1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 43 VtableInfo(*this), Runtime(0), 44 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 45 VMContext(M.getContext()) { 46 47 if (!Features.ObjC1) 48 Runtime = 0; 49 else if (!Features.NeXTRuntime) 50 Runtime = CreateGNUObjCRuntime(*this); 51 else if (Features.ObjCNonFragileABI) 52 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 53 else 54 Runtime = CreateMacObjCRuntime(*this); 55 56 // If debug info generation is enabled, create the CGDebugInfo object. 57 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 58 } 59 60 CodeGenModule::~CodeGenModule() { 61 delete Runtime; 62 delete DebugInfo; 63 } 64 65 void CodeGenModule::Release() { 66 // We need to call this first because it can add deferred declarations. 67 EmitCXXGlobalInitFunc(); 68 69 EmitDeferred(); 70 if (Runtime) 71 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 72 AddGlobalCtor(ObjCInitFunction); 73 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 74 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 75 EmitAnnotations(); 76 EmitLLVMUsed(); 77 } 78 79 /// ErrorUnsupported - Print out an error that codegen doesn't support the 80 /// specified stmt yet. 81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 82 bool OmitOnError) { 83 if (OmitOnError && getDiags().hasErrorOccurred()) 84 return; 85 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 86 "cannot compile this %0 yet"); 87 std::string Msg = Type; 88 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 89 << Msg << S->getSourceRange(); 90 } 91 92 /// ErrorUnsupported - Print out an error that codegen doesn't support the 93 /// specified decl yet. 94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 95 bool OmitOnError) { 96 if (OmitOnError && getDiags().hasErrorOccurred()) 97 return; 98 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 99 "cannot compile this %0 yet"); 100 std::string Msg = Type; 101 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 102 } 103 104 LangOptions::VisibilityMode 105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 106 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 107 if (VD->getStorageClass() == VarDecl::PrivateExtern) 108 return LangOptions::Hidden; 109 110 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 111 switch (attr->getVisibility()) { 112 default: assert(0 && "Unknown visibility!"); 113 case VisibilityAttr::DefaultVisibility: 114 return LangOptions::Default; 115 case VisibilityAttr::HiddenVisibility: 116 return LangOptions::Hidden; 117 case VisibilityAttr::ProtectedVisibility: 118 return LangOptions::Protected; 119 } 120 } 121 122 return getLangOptions().getVisibilityMode(); 123 } 124 125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 126 const Decl *D) const { 127 // Internal definitions always have default visibility. 128 if (GV->hasLocalLinkage()) { 129 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 130 return; 131 } 132 133 switch (getDeclVisibilityMode(D)) { 134 default: assert(0 && "Unknown visibility!"); 135 case LangOptions::Default: 136 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 137 case LangOptions::Hidden: 138 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 139 case LangOptions::Protected: 140 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 141 } 142 } 143 144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 145 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 146 147 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 148 return getMangledCXXCtorName(D, GD.getCtorType()); 149 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 150 return getMangledCXXDtorName(D, GD.getDtorType()); 151 152 return getMangledName(ND); 153 } 154 155 /// \brief Retrieves the mangled name for the given declaration. 156 /// 157 /// If the given declaration requires a mangled name, returns an 158 /// const char* containing the mangled name. Otherwise, returns 159 /// the unmangled name. 160 /// 161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 162 // In C, functions with no attributes never need to be mangled. Fastpath them. 163 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 164 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 165 return ND->getNameAsCString(); 166 } 167 168 llvm::SmallString<256> Name; 169 llvm::raw_svector_ostream Out(Name); 170 if (!mangleName(getMangleContext(), ND, Out)) { 171 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 172 return ND->getNameAsCString(); 173 } 174 175 Name += '\0'; 176 return UniqueMangledName(Name.begin(), Name.end()); 177 } 178 179 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 180 const char *NameEnd) { 181 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 182 183 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 184 } 185 186 /// AddGlobalCtor - Add a function to the list that will be called before 187 /// main() runs. 188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 189 // FIXME: Type coercion of void()* types. 190 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 191 } 192 193 /// AddGlobalDtor - Add a function to the list that will be called 194 /// when the module is unloaded. 195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 196 // FIXME: Type coercion of void()* types. 197 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 198 } 199 200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 201 // Ctor function type is void()*. 202 llvm::FunctionType* CtorFTy = 203 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 204 std::vector<const llvm::Type*>(), 205 false); 206 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 207 208 // Get the type of a ctor entry, { i32, void ()* }. 209 llvm::StructType* CtorStructTy = 210 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 211 llvm::PointerType::getUnqual(CtorFTy), NULL); 212 213 // Construct the constructor and destructor arrays. 214 std::vector<llvm::Constant*> Ctors; 215 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 216 std::vector<llvm::Constant*> S; 217 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 218 I->second, false)); 219 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 220 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 221 } 222 223 if (!Ctors.empty()) { 224 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 225 new llvm::GlobalVariable(TheModule, AT, false, 226 llvm::GlobalValue::AppendingLinkage, 227 llvm::ConstantArray::get(AT, Ctors), 228 GlobalName); 229 } 230 } 231 232 void CodeGenModule::EmitAnnotations() { 233 if (Annotations.empty()) 234 return; 235 236 // Create a new global variable for the ConstantStruct in the Module. 237 llvm::Constant *Array = 238 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 239 Annotations.size()), 240 Annotations); 241 llvm::GlobalValue *gv = 242 new llvm::GlobalVariable(TheModule, Array->getType(), false, 243 llvm::GlobalValue::AppendingLinkage, Array, 244 "llvm.global.annotations"); 245 gv->setSection("llvm.metadata"); 246 } 247 248 static CodeGenModule::GVALinkage 249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 250 const LangOptions &Features) { 251 // Everything located semantically within an anonymous namespace is 252 // always internal. 253 if (FD->isInAnonymousNamespace()) 254 return CodeGenModule::GVA_Internal; 255 256 // "static" functions get internal linkage. 257 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 258 return CodeGenModule::GVA_Internal; 259 260 // The kind of external linkage this function will have, if it is not 261 // inline or static. 262 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 263 if (Context.getLangOptions().CPlusPlus && 264 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 265 External = CodeGenModule::GVA_TemplateInstantiation; 266 267 if (!FD->isInlined()) 268 return External; 269 270 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 271 // GNU or C99 inline semantics. Determine whether this symbol should be 272 // externally visible. 273 if (FD->isInlineDefinitionExternallyVisible()) 274 return External; 275 276 // C99 inline semantics, where the symbol is not externally visible. 277 return CodeGenModule::GVA_C99Inline; 278 } 279 280 // C++0x [temp.explicit]p9: 281 // [ Note: The intent is that an inline function that is the subject of 282 // an explicit instantiation declaration will still be implicitly 283 // instantiated when used so that the body can be considered for 284 // inlining, but that no out-of-line copy of the inline function would be 285 // generated in the translation unit. -- end note ] 286 if (FD->getTemplateSpecializationKind() 287 == TSK_ExplicitInstantiationDeclaration) 288 return CodeGenModule::GVA_C99Inline; 289 290 return CodeGenModule::GVA_CXXInline; 291 } 292 293 /// SetFunctionDefinitionAttributes - Set attributes for a global. 294 /// 295 /// FIXME: This is currently only done for aliases and functions, but not for 296 /// variables (these details are set in EmitGlobalVarDefinition for variables). 297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 298 llvm::GlobalValue *GV) { 299 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 300 301 if (Linkage == GVA_Internal) { 302 GV->setLinkage(llvm::Function::InternalLinkage); 303 } else if (D->hasAttr<DLLExportAttr>()) { 304 GV->setLinkage(llvm::Function::DLLExportLinkage); 305 } else if (D->hasAttr<WeakAttr>()) { 306 GV->setLinkage(llvm::Function::WeakAnyLinkage); 307 } else if (Linkage == GVA_C99Inline) { 308 // In C99 mode, 'inline' functions are guaranteed to have a strong 309 // definition somewhere else, so we can use available_externally linkage. 310 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 311 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 312 // In C++, the compiler has to emit a definition in every translation unit 313 // that references the function. We should use linkonce_odr because 314 // a) if all references in this translation unit are optimized away, we 315 // don't need to codegen it. b) if the function persists, it needs to be 316 // merged with other definitions. c) C++ has the ODR, so we know the 317 // definition is dependable. 318 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 319 } else { 320 assert(Linkage == GVA_StrongExternal); 321 // Otherwise, we have strong external linkage. 322 GV->setLinkage(llvm::Function::ExternalLinkage); 323 } 324 325 SetCommonAttributes(D, GV); 326 } 327 328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 329 const CGFunctionInfo &Info, 330 llvm::Function *F) { 331 unsigned CallingConv; 332 AttributeListType AttributeList; 333 ConstructAttributeList(Info, D, AttributeList, CallingConv); 334 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 335 AttributeList.size())); 336 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 337 } 338 339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 340 llvm::Function *F) { 341 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 342 F->addFnAttr(llvm::Attribute::NoUnwind); 343 344 if (D->hasAttr<AlwaysInlineAttr>()) 345 F->addFnAttr(llvm::Attribute::AlwaysInline); 346 347 if (D->hasAttr<NoInlineAttr>()) 348 F->addFnAttr(llvm::Attribute::NoInline); 349 350 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) 351 F->setAlignment(AA->getAlignment()/8); 352 // C++ ABI requires 2-byte alignment for member functions. 353 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 354 F->setAlignment(2); 355 } 356 357 void CodeGenModule::SetCommonAttributes(const Decl *D, 358 llvm::GlobalValue *GV) { 359 setGlobalVisibility(GV, D); 360 361 if (D->hasAttr<UsedAttr>()) 362 AddUsedGlobal(GV); 363 364 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 365 GV->setSection(SA->getName()); 366 } 367 368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 369 llvm::Function *F, 370 const CGFunctionInfo &FI) { 371 SetLLVMFunctionAttributes(D, FI, F); 372 SetLLVMFunctionAttributesForDefinition(D, F); 373 374 F->setLinkage(llvm::Function::InternalLinkage); 375 376 SetCommonAttributes(D, F); 377 } 378 379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 380 llvm::Function *F, 381 bool IsIncompleteFunction) { 382 if (!IsIncompleteFunction) 383 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 384 385 // Only a few attributes are set on declarations; these may later be 386 // overridden by a definition. 387 388 if (FD->hasAttr<DLLImportAttr>()) { 389 F->setLinkage(llvm::Function::DLLImportLinkage); 390 } else if (FD->hasAttr<WeakAttr>() || 391 FD->hasAttr<WeakImportAttr>()) { 392 // "extern_weak" is overloaded in LLVM; we probably should have 393 // separate linkage types for this. 394 F->setLinkage(llvm::Function::ExternalWeakLinkage); 395 } else { 396 F->setLinkage(llvm::Function::ExternalLinkage); 397 } 398 399 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 400 F->setSection(SA->getName()); 401 } 402 403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 404 assert(!GV->isDeclaration() && 405 "Only globals with definition can force usage."); 406 LLVMUsed.push_back(GV); 407 } 408 409 void CodeGenModule::EmitLLVMUsed() { 410 // Don't create llvm.used if there is no need. 411 if (LLVMUsed.empty()) 412 return; 413 414 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 415 416 // Convert LLVMUsed to what ConstantArray needs. 417 std::vector<llvm::Constant*> UsedArray; 418 UsedArray.resize(LLVMUsed.size()); 419 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 420 UsedArray[i] = 421 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 422 i8PTy); 423 } 424 425 if (UsedArray.empty()) 426 return; 427 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 428 429 llvm::GlobalVariable *GV = 430 new llvm::GlobalVariable(getModule(), ATy, false, 431 llvm::GlobalValue::AppendingLinkage, 432 llvm::ConstantArray::get(ATy, UsedArray), 433 "llvm.used"); 434 435 GV->setSection("llvm.metadata"); 436 } 437 438 void CodeGenModule::EmitDeferred() { 439 // Emit code for any potentially referenced deferred decls. Since a 440 // previously unused static decl may become used during the generation of code 441 // for a static function, iterate until no changes are made. 442 while (!DeferredDeclsToEmit.empty()) { 443 GlobalDecl D = DeferredDeclsToEmit.back(); 444 DeferredDeclsToEmit.pop_back(); 445 446 // The mangled name for the decl must have been emitted in GlobalDeclMap. 447 // Look it up to see if it was defined with a stronger definition (e.g. an 448 // extern inline function with a strong function redefinition). If so, 449 // just ignore the deferred decl. 450 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 451 assert(CGRef && "Deferred decl wasn't referenced?"); 452 453 if (!CGRef->isDeclaration()) 454 continue; 455 456 // Otherwise, emit the definition and move on to the next one. 457 EmitGlobalDefinition(D); 458 } 459 } 460 461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 462 /// annotation information for a given GlobalValue. The annotation struct is 463 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 464 /// GlobalValue being annotated. The second field is the constant string 465 /// created from the AnnotateAttr's annotation. The third field is a constant 466 /// string containing the name of the translation unit. The fourth field is 467 /// the line number in the file of the annotated value declaration. 468 /// 469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 470 /// appears to. 471 /// 472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 473 const AnnotateAttr *AA, 474 unsigned LineNo) { 475 llvm::Module *M = &getModule(); 476 477 // get [N x i8] constants for the annotation string, and the filename string 478 // which are the 2nd and 3rd elements of the global annotation structure. 479 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 480 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 481 AA->getAnnotation(), true); 482 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 483 M->getModuleIdentifier(), 484 true); 485 486 // Get the two global values corresponding to the ConstantArrays we just 487 // created to hold the bytes of the strings. 488 llvm::GlobalValue *annoGV = 489 new llvm::GlobalVariable(*M, anno->getType(), false, 490 llvm::GlobalValue::PrivateLinkage, anno, 491 GV->getName()); 492 // translation unit name string, emitted into the llvm.metadata section. 493 llvm::GlobalValue *unitGV = 494 new llvm::GlobalVariable(*M, unit->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, unit, 496 ".str"); 497 498 // Create the ConstantStruct for the global annotation. 499 llvm::Constant *Fields[4] = { 500 llvm::ConstantExpr::getBitCast(GV, SBP), 501 llvm::ConstantExpr::getBitCast(annoGV, SBP), 502 llvm::ConstantExpr::getBitCast(unitGV, SBP), 503 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 504 }; 505 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 506 } 507 508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 509 // Never defer when EmitAllDecls is specified or the decl has 510 // attribute used. 511 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 512 return false; 513 514 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 515 // Constructors and destructors should never be deferred. 516 if (FD->hasAttr<ConstructorAttr>() || 517 FD->hasAttr<DestructorAttr>()) 518 return false; 519 520 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 521 522 // static, static inline, always_inline, and extern inline functions can 523 // always be deferred. Normal inline functions can be deferred in C99/C++. 524 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 525 Linkage == GVA_CXXInline) 526 return true; 527 return false; 528 } 529 530 const VarDecl *VD = cast<VarDecl>(Global); 531 assert(VD->isFileVarDecl() && "Invalid decl"); 532 533 // We never want to defer structs that have non-trivial constructors or 534 // destructors. 535 536 // FIXME: Handle references. 537 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 538 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 539 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 540 return false; 541 } 542 } 543 544 // Static data may be deferred, but out-of-line static data members 545 // cannot be. 546 // FIXME: What if the initializer has side effects? 547 return VD->isInAnonymousNamespace() || 548 (VD->getStorageClass() == VarDecl::Static && 549 !(VD->isStaticDataMember() && VD->isOutOfLine())); 550 } 551 552 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 553 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 554 555 // If this is an alias definition (which otherwise looks like a declaration) 556 // emit it now. 557 if (Global->hasAttr<AliasAttr>()) 558 return EmitAliasDefinition(Global); 559 560 // Ignore declarations, they will be emitted on their first use. 561 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 562 // Forward declarations are emitted lazily on first use. 563 if (!FD->isThisDeclarationADefinition()) 564 return; 565 } else { 566 const VarDecl *VD = cast<VarDecl>(Global); 567 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 568 569 // In C++, if this is marked "extern", defer code generation. 570 if (getLangOptions().CPlusPlus && !VD->getInit() && 571 (VD->getStorageClass() == VarDecl::Extern || 572 VD->isExternC())) 573 return; 574 575 // In C, if this isn't a definition, defer code generation. 576 if (!getLangOptions().CPlusPlus && !VD->getInit()) 577 return; 578 } 579 580 // Defer code generation when possible if this is a static definition, inline 581 // function etc. These we only want to emit if they are used. 582 if (MayDeferGeneration(Global)) { 583 // If the value has already been used, add it directly to the 584 // DeferredDeclsToEmit list. 585 const char *MangledName = getMangledName(GD); 586 if (GlobalDeclMap.count(MangledName)) 587 DeferredDeclsToEmit.push_back(GD); 588 else { 589 // Otherwise, remember that we saw a deferred decl with this name. The 590 // first use of the mangled name will cause it to move into 591 // DeferredDeclsToEmit. 592 DeferredDecls[MangledName] = GD; 593 } 594 return; 595 } 596 597 // Otherwise emit the definition. 598 EmitGlobalDefinition(GD); 599 } 600 601 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 602 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 603 604 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 605 Context.getSourceManager(), 606 "Generating code for declaration"); 607 608 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 609 EmitCXXConstructor(CD, GD.getCtorType()); 610 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 611 EmitCXXDestructor(DD, GD.getDtorType()); 612 else if (isa<FunctionDecl>(D)) 613 EmitGlobalFunctionDefinition(GD); 614 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 615 EmitGlobalVarDefinition(VD); 616 else { 617 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 618 } 619 } 620 621 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 622 /// module, create and return an llvm Function with the specified type. If there 623 /// is something in the module with the specified name, return it potentially 624 /// bitcasted to the right type. 625 /// 626 /// If D is non-null, it specifies a decl that correspond to this. This is used 627 /// to set the attributes on the function when it is first created. 628 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 629 const llvm::Type *Ty, 630 GlobalDecl D) { 631 // Lookup the entry, lazily creating it if necessary. 632 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 633 if (Entry) { 634 if (Entry->getType()->getElementType() == Ty) 635 return Entry; 636 637 // Make sure the result is of the correct type. 638 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 639 return llvm::ConstantExpr::getBitCast(Entry, PTy); 640 } 641 642 // This is the first use or definition of a mangled name. If there is a 643 // deferred decl with this name, remember that we need to emit it at the end 644 // of the file. 645 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 646 DeferredDecls.find(MangledName); 647 if (DDI != DeferredDecls.end()) { 648 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 649 // list, and remove it from DeferredDecls (since we don't need it anymore). 650 DeferredDeclsToEmit.push_back(DDI->second); 651 DeferredDecls.erase(DDI); 652 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 653 // If this the first reference to a C++ inline function in a class, queue up 654 // the deferred function body for emission. These are not seen as 655 // top-level declarations. 656 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 657 DeferredDeclsToEmit.push_back(D); 658 // A called constructor which has no definition or declaration need be 659 // synthesized. 660 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 661 const CXXRecordDecl *ClassDecl = 662 cast<CXXRecordDecl>(CD->getDeclContext()); 663 if (CD->isCopyConstructor(getContext())) 664 DeferredCopyConstructorToEmit(D); 665 else if (!ClassDecl->hasUserDeclaredConstructor()) 666 DeferredDeclsToEmit.push_back(D); 667 } 668 else if (isa<CXXDestructorDecl>(FD)) 669 DeferredDestructorToEmit(D); 670 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 671 if (MD->isCopyAssignment()) 672 DeferredCopyAssignmentToEmit(D); 673 } 674 675 // This function doesn't have a complete type (for example, the return 676 // type is an incomplete struct). Use a fake type instead, and make 677 // sure not to try to set attributes. 678 bool IsIncompleteFunction = false; 679 if (!isa<llvm::FunctionType>(Ty)) { 680 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 681 std::vector<const llvm::Type*>(), false); 682 IsIncompleteFunction = true; 683 } 684 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 685 llvm::Function::ExternalLinkage, 686 "", &getModule()); 687 F->setName(MangledName); 688 if (D.getDecl()) 689 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 690 IsIncompleteFunction); 691 Entry = F; 692 return F; 693 } 694 695 /// Defer definition of copy constructor(s) which need be implicitly defined. 696 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 697 const CXXConstructorDecl *CD = 698 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 699 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 700 if (ClassDecl->hasTrivialCopyConstructor() || 701 ClassDecl->hasUserDeclaredCopyConstructor()) 702 return; 703 704 // First make sure all direct base classes and virtual bases and non-static 705 // data mebers which need to have their copy constructors implicitly defined 706 // are defined. 12.8.p7 707 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 708 Base != ClassDecl->bases_end(); ++Base) { 709 CXXRecordDecl *BaseClassDecl 710 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 711 if (CXXConstructorDecl *BaseCopyCtor = 712 BaseClassDecl->getCopyConstructor(Context, 0)) 713 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 714 } 715 716 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 717 FieldEnd = ClassDecl->field_end(); 718 Field != FieldEnd; ++Field) { 719 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 720 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 721 FieldType = Array->getElementType(); 722 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 723 if ((*Field)->isAnonymousStructOrUnion()) 724 continue; 725 CXXRecordDecl *FieldClassDecl 726 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 727 if (CXXConstructorDecl *FieldCopyCtor = 728 FieldClassDecl->getCopyConstructor(Context, 0)) 729 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 730 } 731 } 732 DeferredDeclsToEmit.push_back(CopyCtorDecl); 733 } 734 735 /// Defer definition of copy assignments which need be implicitly defined. 736 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 737 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 738 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 739 740 if (ClassDecl->hasTrivialCopyAssignment() || 741 ClassDecl->hasUserDeclaredCopyAssignment()) 742 return; 743 744 // First make sure all direct base classes and virtual bases and non-static 745 // data mebers which need to have their copy assignments implicitly defined 746 // are defined. 12.8.p12 747 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 748 Base != ClassDecl->bases_end(); ++Base) { 749 CXXRecordDecl *BaseClassDecl 750 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 751 const CXXMethodDecl *MD = 0; 752 if (!BaseClassDecl->hasTrivialCopyAssignment() && 753 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 754 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 755 GetAddrOfFunction(MD, 0); 756 } 757 758 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 759 FieldEnd = ClassDecl->field_end(); 760 Field != FieldEnd; ++Field) { 761 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 762 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 763 FieldType = Array->getElementType(); 764 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 765 if ((*Field)->isAnonymousStructOrUnion()) 766 continue; 767 CXXRecordDecl *FieldClassDecl 768 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 769 const CXXMethodDecl *MD = 0; 770 if (!FieldClassDecl->hasTrivialCopyAssignment() && 771 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 772 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 773 GetAddrOfFunction(MD, 0); 774 } 775 } 776 DeferredDeclsToEmit.push_back(CopyAssignDecl); 777 } 778 779 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 780 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 781 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 782 if (ClassDecl->hasTrivialDestructor() || 783 ClassDecl->hasUserDeclaredDestructor()) 784 return; 785 786 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 787 Base != ClassDecl->bases_end(); ++Base) { 788 CXXRecordDecl *BaseClassDecl 789 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 790 if (const CXXDestructorDecl *BaseDtor = 791 BaseClassDecl->getDestructor(Context)) 792 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 793 } 794 795 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 796 FieldEnd = ClassDecl->field_end(); 797 Field != FieldEnd; ++Field) { 798 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 799 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 800 FieldType = Array->getElementType(); 801 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 802 if ((*Field)->isAnonymousStructOrUnion()) 803 continue; 804 CXXRecordDecl *FieldClassDecl 805 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 806 if (const CXXDestructorDecl *FieldDtor = 807 FieldClassDecl->getDestructor(Context)) 808 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 809 } 810 } 811 DeferredDeclsToEmit.push_back(DtorDecl); 812 } 813 814 815 /// GetAddrOfFunction - Return the address of the given function. If Ty is 816 /// non-null, then this function will use the specified type if it has to 817 /// create it (this occurs when we see a definition of the function). 818 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 819 const llvm::Type *Ty) { 820 // If there was no specific requested type, just convert it now. 821 if (!Ty) 822 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 823 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 824 } 825 826 /// CreateRuntimeFunction - Create a new runtime function with the specified 827 /// type and name. 828 llvm::Constant * 829 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 830 const char *Name) { 831 // Convert Name to be a uniqued string from the IdentifierInfo table. 832 Name = getContext().Idents.get(Name).getNameStart(); 833 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 834 } 835 836 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 837 /// create and return an llvm GlobalVariable with the specified type. If there 838 /// is something in the module with the specified name, return it potentially 839 /// bitcasted to the right type. 840 /// 841 /// If D is non-null, it specifies a decl that correspond to this. This is used 842 /// to set the attributes on the global when it is first created. 843 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 844 const llvm::PointerType*Ty, 845 const VarDecl *D) { 846 // Lookup the entry, lazily creating it if necessary. 847 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 848 if (Entry) { 849 if (Entry->getType() == Ty) 850 return Entry; 851 852 // Make sure the result is of the correct type. 853 return llvm::ConstantExpr::getBitCast(Entry, Ty); 854 } 855 856 // This is the first use or definition of a mangled name. If there is a 857 // deferred decl with this name, remember that we need to emit it at the end 858 // of the file. 859 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 860 DeferredDecls.find(MangledName); 861 if (DDI != DeferredDecls.end()) { 862 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 863 // list, and remove it from DeferredDecls (since we don't need it anymore). 864 DeferredDeclsToEmit.push_back(DDI->second); 865 DeferredDecls.erase(DDI); 866 } 867 868 llvm::GlobalVariable *GV = 869 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 870 llvm::GlobalValue::ExternalLinkage, 871 0, "", 0, 872 false, Ty->getAddressSpace()); 873 GV->setName(MangledName); 874 875 // Handle things which are present even on external declarations. 876 if (D) { 877 // FIXME: This code is overly simple and should be merged with other global 878 // handling. 879 GV->setConstant(D->getType().isConstant(Context)); 880 881 // FIXME: Merge with other attribute handling code. 882 if (D->getStorageClass() == VarDecl::PrivateExtern) 883 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 884 885 if (D->hasAttr<WeakAttr>() || 886 D->hasAttr<WeakImportAttr>()) 887 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 888 889 GV->setThreadLocal(D->isThreadSpecified()); 890 } 891 892 return Entry = GV; 893 } 894 895 896 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 897 /// given global variable. If Ty is non-null and if the global doesn't exist, 898 /// then it will be greated with the specified type instead of whatever the 899 /// normal requested type would be. 900 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 901 const llvm::Type *Ty) { 902 assert(D->hasGlobalStorage() && "Not a global variable"); 903 QualType ASTTy = D->getType(); 904 if (Ty == 0) 905 Ty = getTypes().ConvertTypeForMem(ASTTy); 906 907 const llvm::PointerType *PTy = 908 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 909 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 910 } 911 912 /// CreateRuntimeVariable - Create a new runtime global variable with the 913 /// specified type and name. 914 llvm::Constant * 915 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 916 const char *Name) { 917 // Convert Name to be a uniqued string from the IdentifierInfo table. 918 Name = getContext().Idents.get(Name).getNameStart(); 919 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 920 } 921 922 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 923 assert(!D->getInit() && "Cannot emit definite definitions here!"); 924 925 if (MayDeferGeneration(D)) { 926 // If we have not seen a reference to this variable yet, place it 927 // into the deferred declarations table to be emitted if needed 928 // later. 929 const char *MangledName = getMangledName(D); 930 if (GlobalDeclMap.count(MangledName) == 0) { 931 DeferredDecls[MangledName] = D; 932 return; 933 } 934 } 935 936 // The tentative definition is the only definition. 937 EmitGlobalVarDefinition(D); 938 } 939 940 static CodeGenModule::GVALinkage 941 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 942 // Everything located semantically within an anonymous namespace is 943 // always internal. 944 if (VD->isInAnonymousNamespace()) 945 return CodeGenModule::GVA_Internal; 946 947 // Handle linkage for static data members. 948 if (VD->isStaticDataMember()) { 949 switch (VD->getTemplateSpecializationKind()) { 950 case TSK_Undeclared: 951 case TSK_ExplicitSpecialization: 952 case TSK_ExplicitInstantiationDefinition: 953 return CodeGenModule::GVA_StrongExternal; 954 955 case TSK_ExplicitInstantiationDeclaration: 956 llvm::llvm_unreachable("Variable should not be instantiated"); 957 // Fall through to treat this like any other instantiation. 958 959 case TSK_ImplicitInstantiation: 960 return CodeGenModule::GVA_TemplateInstantiation; 961 } 962 } 963 964 // Static variables get internal linkage. 965 if (VD->getStorageClass() == VarDecl::Static) 966 return CodeGenModule::GVA_Internal; 967 968 return CodeGenModule::GVA_StrongExternal; 969 } 970 971 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 972 llvm::Constant *Init = 0; 973 QualType ASTTy = D->getType(); 974 975 if (D->getInit() == 0) { 976 // This is a tentative definition; tentative definitions are 977 // implicitly initialized with { 0 }. 978 // 979 // Note that tentative definitions are only emitted at the end of 980 // a translation unit, so they should never have incomplete 981 // type. In addition, EmitTentativeDefinition makes sure that we 982 // never attempt to emit a tentative definition if a real one 983 // exists. A use may still exists, however, so we still may need 984 // to do a RAUW. 985 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 986 Init = EmitNullConstant(D->getType()); 987 } else { 988 Init = EmitConstantExpr(D->getInit(), D->getType()); 989 990 if (!Init) { 991 QualType T = D->getInit()->getType(); 992 if (getLangOptions().CPlusPlus) { 993 CXXGlobalInits.push_back(D); 994 Init = EmitNullConstant(T); 995 } else { 996 ErrorUnsupported(D, "static initializer"); 997 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 998 } 999 } 1000 } 1001 1002 const llvm::Type* InitType = Init->getType(); 1003 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1004 1005 // Strip off a bitcast if we got one back. 1006 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1007 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1008 // all zero index gep. 1009 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1010 Entry = CE->getOperand(0); 1011 } 1012 1013 // Entry is now either a Function or GlobalVariable. 1014 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1015 1016 // We have a definition after a declaration with the wrong type. 1017 // We must make a new GlobalVariable* and update everything that used OldGV 1018 // (a declaration or tentative definition) with the new GlobalVariable* 1019 // (which will be a definition). 1020 // 1021 // This happens if there is a prototype for a global (e.g. 1022 // "extern int x[];") and then a definition of a different type (e.g. 1023 // "int x[10];"). This also happens when an initializer has a different type 1024 // from the type of the global (this happens with unions). 1025 if (GV == 0 || 1026 GV->getType()->getElementType() != InitType || 1027 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1028 1029 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1030 GlobalDeclMap.erase(getMangledName(D)); 1031 1032 // Make a new global with the correct type, this is now guaranteed to work. 1033 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1034 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1035 1036 // Replace all uses of the old global with the new global 1037 llvm::Constant *NewPtrForOldDecl = 1038 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1039 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1040 1041 // Erase the old global, since it is no longer used. 1042 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1043 } 1044 1045 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1046 SourceManager &SM = Context.getSourceManager(); 1047 AddAnnotation(EmitAnnotateAttr(GV, AA, 1048 SM.getInstantiationLineNumber(D->getLocation()))); 1049 } 1050 1051 GV->setInitializer(Init); 1052 1053 // If it is safe to mark the global 'constant', do so now. 1054 GV->setConstant(false); 1055 if (D->getType().isConstant(Context)) { 1056 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 1057 // members, it cannot be declared "LLVM const". 1058 GV->setConstant(true); 1059 } 1060 1061 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1062 1063 // Set the llvm linkage type as appropriate. 1064 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1065 if (Linkage == GVA_Internal) 1066 GV->setLinkage(llvm::Function::InternalLinkage); 1067 else if (D->hasAttr<DLLImportAttr>()) 1068 GV->setLinkage(llvm::Function::DLLImportLinkage); 1069 else if (D->hasAttr<DLLExportAttr>()) 1070 GV->setLinkage(llvm::Function::DLLExportLinkage); 1071 else if (D->hasAttr<WeakAttr>()) { 1072 if (GV->isConstant()) 1073 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1074 else 1075 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1076 } else if (Linkage == GVA_TemplateInstantiation) 1077 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1078 else if (!CompileOpts.NoCommon && 1079 !D->hasExternalStorage() && !D->getInit() && 1080 !D->getAttr<SectionAttr>()) { 1081 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1082 // common vars aren't constant even if declared const. 1083 GV->setConstant(false); 1084 } else 1085 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1086 1087 SetCommonAttributes(D, GV); 1088 1089 // Emit global variable debug information. 1090 if (CGDebugInfo *DI = getDebugInfo()) { 1091 DI->setLocation(D->getLocation()); 1092 DI->EmitGlobalVariable(GV, D); 1093 } 1094 } 1095 1096 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1097 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1098 /// existing call uses of the old function in the module, this adjusts them to 1099 /// call the new function directly. 1100 /// 1101 /// This is not just a cleanup: the always_inline pass requires direct calls to 1102 /// functions to be able to inline them. If there is a bitcast in the way, it 1103 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1104 /// run at -O0. 1105 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1106 llvm::Function *NewFn) { 1107 // If we're redefining a global as a function, don't transform it. 1108 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1109 if (OldFn == 0) return; 1110 1111 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1112 llvm::SmallVector<llvm::Value*, 4> ArgList; 1113 1114 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1115 UI != E; ) { 1116 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1117 unsigned OpNo = UI.getOperandNo(); 1118 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1119 if (!CI || OpNo != 0) continue; 1120 1121 // If the return types don't match exactly, and if the call isn't dead, then 1122 // we can't transform this call. 1123 if (CI->getType() != NewRetTy && !CI->use_empty()) 1124 continue; 1125 1126 // If the function was passed too few arguments, don't transform. If extra 1127 // arguments were passed, we silently drop them. If any of the types 1128 // mismatch, we don't transform. 1129 unsigned ArgNo = 0; 1130 bool DontTransform = false; 1131 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1132 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1133 if (CI->getNumOperands()-1 == ArgNo || 1134 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1135 DontTransform = true; 1136 break; 1137 } 1138 } 1139 if (DontTransform) 1140 continue; 1141 1142 // Okay, we can transform this. Create the new call instruction and copy 1143 // over the required information. 1144 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1145 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1146 ArgList.end(), "", CI); 1147 ArgList.clear(); 1148 if (!NewCall->getType()->isVoidTy()) 1149 NewCall->takeName(CI); 1150 NewCall->setAttributes(CI->getAttributes()); 1151 NewCall->setCallingConv(CI->getCallingConv()); 1152 1153 // Finally, remove the old call, replacing any uses with the new one. 1154 if (!CI->use_empty()) 1155 CI->replaceAllUsesWith(NewCall); 1156 1157 // Copy any custom metadata attached with CI. 1158 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1159 TheMetadata.copyMD(CI, NewCall); 1160 1161 CI->eraseFromParent(); 1162 } 1163 } 1164 1165 1166 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1167 const llvm::FunctionType *Ty; 1168 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1169 1170 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1171 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1172 1173 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1174 } else { 1175 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1176 1177 // As a special case, make sure that definitions of K&R function 1178 // "type foo()" aren't declared as varargs (which forces the backend 1179 // to do unnecessary work). 1180 if (D->getType()->isFunctionNoProtoType()) { 1181 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1182 // Due to stret, the lowered function could have arguments. 1183 // Just create the same type as was lowered by ConvertType 1184 // but strip off the varargs bit. 1185 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1186 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1187 } 1188 } 1189 1190 // Get or create the prototype for the function. 1191 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1192 1193 // Strip off a bitcast if we got one back. 1194 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1195 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1196 Entry = CE->getOperand(0); 1197 } 1198 1199 1200 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1201 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1202 1203 // If the types mismatch then we have to rewrite the definition. 1204 assert(OldFn->isDeclaration() && 1205 "Shouldn't replace non-declaration"); 1206 1207 // F is the Function* for the one with the wrong type, we must make a new 1208 // Function* and update everything that used F (a declaration) with the new 1209 // Function* (which will be a definition). 1210 // 1211 // This happens if there is a prototype for a function 1212 // (e.g. "int f()") and then a definition of a different type 1213 // (e.g. "int f(int x)"). Start by making a new function of the 1214 // correct type, RAUW, then steal the name. 1215 GlobalDeclMap.erase(getMangledName(D)); 1216 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1217 NewFn->takeName(OldFn); 1218 1219 // If this is an implementation of a function without a prototype, try to 1220 // replace any existing uses of the function (which may be calls) with uses 1221 // of the new function 1222 if (D->getType()->isFunctionNoProtoType()) { 1223 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1224 OldFn->removeDeadConstantUsers(); 1225 } 1226 1227 // Replace uses of F with the Function we will endow with a body. 1228 if (!Entry->use_empty()) { 1229 llvm::Constant *NewPtrForOldDecl = 1230 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1231 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1232 } 1233 1234 // Ok, delete the old function now, which is dead. 1235 OldFn->eraseFromParent(); 1236 1237 Entry = NewFn; 1238 } 1239 1240 llvm::Function *Fn = cast<llvm::Function>(Entry); 1241 1242 CodeGenFunction(*this).GenerateCode(D, Fn); 1243 1244 SetFunctionDefinitionAttributes(D, Fn); 1245 SetLLVMFunctionAttributesForDefinition(D, Fn); 1246 1247 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1248 AddGlobalCtor(Fn, CA->getPriority()); 1249 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1250 AddGlobalDtor(Fn, DA->getPriority()); 1251 } 1252 1253 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1254 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1255 assert(AA && "Not an alias?"); 1256 1257 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1258 1259 // Unique the name through the identifier table. 1260 const char *AliaseeName = AA->getAliasee().c_str(); 1261 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1262 1263 // Create a reference to the named value. This ensures that it is emitted 1264 // if a deferred decl. 1265 llvm::Constant *Aliasee; 1266 if (isa<llvm::FunctionType>(DeclTy)) 1267 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1268 else 1269 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1270 llvm::PointerType::getUnqual(DeclTy), 0); 1271 1272 // Create the new alias itself, but don't set a name yet. 1273 llvm::GlobalValue *GA = 1274 new llvm::GlobalAlias(Aliasee->getType(), 1275 llvm::Function::ExternalLinkage, 1276 "", Aliasee, &getModule()); 1277 1278 // See if there is already something with the alias' name in the module. 1279 const char *MangledName = getMangledName(D); 1280 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1281 1282 if (Entry && !Entry->isDeclaration()) { 1283 // If there is a definition in the module, then it wins over the alias. 1284 // This is dubious, but allow it to be safe. Just ignore the alias. 1285 GA->eraseFromParent(); 1286 return; 1287 } 1288 1289 if (Entry) { 1290 // If there is a declaration in the module, then we had an extern followed 1291 // by the alias, as in: 1292 // extern int test6(); 1293 // ... 1294 // int test6() __attribute__((alias("test7"))); 1295 // 1296 // Remove it and replace uses of it with the alias. 1297 1298 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1299 Entry->getType())); 1300 Entry->eraseFromParent(); 1301 } 1302 1303 // Now we know that there is no conflict, set the name. 1304 Entry = GA; 1305 GA->setName(MangledName); 1306 1307 // Set attributes which are particular to an alias; this is a 1308 // specialization of the attributes which may be set on a global 1309 // variable/function. 1310 if (D->hasAttr<DLLExportAttr>()) { 1311 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1312 // The dllexport attribute is ignored for undefined symbols. 1313 if (FD->getBody()) 1314 GA->setLinkage(llvm::Function::DLLExportLinkage); 1315 } else { 1316 GA->setLinkage(llvm::Function::DLLExportLinkage); 1317 } 1318 } else if (D->hasAttr<WeakAttr>() || 1319 D->hasAttr<WeakImportAttr>()) { 1320 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1321 } 1322 1323 SetCommonAttributes(D, GA); 1324 } 1325 1326 /// getBuiltinLibFunction - Given a builtin id for a function like 1327 /// "__builtin_fabsf", return a Function* for "fabsf". 1328 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1329 unsigned BuiltinID) { 1330 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1331 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1332 "isn't a lib fn"); 1333 1334 // Get the name, skip over the __builtin_ prefix (if necessary). 1335 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1336 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1337 Name += 10; 1338 1339 // Get the type for the builtin. 1340 ASTContext::GetBuiltinTypeError Error; 1341 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1342 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1343 1344 const llvm::FunctionType *Ty = 1345 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1346 1347 // Unique the name through the identifier table. 1348 Name = getContext().Idents.get(Name).getNameStart(); 1349 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1350 } 1351 1352 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1353 unsigned NumTys) { 1354 return llvm::Intrinsic::getDeclaration(&getModule(), 1355 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1356 } 1357 1358 llvm::Function *CodeGenModule::getMemCpyFn() { 1359 if (MemCpyFn) return MemCpyFn; 1360 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1361 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1362 } 1363 1364 llvm::Function *CodeGenModule::getMemMoveFn() { 1365 if (MemMoveFn) return MemMoveFn; 1366 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1367 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1368 } 1369 1370 llvm::Function *CodeGenModule::getMemSetFn() { 1371 if (MemSetFn) return MemSetFn; 1372 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1373 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1374 } 1375 1376 static llvm::StringMapEntry<llvm::Constant*> & 1377 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1378 const StringLiteral *Literal, 1379 bool TargetIsLSB, 1380 bool &IsUTF16, 1381 unsigned &StringLength) { 1382 unsigned NumBytes = Literal->getByteLength(); 1383 1384 // Check for simple case. 1385 if (!Literal->containsNonAsciiOrNull()) { 1386 StringLength = NumBytes; 1387 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1388 StringLength)); 1389 } 1390 1391 // Otherwise, convert the UTF8 literals into a byte string. 1392 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1393 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1394 UTF16 *ToPtr = &ToBuf[0]; 1395 1396 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1397 &ToPtr, ToPtr + NumBytes, 1398 strictConversion); 1399 1400 // Check for conversion failure. 1401 if (Result != conversionOK) { 1402 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1403 // this duplicate code. 1404 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1405 StringLength = NumBytes; 1406 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1407 StringLength)); 1408 } 1409 1410 // ConvertUTF8toUTF16 returns the length in ToPtr. 1411 StringLength = ToPtr - &ToBuf[0]; 1412 1413 // Render the UTF-16 string into a byte array and convert to the target byte 1414 // order. 1415 // 1416 // FIXME: This isn't something we should need to do here. 1417 llvm::SmallString<128> AsBytes; 1418 AsBytes.reserve(StringLength * 2); 1419 for (unsigned i = 0; i != StringLength; ++i) { 1420 unsigned short Val = ToBuf[i]; 1421 if (TargetIsLSB) { 1422 AsBytes.push_back(Val & 0xFF); 1423 AsBytes.push_back(Val >> 8); 1424 } else { 1425 AsBytes.push_back(Val >> 8); 1426 AsBytes.push_back(Val & 0xFF); 1427 } 1428 } 1429 // Append one extra null character, the second is automatically added by our 1430 // caller. 1431 AsBytes.push_back(0); 1432 1433 IsUTF16 = true; 1434 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1435 } 1436 1437 llvm::Constant * 1438 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1439 unsigned StringLength = 0; 1440 bool isUTF16 = false; 1441 llvm::StringMapEntry<llvm::Constant*> &Entry = 1442 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1443 getTargetData().isLittleEndian(), 1444 isUTF16, StringLength); 1445 1446 if (llvm::Constant *C = Entry.getValue()) 1447 return C; 1448 1449 llvm::Constant *Zero = 1450 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1451 llvm::Constant *Zeros[] = { Zero, Zero }; 1452 1453 // If we don't already have it, get __CFConstantStringClassReference. 1454 if (!CFConstantStringClassRef) { 1455 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1456 Ty = llvm::ArrayType::get(Ty, 0); 1457 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1458 "__CFConstantStringClassReference"); 1459 // Decay array -> ptr 1460 CFConstantStringClassRef = 1461 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1462 } 1463 1464 QualType CFTy = getContext().getCFConstantStringType(); 1465 1466 const llvm::StructType *STy = 1467 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1468 1469 std::vector<llvm::Constant*> Fields(4); 1470 1471 // Class pointer. 1472 Fields[0] = CFConstantStringClassRef; 1473 1474 // Flags. 1475 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1476 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1477 llvm::ConstantInt::get(Ty, 0x07C8); 1478 1479 // String pointer. 1480 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1481 1482 const char *Sect = 0; 1483 llvm::GlobalValue::LinkageTypes Linkage; 1484 bool isConstant; 1485 if (isUTF16) { 1486 Sect = getContext().Target.getUnicodeStringSection(); 1487 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1488 Linkage = llvm::GlobalValue::InternalLinkage; 1489 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1490 // does make plain ascii ones writable. 1491 isConstant = true; 1492 } else { 1493 Linkage = llvm::GlobalValue::PrivateLinkage; 1494 isConstant = !Features.WritableStrings; 1495 } 1496 1497 llvm::GlobalVariable *GV = 1498 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1499 ".str"); 1500 if (Sect) 1501 GV->setSection(Sect); 1502 if (isUTF16) { 1503 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1504 GV->setAlignment(Align); 1505 } 1506 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1507 1508 // String length. 1509 Ty = getTypes().ConvertType(getContext().LongTy); 1510 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1511 1512 // The struct. 1513 C = llvm::ConstantStruct::get(STy, Fields); 1514 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1515 llvm::GlobalVariable::PrivateLinkage, C, 1516 "_unnamed_cfstring_"); 1517 if (const char *Sect = getContext().Target.getCFStringSection()) 1518 GV->setSection(Sect); 1519 Entry.setValue(GV); 1520 1521 return GV; 1522 } 1523 1524 /// GetStringForStringLiteral - Return the appropriate bytes for a 1525 /// string literal, properly padded to match the literal type. 1526 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1527 const char *StrData = E->getStrData(); 1528 unsigned Len = E->getByteLength(); 1529 1530 const ConstantArrayType *CAT = 1531 getContext().getAsConstantArrayType(E->getType()); 1532 assert(CAT && "String isn't pointer or array!"); 1533 1534 // Resize the string to the right size. 1535 std::string Str(StrData, StrData+Len); 1536 uint64_t RealLen = CAT->getSize().getZExtValue(); 1537 1538 if (E->isWide()) 1539 RealLen *= getContext().Target.getWCharWidth()/8; 1540 1541 Str.resize(RealLen, '\0'); 1542 1543 return Str; 1544 } 1545 1546 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1547 /// constant array for the given string literal. 1548 llvm::Constant * 1549 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1550 // FIXME: This can be more efficient. 1551 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1552 } 1553 1554 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1555 /// array for the given ObjCEncodeExpr node. 1556 llvm::Constant * 1557 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1558 std::string Str; 1559 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1560 1561 return GetAddrOfConstantCString(Str); 1562 } 1563 1564 1565 /// GenerateWritableString -- Creates storage for a string literal. 1566 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1567 bool constant, 1568 CodeGenModule &CGM, 1569 const char *GlobalName) { 1570 // Create Constant for this string literal. Don't add a '\0'. 1571 llvm::Constant *C = 1572 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1573 1574 // Create a global variable for this string 1575 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1576 llvm::GlobalValue::PrivateLinkage, 1577 C, GlobalName); 1578 } 1579 1580 /// GetAddrOfConstantString - Returns a pointer to a character array 1581 /// containing the literal. This contents are exactly that of the 1582 /// given string, i.e. it will not be null terminated automatically; 1583 /// see GetAddrOfConstantCString. Note that whether the result is 1584 /// actually a pointer to an LLVM constant depends on 1585 /// Feature.WriteableStrings. 1586 /// 1587 /// The result has pointer to array type. 1588 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1589 const char *GlobalName) { 1590 bool IsConstant = !Features.WritableStrings; 1591 1592 // Get the default prefix if a name wasn't specified. 1593 if (!GlobalName) 1594 GlobalName = ".str"; 1595 1596 // Don't share any string literals if strings aren't constant. 1597 if (!IsConstant) 1598 return GenerateStringLiteral(str, false, *this, GlobalName); 1599 1600 llvm::StringMapEntry<llvm::Constant *> &Entry = 1601 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1602 1603 if (Entry.getValue()) 1604 return Entry.getValue(); 1605 1606 // Create a global variable for this. 1607 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1608 Entry.setValue(C); 1609 return C; 1610 } 1611 1612 /// GetAddrOfConstantCString - Returns a pointer to a character 1613 /// array containing the literal and a terminating '\-' 1614 /// character. The result has pointer to array type. 1615 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1616 const char *GlobalName){ 1617 return GetAddrOfConstantString(str + '\0', GlobalName); 1618 } 1619 1620 /// EmitObjCPropertyImplementations - Emit information for synthesized 1621 /// properties for an implementation. 1622 void CodeGenModule::EmitObjCPropertyImplementations(const 1623 ObjCImplementationDecl *D) { 1624 for (ObjCImplementationDecl::propimpl_iterator 1625 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1626 ObjCPropertyImplDecl *PID = *i; 1627 1628 // Dynamic is just for type-checking. 1629 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1630 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1631 1632 // Determine which methods need to be implemented, some may have 1633 // been overridden. Note that ::isSynthesized is not the method 1634 // we want, that just indicates if the decl came from a 1635 // property. What we want to know is if the method is defined in 1636 // this implementation. 1637 if (!D->getInstanceMethod(PD->getGetterName())) 1638 CodeGenFunction(*this).GenerateObjCGetter( 1639 const_cast<ObjCImplementationDecl *>(D), PID); 1640 if (!PD->isReadOnly() && 1641 !D->getInstanceMethod(PD->getSetterName())) 1642 CodeGenFunction(*this).GenerateObjCSetter( 1643 const_cast<ObjCImplementationDecl *>(D), PID); 1644 } 1645 } 1646 } 1647 1648 /// EmitNamespace - Emit all declarations in a namespace. 1649 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1650 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1651 I != E; ++I) 1652 EmitTopLevelDecl(*I); 1653 } 1654 1655 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1656 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1657 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1658 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1659 ErrorUnsupported(LSD, "linkage spec"); 1660 return; 1661 } 1662 1663 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1664 I != E; ++I) 1665 EmitTopLevelDecl(*I); 1666 } 1667 1668 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1669 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1670 // If an error has occurred, stop code generation, but continue 1671 // parsing and semantic analysis (to ensure all warnings and errors 1672 // are emitted). 1673 if (Diags.hasErrorOccurred()) 1674 return; 1675 1676 // Ignore dependent declarations. 1677 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1678 return; 1679 1680 switch (D->getKind()) { 1681 case Decl::CXXConversion: 1682 case Decl::CXXMethod: 1683 case Decl::Function: 1684 // Skip function templates 1685 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1686 return; 1687 1688 EmitGlobal(cast<FunctionDecl>(D)); 1689 break; 1690 1691 case Decl::Var: 1692 EmitGlobal(cast<VarDecl>(D)); 1693 break; 1694 1695 // C++ Decls 1696 case Decl::Namespace: 1697 EmitNamespace(cast<NamespaceDecl>(D)); 1698 break; 1699 // No code generation needed. 1700 case Decl::Using: 1701 case Decl::UsingDirective: 1702 case Decl::ClassTemplate: 1703 case Decl::FunctionTemplate: 1704 case Decl::NamespaceAlias: 1705 break; 1706 case Decl::CXXConstructor: 1707 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1708 break; 1709 case Decl::CXXDestructor: 1710 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1711 break; 1712 1713 case Decl::StaticAssert: 1714 // Nothing to do. 1715 break; 1716 1717 // Objective-C Decls 1718 1719 // Forward declarations, no (immediate) code generation. 1720 case Decl::ObjCClass: 1721 case Decl::ObjCForwardProtocol: 1722 case Decl::ObjCCategory: 1723 case Decl::ObjCInterface: 1724 break; 1725 1726 case Decl::ObjCProtocol: 1727 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1728 break; 1729 1730 case Decl::ObjCCategoryImpl: 1731 // Categories have properties but don't support synthesize so we 1732 // can ignore them here. 1733 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1734 break; 1735 1736 case Decl::ObjCImplementation: { 1737 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1738 EmitObjCPropertyImplementations(OMD); 1739 Runtime->GenerateClass(OMD); 1740 break; 1741 } 1742 case Decl::ObjCMethod: { 1743 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1744 // If this is not a prototype, emit the body. 1745 if (OMD->getBody()) 1746 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1747 break; 1748 } 1749 case Decl::ObjCCompatibleAlias: 1750 // compatibility-alias is a directive and has no code gen. 1751 break; 1752 1753 case Decl::LinkageSpec: 1754 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1755 break; 1756 1757 case Decl::FileScopeAsm: { 1758 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1759 std::string AsmString(AD->getAsmString()->getStrData(), 1760 AD->getAsmString()->getByteLength()); 1761 1762 const std::string &S = getModule().getModuleInlineAsm(); 1763 if (S.empty()) 1764 getModule().setModuleInlineAsm(AsmString); 1765 else 1766 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1767 break; 1768 } 1769 1770 default: 1771 // Make sure we handled everything we should, every other kind is a 1772 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1773 // function. Need to recode Decl::Kind to do that easily. 1774 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1775 } 1776 } 1777