 !FD->isExplicitSpecialization()) 256 External = CodeGenModule::GVA_TemplateInstantiation; 257 258 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 259 // C++ member functions defined inside the class are always inline. 260 if (MD->isInline() || !MD->isOutOfLine()) 261 return CodeGenModule::GVA_CXXInline; 262 263 return External; 264 } 265 266 // "static" functions get internal linkage. 267 if (FD->getStorageClass() == FunctionDecl::Static) 268 return CodeGenModule::GVA_Internal; 269 270 if (!FD->isInline()) 271 return External; 272 273 // If the inline function explicitly has the GNU inline attribute on it, or if 274 // this is C89 mode, we use to GNU semantics. 275 if (!Features.C99 && !Features.CPlusPlus) { 276 // extern inline in GNU mode is like C99 inline. 277 if (FD->getStorageClass() == FunctionDecl::Extern) 278 return CodeGenModule::GVA_C99Inline; 279 // Normal inline is a strong symbol. 280 return CodeGenModule::GVA_StrongExternal; 281 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 282 // GCC in C99 mode seems to use a different decision-making 283 // process for extern inline, which factors in previous 284 // declarations. 285 if (FD->isExternGNUInline(Context)) 286 return CodeGenModule::GVA_C99Inline; 287 // Normal inline is a strong symbol. 288 return External; 289 } 290 291 // The definition of inline changes based on the language. Note that we 292 // have already handled "static inline" above, with the GVA_Internal case. 293 if (Features.CPlusPlus) // inline and extern inline. 294 return CodeGenModule::GVA_CXXInline; 295 296 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 297 if (FD->isC99InlineDefinition()) 298 return CodeGenModule::GVA_C99Inline; 299 300 return CodeGenModule::GVA_StrongExternal; 301 } 302 303 /// SetFunctionDefinitionAttributes - Set attributes for a global. 304 /// 305 /// FIXME: This is currently only done for aliases and functions, but not for 306 /// variables (these details are set in EmitGlobalVarDefinition for variables). 307 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 308 llvm::GlobalValue *GV) { 309 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 310 311 if (Linkage == GVA_Internal) { 312 GV->setLinkage(llvm::Function::InternalLinkage); 313 } else if (D->hasAttr<DLLExportAttr>()) { 314 GV->setLinkage(llvm::Function::DLLExportLinkage); 315 } else if (D->hasAttr<WeakAttr>()) { 316 GV->setLinkage(llvm::Function::WeakAnyLinkage); 317 } else if (Linkage == GVA_C99Inline) { 318 // In C99 mode, 'inline' functions are guaranteed to have a strong 319 // definition somewhere else, so we can use available_externally linkage. 320 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 321 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 322 // In C++, the compiler has to emit a definition in every translation unit 323 // that references the function. We should use linkonce_odr because 324 // a) if all references in this translation unit are optimized away, we 325 // don't need to codegen it. b) if the function persists, it needs to be 326 // merged with other definitions. c) C++ has the ODR, so we know the 327 // definition is dependable. 328 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 329 } else { 330 assert(Linkage == GVA_StrongExternal); 331 // Otherwise, we have strong external linkage. 332 GV->setLinkage(llvm::Function::ExternalLinkage); 333 } 334 335 SetCommonAttributes(D, GV); 336 } 337 338 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 339 const CGFunctionInfo &Info, 340 llvm::Function *F) { 341 AttributeListType AttributeList; 342 ConstructAttributeList(Info, D, AttributeList); 343 344 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 345 AttributeList.size())); 346 347 // Set the appropriate calling convention for the Function. 348 if (D->hasAttr<FastCallAttr>()) 349 F->setCallingConv(llvm::CallingConv::X86_FastCall); 350 351 if (D->hasAttr<StdCallAttr>()) 352 F->setCallingConv(llvm::CallingConv::X86_StdCall); 353 } 354 355 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 356 llvm::Function *F) { 357 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 358 F->addFnAttr(llvm::Attribute::NoUnwind); 359 360 if (D->hasAttr<AlwaysInlineAttr>()) 361 F->addFnAttr(llvm::Attribute::AlwaysInline); 362 363 if (D->hasAttr<NoinlineAttr>()) 364 F->addFnAttr(llvm::Attribute::NoInline); 365 } 366 367 void CodeGenModule::SetCommonAttributes(const Decl *D, 368 llvm::GlobalValue *GV) { 369 setGlobalVisibility(GV, D); 370 371 if (D->hasAttr<UsedAttr>()) 372 AddUsedGlobal(GV); 373 374 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 375 GV->setSection(SA->getName()); 376 } 377 378 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 379 llvm::Function *F, 380 const CGFunctionInfo &FI) { 381 SetLLVMFunctionAttributes(D, FI, F); 382 SetLLVMFunctionAttributesForDefinition(D, F); 383 384 F->setLinkage(llvm::Function::InternalLinkage); 385 386 SetCommonAttributes(D, F); 387 } 388 389 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 390 llvm::Function *F, 391 bool IsIncompleteFunction) { 392 if (!IsIncompleteFunction) 393 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 394 395 // Only a few attributes are set on declarations; these may later be 396 // overridden by a definition. 397 398 if (FD->hasAttr<DLLImportAttr>()) { 399 F->setLinkage(llvm::Function::DLLImportLinkage); 400 } else if (FD->hasAttr<WeakAttr>() || 401 FD->hasAttr<WeakImportAttr>()) { 402 // "extern_weak" is overloaded in LLVM; we probably should have 403 // separate linkage types for this. 404 F->setLinkage(llvm::Function::ExternalWeakLinkage); 405 } else { 406 F->setLinkage(llvm::Function::ExternalLinkage); 407 } 408 409 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 410 F->setSection(SA->getName()); 411 } 412 413 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 414 assert(!GV->isDeclaration() && 415 "Only globals with definition can force usage."); 416 LLVMUsed.push_back(GV); 417 } 418 419 void CodeGenModule::EmitLLVMUsed() { 420 // Don't create llvm.used if there is no need. 421 if (LLVMUsed.empty()) 422 return; 423 424 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 425 426 // Convert LLVMUsed to what ConstantArray needs. 427 std::vector<llvm::Constant*> UsedArray; 428 UsedArray.resize(LLVMUsed.size()); 429 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 430 UsedArray[i] = 431 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 432 i8PTy); 433 } 434 435 if (UsedArray.empty()) 436 return; 437 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 438 439 llvm::GlobalVariable *GV = 440 new llvm::GlobalVariable(getModule(), ATy, false, 441 llvm::GlobalValue::AppendingLinkage, 442 llvm::ConstantArray::get(ATy, UsedArray), 443 "llvm.used"); 444 445 GV->setSection("llvm.metadata"); 446 } 447 448 void CodeGenModule::EmitDeferred() { 449 // Emit code for any potentially referenced deferred decls. Since a 450 // previously unused static decl may become used during the generation of code 451 // for a static function, iterate until no changes are made. 452 while (!DeferredDeclsToEmit.empty()) { 453 GlobalDecl D = DeferredDeclsToEmit.back(); 454 DeferredDeclsToEmit.pop_back(); 455 456 // The mangled name for the decl must have been emitted in GlobalDeclMap. 457 // Look it up to see if it was defined with a stronger definition (e.g. an 458 // extern inline function with a strong function redefinition). If so, 459 // just ignore the deferred decl. 460 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 461 assert(CGRef && "Deferred decl wasn't referenced?"); 462 463 if (!CGRef->isDeclaration()) 464 continue; 465 466 // Otherwise, emit the definition and move on to the next one. 467 EmitGlobalDefinition(D); 468 } 469 } 470 471 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 472 /// annotation information for a given GlobalValue. The annotation struct is 473 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 474 /// GlobalValue being annotated. The second field is the constant string 475 /// created from the AnnotateAttr's annotation. The third field is a constant 476 /// string containing the name of the translation unit. The fourth field is 477 /// the line number in the file of the annotated value declaration. 478 /// 479 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 480 /// appears to. 481 /// 482 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 483 const AnnotateAttr *AA, 484 unsigned LineNo) { 485 llvm::Module *M = &getModule(); 486 487 // get [N x i8] constants for the annotation string, and the filename string 488 // which are the 2nd and 3rd elements of the global annotation structure. 489 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 490 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 491 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 492 true); 493 494 // Get the two global values corresponding to the ConstantArrays we just 495 // created to hold the bytes of the strings. 496 llvm::GlobalValue *annoGV = 497 new llvm::GlobalVariable(*M, anno->getType(), false, 498 llvm::GlobalValue::PrivateLinkage, anno, 499 GV->getName()); 500 // translation unit name string, emitted into the llvm.metadata section. 501 llvm::GlobalValue *unitGV = 502 new llvm::GlobalVariable(*M, unit->getType(), false, 503 llvm::GlobalValue::PrivateLinkage, unit, 504 ".str"); 505 506 // Create the ConstantStruct for the global annotation. 507 llvm::Constant *Fields[4] = { 508 llvm::ConstantExpr::getBitCast(GV, SBP), 509 llvm::ConstantExpr::getBitCast(annoGV, SBP), 510 llvm::ConstantExpr::getBitCast(unitGV, SBP), 511 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 512 }; 513 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 514 } 515 516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 517 // Never defer when EmitAllDecls is specified or the decl has 518 // attribute used. 519 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 520 return false; 521 522 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 523 // Constructors and destructors should never be deferred. 524 if (FD->hasAttr<ConstructorAttr>() || 525 FD->hasAttr<DestructorAttr>()) 526 return false; 527 528 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 529 530 // static, static inline, always_inline, and extern inline functions can 531 // always be deferred. Normal inline functions can be deferred in C99/C++. 532 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 533 Linkage == GVA_CXXInline) 534 return true; 535 return false; 536 } 537 538 const VarDecl *VD = cast<VarDecl>(Global); 539 assert(VD->isFileVarDecl() && "Invalid decl"); 540 541 return VD->getStorageClass() == VarDecl::Static; 542 } 543 544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 545 const ValueDecl *Global = GD.getDecl(); 546 547 // If this is an alias definition (which otherwise looks like a declaration) 548 // emit it now. 549 if (Global->hasAttr<AliasAttr>()) 550 return EmitAliasDefinition(Global); 551 552 // Ignore declarations, they will be emitted on their first use. 553 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 554 // Forward declarations are emitted lazily on first use. 555 if (!FD->isThisDeclarationADefinition()) 556 return; 557 } else { 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 560 561 // In C++, if this is marked "extern", defer code generation. 562 if (getLangOptions().CPlusPlus && !VD->getInit() && 563 (VD->getStorageClass() == VarDecl::Extern || 564 VD->isExternC(getContext()))) 565 return; 566 567 // In C, if this isn't a definition, defer code generation. 568 if (!getLangOptions().CPlusPlus && !VD->getInit()) 569 return; 570 } 571 572 // Defer code generation when possible if this is a static definition, inline 573 // function etc. These we only want to emit if they are used. 574 if (MayDeferGeneration(Global)) { 575 // If the value has already been used, add it directly to the 576 // DeferredDeclsToEmit list. 577 const char *MangledName = getMangledName(GD); 578 if (GlobalDeclMap.count(MangledName)) 579 DeferredDeclsToEmit.push_back(GD); 580 else { 581 // Otherwise, remember that we saw a deferred decl with this name. The 582 // first use of the mangled name will cause it to move into 583 // DeferredDeclsToEmit. 584 DeferredDecls[MangledName] = GD; 585 } 586 return; 587 } 588 589 // Otherwise emit the definition. 590 EmitGlobalDefinition(GD); 591 } 592 593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 594 const ValueDecl *D = GD.getDecl(); 595 596 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 597 EmitCXXConstructor(CD, GD.getCtorType()); 598 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 599 EmitCXXDestructor(DD, GD.getDtorType()); 600 else if (isa<FunctionDecl>(D)) 601 EmitGlobalFunctionDefinition(GD); 602 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 603 EmitGlobalVarDefinition(VD); 604 else { 605 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 606 } 607 } 608 609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 610 /// module, create and return an llvm Function with the specified type. If there 611 /// is something in the module with the specified name, return it potentially 612 /// bitcasted to the right type. 613 /// 614 /// If D is non-null, it specifies a decl that correspond to this. This is used 615 /// to set the attributes on the function when it is first created. 616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 617 const llvm::Type *Ty, 618 GlobalDecl D) { 619 // Lookup the entry, lazily creating it if necessary. 620 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 621 if (Entry) { 622 if (Entry->getType()->getElementType() == Ty) 623 return Entry; 624 625 // Make sure the result is of the correct type. 626 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 627 return llvm::ConstantExpr::getBitCast(Entry, PTy); 628 } 629 630 // This is the first use or definition of a mangled name. If there is a 631 // deferred decl with this name, remember that we need to emit it at the end 632 // of the file. 633 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 634 DeferredDecls.find(MangledName); 635 if (DDI != DeferredDecls.end()) { 636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 637 // list, and remove it from DeferredDecls (since we don't need it anymore). 638 DeferredDeclsToEmit.push_back(DDI->second); 639 DeferredDecls.erase(DDI); 640 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 641 // If this the first reference to a C++ inline function in a class, queue up 642 // the deferred function body for emission. These are not seen as 643 // top-level declarations. 644 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 645 DeferredDeclsToEmit.push_back(D); 646 // A called constructor which has no definition or declaration need be 647 // synthesized. 648 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 649 const CXXRecordDecl *ClassDecl = 650 cast<CXXRecordDecl>(CD->getDeclContext()); 651 if (CD->isCopyConstructor(getContext())) 652 DeferredCopyConstructorToEmit(D); 653 else if (!ClassDecl->hasUserDeclaredConstructor()) 654 DeferredDeclsToEmit.push_back(D); 655 } 656 } 657 658 // This function doesn't have a complete type (for example, the return 659 // type is an incomplete struct). Use a fake type instead, and make 660 // sure not to try to set attributes. 661 bool IsIncompleteFunction = false; 662 if (!isa<llvm::FunctionType>(Ty)) { 663 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 664 std::vector<const llvm::Type*>(), false); 665 IsIncompleteFunction = true; 666 } 667 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 668 llvm::Function::ExternalLinkage, 669 "", &getModule()); 670 F->setName(MangledName); 671 if (D.getDecl()) 672 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 673 IsIncompleteFunction); 674 Entry = F; 675 return F; 676 } 677 678 /// Defer definition of copy constructor(s) which need be implicitly defined. 679 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 680 const CXXConstructorDecl *CD = 681 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 682 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 683 if (ClassDecl->hasTrivialCopyConstructor() || 684 ClassDecl->hasUserDeclaredCopyConstructor()) 685 return; 686 687 // First make sure all direct base classes and virtual bases and non-static 688 // data mebers which need to have their copy constructors implicitly defined 689 // are defined. 12.8.p7 690 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 691 Base != ClassDecl->bases_end(); ++Base) { 692 CXXRecordDecl *BaseClassDecl 693 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 694 if (CXXConstructorDecl *BaseCopyCtor = 695 BaseClassDecl->getCopyConstructor(Context, 0)) 696 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 697 } 698 699 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 700 FieldEnd = ClassDecl->field_end(); 701 Field != FieldEnd; ++Field) { 702 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 703 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 704 FieldType = Array->getElementType(); 705 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 706 CXXRecordDecl *FieldClassDecl 707 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 708 if (CXXConstructorDecl *FieldCopyCtor = 709 FieldClassDecl->getCopyConstructor(Context, 0)) 710 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 711 } 712 } 713 DeferredDeclsToEmit.push_back(CopyCtorDecl); 714 715 } 716 717 /// GetAddrOfFunction - Return the address of the given function. If Ty is 718 /// non-null, then this function will use the specified type if it has to 719 /// create it (this occurs when we see a definition of the function). 720 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 721 const llvm::Type *Ty) { 722 // If there was no specific requested type, just convert it now. 723 if (!Ty) 724 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 725 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 726 } 727 728 /// CreateRuntimeFunction - Create a new runtime function with the specified 729 /// type and name. 730 llvm::Constant * 731 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 732 const char *Name) { 733 // Convert Name to be a uniqued string from the IdentifierInfo table. 734 Name = getContext().Idents.get(Name).getName(); 735 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 736 } 737 738 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 739 /// create and return an llvm GlobalVariable with the specified type. If there 740 /// is something in the module with the specified name, return it potentially 741 /// bitcasted to the right type. 742 /// 743 /// If D is non-null, it specifies a decl that correspond to this. This is used 744 /// to set the attributes on the global when it is first created. 745 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 746 const llvm::PointerType*Ty, 747 const VarDecl *D) { 748 // Lookup the entry, lazily creating it if necessary. 749 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 750 if (Entry) { 751 if (Entry->getType() == Ty) 752 return Entry; 753 754 // Make sure the result is of the correct type. 755 return llvm::ConstantExpr::getBitCast(Entry, Ty); 756 } 757 758 // This is the first use or definition of a mangled name. If there is a 759 // deferred decl with this name, remember that we need to emit it at the end 760 // of the file. 761 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 762 DeferredDecls.find(MangledName); 763 if (DDI != DeferredDecls.end()) { 764 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 765 // list, and remove it from DeferredDecls (since we don't need it anymore). 766 DeferredDeclsToEmit.push_back(DDI->second); 767 DeferredDecls.erase(DDI); 768 } 769 770 llvm::GlobalVariable *GV = 771 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 772 llvm::GlobalValue::ExternalLinkage, 773 0, "", 0, 774 false, Ty->getAddressSpace()); 775 GV->setName(MangledName); 776 777 // Handle things which are present even on external declarations. 778 if (D) { 779 // FIXME: This code is overly simple and should be merged with other global 780 // handling. 781 GV->setConstant(D->getType().isConstant(Context)); 782 783 // FIXME: Merge with other attribute handling code. 784 if (D->getStorageClass() == VarDecl::PrivateExtern) 785 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 786 787 if (D->hasAttr<WeakAttr>() || 788 D->hasAttr<WeakImportAttr>()) 789 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 790 791 GV->setThreadLocal(D->isThreadSpecified()); 792 } 793 794 return Entry = GV; 795 } 796 797 798 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 799 /// given global variable. If Ty is non-null and if the global doesn't exist, 800 /// then it will be greated with the specified type instead of whatever the 801 /// normal requested type would be. 802 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 803 const llvm::Type *Ty) { 804 assert(D->hasGlobalStorage() && "Not a global variable"); 805 QualType ASTTy = D->getType(); 806 if (Ty == 0) 807 Ty = getTypes().ConvertTypeForMem(ASTTy); 808 809 const llvm::PointerType *PTy = 810 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 811 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 812 } 813 814 /// CreateRuntimeVariable - Create a new runtime global variable with the 815 /// specified type and name. 816 llvm::Constant * 817 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 818 const char *Name) { 819 // Convert Name to be a uniqued string from the IdentifierInfo table. 820 Name = getContext().Idents.get(Name).getName(); 821 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 822 } 823 824 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 825 assert(!D->getInit() && "Cannot emit definite definitions here!"); 826 827 if (MayDeferGeneration(D)) { 828 // If we have not seen a reference to this variable yet, place it 829 // into the deferred declarations table to be emitted if needed 830 // later. 831 const char *MangledName = getMangledName(D); 832 if (GlobalDeclMap.count(MangledName) == 0) { 833 DeferredDecls[MangledName] = GlobalDecl(D); 834 return; 835 } 836 } 837 838 // The tentative definition is the only definition. 839 EmitGlobalVarDefinition(D); 840 } 841 842 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 843 llvm::Constant *Init = 0; 844 QualType ASTTy = D->getType(); 845 846 if (D->getInit() == 0) { 847 // This is a tentative definition; tentative definitions are 848 // implicitly initialized with { 0 }. 849 // 850 // Note that tentative definitions are only emitted at the end of 851 // a translation unit, so they should never have incomplete 852 // type. In addition, EmitTentativeDefinition makes sure that we 853 // never attempt to emit a tentative definition if a real one 854 // exists. A use may still exists, however, so we still may need 855 // to do a RAUW. 856 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 857 Init = EmitNullConstant(D->getType()); 858 } else { 859 Init = EmitConstantExpr(D->getInit(), D->getType()); 860 861 if (!Init) { 862 QualType T = D->getInit()->getType(); 863 if (getLangOptions().CPlusPlus) { 864 CXXGlobalInits.push_back(D); 865 Init = EmitNullConstant(T); 866 } else { 867 ErrorUnsupported(D, "static initializer"); 868 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 869 } 870 } 871 } 872 873 const llvm::Type* InitType = Init->getType(); 874 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 875 876 // Strip off a bitcast if we got one back. 877 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 878 assert(CE->getOpcode() == llvm::Instruction::BitCast || 879 // all zero index gep. 880 CE->getOpcode() == llvm::Instruction::GetElementPtr); 881 Entry = CE->getOperand(0); 882 } 883 884 // Entry is now either a Function or GlobalVariable. 885 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 886 887 // We have a definition after a declaration with the wrong type. 888 // We must make a new GlobalVariable* and update everything that used OldGV 889 // (a declaration or tentative definition) with the new GlobalVariable* 890 // (which will be a definition). 891 // 892 // This happens if there is a prototype for a global (e.g. 893 // "extern int x[];") and then a definition of a different type (e.g. 894 // "int x[10];"). This also happens when an initializer has a different type 895 // from the type of the global (this happens with unions). 896 if (GV == 0 || 897 GV->getType()->getElementType() != InitType || 898 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 899 900 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 901 GlobalDeclMap.erase(getMangledName(D)); 902 903 // Make a new global with the correct type, this is now guaranteed to work. 904 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 905 GV->takeName(cast<llvm::GlobalValue>(Entry)); 906 907 // Replace all uses of the old global with the new global 908 llvm::Constant *NewPtrForOldDecl = 909 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 910 Entry->replaceAllUsesWith(NewPtrForOldDecl); 911 912 // Erase the old global, since it is no longer used. 913 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 914 } 915 916 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 917 SourceManager &SM = Context.getSourceManager(); 918 AddAnnotation(EmitAnnotateAttr(GV, AA, 919 SM.getInstantiationLineNumber(D->getLocation()))); 920 } 921 922 GV->setInitializer(Init); 923 924 // If it is safe to mark the global 'constant', do so now. 925 GV->setConstant(false); 926 if (D->getType().isConstant(Context)) { 927 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 928 // members, it cannot be declared "LLVM const". 929 GV->setConstant(true); 930 } 931 932 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 933 934 // Set the llvm linkage type as appropriate. 935 if (D->getStorageClass() == VarDecl::Static) 936 GV->setLinkage(llvm::Function::InternalLinkage); 937 else if (D->hasAttr<DLLImportAttr>()) 938 GV->setLinkage(llvm::Function::DLLImportLinkage); 939 else if (D->hasAttr<DLLExportAttr>()) 940 GV->setLinkage(llvm::Function::DLLExportLinkage); 941 else if (D->hasAttr<WeakAttr>()) { 942 if (GV->isConstant()) 943 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 944 else 945 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 946 } else if (!CompileOpts.NoCommon && 947 !D->hasExternalStorage() && !D->getInit() && 948 !D->getAttr<SectionAttr>()) { 949 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 950 // common vars aren't constant even if declared const. 951 GV->setConstant(false); 952 } else 953 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 954 955 SetCommonAttributes(D, GV); 956 957 // Emit global variable debug information. 958 if (CGDebugInfo *DI = getDebugInfo()) { 959 DI->setLocation(D->getLocation()); 960 DI->EmitGlobalVariable(GV, D); 961 } 962 } 963 964 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 965 /// implement a function with no prototype, e.g. "int foo() {}". If there are 966 /// existing call uses of the old function in the module, this adjusts them to 967 /// call the new function directly. 968 /// 969 /// This is not just a cleanup: the always_inline pass requires direct calls to 970 /// functions to be able to inline them. If there is a bitcast in the way, it 971 /// won't inline them. Instcombine normally deletes these calls, but it isn't 972 /// run at -O0. 973 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 974 llvm::Function *NewFn) { 975 // If we're redefining a global as a function, don't transform it. 976 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 977 if (OldFn == 0) return; 978 979 const llvm::Type *NewRetTy = NewFn->getReturnType(); 980 llvm::SmallVector<llvm::Value*, 4> ArgList; 981 982 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 983 UI != E; ) { 984 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 985 unsigned OpNo = UI.getOperandNo(); 986 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 987 if (!CI || OpNo != 0) continue; 988 989 // If the return types don't match exactly, and if the call isn't dead, then 990 // we can't transform this call. 991 if (CI->getType() != NewRetTy && !CI->use_empty()) 992 continue; 993 994 // If the function was passed too few arguments, don't transform. If extra 995 // arguments were passed, we silently drop them. If any of the types 996 // mismatch, we don't transform. 997 unsigned ArgNo = 0; 998 bool DontTransform = false; 999 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1000 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1001 if (CI->getNumOperands()-1 == ArgNo || 1002 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1003 DontTransform = true; 1004 break; 1005 } 1006 } 1007 if (DontTransform) 1008 continue; 1009 1010 // Okay, we can transform this. Create the new call instruction and copy 1011 // over the required information. 1012 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1013 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1014 ArgList.end(), "", CI); 1015 ArgList.clear(); 1016 if (NewCall->getType() != llvm::Type::VoidTy) 1017 NewCall->takeName(CI); 1018 NewCall->setCallingConv(CI->getCallingConv()); 1019 NewCall->setAttributes(CI->getAttributes()); 1020 1021 // Finally, remove the old call, replacing any uses with the new one. 1022 if (!CI->use_empty()) 1023 CI->replaceAllUsesWith(NewCall); 1024 CI->eraseFromParent(); 1025 } 1026 } 1027 1028 1029 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1030 const llvm::FunctionType *Ty; 1031 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1032 1033 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1034 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1035 1036 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1037 } else { 1038 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1039 1040 // As a special case, make sure that definitions of K&R function 1041 // "type foo()" aren't declared as varargs (which forces the backend 1042 // to do unnecessary work). 1043 if (D->getType()->isFunctionNoProtoType()) { 1044 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1045 // Due to stret, the lowered function could have arguments. 1046 // Just create the same type as was lowered by ConvertType 1047 // but strip off the varargs bit. 1048 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1049 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1050 } 1051 } 1052 1053 // Get or create the prototype for the function. 1054 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1055 1056 // Strip off a bitcast if we got one back. 1057 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1058 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1059 Entry = CE->getOperand(0); 1060 } 1061 1062 1063 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1064 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1065 1066 // If the types mismatch then we have to rewrite the definition. 1067 assert(OldFn->isDeclaration() && 1068 "Shouldn't replace non-declaration"); 1069 1070 // F is the Function* for the one with the wrong type, we must make a new 1071 // Function* and update everything that used F (a declaration) with the new 1072 // Function* (which will be a definition). 1073 // 1074 // This happens if there is a prototype for a function 1075 // (e.g. "int f()") and then a definition of a different type 1076 // (e.g. "int f(int x)"). Start by making a new function of the 1077 // correct type, RAUW, then steal the name. 1078 GlobalDeclMap.erase(getMangledName(D)); 1079 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1080 NewFn->takeName(OldFn); 1081 1082 // If this is an implementation of a function without a prototype, try to 1083 // replace any existing uses of the function (which may be calls) with uses 1084 // of the new function 1085 if (D->getType()->isFunctionNoProtoType()) { 1086 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1087 OldFn->removeDeadConstantUsers(); 1088 } 1089 1090 // Replace uses of F with the Function we will endow with a body. 1091 if (!Entry->use_empty()) { 1092 llvm::Constant *NewPtrForOldDecl = 1093 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1094 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1095 } 1096 1097 // Ok, delete the old function now, which is dead. 1098 OldFn->eraseFromParent(); 1099 1100 Entry = NewFn; 1101 } 1102 1103 llvm::Function *Fn = cast<llvm::Function>(Entry); 1104 1105 CodeGenFunction(*this).GenerateCode(D, Fn); 1106 1107 SetFunctionDefinitionAttributes(D, Fn); 1108 SetLLVMFunctionAttributesForDefinition(D, Fn); 1109 1110 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1111 AddGlobalCtor(Fn, CA->getPriority()); 1112 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1113 AddGlobalDtor(Fn, DA->getPriority()); 1114 } 1115 1116 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1117 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1118 assert(AA && "Not an alias?"); 1119 1120 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1121 1122 // Unique the name through the identifier table. 1123 const char *AliaseeName = AA->getAliasee().c_str(); 1124 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1125 1126 // Create a reference to the named value. This ensures that it is emitted 1127 // if a deferred decl. 1128 llvm::Constant *Aliasee; 1129 if (isa<llvm::FunctionType>(DeclTy)) 1130 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1131 else 1132 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1133 llvm::PointerType::getUnqual(DeclTy), 0); 1134 1135 // Create the new alias itself, but don't set a name yet. 1136 llvm::GlobalValue *GA = 1137 new llvm::GlobalAlias(Aliasee->getType(), 1138 llvm::Function::ExternalLinkage, 1139 "", Aliasee, &getModule()); 1140 1141 // See if there is already something with the alias' name in the module. 1142 const char *MangledName = getMangledName(D); 1143 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1144 1145 if (Entry && !Entry->isDeclaration()) { 1146 // If there is a definition in the module, then it wins over the alias. 1147 // This is dubious, but allow it to be safe. Just ignore the alias. 1148 GA->eraseFromParent(); 1149 return; 1150 } 1151 1152 if (Entry) { 1153 // If there is a declaration in the module, then we had an extern followed 1154 // by the alias, as in: 1155 // extern int test6(); 1156 // ... 1157 // int test6() __attribute__((alias("test7"))); 1158 // 1159 // Remove it and replace uses of it with the alias. 1160 1161 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1162 Entry->getType())); 1163 Entry->eraseFromParent(); 1164 } 1165 1166 // Now we know that there is no conflict, set the name. 1167 Entry = GA; 1168 GA->setName(MangledName); 1169 1170 // Set attributes which are particular to an alias; this is a 1171 // specialization of the attributes which may be set on a global 1172 // variable/function. 1173 if (D->hasAttr<DLLExportAttr>()) { 1174 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1175 // The dllexport attribute is ignored for undefined symbols. 1176 if (FD->getBody()) 1177 GA->setLinkage(llvm::Function::DLLExportLinkage); 1178 } else { 1179 GA->setLinkage(llvm::Function::DLLExportLinkage); 1180 } 1181 } else if (D->hasAttr<WeakAttr>() || 1182 D->hasAttr<WeakImportAttr>()) { 1183 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1184 } 1185 1186 SetCommonAttributes(D, GA); 1187 } 1188 1189 /// getBuiltinLibFunction - Given a builtin id for a function like 1190 /// "__builtin_fabsf", return a Function* for "fabsf". 1191 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1192 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1193 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1194 "isn't a lib fn"); 1195 1196 // Get the name, skip over the __builtin_ prefix (if necessary). 1197 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1198 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1199 Name += 10; 1200 1201 // Get the type for the builtin. 1202 ASTContext::GetBuiltinTypeError Error; 1203 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1204 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1205 1206 const llvm::FunctionType *Ty = 1207 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1208 1209 // Unique the name through the identifier table. 1210 Name = getContext().Idents.get(Name).getName(); 1211 // FIXME: param attributes for sext/zext etc. 1212 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1213 } 1214 1215 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1216 unsigned NumTys) { 1217 return llvm::Intrinsic::getDeclaration(&getModule(), 1218 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1219 } 1220 1221 llvm::Function *CodeGenModule::getMemCpyFn() { 1222 if (MemCpyFn) return MemCpyFn; 1223 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1224 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1225 } 1226 1227 llvm::Function *CodeGenModule::getMemMoveFn() { 1228 if (MemMoveFn) return MemMoveFn; 1229 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1230 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1231 } 1232 1233 llvm::Function *CodeGenModule::getMemSetFn() { 1234 if (MemSetFn) return MemSetFn; 1235 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1236 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1237 } 1238 1239 static void appendFieldAndPadding(CodeGenModule &CGM, 1240 std::vector<llvm::Constant*>& Fields, 1241 FieldDecl *FieldD, FieldDecl *NextFieldD, 1242 llvm::Constant* Field, 1243 RecordDecl* RD, const llvm::StructType *STy) { 1244 // Append the field. 1245 Fields.push_back(Field); 1246 1247 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1248 1249 int NextStructFieldNo; 1250 if (!NextFieldD) { 1251 NextStructFieldNo = STy->getNumElements(); 1252 } else { 1253 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1254 } 1255 1256 // Append padding 1257 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1258 llvm::Constant *C = 1259 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1260 1261 Fields.push_back(C); 1262 } 1263 } 1264 1265 static llvm::StringMapEntry<llvm::Constant*> & 1266 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1267 const StringLiteral *Literal, 1268 bool TargetIsLSB, 1269 bool &IsUTF16, 1270 unsigned &StringLength) { 1271 unsigned NumBytes = Literal->getByteLength(); 1272 1273 // Check for simple case. 1274 if (!Literal->containsNonAsciiOrNull()) { 1275 StringLength = NumBytes; 1276 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1277 StringLength)); 1278 } 1279 1280 // Otherwise, convert the UTF8 literals into a byte string. 1281 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1282 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1283 UTF16 *ToPtr = &ToBuf[0]; 1284 1285 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1286 &ToPtr, ToPtr + NumBytes, 1287 strictConversion); 1288 1289 // Check for conversion failure. 1290 if (Result != conversionOK) { 1291 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1292 // this duplicate code. 1293 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1294 StringLength = NumBytes; 1295 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1296 StringLength)); 1297 } 1298 1299 // ConvertUTF8toUTF16 returns the length in ToPtr. 1300 StringLength = ToPtr - &ToBuf[0]; 1301 1302 // Render the UTF-16 string into a byte array and convert to the target byte 1303 // order. 1304 // 1305 // FIXME: This isn't something we should need to do here. 1306 llvm::SmallString<128> AsBytes; 1307 AsBytes.reserve(StringLength * 2); 1308 for (unsigned i = 0; i != StringLength; ++i) { 1309 unsigned short Val = ToBuf[i]; 1310 if (TargetIsLSB) { 1311 AsBytes.push_back(Val & 0xFF); 1312 AsBytes.push_back(Val >> 8); 1313 } else { 1314 AsBytes.push_back(Val >> 8); 1315 AsBytes.push_back(Val & 0xFF); 1316 } 1317 } 1318 // Append one extra null character, the second is automatically added by our 1319 // caller. 1320 AsBytes.push_back(0); 1321 1322 IsUTF16 = true; 1323 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1324 } 1325 1326 llvm::Constant * 1327 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1328 unsigned StringLength = 0; 1329 bool isUTF16 = false; 1330 llvm::StringMapEntry<llvm::Constant*> &Entry = 1331 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1332 getTargetData().isLittleEndian(), 1333 isUTF16, StringLength); 1334 1335 if (llvm::Constant *C = Entry.getValue()) 1336 return C; 1337 1338 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1339 llvm::Constant *Zeros[] = { Zero, Zero }; 1340 1341 // If we don't already have it, get __CFConstantStringClassReference. 1342 if (!CFConstantStringClassRef) { 1343 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1344 Ty = llvm::ArrayType::get(Ty, 0); 1345 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1346 "__CFConstantStringClassReference"); 1347 // Decay array -> ptr 1348 CFConstantStringClassRef = 1349 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1350 } 1351 1352 QualType CFTy = getContext().getCFConstantStringType(); 1353 RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl(); 1354 1355 const llvm::StructType *STy = 1356 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1357 1358 std::vector<llvm::Constant*> Fields; 1359 RecordDecl::field_iterator Field = CFRD->field_begin(); 1360 1361 // Class pointer. 1362 FieldDecl *CurField = *Field++; 1363 FieldDecl *NextField = *Field++; 1364 appendFieldAndPadding(*this, Fields, CurField, NextField, 1365 CFConstantStringClassRef, CFRD, STy); 1366 1367 // Flags. 1368 CurField = NextField; 1369 NextField = *Field++; 1370 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1371 appendFieldAndPadding(*this, Fields, CurField, NextField, 1372 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1373 : llvm::ConstantInt::get(Ty, 0x07C8), 1374 CFRD, STy); 1375 1376 // String pointer. 1377 CurField = NextField; 1378 NextField = *Field++; 1379 llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str()); 1380 1381 const char *Sect, *Prefix; 1382 bool isConstant; 1383 llvm::GlobalValue::LinkageTypes Linkage; 1384 if (isUTF16) { 1385 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1386 Sect = getContext().Target.getUnicodeStringSection(); 1387 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1388 Linkage = llvm::GlobalValue::InternalLinkage; 1389 // FIXME: Why does GCC not set constant here? 1390 isConstant = false; 1391 } else { 1392 Prefix = ".str"; 1393 Sect = getContext().Target.getCFStringDataSection(); 1394 Linkage = llvm::GlobalValue::PrivateLinkage; 1395 // FIXME: -fwritable-strings should probably affect this, but we 1396 // are following gcc here. 1397 isConstant = true; 1398 } 1399 llvm::GlobalVariable *GV = 1400 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1401 Linkage, C, Prefix); 1402 if (Sect) 1403 GV->setSection(Sect); 1404 if (isUTF16) { 1405 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1406 GV->setAlignment(Align); 1407 } 1408 appendFieldAndPadding(*this, Fields, CurField, NextField, 1409 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1410 CFRD, STy); 1411 1412 // String length. 1413 CurField = NextField; 1414 NextField = 0; 1415 Ty = getTypes().ConvertType(getContext().LongTy); 1416 appendFieldAndPadding(*this, Fields, CurField, NextField, 1417 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1418 1419 // The struct. 1420 C = llvm::ConstantStruct::get(STy, Fields); 1421 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1422 llvm::GlobalVariable::PrivateLinkage, C, 1423 "_unnamed_cfstring_"); 1424 if (const char *Sect = getContext().Target.getCFStringSection()) 1425 GV->setSection(Sect); 1426 Entry.setValue(GV); 1427 1428 return GV; 1429 } 1430 1431 /// GetStringForStringLiteral - Return the appropriate bytes for a 1432 /// string literal, properly padded to match the literal type. 1433 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1434 const char *StrData = E->getStrData(); 1435 unsigned Len = E->getByteLength(); 1436 1437 const ConstantArrayType *CAT = 1438 getContext().getAsConstantArrayType(E->getType()); 1439 assert(CAT && "String isn't pointer or array!"); 1440 1441 // Resize the string to the right size. 1442 std::string Str(StrData, StrData+Len); 1443 uint64_t RealLen = CAT->getSize().getZExtValue(); 1444 1445 if (E->isWide()) 1446 RealLen *= getContext().Target.getWCharWidth()/8; 1447 1448 Str.resize(RealLen, '\0'); 1449 1450 return Str; 1451 } 1452 1453 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1454 /// constant array for the given string literal. 1455 llvm::Constant * 1456 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1457 // FIXME: This can be more efficient. 1458 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1459 } 1460 1461 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1462 /// array for the given ObjCEncodeExpr node. 1463 llvm::Constant * 1464 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1465 std::string Str; 1466 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1467 1468 return GetAddrOfConstantCString(Str); 1469 } 1470 1471 1472 /// GenerateWritableString -- Creates storage for a string literal. 1473 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1474 bool constant, 1475 CodeGenModule &CGM, 1476 const char *GlobalName) { 1477 // Create Constant for this string literal. Don't add a '\0'. 1478 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1479 1480 // Create a global variable for this string 1481 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1482 llvm::GlobalValue::PrivateLinkage, 1483 C, GlobalName); 1484 } 1485 1486 /// GetAddrOfConstantString - Returns a pointer to a character array 1487 /// containing the literal. This contents are exactly that of the 1488 /// given string, i.e. it will not be null terminated automatically; 1489 /// see GetAddrOfConstantCString. Note that whether the result is 1490 /// actually a pointer to an LLVM constant depends on 1491 /// Feature.WriteableStrings. 1492 /// 1493 /// The result has pointer to array type. 1494 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1495 const char *GlobalName) { 1496 bool IsConstant = !Features.WritableStrings; 1497 1498 // Get the default prefix if a name wasn't specified. 1499 if (!GlobalName) 1500 GlobalName = ".str"; 1501 1502 // Don't share any string literals if strings aren't constant. 1503 if (!IsConstant) 1504 return GenerateStringLiteral(str, false, *this, GlobalName); 1505 1506 llvm::StringMapEntry<llvm::Constant *> &Entry = 1507 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1508 1509 if (Entry.getValue()) 1510 return Entry.getValue(); 1511 1512 // Create a global variable for this. 1513 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1514 Entry.setValue(C); 1515 return C; 1516 } 1517 1518 /// GetAddrOfConstantCString - Returns a pointer to a character 1519 /// array containing the literal and a terminating '\-' 1520 /// character. The result has pointer to array type. 1521 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1522 const char *GlobalName){ 1523 return GetAddrOfConstantString(str + '\0', GlobalName); 1524 } 1525 1526 /// EmitObjCPropertyImplementations - Emit information for synthesized 1527 /// properties for an implementation. 1528 void CodeGenModule::EmitObjCPropertyImplementations(const 1529 ObjCImplementationDecl *D) { 1530 for (ObjCImplementationDecl::propimpl_iterator 1531 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1532 ObjCPropertyImplDecl *PID = *i; 1533 1534 // Dynamic is just for type-checking. 1535 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1536 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1537 1538 // Determine which methods need to be implemented, some may have 1539 // been overridden. Note that ::isSynthesized is not the method 1540 // we want, that just indicates if the decl came from a 1541 // property. What we want to know is if the method is defined in 1542 // this implementation. 1543 if (!D->getInstanceMethod(PD->getGetterName())) 1544 CodeGenFunction(*this).GenerateObjCGetter( 1545 const_cast<ObjCImplementationDecl *>(D), PID); 1546 if (!PD->isReadOnly() && 1547 !D->getInstanceMethod(PD->getSetterName())) 1548 CodeGenFunction(*this).GenerateObjCSetter( 1549 const_cast<ObjCImplementationDecl *>(D), PID); 1550 } 1551 } 1552 } 1553 1554 /// EmitNamespace - Emit all declarations in a namespace. 1555 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1556 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1557 I != E; ++I) 1558 EmitTopLevelDecl(*I); 1559 } 1560 1561 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1562 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1563 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1564 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1565 ErrorUnsupported(LSD, "linkage spec"); 1566 return; 1567 } 1568 1569 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1570 I != E; ++I) 1571 EmitTopLevelDecl(*I); 1572 } 1573 1574 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1575 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1576 // If an error has occurred, stop code generation, but continue 1577 // parsing and semantic analysis (to ensure all warnings and errors 1578 // are emitted). 1579 if (Diags.hasErrorOccurred()) 1580 return; 1581 1582 // Ignore dependent declarations. 1583 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1584 return; 1585 1586 switch (D->getKind()) { 1587 case Decl::CXXMethod: 1588 case Decl::Function: 1589 // Skip function templates 1590 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1591 return; 1592 1593 // Fall through 1594 1595 case Decl::Var: 1596 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1597 break; 1598 1599 // C++ Decls 1600 case Decl::Namespace: 1601 EmitNamespace(cast<NamespaceDecl>(D)); 1602 break; 1603 // No code generation needed. 1604 case Decl::Using: 1605 case Decl::ClassTemplate: 1606 case Decl::FunctionTemplate: 1607 break; 1608 case Decl::CXXConstructor: 1609 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1610 break; 1611 case Decl::CXXDestructor: 1612 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1613 break; 1614 1615 case Decl::StaticAssert: 1616 // Nothing to do. 1617 break; 1618 1619 // Objective-C Decls 1620 1621 // Forward declarations, no (immediate) code generation. 1622 case Decl::ObjCClass: 1623 case Decl::ObjCForwardProtocol: 1624 case Decl::ObjCCategory: 1625 case Decl::ObjCInterface: 1626 break; 1627 1628 case Decl::ObjCProtocol: 1629 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1630 break; 1631 1632 case Decl::ObjCCategoryImpl: 1633 // Categories have properties but don't support synthesize so we 1634 // can ignore them here. 1635 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1636 break; 1637 1638 case Decl::ObjCImplementation: { 1639 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1640 EmitObjCPropertyImplementations(OMD); 1641 Runtime->GenerateClass(OMD); 1642 break; 1643 } 1644 case Decl::ObjCMethod: { 1645 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1646 // If this is not a prototype, emit the body. 1647 if (OMD->getBody()) 1648 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1649 break; 1650 } 1651 case Decl::ObjCCompatibleAlias: 1652 // compatibility-alias is a directive and has no code gen. 1653 break; 1654 1655 case Decl::LinkageSpec: 1656 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1657 break; 1658 1659 case Decl::FileScopeAsm: { 1660 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1661 std::string AsmString(AD->getAsmString()->getStrData(), 1662 AD->getAsmString()->getByteLength()); 1663 1664 const std::string &S = getModule().getModuleInlineAsm(); 1665 if (S.empty()) 1666 getModule().setModuleInlineAsm(AsmString); 1667 else 1668 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1669 break; 1670 } 1671 1672 default: 1673 // Make sure we handled everything we should, every other kind is a 1674 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1675 // function. Need to recode Decl::Kind to do that easily. 1676 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1677 } 1678 } 1679