xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision b0561b3346e7bf0ae974995ca95b917eebde18e1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeNVPTX.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ProfileSummary.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/ConvertUTF.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MD5.h"
62 #include "llvm/Support/TimeProfiler.h"
63 
64 using namespace clang;
65 using namespace CodeGen;
66 
67 static llvm::cl::opt<bool> LimitedCoverage(
68     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
69     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
70     llvm::cl::init(false));
71 
72 static const char AnnotationSection[] = "llvm.metadata";
73 
74 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
75   switch (CGM.getTarget().getCXXABI().getKind()) {
76   case TargetCXXABI::GenericAArch64:
77   case TargetCXXABI::GenericARM:
78   case TargetCXXABI::iOS:
79   case TargetCXXABI::iOS64:
80   case TargetCXXABI::WatchOS:
81   case TargetCXXABI::GenericMIPS:
82   case TargetCXXABI::GenericItanium:
83   case TargetCXXABI::WebAssembly:
84     return CreateItaniumCXXABI(CGM);
85   case TargetCXXABI::Microsoft:
86     return CreateMicrosoftCXXABI(CGM);
87   }
88 
89   llvm_unreachable("invalid C++ ABI kind");
90 }
91 
92 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
93                              const PreprocessorOptions &PPO,
94                              const CodeGenOptions &CGO, llvm::Module &M,
95                              DiagnosticsEngine &diags,
96                              CoverageSourceInfo *CoverageInfo)
97     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
98       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
99       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
100       VMContext(M.getContext()), Types(*this), VTables(*this),
101       SanitizerMD(new SanitizerMetadata(*this)) {
102 
103   // Initialize the type cache.
104   llvm::LLVMContext &LLVMContext = M.getContext();
105   VoidTy = llvm::Type::getVoidTy(LLVMContext);
106   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
107   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
108   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
109   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
110   HalfTy = llvm::Type::getHalfTy(LLVMContext);
111   FloatTy = llvm::Type::getFloatTy(LLVMContext);
112   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
113   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
114   PointerAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
116   SizeSizeInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
118   IntAlignInBytes =
119     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
120   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
121   IntPtrTy = llvm::IntegerType::get(LLVMContext,
122     C.getTargetInfo().getMaxPointerWidth());
123   Int8PtrTy = Int8Ty->getPointerTo(0);
124   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
125   AllocaInt8PtrTy = Int8Ty->getPointerTo(
126       M.getDataLayout().getAllocaAddrSpace());
127   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
128 
129   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
130 
131   if (LangOpts.ObjC)
132     createObjCRuntime();
133   if (LangOpts.OpenCL)
134     createOpenCLRuntime();
135   if (LangOpts.OpenMP)
136     createOpenMPRuntime();
137   if (LangOpts.CUDA)
138     createCUDARuntime();
139 
140   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
141   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
142       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
143     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
144                                getCXXABI().getMangleContext()));
145 
146   // If debug info or coverage generation is enabled, create the CGDebugInfo
147   // object.
148   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
149       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
150     DebugInfo.reset(new CGDebugInfo(*this));
151 
152   Block.GlobalUniqueCount = 0;
153 
154   if (C.getLangOpts().ObjC)
155     ObjCData.reset(new ObjCEntrypoints());
156 
157   if (CodeGenOpts.hasProfileClangUse()) {
158     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
159         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
160     if (auto E = ReaderOrErr.takeError()) {
161       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
162                                               "Could not read profile %0: %1");
163       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
164         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
165                                   << EI.message();
166       });
167     } else
168       PGOReader = std::move(ReaderOrErr.get());
169   }
170 
171   // If coverage mapping generation is enabled, create the
172   // CoverageMappingModuleGen object.
173   if (CodeGenOpts.CoverageMapping)
174     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
175 }
176 
177 CodeGenModule::~CodeGenModule() {}
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192   case ObjCRuntime::WatchOS:
193     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
194     return;
195   }
196   llvm_unreachable("bad runtime kind");
197 }
198 
199 void CodeGenModule::createOpenCLRuntime() {
200   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
201 }
202 
203 void CodeGenModule::createOpenMPRuntime() {
204   // Select a specialized code generation class based on the target, if any.
205   // If it does not exist use the default implementation.
206   switch (getTriple().getArch()) {
207   case llvm::Triple::nvptx:
208   case llvm::Triple::nvptx64:
209     assert(getLangOpts().OpenMPIsDevice &&
210            "OpenMP NVPTX is only prepared to deal with device code.");
211     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
212     break;
213   default:
214     if (LangOpts.OpenMPSimd)
215       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
216     else
217       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
218     break;
219   }
220 }
221 
222 void CodeGenModule::createCUDARuntime() {
223   CUDARuntime.reset(CreateNVCUDARuntime(*this));
224 }
225 
226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
227   Replacements[Name] = C;
228 }
229 
230 void CodeGenModule::applyReplacements() {
231   for (auto &I : Replacements) {
232     StringRef MangledName = I.first();
233     llvm::Constant *Replacement = I.second;
234     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
235     if (!Entry)
236       continue;
237     auto *OldF = cast<llvm::Function>(Entry);
238     auto *NewF = dyn_cast<llvm::Function>(Replacement);
239     if (!NewF) {
240       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
241         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
242       } else {
243         auto *CE = cast<llvm::ConstantExpr>(Replacement);
244         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
245                CE->getOpcode() == llvm::Instruction::GetElementPtr);
246         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
247       }
248     }
249 
250     // Replace old with new, but keep the old order.
251     OldF->replaceAllUsesWith(Replacement);
252     if (NewF) {
253       NewF->removeFromParent();
254       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
255                                                        NewF);
256     }
257     OldF->eraseFromParent();
258   }
259 }
260 
261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
262   GlobalValReplacements.push_back(std::make_pair(GV, C));
263 }
264 
265 void CodeGenModule::applyGlobalValReplacements() {
266   for (auto &I : GlobalValReplacements) {
267     llvm::GlobalValue *GV = I.first;
268     llvm::Constant *C = I.second;
269 
270     GV->replaceAllUsesWith(C);
271     GV->eraseFromParent();
272   }
273 }
274 
275 // This is only used in aliases that we created and we know they have a
276 // linear structure.
277 static const llvm::GlobalObject *getAliasedGlobal(
278     const llvm::GlobalIndirectSymbol &GIS) {
279   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
280   const llvm::Constant *C = &GIS;
281   for (;;) {
282     C = C->stripPointerCasts();
283     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
284       return GO;
285     // stripPointerCasts will not walk over weak aliases.
286     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
287     if (!GIS2)
288       return nullptr;
289     if (!Visited.insert(GIS2).second)
290       return nullptr;
291     C = GIS2->getIndirectSymbol();
292   }
293 }
294 
295 void CodeGenModule::checkAliases() {
296   // Check if the constructed aliases are well formed. It is really unfortunate
297   // that we have to do this in CodeGen, but we only construct mangled names
298   // and aliases during codegen.
299   bool Error = false;
300   DiagnosticsEngine &Diags = getDiags();
301   for (const GlobalDecl &GD : Aliases) {
302     const auto *D = cast<ValueDecl>(GD.getDecl());
303     SourceLocation Location;
304     bool IsIFunc = D->hasAttr<IFuncAttr>();
305     if (const Attr *A = D->getDefiningAttr())
306       Location = A->getLocation();
307     else
308       llvm_unreachable("Not an alias or ifunc?");
309     StringRef MangledName = getMangledName(GD);
310     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
311     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
312     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
313     if (!GV) {
314       Error = true;
315       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
316     } else if (GV->isDeclaration()) {
317       Error = true;
318       Diags.Report(Location, diag::err_alias_to_undefined)
319           << IsIFunc << IsIFunc;
320     } else if (IsIFunc) {
321       // Check resolver function type.
322       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
323           GV->getType()->getPointerElementType());
324       assert(FTy);
325       if (!FTy->getReturnType()->isPointerTy())
326         Diags.Report(Location, diag::err_ifunc_resolver_return);
327     }
328 
329     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
330     llvm::GlobalValue *AliaseeGV;
331     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
332       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
333     else
334       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
335 
336     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
337       StringRef AliasSection = SA->getName();
338       if (AliasSection != AliaseeGV->getSection())
339         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
340             << AliasSection << IsIFunc << IsIFunc;
341     }
342 
343     // We have to handle alias to weak aliases in here. LLVM itself disallows
344     // this since the object semantics would not match the IL one. For
345     // compatibility with gcc we implement it by just pointing the alias
346     // to its aliasee's aliasee. We also warn, since the user is probably
347     // expecting the link to be weak.
348     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
349       if (GA->isInterposable()) {
350         Diags.Report(Location, diag::warn_alias_to_weak_alias)
351             << GV->getName() << GA->getName() << IsIFunc;
352         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
353             GA->getIndirectSymbol(), Alias->getType());
354         Alias->setIndirectSymbol(Aliasee);
355       }
356     }
357   }
358   if (!Error)
359     return;
360 
361   for (const GlobalDecl &GD : Aliases) {
362     StringRef MangledName = getMangledName(GD);
363     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
364     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
365     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
366     Alias->eraseFromParent();
367   }
368 }
369 
370 void CodeGenModule::clear() {
371   DeferredDeclsToEmit.clear();
372   if (OpenMPRuntime)
373     OpenMPRuntime->clear();
374 }
375 
376 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
377                                        StringRef MainFile) {
378   if (!hasDiagnostics())
379     return;
380   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
381     if (MainFile.empty())
382       MainFile = "<stdin>";
383     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
384   } else {
385     if (Mismatched > 0)
386       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
387 
388     if (Missing > 0)
389       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
390   }
391 }
392 
393 void CodeGenModule::Release() {
394   EmitDeferred();
395   EmitVTablesOpportunistically();
396   applyGlobalValReplacements();
397   applyReplacements();
398   checkAliases();
399   emitMultiVersionFunctions();
400   EmitCXXGlobalInitFunc();
401   EmitCXXGlobalDtorFunc();
402   registerGlobalDtorsWithAtExit();
403   EmitCXXThreadLocalInitFunc();
404   if (ObjCRuntime)
405     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
406       AddGlobalCtor(ObjCInitFunction);
407   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
408       CUDARuntime) {
409     if (llvm::Function *CudaCtorFunction =
410             CUDARuntime->makeModuleCtorFunction())
411       AddGlobalCtor(CudaCtorFunction);
412   }
413   if (OpenMPRuntime) {
414     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
415             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
416       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
417     }
418     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
419     OpenMPRuntime->clear();
420   }
421   if (PGOReader) {
422     getModule().setProfileSummary(
423         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
424         llvm::ProfileSummary::PSK_Instr);
425     if (PGOStats.hasDiagnostics())
426       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
427   }
428   EmitCtorList(GlobalCtors, "llvm.global_ctors");
429   EmitCtorList(GlobalDtors, "llvm.global_dtors");
430   EmitGlobalAnnotations();
431   EmitStaticExternCAliases();
432   EmitDeferredUnusedCoverageMappings();
433   if (CoverageMapping)
434     CoverageMapping->emit();
435   if (CodeGenOpts.SanitizeCfiCrossDso) {
436     CodeGenFunction(*this).EmitCfiCheckFail();
437     CodeGenFunction(*this).EmitCfiCheckStub();
438   }
439   emitAtAvailableLinkGuard();
440   emitLLVMUsed();
441   if (SanStats)
442     SanStats->finish();
443 
444   if (CodeGenOpts.Autolink &&
445       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
446     EmitModuleLinkOptions();
447   }
448 
449   // On ELF we pass the dependent library specifiers directly to the linker
450   // without manipulating them. This is in contrast to other platforms where
451   // they are mapped to a specific linker option by the compiler. This
452   // difference is a result of the greater variety of ELF linkers and the fact
453   // that ELF linkers tend to handle libraries in a more complicated fashion
454   // than on other platforms. This forces us to defer handling the dependent
455   // libs to the linker.
456   //
457   // CUDA/HIP device and host libraries are different. Currently there is no
458   // way to differentiate dependent libraries for host or device. Existing
459   // usage of #pragma comment(lib, *) is intended for host libraries on
460   // Windows. Therefore emit llvm.dependent-libraries only for host.
461   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
462     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
463     for (auto *MD : ELFDependentLibraries)
464       NMD->addOperand(MD);
465   }
466 
467   // Record mregparm value now so it is visible through rest of codegen.
468   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
469     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
470                               CodeGenOpts.NumRegisterParameters);
471 
472   if (CodeGenOpts.DwarfVersion) {
473     // We actually want the latest version when there are conflicts.
474     // We can change from Warning to Latest if such mode is supported.
475     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
476                               CodeGenOpts.DwarfVersion);
477   }
478   if (CodeGenOpts.EmitCodeView) {
479     // Indicate that we want CodeView in the metadata.
480     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
481   }
482   if (CodeGenOpts.CodeViewGHash) {
483     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
484   }
485   if (CodeGenOpts.ControlFlowGuard) {
486     // Function ID tables and checks for Control Flow Guard (cfguard=2).
487     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
488   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
489     // Function ID tables for Control Flow Guard (cfguard=1).
490     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
491   }
492   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
493     // We don't support LTO with 2 with different StrictVTablePointers
494     // FIXME: we could support it by stripping all the information introduced
495     // by StrictVTablePointers.
496 
497     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
498 
499     llvm::Metadata *Ops[2] = {
500               llvm::MDString::get(VMContext, "StrictVTablePointers"),
501               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
502                   llvm::Type::getInt32Ty(VMContext), 1))};
503 
504     getModule().addModuleFlag(llvm::Module::Require,
505                               "StrictVTablePointersRequirement",
506                               llvm::MDNode::get(VMContext, Ops));
507   }
508   if (DebugInfo)
509     // We support a single version in the linked module. The LLVM
510     // parser will drop debug info with a different version number
511     // (and warn about it, too).
512     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
513                               llvm::DEBUG_METADATA_VERSION);
514 
515   // We need to record the widths of enums and wchar_t, so that we can generate
516   // the correct build attributes in the ARM backend. wchar_size is also used by
517   // TargetLibraryInfo.
518   uint64_t WCharWidth =
519       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
520   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
521 
522   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
523   if (   Arch == llvm::Triple::arm
524       || Arch == llvm::Triple::armeb
525       || Arch == llvm::Triple::thumb
526       || Arch == llvm::Triple::thumbeb) {
527     // The minimum width of an enum in bytes
528     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
529     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
530   }
531 
532   if (CodeGenOpts.SanitizeCfiCrossDso) {
533     // Indicate that we want cross-DSO control flow integrity checks.
534     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
535   }
536 
537   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
538     getModule().addModuleFlag(llvm::Module::Override,
539                               "CFI Canonical Jump Tables",
540                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
541   }
542 
543   if (CodeGenOpts.CFProtectionReturn &&
544       Target.checkCFProtectionReturnSupported(getDiags())) {
545     // Indicate that we want to instrument return control flow protection.
546     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
547                               1);
548   }
549 
550   if (CodeGenOpts.CFProtectionBranch &&
551       Target.checkCFProtectionBranchSupported(getDiags())) {
552     // Indicate that we want to instrument branch control flow protection.
553     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
554                               1);
555   }
556 
557   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
558     // Indicate whether __nvvm_reflect should be configured to flush denormal
559     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
560     // property.)
561     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
562                               CodeGenOpts.FlushDenorm ? 1 : 0);
563   }
564 
565   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
566   if (LangOpts.OpenCL) {
567     EmitOpenCLMetadata();
568     // Emit SPIR version.
569     if (getTriple().isSPIR()) {
570       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
571       // opencl.spir.version named metadata.
572       // C++ is backwards compatible with OpenCL v2.0.
573       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
574       llvm::Metadata *SPIRVerElts[] = {
575           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
576               Int32Ty, Version / 100)),
577           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
578               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
579       llvm::NamedMDNode *SPIRVerMD =
580           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
581       llvm::LLVMContext &Ctx = TheModule.getContext();
582       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
583     }
584   }
585 
586   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
587     assert(PLevel < 3 && "Invalid PIC Level");
588     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
589     if (Context.getLangOpts().PIE)
590       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
591   }
592 
593   if (getCodeGenOpts().CodeModel.size() > 0) {
594     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
595                   .Case("tiny", llvm::CodeModel::Tiny)
596                   .Case("small", llvm::CodeModel::Small)
597                   .Case("kernel", llvm::CodeModel::Kernel)
598                   .Case("medium", llvm::CodeModel::Medium)
599                   .Case("large", llvm::CodeModel::Large)
600                   .Default(~0u);
601     if (CM != ~0u) {
602       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
603       getModule().setCodeModel(codeModel);
604     }
605   }
606 
607   if (CodeGenOpts.NoPLT)
608     getModule().setRtLibUseGOT();
609 
610   SimplifyPersonality();
611 
612   if (getCodeGenOpts().EmitDeclMetadata)
613     EmitDeclMetadata();
614 
615   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
616     EmitCoverageFile();
617 
618   if (DebugInfo)
619     DebugInfo->finalize();
620 
621   if (getCodeGenOpts().EmitVersionIdentMetadata)
622     EmitVersionIdentMetadata();
623 
624   if (!getCodeGenOpts().RecordCommandLine.empty())
625     EmitCommandLineMetadata();
626 
627   EmitTargetMetadata();
628 }
629 
630 void CodeGenModule::EmitOpenCLMetadata() {
631   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
632   // opencl.ocl.version named metadata node.
633   // C++ is backwards compatible with OpenCL v2.0.
634   // FIXME: We might need to add CXX version at some point too?
635   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
636   llvm::Metadata *OCLVerElts[] = {
637       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
638           Int32Ty, Version / 100)),
639       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
640           Int32Ty, (Version % 100) / 10))};
641   llvm::NamedMDNode *OCLVerMD =
642       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
643   llvm::LLVMContext &Ctx = TheModule.getContext();
644   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
645 }
646 
647 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
648   // Make sure that this type is translated.
649   Types.UpdateCompletedType(TD);
650 }
651 
652 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
653   // Make sure that this type is translated.
654   Types.RefreshTypeCacheForClass(RD);
655 }
656 
657 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
658   if (!TBAA)
659     return nullptr;
660   return TBAA->getTypeInfo(QTy);
661 }
662 
663 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
664   if (!TBAA)
665     return TBAAAccessInfo();
666   return TBAA->getAccessInfo(AccessType);
667 }
668 
669 TBAAAccessInfo
670 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
671   if (!TBAA)
672     return TBAAAccessInfo();
673   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
674 }
675 
676 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
677   if (!TBAA)
678     return nullptr;
679   return TBAA->getTBAAStructInfo(QTy);
680 }
681 
682 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
683   if (!TBAA)
684     return nullptr;
685   return TBAA->getBaseTypeInfo(QTy);
686 }
687 
688 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
689   if (!TBAA)
690     return nullptr;
691   return TBAA->getAccessTagInfo(Info);
692 }
693 
694 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
695                                                    TBAAAccessInfo TargetInfo) {
696   if (!TBAA)
697     return TBAAAccessInfo();
698   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
699 }
700 
701 TBAAAccessInfo
702 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
703                                                    TBAAAccessInfo InfoB) {
704   if (!TBAA)
705     return TBAAAccessInfo();
706   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
707 }
708 
709 TBAAAccessInfo
710 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
711                                               TBAAAccessInfo SrcInfo) {
712   if (!TBAA)
713     return TBAAAccessInfo();
714   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
715 }
716 
717 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
718                                                 TBAAAccessInfo TBAAInfo) {
719   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
720     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
721 }
722 
723 void CodeGenModule::DecorateInstructionWithInvariantGroup(
724     llvm::Instruction *I, const CXXRecordDecl *RD) {
725   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
726                  llvm::MDNode::get(getLLVMContext(), {}));
727 }
728 
729 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
730   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
731   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
732 }
733 
734 /// ErrorUnsupported - Print out an error that codegen doesn't support the
735 /// specified stmt yet.
736 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
737   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
738                                                "cannot compile this %0 yet");
739   std::string Msg = Type;
740   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
741       << Msg << S->getSourceRange();
742 }
743 
744 /// ErrorUnsupported - Print out an error that codegen doesn't support the
745 /// specified decl yet.
746 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
747   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
748                                                "cannot compile this %0 yet");
749   std::string Msg = Type;
750   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
751 }
752 
753 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
754   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
755 }
756 
757 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
758                                         const NamedDecl *D) const {
759   if (GV->hasDLLImportStorageClass())
760     return;
761   // Internal definitions always have default visibility.
762   if (GV->hasLocalLinkage()) {
763     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
764     return;
765   }
766   if (!D)
767     return;
768   // Set visibility for definitions, and for declarations if requested globally
769   // or set explicitly.
770   LinkageInfo LV = D->getLinkageAndVisibility();
771   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
772       !GV->isDeclarationForLinker())
773     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
774 }
775 
776 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
777                                  llvm::GlobalValue *GV) {
778   if (GV->hasLocalLinkage())
779     return true;
780 
781   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
782     return true;
783 
784   // DLLImport explicitly marks the GV as external.
785   if (GV->hasDLLImportStorageClass())
786     return false;
787 
788   const llvm::Triple &TT = CGM.getTriple();
789   if (TT.isWindowsGNUEnvironment()) {
790     // In MinGW, variables without DLLImport can still be automatically
791     // imported from a DLL by the linker; don't mark variables that
792     // potentially could come from another DLL as DSO local.
793     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
794         !GV->isThreadLocal())
795       return false;
796   }
797 
798   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
799   // remain unresolved in the link, they can be resolved to zero, which is
800   // outside the current DSO.
801   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
802     return false;
803 
804   // Every other GV is local on COFF.
805   // Make an exception for windows OS in the triple: Some firmware builds use
806   // *-win32-macho triples. This (accidentally?) produced windows relocations
807   // without GOT tables in older clang versions; Keep this behaviour.
808   // FIXME: even thread local variables?
809   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
810     return true;
811 
812   // Only handle COFF and ELF for now.
813   if (!TT.isOSBinFormatELF())
814     return false;
815 
816   // If this is not an executable, don't assume anything is local.
817   const auto &CGOpts = CGM.getCodeGenOpts();
818   llvm::Reloc::Model RM = CGOpts.RelocationModel;
819   const auto &LOpts = CGM.getLangOpts();
820   if (RM != llvm::Reloc::Static && !LOpts.PIE && !LOpts.OpenMPIsDevice)
821     return false;
822 
823   // A definition cannot be preempted from an executable.
824   if (!GV->isDeclarationForLinker())
825     return true;
826 
827   // Most PIC code sequences that assume that a symbol is local cannot produce a
828   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
829   // depended, it seems worth it to handle it here.
830   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
831     return false;
832 
833   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
834   llvm::Triple::ArchType Arch = TT.getArch();
835   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
836       Arch == llvm::Triple::ppc64le)
837     return false;
838 
839   // If we can use copy relocations we can assume it is local.
840   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
841     if (!Var->isThreadLocal() &&
842         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
843       return true;
844 
845   // If we can use a plt entry as the symbol address we can assume it
846   // is local.
847   // FIXME: This should work for PIE, but the gold linker doesn't support it.
848   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
849     return true;
850 
851   // Otherwise don't assue it is local.
852   return false;
853 }
854 
855 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
856   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
857 }
858 
859 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
860                                           GlobalDecl GD) const {
861   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
862   // C++ destructors have a few C++ ABI specific special cases.
863   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
864     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
865     return;
866   }
867   setDLLImportDLLExport(GV, D);
868 }
869 
870 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
871                                           const NamedDecl *D) const {
872   if (D && D->isExternallyVisible()) {
873     if (D->hasAttr<DLLImportAttr>())
874       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
875     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
876       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
877   }
878 }
879 
880 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
881                                     GlobalDecl GD) const {
882   setDLLImportDLLExport(GV, GD);
883   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
884 }
885 
886 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
887                                     const NamedDecl *D) const {
888   setDLLImportDLLExport(GV, D);
889   setGVPropertiesAux(GV, D);
890 }
891 
892 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
893                                        const NamedDecl *D) const {
894   setGlobalVisibility(GV, D);
895   setDSOLocal(GV);
896   GV->setPartition(CodeGenOpts.SymbolPartition);
897 }
898 
899 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
900   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
901       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
902       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
903       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
904       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
905 }
906 
907 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
908     CodeGenOptions::TLSModel M) {
909   switch (M) {
910   case CodeGenOptions::GeneralDynamicTLSModel:
911     return llvm::GlobalVariable::GeneralDynamicTLSModel;
912   case CodeGenOptions::LocalDynamicTLSModel:
913     return llvm::GlobalVariable::LocalDynamicTLSModel;
914   case CodeGenOptions::InitialExecTLSModel:
915     return llvm::GlobalVariable::InitialExecTLSModel;
916   case CodeGenOptions::LocalExecTLSModel:
917     return llvm::GlobalVariable::LocalExecTLSModel;
918   }
919   llvm_unreachable("Invalid TLS model!");
920 }
921 
922 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
923   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
924 
925   llvm::GlobalValue::ThreadLocalMode TLM;
926   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
927 
928   // Override the TLS model if it is explicitly specified.
929   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
930     TLM = GetLLVMTLSModel(Attr->getModel());
931   }
932 
933   GV->setThreadLocalMode(TLM);
934 }
935 
936 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
937                                           StringRef Name) {
938   const TargetInfo &Target = CGM.getTarget();
939   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
940 }
941 
942 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
943                                                  const CPUSpecificAttr *Attr,
944                                                  unsigned CPUIndex,
945                                                  raw_ostream &Out) {
946   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
947   // supported.
948   if (Attr)
949     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
950   else if (CGM.getTarget().supportsIFunc())
951     Out << ".resolver";
952 }
953 
954 static void AppendTargetMangling(const CodeGenModule &CGM,
955                                  const TargetAttr *Attr, raw_ostream &Out) {
956   if (Attr->isDefaultVersion())
957     return;
958 
959   Out << '.';
960   const TargetInfo &Target = CGM.getTarget();
961   TargetAttr::ParsedTargetAttr Info =
962       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
963         // Multiversioning doesn't allow "no-${feature}", so we can
964         // only have "+" prefixes here.
965         assert(LHS.startswith("+") && RHS.startswith("+") &&
966                "Features should always have a prefix.");
967         return Target.multiVersionSortPriority(LHS.substr(1)) >
968                Target.multiVersionSortPriority(RHS.substr(1));
969       });
970 
971   bool IsFirst = true;
972 
973   if (!Info.Architecture.empty()) {
974     IsFirst = false;
975     Out << "arch_" << Info.Architecture;
976   }
977 
978   for (StringRef Feat : Info.Features) {
979     if (!IsFirst)
980       Out << '_';
981     IsFirst = false;
982     Out << Feat.substr(1);
983   }
984 }
985 
986 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
987                                       const NamedDecl *ND,
988                                       bool OmitMultiVersionMangling = false) {
989   SmallString<256> Buffer;
990   llvm::raw_svector_ostream Out(Buffer);
991   MangleContext &MC = CGM.getCXXABI().getMangleContext();
992   if (MC.shouldMangleDeclName(ND)) {
993     llvm::raw_svector_ostream Out(Buffer);
994     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
995       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
996     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
997       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
998     else
999       MC.mangleName(ND, Out);
1000   } else {
1001     IdentifierInfo *II = ND->getIdentifier();
1002     assert(II && "Attempt to mangle unnamed decl.");
1003     const auto *FD = dyn_cast<FunctionDecl>(ND);
1004 
1005     if (FD &&
1006         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1007       llvm::raw_svector_ostream Out(Buffer);
1008       Out << "__regcall3__" << II->getName();
1009     } else {
1010       Out << II->getName();
1011     }
1012   }
1013 
1014   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1015     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1016       switch (FD->getMultiVersionKind()) {
1017       case MultiVersionKind::CPUDispatch:
1018       case MultiVersionKind::CPUSpecific:
1019         AppendCPUSpecificCPUDispatchMangling(CGM,
1020                                              FD->getAttr<CPUSpecificAttr>(),
1021                                              GD.getMultiVersionIndex(), Out);
1022         break;
1023       case MultiVersionKind::Target:
1024         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1025         break;
1026       case MultiVersionKind::None:
1027         llvm_unreachable("None multiversion type isn't valid here");
1028       }
1029     }
1030 
1031   return Out.str();
1032 }
1033 
1034 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1035                                             const FunctionDecl *FD) {
1036   if (!FD->isMultiVersion())
1037     return;
1038 
1039   // Get the name of what this would be without the 'target' attribute.  This
1040   // allows us to lookup the version that was emitted when this wasn't a
1041   // multiversion function.
1042   std::string NonTargetName =
1043       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1044   GlobalDecl OtherGD;
1045   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1046     assert(OtherGD.getCanonicalDecl()
1047                .getDecl()
1048                ->getAsFunction()
1049                ->isMultiVersion() &&
1050            "Other GD should now be a multiversioned function");
1051     // OtherFD is the version of this function that was mangled BEFORE
1052     // becoming a MultiVersion function.  It potentially needs to be updated.
1053     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1054                                       .getDecl()
1055                                       ->getAsFunction()
1056                                       ->getMostRecentDecl();
1057     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1058     // This is so that if the initial version was already the 'default'
1059     // version, we don't try to update it.
1060     if (OtherName != NonTargetName) {
1061       // Remove instead of erase, since others may have stored the StringRef
1062       // to this.
1063       const auto ExistingRecord = Manglings.find(NonTargetName);
1064       if (ExistingRecord != std::end(Manglings))
1065         Manglings.remove(&(*ExistingRecord));
1066       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1067       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1068       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1069         Entry->setName(OtherName);
1070     }
1071   }
1072 }
1073 
1074 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1075   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1076 
1077   // Some ABIs don't have constructor variants.  Make sure that base and
1078   // complete constructors get mangled the same.
1079   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1080     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1081       CXXCtorType OrigCtorType = GD.getCtorType();
1082       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1083       if (OrigCtorType == Ctor_Base)
1084         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1085     }
1086   }
1087 
1088   auto FoundName = MangledDeclNames.find(CanonicalGD);
1089   if (FoundName != MangledDeclNames.end())
1090     return FoundName->second;
1091 
1092   // Keep the first result in the case of a mangling collision.
1093   const auto *ND = cast<NamedDecl>(GD.getDecl());
1094   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1095 
1096   // Adjust kernel stub mangling as we may need to be able to differentiate
1097   // them from the kernel itself (e.g., for HIP).
1098   if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1099     if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1100       MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1101 
1102   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1103   return MangledDeclNames[CanonicalGD] = Result.first->first();
1104 }
1105 
1106 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1107                                              const BlockDecl *BD) {
1108   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1109   const Decl *D = GD.getDecl();
1110 
1111   SmallString<256> Buffer;
1112   llvm::raw_svector_ostream Out(Buffer);
1113   if (!D)
1114     MangleCtx.mangleGlobalBlock(BD,
1115       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1116   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1117     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1118   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1119     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1120   else
1121     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1122 
1123   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1124   return Result.first->first();
1125 }
1126 
1127 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1128   return getModule().getNamedValue(Name);
1129 }
1130 
1131 /// AddGlobalCtor - Add a function to the list that will be called before
1132 /// main() runs.
1133 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1134                                   llvm::Constant *AssociatedData) {
1135   // FIXME: Type coercion of void()* types.
1136   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1137 }
1138 
1139 /// AddGlobalDtor - Add a function to the list that will be called
1140 /// when the module is unloaded.
1141 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1142   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1143     DtorsUsingAtExit[Priority].push_back(Dtor);
1144     return;
1145   }
1146 
1147   // FIXME: Type coercion of void()* types.
1148   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1149 }
1150 
1151 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1152   if (Fns.empty()) return;
1153 
1154   // Ctor function type is void()*.
1155   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1156   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1157       TheModule.getDataLayout().getProgramAddressSpace());
1158 
1159   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1160   llvm::StructType *CtorStructTy = llvm::StructType::get(
1161       Int32Ty, CtorPFTy, VoidPtrTy);
1162 
1163   // Construct the constructor and destructor arrays.
1164   ConstantInitBuilder builder(*this);
1165   auto ctors = builder.beginArray(CtorStructTy);
1166   for (const auto &I : Fns) {
1167     auto ctor = ctors.beginStruct(CtorStructTy);
1168     ctor.addInt(Int32Ty, I.Priority);
1169     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1170     if (I.AssociatedData)
1171       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1172     else
1173       ctor.addNullPointer(VoidPtrTy);
1174     ctor.finishAndAddTo(ctors);
1175   }
1176 
1177   auto list =
1178     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1179                                 /*constant*/ false,
1180                                 llvm::GlobalValue::AppendingLinkage);
1181 
1182   // The LTO linker doesn't seem to like it when we set an alignment
1183   // on appending variables.  Take it off as a workaround.
1184   list->setAlignment(llvm::None);
1185 
1186   Fns.clear();
1187 }
1188 
1189 llvm::GlobalValue::LinkageTypes
1190 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1191   const auto *D = cast<FunctionDecl>(GD.getDecl());
1192 
1193   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1194 
1195   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1196     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1197 
1198   if (isa<CXXConstructorDecl>(D) &&
1199       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1200       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1201     // Our approach to inheriting constructors is fundamentally different from
1202     // that used by the MS ABI, so keep our inheriting constructor thunks
1203     // internal rather than trying to pick an unambiguous mangling for them.
1204     return llvm::GlobalValue::InternalLinkage;
1205   }
1206 
1207   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1208 }
1209 
1210 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1211   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1212   if (!MDS) return nullptr;
1213 
1214   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1215 }
1216 
1217 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1218                                               const CGFunctionInfo &Info,
1219                                               llvm::Function *F) {
1220   unsigned CallingConv;
1221   llvm::AttributeList PAL;
1222   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1223   F->setAttributes(PAL);
1224   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1225 }
1226 
1227 static void removeImageAccessQualifier(std::string& TyName) {
1228   std::string ReadOnlyQual("__read_only");
1229   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1230   if (ReadOnlyPos != std::string::npos)
1231     // "+ 1" for the space after access qualifier.
1232     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1233   else {
1234     std::string WriteOnlyQual("__write_only");
1235     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1236     if (WriteOnlyPos != std::string::npos)
1237       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1238     else {
1239       std::string ReadWriteQual("__read_write");
1240       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1241       if (ReadWritePos != std::string::npos)
1242         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1243     }
1244   }
1245 }
1246 
1247 // Returns the address space id that should be produced to the
1248 // kernel_arg_addr_space metadata. This is always fixed to the ids
1249 // as specified in the SPIR 2.0 specification in order to differentiate
1250 // for example in clGetKernelArgInfo() implementation between the address
1251 // spaces with targets without unique mapping to the OpenCL address spaces
1252 // (basically all single AS CPUs).
1253 static unsigned ArgInfoAddressSpace(LangAS AS) {
1254   switch (AS) {
1255   case LangAS::opencl_global:   return 1;
1256   case LangAS::opencl_constant: return 2;
1257   case LangAS::opencl_local:    return 3;
1258   case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1259   default:
1260     return 0; // Assume private.
1261   }
1262 }
1263 
1264 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1265                                          const FunctionDecl *FD,
1266                                          CodeGenFunction *CGF) {
1267   assert(((FD && CGF) || (!FD && !CGF)) &&
1268          "Incorrect use - FD and CGF should either be both null or not!");
1269   // Create MDNodes that represent the kernel arg metadata.
1270   // Each MDNode is a list in the form of "key", N number of values which is
1271   // the same number of values as their are kernel arguments.
1272 
1273   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1274 
1275   // MDNode for the kernel argument address space qualifiers.
1276   SmallVector<llvm::Metadata *, 8> addressQuals;
1277 
1278   // MDNode for the kernel argument access qualifiers (images only).
1279   SmallVector<llvm::Metadata *, 8> accessQuals;
1280 
1281   // MDNode for the kernel argument type names.
1282   SmallVector<llvm::Metadata *, 8> argTypeNames;
1283 
1284   // MDNode for the kernel argument base type names.
1285   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1286 
1287   // MDNode for the kernel argument type qualifiers.
1288   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1289 
1290   // MDNode for the kernel argument names.
1291   SmallVector<llvm::Metadata *, 8> argNames;
1292 
1293   if (FD && CGF)
1294     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1295       const ParmVarDecl *parm = FD->getParamDecl(i);
1296       QualType ty = parm->getType();
1297       std::string typeQuals;
1298 
1299       if (ty->isPointerType()) {
1300         QualType pointeeTy = ty->getPointeeType();
1301 
1302         // Get address qualifier.
1303         addressQuals.push_back(
1304             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1305                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1306 
1307         // Get argument type name.
1308         std::string typeName =
1309             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1310 
1311         // Turn "unsigned type" to "utype"
1312         std::string::size_type pos = typeName.find("unsigned");
1313         if (pointeeTy.isCanonical() && pos != std::string::npos)
1314           typeName.erase(pos + 1, 8);
1315 
1316         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1317 
1318         std::string baseTypeName =
1319             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1320                 Policy) +
1321             "*";
1322 
1323         // Turn "unsigned type" to "utype"
1324         pos = baseTypeName.find("unsigned");
1325         if (pos != std::string::npos)
1326           baseTypeName.erase(pos + 1, 8);
1327 
1328         argBaseTypeNames.push_back(
1329             llvm::MDString::get(VMContext, baseTypeName));
1330 
1331         // Get argument type qualifiers:
1332         if (ty.isRestrictQualified())
1333           typeQuals = "restrict";
1334         if (pointeeTy.isConstQualified() ||
1335             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1336           typeQuals += typeQuals.empty() ? "const" : " const";
1337         if (pointeeTy.isVolatileQualified())
1338           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1339       } else {
1340         uint32_t AddrSpc = 0;
1341         bool isPipe = ty->isPipeType();
1342         if (ty->isImageType() || isPipe)
1343           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1344 
1345         addressQuals.push_back(
1346             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1347 
1348         // Get argument type name.
1349         std::string typeName;
1350         if (isPipe)
1351           typeName = ty.getCanonicalType()
1352                          ->getAs<PipeType>()
1353                          ->getElementType()
1354                          .getAsString(Policy);
1355         else
1356           typeName = ty.getUnqualifiedType().getAsString(Policy);
1357 
1358         // Turn "unsigned type" to "utype"
1359         std::string::size_type pos = typeName.find("unsigned");
1360         if (ty.isCanonical() && pos != std::string::npos)
1361           typeName.erase(pos + 1, 8);
1362 
1363         std::string baseTypeName;
1364         if (isPipe)
1365           baseTypeName = ty.getCanonicalType()
1366                              ->getAs<PipeType>()
1367                              ->getElementType()
1368                              .getCanonicalType()
1369                              .getAsString(Policy);
1370         else
1371           baseTypeName =
1372               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1373 
1374         // Remove access qualifiers on images
1375         // (as they are inseparable from type in clang implementation,
1376         // but OpenCL spec provides a special query to get access qualifier
1377         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1378         if (ty->isImageType()) {
1379           removeImageAccessQualifier(typeName);
1380           removeImageAccessQualifier(baseTypeName);
1381         }
1382 
1383         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1384 
1385         // Turn "unsigned type" to "utype"
1386         pos = baseTypeName.find("unsigned");
1387         if (pos != std::string::npos)
1388           baseTypeName.erase(pos + 1, 8);
1389 
1390         argBaseTypeNames.push_back(
1391             llvm::MDString::get(VMContext, baseTypeName));
1392 
1393         if (isPipe)
1394           typeQuals = "pipe";
1395       }
1396 
1397       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1398 
1399       // Get image and pipe access qualifier:
1400       if (ty->isImageType() || ty->isPipeType()) {
1401         const Decl *PDecl = parm;
1402         if (auto *TD = dyn_cast<TypedefType>(ty))
1403           PDecl = TD->getDecl();
1404         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1405         if (A && A->isWriteOnly())
1406           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1407         else if (A && A->isReadWrite())
1408           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1409         else
1410           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1411       } else
1412         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1413 
1414       // Get argument name.
1415       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1416     }
1417 
1418   Fn->setMetadata("kernel_arg_addr_space",
1419                   llvm::MDNode::get(VMContext, addressQuals));
1420   Fn->setMetadata("kernel_arg_access_qual",
1421                   llvm::MDNode::get(VMContext, accessQuals));
1422   Fn->setMetadata("kernel_arg_type",
1423                   llvm::MDNode::get(VMContext, argTypeNames));
1424   Fn->setMetadata("kernel_arg_base_type",
1425                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1426   Fn->setMetadata("kernel_arg_type_qual",
1427                   llvm::MDNode::get(VMContext, argTypeQuals));
1428   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1429     Fn->setMetadata("kernel_arg_name",
1430                     llvm::MDNode::get(VMContext, argNames));
1431 }
1432 
1433 /// Determines whether the language options require us to model
1434 /// unwind exceptions.  We treat -fexceptions as mandating this
1435 /// except under the fragile ObjC ABI with only ObjC exceptions
1436 /// enabled.  This means, for example, that C with -fexceptions
1437 /// enables this.
1438 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1439   // If exceptions are completely disabled, obviously this is false.
1440   if (!LangOpts.Exceptions) return false;
1441 
1442   // If C++ exceptions are enabled, this is true.
1443   if (LangOpts.CXXExceptions) return true;
1444 
1445   // If ObjC exceptions are enabled, this depends on the ABI.
1446   if (LangOpts.ObjCExceptions) {
1447     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1448   }
1449 
1450   return true;
1451 }
1452 
1453 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1454                                                       const CXXMethodDecl *MD) {
1455   // Check that the type metadata can ever actually be used by a call.
1456   if (!CGM.getCodeGenOpts().LTOUnit ||
1457       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1458     return false;
1459 
1460   // Only functions whose address can be taken with a member function pointer
1461   // need this sort of type metadata.
1462   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1463          !isa<CXXDestructorDecl>(MD);
1464 }
1465 
1466 std::vector<const CXXRecordDecl *>
1467 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1468   llvm::SetVector<const CXXRecordDecl *> MostBases;
1469 
1470   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1471   CollectMostBases = [&](const CXXRecordDecl *RD) {
1472     if (RD->getNumBases() == 0)
1473       MostBases.insert(RD);
1474     for (const CXXBaseSpecifier &B : RD->bases())
1475       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1476   };
1477   CollectMostBases(RD);
1478   return MostBases.takeVector();
1479 }
1480 
1481 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1482                                                            llvm::Function *F) {
1483   llvm::AttrBuilder B;
1484 
1485   if (CodeGenOpts.UnwindTables)
1486     B.addAttribute(llvm::Attribute::UWTable);
1487 
1488   if (!hasUnwindExceptions(LangOpts))
1489     B.addAttribute(llvm::Attribute::NoUnwind);
1490 
1491   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1492     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1493       B.addAttribute(llvm::Attribute::StackProtect);
1494     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1495       B.addAttribute(llvm::Attribute::StackProtectStrong);
1496     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1497       B.addAttribute(llvm::Attribute::StackProtectReq);
1498   }
1499 
1500   if (!D) {
1501     // If we don't have a declaration to control inlining, the function isn't
1502     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1503     // disabled, mark the function as noinline.
1504     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1505         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1506       B.addAttribute(llvm::Attribute::NoInline);
1507 
1508     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1509     return;
1510   }
1511 
1512   // Track whether we need to add the optnone LLVM attribute,
1513   // starting with the default for this optimization level.
1514   bool ShouldAddOptNone =
1515       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1516   // We can't add optnone in the following cases, it won't pass the verifier.
1517   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1518   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1519 
1520   // Add optnone, but do so only if the function isn't always_inline.
1521   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1522       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1523     B.addAttribute(llvm::Attribute::OptimizeNone);
1524 
1525     // OptimizeNone implies noinline; we should not be inlining such functions.
1526     B.addAttribute(llvm::Attribute::NoInline);
1527 
1528     // We still need to handle naked functions even though optnone subsumes
1529     // much of their semantics.
1530     if (D->hasAttr<NakedAttr>())
1531       B.addAttribute(llvm::Attribute::Naked);
1532 
1533     // OptimizeNone wins over OptimizeForSize and MinSize.
1534     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1535     F->removeFnAttr(llvm::Attribute::MinSize);
1536   } else if (D->hasAttr<NakedAttr>()) {
1537     // Naked implies noinline: we should not be inlining such functions.
1538     B.addAttribute(llvm::Attribute::Naked);
1539     B.addAttribute(llvm::Attribute::NoInline);
1540   } else if (D->hasAttr<NoDuplicateAttr>()) {
1541     B.addAttribute(llvm::Attribute::NoDuplicate);
1542   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1543     // Add noinline if the function isn't always_inline.
1544     B.addAttribute(llvm::Attribute::NoInline);
1545   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1546              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1547     // (noinline wins over always_inline, and we can't specify both in IR)
1548     B.addAttribute(llvm::Attribute::AlwaysInline);
1549   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1550     // If we're not inlining, then force everything that isn't always_inline to
1551     // carry an explicit noinline attribute.
1552     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1553       B.addAttribute(llvm::Attribute::NoInline);
1554   } else {
1555     // Otherwise, propagate the inline hint attribute and potentially use its
1556     // absence to mark things as noinline.
1557     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1558       // Search function and template pattern redeclarations for inline.
1559       auto CheckForInline = [](const FunctionDecl *FD) {
1560         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1561           return Redecl->isInlineSpecified();
1562         };
1563         if (any_of(FD->redecls(), CheckRedeclForInline))
1564           return true;
1565         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1566         if (!Pattern)
1567           return false;
1568         return any_of(Pattern->redecls(), CheckRedeclForInline);
1569       };
1570       if (CheckForInline(FD)) {
1571         B.addAttribute(llvm::Attribute::InlineHint);
1572       } else if (CodeGenOpts.getInlining() ==
1573                      CodeGenOptions::OnlyHintInlining &&
1574                  !FD->isInlined() &&
1575                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1576         B.addAttribute(llvm::Attribute::NoInline);
1577       }
1578     }
1579   }
1580 
1581   // Add other optimization related attributes if we are optimizing this
1582   // function.
1583   if (!D->hasAttr<OptimizeNoneAttr>()) {
1584     if (D->hasAttr<ColdAttr>()) {
1585       if (!ShouldAddOptNone)
1586         B.addAttribute(llvm::Attribute::OptimizeForSize);
1587       B.addAttribute(llvm::Attribute::Cold);
1588     }
1589 
1590     if (D->hasAttr<MinSizeAttr>())
1591       B.addAttribute(llvm::Attribute::MinSize);
1592   }
1593 
1594   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1595 
1596   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1597   if (alignment)
1598     F->setAlignment(llvm::Align(alignment));
1599 
1600   if (!D->hasAttr<AlignedAttr>())
1601     if (LangOpts.FunctionAlignment)
1602       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1603 
1604   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1605   // reserve a bit for differentiating between virtual and non-virtual member
1606   // functions. If the current target's C++ ABI requires this and this is a
1607   // member function, set its alignment accordingly.
1608   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1609     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1610       F->setAlignment(llvm::Align(2));
1611   }
1612 
1613   // In the cross-dso CFI mode with canonical jump tables, we want !type
1614   // attributes on definitions only.
1615   if (CodeGenOpts.SanitizeCfiCrossDso &&
1616       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1617     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1618       // Skip available_externally functions. They won't be codegen'ed in the
1619       // current module anyway.
1620       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1621         CreateFunctionTypeMetadataForIcall(FD, F);
1622     }
1623   }
1624 
1625   // Emit type metadata on member functions for member function pointer checks.
1626   // These are only ever necessary on definitions; we're guaranteed that the
1627   // definition will be present in the LTO unit as a result of LTO visibility.
1628   auto *MD = dyn_cast<CXXMethodDecl>(D);
1629   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1630     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1631       llvm::Metadata *Id =
1632           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1633               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1634       F->addTypeMetadata(0, Id);
1635     }
1636   }
1637 }
1638 
1639 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1640   const Decl *D = GD.getDecl();
1641   if (dyn_cast_or_null<NamedDecl>(D))
1642     setGVProperties(GV, GD);
1643   else
1644     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1645 
1646   if (D && D->hasAttr<UsedAttr>())
1647     addUsedGlobal(GV);
1648 
1649   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1650     const auto *VD = cast<VarDecl>(D);
1651     if (VD->getType().isConstQualified() &&
1652         VD->getStorageDuration() == SD_Static)
1653       addUsedGlobal(GV);
1654   }
1655 }
1656 
1657 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1658                                                 llvm::AttrBuilder &Attrs) {
1659   // Add target-cpu and target-features attributes to functions. If
1660   // we have a decl for the function and it has a target attribute then
1661   // parse that and add it to the feature set.
1662   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1663   std::vector<std::string> Features;
1664   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1665   FD = FD ? FD->getMostRecentDecl() : FD;
1666   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1667   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1668   bool AddedAttr = false;
1669   if (TD || SD) {
1670     llvm::StringMap<bool> FeatureMap;
1671     getFunctionFeatureMap(FeatureMap, GD);
1672 
1673     // Produce the canonical string for this set of features.
1674     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1675       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1676 
1677     // Now add the target-cpu and target-features to the function.
1678     // While we populated the feature map above, we still need to
1679     // get and parse the target attribute so we can get the cpu for
1680     // the function.
1681     if (TD) {
1682       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1683       if (ParsedAttr.Architecture != "" &&
1684           getTarget().isValidCPUName(ParsedAttr.Architecture))
1685         TargetCPU = ParsedAttr.Architecture;
1686     }
1687   } else {
1688     // Otherwise just add the existing target cpu and target features to the
1689     // function.
1690     Features = getTarget().getTargetOpts().Features;
1691   }
1692 
1693   if (TargetCPU != "") {
1694     Attrs.addAttribute("target-cpu", TargetCPU);
1695     AddedAttr = true;
1696   }
1697   if (!Features.empty()) {
1698     llvm::sort(Features);
1699     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1700     AddedAttr = true;
1701   }
1702 
1703   return AddedAttr;
1704 }
1705 
1706 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1707                                           llvm::GlobalObject *GO) {
1708   const Decl *D = GD.getDecl();
1709   SetCommonAttributes(GD, GO);
1710 
1711   if (D) {
1712     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1713       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1714         GV->addAttribute("bss-section", SA->getName());
1715       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1716         GV->addAttribute("data-section", SA->getName());
1717       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1718         GV->addAttribute("rodata-section", SA->getName());
1719       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1720         GV->addAttribute("relro-section", SA->getName());
1721     }
1722 
1723     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1724       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1725         if (!D->getAttr<SectionAttr>())
1726           F->addFnAttr("implicit-section-name", SA->getName());
1727 
1728       llvm::AttrBuilder Attrs;
1729       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1730         // We know that GetCPUAndFeaturesAttributes will always have the
1731         // newest set, since it has the newest possible FunctionDecl, so the
1732         // new ones should replace the old.
1733         F->removeFnAttr("target-cpu");
1734         F->removeFnAttr("target-features");
1735         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1736       }
1737     }
1738 
1739     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1740       GO->setSection(CSA->getName());
1741     else if (const auto *SA = D->getAttr<SectionAttr>())
1742       GO->setSection(SA->getName());
1743   }
1744 
1745   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1746 }
1747 
1748 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1749                                                   llvm::Function *F,
1750                                                   const CGFunctionInfo &FI) {
1751   const Decl *D = GD.getDecl();
1752   SetLLVMFunctionAttributes(GD, FI, F);
1753   SetLLVMFunctionAttributesForDefinition(D, F);
1754 
1755   F->setLinkage(llvm::Function::InternalLinkage);
1756 
1757   setNonAliasAttributes(GD, F);
1758 }
1759 
1760 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1761   // Set linkage and visibility in case we never see a definition.
1762   LinkageInfo LV = ND->getLinkageAndVisibility();
1763   // Don't set internal linkage on declarations.
1764   // "extern_weak" is overloaded in LLVM; we probably should have
1765   // separate linkage types for this.
1766   if (isExternallyVisible(LV.getLinkage()) &&
1767       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1768     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1769 }
1770 
1771 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1772                                                        llvm::Function *F) {
1773   // Only if we are checking indirect calls.
1774   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1775     return;
1776 
1777   // Non-static class methods are handled via vtable or member function pointer
1778   // checks elsewhere.
1779   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1780     return;
1781 
1782   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1783   F->addTypeMetadata(0, MD);
1784   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1785 
1786   // Emit a hash-based bit set entry for cross-DSO calls.
1787   if (CodeGenOpts.SanitizeCfiCrossDso)
1788     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1789       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1790 }
1791 
1792 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1793                                           bool IsIncompleteFunction,
1794                                           bool IsThunk) {
1795 
1796   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1797     // If this is an intrinsic function, set the function's attributes
1798     // to the intrinsic's attributes.
1799     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1800     return;
1801   }
1802 
1803   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1804 
1805   if (!IsIncompleteFunction)
1806     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1807 
1808   // Add the Returned attribute for "this", except for iOS 5 and earlier
1809   // where substantial code, including the libstdc++ dylib, was compiled with
1810   // GCC and does not actually return "this".
1811   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1812       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1813     assert(!F->arg_empty() &&
1814            F->arg_begin()->getType()
1815              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1816            "unexpected this return");
1817     F->addAttribute(1, llvm::Attribute::Returned);
1818   }
1819 
1820   // Only a few attributes are set on declarations; these may later be
1821   // overridden by a definition.
1822 
1823   setLinkageForGV(F, FD);
1824   setGVProperties(F, FD);
1825 
1826   // Setup target-specific attributes.
1827   if (!IsIncompleteFunction && F->isDeclaration())
1828     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1829 
1830   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1831     F->setSection(CSA->getName());
1832   else if (const auto *SA = FD->getAttr<SectionAttr>())
1833      F->setSection(SA->getName());
1834 
1835   if (FD->isReplaceableGlobalAllocationFunction()) {
1836     // A replaceable global allocation function does not act like a builtin by
1837     // default, only if it is invoked by a new-expression or delete-expression.
1838     F->addAttribute(llvm::AttributeList::FunctionIndex,
1839                     llvm::Attribute::NoBuiltin);
1840 
1841     // A sane operator new returns a non-aliasing pointer.
1842     // FIXME: Also add NonNull attribute to the return value
1843     // for the non-nothrow forms?
1844     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1845     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1846         (Kind == OO_New || Kind == OO_Array_New))
1847       F->addAttribute(llvm::AttributeList::ReturnIndex,
1848                       llvm::Attribute::NoAlias);
1849   }
1850 
1851   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1852     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1853   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1854     if (MD->isVirtual())
1855       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1856 
1857   // Don't emit entries for function declarations in the cross-DSO mode. This
1858   // is handled with better precision by the receiving DSO. But if jump tables
1859   // are non-canonical then we need type metadata in order to produce the local
1860   // jump table.
1861   if (!CodeGenOpts.SanitizeCfiCrossDso ||
1862       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1863     CreateFunctionTypeMetadataForIcall(FD, F);
1864 
1865   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1866     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1867 
1868   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1869     // Annotate the callback behavior as metadata:
1870     //  - The callback callee (as argument number).
1871     //  - The callback payloads (as argument numbers).
1872     llvm::LLVMContext &Ctx = F->getContext();
1873     llvm::MDBuilder MDB(Ctx);
1874 
1875     // The payload indices are all but the first one in the encoding. The first
1876     // identifies the callback callee.
1877     int CalleeIdx = *CB->encoding_begin();
1878     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1879     F->addMetadata(llvm::LLVMContext::MD_callback,
1880                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1881                                                CalleeIdx, PayloadIndices,
1882                                                /* VarArgsArePassed */ false)}));
1883   }
1884 }
1885 
1886 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1887   assert(!GV->isDeclaration() &&
1888          "Only globals with definition can force usage.");
1889   LLVMUsed.emplace_back(GV);
1890 }
1891 
1892 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1893   assert(!GV->isDeclaration() &&
1894          "Only globals with definition can force usage.");
1895   LLVMCompilerUsed.emplace_back(GV);
1896 }
1897 
1898 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1899                      std::vector<llvm::WeakTrackingVH> &List) {
1900   // Don't create llvm.used if there is no need.
1901   if (List.empty())
1902     return;
1903 
1904   // Convert List to what ConstantArray needs.
1905   SmallVector<llvm::Constant*, 8> UsedArray;
1906   UsedArray.resize(List.size());
1907   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1908     UsedArray[i] =
1909         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1910             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1911   }
1912 
1913   if (UsedArray.empty())
1914     return;
1915   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1916 
1917   auto *GV = new llvm::GlobalVariable(
1918       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1919       llvm::ConstantArray::get(ATy, UsedArray), Name);
1920 
1921   GV->setSection("llvm.metadata");
1922 }
1923 
1924 void CodeGenModule::emitLLVMUsed() {
1925   emitUsed(*this, "llvm.used", LLVMUsed);
1926   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1927 }
1928 
1929 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1930   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1931   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1932 }
1933 
1934 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1935   llvm::SmallString<32> Opt;
1936   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1937   if (Opt.empty())
1938     return;
1939   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1940   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1941 }
1942 
1943 void CodeGenModule::AddDependentLib(StringRef Lib) {
1944   auto &C = getLLVMContext();
1945   if (getTarget().getTriple().isOSBinFormatELF()) {
1946       ELFDependentLibraries.push_back(
1947         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1948     return;
1949   }
1950 
1951   llvm::SmallString<24> Opt;
1952   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1953   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1954   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1955 }
1956 
1957 /// Add link options implied by the given module, including modules
1958 /// it depends on, using a postorder walk.
1959 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1960                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1961                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1962   // Import this module's parent.
1963   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1964     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1965   }
1966 
1967   // Import this module's dependencies.
1968   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1969     if (Visited.insert(Mod->Imports[I - 1]).second)
1970       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1971   }
1972 
1973   // Add linker options to link against the libraries/frameworks
1974   // described by this module.
1975   llvm::LLVMContext &Context = CGM.getLLVMContext();
1976   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
1977 
1978   // For modules that use export_as for linking, use that module
1979   // name instead.
1980   if (Mod->UseExportAsModuleLinkName)
1981     return;
1982 
1983   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1984     // Link against a framework.  Frameworks are currently Darwin only, so we
1985     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1986     if (Mod->LinkLibraries[I-1].IsFramework) {
1987       llvm::Metadata *Args[2] = {
1988           llvm::MDString::get(Context, "-framework"),
1989           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1990 
1991       Metadata.push_back(llvm::MDNode::get(Context, Args));
1992       continue;
1993     }
1994 
1995     // Link against a library.
1996     if (IsELF) {
1997       llvm::Metadata *Args[2] = {
1998           llvm::MDString::get(Context, "lib"),
1999           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2000       };
2001       Metadata.push_back(llvm::MDNode::get(Context, Args));
2002     } else {
2003       llvm::SmallString<24> Opt;
2004       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2005           Mod->LinkLibraries[I - 1].Library, Opt);
2006       auto *OptString = llvm::MDString::get(Context, Opt);
2007       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2008     }
2009   }
2010 }
2011 
2012 void CodeGenModule::EmitModuleLinkOptions() {
2013   // Collect the set of all of the modules we want to visit to emit link
2014   // options, which is essentially the imported modules and all of their
2015   // non-explicit child modules.
2016   llvm::SetVector<clang::Module *> LinkModules;
2017   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2018   SmallVector<clang::Module *, 16> Stack;
2019 
2020   // Seed the stack with imported modules.
2021   for (Module *M : ImportedModules) {
2022     // Do not add any link flags when an implementation TU of a module imports
2023     // a header of that same module.
2024     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2025         !getLangOpts().isCompilingModule())
2026       continue;
2027     if (Visited.insert(M).second)
2028       Stack.push_back(M);
2029   }
2030 
2031   // Find all of the modules to import, making a little effort to prune
2032   // non-leaf modules.
2033   while (!Stack.empty()) {
2034     clang::Module *Mod = Stack.pop_back_val();
2035 
2036     bool AnyChildren = false;
2037 
2038     // Visit the submodules of this module.
2039     for (const auto &SM : Mod->submodules()) {
2040       // Skip explicit children; they need to be explicitly imported to be
2041       // linked against.
2042       if (SM->IsExplicit)
2043         continue;
2044 
2045       if (Visited.insert(SM).second) {
2046         Stack.push_back(SM);
2047         AnyChildren = true;
2048       }
2049     }
2050 
2051     // We didn't find any children, so add this module to the list of
2052     // modules to link against.
2053     if (!AnyChildren) {
2054       LinkModules.insert(Mod);
2055     }
2056   }
2057 
2058   // Add link options for all of the imported modules in reverse topological
2059   // order.  We don't do anything to try to order import link flags with respect
2060   // to linker options inserted by things like #pragma comment().
2061   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2062   Visited.clear();
2063   for (Module *M : LinkModules)
2064     if (Visited.insert(M).second)
2065       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2066   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2067   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2068 
2069   // Add the linker options metadata flag.
2070   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2071   for (auto *MD : LinkerOptionsMetadata)
2072     NMD->addOperand(MD);
2073 }
2074 
2075 void CodeGenModule::EmitDeferred() {
2076   // Emit deferred declare target declarations.
2077   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2078     getOpenMPRuntime().emitDeferredTargetDecls();
2079 
2080   // Emit code for any potentially referenced deferred decls.  Since a
2081   // previously unused static decl may become used during the generation of code
2082   // for a static function, iterate until no changes are made.
2083 
2084   if (!DeferredVTables.empty()) {
2085     EmitDeferredVTables();
2086 
2087     // Emitting a vtable doesn't directly cause more vtables to
2088     // become deferred, although it can cause functions to be
2089     // emitted that then need those vtables.
2090     assert(DeferredVTables.empty());
2091   }
2092 
2093   // Stop if we're out of both deferred vtables and deferred declarations.
2094   if (DeferredDeclsToEmit.empty())
2095     return;
2096 
2097   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2098   // work, it will not interfere with this.
2099   std::vector<GlobalDecl> CurDeclsToEmit;
2100   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2101 
2102   for (GlobalDecl &D : CurDeclsToEmit) {
2103     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2104     // to get GlobalValue with exactly the type we need, not something that
2105     // might had been created for another decl with the same mangled name but
2106     // different type.
2107     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2108         GetAddrOfGlobal(D, ForDefinition));
2109 
2110     // In case of different address spaces, we may still get a cast, even with
2111     // IsForDefinition equal to true. Query mangled names table to get
2112     // GlobalValue.
2113     if (!GV)
2114       GV = GetGlobalValue(getMangledName(D));
2115 
2116     // Make sure GetGlobalValue returned non-null.
2117     assert(GV);
2118 
2119     // Check to see if we've already emitted this.  This is necessary
2120     // for a couple of reasons: first, decls can end up in the
2121     // deferred-decls queue multiple times, and second, decls can end
2122     // up with definitions in unusual ways (e.g. by an extern inline
2123     // function acquiring a strong function redefinition).  Just
2124     // ignore these cases.
2125     if (!GV->isDeclaration())
2126       continue;
2127 
2128     // If this is OpenMP, check if it is legal to emit this global normally.
2129     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2130       continue;
2131 
2132     // Otherwise, emit the definition and move on to the next one.
2133     EmitGlobalDefinition(D, GV);
2134 
2135     // If we found out that we need to emit more decls, do that recursively.
2136     // This has the advantage that the decls are emitted in a DFS and related
2137     // ones are close together, which is convenient for testing.
2138     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2139       EmitDeferred();
2140       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2141     }
2142   }
2143 }
2144 
2145 void CodeGenModule::EmitVTablesOpportunistically() {
2146   // Try to emit external vtables as available_externally if they have emitted
2147   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2148   // is not allowed to create new references to things that need to be emitted
2149   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2150 
2151   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2152          && "Only emit opportunistic vtables with optimizations");
2153 
2154   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2155     assert(getVTables().isVTableExternal(RD) &&
2156            "This queue should only contain external vtables");
2157     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2158       VTables.GenerateClassData(RD);
2159   }
2160   OpportunisticVTables.clear();
2161 }
2162 
2163 void CodeGenModule::EmitGlobalAnnotations() {
2164   if (Annotations.empty())
2165     return;
2166 
2167   // Create a new global variable for the ConstantStruct in the Module.
2168   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2169     Annotations[0]->getType(), Annotations.size()), Annotations);
2170   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2171                                       llvm::GlobalValue::AppendingLinkage,
2172                                       Array, "llvm.global.annotations");
2173   gv->setSection(AnnotationSection);
2174 }
2175 
2176 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2177   llvm::Constant *&AStr = AnnotationStrings[Str];
2178   if (AStr)
2179     return AStr;
2180 
2181   // Not found yet, create a new global.
2182   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2183   auto *gv =
2184       new llvm::GlobalVariable(getModule(), s->getType(), true,
2185                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2186   gv->setSection(AnnotationSection);
2187   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2188   AStr = gv;
2189   return gv;
2190 }
2191 
2192 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2193   SourceManager &SM = getContext().getSourceManager();
2194   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2195   if (PLoc.isValid())
2196     return EmitAnnotationString(PLoc.getFilename());
2197   return EmitAnnotationString(SM.getBufferName(Loc));
2198 }
2199 
2200 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2201   SourceManager &SM = getContext().getSourceManager();
2202   PresumedLoc PLoc = SM.getPresumedLoc(L);
2203   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2204     SM.getExpansionLineNumber(L);
2205   return llvm::ConstantInt::get(Int32Ty, LineNo);
2206 }
2207 
2208 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2209                                                 const AnnotateAttr *AA,
2210                                                 SourceLocation L) {
2211   // Get the globals for file name, annotation, and the line number.
2212   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2213                  *UnitGV = EmitAnnotationUnit(L),
2214                  *LineNoCst = EmitAnnotationLineNo(L);
2215 
2216   // Create the ConstantStruct for the global annotation.
2217   llvm::Constant *Fields[4] = {
2218     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
2219     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2220     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2221     LineNoCst
2222   };
2223   return llvm::ConstantStruct::getAnon(Fields);
2224 }
2225 
2226 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2227                                          llvm::GlobalValue *GV) {
2228   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2229   // Get the struct elements for these annotations.
2230   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2231     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2232 }
2233 
2234 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2235                                            llvm::Function *Fn,
2236                                            SourceLocation Loc) const {
2237   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2238   // Blacklist by function name.
2239   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2240     return true;
2241   // Blacklist by location.
2242   if (Loc.isValid())
2243     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2244   // If location is unknown, this may be a compiler-generated function. Assume
2245   // it's located in the main file.
2246   auto &SM = Context.getSourceManager();
2247   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2248     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2249   }
2250   return false;
2251 }
2252 
2253 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2254                                            SourceLocation Loc, QualType Ty,
2255                                            StringRef Category) const {
2256   // For now globals can be blacklisted only in ASan and KASan.
2257   const SanitizerMask EnabledAsanMask =
2258       LangOpts.Sanitize.Mask &
2259       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2260        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2261        SanitizerKind::MemTag);
2262   if (!EnabledAsanMask)
2263     return false;
2264   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2265   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2266     return true;
2267   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2268     return true;
2269   // Check global type.
2270   if (!Ty.isNull()) {
2271     // Drill down the array types: if global variable of a fixed type is
2272     // blacklisted, we also don't instrument arrays of them.
2273     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2274       Ty = AT->getElementType();
2275     Ty = Ty.getCanonicalType().getUnqualifiedType();
2276     // We allow to blacklist only record types (classes, structs etc.)
2277     if (Ty->isRecordType()) {
2278       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2279       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2280         return true;
2281     }
2282   }
2283   return false;
2284 }
2285 
2286 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2287                                    StringRef Category) const {
2288   const auto &XRayFilter = getContext().getXRayFilter();
2289   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2290   auto Attr = ImbueAttr::NONE;
2291   if (Loc.isValid())
2292     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2293   if (Attr == ImbueAttr::NONE)
2294     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2295   switch (Attr) {
2296   case ImbueAttr::NONE:
2297     return false;
2298   case ImbueAttr::ALWAYS:
2299     Fn->addFnAttr("function-instrument", "xray-always");
2300     break;
2301   case ImbueAttr::ALWAYS_ARG1:
2302     Fn->addFnAttr("function-instrument", "xray-always");
2303     Fn->addFnAttr("xray-log-args", "1");
2304     break;
2305   case ImbueAttr::NEVER:
2306     Fn->addFnAttr("function-instrument", "xray-never");
2307     break;
2308   }
2309   return true;
2310 }
2311 
2312 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2313   // Never defer when EmitAllDecls is specified.
2314   if (LangOpts.EmitAllDecls)
2315     return true;
2316 
2317   if (CodeGenOpts.KeepStaticConsts) {
2318     const auto *VD = dyn_cast<VarDecl>(Global);
2319     if (VD && VD->getType().isConstQualified() &&
2320         VD->getStorageDuration() == SD_Static)
2321       return true;
2322   }
2323 
2324   return getContext().DeclMustBeEmitted(Global);
2325 }
2326 
2327 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2328   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2329     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2330       // Implicit template instantiations may change linkage if they are later
2331       // explicitly instantiated, so they should not be emitted eagerly.
2332       return false;
2333     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2334     // not emit them eagerly unless we sure that the function must be emitted on
2335     // the host.
2336     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2337         !LangOpts.OpenMPIsDevice &&
2338         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2339         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2340       return false;
2341   }
2342   if (const auto *VD = dyn_cast<VarDecl>(Global))
2343     if (Context.getInlineVariableDefinitionKind(VD) ==
2344         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2345       // A definition of an inline constexpr static data member may change
2346       // linkage later if it's redeclared outside the class.
2347       return false;
2348   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2349   // codegen for global variables, because they may be marked as threadprivate.
2350   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2351       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2352       !isTypeConstant(Global->getType(), false) &&
2353       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2354     return false;
2355 
2356   return true;
2357 }
2358 
2359 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2360     const CXXUuidofExpr* E) {
2361   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2362   // well-formed.
2363   StringRef Uuid = E->getUuidStr();
2364   std::string Name = "_GUID_" + Uuid.lower();
2365   std::replace(Name.begin(), Name.end(), '-', '_');
2366 
2367   // The UUID descriptor should be pointer aligned.
2368   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2369 
2370   // Look for an existing global.
2371   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2372     return ConstantAddress(GV, Alignment);
2373 
2374   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2375   assert(Init && "failed to initialize as constant");
2376 
2377   auto *GV = new llvm::GlobalVariable(
2378       getModule(), Init->getType(),
2379       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2380   if (supportsCOMDAT())
2381     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2382   setDSOLocal(GV);
2383   return ConstantAddress(GV, Alignment);
2384 }
2385 
2386 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2387   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2388   assert(AA && "No alias?");
2389 
2390   CharUnits Alignment = getContext().getDeclAlign(VD);
2391   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2392 
2393   // See if there is already something with the target's name in the module.
2394   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2395   if (Entry) {
2396     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2397     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2398     return ConstantAddress(Ptr, Alignment);
2399   }
2400 
2401   llvm::Constant *Aliasee;
2402   if (isa<llvm::FunctionType>(DeclTy))
2403     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2404                                       GlobalDecl(cast<FunctionDecl>(VD)),
2405                                       /*ForVTable=*/false);
2406   else
2407     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2408                                     llvm::PointerType::getUnqual(DeclTy),
2409                                     nullptr);
2410 
2411   auto *F = cast<llvm::GlobalValue>(Aliasee);
2412   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2413   WeakRefReferences.insert(F);
2414 
2415   return ConstantAddress(Aliasee, Alignment);
2416 }
2417 
2418 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2419   const auto *Global = cast<ValueDecl>(GD.getDecl());
2420 
2421   // Weak references don't produce any output by themselves.
2422   if (Global->hasAttr<WeakRefAttr>())
2423     return;
2424 
2425   // If this is an alias definition (which otherwise looks like a declaration)
2426   // emit it now.
2427   if (Global->hasAttr<AliasAttr>())
2428     return EmitAliasDefinition(GD);
2429 
2430   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2431   if (Global->hasAttr<IFuncAttr>())
2432     return emitIFuncDefinition(GD);
2433 
2434   // If this is a cpu_dispatch multiversion function, emit the resolver.
2435   if (Global->hasAttr<CPUDispatchAttr>())
2436     return emitCPUDispatchDefinition(GD);
2437 
2438   // If this is CUDA, be selective about which declarations we emit.
2439   if (LangOpts.CUDA) {
2440     if (LangOpts.CUDAIsDevice) {
2441       if (!Global->hasAttr<CUDADeviceAttr>() &&
2442           !Global->hasAttr<CUDAGlobalAttr>() &&
2443           !Global->hasAttr<CUDAConstantAttr>() &&
2444           !Global->hasAttr<CUDASharedAttr>() &&
2445           !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2446         return;
2447     } else {
2448       // We need to emit host-side 'shadows' for all global
2449       // device-side variables because the CUDA runtime needs their
2450       // size and host-side address in order to provide access to
2451       // their device-side incarnations.
2452 
2453       // So device-only functions are the only things we skip.
2454       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2455           Global->hasAttr<CUDADeviceAttr>())
2456         return;
2457 
2458       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2459              "Expected Variable or Function");
2460     }
2461   }
2462 
2463   if (LangOpts.OpenMP) {
2464     // If this is OpenMP, check if it is legal to emit this global normally.
2465     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2466       return;
2467     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2468       if (MustBeEmitted(Global))
2469         EmitOMPDeclareReduction(DRD);
2470       return;
2471     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2472       if (MustBeEmitted(Global))
2473         EmitOMPDeclareMapper(DMD);
2474       return;
2475     }
2476   }
2477 
2478   // Ignore declarations, they will be emitted on their first use.
2479   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2480     // Forward declarations are emitted lazily on first use.
2481     if (!FD->doesThisDeclarationHaveABody()) {
2482       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2483         return;
2484 
2485       StringRef MangledName = getMangledName(GD);
2486 
2487       // Compute the function info and LLVM type.
2488       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2489       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2490 
2491       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2492                               /*DontDefer=*/false);
2493       return;
2494     }
2495   } else {
2496     const auto *VD = cast<VarDecl>(Global);
2497     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2498     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2499         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2500       if (LangOpts.OpenMP) {
2501         // Emit declaration of the must-be-emitted declare target variable.
2502         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2503                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2504           bool UnifiedMemoryEnabled =
2505               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2506           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2507               !UnifiedMemoryEnabled) {
2508             (void)GetAddrOfGlobalVar(VD);
2509           } else {
2510             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2511                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2512                      UnifiedMemoryEnabled)) &&
2513                    "Link clause or to clause with unified memory expected.");
2514             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2515           }
2516 
2517           return;
2518         }
2519       }
2520       // If this declaration may have caused an inline variable definition to
2521       // change linkage, make sure that it's emitted.
2522       if (Context.getInlineVariableDefinitionKind(VD) ==
2523           ASTContext::InlineVariableDefinitionKind::Strong)
2524         GetAddrOfGlobalVar(VD);
2525       return;
2526     }
2527   }
2528 
2529   // Defer code generation to first use when possible, e.g. if this is an inline
2530   // function. If the global must always be emitted, do it eagerly if possible
2531   // to benefit from cache locality.
2532   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2533     // Emit the definition if it can't be deferred.
2534     EmitGlobalDefinition(GD);
2535     return;
2536   }
2537 
2538     // Check if this must be emitted as declare variant.
2539   if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2540       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2541     return;
2542 
2543   // If we're deferring emission of a C++ variable with an
2544   // initializer, remember the order in which it appeared in the file.
2545   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2546       cast<VarDecl>(Global)->hasInit()) {
2547     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2548     CXXGlobalInits.push_back(nullptr);
2549   }
2550 
2551   StringRef MangledName = getMangledName(GD);
2552   if (GetGlobalValue(MangledName) != nullptr) {
2553     // The value has already been used and should therefore be emitted.
2554     addDeferredDeclToEmit(GD);
2555   } else if (MustBeEmitted(Global)) {
2556     // The value must be emitted, but cannot be emitted eagerly.
2557     assert(!MayBeEmittedEagerly(Global));
2558     addDeferredDeclToEmit(GD);
2559   } else {
2560     // Otherwise, remember that we saw a deferred decl with this name.  The
2561     // first use of the mangled name will cause it to move into
2562     // DeferredDeclsToEmit.
2563     DeferredDecls[MangledName] = GD;
2564   }
2565 }
2566 
2567 // Check if T is a class type with a destructor that's not dllimport.
2568 static bool HasNonDllImportDtor(QualType T) {
2569   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2570     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2571       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2572         return true;
2573 
2574   return false;
2575 }
2576 
2577 namespace {
2578   struct FunctionIsDirectlyRecursive
2579       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2580     const StringRef Name;
2581     const Builtin::Context &BI;
2582     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2583         : Name(N), BI(C) {}
2584 
2585     bool VisitCallExpr(const CallExpr *E) {
2586       const FunctionDecl *FD = E->getDirectCallee();
2587       if (!FD)
2588         return false;
2589       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2590       if (Attr && Name == Attr->getLabel())
2591         return true;
2592       unsigned BuiltinID = FD->getBuiltinID();
2593       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2594         return false;
2595       StringRef BuiltinName = BI.getName(BuiltinID);
2596       if (BuiltinName.startswith("__builtin_") &&
2597           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2598         return true;
2599       }
2600       return false;
2601     }
2602 
2603     bool VisitStmt(const Stmt *S) {
2604       for (const Stmt *Child : S->children())
2605         if (Child && this->Visit(Child))
2606           return true;
2607       return false;
2608     }
2609   };
2610 
2611   // Make sure we're not referencing non-imported vars or functions.
2612   struct DLLImportFunctionVisitor
2613       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2614     bool SafeToInline = true;
2615 
2616     bool shouldVisitImplicitCode() const { return true; }
2617 
2618     bool VisitVarDecl(VarDecl *VD) {
2619       if (VD->getTLSKind()) {
2620         // A thread-local variable cannot be imported.
2621         SafeToInline = false;
2622         return SafeToInline;
2623       }
2624 
2625       // A variable definition might imply a destructor call.
2626       if (VD->isThisDeclarationADefinition())
2627         SafeToInline = !HasNonDllImportDtor(VD->getType());
2628 
2629       return SafeToInline;
2630     }
2631 
2632     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2633       if (const auto *D = E->getTemporary()->getDestructor())
2634         SafeToInline = D->hasAttr<DLLImportAttr>();
2635       return SafeToInline;
2636     }
2637 
2638     bool VisitDeclRefExpr(DeclRefExpr *E) {
2639       ValueDecl *VD = E->getDecl();
2640       if (isa<FunctionDecl>(VD))
2641         SafeToInline = VD->hasAttr<DLLImportAttr>();
2642       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2643         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2644       return SafeToInline;
2645     }
2646 
2647     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2648       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2649       return SafeToInline;
2650     }
2651 
2652     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2653       CXXMethodDecl *M = E->getMethodDecl();
2654       if (!M) {
2655         // Call through a pointer to member function. This is safe to inline.
2656         SafeToInline = true;
2657       } else {
2658         SafeToInline = M->hasAttr<DLLImportAttr>();
2659       }
2660       return SafeToInline;
2661     }
2662 
2663     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2664       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2665       return SafeToInline;
2666     }
2667 
2668     bool VisitCXXNewExpr(CXXNewExpr *E) {
2669       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2670       return SafeToInline;
2671     }
2672   };
2673 }
2674 
2675 // isTriviallyRecursive - Check if this function calls another
2676 // decl that, because of the asm attribute or the other decl being a builtin,
2677 // ends up pointing to itself.
2678 bool
2679 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2680   StringRef Name;
2681   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2682     // asm labels are a special kind of mangling we have to support.
2683     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2684     if (!Attr)
2685       return false;
2686     Name = Attr->getLabel();
2687   } else {
2688     Name = FD->getName();
2689   }
2690 
2691   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2692   const Stmt *Body = FD->getBody();
2693   return Body ? Walker.Visit(Body) : false;
2694 }
2695 
2696 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2697   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2698     return true;
2699   const auto *F = cast<FunctionDecl>(GD.getDecl());
2700   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2701     return false;
2702 
2703   if (F->hasAttr<DLLImportAttr>()) {
2704     // Check whether it would be safe to inline this dllimport function.
2705     DLLImportFunctionVisitor Visitor;
2706     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2707     if (!Visitor.SafeToInline)
2708       return false;
2709 
2710     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2711       // Implicit destructor invocations aren't captured in the AST, so the
2712       // check above can't see them. Check for them manually here.
2713       for (const Decl *Member : Dtor->getParent()->decls())
2714         if (isa<FieldDecl>(Member))
2715           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2716             return false;
2717       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2718         if (HasNonDllImportDtor(B.getType()))
2719           return false;
2720     }
2721   }
2722 
2723   // PR9614. Avoid cases where the source code is lying to us. An available
2724   // externally function should have an equivalent function somewhere else,
2725   // but a function that calls itself is clearly not equivalent to the real
2726   // implementation.
2727   // This happens in glibc's btowc and in some configure checks.
2728   return !isTriviallyRecursive(F);
2729 }
2730 
2731 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2732   return CodeGenOpts.OptimizationLevel > 0;
2733 }
2734 
2735 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2736                                                        llvm::GlobalValue *GV) {
2737   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2738 
2739   if (FD->isCPUSpecificMultiVersion()) {
2740     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2741     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2742       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2743     // Requires multiple emits.
2744   } else
2745     EmitGlobalFunctionDefinition(GD, GV);
2746 }
2747 
2748 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2749     GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2750   assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2751          OpenMPRuntime && "Expected OpenMP device mode.");
2752   const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2753 
2754   // Compute the function info and LLVM type.
2755   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2756   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2757 
2758   // Get or create the prototype for the function.
2759   if (!GV || (GV->getType()->getElementType() != Ty)) {
2760     GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2761         getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2762         /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2763         ForDefinition));
2764     SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2765                           /*IsIncompleteFunction=*/false,
2766                           /*IsThunk=*/false);
2767   }
2768   // We need to set linkage and visibility on the function before
2769   // generating code for it because various parts of IR generation
2770   // want to propagate this information down (e.g. to local static
2771   // declarations).
2772   auto *Fn = cast<llvm::Function>(GV);
2773   setFunctionLinkage(OldGD, Fn);
2774 
2775   // FIXME: this is redundant with part of
2776   // setFunctionDefinitionAttributes
2777   setGVProperties(Fn, OldGD);
2778 
2779   MaybeHandleStaticInExternC(D, Fn);
2780 
2781   maybeSetTrivialComdat(*D, *Fn);
2782 
2783   CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2784 
2785   setNonAliasAttributes(OldGD, Fn);
2786   SetLLVMFunctionAttributesForDefinition(D, Fn);
2787 
2788   if (D->hasAttr<AnnotateAttr>())
2789     AddGlobalAnnotations(D, Fn);
2790 }
2791 
2792 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2793   const auto *D = cast<ValueDecl>(GD.getDecl());
2794 
2795   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2796                                  Context.getSourceManager(),
2797                                  "Generating code for declaration");
2798 
2799   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2800     // At -O0, don't generate IR for functions with available_externally
2801     // linkage.
2802     if (!shouldEmitFunction(GD))
2803       return;
2804 
2805     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2806       std::string Name;
2807       llvm::raw_string_ostream OS(Name);
2808       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2809                                /*Qualified=*/true);
2810       return Name;
2811     });
2812 
2813     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2814       // Make sure to emit the definition(s) before we emit the thunks.
2815       // This is necessary for the generation of certain thunks.
2816       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2817         ABI->emitCXXStructor(GD);
2818       else if (FD->isMultiVersion())
2819         EmitMultiVersionFunctionDefinition(GD, GV);
2820       else
2821         EmitGlobalFunctionDefinition(GD, GV);
2822 
2823       if (Method->isVirtual())
2824         getVTables().EmitThunks(GD);
2825 
2826       return;
2827     }
2828 
2829     if (FD->isMultiVersion())
2830       return EmitMultiVersionFunctionDefinition(GD, GV);
2831     return EmitGlobalFunctionDefinition(GD, GV);
2832   }
2833 
2834   if (const auto *VD = dyn_cast<VarDecl>(D))
2835     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2836 
2837   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2838 }
2839 
2840 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2841                                                       llvm::Function *NewFn);
2842 
2843 static unsigned
2844 TargetMVPriority(const TargetInfo &TI,
2845                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2846   unsigned Priority = 0;
2847   for (StringRef Feat : RO.Conditions.Features)
2848     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2849 
2850   if (!RO.Conditions.Architecture.empty())
2851     Priority = std::max(
2852         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2853   return Priority;
2854 }
2855 
2856 void CodeGenModule::emitMultiVersionFunctions() {
2857   for (GlobalDecl GD : MultiVersionFuncs) {
2858     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2859     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2860     getContext().forEachMultiversionedFunctionVersion(
2861         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2862           GlobalDecl CurGD{
2863               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2864           StringRef MangledName = getMangledName(CurGD);
2865           llvm::Constant *Func = GetGlobalValue(MangledName);
2866           if (!Func) {
2867             if (CurFD->isDefined()) {
2868               EmitGlobalFunctionDefinition(CurGD, nullptr);
2869               Func = GetGlobalValue(MangledName);
2870             } else {
2871               const CGFunctionInfo &FI =
2872                   getTypes().arrangeGlobalDeclaration(GD);
2873               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2874               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2875                                        /*DontDefer=*/false, ForDefinition);
2876             }
2877             assert(Func && "This should have just been created");
2878           }
2879 
2880           const auto *TA = CurFD->getAttr<TargetAttr>();
2881           llvm::SmallVector<StringRef, 8> Feats;
2882           TA->getAddedFeatures(Feats);
2883 
2884           Options.emplace_back(cast<llvm::Function>(Func),
2885                                TA->getArchitecture(), Feats);
2886         });
2887 
2888     llvm::Function *ResolverFunc;
2889     const TargetInfo &TI = getTarget();
2890 
2891     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2892       ResolverFunc = cast<llvm::Function>(
2893           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2894       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2895     } else {
2896       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2897     }
2898 
2899     if (supportsCOMDAT())
2900       ResolverFunc->setComdat(
2901           getModule().getOrInsertComdat(ResolverFunc->getName()));
2902 
2903     llvm::stable_sort(
2904         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2905                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
2906           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2907         });
2908     CodeGenFunction CGF(*this);
2909     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2910   }
2911 }
2912 
2913 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2914   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2915   assert(FD && "Not a FunctionDecl?");
2916   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2917   assert(DD && "Not a cpu_dispatch Function?");
2918   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2919 
2920   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2921     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2922     DeclTy = getTypes().GetFunctionType(FInfo);
2923   }
2924 
2925   StringRef ResolverName = getMangledName(GD);
2926 
2927   llvm::Type *ResolverType;
2928   GlobalDecl ResolverGD;
2929   if (getTarget().supportsIFunc())
2930     ResolverType = llvm::FunctionType::get(
2931         llvm::PointerType::get(DeclTy,
2932                                Context.getTargetAddressSpace(FD->getType())),
2933         false);
2934   else {
2935     ResolverType = DeclTy;
2936     ResolverGD = GD;
2937   }
2938 
2939   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2940       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2941   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2942   if (supportsCOMDAT())
2943     ResolverFunc->setComdat(
2944         getModule().getOrInsertComdat(ResolverFunc->getName()));
2945 
2946   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2947   const TargetInfo &Target = getTarget();
2948   unsigned Index = 0;
2949   for (const IdentifierInfo *II : DD->cpus()) {
2950     // Get the name of the target function so we can look it up/create it.
2951     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2952                               getCPUSpecificMangling(*this, II->getName());
2953 
2954     llvm::Constant *Func = GetGlobalValue(MangledName);
2955 
2956     if (!Func) {
2957       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2958       if (ExistingDecl.getDecl() &&
2959           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2960         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2961         Func = GetGlobalValue(MangledName);
2962       } else {
2963         if (!ExistingDecl.getDecl())
2964           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2965 
2966       Func = GetOrCreateLLVMFunction(
2967           MangledName, DeclTy, ExistingDecl,
2968           /*ForVTable=*/false, /*DontDefer=*/true,
2969           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2970       }
2971     }
2972 
2973     llvm::SmallVector<StringRef, 32> Features;
2974     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2975     llvm::transform(Features, Features.begin(),
2976                     [](StringRef Str) { return Str.substr(1); });
2977     Features.erase(std::remove_if(
2978         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2979           return !Target.validateCpuSupports(Feat);
2980         }), Features.end());
2981     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2982     ++Index;
2983   }
2984 
2985   llvm::sort(
2986       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2987                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2988         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2989                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2990       });
2991 
2992   // If the list contains multiple 'default' versions, such as when it contains
2993   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2994   // always run on at least a 'pentium'). We do this by deleting the 'least
2995   // advanced' (read, lowest mangling letter).
2996   while (Options.size() > 1 &&
2997          CodeGenFunction::GetX86CpuSupportsMask(
2998              (Options.end() - 2)->Conditions.Features) == 0) {
2999     StringRef LHSName = (Options.end() - 2)->Function->getName();
3000     StringRef RHSName = (Options.end() - 1)->Function->getName();
3001     if (LHSName.compare(RHSName) < 0)
3002       Options.erase(Options.end() - 2);
3003     else
3004       Options.erase(Options.end() - 1);
3005   }
3006 
3007   CodeGenFunction CGF(*this);
3008   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3009 
3010   if (getTarget().supportsIFunc()) {
3011     std::string AliasName = getMangledNameImpl(
3012         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3013     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3014     if (!AliasFunc) {
3015       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3016           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3017           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3018       auto *GA = llvm::GlobalAlias::create(
3019          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3020       GA->setLinkage(llvm::Function::WeakODRLinkage);
3021       SetCommonAttributes(GD, GA);
3022     }
3023   }
3024 }
3025 
3026 /// If a dispatcher for the specified mangled name is not in the module, create
3027 /// and return an llvm Function with the specified type.
3028 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3029     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3030   std::string MangledName =
3031       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3032 
3033   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3034   // a separate resolver).
3035   std::string ResolverName = MangledName;
3036   if (getTarget().supportsIFunc())
3037     ResolverName += ".ifunc";
3038   else if (FD->isTargetMultiVersion())
3039     ResolverName += ".resolver";
3040 
3041   // If this already exists, just return that one.
3042   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3043     return ResolverGV;
3044 
3045   // Since this is the first time we've created this IFunc, make sure
3046   // that we put this multiversioned function into the list to be
3047   // replaced later if necessary (target multiversioning only).
3048   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3049     MultiVersionFuncs.push_back(GD);
3050 
3051   if (getTarget().supportsIFunc()) {
3052     llvm::Type *ResolverType = llvm::FunctionType::get(
3053         llvm::PointerType::get(
3054             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3055         false);
3056     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3057         MangledName + ".resolver", ResolverType, GlobalDecl{},
3058         /*ForVTable=*/false);
3059     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3060         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3061     GIF->setName(ResolverName);
3062     SetCommonAttributes(FD, GIF);
3063 
3064     return GIF;
3065   }
3066 
3067   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3068       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3069   assert(isa<llvm::GlobalValue>(Resolver) &&
3070          "Resolver should be created for the first time");
3071   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3072   return Resolver;
3073 }
3074 
3075 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3076 /// module, create and return an llvm Function with the specified type. If there
3077 /// is something in the module with the specified name, return it potentially
3078 /// bitcasted to the right type.
3079 ///
3080 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3081 /// to set the attributes on the function when it is first created.
3082 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3083     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3084     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3085     ForDefinition_t IsForDefinition) {
3086   const Decl *D = GD.getDecl();
3087 
3088   // Any attempts to use a MultiVersion function should result in retrieving
3089   // the iFunc instead. Name Mangling will handle the rest of the changes.
3090   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3091     // For the device mark the function as one that should be emitted.
3092     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3093         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3094         !DontDefer && !IsForDefinition) {
3095       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3096         GlobalDecl GDDef;
3097         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3098           GDDef = GlobalDecl(CD, GD.getCtorType());
3099         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3100           GDDef = GlobalDecl(DD, GD.getDtorType());
3101         else
3102           GDDef = GlobalDecl(FDDef);
3103         EmitGlobal(GDDef);
3104       }
3105     }
3106     // Check if this must be emitted as declare variant and emit reference to
3107     // the the declare variant function.
3108     if (LangOpts.OpenMP && OpenMPRuntime)
3109       (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3110 
3111     if (FD->isMultiVersion()) {
3112       const auto *TA = FD->getAttr<TargetAttr>();
3113       if (TA && TA->isDefaultVersion())
3114         UpdateMultiVersionNames(GD, FD);
3115       if (!IsForDefinition)
3116         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3117     }
3118   }
3119 
3120   // Lookup the entry, lazily creating it if necessary.
3121   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3122   if (Entry) {
3123     if (WeakRefReferences.erase(Entry)) {
3124       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3125       if (FD && !FD->hasAttr<WeakAttr>())
3126         Entry->setLinkage(llvm::Function::ExternalLinkage);
3127     }
3128 
3129     // Handle dropped DLL attributes.
3130     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3131       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3132       setDSOLocal(Entry);
3133     }
3134 
3135     // If there are two attempts to define the same mangled name, issue an
3136     // error.
3137     if (IsForDefinition && !Entry->isDeclaration()) {
3138       GlobalDecl OtherGD;
3139       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3140       // to make sure that we issue an error only once.
3141       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3142           (GD.getCanonicalDecl().getDecl() !=
3143            OtherGD.getCanonicalDecl().getDecl()) &&
3144           DiagnosedConflictingDefinitions.insert(GD).second) {
3145         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3146             << MangledName;
3147         getDiags().Report(OtherGD.getDecl()->getLocation(),
3148                           diag::note_previous_definition);
3149       }
3150     }
3151 
3152     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3153         (Entry->getType()->getElementType() == Ty)) {
3154       return Entry;
3155     }
3156 
3157     // Make sure the result is of the correct type.
3158     // (If function is requested for a definition, we always need to create a new
3159     // function, not just return a bitcast.)
3160     if (!IsForDefinition)
3161       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3162   }
3163 
3164   // This function doesn't have a complete type (for example, the return
3165   // type is an incomplete struct). Use a fake type instead, and make
3166   // sure not to try to set attributes.
3167   bool IsIncompleteFunction = false;
3168 
3169   llvm::FunctionType *FTy;
3170   if (isa<llvm::FunctionType>(Ty)) {
3171     FTy = cast<llvm::FunctionType>(Ty);
3172   } else {
3173     FTy = llvm::FunctionType::get(VoidTy, false);
3174     IsIncompleteFunction = true;
3175   }
3176 
3177   llvm::Function *F =
3178       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3179                              Entry ? StringRef() : MangledName, &getModule());
3180 
3181   // If we already created a function with the same mangled name (but different
3182   // type) before, take its name and add it to the list of functions to be
3183   // replaced with F at the end of CodeGen.
3184   //
3185   // This happens if there is a prototype for a function (e.g. "int f()") and
3186   // then a definition of a different type (e.g. "int f(int x)").
3187   if (Entry) {
3188     F->takeName(Entry);
3189 
3190     // This might be an implementation of a function without a prototype, in
3191     // which case, try to do special replacement of calls which match the new
3192     // prototype.  The really key thing here is that we also potentially drop
3193     // arguments from the call site so as to make a direct call, which makes the
3194     // inliner happier and suppresses a number of optimizer warnings (!) about
3195     // dropping arguments.
3196     if (!Entry->use_empty()) {
3197       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3198       Entry->removeDeadConstantUsers();
3199     }
3200 
3201     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3202         F, Entry->getType()->getElementType()->getPointerTo());
3203     addGlobalValReplacement(Entry, BC);
3204   }
3205 
3206   assert(F->getName() == MangledName && "name was uniqued!");
3207   if (D)
3208     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3209   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3210     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3211     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3212   }
3213 
3214   if (!DontDefer) {
3215     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3216     // each other bottoming out with the base dtor.  Therefore we emit non-base
3217     // dtors on usage, even if there is no dtor definition in the TU.
3218     if (D && isa<CXXDestructorDecl>(D) &&
3219         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3220                                            GD.getDtorType()))
3221       addDeferredDeclToEmit(GD);
3222 
3223     // This is the first use or definition of a mangled name.  If there is a
3224     // deferred decl with this name, remember that we need to emit it at the end
3225     // of the file.
3226     auto DDI = DeferredDecls.find(MangledName);
3227     if (DDI != DeferredDecls.end()) {
3228       // Move the potentially referenced deferred decl to the
3229       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3230       // don't need it anymore).
3231       addDeferredDeclToEmit(DDI->second);
3232       DeferredDecls.erase(DDI);
3233 
3234       // Otherwise, there are cases we have to worry about where we're
3235       // using a declaration for which we must emit a definition but where
3236       // we might not find a top-level definition:
3237       //   - member functions defined inline in their classes
3238       //   - friend functions defined inline in some class
3239       //   - special member functions with implicit definitions
3240       // If we ever change our AST traversal to walk into class methods,
3241       // this will be unnecessary.
3242       //
3243       // We also don't emit a definition for a function if it's going to be an
3244       // entry in a vtable, unless it's already marked as used.
3245     } else if (getLangOpts().CPlusPlus && D) {
3246       // Look for a declaration that's lexically in a record.
3247       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3248            FD = FD->getPreviousDecl()) {
3249         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3250           if (FD->doesThisDeclarationHaveABody()) {
3251             addDeferredDeclToEmit(GD.getWithDecl(FD));
3252             break;
3253           }
3254         }
3255       }
3256     }
3257   }
3258 
3259   // Make sure the result is of the requested type.
3260   if (!IsIncompleteFunction) {
3261     assert(F->getType()->getElementType() == Ty);
3262     return F;
3263   }
3264 
3265   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3266   return llvm::ConstantExpr::getBitCast(F, PTy);
3267 }
3268 
3269 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3270 /// non-null, then this function will use the specified type if it has to
3271 /// create it (this occurs when we see a definition of the function).
3272 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3273                                                  llvm::Type *Ty,
3274                                                  bool ForVTable,
3275                                                  bool DontDefer,
3276                                               ForDefinition_t IsForDefinition) {
3277   // If there was no specific requested type, just convert it now.
3278   if (!Ty) {
3279     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3280     Ty = getTypes().ConvertType(FD->getType());
3281   }
3282 
3283   // Devirtualized destructor calls may come through here instead of via
3284   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3285   // of the complete destructor when necessary.
3286   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3287     if (getTarget().getCXXABI().isMicrosoft() &&
3288         GD.getDtorType() == Dtor_Complete &&
3289         DD->getParent()->getNumVBases() == 0)
3290       GD = GlobalDecl(DD, Dtor_Base);
3291   }
3292 
3293   StringRef MangledName = getMangledName(GD);
3294   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3295                                  /*IsThunk=*/false, llvm::AttributeList(),
3296                                  IsForDefinition);
3297 }
3298 
3299 static const FunctionDecl *
3300 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3301   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3302   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3303 
3304   IdentifierInfo &CII = C.Idents.get(Name);
3305   for (const auto &Result : DC->lookup(&CII))
3306     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3307       return FD;
3308 
3309   if (!C.getLangOpts().CPlusPlus)
3310     return nullptr;
3311 
3312   // Demangle the premangled name from getTerminateFn()
3313   IdentifierInfo &CXXII =
3314       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3315           ? C.Idents.get("terminate")
3316           : C.Idents.get(Name);
3317 
3318   for (const auto &N : {"__cxxabiv1", "std"}) {
3319     IdentifierInfo &NS = C.Idents.get(N);
3320     for (const auto &Result : DC->lookup(&NS)) {
3321       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3322       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3323         for (const auto &Result : LSD->lookup(&NS))
3324           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3325             break;
3326 
3327       if (ND)
3328         for (const auto &Result : ND->lookup(&CXXII))
3329           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3330             return FD;
3331     }
3332   }
3333 
3334   return nullptr;
3335 }
3336 
3337 /// CreateRuntimeFunction - Create a new runtime function with the specified
3338 /// type and name.
3339 llvm::FunctionCallee
3340 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3341                                      llvm::AttributeList ExtraAttrs, bool Local,
3342                                      bool AssumeConvergent) {
3343   if (AssumeConvergent) {
3344     ExtraAttrs =
3345         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3346                                 llvm::Attribute::Convergent);
3347   }
3348 
3349   llvm::Constant *C =
3350       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3351                               /*DontDefer=*/false, /*IsThunk=*/false,
3352                               ExtraAttrs);
3353 
3354   if (auto *F = dyn_cast<llvm::Function>(C)) {
3355     if (F->empty()) {
3356       F->setCallingConv(getRuntimeCC());
3357 
3358       // In Windows Itanium environments, try to mark runtime functions
3359       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3360       // will link their standard library statically or dynamically. Marking
3361       // functions imported when they are not imported can cause linker errors
3362       // and warnings.
3363       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3364           !getCodeGenOpts().LTOVisibilityPublicStd) {
3365         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3366         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3367           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3368           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3369         }
3370       }
3371       setDSOLocal(F);
3372     }
3373   }
3374 
3375   return {FTy, C};
3376 }
3377 
3378 /// isTypeConstant - Determine whether an object of this type can be emitted
3379 /// as a constant.
3380 ///
3381 /// If ExcludeCtor is true, the duration when the object's constructor runs
3382 /// will not be considered. The caller will need to verify that the object is
3383 /// not written to during its construction.
3384 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3385   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3386     return false;
3387 
3388   if (Context.getLangOpts().CPlusPlus) {
3389     if (const CXXRecordDecl *Record
3390           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3391       return ExcludeCtor && !Record->hasMutableFields() &&
3392              Record->hasTrivialDestructor();
3393   }
3394 
3395   return true;
3396 }
3397 
3398 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3399 /// create and return an llvm GlobalVariable with the specified type.  If there
3400 /// is something in the module with the specified name, return it potentially
3401 /// bitcasted to the right type.
3402 ///
3403 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3404 /// to set the attributes on the global when it is first created.
3405 ///
3406 /// If IsForDefinition is true, it is guaranteed that an actual global with
3407 /// type Ty will be returned, not conversion of a variable with the same
3408 /// mangled name but some other type.
3409 llvm::Constant *
3410 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3411                                      llvm::PointerType *Ty,
3412                                      const VarDecl *D,
3413                                      ForDefinition_t IsForDefinition) {
3414   // Lookup the entry, lazily creating it if necessary.
3415   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3416   if (Entry) {
3417     if (WeakRefReferences.erase(Entry)) {
3418       if (D && !D->hasAttr<WeakAttr>())
3419         Entry->setLinkage(llvm::Function::ExternalLinkage);
3420     }
3421 
3422     // Handle dropped DLL attributes.
3423     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3424       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3425 
3426     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3427       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3428 
3429     if (Entry->getType() == Ty)
3430       return Entry;
3431 
3432     // If there are two attempts to define the same mangled name, issue an
3433     // error.
3434     if (IsForDefinition && !Entry->isDeclaration()) {
3435       GlobalDecl OtherGD;
3436       const VarDecl *OtherD;
3437 
3438       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3439       // to make sure that we issue an error only once.
3440       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3441           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3442           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3443           OtherD->hasInit() &&
3444           DiagnosedConflictingDefinitions.insert(D).second) {
3445         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3446             << MangledName;
3447         getDiags().Report(OtherGD.getDecl()->getLocation(),
3448                           diag::note_previous_definition);
3449       }
3450     }
3451 
3452     // Make sure the result is of the correct type.
3453     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3454       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3455 
3456     // (If global is requested for a definition, we always need to create a new
3457     // global, not just return a bitcast.)
3458     if (!IsForDefinition)
3459       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3460   }
3461 
3462   auto AddrSpace = GetGlobalVarAddressSpace(D);
3463   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3464 
3465   auto *GV = new llvm::GlobalVariable(
3466       getModule(), Ty->getElementType(), false,
3467       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3468       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3469 
3470   // If we already created a global with the same mangled name (but different
3471   // type) before, take its name and remove it from its parent.
3472   if (Entry) {
3473     GV->takeName(Entry);
3474 
3475     if (!Entry->use_empty()) {
3476       llvm::Constant *NewPtrForOldDecl =
3477           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3478       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3479     }
3480 
3481     Entry->eraseFromParent();
3482   }
3483 
3484   // This is the first use or definition of a mangled name.  If there is a
3485   // deferred decl with this name, remember that we need to emit it at the end
3486   // of the file.
3487   auto DDI = DeferredDecls.find(MangledName);
3488   if (DDI != DeferredDecls.end()) {
3489     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3490     // list, and remove it from DeferredDecls (since we don't need it anymore).
3491     addDeferredDeclToEmit(DDI->second);
3492     DeferredDecls.erase(DDI);
3493   }
3494 
3495   // Handle things which are present even on external declarations.
3496   if (D) {
3497     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3498       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3499 
3500     // FIXME: This code is overly simple and should be merged with other global
3501     // handling.
3502     GV->setConstant(isTypeConstant(D->getType(), false));
3503 
3504     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3505 
3506     setLinkageForGV(GV, D);
3507 
3508     if (D->getTLSKind()) {
3509       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3510         CXXThreadLocals.push_back(D);
3511       setTLSMode(GV, *D);
3512     }
3513 
3514     setGVProperties(GV, D);
3515 
3516     // If required by the ABI, treat declarations of static data members with
3517     // inline initializers as definitions.
3518     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3519       EmitGlobalVarDefinition(D);
3520     }
3521 
3522     // Emit section information for extern variables.
3523     if (D->hasExternalStorage()) {
3524       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3525         GV->setSection(SA->getName());
3526     }
3527 
3528     // Handle XCore specific ABI requirements.
3529     if (getTriple().getArch() == llvm::Triple::xcore &&
3530         D->getLanguageLinkage() == CLanguageLinkage &&
3531         D->getType().isConstant(Context) &&
3532         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3533       GV->setSection(".cp.rodata");
3534 
3535     // Check if we a have a const declaration with an initializer, we may be
3536     // able to emit it as available_externally to expose it's value to the
3537     // optimizer.
3538     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3539         D->getType().isConstQualified() && !GV->hasInitializer() &&
3540         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3541       const auto *Record =
3542           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3543       bool HasMutableFields = Record && Record->hasMutableFields();
3544       if (!HasMutableFields) {
3545         const VarDecl *InitDecl;
3546         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3547         if (InitExpr) {
3548           ConstantEmitter emitter(*this);
3549           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3550           if (Init) {
3551             auto *InitType = Init->getType();
3552             if (GV->getType()->getElementType() != InitType) {
3553               // The type of the initializer does not match the definition.
3554               // This happens when an initializer has a different type from
3555               // the type of the global (because of padding at the end of a
3556               // structure for instance).
3557               GV->setName(StringRef());
3558               // Make a new global with the correct type, this is now guaranteed
3559               // to work.
3560               auto *NewGV = cast<llvm::GlobalVariable>(
3561                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3562                       ->stripPointerCasts());
3563 
3564               // Erase the old global, since it is no longer used.
3565               GV->eraseFromParent();
3566               GV = NewGV;
3567             } else {
3568               GV->setInitializer(Init);
3569               GV->setConstant(true);
3570               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3571             }
3572             emitter.finalize(GV);
3573           }
3574         }
3575       }
3576     }
3577   }
3578 
3579   if (GV->isDeclaration())
3580     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3581 
3582   LangAS ExpectedAS =
3583       D ? D->getType().getAddressSpace()
3584         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3585   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3586          Ty->getPointerAddressSpace());
3587   if (AddrSpace != ExpectedAS)
3588     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3589                                                        ExpectedAS, Ty);
3590 
3591   return GV;
3592 }
3593 
3594 llvm::Constant *
3595 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3596                                ForDefinition_t IsForDefinition) {
3597   const Decl *D = GD.getDecl();
3598   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3599     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3600                                 /*DontDefer=*/false, IsForDefinition);
3601   else if (isa<CXXMethodDecl>(D)) {
3602     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3603         cast<CXXMethodDecl>(D));
3604     auto Ty = getTypes().GetFunctionType(*FInfo);
3605     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3606                              IsForDefinition);
3607   } else if (isa<FunctionDecl>(D)) {
3608     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3609     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3610     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3611                              IsForDefinition);
3612   } else
3613     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3614                               IsForDefinition);
3615 }
3616 
3617 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3618     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3619     unsigned Alignment) {
3620   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3621   llvm::GlobalVariable *OldGV = nullptr;
3622 
3623   if (GV) {
3624     // Check if the variable has the right type.
3625     if (GV->getType()->getElementType() == Ty)
3626       return GV;
3627 
3628     // Because C++ name mangling, the only way we can end up with an already
3629     // existing global with the same name is if it has been declared extern "C".
3630     assert(GV->isDeclaration() && "Declaration has wrong type!");
3631     OldGV = GV;
3632   }
3633 
3634   // Create a new variable.
3635   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3636                                 Linkage, nullptr, Name);
3637 
3638   if (OldGV) {
3639     // Replace occurrences of the old variable if needed.
3640     GV->takeName(OldGV);
3641 
3642     if (!OldGV->use_empty()) {
3643       llvm::Constant *NewPtrForOldDecl =
3644       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3645       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3646     }
3647 
3648     OldGV->eraseFromParent();
3649   }
3650 
3651   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3652       !GV->hasAvailableExternallyLinkage())
3653     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3654 
3655   GV->setAlignment(llvm::MaybeAlign(Alignment));
3656 
3657   return GV;
3658 }
3659 
3660 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3661 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3662 /// then it will be created with the specified type instead of whatever the
3663 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3664 /// that an actual global with type Ty will be returned, not conversion of a
3665 /// variable with the same mangled name but some other type.
3666 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3667                                                   llvm::Type *Ty,
3668                                            ForDefinition_t IsForDefinition) {
3669   assert(D->hasGlobalStorage() && "Not a global variable");
3670   QualType ASTTy = D->getType();
3671   if (!Ty)
3672     Ty = getTypes().ConvertTypeForMem(ASTTy);
3673 
3674   llvm::PointerType *PTy =
3675     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3676 
3677   StringRef MangledName = getMangledName(D);
3678   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3679 }
3680 
3681 /// CreateRuntimeVariable - Create a new runtime global variable with the
3682 /// specified type and name.
3683 llvm::Constant *
3684 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3685                                      StringRef Name) {
3686   auto PtrTy =
3687       getContext().getLangOpts().OpenCL
3688           ? llvm::PointerType::get(
3689                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3690           : llvm::PointerType::getUnqual(Ty);
3691   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3692   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3693   return Ret;
3694 }
3695 
3696 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3697   assert(!D->getInit() && "Cannot emit definite definitions here!");
3698 
3699   StringRef MangledName = getMangledName(D);
3700   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3701 
3702   // We already have a definition, not declaration, with the same mangled name.
3703   // Emitting of declaration is not required (and actually overwrites emitted
3704   // definition).
3705   if (GV && !GV->isDeclaration())
3706     return;
3707 
3708   // If we have not seen a reference to this variable yet, place it into the
3709   // deferred declarations table to be emitted if needed later.
3710   if (!MustBeEmitted(D) && !GV) {
3711       DeferredDecls[MangledName] = D;
3712       return;
3713   }
3714 
3715   // The tentative definition is the only definition.
3716   EmitGlobalVarDefinition(D);
3717 }
3718 
3719 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3720   return Context.toCharUnitsFromBits(
3721       getDataLayout().getTypeStoreSizeInBits(Ty));
3722 }
3723 
3724 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3725   LangAS AddrSpace = LangAS::Default;
3726   if (LangOpts.OpenCL) {
3727     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3728     assert(AddrSpace == LangAS::opencl_global ||
3729            AddrSpace == LangAS::opencl_constant ||
3730            AddrSpace == LangAS::opencl_local ||
3731            AddrSpace >= LangAS::FirstTargetAddressSpace);
3732     return AddrSpace;
3733   }
3734 
3735   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3736     if (D && D->hasAttr<CUDAConstantAttr>())
3737       return LangAS::cuda_constant;
3738     else if (D && D->hasAttr<CUDASharedAttr>())
3739       return LangAS::cuda_shared;
3740     else if (D && D->hasAttr<CUDADeviceAttr>())
3741       return LangAS::cuda_device;
3742     else if (D && D->getType().isConstQualified())
3743       return LangAS::cuda_constant;
3744     else
3745       return LangAS::cuda_device;
3746   }
3747 
3748   if (LangOpts.OpenMP) {
3749     LangAS AS;
3750     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3751       return AS;
3752   }
3753   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3754 }
3755 
3756 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3757   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3758   if (LangOpts.OpenCL)
3759     return LangAS::opencl_constant;
3760   if (auto AS = getTarget().getConstantAddressSpace())
3761     return AS.getValue();
3762   return LangAS::Default;
3763 }
3764 
3765 // In address space agnostic languages, string literals are in default address
3766 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3767 // emitted in constant address space in LLVM IR. To be consistent with other
3768 // parts of AST, string literal global variables in constant address space
3769 // need to be casted to default address space before being put into address
3770 // map and referenced by other part of CodeGen.
3771 // In OpenCL, string literals are in constant address space in AST, therefore
3772 // they should not be casted to default address space.
3773 static llvm::Constant *
3774 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3775                                        llvm::GlobalVariable *GV) {
3776   llvm::Constant *Cast = GV;
3777   if (!CGM.getLangOpts().OpenCL) {
3778     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3779       if (AS != LangAS::Default)
3780         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3781             CGM, GV, AS.getValue(), LangAS::Default,
3782             GV->getValueType()->getPointerTo(
3783                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3784     }
3785   }
3786   return Cast;
3787 }
3788 
3789 template<typename SomeDecl>
3790 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3791                                                llvm::GlobalValue *GV) {
3792   if (!getLangOpts().CPlusPlus)
3793     return;
3794 
3795   // Must have 'used' attribute, or else inline assembly can't rely on
3796   // the name existing.
3797   if (!D->template hasAttr<UsedAttr>())
3798     return;
3799 
3800   // Must have internal linkage and an ordinary name.
3801   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3802     return;
3803 
3804   // Must be in an extern "C" context. Entities declared directly within
3805   // a record are not extern "C" even if the record is in such a context.
3806   const SomeDecl *First = D->getFirstDecl();
3807   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3808     return;
3809 
3810   // OK, this is an internal linkage entity inside an extern "C" linkage
3811   // specification. Make a note of that so we can give it the "expected"
3812   // mangled name if nothing else is using that name.
3813   std::pair<StaticExternCMap::iterator, bool> R =
3814       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3815 
3816   // If we have multiple internal linkage entities with the same name
3817   // in extern "C" regions, none of them gets that name.
3818   if (!R.second)
3819     R.first->second = nullptr;
3820 }
3821 
3822 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3823   if (!CGM.supportsCOMDAT())
3824     return false;
3825 
3826   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3827   // them being "merged" by the COMDAT Folding linker optimization.
3828   if (D.hasAttr<CUDAGlobalAttr>())
3829     return false;
3830 
3831   if (D.hasAttr<SelectAnyAttr>())
3832     return true;
3833 
3834   GVALinkage Linkage;
3835   if (auto *VD = dyn_cast<VarDecl>(&D))
3836     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3837   else
3838     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3839 
3840   switch (Linkage) {
3841   case GVA_Internal:
3842   case GVA_AvailableExternally:
3843   case GVA_StrongExternal:
3844     return false;
3845   case GVA_DiscardableODR:
3846   case GVA_StrongODR:
3847     return true;
3848   }
3849   llvm_unreachable("No such linkage");
3850 }
3851 
3852 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3853                                           llvm::GlobalObject &GO) {
3854   if (!shouldBeInCOMDAT(*this, D))
3855     return;
3856   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3857 }
3858 
3859 /// Pass IsTentative as true if you want to create a tentative definition.
3860 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3861                                             bool IsTentative) {
3862   // OpenCL global variables of sampler type are translated to function calls,
3863   // therefore no need to be translated.
3864   QualType ASTTy = D->getType();
3865   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3866     return;
3867 
3868   // If this is OpenMP device, check if it is legal to emit this global
3869   // normally.
3870   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3871       OpenMPRuntime->emitTargetGlobalVariable(D))
3872     return;
3873 
3874   llvm::Constant *Init = nullptr;
3875   bool NeedsGlobalCtor = false;
3876   bool NeedsGlobalDtor =
3877       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3878 
3879   const VarDecl *InitDecl;
3880   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3881 
3882   Optional<ConstantEmitter> emitter;
3883 
3884   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3885   // as part of their declaration."  Sema has already checked for
3886   // error cases, so we just need to set Init to UndefValue.
3887   bool IsCUDASharedVar =
3888       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3889   // Shadows of initialized device-side global variables are also left
3890   // undefined.
3891   bool IsCUDAShadowVar =
3892       !getLangOpts().CUDAIsDevice &&
3893       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3894        D->hasAttr<CUDASharedAttr>());
3895   // HIP pinned shadow of initialized host-side global variables are also
3896   // left undefined.
3897   bool IsHIPPinnedShadowVar =
3898       getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3899   if (getLangOpts().CUDA &&
3900       (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3901     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3902   else if (!InitExpr) {
3903     // This is a tentative definition; tentative definitions are
3904     // implicitly initialized with { 0 }.
3905     //
3906     // Note that tentative definitions are only emitted at the end of
3907     // a translation unit, so they should never have incomplete
3908     // type. In addition, EmitTentativeDefinition makes sure that we
3909     // never attempt to emit a tentative definition if a real one
3910     // exists. A use may still exists, however, so we still may need
3911     // to do a RAUW.
3912     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3913     Init = EmitNullConstant(D->getType());
3914   } else {
3915     initializedGlobalDecl = GlobalDecl(D);
3916     emitter.emplace(*this);
3917     Init = emitter->tryEmitForInitializer(*InitDecl);
3918 
3919     if (!Init) {
3920       QualType T = InitExpr->getType();
3921       if (D->getType()->isReferenceType())
3922         T = D->getType();
3923 
3924       if (getLangOpts().CPlusPlus) {
3925         Init = EmitNullConstant(T);
3926         NeedsGlobalCtor = true;
3927       } else {
3928         ErrorUnsupported(D, "static initializer");
3929         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3930       }
3931     } else {
3932       // We don't need an initializer, so remove the entry for the delayed
3933       // initializer position (just in case this entry was delayed) if we
3934       // also don't need to register a destructor.
3935       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3936         DelayedCXXInitPosition.erase(D);
3937     }
3938   }
3939 
3940   llvm::Type* InitType = Init->getType();
3941   llvm::Constant *Entry =
3942       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3943 
3944   // Strip off pointer casts if we got them.
3945   Entry = Entry->stripPointerCasts();
3946 
3947   // Entry is now either a Function or GlobalVariable.
3948   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3949 
3950   // We have a definition after a declaration with the wrong type.
3951   // We must make a new GlobalVariable* and update everything that used OldGV
3952   // (a declaration or tentative definition) with the new GlobalVariable*
3953   // (which will be a definition).
3954   //
3955   // This happens if there is a prototype for a global (e.g.
3956   // "extern int x[];") and then a definition of a different type (e.g.
3957   // "int x[10];"). This also happens when an initializer has a different type
3958   // from the type of the global (this happens with unions).
3959   if (!GV || GV->getType()->getElementType() != InitType ||
3960       GV->getType()->getAddressSpace() !=
3961           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3962 
3963     // Move the old entry aside so that we'll create a new one.
3964     Entry->setName(StringRef());
3965 
3966     // Make a new global with the correct type, this is now guaranteed to work.
3967     GV = cast<llvm::GlobalVariable>(
3968         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
3969             ->stripPointerCasts());
3970 
3971     // Replace all uses of the old global with the new global
3972     llvm::Constant *NewPtrForOldDecl =
3973         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3974     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3975 
3976     // Erase the old global, since it is no longer used.
3977     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3978   }
3979 
3980   MaybeHandleStaticInExternC(D, GV);
3981 
3982   if (D->hasAttr<AnnotateAttr>())
3983     AddGlobalAnnotations(D, GV);
3984 
3985   // Set the llvm linkage type as appropriate.
3986   llvm::GlobalValue::LinkageTypes Linkage =
3987       getLLVMLinkageVarDefinition(D, GV->isConstant());
3988 
3989   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3990   // the device. [...]"
3991   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3992   // __device__, declares a variable that: [...]
3993   // Is accessible from all the threads within the grid and from the host
3994   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3995   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3996   if (GV && LangOpts.CUDA) {
3997     if (LangOpts.CUDAIsDevice) {
3998       if (Linkage != llvm::GlobalValue::InternalLinkage &&
3999           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4000         GV->setExternallyInitialized(true);
4001     } else {
4002       // Host-side shadows of external declarations of device-side
4003       // global variables become internal definitions. These have to
4004       // be internal in order to prevent name conflicts with global
4005       // host variables with the same name in a different TUs.
4006       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4007           D->hasAttr<HIPPinnedShadowAttr>()) {
4008         Linkage = llvm::GlobalValue::InternalLinkage;
4009 
4010         // Shadow variables and their properties must be registered
4011         // with CUDA runtime.
4012         unsigned Flags = 0;
4013         if (!D->hasDefinition())
4014           Flags |= CGCUDARuntime::ExternDeviceVar;
4015         if (D->hasAttr<CUDAConstantAttr>())
4016           Flags |= CGCUDARuntime::ConstantDeviceVar;
4017         // Extern global variables will be registered in the TU where they are
4018         // defined.
4019         if (!D->hasExternalStorage())
4020           getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4021       } else if (D->hasAttr<CUDASharedAttr>())
4022         // __shared__ variables are odd. Shadows do get created, but
4023         // they are not registered with the CUDA runtime, so they
4024         // can't really be used to access their device-side
4025         // counterparts. It's not clear yet whether it's nvcc's bug or
4026         // a feature, but we've got to do the same for compatibility.
4027         Linkage = llvm::GlobalValue::InternalLinkage;
4028     }
4029   }
4030 
4031   if (!IsHIPPinnedShadowVar)
4032     GV->setInitializer(Init);
4033   if (emitter) emitter->finalize(GV);
4034 
4035   // If it is safe to mark the global 'constant', do so now.
4036   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4037                   isTypeConstant(D->getType(), true));
4038 
4039   // If it is in a read-only section, mark it 'constant'.
4040   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4041     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4042     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4043       GV->setConstant(true);
4044   }
4045 
4046   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4047 
4048   // On Darwin, if the normal linkage of a C++ thread_local variable is
4049   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4050   // copies within a linkage unit; otherwise, the backing variable has
4051   // internal linkage and all accesses should just be calls to the
4052   // Itanium-specified entry point, which has the normal linkage of the
4053   // variable. This is to preserve the ability to change the implementation
4054   // behind the scenes.
4055   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4056       Context.getTargetInfo().getTriple().isOSDarwin() &&
4057       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4058       !llvm::GlobalVariable::isWeakLinkage(Linkage))
4059     Linkage = llvm::GlobalValue::InternalLinkage;
4060 
4061   GV->setLinkage(Linkage);
4062   if (D->hasAttr<DLLImportAttr>())
4063     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4064   else if (D->hasAttr<DLLExportAttr>())
4065     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4066   else
4067     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4068 
4069   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4070     // common vars aren't constant even if declared const.
4071     GV->setConstant(false);
4072     // Tentative definition of global variables may be initialized with
4073     // non-zero null pointers. In this case they should have weak linkage
4074     // since common linkage must have zero initializer and must not have
4075     // explicit section therefore cannot have non-zero initial value.
4076     if (!GV->getInitializer()->isNullValue())
4077       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4078   }
4079 
4080   setNonAliasAttributes(D, GV);
4081 
4082   if (D->getTLSKind() && !GV->isThreadLocal()) {
4083     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4084       CXXThreadLocals.push_back(D);
4085     setTLSMode(GV, *D);
4086   }
4087 
4088   maybeSetTrivialComdat(*D, *GV);
4089 
4090   // Emit the initializer function if necessary.
4091   if (NeedsGlobalCtor || NeedsGlobalDtor)
4092     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4093 
4094   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4095 
4096   // Emit global variable debug information.
4097   if (CGDebugInfo *DI = getModuleDebugInfo())
4098     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4099       DI->EmitGlobalVariable(GV, D);
4100 }
4101 
4102 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4103                                       CodeGenModule &CGM, const VarDecl *D,
4104                                       bool NoCommon) {
4105   // Don't give variables common linkage if -fno-common was specified unless it
4106   // was overridden by a NoCommon attribute.
4107   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4108     return true;
4109 
4110   // C11 6.9.2/2:
4111   //   A declaration of an identifier for an object that has file scope without
4112   //   an initializer, and without a storage-class specifier or with the
4113   //   storage-class specifier static, constitutes a tentative definition.
4114   if (D->getInit() || D->hasExternalStorage())
4115     return true;
4116 
4117   // A variable cannot be both common and exist in a section.
4118   if (D->hasAttr<SectionAttr>())
4119     return true;
4120 
4121   // A variable cannot be both common and exist in a section.
4122   // We don't try to determine which is the right section in the front-end.
4123   // If no specialized section name is applicable, it will resort to default.
4124   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4125       D->hasAttr<PragmaClangDataSectionAttr>() ||
4126       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4127       D->hasAttr<PragmaClangRodataSectionAttr>())
4128     return true;
4129 
4130   // Thread local vars aren't considered common linkage.
4131   if (D->getTLSKind())
4132     return true;
4133 
4134   // Tentative definitions marked with WeakImportAttr are true definitions.
4135   if (D->hasAttr<WeakImportAttr>())
4136     return true;
4137 
4138   // A variable cannot be both common and exist in a comdat.
4139   if (shouldBeInCOMDAT(CGM, *D))
4140     return true;
4141 
4142   // Declarations with a required alignment do not have common linkage in MSVC
4143   // mode.
4144   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4145     if (D->hasAttr<AlignedAttr>())
4146       return true;
4147     QualType VarType = D->getType();
4148     if (Context.isAlignmentRequired(VarType))
4149       return true;
4150 
4151     if (const auto *RT = VarType->getAs<RecordType>()) {
4152       const RecordDecl *RD = RT->getDecl();
4153       for (const FieldDecl *FD : RD->fields()) {
4154         if (FD->isBitField())
4155           continue;
4156         if (FD->hasAttr<AlignedAttr>())
4157           return true;
4158         if (Context.isAlignmentRequired(FD->getType()))
4159           return true;
4160       }
4161     }
4162   }
4163 
4164   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4165   // common symbols, so symbols with greater alignment requirements cannot be
4166   // common.
4167   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4168   // alignments for common symbols via the aligncomm directive, so this
4169   // restriction only applies to MSVC environments.
4170   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4171       Context.getTypeAlignIfKnown(D->getType()) >
4172           Context.toBits(CharUnits::fromQuantity(32)))
4173     return true;
4174 
4175   return false;
4176 }
4177 
4178 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4179     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4180   if (Linkage == GVA_Internal)
4181     return llvm::Function::InternalLinkage;
4182 
4183   if (D->hasAttr<WeakAttr>()) {
4184     if (IsConstantVariable)
4185       return llvm::GlobalVariable::WeakODRLinkage;
4186     else
4187       return llvm::GlobalVariable::WeakAnyLinkage;
4188   }
4189 
4190   if (const auto *FD = D->getAsFunction())
4191     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4192       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4193 
4194   // We are guaranteed to have a strong definition somewhere else,
4195   // so we can use available_externally linkage.
4196   if (Linkage == GVA_AvailableExternally)
4197     return llvm::GlobalValue::AvailableExternallyLinkage;
4198 
4199   // Note that Apple's kernel linker doesn't support symbol
4200   // coalescing, so we need to avoid linkonce and weak linkages there.
4201   // Normally, this means we just map to internal, but for explicit
4202   // instantiations we'll map to external.
4203 
4204   // In C++, the compiler has to emit a definition in every translation unit
4205   // that references the function.  We should use linkonce_odr because
4206   // a) if all references in this translation unit are optimized away, we
4207   // don't need to codegen it.  b) if the function persists, it needs to be
4208   // merged with other definitions. c) C++ has the ODR, so we know the
4209   // definition is dependable.
4210   if (Linkage == GVA_DiscardableODR)
4211     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4212                                             : llvm::Function::InternalLinkage;
4213 
4214   // An explicit instantiation of a template has weak linkage, since
4215   // explicit instantiations can occur in multiple translation units
4216   // and must all be equivalent. However, we are not allowed to
4217   // throw away these explicit instantiations.
4218   //
4219   // We don't currently support CUDA device code spread out across multiple TUs,
4220   // so say that CUDA templates are either external (for kernels) or internal.
4221   // This lets llvm perform aggressive inter-procedural optimizations.
4222   if (Linkage == GVA_StrongODR) {
4223     if (Context.getLangOpts().AppleKext)
4224       return llvm::Function::ExternalLinkage;
4225     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4226       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4227                                           : llvm::Function::InternalLinkage;
4228     return llvm::Function::WeakODRLinkage;
4229   }
4230 
4231   // C++ doesn't have tentative definitions and thus cannot have common
4232   // linkage.
4233   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4234       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4235                                  CodeGenOpts.NoCommon))
4236     return llvm::GlobalVariable::CommonLinkage;
4237 
4238   // selectany symbols are externally visible, so use weak instead of
4239   // linkonce.  MSVC optimizes away references to const selectany globals, so
4240   // all definitions should be the same and ODR linkage should be used.
4241   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4242   if (D->hasAttr<SelectAnyAttr>())
4243     return llvm::GlobalVariable::WeakODRLinkage;
4244 
4245   // Otherwise, we have strong external linkage.
4246   assert(Linkage == GVA_StrongExternal);
4247   return llvm::GlobalVariable::ExternalLinkage;
4248 }
4249 
4250 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4251     const VarDecl *VD, bool IsConstant) {
4252   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4253   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4254 }
4255 
4256 /// Replace the uses of a function that was declared with a non-proto type.
4257 /// We want to silently drop extra arguments from call sites
4258 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4259                                           llvm::Function *newFn) {
4260   // Fast path.
4261   if (old->use_empty()) return;
4262 
4263   llvm::Type *newRetTy = newFn->getReturnType();
4264   SmallVector<llvm::Value*, 4> newArgs;
4265   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4266 
4267   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4268          ui != ue; ) {
4269     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4270     llvm::User *user = use->getUser();
4271 
4272     // Recognize and replace uses of bitcasts.  Most calls to
4273     // unprototyped functions will use bitcasts.
4274     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4275       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4276         replaceUsesOfNonProtoConstant(bitcast, newFn);
4277       continue;
4278     }
4279 
4280     // Recognize calls to the function.
4281     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4282     if (!callSite) continue;
4283     if (!callSite->isCallee(&*use))
4284       continue;
4285 
4286     // If the return types don't match exactly, then we can't
4287     // transform this call unless it's dead.
4288     if (callSite->getType() != newRetTy && !callSite->use_empty())
4289       continue;
4290 
4291     // Get the call site's attribute list.
4292     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4293     llvm::AttributeList oldAttrs = callSite->getAttributes();
4294 
4295     // If the function was passed too few arguments, don't transform.
4296     unsigned newNumArgs = newFn->arg_size();
4297     if (callSite->arg_size() < newNumArgs)
4298       continue;
4299 
4300     // If extra arguments were passed, we silently drop them.
4301     // If any of the types mismatch, we don't transform.
4302     unsigned argNo = 0;
4303     bool dontTransform = false;
4304     for (llvm::Argument &A : newFn->args()) {
4305       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4306         dontTransform = true;
4307         break;
4308       }
4309 
4310       // Add any parameter attributes.
4311       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4312       argNo++;
4313     }
4314     if (dontTransform)
4315       continue;
4316 
4317     // Okay, we can transform this.  Create the new call instruction and copy
4318     // over the required information.
4319     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4320 
4321     // Copy over any operand bundles.
4322     callSite->getOperandBundlesAsDefs(newBundles);
4323 
4324     llvm::CallBase *newCall;
4325     if (dyn_cast<llvm::CallInst>(callSite)) {
4326       newCall =
4327           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4328     } else {
4329       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4330       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4331                                          oldInvoke->getUnwindDest(), newArgs,
4332                                          newBundles, "", callSite);
4333     }
4334     newArgs.clear(); // for the next iteration
4335 
4336     if (!newCall->getType()->isVoidTy())
4337       newCall->takeName(callSite);
4338     newCall->setAttributes(llvm::AttributeList::get(
4339         newFn->getContext(), oldAttrs.getFnAttributes(),
4340         oldAttrs.getRetAttributes(), newArgAttrs));
4341     newCall->setCallingConv(callSite->getCallingConv());
4342 
4343     // Finally, remove the old call, replacing any uses with the new one.
4344     if (!callSite->use_empty())
4345       callSite->replaceAllUsesWith(newCall);
4346 
4347     // Copy debug location attached to CI.
4348     if (callSite->getDebugLoc())
4349       newCall->setDebugLoc(callSite->getDebugLoc());
4350 
4351     callSite->eraseFromParent();
4352   }
4353 }
4354 
4355 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4356 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4357 /// existing call uses of the old function in the module, this adjusts them to
4358 /// call the new function directly.
4359 ///
4360 /// This is not just a cleanup: the always_inline pass requires direct calls to
4361 /// functions to be able to inline them.  If there is a bitcast in the way, it
4362 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4363 /// run at -O0.
4364 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4365                                                       llvm::Function *NewFn) {
4366   // If we're redefining a global as a function, don't transform it.
4367   if (!isa<llvm::Function>(Old)) return;
4368 
4369   replaceUsesOfNonProtoConstant(Old, NewFn);
4370 }
4371 
4372 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4373   auto DK = VD->isThisDeclarationADefinition();
4374   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4375     return;
4376 
4377   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4378   // If we have a definition, this might be a deferred decl. If the
4379   // instantiation is explicit, make sure we emit it at the end.
4380   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4381     GetAddrOfGlobalVar(VD);
4382 
4383   EmitTopLevelDecl(VD);
4384 }
4385 
4386 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4387                                                  llvm::GlobalValue *GV) {
4388   // Check if this must be emitted as declare variant.
4389   if (LangOpts.OpenMP && OpenMPRuntime &&
4390       OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4391     return;
4392 
4393   const auto *D = cast<FunctionDecl>(GD.getDecl());
4394 
4395   // Compute the function info and LLVM type.
4396   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4397   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4398 
4399   // Get or create the prototype for the function.
4400   if (!GV || (GV->getType()->getElementType() != Ty))
4401     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4402                                                    /*DontDefer=*/true,
4403                                                    ForDefinition));
4404 
4405   // Already emitted.
4406   if (!GV->isDeclaration())
4407     return;
4408 
4409   // We need to set linkage and visibility on the function before
4410   // generating code for it because various parts of IR generation
4411   // want to propagate this information down (e.g. to local static
4412   // declarations).
4413   auto *Fn = cast<llvm::Function>(GV);
4414   setFunctionLinkage(GD, Fn);
4415 
4416   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4417   setGVProperties(Fn, GD);
4418 
4419   MaybeHandleStaticInExternC(D, Fn);
4420 
4421 
4422   maybeSetTrivialComdat(*D, *Fn);
4423 
4424   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4425 
4426   setNonAliasAttributes(GD, Fn);
4427   SetLLVMFunctionAttributesForDefinition(D, Fn);
4428 
4429   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4430     AddGlobalCtor(Fn, CA->getPriority());
4431   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4432     AddGlobalDtor(Fn, DA->getPriority());
4433   if (D->hasAttr<AnnotateAttr>())
4434     AddGlobalAnnotations(D, Fn);
4435 }
4436 
4437 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4438   const auto *D = cast<ValueDecl>(GD.getDecl());
4439   const AliasAttr *AA = D->getAttr<AliasAttr>();
4440   assert(AA && "Not an alias?");
4441 
4442   StringRef MangledName = getMangledName(GD);
4443 
4444   if (AA->getAliasee() == MangledName) {
4445     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4446     return;
4447   }
4448 
4449   // If there is a definition in the module, then it wins over the alias.
4450   // This is dubious, but allow it to be safe.  Just ignore the alias.
4451   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4452   if (Entry && !Entry->isDeclaration())
4453     return;
4454 
4455   Aliases.push_back(GD);
4456 
4457   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4458 
4459   // Create a reference to the named value.  This ensures that it is emitted
4460   // if a deferred decl.
4461   llvm::Constant *Aliasee;
4462   llvm::GlobalValue::LinkageTypes LT;
4463   if (isa<llvm::FunctionType>(DeclTy)) {
4464     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4465                                       /*ForVTable=*/false);
4466     LT = getFunctionLinkage(GD);
4467   } else {
4468     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4469                                     llvm::PointerType::getUnqual(DeclTy),
4470                                     /*D=*/nullptr);
4471     LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4472                                      D->getType().isConstQualified());
4473   }
4474 
4475   // Create the new alias itself, but don't set a name yet.
4476   auto *GA =
4477       llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4478 
4479   if (Entry) {
4480     if (GA->getAliasee() == Entry) {
4481       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4482       return;
4483     }
4484 
4485     assert(Entry->isDeclaration());
4486 
4487     // If there is a declaration in the module, then we had an extern followed
4488     // by the alias, as in:
4489     //   extern int test6();
4490     //   ...
4491     //   int test6() __attribute__((alias("test7")));
4492     //
4493     // Remove it and replace uses of it with the alias.
4494     GA->takeName(Entry);
4495 
4496     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4497                                                           Entry->getType()));
4498     Entry->eraseFromParent();
4499   } else {
4500     GA->setName(MangledName);
4501   }
4502 
4503   // Set attributes which are particular to an alias; this is a
4504   // specialization of the attributes which may be set on a global
4505   // variable/function.
4506   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4507       D->isWeakImported()) {
4508     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4509   }
4510 
4511   if (const auto *VD = dyn_cast<VarDecl>(D))
4512     if (VD->getTLSKind())
4513       setTLSMode(GA, *VD);
4514 
4515   SetCommonAttributes(GD, GA);
4516 }
4517 
4518 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4519   const auto *D = cast<ValueDecl>(GD.getDecl());
4520   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4521   assert(IFA && "Not an ifunc?");
4522 
4523   StringRef MangledName = getMangledName(GD);
4524 
4525   if (IFA->getResolver() == MangledName) {
4526     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4527     return;
4528   }
4529 
4530   // Report an error if some definition overrides ifunc.
4531   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4532   if (Entry && !Entry->isDeclaration()) {
4533     GlobalDecl OtherGD;
4534     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4535         DiagnosedConflictingDefinitions.insert(GD).second) {
4536       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4537           << MangledName;
4538       Diags.Report(OtherGD.getDecl()->getLocation(),
4539                    diag::note_previous_definition);
4540     }
4541     return;
4542   }
4543 
4544   Aliases.push_back(GD);
4545 
4546   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4547   llvm::Constant *Resolver =
4548       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4549                               /*ForVTable=*/false);
4550   llvm::GlobalIFunc *GIF =
4551       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4552                                 "", Resolver, &getModule());
4553   if (Entry) {
4554     if (GIF->getResolver() == Entry) {
4555       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4556       return;
4557     }
4558     assert(Entry->isDeclaration());
4559 
4560     // If there is a declaration in the module, then we had an extern followed
4561     // by the ifunc, as in:
4562     //   extern int test();
4563     //   ...
4564     //   int test() __attribute__((ifunc("resolver")));
4565     //
4566     // Remove it and replace uses of it with the ifunc.
4567     GIF->takeName(Entry);
4568 
4569     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4570                                                           Entry->getType()));
4571     Entry->eraseFromParent();
4572   } else
4573     GIF->setName(MangledName);
4574 
4575   SetCommonAttributes(GD, GIF);
4576 }
4577 
4578 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4579                                             ArrayRef<llvm::Type*> Tys) {
4580   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4581                                          Tys);
4582 }
4583 
4584 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4585 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4586                          const StringLiteral *Literal, bool TargetIsLSB,
4587                          bool &IsUTF16, unsigned &StringLength) {
4588   StringRef String = Literal->getString();
4589   unsigned NumBytes = String.size();
4590 
4591   // Check for simple case.
4592   if (!Literal->containsNonAsciiOrNull()) {
4593     StringLength = NumBytes;
4594     return *Map.insert(std::make_pair(String, nullptr)).first;
4595   }
4596 
4597   // Otherwise, convert the UTF8 literals into a string of shorts.
4598   IsUTF16 = true;
4599 
4600   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4601   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4602   llvm::UTF16 *ToPtr = &ToBuf[0];
4603 
4604   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4605                                  ToPtr + NumBytes, llvm::strictConversion);
4606 
4607   // ConvertUTF8toUTF16 returns the length in ToPtr.
4608   StringLength = ToPtr - &ToBuf[0];
4609 
4610   // Add an explicit null.
4611   *ToPtr = 0;
4612   return *Map.insert(std::make_pair(
4613                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4614                                    (StringLength + 1) * 2),
4615                          nullptr)).first;
4616 }
4617 
4618 ConstantAddress
4619 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4620   unsigned StringLength = 0;
4621   bool isUTF16 = false;
4622   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4623       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4624                                getDataLayout().isLittleEndian(), isUTF16,
4625                                StringLength);
4626 
4627   if (auto *C = Entry.second)
4628     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4629 
4630   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4631   llvm::Constant *Zeros[] = { Zero, Zero };
4632 
4633   const ASTContext &Context = getContext();
4634   const llvm::Triple &Triple = getTriple();
4635 
4636   const auto CFRuntime = getLangOpts().CFRuntime;
4637   const bool IsSwiftABI =
4638       static_cast<unsigned>(CFRuntime) >=
4639       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4640   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4641 
4642   // If we don't already have it, get __CFConstantStringClassReference.
4643   if (!CFConstantStringClassRef) {
4644     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4645     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4646     Ty = llvm::ArrayType::get(Ty, 0);
4647 
4648     switch (CFRuntime) {
4649     default: break;
4650     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4651     case LangOptions::CoreFoundationABI::Swift5_0:
4652       CFConstantStringClassName =
4653           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4654                               : "$s10Foundation19_NSCFConstantStringCN";
4655       Ty = IntPtrTy;
4656       break;
4657     case LangOptions::CoreFoundationABI::Swift4_2:
4658       CFConstantStringClassName =
4659           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4660                               : "$S10Foundation19_NSCFConstantStringCN";
4661       Ty = IntPtrTy;
4662       break;
4663     case LangOptions::CoreFoundationABI::Swift4_1:
4664       CFConstantStringClassName =
4665           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4666                               : "__T010Foundation19_NSCFConstantStringCN";
4667       Ty = IntPtrTy;
4668       break;
4669     }
4670 
4671     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4672 
4673     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4674       llvm::GlobalValue *GV = nullptr;
4675 
4676       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4677         IdentifierInfo &II = Context.Idents.get(GV->getName());
4678         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4679         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4680 
4681         const VarDecl *VD = nullptr;
4682         for (const auto &Result : DC->lookup(&II))
4683           if ((VD = dyn_cast<VarDecl>(Result)))
4684             break;
4685 
4686         if (Triple.isOSBinFormatELF()) {
4687           if (!VD)
4688             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4689         } else {
4690           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4691           if (!VD || !VD->hasAttr<DLLExportAttr>())
4692             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4693           else
4694             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4695         }
4696 
4697         setDSOLocal(GV);
4698       }
4699     }
4700 
4701     // Decay array -> ptr
4702     CFConstantStringClassRef =
4703         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4704                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4705   }
4706 
4707   QualType CFTy = Context.getCFConstantStringType();
4708 
4709   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4710 
4711   ConstantInitBuilder Builder(*this);
4712   auto Fields = Builder.beginStruct(STy);
4713 
4714   // Class pointer.
4715   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4716 
4717   // Flags.
4718   if (IsSwiftABI) {
4719     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4720     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4721   } else {
4722     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4723   }
4724 
4725   // String pointer.
4726   llvm::Constant *C = nullptr;
4727   if (isUTF16) {
4728     auto Arr = llvm::makeArrayRef(
4729         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4730         Entry.first().size() / 2);
4731     C = llvm::ConstantDataArray::get(VMContext, Arr);
4732   } else {
4733     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4734   }
4735 
4736   // Note: -fwritable-strings doesn't make the backing store strings of
4737   // CFStrings writable. (See <rdar://problem/10657500>)
4738   auto *GV =
4739       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4740                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4741   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4742   // Don't enforce the target's minimum global alignment, since the only use
4743   // of the string is via this class initializer.
4744   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4745                             : Context.getTypeAlignInChars(Context.CharTy);
4746   GV->setAlignment(Align.getAsAlign());
4747 
4748   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4749   // Without it LLVM can merge the string with a non unnamed_addr one during
4750   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4751   if (Triple.isOSBinFormatMachO())
4752     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4753                            : "__TEXT,__cstring,cstring_literals");
4754   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4755   // the static linker to adjust permissions to read-only later on.
4756   else if (Triple.isOSBinFormatELF())
4757     GV->setSection(".rodata");
4758 
4759   // String.
4760   llvm::Constant *Str =
4761       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4762 
4763   if (isUTF16)
4764     // Cast the UTF16 string to the correct type.
4765     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4766   Fields.add(Str);
4767 
4768   // String length.
4769   llvm::IntegerType *LengthTy =
4770       llvm::IntegerType::get(getModule().getContext(),
4771                              Context.getTargetInfo().getLongWidth());
4772   if (IsSwiftABI) {
4773     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4774         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4775       LengthTy = Int32Ty;
4776     else
4777       LengthTy = IntPtrTy;
4778   }
4779   Fields.addInt(LengthTy, StringLength);
4780 
4781   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4782   // properly aligned on 32-bit platforms.
4783   CharUnits Alignment =
4784       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4785 
4786   // The struct.
4787   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4788                                     /*isConstant=*/false,
4789                                     llvm::GlobalVariable::PrivateLinkage);
4790   GV->addAttribute("objc_arc_inert");
4791   switch (Triple.getObjectFormat()) {
4792   case llvm::Triple::UnknownObjectFormat:
4793     llvm_unreachable("unknown file format");
4794   case llvm::Triple::XCOFF:
4795     llvm_unreachable("XCOFF is not yet implemented");
4796   case llvm::Triple::COFF:
4797   case llvm::Triple::ELF:
4798   case llvm::Triple::Wasm:
4799     GV->setSection("cfstring");
4800     break;
4801   case llvm::Triple::MachO:
4802     GV->setSection("__DATA,__cfstring");
4803     break;
4804   }
4805   Entry.second = GV;
4806 
4807   return ConstantAddress(GV, Alignment);
4808 }
4809 
4810 bool CodeGenModule::getExpressionLocationsEnabled() const {
4811   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4812 }
4813 
4814 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4815   if (ObjCFastEnumerationStateType.isNull()) {
4816     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4817     D->startDefinition();
4818 
4819     QualType FieldTypes[] = {
4820       Context.UnsignedLongTy,
4821       Context.getPointerType(Context.getObjCIdType()),
4822       Context.getPointerType(Context.UnsignedLongTy),
4823       Context.getConstantArrayType(Context.UnsignedLongTy,
4824                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4825     };
4826 
4827     for (size_t i = 0; i < 4; ++i) {
4828       FieldDecl *Field = FieldDecl::Create(Context,
4829                                            D,
4830                                            SourceLocation(),
4831                                            SourceLocation(), nullptr,
4832                                            FieldTypes[i], /*TInfo=*/nullptr,
4833                                            /*BitWidth=*/nullptr,
4834                                            /*Mutable=*/false,
4835                                            ICIS_NoInit);
4836       Field->setAccess(AS_public);
4837       D->addDecl(Field);
4838     }
4839 
4840     D->completeDefinition();
4841     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4842   }
4843 
4844   return ObjCFastEnumerationStateType;
4845 }
4846 
4847 llvm::Constant *
4848 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4849   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4850 
4851   // Don't emit it as the address of the string, emit the string data itself
4852   // as an inline array.
4853   if (E->getCharByteWidth() == 1) {
4854     SmallString<64> Str(E->getString());
4855 
4856     // Resize the string to the right size, which is indicated by its type.
4857     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4858     Str.resize(CAT->getSize().getZExtValue());
4859     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4860   }
4861 
4862   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4863   llvm::Type *ElemTy = AType->getElementType();
4864   unsigned NumElements = AType->getNumElements();
4865 
4866   // Wide strings have either 2-byte or 4-byte elements.
4867   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4868     SmallVector<uint16_t, 32> Elements;
4869     Elements.reserve(NumElements);
4870 
4871     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4872       Elements.push_back(E->getCodeUnit(i));
4873     Elements.resize(NumElements);
4874     return llvm::ConstantDataArray::get(VMContext, Elements);
4875   }
4876 
4877   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4878   SmallVector<uint32_t, 32> Elements;
4879   Elements.reserve(NumElements);
4880 
4881   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4882     Elements.push_back(E->getCodeUnit(i));
4883   Elements.resize(NumElements);
4884   return llvm::ConstantDataArray::get(VMContext, Elements);
4885 }
4886 
4887 static llvm::GlobalVariable *
4888 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4889                       CodeGenModule &CGM, StringRef GlobalName,
4890                       CharUnits Alignment) {
4891   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4892       CGM.getStringLiteralAddressSpace());
4893 
4894   llvm::Module &M = CGM.getModule();
4895   // Create a global variable for this string
4896   auto *GV = new llvm::GlobalVariable(
4897       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4898       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4899   GV->setAlignment(Alignment.getAsAlign());
4900   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4901   if (GV->isWeakForLinker()) {
4902     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4903     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4904   }
4905   CGM.setDSOLocal(GV);
4906 
4907   return GV;
4908 }
4909 
4910 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4911 /// constant array for the given string literal.
4912 ConstantAddress
4913 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4914                                                   StringRef Name) {
4915   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4916 
4917   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4918   llvm::GlobalVariable **Entry = nullptr;
4919   if (!LangOpts.WritableStrings) {
4920     Entry = &ConstantStringMap[C];
4921     if (auto GV = *Entry) {
4922       if (Alignment.getQuantity() > GV->getAlignment())
4923         GV->setAlignment(Alignment.getAsAlign());
4924       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4925                              Alignment);
4926     }
4927   }
4928 
4929   SmallString<256> MangledNameBuffer;
4930   StringRef GlobalVariableName;
4931   llvm::GlobalValue::LinkageTypes LT;
4932 
4933   // Mangle the string literal if that's how the ABI merges duplicate strings.
4934   // Don't do it if they are writable, since we don't want writes in one TU to
4935   // affect strings in another.
4936   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4937       !LangOpts.WritableStrings) {
4938     llvm::raw_svector_ostream Out(MangledNameBuffer);
4939     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4940     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4941     GlobalVariableName = MangledNameBuffer;
4942   } else {
4943     LT = llvm::GlobalValue::PrivateLinkage;
4944     GlobalVariableName = Name;
4945   }
4946 
4947   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4948   if (Entry)
4949     *Entry = GV;
4950 
4951   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4952                                   QualType());
4953 
4954   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4955                          Alignment);
4956 }
4957 
4958 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4959 /// array for the given ObjCEncodeExpr node.
4960 ConstantAddress
4961 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4962   std::string Str;
4963   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4964 
4965   return GetAddrOfConstantCString(Str);
4966 }
4967 
4968 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4969 /// the literal and a terminating '\0' character.
4970 /// The result has pointer to array type.
4971 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4972     const std::string &Str, const char *GlobalName) {
4973   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4974   CharUnits Alignment =
4975     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4976 
4977   llvm::Constant *C =
4978       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4979 
4980   // Don't share any string literals if strings aren't constant.
4981   llvm::GlobalVariable **Entry = nullptr;
4982   if (!LangOpts.WritableStrings) {
4983     Entry = &ConstantStringMap[C];
4984     if (auto GV = *Entry) {
4985       if (Alignment.getQuantity() > GV->getAlignment())
4986         GV->setAlignment(Alignment.getAsAlign());
4987       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4988                              Alignment);
4989     }
4990   }
4991 
4992   // Get the default prefix if a name wasn't specified.
4993   if (!GlobalName)
4994     GlobalName = ".str";
4995   // Create a global variable for this.
4996   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4997                                   GlobalName, Alignment);
4998   if (Entry)
4999     *Entry = GV;
5000 
5001   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5002                          Alignment);
5003 }
5004 
5005 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5006     const MaterializeTemporaryExpr *E, const Expr *Init) {
5007   assert((E->getStorageDuration() == SD_Static ||
5008           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5009   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5010 
5011   // If we're not materializing a subobject of the temporary, keep the
5012   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5013   QualType MaterializedType = Init->getType();
5014   if (Init == E->getSubExpr())
5015     MaterializedType = E->getType();
5016 
5017   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5018 
5019   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5020     return ConstantAddress(Slot, Align);
5021 
5022   // FIXME: If an externally-visible declaration extends multiple temporaries,
5023   // we need to give each temporary the same name in every translation unit (and
5024   // we also need to make the temporaries externally-visible).
5025   SmallString<256> Name;
5026   llvm::raw_svector_ostream Out(Name);
5027   getCXXABI().getMangleContext().mangleReferenceTemporary(
5028       VD, E->getManglingNumber(), Out);
5029 
5030   APValue *Value = nullptr;
5031   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5032     // If the initializer of the extending declaration is a constant
5033     // initializer, we should have a cached constant initializer for this
5034     // temporary. Note that this might have a different value from the value
5035     // computed by evaluating the initializer if the surrounding constant
5036     // expression modifies the temporary.
5037     Value = E->getOrCreateValue(false);
5038   }
5039 
5040   // Try evaluating it now, it might have a constant initializer.
5041   Expr::EvalResult EvalResult;
5042   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5043       !EvalResult.hasSideEffects())
5044     Value = &EvalResult.Val;
5045 
5046   LangAS AddrSpace =
5047       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5048 
5049   Optional<ConstantEmitter> emitter;
5050   llvm::Constant *InitialValue = nullptr;
5051   bool Constant = false;
5052   llvm::Type *Type;
5053   if (Value) {
5054     // The temporary has a constant initializer, use it.
5055     emitter.emplace(*this);
5056     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5057                                                MaterializedType);
5058     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5059     Type = InitialValue->getType();
5060   } else {
5061     // No initializer, the initialization will be provided when we
5062     // initialize the declaration which performed lifetime extension.
5063     Type = getTypes().ConvertTypeForMem(MaterializedType);
5064   }
5065 
5066   // Create a global variable for this lifetime-extended temporary.
5067   llvm::GlobalValue::LinkageTypes Linkage =
5068       getLLVMLinkageVarDefinition(VD, Constant);
5069   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5070     const VarDecl *InitVD;
5071     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5072         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5073       // Temporaries defined inside a class get linkonce_odr linkage because the
5074       // class can be defined in multiple translation units.
5075       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5076     } else {
5077       // There is no need for this temporary to have external linkage if the
5078       // VarDecl has external linkage.
5079       Linkage = llvm::GlobalVariable::InternalLinkage;
5080     }
5081   }
5082   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5083   auto *GV = new llvm::GlobalVariable(
5084       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5085       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5086   if (emitter) emitter->finalize(GV);
5087   setGVProperties(GV, VD);
5088   GV->setAlignment(Align.getAsAlign());
5089   if (supportsCOMDAT() && GV->isWeakForLinker())
5090     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5091   if (VD->getTLSKind())
5092     setTLSMode(GV, *VD);
5093   llvm::Constant *CV = GV;
5094   if (AddrSpace != LangAS::Default)
5095     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5096         *this, GV, AddrSpace, LangAS::Default,
5097         Type->getPointerTo(
5098             getContext().getTargetAddressSpace(LangAS::Default)));
5099   MaterializedGlobalTemporaryMap[E] = CV;
5100   return ConstantAddress(CV, Align);
5101 }
5102 
5103 /// EmitObjCPropertyImplementations - Emit information for synthesized
5104 /// properties for an implementation.
5105 void CodeGenModule::EmitObjCPropertyImplementations(const
5106                                                     ObjCImplementationDecl *D) {
5107   for (const auto *PID : D->property_impls()) {
5108     // Dynamic is just for type-checking.
5109     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5110       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5111 
5112       // Determine which methods need to be implemented, some may have
5113       // been overridden. Note that ::isPropertyAccessor is not the method
5114       // we want, that just indicates if the decl came from a
5115       // property. What we want to know is if the method is defined in
5116       // this implementation.
5117       auto *Getter = PID->getGetterMethodDecl();
5118       if (!Getter || Getter->isSynthesizedAccessorStub())
5119         CodeGenFunction(*this).GenerateObjCGetter(
5120             const_cast<ObjCImplementationDecl *>(D), PID);
5121       auto *Setter = PID->getSetterMethodDecl();
5122       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5123         CodeGenFunction(*this).GenerateObjCSetter(
5124                                  const_cast<ObjCImplementationDecl *>(D), PID);
5125     }
5126   }
5127 }
5128 
5129 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5130   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5131   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5132        ivar; ivar = ivar->getNextIvar())
5133     if (ivar->getType().isDestructedType())
5134       return true;
5135 
5136   return false;
5137 }
5138 
5139 static bool AllTrivialInitializers(CodeGenModule &CGM,
5140                                    ObjCImplementationDecl *D) {
5141   CodeGenFunction CGF(CGM);
5142   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5143        E = D->init_end(); B != E; ++B) {
5144     CXXCtorInitializer *CtorInitExp = *B;
5145     Expr *Init = CtorInitExp->getInit();
5146     if (!CGF.isTrivialInitializer(Init))
5147       return false;
5148   }
5149   return true;
5150 }
5151 
5152 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5153 /// for an implementation.
5154 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5155   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5156   if (needsDestructMethod(D)) {
5157     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5158     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5159     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5160         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5161         getContext().VoidTy, nullptr, D,
5162         /*isInstance=*/true, /*isVariadic=*/false,
5163         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5164         /*isImplicitlyDeclared=*/true,
5165         /*isDefined=*/false, ObjCMethodDecl::Required);
5166     D->addInstanceMethod(DTORMethod);
5167     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5168     D->setHasDestructors(true);
5169   }
5170 
5171   // If the implementation doesn't have any ivar initializers, we don't need
5172   // a .cxx_construct.
5173   if (D->getNumIvarInitializers() == 0 ||
5174       AllTrivialInitializers(*this, D))
5175     return;
5176 
5177   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5178   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5179   // The constructor returns 'self'.
5180   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5181       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5182       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5183       /*isVariadic=*/false,
5184       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5185       /*isImplicitlyDeclared=*/true,
5186       /*isDefined=*/false, ObjCMethodDecl::Required);
5187   D->addInstanceMethod(CTORMethod);
5188   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5189   D->setHasNonZeroConstructors(true);
5190 }
5191 
5192 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5193 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5194   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5195       LSD->getLanguage() != LinkageSpecDecl::lang_cxx &&
5196       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_11 &&
5197       LSD->getLanguage() != LinkageSpecDecl::lang_cxx_14) {
5198     ErrorUnsupported(LSD, "linkage spec");
5199     return;
5200   }
5201 
5202   EmitDeclContext(LSD);
5203 }
5204 
5205 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5206   for (auto *I : DC->decls()) {
5207     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5208     // are themselves considered "top-level", so EmitTopLevelDecl on an
5209     // ObjCImplDecl does not recursively visit them. We need to do that in
5210     // case they're nested inside another construct (LinkageSpecDecl /
5211     // ExportDecl) that does stop them from being considered "top-level".
5212     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5213       for (auto *M : OID->methods())
5214         EmitTopLevelDecl(M);
5215     }
5216 
5217     EmitTopLevelDecl(I);
5218   }
5219 }
5220 
5221 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5222 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5223   // Ignore dependent declarations.
5224   if (D->isTemplated())
5225     return;
5226 
5227   switch (D->getKind()) {
5228   case Decl::CXXConversion:
5229   case Decl::CXXMethod:
5230   case Decl::Function:
5231     EmitGlobal(cast<FunctionDecl>(D));
5232     // Always provide some coverage mapping
5233     // even for the functions that aren't emitted.
5234     AddDeferredUnusedCoverageMapping(D);
5235     break;
5236 
5237   case Decl::CXXDeductionGuide:
5238     // Function-like, but does not result in code emission.
5239     break;
5240 
5241   case Decl::Var:
5242   case Decl::Decomposition:
5243   case Decl::VarTemplateSpecialization:
5244     EmitGlobal(cast<VarDecl>(D));
5245     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5246       for (auto *B : DD->bindings())
5247         if (auto *HD = B->getHoldingVar())
5248           EmitGlobal(HD);
5249     break;
5250 
5251   // Indirect fields from global anonymous structs and unions can be
5252   // ignored; only the actual variable requires IR gen support.
5253   case Decl::IndirectField:
5254     break;
5255 
5256   // C++ Decls
5257   case Decl::Namespace:
5258     EmitDeclContext(cast<NamespaceDecl>(D));
5259     break;
5260   case Decl::ClassTemplateSpecialization: {
5261     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5262     if (DebugInfo &&
5263         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5264         Spec->hasDefinition())
5265       DebugInfo->completeTemplateDefinition(*Spec);
5266   } LLVM_FALLTHROUGH;
5267   case Decl::CXXRecord:
5268     if (DebugInfo) {
5269       if (auto *ES = D->getASTContext().getExternalSource())
5270         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5271           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5272     }
5273     // Emit any static data members, they may be definitions.
5274     for (auto *I : cast<CXXRecordDecl>(D)->decls())
5275       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5276         EmitTopLevelDecl(I);
5277     break;
5278     // No code generation needed.
5279   case Decl::UsingShadow:
5280   case Decl::ClassTemplate:
5281   case Decl::VarTemplate:
5282   case Decl::Concept:
5283   case Decl::VarTemplatePartialSpecialization:
5284   case Decl::FunctionTemplate:
5285   case Decl::TypeAliasTemplate:
5286   case Decl::Block:
5287   case Decl::Empty:
5288   case Decl::Binding:
5289     break;
5290   case Decl::Using:          // using X; [C++]
5291     if (CGDebugInfo *DI = getModuleDebugInfo())
5292         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5293     return;
5294   case Decl::NamespaceAlias:
5295     if (CGDebugInfo *DI = getModuleDebugInfo())
5296         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5297     return;
5298   case Decl::UsingDirective: // using namespace X; [C++]
5299     if (CGDebugInfo *DI = getModuleDebugInfo())
5300       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5301     return;
5302   case Decl::CXXConstructor:
5303     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5304     break;
5305   case Decl::CXXDestructor:
5306     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5307     break;
5308 
5309   case Decl::StaticAssert:
5310     // Nothing to do.
5311     break;
5312 
5313   // Objective-C Decls
5314 
5315   // Forward declarations, no (immediate) code generation.
5316   case Decl::ObjCInterface:
5317   case Decl::ObjCCategory:
5318     break;
5319 
5320   case Decl::ObjCProtocol: {
5321     auto *Proto = cast<ObjCProtocolDecl>(D);
5322     if (Proto->isThisDeclarationADefinition())
5323       ObjCRuntime->GenerateProtocol(Proto);
5324     break;
5325   }
5326 
5327   case Decl::ObjCCategoryImpl:
5328     // Categories have properties but don't support synthesize so we
5329     // can ignore them here.
5330     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5331     break;
5332 
5333   case Decl::ObjCImplementation: {
5334     auto *OMD = cast<ObjCImplementationDecl>(D);
5335     EmitObjCPropertyImplementations(OMD);
5336     EmitObjCIvarInitializations(OMD);
5337     ObjCRuntime->GenerateClass(OMD);
5338     // Emit global variable debug information.
5339     if (CGDebugInfo *DI = getModuleDebugInfo())
5340       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
5341         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5342             OMD->getClassInterface()), OMD->getLocation());
5343     break;
5344   }
5345   case Decl::ObjCMethod: {
5346     auto *OMD = cast<ObjCMethodDecl>(D);
5347     // If this is not a prototype, emit the body.
5348     if (OMD->getBody())
5349       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5350     break;
5351   }
5352   case Decl::ObjCCompatibleAlias:
5353     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5354     break;
5355 
5356   case Decl::PragmaComment: {
5357     const auto *PCD = cast<PragmaCommentDecl>(D);
5358     switch (PCD->getCommentKind()) {
5359     case PCK_Unknown:
5360       llvm_unreachable("unexpected pragma comment kind");
5361     case PCK_Linker:
5362       AppendLinkerOptions(PCD->getArg());
5363       break;
5364     case PCK_Lib:
5365         AddDependentLib(PCD->getArg());
5366       break;
5367     case PCK_Compiler:
5368     case PCK_ExeStr:
5369     case PCK_User:
5370       break; // We ignore all of these.
5371     }
5372     break;
5373   }
5374 
5375   case Decl::PragmaDetectMismatch: {
5376     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5377     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5378     break;
5379   }
5380 
5381   case Decl::LinkageSpec:
5382     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5383     break;
5384 
5385   case Decl::FileScopeAsm: {
5386     // File-scope asm is ignored during device-side CUDA compilation.
5387     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5388       break;
5389     // File-scope asm is ignored during device-side OpenMP compilation.
5390     if (LangOpts.OpenMPIsDevice)
5391       break;
5392     auto *AD = cast<FileScopeAsmDecl>(D);
5393     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5394     break;
5395   }
5396 
5397   case Decl::Import: {
5398     auto *Import = cast<ImportDecl>(D);
5399 
5400     // If we've already imported this module, we're done.
5401     if (!ImportedModules.insert(Import->getImportedModule()))
5402       break;
5403 
5404     // Emit debug information for direct imports.
5405     if (!Import->getImportedOwningModule()) {
5406       if (CGDebugInfo *DI = getModuleDebugInfo())
5407         DI->EmitImportDecl(*Import);
5408     }
5409 
5410     // Find all of the submodules and emit the module initializers.
5411     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5412     SmallVector<clang::Module *, 16> Stack;
5413     Visited.insert(Import->getImportedModule());
5414     Stack.push_back(Import->getImportedModule());
5415 
5416     while (!Stack.empty()) {
5417       clang::Module *Mod = Stack.pop_back_val();
5418       if (!EmittedModuleInitializers.insert(Mod).second)
5419         continue;
5420 
5421       for (auto *D : Context.getModuleInitializers(Mod))
5422         EmitTopLevelDecl(D);
5423 
5424       // Visit the submodules of this module.
5425       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5426                                              SubEnd = Mod->submodule_end();
5427            Sub != SubEnd; ++Sub) {
5428         // Skip explicit children; they need to be explicitly imported to emit
5429         // the initializers.
5430         if ((*Sub)->IsExplicit)
5431           continue;
5432 
5433         if (Visited.insert(*Sub).second)
5434           Stack.push_back(*Sub);
5435       }
5436     }
5437     break;
5438   }
5439 
5440   case Decl::Export:
5441     EmitDeclContext(cast<ExportDecl>(D));
5442     break;
5443 
5444   case Decl::OMPThreadPrivate:
5445     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5446     break;
5447 
5448   case Decl::OMPAllocate:
5449     break;
5450 
5451   case Decl::OMPDeclareReduction:
5452     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5453     break;
5454 
5455   case Decl::OMPDeclareMapper:
5456     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5457     break;
5458 
5459   case Decl::OMPRequires:
5460     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5461     break;
5462 
5463   default:
5464     // Make sure we handled everything we should, every other kind is a
5465     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5466     // function. Need to recode Decl::Kind to do that easily.
5467     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5468     break;
5469   }
5470 }
5471 
5472 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5473   // Do we need to generate coverage mapping?
5474   if (!CodeGenOpts.CoverageMapping)
5475     return;
5476   switch (D->getKind()) {
5477   case Decl::CXXConversion:
5478   case Decl::CXXMethod:
5479   case Decl::Function:
5480   case Decl::ObjCMethod:
5481   case Decl::CXXConstructor:
5482   case Decl::CXXDestructor: {
5483     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5484       return;
5485     SourceManager &SM = getContext().getSourceManager();
5486     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5487       return;
5488     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5489     if (I == DeferredEmptyCoverageMappingDecls.end())
5490       DeferredEmptyCoverageMappingDecls[D] = true;
5491     break;
5492   }
5493   default:
5494     break;
5495   };
5496 }
5497 
5498 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5499   // Do we need to generate coverage mapping?
5500   if (!CodeGenOpts.CoverageMapping)
5501     return;
5502   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5503     if (Fn->isTemplateInstantiation())
5504       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5505   }
5506   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5507   if (I == DeferredEmptyCoverageMappingDecls.end())
5508     DeferredEmptyCoverageMappingDecls[D] = false;
5509   else
5510     I->second = false;
5511 }
5512 
5513 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5514   // We call takeVector() here to avoid use-after-free.
5515   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5516   // we deserialize function bodies to emit coverage info for them, and that
5517   // deserializes more declarations. How should we handle that case?
5518   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5519     if (!Entry.second)
5520       continue;
5521     const Decl *D = Entry.first;
5522     switch (D->getKind()) {
5523     case Decl::CXXConversion:
5524     case Decl::CXXMethod:
5525     case Decl::Function:
5526     case Decl::ObjCMethod: {
5527       CodeGenPGO PGO(*this);
5528       GlobalDecl GD(cast<FunctionDecl>(D));
5529       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5530                                   getFunctionLinkage(GD));
5531       break;
5532     }
5533     case Decl::CXXConstructor: {
5534       CodeGenPGO PGO(*this);
5535       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5536       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5537                                   getFunctionLinkage(GD));
5538       break;
5539     }
5540     case Decl::CXXDestructor: {
5541       CodeGenPGO PGO(*this);
5542       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5543       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5544                                   getFunctionLinkage(GD));
5545       break;
5546     }
5547     default:
5548       break;
5549     };
5550   }
5551 }
5552 
5553 /// Turns the given pointer into a constant.
5554 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5555                                           const void *Ptr) {
5556   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5557   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5558   return llvm::ConstantInt::get(i64, PtrInt);
5559 }
5560 
5561 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5562                                    llvm::NamedMDNode *&GlobalMetadata,
5563                                    GlobalDecl D,
5564                                    llvm::GlobalValue *Addr) {
5565   if (!GlobalMetadata)
5566     GlobalMetadata =
5567       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5568 
5569   // TODO: should we report variant information for ctors/dtors?
5570   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5571                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5572                                CGM.getLLVMContext(), D.getDecl()))};
5573   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5574 }
5575 
5576 /// For each function which is declared within an extern "C" region and marked
5577 /// as 'used', but has internal linkage, create an alias from the unmangled
5578 /// name to the mangled name if possible. People expect to be able to refer
5579 /// to such functions with an unmangled name from inline assembly within the
5580 /// same translation unit.
5581 void CodeGenModule::EmitStaticExternCAliases() {
5582   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5583     return;
5584   for (auto &I : StaticExternCValues) {
5585     IdentifierInfo *Name = I.first;
5586     llvm::GlobalValue *Val = I.second;
5587     if (Val && !getModule().getNamedValue(Name->getName()))
5588       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5589   }
5590 }
5591 
5592 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5593                                              GlobalDecl &Result) const {
5594   auto Res = Manglings.find(MangledName);
5595   if (Res == Manglings.end())
5596     return false;
5597   Result = Res->getValue();
5598   return true;
5599 }
5600 
5601 /// Emits metadata nodes associating all the global values in the
5602 /// current module with the Decls they came from.  This is useful for
5603 /// projects using IR gen as a subroutine.
5604 ///
5605 /// Since there's currently no way to associate an MDNode directly
5606 /// with an llvm::GlobalValue, we create a global named metadata
5607 /// with the name 'clang.global.decl.ptrs'.
5608 void CodeGenModule::EmitDeclMetadata() {
5609   llvm::NamedMDNode *GlobalMetadata = nullptr;
5610 
5611   for (auto &I : MangledDeclNames) {
5612     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5613     // Some mangled names don't necessarily have an associated GlobalValue
5614     // in this module, e.g. if we mangled it for DebugInfo.
5615     if (Addr)
5616       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5617   }
5618 }
5619 
5620 /// Emits metadata nodes for all the local variables in the current
5621 /// function.
5622 void CodeGenFunction::EmitDeclMetadata() {
5623   if (LocalDeclMap.empty()) return;
5624 
5625   llvm::LLVMContext &Context = getLLVMContext();
5626 
5627   // Find the unique metadata ID for this name.
5628   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5629 
5630   llvm::NamedMDNode *GlobalMetadata = nullptr;
5631 
5632   for (auto &I : LocalDeclMap) {
5633     const Decl *D = I.first;
5634     llvm::Value *Addr = I.second.getPointer();
5635     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5636       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5637       Alloca->setMetadata(
5638           DeclPtrKind, llvm::MDNode::get(
5639                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5640     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5641       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5642       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5643     }
5644   }
5645 }
5646 
5647 void CodeGenModule::EmitVersionIdentMetadata() {
5648   llvm::NamedMDNode *IdentMetadata =
5649     TheModule.getOrInsertNamedMetadata("llvm.ident");
5650   std::string Version = getClangFullVersion();
5651   llvm::LLVMContext &Ctx = TheModule.getContext();
5652 
5653   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5654   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5655 }
5656 
5657 void CodeGenModule::EmitCommandLineMetadata() {
5658   llvm::NamedMDNode *CommandLineMetadata =
5659     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5660   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5661   llvm::LLVMContext &Ctx = TheModule.getContext();
5662 
5663   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5664   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5665 }
5666 
5667 void CodeGenModule::EmitTargetMetadata() {
5668   // Warning, new MangledDeclNames may be appended within this loop.
5669   // We rely on MapVector insertions adding new elements to the end
5670   // of the container.
5671   // FIXME: Move this loop into the one target that needs it, and only
5672   // loop over those declarations for which we couldn't emit the target
5673   // metadata when we emitted the declaration.
5674   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5675     auto Val = *(MangledDeclNames.begin() + I);
5676     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5677     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5678     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5679   }
5680 }
5681 
5682 void CodeGenModule::EmitCoverageFile() {
5683   if (getCodeGenOpts().CoverageDataFile.empty() &&
5684       getCodeGenOpts().CoverageNotesFile.empty())
5685     return;
5686 
5687   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5688   if (!CUNode)
5689     return;
5690 
5691   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5692   llvm::LLVMContext &Ctx = TheModule.getContext();
5693   auto *CoverageDataFile =
5694       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5695   auto *CoverageNotesFile =
5696       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5697   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5698     llvm::MDNode *CU = CUNode->getOperand(i);
5699     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5700     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5701   }
5702 }
5703 
5704 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5705   // Sema has checked that all uuid strings are of the form
5706   // "12345678-1234-1234-1234-1234567890ab".
5707   assert(Uuid.size() == 36);
5708   for (unsigned i = 0; i < 36; ++i) {
5709     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5710     else                                         assert(isHexDigit(Uuid[i]));
5711   }
5712 
5713   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5714   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5715 
5716   llvm::Constant *Field3[8];
5717   for (unsigned Idx = 0; Idx < 8; ++Idx)
5718     Field3[Idx] = llvm::ConstantInt::get(
5719         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5720 
5721   llvm::Constant *Fields[4] = {
5722     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5723     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5724     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5725     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5726   };
5727 
5728   return llvm::ConstantStruct::getAnon(Fields);
5729 }
5730 
5731 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5732                                                        bool ForEH) {
5733   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5734   // FIXME: should we even be calling this method if RTTI is disabled
5735   // and it's not for EH?
5736   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5737     return llvm::Constant::getNullValue(Int8PtrTy);
5738 
5739   if (ForEH && Ty->isObjCObjectPointerType() &&
5740       LangOpts.ObjCRuntime.isGNUFamily())
5741     return ObjCRuntime->GetEHType(Ty);
5742 
5743   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5744 }
5745 
5746 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5747   // Do not emit threadprivates in simd-only mode.
5748   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5749     return;
5750   for (auto RefExpr : D->varlists()) {
5751     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5752     bool PerformInit =
5753         VD->getAnyInitializer() &&
5754         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5755                                                         /*ForRef=*/false);
5756 
5757     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5758     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5759             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5760       CXXGlobalInits.push_back(InitFunction);
5761   }
5762 }
5763 
5764 llvm::Metadata *
5765 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5766                                             StringRef Suffix) {
5767   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5768   if (InternalId)
5769     return InternalId;
5770 
5771   if (isExternallyVisible(T->getLinkage())) {
5772     std::string OutName;
5773     llvm::raw_string_ostream Out(OutName);
5774     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5775     Out << Suffix;
5776 
5777     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5778   } else {
5779     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5780                                            llvm::ArrayRef<llvm::Metadata *>());
5781   }
5782 
5783   return InternalId;
5784 }
5785 
5786 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5787   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5788 }
5789 
5790 llvm::Metadata *
5791 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5792   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5793 }
5794 
5795 // Generalize pointer types to a void pointer with the qualifiers of the
5796 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5797 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5798 // 'void *'.
5799 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5800   if (!Ty->isPointerType())
5801     return Ty;
5802 
5803   return Ctx.getPointerType(
5804       QualType(Ctx.VoidTy).withCVRQualifiers(
5805           Ty->getPointeeType().getCVRQualifiers()));
5806 }
5807 
5808 // Apply type generalization to a FunctionType's return and argument types
5809 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5810   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5811     SmallVector<QualType, 8> GeneralizedParams;
5812     for (auto &Param : FnType->param_types())
5813       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5814 
5815     return Ctx.getFunctionType(
5816         GeneralizeType(Ctx, FnType->getReturnType()),
5817         GeneralizedParams, FnType->getExtProtoInfo());
5818   }
5819 
5820   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5821     return Ctx.getFunctionNoProtoType(
5822         GeneralizeType(Ctx, FnType->getReturnType()));
5823 
5824   llvm_unreachable("Encountered unknown FunctionType");
5825 }
5826 
5827 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5828   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5829                                       GeneralizedMetadataIdMap, ".generalized");
5830 }
5831 
5832 /// Returns whether this module needs the "all-vtables" type identifier.
5833 bool CodeGenModule::NeedAllVtablesTypeId() const {
5834   // Returns true if at least one of vtable-based CFI checkers is enabled and
5835   // is not in the trapping mode.
5836   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5837            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5838           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5839            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5840           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5841            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5842           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5843            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5844 }
5845 
5846 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5847                                           CharUnits Offset,
5848                                           const CXXRecordDecl *RD) {
5849   llvm::Metadata *MD =
5850       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5851   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5852 
5853   if (CodeGenOpts.SanitizeCfiCrossDso)
5854     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5855       VTable->addTypeMetadata(Offset.getQuantity(),
5856                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5857 
5858   if (NeedAllVtablesTypeId()) {
5859     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5860     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5861   }
5862 }
5863 
5864 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5865   assert(TD != nullptr);
5866   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5867 
5868   ParsedAttr.Features.erase(
5869       llvm::remove_if(ParsedAttr.Features,
5870                       [&](const std::string &Feat) {
5871                         return !Target.isValidFeatureName(
5872                             StringRef{Feat}.substr(1));
5873                       }),
5874       ParsedAttr.Features.end());
5875   return ParsedAttr;
5876 }
5877 
5878 
5879 // Fills in the supplied string map with the set of target features for the
5880 // passed in function.
5881 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5882                                           GlobalDecl GD) {
5883   StringRef TargetCPU = Target.getTargetOpts().CPU;
5884   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5885   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5886     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5887 
5888     // Make a copy of the features as passed on the command line into the
5889     // beginning of the additional features from the function to override.
5890     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5891                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5892                             Target.getTargetOpts().FeaturesAsWritten.end());
5893 
5894     if (ParsedAttr.Architecture != "" &&
5895         Target.isValidCPUName(ParsedAttr.Architecture))
5896       TargetCPU = ParsedAttr.Architecture;
5897 
5898     // Now populate the feature map, first with the TargetCPU which is either
5899     // the default or a new one from the target attribute string. Then we'll use
5900     // the passed in features (FeaturesAsWritten) along with the new ones from
5901     // the attribute.
5902     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5903                           ParsedAttr.Features);
5904   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5905     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5906     Target.getCPUSpecificCPUDispatchFeatures(
5907         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5908     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5909     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5910   } else {
5911     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5912                           Target.getTargetOpts().Features);
5913   }
5914 }
5915 
5916 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5917   if (!SanStats)
5918     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5919 
5920   return *SanStats;
5921 }
5922 llvm::Value *
5923 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5924                                                   CodeGenFunction &CGF) {
5925   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5926   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5927   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5928   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5929                                 "__translate_sampler_initializer"),
5930                                 {C});
5931 }
5932