xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b7e5c847c4331866c10562e596b747e65e3647bf)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43     VtableInfo(*this), Runtime(0),
44     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45     VMContext(M.getContext()) {
46 
47   if (!Features.ObjC1)
48     Runtime = 0;
49   else if (!Features.NeXTRuntime)
50     Runtime = CreateGNUObjCRuntime(*this);
51   else if (Features.ObjCNonFragileABI)
52     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53   else
54     Runtime = CreateMacObjCRuntime(*this);
55 
56   // If debug info generation is enabled, create the CGDebugInfo object.
57   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   // We need to call this first because it can add deferred declarations.
67   EmitCXXGlobalInitFunc();
68 
69   EmitDeferred();
70   if (Runtime)
71     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72       AddGlobalCtor(ObjCInitFunction);
73   EmitCtorList(GlobalCtors, "llvm.global_ctors");
74   EmitCtorList(GlobalDtors, "llvm.global_dtors");
75   EmitAnnotations();
76   EmitLLVMUsed();
77 }
78 
79 /// ErrorUnsupported - Print out an error that codegen doesn't support the
80 /// specified stmt yet.
81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                      bool OmitOnError) {
83   if (OmitOnError && getDiags().hasErrorOccurred())
84     return;
85   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                                "cannot compile this %0 yet");
87   std::string Msg = Type;
88   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89     << Msg << S->getSourceRange();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified decl yet.
94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102 }
103 
104 LangOptions::VisibilityMode
105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107     if (VD->getStorageClass() == VarDecl::PrivateExtern)
108       return LangOptions::Hidden;
109 
110   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111     switch (attr->getVisibility()) {
112     default: assert(0 && "Unknown visibility!");
113     case VisibilityAttr::DefaultVisibility:
114       return LangOptions::Default;
115     case VisibilityAttr::HiddenVisibility:
116       return LangOptions::Hidden;
117     case VisibilityAttr::ProtectedVisibility:
118       return LangOptions::Protected;
119     }
120   }
121 
122   return getLangOptions().getVisibilityMode();
123 }
124 
125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                         const Decl *D) const {
127   // Internal definitions always have default visibility.
128   if (GV->hasLocalLinkage()) {
129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130     return;
131   }
132 
133   switch (getDeclVisibilityMode(D)) {
134   default: assert(0 && "Unknown visibility!");
135   case LangOptions::Default:
136     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137   case LangOptions::Hidden:
138     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139   case LangOptions::Protected:
140     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141   }
142 }
143 
144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146 
147   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148     return getMangledCXXCtorName(D, GD.getCtorType());
149   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150     return getMangledCXXDtorName(D, GD.getDtorType());
151 
152   return getMangledName(ND);
153 }
154 
155 /// \brief Retrieves the mangled name for the given declaration.
156 ///
157 /// If the given declaration requires a mangled name, returns an
158 /// const char* containing the mangled name.  Otherwise, returns
159 /// the unmangled name.
160 ///
161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162   // In C, functions with no attributes never need to be mangled. Fastpath them.
163   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   llvm::raw_svector_ostream Out(Name);
170   if (!mangleName(getMangleContext(), ND, Out)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // "static" functions get internal linkage.
257   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
258     return CodeGenModule::GVA_Internal;
259 
260   // The kind of external linkage this function will have, if it is not
261   // inline or static.
262   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
263   if (Context.getLangOptions().CPlusPlus &&
264       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
265     External = CodeGenModule::GVA_TemplateInstantiation;
266 
267   if (!FD->isInlined())
268     return External;
269 
270   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
271     // GNU or C99 inline semantics. Determine whether this symbol should be
272     // externally visible.
273     if (FD->isInlineDefinitionExternallyVisible())
274       return External;
275 
276     // C99 inline semantics, where the symbol is not externally visible.
277     return CodeGenModule::GVA_C99Inline;
278   }
279 
280   // C++0x [temp.explicit]p9:
281   //   [ Note: The intent is that an inline function that is the subject of
282   //   an explicit instantiation declaration will still be implicitly
283   //   instantiated when used so that the body can be considered for
284   //   inlining, but that no out-of-line copy of the inline function would be
285   //   generated in the translation unit. -- end note ]
286   if (FD->getTemplateSpecializationKind()
287                                        == TSK_ExplicitInstantiationDeclaration)
288     return CodeGenModule::GVA_C99Inline;
289 
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351     F->setAlignment(AA->getAlignment()/8);
352   // C++ ABI requires 2-byte alignment for member functions.
353   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354     F->setAlignment(2);
355 }
356 
357 void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                         llvm::GlobalValue *GV) {
359   setGlobalVisibility(GV, D);
360 
361   if (D->hasAttr<UsedAttr>())
362     AddUsedGlobal(GV);
363 
364   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365     GV->setSection(SA->getName());
366 }
367 
368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                   llvm::Function *F,
370                                                   const CGFunctionInfo &FI) {
371   SetLLVMFunctionAttributes(D, FI, F);
372   SetLLVMFunctionAttributesForDefinition(D, F);
373 
374   F->setLinkage(llvm::Function::InternalLinkage);
375 
376   SetCommonAttributes(D, F);
377 }
378 
379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                           llvm::Function *F,
381                                           bool IsIncompleteFunction) {
382   if (!IsIncompleteFunction)
383     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384 
385   // Only a few attributes are set on declarations; these may later be
386   // overridden by a definition.
387 
388   if (FD->hasAttr<DLLImportAttr>()) {
389     F->setLinkage(llvm::Function::DLLImportLinkage);
390   } else if (FD->hasAttr<WeakAttr>() ||
391              FD->hasAttr<WeakImportAttr>()) {
392     // "extern_weak" is overloaded in LLVM; we probably should have
393     // separate linkage types for this.
394     F->setLinkage(llvm::Function::ExternalWeakLinkage);
395   } else {
396     F->setLinkage(llvm::Function::ExternalLinkage);
397   }
398 
399   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400     F->setSection(SA->getName());
401 }
402 
403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404   assert(!GV->isDeclaration() &&
405          "Only globals with definition can force usage.");
406   LLVMUsed.push_back(GV);
407 }
408 
409 void CodeGenModule::EmitLLVMUsed() {
410   // Don't create llvm.used if there is no need.
411   if (LLVMUsed.empty())
412     return;
413 
414   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
480   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
481                                                   AA->getAnnotation(), true);
482   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
483                                                   M->getModuleIdentifier(),
484                                                   true);
485 
486   // Get the two global values corresponding to the ConstantArrays we just
487   // created to hold the bytes of the strings.
488   llvm::GlobalValue *annoGV =
489     new llvm::GlobalVariable(*M, anno->getType(), false,
490                              llvm::GlobalValue::PrivateLinkage, anno,
491                              GV->getName());
492   // translation unit name string, emitted into the llvm.metadata section.
493   llvm::GlobalValue *unitGV =
494     new llvm::GlobalVariable(*M, unit->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, unit,
496                              ".str");
497 
498   // Create the ConstantStruct for the global annotation.
499   llvm::Constant *Fields[4] = {
500     llvm::ConstantExpr::getBitCast(GV, SBP),
501     llvm::ConstantExpr::getBitCast(annoGV, SBP),
502     llvm::ConstantExpr::getBitCast(unitGV, SBP),
503     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
504   };
505   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
506 }
507 
508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509   // Never defer when EmitAllDecls is specified or the decl has
510   // attribute used.
511   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
512     return false;
513 
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515     // Constructors and destructors should never be deferred.
516     if (FD->hasAttr<ConstructorAttr>() ||
517         FD->hasAttr<DestructorAttr>())
518       return false;
519 
520     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521 
522     // static, static inline, always_inline, and extern inline functions can
523     // always be deferred.  Normal inline functions can be deferred in C99/C++.
524     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525         Linkage == GVA_CXXInline)
526       return true;
527     return false;
528   }
529 
530   const VarDecl *VD = cast<VarDecl>(Global);
531   assert(VD->isFileVarDecl() && "Invalid decl");
532 
533   // We never want to defer structs that have non-trivial constructors or
534   // destructors.
535 
536   // FIXME: Handle references.
537   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
538     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
539       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
540         return false;
541     }
542   }
543 
544   // Static data may be deferred, but out-of-line static data members
545   // cannot be.
546   // FIXME: What if the initializer has side effects?
547   return VD->isInAnonymousNamespace() ||
548          (VD->getStorageClass() == VarDecl::Static &&
549           !(VD->isStaticDataMember() && VD->isOutOfLine()));
550 }
551 
552 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
553   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
554 
555   // If this is an alias definition (which otherwise looks like a declaration)
556   // emit it now.
557   if (Global->hasAttr<AliasAttr>())
558     return EmitAliasDefinition(Global);
559 
560   // Ignore declarations, they will be emitted on their first use.
561   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
562     // Forward declarations are emitted lazily on first use.
563     if (!FD->isThisDeclarationADefinition())
564       return;
565   } else {
566     const VarDecl *VD = cast<VarDecl>(Global);
567     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
568 
569     // In C++, if this is marked "extern", defer code generation.
570     if (getLangOptions().CPlusPlus && !VD->getInit() &&
571         (VD->getStorageClass() == VarDecl::Extern ||
572          VD->isExternC()))
573       return;
574 
575     // In C, if this isn't a definition, defer code generation.
576     if (!getLangOptions().CPlusPlus && !VD->getInit())
577       return;
578   }
579 
580   // Defer code generation when possible if this is a static definition, inline
581   // function etc.  These we only want to emit if they are used.
582   if (MayDeferGeneration(Global)) {
583     // If the value has already been used, add it directly to the
584     // DeferredDeclsToEmit list.
585     const char *MangledName = getMangledName(GD);
586     if (GlobalDeclMap.count(MangledName))
587       DeferredDeclsToEmit.push_back(GD);
588     else {
589       // Otherwise, remember that we saw a deferred decl with this name.  The
590       // first use of the mangled name will cause it to move into
591       // DeferredDeclsToEmit.
592       DeferredDecls[MangledName] = GD;
593     }
594     return;
595   }
596 
597   // Otherwise emit the definition.
598   EmitGlobalDefinition(GD);
599 }
600 
601 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
602   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
603 
604   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
605                                  Context.getSourceManager(),
606                                  "Generating code for declaration");
607 
608   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
609     EmitCXXConstructor(CD, GD.getCtorType());
610   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
611     EmitCXXDestructor(DD, GD.getDtorType());
612   else if (isa<FunctionDecl>(D))
613     EmitGlobalFunctionDefinition(GD);
614   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
615     EmitGlobalVarDefinition(VD);
616   else {
617     assert(0 && "Invalid argument to EmitGlobalDefinition()");
618   }
619 }
620 
621 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
622 /// module, create and return an llvm Function with the specified type. If there
623 /// is something in the module with the specified name, return it potentially
624 /// bitcasted to the right type.
625 ///
626 /// If D is non-null, it specifies a decl that correspond to this.  This is used
627 /// to set the attributes on the function when it is first created.
628 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
629                                                        const llvm::Type *Ty,
630                                                        GlobalDecl D) {
631   // Lookup the entry, lazily creating it if necessary.
632   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
633   if (Entry) {
634     if (Entry->getType()->getElementType() == Ty)
635       return Entry;
636 
637     // Make sure the result is of the correct type.
638     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
639     return llvm::ConstantExpr::getBitCast(Entry, PTy);
640   }
641 
642   // This is the first use or definition of a mangled name.  If there is a
643   // deferred decl with this name, remember that we need to emit it at the end
644   // of the file.
645   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
646     DeferredDecls.find(MangledName);
647   if (DDI != DeferredDecls.end()) {
648     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
649     // list, and remove it from DeferredDecls (since we don't need it anymore).
650     DeferredDeclsToEmit.push_back(DDI->second);
651     DeferredDecls.erase(DDI);
652   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
653     // If this the first reference to a C++ inline function in a class, queue up
654     // the deferred function body for emission.  These are not seen as
655     // top-level declarations.
656     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
657       DeferredDeclsToEmit.push_back(D);
658     // A called constructor which has no definition or declaration need be
659     // synthesized.
660     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
661       const CXXRecordDecl *ClassDecl =
662         cast<CXXRecordDecl>(CD->getDeclContext());
663       if (CD->isCopyConstructor(getContext()))
664         DeferredCopyConstructorToEmit(D);
665       else if (!ClassDecl->hasUserDeclaredConstructor())
666         DeferredDeclsToEmit.push_back(D);
667     }
668     else if (isa<CXXDestructorDecl>(FD))
669        DeferredDestructorToEmit(D);
670     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
671            if (MD->isCopyAssignment())
672              DeferredCopyAssignmentToEmit(D);
673   }
674 
675   // This function doesn't have a complete type (for example, the return
676   // type is an incomplete struct). Use a fake type instead, and make
677   // sure not to try to set attributes.
678   bool IsIncompleteFunction = false;
679   if (!isa<llvm::FunctionType>(Ty)) {
680     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
681                                  std::vector<const llvm::Type*>(), false);
682     IsIncompleteFunction = true;
683   }
684   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
685                                              llvm::Function::ExternalLinkage,
686                                              "", &getModule());
687   F->setName(MangledName);
688   if (D.getDecl())
689     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
690                           IsIncompleteFunction);
691   Entry = F;
692   return F;
693 }
694 
695 /// Defer definition of copy constructor(s) which need be implicitly defined.
696 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
697   const CXXConstructorDecl *CD =
698     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
699   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
700   if (ClassDecl->hasTrivialCopyConstructor() ||
701       ClassDecl->hasUserDeclaredCopyConstructor())
702     return;
703 
704   // First make sure all direct base classes and virtual bases and non-static
705   // data mebers which need to have their copy constructors implicitly defined
706   // are defined. 12.8.p7
707   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
708        Base != ClassDecl->bases_end(); ++Base) {
709     CXXRecordDecl *BaseClassDecl
710       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
711     if (CXXConstructorDecl *BaseCopyCtor =
712         BaseClassDecl->getCopyConstructor(Context, 0))
713       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
714   }
715 
716   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
717        FieldEnd = ClassDecl->field_end();
718        Field != FieldEnd; ++Field) {
719     QualType FieldType = Context.getCanonicalType((*Field)->getType());
720     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
721       FieldType = Array->getElementType();
722     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
723       if ((*Field)->isAnonymousStructOrUnion())
724         continue;
725       CXXRecordDecl *FieldClassDecl
726         = cast<CXXRecordDecl>(FieldClassType->getDecl());
727       if (CXXConstructorDecl *FieldCopyCtor =
728           FieldClassDecl->getCopyConstructor(Context, 0))
729         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
730     }
731   }
732   DeferredDeclsToEmit.push_back(CopyCtorDecl);
733 }
734 
735 /// Defer definition of copy assignments which need be implicitly defined.
736 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
737   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
738   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
739 
740   if (ClassDecl->hasTrivialCopyAssignment() ||
741       ClassDecl->hasUserDeclaredCopyAssignment())
742     return;
743 
744   // First make sure all direct base classes and virtual bases and non-static
745   // data mebers which need to have their copy assignments implicitly defined
746   // are defined. 12.8.p12
747   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
748        Base != ClassDecl->bases_end(); ++Base) {
749     CXXRecordDecl *BaseClassDecl
750       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
751     const CXXMethodDecl *MD = 0;
752     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
753         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
754         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
755       GetAddrOfFunction(MD, 0);
756   }
757 
758   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
759        FieldEnd = ClassDecl->field_end();
760        Field != FieldEnd; ++Field) {
761     QualType FieldType = Context.getCanonicalType((*Field)->getType());
762     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
763       FieldType = Array->getElementType();
764     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
765       if ((*Field)->isAnonymousStructOrUnion())
766         continue;
767       CXXRecordDecl *FieldClassDecl
768         = cast<CXXRecordDecl>(FieldClassType->getDecl());
769       const CXXMethodDecl *MD = 0;
770       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
771           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
772           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
773           GetAddrOfFunction(MD, 0);
774     }
775   }
776   DeferredDeclsToEmit.push_back(CopyAssignDecl);
777 }
778 
779 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
780   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
781   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
782   if (ClassDecl->hasTrivialDestructor() ||
783       ClassDecl->hasUserDeclaredDestructor())
784     return;
785 
786   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
787        Base != ClassDecl->bases_end(); ++Base) {
788     CXXRecordDecl *BaseClassDecl
789       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
790     if (const CXXDestructorDecl *BaseDtor =
791           BaseClassDecl->getDestructor(Context))
792       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
793   }
794 
795   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
796        FieldEnd = ClassDecl->field_end();
797        Field != FieldEnd; ++Field) {
798     QualType FieldType = Context.getCanonicalType((*Field)->getType());
799     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
800       FieldType = Array->getElementType();
801     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
802       if ((*Field)->isAnonymousStructOrUnion())
803         continue;
804       CXXRecordDecl *FieldClassDecl
805         = cast<CXXRecordDecl>(FieldClassType->getDecl());
806       if (const CXXDestructorDecl *FieldDtor =
807             FieldClassDecl->getDestructor(Context))
808         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
809     }
810   }
811   DeferredDeclsToEmit.push_back(DtorDecl);
812 }
813 
814 
815 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
816 /// non-null, then this function will use the specified type if it has to
817 /// create it (this occurs when we see a definition of the function).
818 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
819                                                  const llvm::Type *Ty) {
820   // If there was no specific requested type, just convert it now.
821   if (!Ty)
822     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
823   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
824 }
825 
826 /// CreateRuntimeFunction - Create a new runtime function with the specified
827 /// type and name.
828 llvm::Constant *
829 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
830                                      const char *Name) {
831   // Convert Name to be a uniqued string from the IdentifierInfo table.
832   Name = getContext().Idents.get(Name).getNameStart();
833   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
834 }
835 
836 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
837 /// create and return an llvm GlobalVariable with the specified type.  If there
838 /// is something in the module with the specified name, return it potentially
839 /// bitcasted to the right type.
840 ///
841 /// If D is non-null, it specifies a decl that correspond to this.  This is used
842 /// to set the attributes on the global when it is first created.
843 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
844                                                      const llvm::PointerType*Ty,
845                                                      const VarDecl *D) {
846   // Lookup the entry, lazily creating it if necessary.
847   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
848   if (Entry) {
849     if (Entry->getType() == Ty)
850       return Entry;
851 
852     // Make sure the result is of the correct type.
853     return llvm::ConstantExpr::getBitCast(Entry, Ty);
854   }
855 
856   // This is the first use or definition of a mangled name.  If there is a
857   // deferred decl with this name, remember that we need to emit it at the end
858   // of the file.
859   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
860     DeferredDecls.find(MangledName);
861   if (DDI != DeferredDecls.end()) {
862     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
863     // list, and remove it from DeferredDecls (since we don't need it anymore).
864     DeferredDeclsToEmit.push_back(DDI->second);
865     DeferredDecls.erase(DDI);
866   }
867 
868   llvm::GlobalVariable *GV =
869     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
870                              llvm::GlobalValue::ExternalLinkage,
871                              0, "", 0,
872                              false, Ty->getAddressSpace());
873   GV->setName(MangledName);
874 
875   // Handle things which are present even on external declarations.
876   if (D) {
877     // FIXME: This code is overly simple and should be merged with other global
878     // handling.
879     GV->setConstant(D->getType().isConstant(Context));
880 
881     // FIXME: Merge with other attribute handling code.
882     if (D->getStorageClass() == VarDecl::PrivateExtern)
883       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
884 
885     if (D->hasAttr<WeakAttr>() ||
886         D->hasAttr<WeakImportAttr>())
887       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
888 
889     GV->setThreadLocal(D->isThreadSpecified());
890   }
891 
892   return Entry = GV;
893 }
894 
895 
896 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
897 /// given global variable.  If Ty is non-null and if the global doesn't exist,
898 /// then it will be greated with the specified type instead of whatever the
899 /// normal requested type would be.
900 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
901                                                   const llvm::Type *Ty) {
902   assert(D->hasGlobalStorage() && "Not a global variable");
903   QualType ASTTy = D->getType();
904   if (Ty == 0)
905     Ty = getTypes().ConvertTypeForMem(ASTTy);
906 
907   const llvm::PointerType *PTy =
908     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
909   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
910 }
911 
912 /// CreateRuntimeVariable - Create a new runtime global variable with the
913 /// specified type and name.
914 llvm::Constant *
915 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
916                                      const char *Name) {
917   // Convert Name to be a uniqued string from the IdentifierInfo table.
918   Name = getContext().Idents.get(Name).getNameStart();
919   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
920 }
921 
922 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
923   assert(!D->getInit() && "Cannot emit definite definitions here!");
924 
925   if (MayDeferGeneration(D)) {
926     // If we have not seen a reference to this variable yet, place it
927     // into the deferred declarations table to be emitted if needed
928     // later.
929     const char *MangledName = getMangledName(D);
930     if (GlobalDeclMap.count(MangledName) == 0) {
931       DeferredDecls[MangledName] = D;
932       return;
933     }
934   }
935 
936   // The tentative definition is the only definition.
937   EmitGlobalVarDefinition(D);
938 }
939 
940 static CodeGenModule::GVALinkage
941 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
942   // Everything located semantically within an anonymous namespace is
943   // always internal.
944   if (VD->isInAnonymousNamespace())
945     return CodeGenModule::GVA_Internal;
946 
947   // Handle linkage for static data members.
948   if (VD->isStaticDataMember()) {
949     switch (VD->getTemplateSpecializationKind()) {
950     case TSK_Undeclared:
951     case TSK_ExplicitSpecialization:
952     case TSK_ExplicitInstantiationDefinition:
953       return CodeGenModule::GVA_StrongExternal;
954 
955     case TSK_ExplicitInstantiationDeclaration:
956       llvm::llvm_unreachable("Variable should not be instantiated");
957       // Fall through to treat this like any other instantiation.
958 
959     case TSK_ImplicitInstantiation:
960       return CodeGenModule::GVA_TemplateInstantiation;
961     }
962   }
963 
964   // Static variables get internal linkage.
965   if (VD->getStorageClass() == VarDecl::Static)
966     return CodeGenModule::GVA_Internal;
967 
968   return CodeGenModule::GVA_StrongExternal;
969 }
970 
971 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
972   llvm::Constant *Init = 0;
973   QualType ASTTy = D->getType();
974 
975   if (D->getInit() == 0) {
976     // This is a tentative definition; tentative definitions are
977     // implicitly initialized with { 0 }.
978     //
979     // Note that tentative definitions are only emitted at the end of
980     // a translation unit, so they should never have incomplete
981     // type. In addition, EmitTentativeDefinition makes sure that we
982     // never attempt to emit a tentative definition if a real one
983     // exists. A use may still exists, however, so we still may need
984     // to do a RAUW.
985     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
986     Init = EmitNullConstant(D->getType());
987   } else {
988     Init = EmitConstantExpr(D->getInit(), D->getType());
989 
990     if (!Init) {
991       QualType T = D->getInit()->getType();
992       if (getLangOptions().CPlusPlus) {
993         CXXGlobalInits.push_back(D);
994         Init = EmitNullConstant(T);
995       } else {
996         ErrorUnsupported(D, "static initializer");
997         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
998       }
999     }
1000   }
1001 
1002   const llvm::Type* InitType = Init->getType();
1003   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1004 
1005   // Strip off a bitcast if we got one back.
1006   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1007     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1008            // all zero index gep.
1009            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1010     Entry = CE->getOperand(0);
1011   }
1012 
1013   // Entry is now either a Function or GlobalVariable.
1014   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1015 
1016   // We have a definition after a declaration with the wrong type.
1017   // We must make a new GlobalVariable* and update everything that used OldGV
1018   // (a declaration or tentative definition) with the new GlobalVariable*
1019   // (which will be a definition).
1020   //
1021   // This happens if there is a prototype for a global (e.g.
1022   // "extern int x[];") and then a definition of a different type (e.g.
1023   // "int x[10];"). This also happens when an initializer has a different type
1024   // from the type of the global (this happens with unions).
1025   if (GV == 0 ||
1026       GV->getType()->getElementType() != InitType ||
1027       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1028 
1029     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1030     GlobalDeclMap.erase(getMangledName(D));
1031 
1032     // Make a new global with the correct type, this is now guaranteed to work.
1033     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1034     GV->takeName(cast<llvm::GlobalValue>(Entry));
1035 
1036     // Replace all uses of the old global with the new global
1037     llvm::Constant *NewPtrForOldDecl =
1038         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1039     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1040 
1041     // Erase the old global, since it is no longer used.
1042     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1043   }
1044 
1045   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1046     SourceManager &SM = Context.getSourceManager();
1047     AddAnnotation(EmitAnnotateAttr(GV, AA,
1048                               SM.getInstantiationLineNumber(D->getLocation())));
1049   }
1050 
1051   GV->setInitializer(Init);
1052 
1053   // If it is safe to mark the global 'constant', do so now.
1054   GV->setConstant(false);
1055   if (D->getType().isConstant(Context)) {
1056     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1057     // members, it cannot be declared "LLVM const".
1058     GV->setConstant(true);
1059   }
1060 
1061   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1062 
1063   // Set the llvm linkage type as appropriate.
1064   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1065   if (Linkage == GVA_Internal)
1066     GV->setLinkage(llvm::Function::InternalLinkage);
1067   else if (D->hasAttr<DLLImportAttr>())
1068     GV->setLinkage(llvm::Function::DLLImportLinkage);
1069   else if (D->hasAttr<DLLExportAttr>())
1070     GV->setLinkage(llvm::Function::DLLExportLinkage);
1071   else if (D->hasAttr<WeakAttr>()) {
1072     if (GV->isConstant())
1073       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1074     else
1075       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1076   } else if (Linkage == GVA_TemplateInstantiation)
1077     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1078   else if (!CompileOpts.NoCommon &&
1079            !D->hasExternalStorage() && !D->getInit() &&
1080            !D->getAttr<SectionAttr>()) {
1081     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1082     // common vars aren't constant even if declared const.
1083     GV->setConstant(false);
1084   } else
1085     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1086 
1087   SetCommonAttributes(D, GV);
1088 
1089   // Emit global variable debug information.
1090   if (CGDebugInfo *DI = getDebugInfo()) {
1091     DI->setLocation(D->getLocation());
1092     DI->EmitGlobalVariable(GV, D);
1093   }
1094 }
1095 
1096 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1097 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1098 /// existing call uses of the old function in the module, this adjusts them to
1099 /// call the new function directly.
1100 ///
1101 /// This is not just a cleanup: the always_inline pass requires direct calls to
1102 /// functions to be able to inline them.  If there is a bitcast in the way, it
1103 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1104 /// run at -O0.
1105 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1106                                                       llvm::Function *NewFn) {
1107   // If we're redefining a global as a function, don't transform it.
1108   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1109   if (OldFn == 0) return;
1110 
1111   const llvm::Type *NewRetTy = NewFn->getReturnType();
1112   llvm::SmallVector<llvm::Value*, 4> ArgList;
1113 
1114   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1115        UI != E; ) {
1116     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1117     unsigned OpNo = UI.getOperandNo();
1118     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1119     if (!CI || OpNo != 0) continue;
1120 
1121     // If the return types don't match exactly, and if the call isn't dead, then
1122     // we can't transform this call.
1123     if (CI->getType() != NewRetTy && !CI->use_empty())
1124       continue;
1125 
1126     // If the function was passed too few arguments, don't transform.  If extra
1127     // arguments were passed, we silently drop them.  If any of the types
1128     // mismatch, we don't transform.
1129     unsigned ArgNo = 0;
1130     bool DontTransform = false;
1131     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1132          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1133       if (CI->getNumOperands()-1 == ArgNo ||
1134           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1135         DontTransform = true;
1136         break;
1137       }
1138     }
1139     if (DontTransform)
1140       continue;
1141 
1142     // Okay, we can transform this.  Create the new call instruction and copy
1143     // over the required information.
1144     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1145     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1146                                                      ArgList.end(), "", CI);
1147     ArgList.clear();
1148     if (!NewCall->getType()->isVoidTy())
1149       NewCall->takeName(CI);
1150     NewCall->setAttributes(CI->getAttributes());
1151     NewCall->setCallingConv(CI->getCallingConv());
1152 
1153     // Finally, remove the old call, replacing any uses with the new one.
1154     if (!CI->use_empty())
1155       CI->replaceAllUsesWith(NewCall);
1156 
1157     // Copy any custom metadata attached with CI.
1158     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1159     TheMetadata.copyMD(CI, NewCall);
1160 
1161     CI->eraseFromParent();
1162   }
1163 }
1164 
1165 
1166 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1167   const llvm::FunctionType *Ty;
1168   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1169 
1170   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1171     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1172 
1173     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1174   } else {
1175     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1176 
1177     // As a special case, make sure that definitions of K&R function
1178     // "type foo()" aren't declared as varargs (which forces the backend
1179     // to do unnecessary work).
1180     if (D->getType()->isFunctionNoProtoType()) {
1181       assert(Ty->isVarArg() && "Didn't lower type as expected");
1182       // Due to stret, the lowered function could have arguments.
1183       // Just create the same type as was lowered by ConvertType
1184       // but strip off the varargs bit.
1185       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1186       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1187     }
1188   }
1189 
1190   // Get or create the prototype for the function.
1191   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1192 
1193   // Strip off a bitcast if we got one back.
1194   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1195     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1196     Entry = CE->getOperand(0);
1197   }
1198 
1199 
1200   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1201     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1202 
1203     // If the types mismatch then we have to rewrite the definition.
1204     assert(OldFn->isDeclaration() &&
1205            "Shouldn't replace non-declaration");
1206 
1207     // F is the Function* for the one with the wrong type, we must make a new
1208     // Function* and update everything that used F (a declaration) with the new
1209     // Function* (which will be a definition).
1210     //
1211     // This happens if there is a prototype for a function
1212     // (e.g. "int f()") and then a definition of a different type
1213     // (e.g. "int f(int x)").  Start by making a new function of the
1214     // correct type, RAUW, then steal the name.
1215     GlobalDeclMap.erase(getMangledName(D));
1216     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1217     NewFn->takeName(OldFn);
1218 
1219     // If this is an implementation of a function without a prototype, try to
1220     // replace any existing uses of the function (which may be calls) with uses
1221     // of the new function
1222     if (D->getType()->isFunctionNoProtoType()) {
1223       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1224       OldFn->removeDeadConstantUsers();
1225     }
1226 
1227     // Replace uses of F with the Function we will endow with a body.
1228     if (!Entry->use_empty()) {
1229       llvm::Constant *NewPtrForOldDecl =
1230         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1231       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1232     }
1233 
1234     // Ok, delete the old function now, which is dead.
1235     OldFn->eraseFromParent();
1236 
1237     Entry = NewFn;
1238   }
1239 
1240   llvm::Function *Fn = cast<llvm::Function>(Entry);
1241 
1242   CodeGenFunction(*this).GenerateCode(D, Fn);
1243 
1244   SetFunctionDefinitionAttributes(D, Fn);
1245   SetLLVMFunctionAttributesForDefinition(D, Fn);
1246 
1247   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1248     AddGlobalCtor(Fn, CA->getPriority());
1249   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1250     AddGlobalDtor(Fn, DA->getPriority());
1251 }
1252 
1253 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1254   const AliasAttr *AA = D->getAttr<AliasAttr>();
1255   assert(AA && "Not an alias?");
1256 
1257   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1258 
1259   // Unique the name through the identifier table.
1260   const char *AliaseeName = AA->getAliasee().c_str();
1261   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1262 
1263   // Create a reference to the named value.  This ensures that it is emitted
1264   // if a deferred decl.
1265   llvm::Constant *Aliasee;
1266   if (isa<llvm::FunctionType>(DeclTy))
1267     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1268   else
1269     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1270                                     llvm::PointerType::getUnqual(DeclTy), 0);
1271 
1272   // Create the new alias itself, but don't set a name yet.
1273   llvm::GlobalValue *GA =
1274     new llvm::GlobalAlias(Aliasee->getType(),
1275                           llvm::Function::ExternalLinkage,
1276                           "", Aliasee, &getModule());
1277 
1278   // See if there is already something with the alias' name in the module.
1279   const char *MangledName = getMangledName(D);
1280   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1281 
1282   if (Entry && !Entry->isDeclaration()) {
1283     // If there is a definition in the module, then it wins over the alias.
1284     // This is dubious, but allow it to be safe.  Just ignore the alias.
1285     GA->eraseFromParent();
1286     return;
1287   }
1288 
1289   if (Entry) {
1290     // If there is a declaration in the module, then we had an extern followed
1291     // by the alias, as in:
1292     //   extern int test6();
1293     //   ...
1294     //   int test6() __attribute__((alias("test7")));
1295     //
1296     // Remove it and replace uses of it with the alias.
1297 
1298     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1299                                                           Entry->getType()));
1300     Entry->eraseFromParent();
1301   }
1302 
1303   // Now we know that there is no conflict, set the name.
1304   Entry = GA;
1305   GA->setName(MangledName);
1306 
1307   // Set attributes which are particular to an alias; this is a
1308   // specialization of the attributes which may be set on a global
1309   // variable/function.
1310   if (D->hasAttr<DLLExportAttr>()) {
1311     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1312       // The dllexport attribute is ignored for undefined symbols.
1313       if (FD->getBody())
1314         GA->setLinkage(llvm::Function::DLLExportLinkage);
1315     } else {
1316       GA->setLinkage(llvm::Function::DLLExportLinkage);
1317     }
1318   } else if (D->hasAttr<WeakAttr>() ||
1319              D->hasAttr<WeakImportAttr>()) {
1320     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1321   }
1322 
1323   SetCommonAttributes(D, GA);
1324 }
1325 
1326 /// getBuiltinLibFunction - Given a builtin id for a function like
1327 /// "__builtin_fabsf", return a Function* for "fabsf".
1328 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1329                                                   unsigned BuiltinID) {
1330   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1331           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1332          "isn't a lib fn");
1333 
1334   // Get the name, skip over the __builtin_ prefix (if necessary).
1335   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1336   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1337     Name += 10;
1338 
1339   // Get the type for the builtin.
1340   ASTContext::GetBuiltinTypeError Error;
1341   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1342   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1343 
1344   const llvm::FunctionType *Ty =
1345     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1346 
1347   // Unique the name through the identifier table.
1348   Name = getContext().Idents.get(Name).getNameStart();
1349   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1350 }
1351 
1352 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1353                                             unsigned NumTys) {
1354   return llvm::Intrinsic::getDeclaration(&getModule(),
1355                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1356 }
1357 
1358 llvm::Function *CodeGenModule::getMemCpyFn() {
1359   if (MemCpyFn) return MemCpyFn;
1360   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1361   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1362 }
1363 
1364 llvm::Function *CodeGenModule::getMemMoveFn() {
1365   if (MemMoveFn) return MemMoveFn;
1366   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1367   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1368 }
1369 
1370 llvm::Function *CodeGenModule::getMemSetFn() {
1371   if (MemSetFn) return MemSetFn;
1372   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1373   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1374 }
1375 
1376 static llvm::StringMapEntry<llvm::Constant*> &
1377 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1378                          const StringLiteral *Literal,
1379                          bool TargetIsLSB,
1380                          bool &IsUTF16,
1381                          unsigned &StringLength) {
1382   unsigned NumBytes = Literal->getByteLength();
1383 
1384   // Check for simple case.
1385   if (!Literal->containsNonAsciiOrNull()) {
1386     StringLength = NumBytes;
1387     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1388                                                 StringLength));
1389   }
1390 
1391   // Otherwise, convert the UTF8 literals into a byte string.
1392   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1393   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1394   UTF16 *ToPtr = &ToBuf[0];
1395 
1396   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1397                                                &ToPtr, ToPtr + NumBytes,
1398                                                strictConversion);
1399 
1400   // Check for conversion failure.
1401   if (Result != conversionOK) {
1402     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1403     // this duplicate code.
1404     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1405     StringLength = NumBytes;
1406     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1407                                                 StringLength));
1408   }
1409 
1410   // ConvertUTF8toUTF16 returns the length in ToPtr.
1411   StringLength = ToPtr - &ToBuf[0];
1412 
1413   // Render the UTF-16 string into a byte array and convert to the target byte
1414   // order.
1415   //
1416   // FIXME: This isn't something we should need to do here.
1417   llvm::SmallString<128> AsBytes;
1418   AsBytes.reserve(StringLength * 2);
1419   for (unsigned i = 0; i != StringLength; ++i) {
1420     unsigned short Val = ToBuf[i];
1421     if (TargetIsLSB) {
1422       AsBytes.push_back(Val & 0xFF);
1423       AsBytes.push_back(Val >> 8);
1424     } else {
1425       AsBytes.push_back(Val >> 8);
1426       AsBytes.push_back(Val & 0xFF);
1427     }
1428   }
1429   // Append one extra null character, the second is automatically added by our
1430   // caller.
1431   AsBytes.push_back(0);
1432 
1433   IsUTF16 = true;
1434   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1435 }
1436 
1437 llvm::Constant *
1438 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1439   unsigned StringLength = 0;
1440   bool isUTF16 = false;
1441   llvm::StringMapEntry<llvm::Constant*> &Entry =
1442     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1443                              getTargetData().isLittleEndian(),
1444                              isUTF16, StringLength);
1445 
1446   if (llvm::Constant *C = Entry.getValue())
1447     return C;
1448 
1449   llvm::Constant *Zero =
1450       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1451   llvm::Constant *Zeros[] = { Zero, Zero };
1452 
1453   // If we don't already have it, get __CFConstantStringClassReference.
1454   if (!CFConstantStringClassRef) {
1455     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1456     Ty = llvm::ArrayType::get(Ty, 0);
1457     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1458                                            "__CFConstantStringClassReference");
1459     // Decay array -> ptr
1460     CFConstantStringClassRef =
1461       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1462   }
1463 
1464   QualType CFTy = getContext().getCFConstantStringType();
1465 
1466   const llvm::StructType *STy =
1467     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1468 
1469   std::vector<llvm::Constant*> Fields(4);
1470 
1471   // Class pointer.
1472   Fields[0] = CFConstantStringClassRef;
1473 
1474   // Flags.
1475   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1476   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1477     llvm::ConstantInt::get(Ty, 0x07C8);
1478 
1479   // String pointer.
1480   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1481 
1482   const char *Sect = 0;
1483   llvm::GlobalValue::LinkageTypes Linkage;
1484   bool isConstant;
1485   if (isUTF16) {
1486     Sect = getContext().Target.getUnicodeStringSection();
1487     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1488     Linkage = llvm::GlobalValue::InternalLinkage;
1489     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1490     // does make plain ascii ones writable.
1491     isConstant = true;
1492   } else {
1493     Linkage = llvm::GlobalValue::PrivateLinkage;
1494     isConstant = !Features.WritableStrings;
1495   }
1496 
1497   llvm::GlobalVariable *GV =
1498     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1499                              ".str");
1500   if (Sect)
1501     GV->setSection(Sect);
1502   if (isUTF16) {
1503     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1504     GV->setAlignment(Align);
1505   }
1506   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1507 
1508   // String length.
1509   Ty = getTypes().ConvertType(getContext().LongTy);
1510   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1511 
1512   // The struct.
1513   C = llvm::ConstantStruct::get(STy, Fields);
1514   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1515                                 llvm::GlobalVariable::PrivateLinkage, C,
1516                                 "_unnamed_cfstring_");
1517   if (const char *Sect = getContext().Target.getCFStringSection())
1518     GV->setSection(Sect);
1519   Entry.setValue(GV);
1520 
1521   return GV;
1522 }
1523 
1524 /// GetStringForStringLiteral - Return the appropriate bytes for a
1525 /// string literal, properly padded to match the literal type.
1526 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1527   const char *StrData = E->getStrData();
1528   unsigned Len = E->getByteLength();
1529 
1530   const ConstantArrayType *CAT =
1531     getContext().getAsConstantArrayType(E->getType());
1532   assert(CAT && "String isn't pointer or array!");
1533 
1534   // Resize the string to the right size.
1535   std::string Str(StrData, StrData+Len);
1536   uint64_t RealLen = CAT->getSize().getZExtValue();
1537 
1538   if (E->isWide())
1539     RealLen *= getContext().Target.getWCharWidth()/8;
1540 
1541   Str.resize(RealLen, '\0');
1542 
1543   return Str;
1544 }
1545 
1546 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1547 /// constant array for the given string literal.
1548 llvm::Constant *
1549 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1550   // FIXME: This can be more efficient.
1551   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1552 }
1553 
1554 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1555 /// array for the given ObjCEncodeExpr node.
1556 llvm::Constant *
1557 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1558   std::string Str;
1559   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1560 
1561   return GetAddrOfConstantCString(Str);
1562 }
1563 
1564 
1565 /// GenerateWritableString -- Creates storage for a string literal.
1566 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1567                                              bool constant,
1568                                              CodeGenModule &CGM,
1569                                              const char *GlobalName) {
1570   // Create Constant for this string literal. Don't add a '\0'.
1571   llvm::Constant *C =
1572       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1573 
1574   // Create a global variable for this string
1575   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1576                                   llvm::GlobalValue::PrivateLinkage,
1577                                   C, GlobalName);
1578 }
1579 
1580 /// GetAddrOfConstantString - Returns a pointer to a character array
1581 /// containing the literal. This contents are exactly that of the
1582 /// given string, i.e. it will not be null terminated automatically;
1583 /// see GetAddrOfConstantCString. Note that whether the result is
1584 /// actually a pointer to an LLVM constant depends on
1585 /// Feature.WriteableStrings.
1586 ///
1587 /// The result has pointer to array type.
1588 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1589                                                        const char *GlobalName) {
1590   bool IsConstant = !Features.WritableStrings;
1591 
1592   // Get the default prefix if a name wasn't specified.
1593   if (!GlobalName)
1594     GlobalName = ".str";
1595 
1596   // Don't share any string literals if strings aren't constant.
1597   if (!IsConstant)
1598     return GenerateStringLiteral(str, false, *this, GlobalName);
1599 
1600   llvm::StringMapEntry<llvm::Constant *> &Entry =
1601     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1602 
1603   if (Entry.getValue())
1604     return Entry.getValue();
1605 
1606   // Create a global variable for this.
1607   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1608   Entry.setValue(C);
1609   return C;
1610 }
1611 
1612 /// GetAddrOfConstantCString - Returns a pointer to a character
1613 /// array containing the literal and a terminating '\-'
1614 /// character. The result has pointer to array type.
1615 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1616                                                         const char *GlobalName){
1617   return GetAddrOfConstantString(str + '\0', GlobalName);
1618 }
1619 
1620 /// EmitObjCPropertyImplementations - Emit information for synthesized
1621 /// properties for an implementation.
1622 void CodeGenModule::EmitObjCPropertyImplementations(const
1623                                                     ObjCImplementationDecl *D) {
1624   for (ObjCImplementationDecl::propimpl_iterator
1625          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1626     ObjCPropertyImplDecl *PID = *i;
1627 
1628     // Dynamic is just for type-checking.
1629     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1630       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1631 
1632       // Determine which methods need to be implemented, some may have
1633       // been overridden. Note that ::isSynthesized is not the method
1634       // we want, that just indicates if the decl came from a
1635       // property. What we want to know is if the method is defined in
1636       // this implementation.
1637       if (!D->getInstanceMethod(PD->getGetterName()))
1638         CodeGenFunction(*this).GenerateObjCGetter(
1639                                  const_cast<ObjCImplementationDecl *>(D), PID);
1640       if (!PD->isReadOnly() &&
1641           !D->getInstanceMethod(PD->getSetterName()))
1642         CodeGenFunction(*this).GenerateObjCSetter(
1643                                  const_cast<ObjCImplementationDecl *>(D), PID);
1644     }
1645   }
1646 }
1647 
1648 /// EmitNamespace - Emit all declarations in a namespace.
1649 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1650   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1651        I != E; ++I)
1652     EmitTopLevelDecl(*I);
1653 }
1654 
1655 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1656 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1657   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1658       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1659     ErrorUnsupported(LSD, "linkage spec");
1660     return;
1661   }
1662 
1663   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1664        I != E; ++I)
1665     EmitTopLevelDecl(*I);
1666 }
1667 
1668 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1669 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1670   // If an error has occurred, stop code generation, but continue
1671   // parsing and semantic analysis (to ensure all warnings and errors
1672   // are emitted).
1673   if (Diags.hasErrorOccurred())
1674     return;
1675 
1676   // Ignore dependent declarations.
1677   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1678     return;
1679 
1680   switch (D->getKind()) {
1681   case Decl::CXXConversion:
1682   case Decl::CXXMethod:
1683   case Decl::Function:
1684     // Skip function templates
1685     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1686       return;
1687 
1688     EmitGlobal(cast<FunctionDecl>(D));
1689     break;
1690 
1691   case Decl::Var:
1692     EmitGlobal(cast<VarDecl>(D));
1693     break;
1694 
1695   // C++ Decls
1696   case Decl::Namespace:
1697     EmitNamespace(cast<NamespaceDecl>(D));
1698     break;
1699     // No code generation needed.
1700   case Decl::Using:
1701   case Decl::UsingDirective:
1702   case Decl::ClassTemplate:
1703   case Decl::FunctionTemplate:
1704   case Decl::NamespaceAlias:
1705     break;
1706   case Decl::CXXConstructor:
1707     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1708     break;
1709   case Decl::CXXDestructor:
1710     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1711     break;
1712 
1713   case Decl::StaticAssert:
1714     // Nothing to do.
1715     break;
1716 
1717   // Objective-C Decls
1718 
1719   // Forward declarations, no (immediate) code generation.
1720   case Decl::ObjCClass:
1721   case Decl::ObjCForwardProtocol:
1722   case Decl::ObjCCategory:
1723   case Decl::ObjCInterface:
1724     break;
1725 
1726   case Decl::ObjCProtocol:
1727     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1728     break;
1729 
1730   case Decl::ObjCCategoryImpl:
1731     // Categories have properties but don't support synthesize so we
1732     // can ignore them here.
1733     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1734     break;
1735 
1736   case Decl::ObjCImplementation: {
1737     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1738     EmitObjCPropertyImplementations(OMD);
1739     Runtime->GenerateClass(OMD);
1740     break;
1741   }
1742   case Decl::ObjCMethod: {
1743     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1744     // If this is not a prototype, emit the body.
1745     if (OMD->getBody())
1746       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1747     break;
1748   }
1749   case Decl::ObjCCompatibleAlias:
1750     // compatibility-alias is a directive and has no code gen.
1751     break;
1752 
1753   case Decl::LinkageSpec:
1754     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1755     break;
1756 
1757   case Decl::FileScopeAsm: {
1758     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1759     std::string AsmString(AD->getAsmString()->getStrData(),
1760                           AD->getAsmString()->getByteLength());
1761 
1762     const std::string &S = getModule().getModuleInlineAsm();
1763     if (S.empty())
1764       getModule().setModuleInlineAsm(AsmString);
1765     else
1766       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1767     break;
1768   }
1769 
1770   default:
1771     // Make sure we handled everything we should, every other kind is a
1772     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1773     // function. Need to recode Decl::Kind to do that easily.
1774     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1775   }
1776 }
1777