xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ad652efa1f65e16f5380acfba1bb132145984805)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CharInfo.h"
42 #include "clang/Basic/CodeGenOptions.h"
43 #include "clang/Basic/Diagnostic.h"
44 #include "clang/Basic/FileManager.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/SourceManager.h"
47 #include "clang/Basic/TargetInfo.h"
48 #include "clang/Basic/Version.h"
49 #include "clang/CodeGen/BackendUtil.h"
50 #include "clang/CodeGen/ConstantInitBuilder.h"
51 #include "clang/Frontend/FrontendDiagnostic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringSwitch.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/BinaryFormat/ELF.h"
57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
58 #include "llvm/IR/AttributeMask.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/DataLayout.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/ProfileSummary.h"
65 #include "llvm/ProfileData/InstrProfReader.h"
66 #include "llvm/ProfileData/SampleProf.h"
67 #include "llvm/Support/CRC.h"
68 #include "llvm/Support/CodeGen.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/ConvertUTF.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/TimeProfiler.h"
73 #include "llvm/Support/xxhash.h"
74 #include "llvm/TargetParser/RISCVISAInfo.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/TargetParser/X86TargetParser.h"
77 #include "llvm/Transforms/Utils/BuildLibCalls.h"
78 #include <optional>
79 
80 using namespace clang;
81 using namespace CodeGen;
82 
83 static llvm::cl::opt<bool> LimitedCoverage(
84     "limited-coverage-experimental", llvm::cl::Hidden,
85     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
86 
87 static const char AnnotationSection[] = "llvm.metadata";
88 
89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
90   switch (CGM.getContext().getCXXABIKind()) {
91   case TargetCXXABI::AppleARM64:
92   case TargetCXXABI::Fuchsia:
93   case TargetCXXABI::GenericAArch64:
94   case TargetCXXABI::GenericARM:
95   case TargetCXXABI::iOS:
96   case TargetCXXABI::WatchOS:
97   case TargetCXXABI::GenericMIPS:
98   case TargetCXXABI::GenericItanium:
99   case TargetCXXABI::WebAssembly:
100   case TargetCXXABI::XL:
101     return CreateItaniumCXXABI(CGM);
102   case TargetCXXABI::Microsoft:
103     return CreateMicrosoftCXXABI(CGM);
104   }
105 
106   llvm_unreachable("invalid C++ ABI kind");
107 }
108 
109 static std::unique_ptr<TargetCodeGenInfo>
110 createTargetCodeGenInfo(CodeGenModule &CGM) {
111   const TargetInfo &Target = CGM.getTarget();
112   const llvm::Triple &Triple = Target.getTriple();
113   const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
114 
115   switch (Triple.getArch()) {
116   default:
117     return createDefaultTargetCodeGenInfo(CGM);
118 
119   case llvm::Triple::le32:
120     return createPNaClTargetCodeGenInfo(CGM);
121   case llvm::Triple::m68k:
122     return createM68kTargetCodeGenInfo(CGM);
123   case llvm::Triple::mips:
124   case llvm::Triple::mipsel:
125     if (Triple.getOS() == llvm::Triple::NaCl)
126       return createPNaClTargetCodeGenInfo(CGM);
127     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
128 
129   case llvm::Triple::mips64:
130   case llvm::Triple::mips64el:
131     return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
132 
133   case llvm::Triple::avr: {
134     // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
135     // on avrtiny. For passing return value, R18~R25 are used on avr, and
136     // R22~R25 are used on avrtiny.
137     unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
138     unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
139     return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
140   }
141 
142   case llvm::Triple::aarch64:
143   case llvm::Triple::aarch64_32:
144   case llvm::Triple::aarch64_be: {
145     AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
146     if (Target.getABI() == "darwinpcs")
147       Kind = AArch64ABIKind::DarwinPCS;
148     else if (Triple.isOSWindows())
149       return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
150     else if (Target.getABI() == "aapcs-soft")
151       Kind = AArch64ABIKind::AAPCSSoft;
152 
153     return createAArch64TargetCodeGenInfo(CGM, Kind);
154   }
155 
156   case llvm::Triple::wasm32:
157   case llvm::Triple::wasm64: {
158     WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
159     if (Target.getABI() == "experimental-mv")
160       Kind = WebAssemblyABIKind::ExperimentalMV;
161     return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
162   }
163 
164   case llvm::Triple::arm:
165   case llvm::Triple::armeb:
166   case llvm::Triple::thumb:
167   case llvm::Triple::thumbeb: {
168     if (Triple.getOS() == llvm::Triple::Win32)
169       return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
170 
171     ARMABIKind Kind = ARMABIKind::AAPCS;
172     StringRef ABIStr = Target.getABI();
173     if (ABIStr == "apcs-gnu")
174       Kind = ARMABIKind::APCS;
175     else if (ABIStr == "aapcs16")
176       Kind = ARMABIKind::AAPCS16_VFP;
177     else if (CodeGenOpts.FloatABI == "hard" ||
178              (CodeGenOpts.FloatABI != "soft" &&
179               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
180                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
181                Triple.getEnvironment() == llvm::Triple::EABIHF)))
182       Kind = ARMABIKind::AAPCS_VFP;
183 
184     return createARMTargetCodeGenInfo(CGM, Kind);
185   }
186 
187   case llvm::Triple::ppc: {
188     if (Triple.isOSAIX())
189       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
190 
191     bool IsSoftFloat =
192         CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
193     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
194   }
195   case llvm::Triple::ppcle: {
196     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
197     return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
198   }
199   case llvm::Triple::ppc64:
200     if (Triple.isOSAIX())
201       return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
202 
203     if (Triple.isOSBinFormatELF()) {
204       PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
205       if (Target.getABI() == "elfv2")
206         Kind = PPC64_SVR4_ABIKind::ELFv2;
207       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
208 
209       return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
210     }
211     return createPPC64TargetCodeGenInfo(CGM);
212   case llvm::Triple::ppc64le: {
213     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
214     PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
215     if (Target.getABI() == "elfv1")
216       Kind = PPC64_SVR4_ABIKind::ELFv1;
217     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
218 
219     return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
220   }
221 
222   case llvm::Triple::nvptx:
223   case llvm::Triple::nvptx64:
224     return createNVPTXTargetCodeGenInfo(CGM);
225 
226   case llvm::Triple::msp430:
227     return createMSP430TargetCodeGenInfo(CGM);
228 
229   case llvm::Triple::riscv32:
230   case llvm::Triple::riscv64: {
231     StringRef ABIStr = Target.getABI();
232     unsigned XLen = Target.getPointerWidth(LangAS::Default);
233     unsigned ABIFLen = 0;
234     if (ABIStr.ends_with("f"))
235       ABIFLen = 32;
236     else if (ABIStr.ends_with("d"))
237       ABIFLen = 64;
238     bool EABI = ABIStr.ends_with("e");
239     return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
240   }
241 
242   case llvm::Triple::systemz: {
243     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
244     bool HasVector = !SoftFloat && Target.getABI() == "vector";
245     return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
246   }
247 
248   case llvm::Triple::tce:
249   case llvm::Triple::tcele:
250     return createTCETargetCodeGenInfo(CGM);
251 
252   case llvm::Triple::x86: {
253     bool IsDarwinVectorABI = Triple.isOSDarwin();
254     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
255 
256     if (Triple.getOS() == llvm::Triple::Win32) {
257       return createWinX86_32TargetCodeGenInfo(
258           CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
259           CodeGenOpts.NumRegisterParameters);
260     }
261     return createX86_32TargetCodeGenInfo(
262         CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
263         CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
264   }
265 
266   case llvm::Triple::x86_64: {
267     StringRef ABI = Target.getABI();
268     X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
269                                : ABI == "avx"  ? X86AVXABILevel::AVX
270                                                : X86AVXABILevel::None);
271 
272     switch (Triple.getOS()) {
273     case llvm::Triple::Win32:
274       return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
275     default:
276       return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
277     }
278   }
279   case llvm::Triple::hexagon:
280     return createHexagonTargetCodeGenInfo(CGM);
281   case llvm::Triple::lanai:
282     return createLanaiTargetCodeGenInfo(CGM);
283   case llvm::Triple::r600:
284     return createAMDGPUTargetCodeGenInfo(CGM);
285   case llvm::Triple::amdgcn:
286     return createAMDGPUTargetCodeGenInfo(CGM);
287   case llvm::Triple::sparc:
288     return createSparcV8TargetCodeGenInfo(CGM);
289   case llvm::Triple::sparcv9:
290     return createSparcV9TargetCodeGenInfo(CGM);
291   case llvm::Triple::xcore:
292     return createXCoreTargetCodeGenInfo(CGM);
293   case llvm::Triple::arc:
294     return createARCTargetCodeGenInfo(CGM);
295   case llvm::Triple::spir:
296   case llvm::Triple::spir64:
297     return createCommonSPIRTargetCodeGenInfo(CGM);
298   case llvm::Triple::spirv32:
299   case llvm::Triple::spirv64:
300     return createSPIRVTargetCodeGenInfo(CGM);
301   case llvm::Triple::ve:
302     return createVETargetCodeGenInfo(CGM);
303   case llvm::Triple::csky: {
304     bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
305     bool hasFP64 =
306         Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
307     return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
308                                             : hasFP64   ? 64
309                                                         : 32);
310   }
311   case llvm::Triple::bpfeb:
312   case llvm::Triple::bpfel:
313     return createBPFTargetCodeGenInfo(CGM);
314   case llvm::Triple::loongarch32:
315   case llvm::Triple::loongarch64: {
316     StringRef ABIStr = Target.getABI();
317     unsigned ABIFRLen = 0;
318     if (ABIStr.ends_with("f"))
319       ABIFRLen = 32;
320     else if (ABIStr.ends_with("d"))
321       ABIFRLen = 64;
322     return createLoongArchTargetCodeGenInfo(
323         CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
324   }
325   }
326 }
327 
328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
329   if (!TheTargetCodeGenInfo)
330     TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
331   return *TheTargetCodeGenInfo;
332 }
333 
334 CodeGenModule::CodeGenModule(ASTContext &C,
335                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
336                              const HeaderSearchOptions &HSO,
337                              const PreprocessorOptions &PPO,
338                              const CodeGenOptions &CGO, llvm::Module &M,
339                              DiagnosticsEngine &diags,
340                              CoverageSourceInfo *CoverageInfo)
341     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
342       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
343       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
344       VMContext(M.getContext()), Types(*this), VTables(*this),
345       SanitizerMD(new SanitizerMetadata(*this)) {
346 
347   // Initialize the type cache.
348   llvm::LLVMContext &LLVMContext = M.getContext();
349   VoidTy = llvm::Type::getVoidTy(LLVMContext);
350   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
351   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
352   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
353   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
354   HalfTy = llvm::Type::getHalfTy(LLVMContext);
355   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
356   FloatTy = llvm::Type::getFloatTy(LLVMContext);
357   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
358   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
359   PointerAlignInBytes =
360       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
361           .getQuantity();
362   SizeSizeInBytes =
363     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
364   IntAlignInBytes =
365     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
366   CharTy =
367     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
368   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
369   IntPtrTy = llvm::IntegerType::get(LLVMContext,
370     C.getTargetInfo().getMaxPointerWidth());
371   Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
372   const llvm::DataLayout &DL = M.getDataLayout();
373   AllocaInt8PtrTy =
374       llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
375   GlobalsInt8PtrTy =
376       llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
377   ConstGlobalsPtrTy = llvm::PointerType::get(
378       LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
379   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
380 
381   // Build C++20 Module initializers.
382   // TODO: Add Microsoft here once we know the mangling required for the
383   // initializers.
384   CXX20ModuleInits =
385       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
386                                        ItaniumMangleContext::MK_Itanium;
387 
388   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
389 
390   if (LangOpts.ObjC)
391     createObjCRuntime();
392   if (LangOpts.OpenCL)
393     createOpenCLRuntime();
394   if (LangOpts.OpenMP)
395     createOpenMPRuntime();
396   if (LangOpts.CUDA)
397     createCUDARuntime();
398   if (LangOpts.HLSL)
399     createHLSLRuntime();
400 
401   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
402   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
403       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
404     TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
405                                getLangOpts(), getCXXABI().getMangleContext()));
406 
407   // If debug info or coverage generation is enabled, create the CGDebugInfo
408   // object.
409   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
410       CodeGenOpts.CoverageNotesFile.size() ||
411       CodeGenOpts.CoverageDataFile.size())
412     DebugInfo.reset(new CGDebugInfo(*this));
413 
414   Block.GlobalUniqueCount = 0;
415 
416   if (C.getLangOpts().ObjC)
417     ObjCData.reset(new ObjCEntrypoints());
418 
419   if (CodeGenOpts.hasProfileClangUse()) {
420     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
421         CodeGenOpts.ProfileInstrumentUsePath, *FS,
422         CodeGenOpts.ProfileRemappingFile);
423     // We're checking for profile read errors in CompilerInvocation, so if
424     // there was an error it should've already been caught. If it hasn't been
425     // somehow, trip an assertion.
426     assert(ReaderOrErr);
427     PGOReader = std::move(ReaderOrErr.get());
428   }
429 
430   // If coverage mapping generation is enabled, create the
431   // CoverageMappingModuleGen object.
432   if (CodeGenOpts.CoverageMapping)
433     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
434 
435   // Generate the module name hash here if needed.
436   if (CodeGenOpts.UniqueInternalLinkageNames &&
437       !getModule().getSourceFileName().empty()) {
438     std::string Path = getModule().getSourceFileName();
439     // Check if a path substitution is needed from the MacroPrefixMap.
440     for (const auto &Entry : LangOpts.MacroPrefixMap)
441       if (Path.rfind(Entry.first, 0) != std::string::npos) {
442         Path = Entry.second + Path.substr(Entry.first.size());
443         break;
444       }
445     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
446   }
447 
448   // Record mregparm value now so it is visible through all of codegen.
449   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
450     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
451                               CodeGenOpts.NumRegisterParameters);
452 }
453 
454 CodeGenModule::~CodeGenModule() {}
455 
456 void CodeGenModule::createObjCRuntime() {
457   // This is just isGNUFamily(), but we want to force implementors of
458   // new ABIs to decide how best to do this.
459   switch (LangOpts.ObjCRuntime.getKind()) {
460   case ObjCRuntime::GNUstep:
461   case ObjCRuntime::GCC:
462   case ObjCRuntime::ObjFW:
463     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
464     return;
465 
466   case ObjCRuntime::FragileMacOSX:
467   case ObjCRuntime::MacOSX:
468   case ObjCRuntime::iOS:
469   case ObjCRuntime::WatchOS:
470     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
471     return;
472   }
473   llvm_unreachable("bad runtime kind");
474 }
475 
476 void CodeGenModule::createOpenCLRuntime() {
477   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
478 }
479 
480 void CodeGenModule::createOpenMPRuntime() {
481   // Select a specialized code generation class based on the target, if any.
482   // If it does not exist use the default implementation.
483   switch (getTriple().getArch()) {
484   case llvm::Triple::nvptx:
485   case llvm::Triple::nvptx64:
486   case llvm::Triple::amdgcn:
487     assert(getLangOpts().OpenMPIsTargetDevice &&
488            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
489     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
490     break;
491   default:
492     if (LangOpts.OpenMPSimd)
493       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
494     else
495       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
496     break;
497   }
498 }
499 
500 void CodeGenModule::createCUDARuntime() {
501   CUDARuntime.reset(CreateNVCUDARuntime(*this));
502 }
503 
504 void CodeGenModule::createHLSLRuntime() {
505   HLSLRuntime.reset(new CGHLSLRuntime(*this));
506 }
507 
508 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
509   Replacements[Name] = C;
510 }
511 
512 void CodeGenModule::applyReplacements() {
513   for (auto &I : Replacements) {
514     StringRef MangledName = I.first;
515     llvm::Constant *Replacement = I.second;
516     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
517     if (!Entry)
518       continue;
519     auto *OldF = cast<llvm::Function>(Entry);
520     auto *NewF = dyn_cast<llvm::Function>(Replacement);
521     if (!NewF) {
522       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
523         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
524       } else {
525         auto *CE = cast<llvm::ConstantExpr>(Replacement);
526         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
527                CE->getOpcode() == llvm::Instruction::GetElementPtr);
528         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
529       }
530     }
531 
532     // Replace old with new, but keep the old order.
533     OldF->replaceAllUsesWith(Replacement);
534     if (NewF) {
535       NewF->removeFromParent();
536       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
537                                                        NewF);
538     }
539     OldF->eraseFromParent();
540   }
541 }
542 
543 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
544   GlobalValReplacements.push_back(std::make_pair(GV, C));
545 }
546 
547 void CodeGenModule::applyGlobalValReplacements() {
548   for (auto &I : GlobalValReplacements) {
549     llvm::GlobalValue *GV = I.first;
550     llvm::Constant *C = I.second;
551 
552     GV->replaceAllUsesWith(C);
553     GV->eraseFromParent();
554   }
555 }
556 
557 // This is only used in aliases that we created and we know they have a
558 // linear structure.
559 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
560   const llvm::Constant *C;
561   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
562     C = GA->getAliasee();
563   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
564     C = GI->getResolver();
565   else
566     return GV;
567 
568   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
569   if (!AliaseeGV)
570     return nullptr;
571 
572   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
573   if (FinalGV == GV)
574     return nullptr;
575 
576   return FinalGV;
577 }
578 
579 static bool checkAliasedGlobal(
580     const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
581     bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
582     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
583     SourceRange AliasRange) {
584   GV = getAliasedGlobal(Alias);
585   if (!GV) {
586     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
587     return false;
588   }
589 
590   if (GV->hasCommonLinkage()) {
591     const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
592     if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
593       Diags.Report(Location, diag::err_alias_to_common);
594       return false;
595     }
596   }
597 
598   if (GV->isDeclaration()) {
599     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
600     Diags.Report(Location, diag::note_alias_requires_mangled_name)
601         << IsIFunc << IsIFunc;
602     // Provide a note if the given function is not found and exists as a
603     // mangled name.
604     for (const auto &[Decl, Name] : MangledDeclNames) {
605       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
606         if (ND->getName() == GV->getName()) {
607           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
608               << Name
609               << FixItHint::CreateReplacement(
610                      AliasRange,
611                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
612                          .str());
613         }
614       }
615     }
616     return false;
617   }
618 
619   if (IsIFunc) {
620     // Check resolver function type.
621     const auto *F = dyn_cast<llvm::Function>(GV);
622     if (!F) {
623       Diags.Report(Location, diag::err_alias_to_undefined)
624           << IsIFunc << IsIFunc;
625       return false;
626     }
627 
628     llvm::FunctionType *FTy = F->getFunctionType();
629     if (!FTy->getReturnType()->isPointerTy()) {
630       Diags.Report(Location, diag::err_ifunc_resolver_return);
631       return false;
632     }
633   }
634 
635   return true;
636 }
637 
638 // Emit a warning if toc-data attribute is requested for global variables that
639 // have aliases and remove the toc-data attribute.
640 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
641                                  const CodeGenOptions &CodeGenOpts,
642                                  DiagnosticsEngine &Diags,
643                                  SourceLocation Location) {
644   if (GVar->hasAttribute("toc-data")) {
645     auto GVId = GVar->getName();
646     // Is this a global variable specified by the user as local?
647     if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
648       Diags.Report(Location, diag::warn_toc_unsupported_type)
649           << GVId << "the variable has an alias";
650     }
651     llvm::AttributeSet CurrAttributes = GVar->getAttributes();
652     llvm::AttributeSet NewAttributes =
653         CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
654     GVar->setAttributes(NewAttributes);
655   }
656 }
657 
658 void CodeGenModule::checkAliases() {
659   // Check if the constructed aliases are well formed. It is really unfortunate
660   // that we have to do this in CodeGen, but we only construct mangled names
661   // and aliases during codegen.
662   bool Error = false;
663   DiagnosticsEngine &Diags = getDiags();
664   for (const GlobalDecl &GD : Aliases) {
665     const auto *D = cast<ValueDecl>(GD.getDecl());
666     SourceLocation Location;
667     SourceRange Range;
668     bool IsIFunc = D->hasAttr<IFuncAttr>();
669     if (const Attr *A = D->getDefiningAttr()) {
670       Location = A->getLocation();
671       Range = A->getRange();
672     } else
673       llvm_unreachable("Not an alias or ifunc?");
674 
675     StringRef MangledName = getMangledName(GD);
676     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
677     const llvm::GlobalValue *GV = nullptr;
678     if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
679                             MangledDeclNames, Range)) {
680       Error = true;
681       continue;
682     }
683 
684     if (getContext().getTargetInfo().getTriple().isOSAIX())
685       if (const llvm::GlobalVariable *GVar =
686               dyn_cast<const llvm::GlobalVariable>(GV))
687         checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
688                              getCodeGenOpts(), Diags, Location);
689 
690     llvm::Constant *Aliasee =
691         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
692                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
693 
694     llvm::GlobalValue *AliaseeGV;
695     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
696       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
697     else
698       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
699 
700     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
701       StringRef AliasSection = SA->getName();
702       if (AliasSection != AliaseeGV->getSection())
703         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
704             << AliasSection << IsIFunc << IsIFunc;
705     }
706 
707     // We have to handle alias to weak aliases in here. LLVM itself disallows
708     // this since the object semantics would not match the IL one. For
709     // compatibility with gcc we implement it by just pointing the alias
710     // to its aliasee's aliasee. We also warn, since the user is probably
711     // expecting the link to be weak.
712     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
713       if (GA->isInterposable()) {
714         Diags.Report(Location, diag::warn_alias_to_weak_alias)
715             << GV->getName() << GA->getName() << IsIFunc;
716         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
717             GA->getAliasee(), Alias->getType());
718 
719         if (IsIFunc)
720           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
721         else
722           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
723       }
724     }
725   }
726   if (!Error)
727     return;
728 
729   for (const GlobalDecl &GD : Aliases) {
730     StringRef MangledName = getMangledName(GD);
731     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
732     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
733     Alias->eraseFromParent();
734   }
735 }
736 
737 void CodeGenModule::clear() {
738   DeferredDeclsToEmit.clear();
739   EmittedDeferredDecls.clear();
740   DeferredAnnotations.clear();
741   if (OpenMPRuntime)
742     OpenMPRuntime->clear();
743 }
744 
745 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
746                                        StringRef MainFile) {
747   if (!hasDiagnostics())
748     return;
749   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
750     if (MainFile.empty())
751       MainFile = "<stdin>";
752     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
753   } else {
754     if (Mismatched > 0)
755       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
756 
757     if (Missing > 0)
758       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
759   }
760 }
761 
762 static std::optional<llvm::GlobalValue::VisibilityTypes>
763 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
764   // Map to LLVM visibility.
765   switch (K) {
766   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
767     return std::nullopt;
768   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
769     return llvm::GlobalValue::DefaultVisibility;
770   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
771     return llvm::GlobalValue::HiddenVisibility;
772   case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
773     return llvm::GlobalValue::ProtectedVisibility;
774   }
775   llvm_unreachable("unknown option value!");
776 }
777 
778 void setLLVMVisibility(llvm::GlobalValue &GV,
779                        std::optional<llvm::GlobalValue::VisibilityTypes> V) {
780   if (!V)
781     return;
782 
783   // Reset DSO locality before setting the visibility. This removes
784   // any effects that visibility options and annotations may have
785   // had on the DSO locality. Setting the visibility will implicitly set
786   // appropriate globals to DSO Local; however, this will be pessimistic
787   // w.r.t. to the normal compiler IRGen.
788   GV.setDSOLocal(false);
789   GV.setVisibility(*V);
790 }
791 
792 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
793                                              llvm::Module &M) {
794   if (!LO.VisibilityFromDLLStorageClass)
795     return;
796 
797   std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
798       getLLVMVisibility(LO.getDLLExportVisibility());
799 
800   std::optional<llvm::GlobalValue::VisibilityTypes>
801       NoDLLStorageClassVisibility =
802           getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
803 
804   std::optional<llvm::GlobalValue::VisibilityTypes>
805       ExternDeclDLLImportVisibility =
806           getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
807 
808   std::optional<llvm::GlobalValue::VisibilityTypes>
809       ExternDeclNoDLLStorageClassVisibility =
810           getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
811 
812   for (llvm::GlobalValue &GV : M.global_values()) {
813     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
814       continue;
815 
816     if (GV.isDeclarationForLinker())
817       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
818                                     llvm::GlobalValue::DLLImportStorageClass
819                                 ? ExternDeclDLLImportVisibility
820                                 : ExternDeclNoDLLStorageClassVisibility);
821     else
822       setLLVMVisibility(GV, GV.getDLLStorageClass() ==
823                                     llvm::GlobalValue::DLLExportStorageClass
824                                 ? DLLExportVisibility
825                                 : NoDLLStorageClassVisibility);
826 
827     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
828   }
829 }
830 
831 static bool isStackProtectorOn(const LangOptions &LangOpts,
832                                const llvm::Triple &Triple,
833                                clang::LangOptions::StackProtectorMode Mode) {
834   if (Triple.isAMDGPU() || Triple.isNVPTX())
835     return false;
836   return LangOpts.getStackProtector() == Mode;
837 }
838 
839 void CodeGenModule::Release() {
840   Module *Primary = getContext().getCurrentNamedModule();
841   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
842     EmitModuleInitializers(Primary);
843   EmitDeferred();
844   DeferredDecls.insert(EmittedDeferredDecls.begin(),
845                        EmittedDeferredDecls.end());
846   EmittedDeferredDecls.clear();
847   EmitVTablesOpportunistically();
848   applyGlobalValReplacements();
849   applyReplacements();
850   emitMultiVersionFunctions();
851 
852   if (Context.getLangOpts().IncrementalExtensions &&
853       GlobalTopLevelStmtBlockInFlight.first) {
854     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
855     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
856     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
857   }
858 
859   // Module implementations are initialized the same way as a regular TU that
860   // imports one or more modules.
861   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
862     EmitCXXModuleInitFunc(Primary);
863   else
864     EmitCXXGlobalInitFunc();
865   EmitCXXGlobalCleanUpFunc();
866   registerGlobalDtorsWithAtExit();
867   EmitCXXThreadLocalInitFunc();
868   if (ObjCRuntime)
869     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
870       AddGlobalCtor(ObjCInitFunction);
871   if (Context.getLangOpts().CUDA && CUDARuntime) {
872     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
873       AddGlobalCtor(CudaCtorFunction);
874   }
875   if (OpenMPRuntime) {
876     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
877     OpenMPRuntime->clear();
878   }
879   if (PGOReader) {
880     getModule().setProfileSummary(
881         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
882         llvm::ProfileSummary::PSK_Instr);
883     if (PGOStats.hasDiagnostics())
884       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
885   }
886   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
887     return L.LexOrder < R.LexOrder;
888   });
889   EmitCtorList(GlobalCtors, "llvm.global_ctors");
890   EmitCtorList(GlobalDtors, "llvm.global_dtors");
891   EmitGlobalAnnotations();
892   EmitStaticExternCAliases();
893   checkAliases();
894   EmitDeferredUnusedCoverageMappings();
895   CodeGenPGO(*this).setValueProfilingFlag(getModule());
896   CodeGenPGO(*this).setProfileVersion(getModule());
897   if (CoverageMapping)
898     CoverageMapping->emit();
899   if (CodeGenOpts.SanitizeCfiCrossDso) {
900     CodeGenFunction(*this).EmitCfiCheckFail();
901     CodeGenFunction(*this).EmitCfiCheckStub();
902   }
903   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
904     finalizeKCFITypes();
905   emitAtAvailableLinkGuard();
906   if (Context.getTargetInfo().getTriple().isWasm())
907     EmitMainVoidAlias();
908 
909   if (getTriple().isAMDGPU()) {
910     // Emit amdhsa_code_object_version module flag, which is code object version
911     // times 100.
912     if (getTarget().getTargetOpts().CodeObjectVersion !=
913         llvm::CodeObjectVersionKind::COV_None) {
914       getModule().addModuleFlag(llvm::Module::Error,
915                                 "amdhsa_code_object_version",
916                                 getTarget().getTargetOpts().CodeObjectVersion);
917     }
918 
919     // Currently, "-mprintf-kind" option is only supported for HIP
920     if (LangOpts.HIP) {
921       auto *MDStr = llvm::MDString::get(
922           getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
923                              TargetOptions::AMDGPUPrintfKind::Hostcall)
924                                 ? "hostcall"
925                                 : "buffered");
926       getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
927                                 MDStr);
928     }
929   }
930 
931   // Emit a global array containing all external kernels or device variables
932   // used by host functions and mark it as used for CUDA/HIP. This is necessary
933   // to get kernels or device variables in archives linked in even if these
934   // kernels or device variables are only used in host functions.
935   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
936     SmallVector<llvm::Constant *, 8> UsedArray;
937     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
938       GlobalDecl GD;
939       if (auto *FD = dyn_cast<FunctionDecl>(D))
940         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
941       else
942         GD = GlobalDecl(D);
943       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
944           GetAddrOfGlobal(GD), Int8PtrTy));
945     }
946 
947     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
948 
949     auto *GV = new llvm::GlobalVariable(
950         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
951         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
952     addCompilerUsedGlobal(GV);
953   }
954   if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
955     // Emit a unique ID so that host and device binaries from the same
956     // compilation unit can be associated.
957     auto *GV = new llvm::GlobalVariable(
958         getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
959         llvm::Constant::getNullValue(Int8Ty),
960         "__hip_cuid_" + getContext().getCUIDHash());
961     addCompilerUsedGlobal(GV);
962   }
963   emitLLVMUsed();
964   if (SanStats)
965     SanStats->finish();
966 
967   if (CodeGenOpts.Autolink &&
968       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
969     EmitModuleLinkOptions();
970   }
971 
972   // On ELF we pass the dependent library specifiers directly to the linker
973   // without manipulating them. This is in contrast to other platforms where
974   // they are mapped to a specific linker option by the compiler. This
975   // difference is a result of the greater variety of ELF linkers and the fact
976   // that ELF linkers tend to handle libraries in a more complicated fashion
977   // than on other platforms. This forces us to defer handling the dependent
978   // libs to the linker.
979   //
980   // CUDA/HIP device and host libraries are different. Currently there is no
981   // way to differentiate dependent libraries for host or device. Existing
982   // usage of #pragma comment(lib, *) is intended for host libraries on
983   // Windows. Therefore emit llvm.dependent-libraries only for host.
984   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
985     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
986     for (auto *MD : ELFDependentLibraries)
987       NMD->addOperand(MD);
988   }
989 
990   if (CodeGenOpts.DwarfVersion) {
991     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
992                               CodeGenOpts.DwarfVersion);
993   }
994 
995   if (CodeGenOpts.Dwarf64)
996     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
997 
998   if (Context.getLangOpts().SemanticInterposition)
999     // Require various optimization to respect semantic interposition.
1000     getModule().setSemanticInterposition(true);
1001 
1002   if (CodeGenOpts.EmitCodeView) {
1003     // Indicate that we want CodeView in the metadata.
1004     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1005   }
1006   if (CodeGenOpts.CodeViewGHash) {
1007     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1008   }
1009   if (CodeGenOpts.ControlFlowGuard) {
1010     // Function ID tables and checks for Control Flow Guard (cfguard=2).
1011     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1012   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1013     // Function ID tables for Control Flow Guard (cfguard=1).
1014     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1015   }
1016   if (CodeGenOpts.EHContGuard) {
1017     // Function ID tables for EH Continuation Guard.
1018     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1019   }
1020   if (Context.getLangOpts().Kernel) {
1021     // Note if we are compiling with /kernel.
1022     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1023   }
1024   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1025     // We don't support LTO with 2 with different StrictVTablePointers
1026     // FIXME: we could support it by stripping all the information introduced
1027     // by StrictVTablePointers.
1028 
1029     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1030 
1031     llvm::Metadata *Ops[2] = {
1032               llvm::MDString::get(VMContext, "StrictVTablePointers"),
1033               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1034                   llvm::Type::getInt32Ty(VMContext), 1))};
1035 
1036     getModule().addModuleFlag(llvm::Module::Require,
1037                               "StrictVTablePointersRequirement",
1038                               llvm::MDNode::get(VMContext, Ops));
1039   }
1040   if (getModuleDebugInfo())
1041     // We support a single version in the linked module. The LLVM
1042     // parser will drop debug info with a different version number
1043     // (and warn about it, too).
1044     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1045                               llvm::DEBUG_METADATA_VERSION);
1046 
1047   // We need to record the widths of enums and wchar_t, so that we can generate
1048   // the correct build attributes in the ARM backend. wchar_size is also used by
1049   // TargetLibraryInfo.
1050   uint64_t WCharWidth =
1051       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1052   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1053 
1054   if (getTriple().isOSzOS()) {
1055     getModule().addModuleFlag(llvm::Module::Warning,
1056                               "zos_product_major_version",
1057                               uint32_t(CLANG_VERSION_MAJOR));
1058     getModule().addModuleFlag(llvm::Module::Warning,
1059                               "zos_product_minor_version",
1060                               uint32_t(CLANG_VERSION_MINOR));
1061     getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1062                               uint32_t(CLANG_VERSION_PATCHLEVEL));
1063     std::string ProductId = getClangVendor() + "clang";
1064     getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1065                               llvm::MDString::get(VMContext, ProductId));
1066 
1067     // Record the language because we need it for the PPA2.
1068     StringRef lang_str = languageToString(
1069         LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1070     getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1071                               llvm::MDString::get(VMContext, lang_str));
1072 
1073     time_t TT = PreprocessorOpts.SourceDateEpoch
1074                     ? *PreprocessorOpts.SourceDateEpoch
1075                     : std::time(nullptr);
1076     getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1077                               static_cast<uint64_t>(TT));
1078 
1079     // Multiple modes will be supported here.
1080     getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1081                               llvm::MDString::get(VMContext, "ascii"));
1082   }
1083 
1084   llvm::Triple T = Context.getTargetInfo().getTriple();
1085   if (T.isARM() || T.isThumb()) {
1086     // The minimum width of an enum in bytes
1087     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1088     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1089   }
1090 
1091   if (T.isRISCV()) {
1092     StringRef ABIStr = Target.getABI();
1093     llvm::LLVMContext &Ctx = TheModule.getContext();
1094     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1095                               llvm::MDString::get(Ctx, ABIStr));
1096 
1097     // Add the canonical ISA string as metadata so the backend can set the ELF
1098     // attributes correctly. We use AppendUnique so LTO will keep all of the
1099     // unique ISA strings that were linked together.
1100     const std::vector<std::string> &Features =
1101         getTarget().getTargetOpts().Features;
1102     auto ParseResult =
1103         llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1104     if (!errorToBool(ParseResult.takeError()))
1105       getModule().addModuleFlag(
1106           llvm::Module::AppendUnique, "riscv-isa",
1107           llvm::MDNode::get(
1108               Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1109   }
1110 
1111   if (CodeGenOpts.SanitizeCfiCrossDso) {
1112     // Indicate that we want cross-DSO control flow integrity checks.
1113     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1114   }
1115 
1116   if (CodeGenOpts.WholeProgramVTables) {
1117     // Indicate whether VFE was enabled for this module, so that the
1118     // vcall_visibility metadata added under whole program vtables is handled
1119     // appropriately in the optimizer.
1120     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1121                               CodeGenOpts.VirtualFunctionElimination);
1122   }
1123 
1124   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1125     getModule().addModuleFlag(llvm::Module::Override,
1126                               "CFI Canonical Jump Tables",
1127                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1128   }
1129 
1130   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1131     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1132     // KCFI assumes patchable-function-prefix is the same for all indirectly
1133     // called functions. Store the expected offset for code generation.
1134     if (CodeGenOpts.PatchableFunctionEntryOffset)
1135       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1136                                 CodeGenOpts.PatchableFunctionEntryOffset);
1137   }
1138 
1139   if (CodeGenOpts.CFProtectionReturn &&
1140       Target.checkCFProtectionReturnSupported(getDiags())) {
1141     // Indicate that we want to instrument return control flow protection.
1142     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1143                               1);
1144   }
1145 
1146   if (CodeGenOpts.CFProtectionBranch &&
1147       Target.checkCFProtectionBranchSupported(getDiags())) {
1148     // Indicate that we want to instrument branch control flow protection.
1149     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1150                               1);
1151   }
1152 
1153   if (CodeGenOpts.FunctionReturnThunks)
1154     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1155 
1156   if (CodeGenOpts.IndirectBranchCSPrefix)
1157     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1158 
1159   // Add module metadata for return address signing (ignoring
1160   // non-leaf/all) and stack tagging. These are actually turned on by function
1161   // attributes, but we use module metadata to emit build attributes. This is
1162   // needed for LTO, where the function attributes are inside bitcode
1163   // serialised into a global variable by the time build attributes are
1164   // emitted, so we can't access them. LTO objects could be compiled with
1165   // different flags therefore module flags are set to "Min" behavior to achieve
1166   // the same end result of the normal build where e.g BTI is off if any object
1167   // doesn't support it.
1168   if (Context.getTargetInfo().hasFeature("ptrauth") &&
1169       LangOpts.getSignReturnAddressScope() !=
1170           LangOptions::SignReturnAddressScopeKind::None)
1171     getModule().addModuleFlag(llvm::Module::Override,
1172                               "sign-return-address-buildattr", 1);
1173   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1174     getModule().addModuleFlag(llvm::Module::Override,
1175                               "tag-stack-memory-buildattr", 1);
1176 
1177   if (T.isARM() || T.isThumb() || T.isAArch64()) {
1178     if (LangOpts.BranchTargetEnforcement)
1179       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1180                                 1);
1181     if (LangOpts.BranchProtectionPAuthLR)
1182       getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1183                                 1);
1184     if (LangOpts.GuardedControlStack)
1185       getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1186     if (LangOpts.hasSignReturnAddress())
1187       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1188     if (LangOpts.isSignReturnAddressScopeAll())
1189       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1190                                 1);
1191     if (!LangOpts.isSignReturnAddressWithAKey())
1192       getModule().addModuleFlag(llvm::Module::Min,
1193                                 "sign-return-address-with-bkey", 1);
1194 
1195     if (getTriple().isOSLinux()) {
1196       assert(getTriple().isOSBinFormatELF());
1197       using namespace llvm::ELF;
1198       uint64_t PAuthABIVersion =
1199           (LangOpts.PointerAuthIntrinsics
1200            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1201           (LangOpts.PointerAuthCalls
1202            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1203           (LangOpts.PointerAuthReturns
1204            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1205           (LangOpts.PointerAuthAuthTraps
1206            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1207           (LangOpts.PointerAuthVTPtrAddressDiscrimination
1208            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1209           (LangOpts.PointerAuthVTPtrTypeDiscrimination
1210            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1211           (LangOpts.PointerAuthInitFini
1212            << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI);
1213       static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
1214                         AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1215                     "Update when new enum items are defined");
1216       if (PAuthABIVersion != 0) {
1217         getModule().addModuleFlag(llvm::Module::Error,
1218                                   "aarch64-elf-pauthabi-platform",
1219                                   AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1220         getModule().addModuleFlag(llvm::Module::Error,
1221                                   "aarch64-elf-pauthabi-version",
1222                                   PAuthABIVersion);
1223       }
1224     }
1225   }
1226 
1227   if (CodeGenOpts.StackClashProtector)
1228     getModule().addModuleFlag(
1229         llvm::Module::Override, "probe-stack",
1230         llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1231 
1232   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1233     getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1234                               CodeGenOpts.StackProbeSize);
1235 
1236   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1237     llvm::LLVMContext &Ctx = TheModule.getContext();
1238     getModule().addModuleFlag(
1239         llvm::Module::Error, "MemProfProfileFilename",
1240         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1241   }
1242 
1243   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1244     // Indicate whether __nvvm_reflect should be configured to flush denormal
1245     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1246     // property.)
1247     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1248                               CodeGenOpts.FP32DenormalMode.Output !=
1249                                   llvm::DenormalMode::IEEE);
1250   }
1251 
1252   if (LangOpts.EHAsynch)
1253     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1254 
1255   // Indicate whether this Module was compiled with -fopenmp
1256   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1257     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1258   if (getLangOpts().OpenMPIsTargetDevice)
1259     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1260                               LangOpts.OpenMP);
1261 
1262   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1263   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1264     EmitOpenCLMetadata();
1265     // Emit SPIR version.
1266     if (getTriple().isSPIR()) {
1267       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1268       // opencl.spir.version named metadata.
1269       // C++ for OpenCL has a distinct mapping for version compatibility with
1270       // OpenCL.
1271       auto Version = LangOpts.getOpenCLCompatibleVersion();
1272       llvm::Metadata *SPIRVerElts[] = {
1273           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1274               Int32Ty, Version / 100)),
1275           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1276               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1277       llvm::NamedMDNode *SPIRVerMD =
1278           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1279       llvm::LLVMContext &Ctx = TheModule.getContext();
1280       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1281     }
1282   }
1283 
1284   // HLSL related end of code gen work items.
1285   if (LangOpts.HLSL)
1286     getHLSLRuntime().finishCodeGen();
1287 
1288   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1289     assert(PLevel < 3 && "Invalid PIC Level");
1290     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1291     if (Context.getLangOpts().PIE)
1292       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1293   }
1294 
1295   if (getCodeGenOpts().CodeModel.size() > 0) {
1296     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1297                   .Case("tiny", llvm::CodeModel::Tiny)
1298                   .Case("small", llvm::CodeModel::Small)
1299                   .Case("kernel", llvm::CodeModel::Kernel)
1300                   .Case("medium", llvm::CodeModel::Medium)
1301                   .Case("large", llvm::CodeModel::Large)
1302                   .Default(~0u);
1303     if (CM != ~0u) {
1304       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1305       getModule().setCodeModel(codeModel);
1306 
1307       if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1308           Context.getTargetInfo().getTriple().getArch() ==
1309               llvm::Triple::x86_64) {
1310         getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1311       }
1312     }
1313   }
1314 
1315   if (CodeGenOpts.NoPLT)
1316     getModule().setRtLibUseGOT();
1317   if (getTriple().isOSBinFormatELF() &&
1318       CodeGenOpts.DirectAccessExternalData !=
1319           getModule().getDirectAccessExternalData()) {
1320     getModule().setDirectAccessExternalData(
1321         CodeGenOpts.DirectAccessExternalData);
1322   }
1323   if (CodeGenOpts.UnwindTables)
1324     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1325 
1326   switch (CodeGenOpts.getFramePointer()) {
1327   case CodeGenOptions::FramePointerKind::None:
1328     // 0 ("none") is the default.
1329     break;
1330   case CodeGenOptions::FramePointerKind::NonLeaf:
1331     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1332     break;
1333   case CodeGenOptions::FramePointerKind::All:
1334     getModule().setFramePointer(llvm::FramePointerKind::All);
1335     break;
1336   }
1337 
1338   SimplifyPersonality();
1339 
1340   if (getCodeGenOpts().EmitDeclMetadata)
1341     EmitDeclMetadata();
1342 
1343   if (getCodeGenOpts().CoverageNotesFile.size() ||
1344       getCodeGenOpts().CoverageDataFile.size())
1345     EmitCoverageFile();
1346 
1347   if (CGDebugInfo *DI = getModuleDebugInfo())
1348     DI->finalize();
1349 
1350   if (getCodeGenOpts().EmitVersionIdentMetadata)
1351     EmitVersionIdentMetadata();
1352 
1353   if (!getCodeGenOpts().RecordCommandLine.empty())
1354     EmitCommandLineMetadata();
1355 
1356   if (!getCodeGenOpts().StackProtectorGuard.empty())
1357     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1358   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1359     getModule().setStackProtectorGuardReg(
1360         getCodeGenOpts().StackProtectorGuardReg);
1361   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1362     getModule().setStackProtectorGuardSymbol(
1363         getCodeGenOpts().StackProtectorGuardSymbol);
1364   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1365     getModule().setStackProtectorGuardOffset(
1366         getCodeGenOpts().StackProtectorGuardOffset);
1367   if (getCodeGenOpts().StackAlignment)
1368     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1369   if (getCodeGenOpts().SkipRaxSetup)
1370     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1371   if (getLangOpts().RegCall4)
1372     getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1373 
1374   if (getContext().getTargetInfo().getMaxTLSAlign())
1375     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1376                               getContext().getTargetInfo().getMaxTLSAlign());
1377 
1378   getTargetCodeGenInfo().emitTargetGlobals(*this);
1379 
1380   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1381 
1382   EmitBackendOptionsMetadata(getCodeGenOpts());
1383 
1384   // If there is device offloading code embed it in the host now.
1385   EmbedObject(&getModule(), CodeGenOpts, getDiags());
1386 
1387   // Set visibility from DLL storage class
1388   // We do this at the end of LLVM IR generation; after any operation
1389   // that might affect the DLL storage class or the visibility, and
1390   // before anything that might act on these.
1391   setVisibilityFromDLLStorageClass(LangOpts, getModule());
1392 }
1393 
1394 void CodeGenModule::EmitOpenCLMetadata() {
1395   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1396   // opencl.ocl.version named metadata node.
1397   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1398   auto Version = LangOpts.getOpenCLCompatibleVersion();
1399   llvm::Metadata *OCLVerElts[] = {
1400       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1401           Int32Ty, Version / 100)),
1402       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1403           Int32Ty, (Version % 100) / 10))};
1404   llvm::NamedMDNode *OCLVerMD =
1405       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1406   llvm::LLVMContext &Ctx = TheModule.getContext();
1407   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1408 }
1409 
1410 void CodeGenModule::EmitBackendOptionsMetadata(
1411     const CodeGenOptions &CodeGenOpts) {
1412   if (getTriple().isRISCV()) {
1413     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1414                               CodeGenOpts.SmallDataLimit);
1415   }
1416 }
1417 
1418 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1419   // Make sure that this type is translated.
1420   Types.UpdateCompletedType(TD);
1421 }
1422 
1423 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1424   // Make sure that this type is translated.
1425   Types.RefreshTypeCacheForClass(RD);
1426 }
1427 
1428 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1429   if (!TBAA)
1430     return nullptr;
1431   return TBAA->getTypeInfo(QTy);
1432 }
1433 
1434 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1435   if (!TBAA)
1436     return TBAAAccessInfo();
1437   if (getLangOpts().CUDAIsDevice) {
1438     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1439     // access info.
1440     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1441       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1442           nullptr)
1443         return TBAAAccessInfo();
1444     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1445       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1446           nullptr)
1447         return TBAAAccessInfo();
1448     }
1449   }
1450   return TBAA->getAccessInfo(AccessType);
1451 }
1452 
1453 TBAAAccessInfo
1454 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1455   if (!TBAA)
1456     return TBAAAccessInfo();
1457   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1458 }
1459 
1460 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1461   if (!TBAA)
1462     return nullptr;
1463   return TBAA->getTBAAStructInfo(QTy);
1464 }
1465 
1466 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1467   if (!TBAA)
1468     return nullptr;
1469   return TBAA->getBaseTypeInfo(QTy);
1470 }
1471 
1472 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1473   if (!TBAA)
1474     return nullptr;
1475   return TBAA->getAccessTagInfo(Info);
1476 }
1477 
1478 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1479                                                    TBAAAccessInfo TargetInfo) {
1480   if (!TBAA)
1481     return TBAAAccessInfo();
1482   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1483 }
1484 
1485 TBAAAccessInfo
1486 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1487                                                    TBAAAccessInfo InfoB) {
1488   if (!TBAA)
1489     return TBAAAccessInfo();
1490   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1491 }
1492 
1493 TBAAAccessInfo
1494 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1495                                               TBAAAccessInfo SrcInfo) {
1496   if (!TBAA)
1497     return TBAAAccessInfo();
1498   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1499 }
1500 
1501 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1502                                                 TBAAAccessInfo TBAAInfo) {
1503   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1504     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1505 }
1506 
1507 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1508     llvm::Instruction *I, const CXXRecordDecl *RD) {
1509   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1510                  llvm::MDNode::get(getLLVMContext(), {}));
1511 }
1512 
1513 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1514   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1515   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1516 }
1517 
1518 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1519 /// specified stmt yet.
1520 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1521   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1522                                                "cannot compile this %0 yet");
1523   std::string Msg = Type;
1524   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1525       << Msg << S->getSourceRange();
1526 }
1527 
1528 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1529 /// specified decl yet.
1530 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1531   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1532                                                "cannot compile this %0 yet");
1533   std::string Msg = Type;
1534   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1535 }
1536 
1537 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1538   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1539 }
1540 
1541 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1542                                         const NamedDecl *D) const {
1543   // Internal definitions always have default visibility.
1544   if (GV->hasLocalLinkage()) {
1545     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1546     return;
1547   }
1548   if (!D)
1549     return;
1550 
1551   // Set visibility for definitions, and for declarations if requested globally
1552   // or set explicitly.
1553   LinkageInfo LV = D->getLinkageAndVisibility();
1554 
1555   // OpenMP declare target variables must be visible to the host so they can
1556   // be registered. We require protected visibility unless the variable has
1557   // the DT_nohost modifier and does not need to be registered.
1558   if (Context.getLangOpts().OpenMP &&
1559       Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1560       D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1561       D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1562           OMPDeclareTargetDeclAttr::DT_NoHost &&
1563       LV.getVisibility() == HiddenVisibility) {
1564     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1565     return;
1566   }
1567 
1568   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1569     // Reject incompatible dlllstorage and visibility annotations.
1570     if (!LV.isVisibilityExplicit())
1571       return;
1572     if (GV->hasDLLExportStorageClass()) {
1573       if (LV.getVisibility() == HiddenVisibility)
1574         getDiags().Report(D->getLocation(),
1575                           diag::err_hidden_visibility_dllexport);
1576     } else if (LV.getVisibility() != DefaultVisibility) {
1577       getDiags().Report(D->getLocation(),
1578                         diag::err_non_default_visibility_dllimport);
1579     }
1580     return;
1581   }
1582 
1583   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1584       !GV->isDeclarationForLinker())
1585     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1586 }
1587 
1588 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1589                                  llvm::GlobalValue *GV) {
1590   if (GV->hasLocalLinkage())
1591     return true;
1592 
1593   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1594     return true;
1595 
1596   // DLLImport explicitly marks the GV as external.
1597   if (GV->hasDLLImportStorageClass())
1598     return false;
1599 
1600   const llvm::Triple &TT = CGM.getTriple();
1601   const auto &CGOpts = CGM.getCodeGenOpts();
1602   if (TT.isWindowsGNUEnvironment()) {
1603     // In MinGW, variables without DLLImport can still be automatically
1604     // imported from a DLL by the linker; don't mark variables that
1605     // potentially could come from another DLL as DSO local.
1606 
1607     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1608     // (and this actually happens in the public interface of libstdc++), so
1609     // such variables can't be marked as DSO local. (Native TLS variables
1610     // can't be dllimported at all, though.)
1611     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1612         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1613         CGOpts.AutoImport)
1614       return false;
1615   }
1616 
1617   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1618   // remain unresolved in the link, they can be resolved to zero, which is
1619   // outside the current DSO.
1620   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1621     return false;
1622 
1623   // Every other GV is local on COFF.
1624   // Make an exception for windows OS in the triple: Some firmware builds use
1625   // *-win32-macho triples. This (accidentally?) produced windows relocations
1626   // without GOT tables in older clang versions; Keep this behaviour.
1627   // FIXME: even thread local variables?
1628   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1629     return true;
1630 
1631   // Only handle COFF and ELF for now.
1632   if (!TT.isOSBinFormatELF())
1633     return false;
1634 
1635   // If this is not an executable, don't assume anything is local.
1636   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1637   const auto &LOpts = CGM.getLangOpts();
1638   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1639     // On ELF, if -fno-semantic-interposition is specified and the target
1640     // supports local aliases, there will be neither CC1
1641     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1642     // dso_local on the function if using a local alias is preferable (can avoid
1643     // PLT indirection).
1644     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1645       return false;
1646     return !(CGM.getLangOpts().SemanticInterposition ||
1647              CGM.getLangOpts().HalfNoSemanticInterposition);
1648   }
1649 
1650   // A definition cannot be preempted from an executable.
1651   if (!GV->isDeclarationForLinker())
1652     return true;
1653 
1654   // Most PIC code sequences that assume that a symbol is local cannot produce a
1655   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1656   // depended, it seems worth it to handle it here.
1657   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1658     return false;
1659 
1660   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1661   if (TT.isPPC64())
1662     return false;
1663 
1664   if (CGOpts.DirectAccessExternalData) {
1665     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1666     // for non-thread-local variables. If the symbol is not defined in the
1667     // executable, a copy relocation will be needed at link time. dso_local is
1668     // excluded for thread-local variables because they generally don't support
1669     // copy relocations.
1670     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1671       if (!Var->isThreadLocal())
1672         return true;
1673 
1674     // -fno-pic sets dso_local on a function declaration to allow direct
1675     // accesses when taking its address (similar to a data symbol). If the
1676     // function is not defined in the executable, a canonical PLT entry will be
1677     // needed at link time. -fno-direct-access-external-data can avoid the
1678     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1679     // it could just cause trouble without providing perceptible benefits.
1680     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1681       return true;
1682   }
1683 
1684   // If we can use copy relocations we can assume it is local.
1685 
1686   // Otherwise don't assume it is local.
1687   return false;
1688 }
1689 
1690 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1691   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1692 }
1693 
1694 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1695                                           GlobalDecl GD) const {
1696   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1697   // C++ destructors have a few C++ ABI specific special cases.
1698   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1699     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1700     return;
1701   }
1702   setDLLImportDLLExport(GV, D);
1703 }
1704 
1705 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1706                                           const NamedDecl *D) const {
1707   if (D && D->isExternallyVisible()) {
1708     if (D->hasAttr<DLLImportAttr>())
1709       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1710     else if ((D->hasAttr<DLLExportAttr>() ||
1711               shouldMapVisibilityToDLLExport(D)) &&
1712              !GV->isDeclarationForLinker())
1713       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1714   }
1715 }
1716 
1717 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1718                                     GlobalDecl GD) const {
1719   setDLLImportDLLExport(GV, GD);
1720   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1721 }
1722 
1723 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1724                                     const NamedDecl *D) const {
1725   setDLLImportDLLExport(GV, D);
1726   setGVPropertiesAux(GV, D);
1727 }
1728 
1729 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1730                                        const NamedDecl *D) const {
1731   setGlobalVisibility(GV, D);
1732   setDSOLocal(GV);
1733   GV->setPartition(CodeGenOpts.SymbolPartition);
1734 }
1735 
1736 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1737   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1738       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1739       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1740       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1741       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1742 }
1743 
1744 llvm::GlobalVariable::ThreadLocalMode
1745 CodeGenModule::GetDefaultLLVMTLSModel() const {
1746   switch (CodeGenOpts.getDefaultTLSModel()) {
1747   case CodeGenOptions::GeneralDynamicTLSModel:
1748     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1749   case CodeGenOptions::LocalDynamicTLSModel:
1750     return llvm::GlobalVariable::LocalDynamicTLSModel;
1751   case CodeGenOptions::InitialExecTLSModel:
1752     return llvm::GlobalVariable::InitialExecTLSModel;
1753   case CodeGenOptions::LocalExecTLSModel:
1754     return llvm::GlobalVariable::LocalExecTLSModel;
1755   }
1756   llvm_unreachable("Invalid TLS model!");
1757 }
1758 
1759 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1760   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1761 
1762   llvm::GlobalValue::ThreadLocalMode TLM;
1763   TLM = GetDefaultLLVMTLSModel();
1764 
1765   // Override the TLS model if it is explicitly specified.
1766   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1767     TLM = GetLLVMTLSModel(Attr->getModel());
1768   }
1769 
1770   GV->setThreadLocalMode(TLM);
1771 }
1772 
1773 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1774                                           StringRef Name) {
1775   const TargetInfo &Target = CGM.getTarget();
1776   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1777 }
1778 
1779 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1780                                                  const CPUSpecificAttr *Attr,
1781                                                  unsigned CPUIndex,
1782                                                  raw_ostream &Out) {
1783   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1784   // supported.
1785   if (Attr)
1786     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1787   else if (CGM.getTarget().supportsIFunc())
1788     Out << ".resolver";
1789 }
1790 
1791 // Returns true if GD is a function decl with internal linkage and
1792 // needs a unique suffix after the mangled name.
1793 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1794                                         CodeGenModule &CGM) {
1795   const Decl *D = GD.getDecl();
1796   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1797          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1798 }
1799 
1800 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1801                                       const NamedDecl *ND,
1802                                       bool OmitMultiVersionMangling = false) {
1803   SmallString<256> Buffer;
1804   llvm::raw_svector_ostream Out(Buffer);
1805   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1806   if (!CGM.getModuleNameHash().empty())
1807     MC.needsUniqueInternalLinkageNames();
1808   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1809   if (ShouldMangle)
1810     MC.mangleName(GD.getWithDecl(ND), Out);
1811   else {
1812     IdentifierInfo *II = ND->getIdentifier();
1813     assert(II && "Attempt to mangle unnamed decl.");
1814     const auto *FD = dyn_cast<FunctionDecl>(ND);
1815 
1816     if (FD &&
1817         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1818       if (CGM.getLangOpts().RegCall4)
1819         Out << "__regcall4__" << II->getName();
1820       else
1821         Out << "__regcall3__" << II->getName();
1822     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1823                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1824       Out << "__device_stub__" << II->getName();
1825     } else {
1826       Out << II->getName();
1827     }
1828   }
1829 
1830   // Check if the module name hash should be appended for internal linkage
1831   // symbols.   This should come before multi-version target suffixes are
1832   // appended. This is to keep the name and module hash suffix of the
1833   // internal linkage function together.  The unique suffix should only be
1834   // added when name mangling is done to make sure that the final name can
1835   // be properly demangled.  For example, for C functions without prototypes,
1836   // name mangling is not done and the unique suffix should not be appeneded
1837   // then.
1838   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1839     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1840            "Hash computed when not explicitly requested");
1841     Out << CGM.getModuleNameHash();
1842   }
1843 
1844   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1845     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1846       switch (FD->getMultiVersionKind()) {
1847       case MultiVersionKind::CPUDispatch:
1848       case MultiVersionKind::CPUSpecific:
1849         AppendCPUSpecificCPUDispatchMangling(CGM,
1850                                              FD->getAttr<CPUSpecificAttr>(),
1851                                              GD.getMultiVersionIndex(), Out);
1852         break;
1853       case MultiVersionKind::Target: {
1854         auto *Attr = FD->getAttr<TargetAttr>();
1855         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1856         Info.appendAttributeMangling(Attr, Out);
1857         break;
1858       }
1859       case MultiVersionKind::TargetVersion: {
1860         auto *Attr = FD->getAttr<TargetVersionAttr>();
1861         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1862         Info.appendAttributeMangling(Attr, Out);
1863         break;
1864       }
1865       case MultiVersionKind::TargetClones: {
1866         auto *Attr = FD->getAttr<TargetClonesAttr>();
1867         unsigned Index = GD.getMultiVersionIndex();
1868         const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1869         Info.appendAttributeMangling(Attr, Index, Out);
1870         break;
1871       }
1872       case MultiVersionKind::None:
1873         llvm_unreachable("None multiversion type isn't valid here");
1874       }
1875     }
1876 
1877   // Make unique name for device side static file-scope variable for HIP.
1878   if (CGM.getContext().shouldExternalize(ND) &&
1879       CGM.getLangOpts().GPURelocatableDeviceCode &&
1880       CGM.getLangOpts().CUDAIsDevice)
1881     CGM.printPostfixForExternalizedDecl(Out, ND);
1882 
1883   return std::string(Out.str());
1884 }
1885 
1886 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1887                                             const FunctionDecl *FD,
1888                                             StringRef &CurName) {
1889   if (!FD->isMultiVersion())
1890     return;
1891 
1892   // Get the name of what this would be without the 'target' attribute.  This
1893   // allows us to lookup the version that was emitted when this wasn't a
1894   // multiversion function.
1895   std::string NonTargetName =
1896       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1897   GlobalDecl OtherGD;
1898   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1899     assert(OtherGD.getCanonicalDecl()
1900                .getDecl()
1901                ->getAsFunction()
1902                ->isMultiVersion() &&
1903            "Other GD should now be a multiversioned function");
1904     // OtherFD is the version of this function that was mangled BEFORE
1905     // becoming a MultiVersion function.  It potentially needs to be updated.
1906     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1907                                       .getDecl()
1908                                       ->getAsFunction()
1909                                       ->getMostRecentDecl();
1910     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1911     // This is so that if the initial version was already the 'default'
1912     // version, we don't try to update it.
1913     if (OtherName != NonTargetName) {
1914       // Remove instead of erase, since others may have stored the StringRef
1915       // to this.
1916       const auto ExistingRecord = Manglings.find(NonTargetName);
1917       if (ExistingRecord != std::end(Manglings))
1918         Manglings.remove(&(*ExistingRecord));
1919       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1920       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1921           Result.first->first();
1922       // If this is the current decl is being created, make sure we update the name.
1923       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1924         CurName = OtherNameRef;
1925       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1926         Entry->setName(OtherName);
1927     }
1928   }
1929 }
1930 
1931 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1932   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1933 
1934   // Some ABIs don't have constructor variants.  Make sure that base and
1935   // complete constructors get mangled the same.
1936   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1937     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1938       CXXCtorType OrigCtorType = GD.getCtorType();
1939       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1940       if (OrigCtorType == Ctor_Base)
1941         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1942     }
1943   }
1944 
1945   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1946   // static device variable depends on whether the variable is referenced by
1947   // a host or device host function. Therefore the mangled name cannot be
1948   // cached.
1949   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1950     auto FoundName = MangledDeclNames.find(CanonicalGD);
1951     if (FoundName != MangledDeclNames.end())
1952       return FoundName->second;
1953   }
1954 
1955   // Keep the first result in the case of a mangling collision.
1956   const auto *ND = cast<NamedDecl>(GD.getDecl());
1957   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1958 
1959   // Ensure either we have different ABIs between host and device compilations,
1960   // says host compilation following MSVC ABI but device compilation follows
1961   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1962   // mangling should be the same after name stubbing. The later checking is
1963   // very important as the device kernel name being mangled in host-compilation
1964   // is used to resolve the device binaries to be executed. Inconsistent naming
1965   // result in undefined behavior. Even though we cannot check that naming
1966   // directly between host- and device-compilations, the host- and
1967   // device-mangling in host compilation could help catching certain ones.
1968   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1969          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1970          (getContext().getAuxTargetInfo() &&
1971           (getContext().getAuxTargetInfo()->getCXXABI() !=
1972            getContext().getTargetInfo().getCXXABI())) ||
1973          getCUDARuntime().getDeviceSideName(ND) ==
1974              getMangledNameImpl(
1975                  *this,
1976                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1977                  ND));
1978 
1979   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1980   return MangledDeclNames[CanonicalGD] = Result.first->first();
1981 }
1982 
1983 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1984                                              const BlockDecl *BD) {
1985   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1986   const Decl *D = GD.getDecl();
1987 
1988   SmallString<256> Buffer;
1989   llvm::raw_svector_ostream Out(Buffer);
1990   if (!D)
1991     MangleCtx.mangleGlobalBlock(BD,
1992       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1993   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1994     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1995   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1996     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1997   else
1998     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1999 
2000   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2001   return Result.first->first();
2002 }
2003 
2004 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2005   auto it = MangledDeclNames.begin();
2006   while (it != MangledDeclNames.end()) {
2007     if (it->second == Name)
2008       return it->first;
2009     it++;
2010   }
2011   return GlobalDecl();
2012 }
2013 
2014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2015   return getModule().getNamedValue(Name);
2016 }
2017 
2018 /// AddGlobalCtor - Add a function to the list that will be called before
2019 /// main() runs.
2020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2021                                   unsigned LexOrder,
2022                                   llvm::Constant *AssociatedData) {
2023   // FIXME: Type coercion of void()* types.
2024   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2025 }
2026 
2027 /// AddGlobalDtor - Add a function to the list that will be called
2028 /// when the module is unloaded.
2029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2030                                   bool IsDtorAttrFunc) {
2031   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2032       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2033     DtorsUsingAtExit[Priority].push_back(Dtor);
2034     return;
2035   }
2036 
2037   // FIXME: Type coercion of void()* types.
2038   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2039 }
2040 
2041 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2042   if (Fns.empty()) return;
2043 
2044   // Ctor function type is void()*.
2045   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2046   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2047       TheModule.getDataLayout().getProgramAddressSpace());
2048 
2049   // Get the type of a ctor entry, { i32, void ()*, i8* }.
2050   llvm::StructType *CtorStructTy = llvm::StructType::get(
2051       Int32Ty, CtorPFTy, VoidPtrTy);
2052 
2053   // Construct the constructor and destructor arrays.
2054   ConstantInitBuilder builder(*this);
2055   auto ctors = builder.beginArray(CtorStructTy);
2056   for (const auto &I : Fns) {
2057     auto ctor = ctors.beginStruct(CtorStructTy);
2058     ctor.addInt(Int32Ty, I.Priority);
2059     ctor.add(I.Initializer);
2060     if (I.AssociatedData)
2061       ctor.add(I.AssociatedData);
2062     else
2063       ctor.addNullPointer(VoidPtrTy);
2064     ctor.finishAndAddTo(ctors);
2065   }
2066 
2067   auto list =
2068     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2069                                 /*constant*/ false,
2070                                 llvm::GlobalValue::AppendingLinkage);
2071 
2072   // The LTO linker doesn't seem to like it when we set an alignment
2073   // on appending variables.  Take it off as a workaround.
2074   list->setAlignment(std::nullopt);
2075 
2076   Fns.clear();
2077 }
2078 
2079 llvm::GlobalValue::LinkageTypes
2080 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2081   const auto *D = cast<FunctionDecl>(GD.getDecl());
2082 
2083   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2084 
2085   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2086     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2087 
2088   return getLLVMLinkageForDeclarator(D, Linkage);
2089 }
2090 
2091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2092   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2093   if (!MDS) return nullptr;
2094 
2095   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2096 }
2097 
2098 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2099   if (auto *FnType = T->getAs<FunctionProtoType>())
2100     T = getContext().getFunctionType(
2101         FnType->getReturnType(), FnType->getParamTypes(),
2102         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2103 
2104   std::string OutName;
2105   llvm::raw_string_ostream Out(OutName);
2106   getCXXABI().getMangleContext().mangleCanonicalTypeName(
2107       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2108 
2109   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2110     Out << ".normalized";
2111 
2112   return llvm::ConstantInt::get(Int32Ty,
2113                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2114 }
2115 
2116 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2117                                               const CGFunctionInfo &Info,
2118                                               llvm::Function *F, bool IsThunk) {
2119   unsigned CallingConv;
2120   llvm::AttributeList PAL;
2121   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2122                          /*AttrOnCallSite=*/false, IsThunk);
2123   if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2124       getTarget().getTriple().isWindowsArm64EC()) {
2125     SourceLocation Loc;
2126     if (const Decl *D = GD.getDecl())
2127       Loc = D->getLocation();
2128 
2129     Error(Loc, "__vectorcall calling convention is not currently supported");
2130   }
2131   F->setAttributes(PAL);
2132   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2133 }
2134 
2135 static void removeImageAccessQualifier(std::string& TyName) {
2136   std::string ReadOnlyQual("__read_only");
2137   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2138   if (ReadOnlyPos != std::string::npos)
2139     // "+ 1" for the space after access qualifier.
2140     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2141   else {
2142     std::string WriteOnlyQual("__write_only");
2143     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2144     if (WriteOnlyPos != std::string::npos)
2145       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2146     else {
2147       std::string ReadWriteQual("__read_write");
2148       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2149       if (ReadWritePos != std::string::npos)
2150         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2151     }
2152   }
2153 }
2154 
2155 // Returns the address space id that should be produced to the
2156 // kernel_arg_addr_space metadata. This is always fixed to the ids
2157 // as specified in the SPIR 2.0 specification in order to differentiate
2158 // for example in clGetKernelArgInfo() implementation between the address
2159 // spaces with targets without unique mapping to the OpenCL address spaces
2160 // (basically all single AS CPUs).
2161 static unsigned ArgInfoAddressSpace(LangAS AS) {
2162   switch (AS) {
2163   case LangAS::opencl_global:
2164     return 1;
2165   case LangAS::opencl_constant:
2166     return 2;
2167   case LangAS::opencl_local:
2168     return 3;
2169   case LangAS::opencl_generic:
2170     return 4; // Not in SPIR 2.0 specs.
2171   case LangAS::opencl_global_device:
2172     return 5;
2173   case LangAS::opencl_global_host:
2174     return 6;
2175   default:
2176     return 0; // Assume private.
2177   }
2178 }
2179 
2180 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2181                                          const FunctionDecl *FD,
2182                                          CodeGenFunction *CGF) {
2183   assert(((FD && CGF) || (!FD && !CGF)) &&
2184          "Incorrect use - FD and CGF should either be both null or not!");
2185   // Create MDNodes that represent the kernel arg metadata.
2186   // Each MDNode is a list in the form of "key", N number of values which is
2187   // the same number of values as their are kernel arguments.
2188 
2189   const PrintingPolicy &Policy = Context.getPrintingPolicy();
2190 
2191   // MDNode for the kernel argument address space qualifiers.
2192   SmallVector<llvm::Metadata *, 8> addressQuals;
2193 
2194   // MDNode for the kernel argument access qualifiers (images only).
2195   SmallVector<llvm::Metadata *, 8> accessQuals;
2196 
2197   // MDNode for the kernel argument type names.
2198   SmallVector<llvm::Metadata *, 8> argTypeNames;
2199 
2200   // MDNode for the kernel argument base type names.
2201   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2202 
2203   // MDNode for the kernel argument type qualifiers.
2204   SmallVector<llvm::Metadata *, 8> argTypeQuals;
2205 
2206   // MDNode for the kernel argument names.
2207   SmallVector<llvm::Metadata *, 8> argNames;
2208 
2209   if (FD && CGF)
2210     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2211       const ParmVarDecl *parm = FD->getParamDecl(i);
2212       // Get argument name.
2213       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2214 
2215       if (!getLangOpts().OpenCL)
2216         continue;
2217       QualType ty = parm->getType();
2218       std::string typeQuals;
2219 
2220       // Get image and pipe access qualifier:
2221       if (ty->isImageType() || ty->isPipeType()) {
2222         const Decl *PDecl = parm;
2223         if (const auto *TD = ty->getAs<TypedefType>())
2224           PDecl = TD->getDecl();
2225         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2226         if (A && A->isWriteOnly())
2227           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2228         else if (A && A->isReadWrite())
2229           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2230         else
2231           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2232       } else
2233         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2234 
2235       auto getTypeSpelling = [&](QualType Ty) {
2236         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2237 
2238         if (Ty.isCanonical()) {
2239           StringRef typeNameRef = typeName;
2240           // Turn "unsigned type" to "utype"
2241           if (typeNameRef.consume_front("unsigned "))
2242             return std::string("u") + typeNameRef.str();
2243           if (typeNameRef.consume_front("signed "))
2244             return typeNameRef.str();
2245         }
2246 
2247         return typeName;
2248       };
2249 
2250       if (ty->isPointerType()) {
2251         QualType pointeeTy = ty->getPointeeType();
2252 
2253         // Get address qualifier.
2254         addressQuals.push_back(
2255             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2256                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2257 
2258         // Get argument type name.
2259         std::string typeName = getTypeSpelling(pointeeTy) + "*";
2260         std::string baseTypeName =
2261             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2262         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2263         argBaseTypeNames.push_back(
2264             llvm::MDString::get(VMContext, baseTypeName));
2265 
2266         // Get argument type qualifiers:
2267         if (ty.isRestrictQualified())
2268           typeQuals = "restrict";
2269         if (pointeeTy.isConstQualified() ||
2270             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2271           typeQuals += typeQuals.empty() ? "const" : " const";
2272         if (pointeeTy.isVolatileQualified())
2273           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2274       } else {
2275         uint32_t AddrSpc = 0;
2276         bool isPipe = ty->isPipeType();
2277         if (ty->isImageType() || isPipe)
2278           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2279 
2280         addressQuals.push_back(
2281             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2282 
2283         // Get argument type name.
2284         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2285         std::string typeName = getTypeSpelling(ty);
2286         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2287 
2288         // Remove access qualifiers on images
2289         // (as they are inseparable from type in clang implementation,
2290         // but OpenCL spec provides a special query to get access qualifier
2291         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2292         if (ty->isImageType()) {
2293           removeImageAccessQualifier(typeName);
2294           removeImageAccessQualifier(baseTypeName);
2295         }
2296 
2297         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2298         argBaseTypeNames.push_back(
2299             llvm::MDString::get(VMContext, baseTypeName));
2300 
2301         if (isPipe)
2302           typeQuals = "pipe";
2303       }
2304       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2305     }
2306 
2307   if (getLangOpts().OpenCL) {
2308     Fn->setMetadata("kernel_arg_addr_space",
2309                     llvm::MDNode::get(VMContext, addressQuals));
2310     Fn->setMetadata("kernel_arg_access_qual",
2311                     llvm::MDNode::get(VMContext, accessQuals));
2312     Fn->setMetadata("kernel_arg_type",
2313                     llvm::MDNode::get(VMContext, argTypeNames));
2314     Fn->setMetadata("kernel_arg_base_type",
2315                     llvm::MDNode::get(VMContext, argBaseTypeNames));
2316     Fn->setMetadata("kernel_arg_type_qual",
2317                     llvm::MDNode::get(VMContext, argTypeQuals));
2318   }
2319   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2320       getCodeGenOpts().HIPSaveKernelArgName)
2321     Fn->setMetadata("kernel_arg_name",
2322                     llvm::MDNode::get(VMContext, argNames));
2323 }
2324 
2325 /// Determines whether the language options require us to model
2326 /// unwind exceptions.  We treat -fexceptions as mandating this
2327 /// except under the fragile ObjC ABI with only ObjC exceptions
2328 /// enabled.  This means, for example, that C with -fexceptions
2329 /// enables this.
2330 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2331   // If exceptions are completely disabled, obviously this is false.
2332   if (!LangOpts.Exceptions) return false;
2333 
2334   // If C++ exceptions are enabled, this is true.
2335   if (LangOpts.CXXExceptions) return true;
2336 
2337   // If ObjC exceptions are enabled, this depends on the ABI.
2338   if (LangOpts.ObjCExceptions) {
2339     return LangOpts.ObjCRuntime.hasUnwindExceptions();
2340   }
2341 
2342   return true;
2343 }
2344 
2345 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2346                                                       const CXXMethodDecl *MD) {
2347   // Check that the type metadata can ever actually be used by a call.
2348   if (!CGM.getCodeGenOpts().LTOUnit ||
2349       !CGM.HasHiddenLTOVisibility(MD->getParent()))
2350     return false;
2351 
2352   // Only functions whose address can be taken with a member function pointer
2353   // need this sort of type metadata.
2354   return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2355          !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2356 }
2357 
2358 SmallVector<const CXXRecordDecl *, 0>
2359 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2360   llvm::SetVector<const CXXRecordDecl *> MostBases;
2361 
2362   std::function<void (const CXXRecordDecl *)> CollectMostBases;
2363   CollectMostBases = [&](const CXXRecordDecl *RD) {
2364     if (RD->getNumBases() == 0)
2365       MostBases.insert(RD);
2366     for (const CXXBaseSpecifier &B : RD->bases())
2367       CollectMostBases(B.getType()->getAsCXXRecordDecl());
2368   };
2369   CollectMostBases(RD);
2370   return MostBases.takeVector();
2371 }
2372 
2373 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2374                                                            llvm::Function *F) {
2375   llvm::AttrBuilder B(F->getContext());
2376 
2377   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2378     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2379 
2380   if (CodeGenOpts.StackClashProtector)
2381     B.addAttribute("probe-stack", "inline-asm");
2382 
2383   if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2384     B.addAttribute("stack-probe-size",
2385                    std::to_string(CodeGenOpts.StackProbeSize));
2386 
2387   if (!hasUnwindExceptions(LangOpts))
2388     B.addAttribute(llvm::Attribute::NoUnwind);
2389 
2390   if (D && D->hasAttr<NoStackProtectorAttr>())
2391     ; // Do nothing.
2392   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2393            isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2394     B.addAttribute(llvm::Attribute::StackProtectStrong);
2395   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2396     B.addAttribute(llvm::Attribute::StackProtect);
2397   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2398     B.addAttribute(llvm::Attribute::StackProtectStrong);
2399   else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2400     B.addAttribute(llvm::Attribute::StackProtectReq);
2401 
2402   if (!D) {
2403     // If we don't have a declaration to control inlining, the function isn't
2404     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2405     // disabled, mark the function as noinline.
2406     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2407         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2408       B.addAttribute(llvm::Attribute::NoInline);
2409 
2410     F->addFnAttrs(B);
2411     return;
2412   }
2413 
2414   // Handle SME attributes that apply to function definitions,
2415   // rather than to function prototypes.
2416   if (D->hasAttr<ArmLocallyStreamingAttr>())
2417     B.addAttribute("aarch64_pstate_sm_body");
2418 
2419   if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2420     if (Attr->isNewZA())
2421       B.addAttribute("aarch64_new_za");
2422     if (Attr->isNewZT0())
2423       B.addAttribute("aarch64_new_zt0");
2424   }
2425 
2426   // Track whether we need to add the optnone LLVM attribute,
2427   // starting with the default for this optimization level.
2428   bool ShouldAddOptNone =
2429       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2430   // We can't add optnone in the following cases, it won't pass the verifier.
2431   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2432   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2433 
2434   // Add optnone, but do so only if the function isn't always_inline.
2435   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2436       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2437     B.addAttribute(llvm::Attribute::OptimizeNone);
2438 
2439     // OptimizeNone implies noinline; we should not be inlining such functions.
2440     B.addAttribute(llvm::Attribute::NoInline);
2441 
2442     // We still need to handle naked functions even though optnone subsumes
2443     // much of their semantics.
2444     if (D->hasAttr<NakedAttr>())
2445       B.addAttribute(llvm::Attribute::Naked);
2446 
2447     // OptimizeNone wins over OptimizeForSize and MinSize.
2448     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2449     F->removeFnAttr(llvm::Attribute::MinSize);
2450   } else if (D->hasAttr<NakedAttr>()) {
2451     // Naked implies noinline: we should not be inlining such functions.
2452     B.addAttribute(llvm::Attribute::Naked);
2453     B.addAttribute(llvm::Attribute::NoInline);
2454   } else if (D->hasAttr<NoDuplicateAttr>()) {
2455     B.addAttribute(llvm::Attribute::NoDuplicate);
2456   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2457     // Add noinline if the function isn't always_inline.
2458     B.addAttribute(llvm::Attribute::NoInline);
2459   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2460              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2461     // (noinline wins over always_inline, and we can't specify both in IR)
2462     B.addAttribute(llvm::Attribute::AlwaysInline);
2463   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2464     // If we're not inlining, then force everything that isn't always_inline to
2465     // carry an explicit noinline attribute.
2466     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2467       B.addAttribute(llvm::Attribute::NoInline);
2468   } else {
2469     // Otherwise, propagate the inline hint attribute and potentially use its
2470     // absence to mark things as noinline.
2471     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2472       // Search function and template pattern redeclarations for inline.
2473       auto CheckForInline = [](const FunctionDecl *FD) {
2474         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2475           return Redecl->isInlineSpecified();
2476         };
2477         if (any_of(FD->redecls(), CheckRedeclForInline))
2478           return true;
2479         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2480         if (!Pattern)
2481           return false;
2482         return any_of(Pattern->redecls(), CheckRedeclForInline);
2483       };
2484       if (CheckForInline(FD)) {
2485         B.addAttribute(llvm::Attribute::InlineHint);
2486       } else if (CodeGenOpts.getInlining() ==
2487                      CodeGenOptions::OnlyHintInlining &&
2488                  !FD->isInlined() &&
2489                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2490         B.addAttribute(llvm::Attribute::NoInline);
2491       }
2492     }
2493   }
2494 
2495   // Add other optimization related attributes if we are optimizing this
2496   // function.
2497   if (!D->hasAttr<OptimizeNoneAttr>()) {
2498     if (D->hasAttr<ColdAttr>()) {
2499       if (!ShouldAddOptNone)
2500         B.addAttribute(llvm::Attribute::OptimizeForSize);
2501       B.addAttribute(llvm::Attribute::Cold);
2502     }
2503     if (D->hasAttr<HotAttr>())
2504       B.addAttribute(llvm::Attribute::Hot);
2505     if (D->hasAttr<MinSizeAttr>())
2506       B.addAttribute(llvm::Attribute::MinSize);
2507   }
2508 
2509   F->addFnAttrs(B);
2510 
2511   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2512   if (alignment)
2513     F->setAlignment(llvm::Align(alignment));
2514 
2515   if (!D->hasAttr<AlignedAttr>())
2516     if (LangOpts.FunctionAlignment)
2517       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2518 
2519   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2520   // reserve a bit for differentiating between virtual and non-virtual member
2521   // functions. If the current target's C++ ABI requires this and this is a
2522   // member function, set its alignment accordingly.
2523   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2524     if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2525       F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2526   }
2527 
2528   // In the cross-dso CFI mode with canonical jump tables, we want !type
2529   // attributes on definitions only.
2530   if (CodeGenOpts.SanitizeCfiCrossDso &&
2531       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2532     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2533       // Skip available_externally functions. They won't be codegen'ed in the
2534       // current module anyway.
2535       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2536         CreateFunctionTypeMetadataForIcall(FD, F);
2537     }
2538   }
2539 
2540   // Emit type metadata on member functions for member function pointer checks.
2541   // These are only ever necessary on definitions; we're guaranteed that the
2542   // definition will be present in the LTO unit as a result of LTO visibility.
2543   auto *MD = dyn_cast<CXXMethodDecl>(D);
2544   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2545     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2546       llvm::Metadata *Id =
2547           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2548               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2549       F->addTypeMetadata(0, Id);
2550     }
2551   }
2552 }
2553 
2554 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2555   const Decl *D = GD.getDecl();
2556   if (isa_and_nonnull<NamedDecl>(D))
2557     setGVProperties(GV, GD);
2558   else
2559     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2560 
2561   if (D && D->hasAttr<UsedAttr>())
2562     addUsedOrCompilerUsedGlobal(GV);
2563 
2564   if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2565       VD &&
2566       ((CodeGenOpts.KeepPersistentStorageVariables &&
2567         (VD->getStorageDuration() == SD_Static ||
2568          VD->getStorageDuration() == SD_Thread)) ||
2569        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2570         VD->getType().isConstQualified())))
2571     addUsedOrCompilerUsedGlobal(GV);
2572 }
2573 
2574 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2575                                                 llvm::AttrBuilder &Attrs,
2576                                                 bool SetTargetFeatures) {
2577   // Add target-cpu and target-features attributes to functions. If
2578   // we have a decl for the function and it has a target attribute then
2579   // parse that and add it to the feature set.
2580   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2581   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2582   std::vector<std::string> Features;
2583   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2584   FD = FD ? FD->getMostRecentDecl() : FD;
2585   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2586   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2587   assert((!TD || !TV) && "both target_version and target specified");
2588   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2589   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2590   bool AddedAttr = false;
2591   if (TD || TV || SD || TC) {
2592     llvm::StringMap<bool> FeatureMap;
2593     getContext().getFunctionFeatureMap(FeatureMap, GD);
2594 
2595     // Produce the canonical string for this set of features.
2596     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2597       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2598 
2599     // Now add the target-cpu and target-features to the function.
2600     // While we populated the feature map above, we still need to
2601     // get and parse the target attribute so we can get the cpu for
2602     // the function.
2603     if (TD) {
2604       ParsedTargetAttr ParsedAttr =
2605           Target.parseTargetAttr(TD->getFeaturesStr());
2606       if (!ParsedAttr.CPU.empty() &&
2607           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2608         TargetCPU = ParsedAttr.CPU;
2609         TuneCPU = ""; // Clear the tune CPU.
2610       }
2611       if (!ParsedAttr.Tune.empty() &&
2612           getTarget().isValidCPUName(ParsedAttr.Tune))
2613         TuneCPU = ParsedAttr.Tune;
2614     }
2615 
2616     if (SD) {
2617       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2618       // favor this processor.
2619       TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2620     }
2621   } else {
2622     // Otherwise just add the existing target cpu and target features to the
2623     // function.
2624     Features = getTarget().getTargetOpts().Features;
2625   }
2626 
2627   if (!TargetCPU.empty()) {
2628     Attrs.addAttribute("target-cpu", TargetCPU);
2629     AddedAttr = true;
2630   }
2631   if (!TuneCPU.empty()) {
2632     Attrs.addAttribute("tune-cpu", TuneCPU);
2633     AddedAttr = true;
2634   }
2635   if (!Features.empty() && SetTargetFeatures) {
2636     llvm::erase_if(Features, [&](const std::string& F) {
2637        return getTarget().isReadOnlyFeature(F.substr(1));
2638     });
2639     llvm::sort(Features);
2640     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2641     AddedAttr = true;
2642   }
2643 
2644   return AddedAttr;
2645 }
2646 
2647 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2648                                           llvm::GlobalObject *GO) {
2649   const Decl *D = GD.getDecl();
2650   SetCommonAttributes(GD, GO);
2651 
2652   if (D) {
2653     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2654       if (D->hasAttr<RetainAttr>())
2655         addUsedGlobal(GV);
2656       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2657         GV->addAttribute("bss-section", SA->getName());
2658       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2659         GV->addAttribute("data-section", SA->getName());
2660       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2661         GV->addAttribute("rodata-section", SA->getName());
2662       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2663         GV->addAttribute("relro-section", SA->getName());
2664     }
2665 
2666     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2667       if (D->hasAttr<RetainAttr>())
2668         addUsedGlobal(F);
2669       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2670         if (!D->getAttr<SectionAttr>())
2671           F->setSection(SA->getName());
2672 
2673       llvm::AttrBuilder Attrs(F->getContext());
2674       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2675         // We know that GetCPUAndFeaturesAttributes will always have the
2676         // newest set, since it has the newest possible FunctionDecl, so the
2677         // new ones should replace the old.
2678         llvm::AttributeMask RemoveAttrs;
2679         RemoveAttrs.addAttribute("target-cpu");
2680         RemoveAttrs.addAttribute("target-features");
2681         RemoveAttrs.addAttribute("tune-cpu");
2682         F->removeFnAttrs(RemoveAttrs);
2683         F->addFnAttrs(Attrs);
2684       }
2685     }
2686 
2687     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2688       GO->setSection(CSA->getName());
2689     else if (const auto *SA = D->getAttr<SectionAttr>())
2690       GO->setSection(SA->getName());
2691   }
2692 
2693   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2694 }
2695 
2696 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2697                                                   llvm::Function *F,
2698                                                   const CGFunctionInfo &FI) {
2699   const Decl *D = GD.getDecl();
2700   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2701   SetLLVMFunctionAttributesForDefinition(D, F);
2702 
2703   F->setLinkage(llvm::Function::InternalLinkage);
2704 
2705   setNonAliasAttributes(GD, F);
2706 }
2707 
2708 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2709   // Set linkage and visibility in case we never see a definition.
2710   LinkageInfo LV = ND->getLinkageAndVisibility();
2711   // Don't set internal linkage on declarations.
2712   // "extern_weak" is overloaded in LLVM; we probably should have
2713   // separate linkage types for this.
2714   if (isExternallyVisible(LV.getLinkage()) &&
2715       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2716     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2717 }
2718 
2719 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2720                                                        llvm::Function *F) {
2721   // Only if we are checking indirect calls.
2722   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2723     return;
2724 
2725   // Non-static class methods are handled via vtable or member function pointer
2726   // checks elsewhere.
2727   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2728     return;
2729 
2730   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2731   F->addTypeMetadata(0, MD);
2732   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2733 
2734   // Emit a hash-based bit set entry for cross-DSO calls.
2735   if (CodeGenOpts.SanitizeCfiCrossDso)
2736     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2737       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2738 }
2739 
2740 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2741   llvm::LLVMContext &Ctx = F->getContext();
2742   llvm::MDBuilder MDB(Ctx);
2743   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2744                  llvm::MDNode::get(
2745                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2746 }
2747 
2748 static bool allowKCFIIdentifier(StringRef Name) {
2749   // KCFI type identifier constants are only necessary for external assembly
2750   // functions, which means it's safe to skip unusual names. Subset of
2751   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2752   return llvm::all_of(Name, [](const char &C) {
2753     return llvm::isAlnum(C) || C == '_' || C == '.';
2754   });
2755 }
2756 
2757 void CodeGenModule::finalizeKCFITypes() {
2758   llvm::Module &M = getModule();
2759   for (auto &F : M.functions()) {
2760     // Remove KCFI type metadata from non-address-taken local functions.
2761     bool AddressTaken = F.hasAddressTaken();
2762     if (!AddressTaken && F.hasLocalLinkage())
2763       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2764 
2765     // Generate a constant with the expected KCFI type identifier for all
2766     // address-taken function declarations to support annotating indirectly
2767     // called assembly functions.
2768     if (!AddressTaken || !F.isDeclaration())
2769       continue;
2770 
2771     const llvm::ConstantInt *Type;
2772     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2773       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2774     else
2775       continue;
2776 
2777     StringRef Name = F.getName();
2778     if (!allowKCFIIdentifier(Name))
2779       continue;
2780 
2781     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2782                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2783                           .str();
2784     M.appendModuleInlineAsm(Asm);
2785   }
2786 }
2787 
2788 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2789                                           bool IsIncompleteFunction,
2790                                           bool IsThunk) {
2791 
2792   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2793     // If this is an intrinsic function, set the function's attributes
2794     // to the intrinsic's attributes.
2795     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2796     return;
2797   }
2798 
2799   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2800 
2801   if (!IsIncompleteFunction)
2802     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2803                               IsThunk);
2804 
2805   // Add the Returned attribute for "this", except for iOS 5 and earlier
2806   // where substantial code, including the libstdc++ dylib, was compiled with
2807   // GCC and does not actually return "this".
2808   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2809       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2810     assert(!F->arg_empty() &&
2811            F->arg_begin()->getType()
2812              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2813            "unexpected this return");
2814     F->addParamAttr(0, llvm::Attribute::Returned);
2815   }
2816 
2817   // Only a few attributes are set on declarations; these may later be
2818   // overridden by a definition.
2819 
2820   setLinkageForGV(F, FD);
2821   setGVProperties(F, FD);
2822 
2823   // Setup target-specific attributes.
2824   if (!IsIncompleteFunction && F->isDeclaration())
2825     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2826 
2827   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2828     F->setSection(CSA->getName());
2829   else if (const auto *SA = FD->getAttr<SectionAttr>())
2830      F->setSection(SA->getName());
2831 
2832   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2833     if (EA->isError())
2834       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2835     else if (EA->isWarning())
2836       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2837   }
2838 
2839   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2840   if (FD->isInlineBuiltinDeclaration()) {
2841     const FunctionDecl *FDBody;
2842     bool HasBody = FD->hasBody(FDBody);
2843     (void)HasBody;
2844     assert(HasBody && "Inline builtin declarations should always have an "
2845                       "available body!");
2846     if (shouldEmitFunction(FDBody))
2847       F->addFnAttr(llvm::Attribute::NoBuiltin);
2848   }
2849 
2850   if (FD->isReplaceableGlobalAllocationFunction()) {
2851     // A replaceable global allocation function does not act like a builtin by
2852     // default, only if it is invoked by a new-expression or delete-expression.
2853     F->addFnAttr(llvm::Attribute::NoBuiltin);
2854   }
2855 
2856   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2857     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2858   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2859     if (MD->isVirtual())
2860       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2861 
2862   // Don't emit entries for function declarations in the cross-DSO mode. This
2863   // is handled with better precision by the receiving DSO. But if jump tables
2864   // are non-canonical then we need type metadata in order to produce the local
2865   // jump table.
2866   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2867       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2868     CreateFunctionTypeMetadataForIcall(FD, F);
2869 
2870   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2871     setKCFIType(FD, F);
2872 
2873   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2874     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2875 
2876   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2877     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2878 
2879   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2880     // Annotate the callback behavior as metadata:
2881     //  - The callback callee (as argument number).
2882     //  - The callback payloads (as argument numbers).
2883     llvm::LLVMContext &Ctx = F->getContext();
2884     llvm::MDBuilder MDB(Ctx);
2885 
2886     // The payload indices are all but the first one in the encoding. The first
2887     // identifies the callback callee.
2888     int CalleeIdx = *CB->encoding_begin();
2889     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2890     F->addMetadata(llvm::LLVMContext::MD_callback,
2891                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2892                                                CalleeIdx, PayloadIndices,
2893                                                /* VarArgsArePassed */ false)}));
2894   }
2895 }
2896 
2897 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2898   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2899          "Only globals with definition can force usage.");
2900   LLVMUsed.emplace_back(GV);
2901 }
2902 
2903 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2904   assert(!GV->isDeclaration() &&
2905          "Only globals with definition can force usage.");
2906   LLVMCompilerUsed.emplace_back(GV);
2907 }
2908 
2909 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2910   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2911          "Only globals with definition can force usage.");
2912   if (getTriple().isOSBinFormatELF())
2913     LLVMCompilerUsed.emplace_back(GV);
2914   else
2915     LLVMUsed.emplace_back(GV);
2916 }
2917 
2918 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2919                      std::vector<llvm::WeakTrackingVH> &List) {
2920   // Don't create llvm.used if there is no need.
2921   if (List.empty())
2922     return;
2923 
2924   // Convert List to what ConstantArray needs.
2925   SmallVector<llvm::Constant*, 8> UsedArray;
2926   UsedArray.resize(List.size());
2927   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2928     UsedArray[i] =
2929         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2930             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2931   }
2932 
2933   if (UsedArray.empty())
2934     return;
2935   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2936 
2937   auto *GV = new llvm::GlobalVariable(
2938       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2939       llvm::ConstantArray::get(ATy, UsedArray), Name);
2940 
2941   GV->setSection("llvm.metadata");
2942 }
2943 
2944 void CodeGenModule::emitLLVMUsed() {
2945   emitUsed(*this, "llvm.used", LLVMUsed);
2946   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2947 }
2948 
2949 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2950   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2951   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2952 }
2953 
2954 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2955   llvm::SmallString<32> Opt;
2956   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2957   if (Opt.empty())
2958     return;
2959   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2960   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2961 }
2962 
2963 void CodeGenModule::AddDependentLib(StringRef Lib) {
2964   auto &C = getLLVMContext();
2965   if (getTarget().getTriple().isOSBinFormatELF()) {
2966       ELFDependentLibraries.push_back(
2967         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2968     return;
2969   }
2970 
2971   llvm::SmallString<24> Opt;
2972   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2973   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2974   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2975 }
2976 
2977 /// Add link options implied by the given module, including modules
2978 /// it depends on, using a postorder walk.
2979 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2980                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2981                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2982   // Import this module's parent.
2983   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2984     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2985   }
2986 
2987   // Import this module's dependencies.
2988   for (Module *Import : llvm::reverse(Mod->Imports)) {
2989     if (Visited.insert(Import).second)
2990       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2991   }
2992 
2993   // Add linker options to link against the libraries/frameworks
2994   // described by this module.
2995   llvm::LLVMContext &Context = CGM.getLLVMContext();
2996   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2997 
2998   // For modules that use export_as for linking, use that module
2999   // name instead.
3000   if (Mod->UseExportAsModuleLinkName)
3001     return;
3002 
3003   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3004     // Link against a framework.  Frameworks are currently Darwin only, so we
3005     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3006     if (LL.IsFramework) {
3007       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3008                                  llvm::MDString::get(Context, LL.Library)};
3009 
3010       Metadata.push_back(llvm::MDNode::get(Context, Args));
3011       continue;
3012     }
3013 
3014     // Link against a library.
3015     if (IsELF) {
3016       llvm::Metadata *Args[2] = {
3017           llvm::MDString::get(Context, "lib"),
3018           llvm::MDString::get(Context, LL.Library),
3019       };
3020       Metadata.push_back(llvm::MDNode::get(Context, Args));
3021     } else {
3022       llvm::SmallString<24> Opt;
3023       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3024       auto *OptString = llvm::MDString::get(Context, Opt);
3025       Metadata.push_back(llvm::MDNode::get(Context, OptString));
3026     }
3027   }
3028 }
3029 
3030 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3031   assert(Primary->isNamedModuleUnit() &&
3032          "We should only emit module initializers for named modules.");
3033 
3034   // Emit the initializers in the order that sub-modules appear in the
3035   // source, first Global Module Fragments, if present.
3036   if (auto GMF = Primary->getGlobalModuleFragment()) {
3037     for (Decl *D : getContext().getModuleInitializers(GMF)) {
3038       if (isa<ImportDecl>(D))
3039         continue;
3040       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3041       EmitTopLevelDecl(D);
3042     }
3043   }
3044   // Second any associated with the module, itself.
3045   for (Decl *D : getContext().getModuleInitializers(Primary)) {
3046     // Skip import decls, the inits for those are called explicitly.
3047     if (isa<ImportDecl>(D))
3048       continue;
3049     EmitTopLevelDecl(D);
3050   }
3051   // Third any associated with the Privat eMOdule Fragment, if present.
3052   if (auto PMF = Primary->getPrivateModuleFragment()) {
3053     for (Decl *D : getContext().getModuleInitializers(PMF)) {
3054       // Skip import decls, the inits for those are called explicitly.
3055       if (isa<ImportDecl>(D))
3056         continue;
3057       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3058       EmitTopLevelDecl(D);
3059     }
3060   }
3061 }
3062 
3063 void CodeGenModule::EmitModuleLinkOptions() {
3064   // Collect the set of all of the modules we want to visit to emit link
3065   // options, which is essentially the imported modules and all of their
3066   // non-explicit child modules.
3067   llvm::SetVector<clang::Module *> LinkModules;
3068   llvm::SmallPtrSet<clang::Module *, 16> Visited;
3069   SmallVector<clang::Module *, 16> Stack;
3070 
3071   // Seed the stack with imported modules.
3072   for (Module *M : ImportedModules) {
3073     // Do not add any link flags when an implementation TU of a module imports
3074     // a header of that same module.
3075     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3076         !getLangOpts().isCompilingModule())
3077       continue;
3078     if (Visited.insert(M).second)
3079       Stack.push_back(M);
3080   }
3081 
3082   // Find all of the modules to import, making a little effort to prune
3083   // non-leaf modules.
3084   while (!Stack.empty()) {
3085     clang::Module *Mod = Stack.pop_back_val();
3086 
3087     bool AnyChildren = false;
3088 
3089     // Visit the submodules of this module.
3090     for (const auto &SM : Mod->submodules()) {
3091       // Skip explicit children; they need to be explicitly imported to be
3092       // linked against.
3093       if (SM->IsExplicit)
3094         continue;
3095 
3096       if (Visited.insert(SM).second) {
3097         Stack.push_back(SM);
3098         AnyChildren = true;
3099       }
3100     }
3101 
3102     // We didn't find any children, so add this module to the list of
3103     // modules to link against.
3104     if (!AnyChildren) {
3105       LinkModules.insert(Mod);
3106     }
3107   }
3108 
3109   // Add link options for all of the imported modules in reverse topological
3110   // order.  We don't do anything to try to order import link flags with respect
3111   // to linker options inserted by things like #pragma comment().
3112   SmallVector<llvm::MDNode *, 16> MetadataArgs;
3113   Visited.clear();
3114   for (Module *M : LinkModules)
3115     if (Visited.insert(M).second)
3116       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3117   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3118   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3119 
3120   // Add the linker options metadata flag.
3121   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3122   for (auto *MD : LinkerOptionsMetadata)
3123     NMD->addOperand(MD);
3124 }
3125 
3126 void CodeGenModule::EmitDeferred() {
3127   // Emit deferred declare target declarations.
3128   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3129     getOpenMPRuntime().emitDeferredTargetDecls();
3130 
3131   // Emit code for any potentially referenced deferred decls.  Since a
3132   // previously unused static decl may become used during the generation of code
3133   // for a static function, iterate until no changes are made.
3134 
3135   if (!DeferredVTables.empty()) {
3136     EmitDeferredVTables();
3137 
3138     // Emitting a vtable doesn't directly cause more vtables to
3139     // become deferred, although it can cause functions to be
3140     // emitted that then need those vtables.
3141     assert(DeferredVTables.empty());
3142   }
3143 
3144   // Emit CUDA/HIP static device variables referenced by host code only.
3145   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3146   // needed for further handling.
3147   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3148     llvm::append_range(DeferredDeclsToEmit,
3149                        getContext().CUDADeviceVarODRUsedByHost);
3150 
3151   // Stop if we're out of both deferred vtables and deferred declarations.
3152   if (DeferredDeclsToEmit.empty())
3153     return;
3154 
3155   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3156   // work, it will not interfere with this.
3157   std::vector<GlobalDecl> CurDeclsToEmit;
3158   CurDeclsToEmit.swap(DeferredDeclsToEmit);
3159 
3160   for (GlobalDecl &D : CurDeclsToEmit) {
3161     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3162     // to get GlobalValue with exactly the type we need, not something that
3163     // might had been created for another decl with the same mangled name but
3164     // different type.
3165     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3166         GetAddrOfGlobal(D, ForDefinition));
3167 
3168     // In case of different address spaces, we may still get a cast, even with
3169     // IsForDefinition equal to true. Query mangled names table to get
3170     // GlobalValue.
3171     if (!GV)
3172       GV = GetGlobalValue(getMangledName(D));
3173 
3174     // Make sure GetGlobalValue returned non-null.
3175     assert(GV);
3176 
3177     // Check to see if we've already emitted this.  This is necessary
3178     // for a couple of reasons: first, decls can end up in the
3179     // deferred-decls queue multiple times, and second, decls can end
3180     // up with definitions in unusual ways (e.g. by an extern inline
3181     // function acquiring a strong function redefinition).  Just
3182     // ignore these cases.
3183     if (!GV->isDeclaration())
3184       continue;
3185 
3186     // If this is OpenMP, check if it is legal to emit this global normally.
3187     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3188       continue;
3189 
3190     // Otherwise, emit the definition and move on to the next one.
3191     EmitGlobalDefinition(D, GV);
3192 
3193     // If we found out that we need to emit more decls, do that recursively.
3194     // This has the advantage that the decls are emitted in a DFS and related
3195     // ones are close together, which is convenient for testing.
3196     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3197       EmitDeferred();
3198       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3199     }
3200   }
3201 }
3202 
3203 void CodeGenModule::EmitVTablesOpportunistically() {
3204   // Try to emit external vtables as available_externally if they have emitted
3205   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3206   // is not allowed to create new references to things that need to be emitted
3207   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3208 
3209   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3210          && "Only emit opportunistic vtables with optimizations");
3211 
3212   for (const CXXRecordDecl *RD : OpportunisticVTables) {
3213     assert(getVTables().isVTableExternal(RD) &&
3214            "This queue should only contain external vtables");
3215     if (getCXXABI().canSpeculativelyEmitVTable(RD))
3216       VTables.GenerateClassData(RD);
3217   }
3218   OpportunisticVTables.clear();
3219 }
3220 
3221 void CodeGenModule::EmitGlobalAnnotations() {
3222   for (const auto& [MangledName, VD] : DeferredAnnotations) {
3223     llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3224     if (GV)
3225       AddGlobalAnnotations(VD, GV);
3226   }
3227   DeferredAnnotations.clear();
3228 
3229   if (Annotations.empty())
3230     return;
3231 
3232   // Create a new global variable for the ConstantStruct in the Module.
3233   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3234     Annotations[0]->getType(), Annotations.size()), Annotations);
3235   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3236                                       llvm::GlobalValue::AppendingLinkage,
3237                                       Array, "llvm.global.annotations");
3238   gv->setSection(AnnotationSection);
3239 }
3240 
3241 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3242   llvm::Constant *&AStr = AnnotationStrings[Str];
3243   if (AStr)
3244     return AStr;
3245 
3246   // Not found yet, create a new global.
3247   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3248   auto *gv = new llvm::GlobalVariable(
3249       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3250       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3251       ConstGlobalsPtrTy->getAddressSpace());
3252   gv->setSection(AnnotationSection);
3253   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3254   AStr = gv;
3255   return gv;
3256 }
3257 
3258 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3259   SourceManager &SM = getContext().getSourceManager();
3260   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3261   if (PLoc.isValid())
3262     return EmitAnnotationString(PLoc.getFilename());
3263   return EmitAnnotationString(SM.getBufferName(Loc));
3264 }
3265 
3266 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3267   SourceManager &SM = getContext().getSourceManager();
3268   PresumedLoc PLoc = SM.getPresumedLoc(L);
3269   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3270     SM.getExpansionLineNumber(L);
3271   return llvm::ConstantInt::get(Int32Ty, LineNo);
3272 }
3273 
3274 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3275   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3276   if (Exprs.empty())
3277     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3278 
3279   llvm::FoldingSetNodeID ID;
3280   for (Expr *E : Exprs) {
3281     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3282   }
3283   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3284   if (Lookup)
3285     return Lookup;
3286 
3287   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3288   LLVMArgs.reserve(Exprs.size());
3289   ConstantEmitter ConstEmiter(*this);
3290   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3291     const auto *CE = cast<clang::ConstantExpr>(E);
3292     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3293                                     CE->getType());
3294   });
3295   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3296   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3297                                       llvm::GlobalValue::PrivateLinkage, Struct,
3298                                       ".args");
3299   GV->setSection(AnnotationSection);
3300   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3301 
3302   Lookup = GV;
3303   return GV;
3304 }
3305 
3306 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3307                                                 const AnnotateAttr *AA,
3308                                                 SourceLocation L) {
3309   // Get the globals for file name, annotation, and the line number.
3310   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3311                  *UnitGV = EmitAnnotationUnit(L),
3312                  *LineNoCst = EmitAnnotationLineNo(L),
3313                  *Args = EmitAnnotationArgs(AA);
3314 
3315   llvm::Constant *GVInGlobalsAS = GV;
3316   if (GV->getAddressSpace() !=
3317       getDataLayout().getDefaultGlobalsAddressSpace()) {
3318     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3319         GV,
3320         llvm::PointerType::get(
3321             GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3322   }
3323 
3324   // Create the ConstantStruct for the global annotation.
3325   llvm::Constant *Fields[] = {
3326       GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3327   };
3328   return llvm::ConstantStruct::getAnon(Fields);
3329 }
3330 
3331 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3332                                          llvm::GlobalValue *GV) {
3333   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3334   // Get the struct elements for these annotations.
3335   for (const auto *I : D->specific_attrs<AnnotateAttr>())
3336     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3337 }
3338 
3339 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3340                                        SourceLocation Loc) const {
3341   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3342   // NoSanitize by function name.
3343   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3344     return true;
3345   // NoSanitize by location. Check "mainfile" prefix.
3346   auto &SM = Context.getSourceManager();
3347   FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3348   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3349     return true;
3350 
3351   // Check "src" prefix.
3352   if (Loc.isValid())
3353     return NoSanitizeL.containsLocation(Kind, Loc);
3354   // If location is unknown, this may be a compiler-generated function. Assume
3355   // it's located in the main file.
3356   return NoSanitizeL.containsFile(Kind, MainFile.getName());
3357 }
3358 
3359 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3360                                        llvm::GlobalVariable *GV,
3361                                        SourceLocation Loc, QualType Ty,
3362                                        StringRef Category) const {
3363   const auto &NoSanitizeL = getContext().getNoSanitizeList();
3364   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3365     return true;
3366   auto &SM = Context.getSourceManager();
3367   if (NoSanitizeL.containsMainFile(
3368           Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3369           Category))
3370     return true;
3371   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3372     return true;
3373 
3374   // Check global type.
3375   if (!Ty.isNull()) {
3376     // Drill down the array types: if global variable of a fixed type is
3377     // not sanitized, we also don't instrument arrays of them.
3378     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3379       Ty = AT->getElementType();
3380     Ty = Ty.getCanonicalType().getUnqualifiedType();
3381     // Only record types (classes, structs etc.) are ignored.
3382     if (Ty->isRecordType()) {
3383       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3384       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3385         return true;
3386     }
3387   }
3388   return false;
3389 }
3390 
3391 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3392                                    StringRef Category) const {
3393   const auto &XRayFilter = getContext().getXRayFilter();
3394   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3395   auto Attr = ImbueAttr::NONE;
3396   if (Loc.isValid())
3397     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3398   if (Attr == ImbueAttr::NONE)
3399     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3400   switch (Attr) {
3401   case ImbueAttr::NONE:
3402     return false;
3403   case ImbueAttr::ALWAYS:
3404     Fn->addFnAttr("function-instrument", "xray-always");
3405     break;
3406   case ImbueAttr::ALWAYS_ARG1:
3407     Fn->addFnAttr("function-instrument", "xray-always");
3408     Fn->addFnAttr("xray-log-args", "1");
3409     break;
3410   case ImbueAttr::NEVER:
3411     Fn->addFnAttr("function-instrument", "xray-never");
3412     break;
3413   }
3414   return true;
3415 }
3416 
3417 ProfileList::ExclusionType
3418 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3419                                               SourceLocation Loc) const {
3420   const auto &ProfileList = getContext().getProfileList();
3421   // If the profile list is empty, then instrument everything.
3422   if (ProfileList.isEmpty())
3423     return ProfileList::Allow;
3424   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3425   // First, check the function name.
3426   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3427     return *V;
3428   // Next, check the source location.
3429   if (Loc.isValid())
3430     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3431       return *V;
3432   // If location is unknown, this may be a compiler-generated function. Assume
3433   // it's located in the main file.
3434   auto &SM = Context.getSourceManager();
3435   if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3436     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3437       return *V;
3438   return ProfileList.getDefault(Kind);
3439 }
3440 
3441 ProfileList::ExclusionType
3442 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3443                                                  SourceLocation Loc) const {
3444   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3445   if (V != ProfileList::Allow)
3446     return V;
3447 
3448   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3449   if (NumGroups > 1) {
3450     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3451     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3452       return ProfileList::Skip;
3453   }
3454   return ProfileList::Allow;
3455 }
3456 
3457 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3458   // Never defer when EmitAllDecls is specified.
3459   if (LangOpts.EmitAllDecls)
3460     return true;
3461 
3462   const auto *VD = dyn_cast<VarDecl>(Global);
3463   if (VD &&
3464       ((CodeGenOpts.KeepPersistentStorageVariables &&
3465         (VD->getStorageDuration() == SD_Static ||
3466          VD->getStorageDuration() == SD_Thread)) ||
3467        (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3468         VD->getType().isConstQualified())))
3469     return true;
3470 
3471   return getContext().DeclMustBeEmitted(Global);
3472 }
3473 
3474 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3475   // In OpenMP 5.0 variables and function may be marked as
3476   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3477   // that they must be emitted on the host/device. To be sure we need to have
3478   // seen a declare target with an explicit mentioning of the function, we know
3479   // we have if the level of the declare target attribute is -1. Note that we
3480   // check somewhere else if we should emit this at all.
3481   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3482     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3483         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3484     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3485       return false;
3486   }
3487 
3488   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3489     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3490       // Implicit template instantiations may change linkage if they are later
3491       // explicitly instantiated, so they should not be emitted eagerly.
3492       return false;
3493     // Defer until all versions have been semantically checked.
3494     if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3495       return false;
3496   }
3497   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3498     if (Context.getInlineVariableDefinitionKind(VD) ==
3499         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3500       // A definition of an inline constexpr static data member may change
3501       // linkage later if it's redeclared outside the class.
3502       return false;
3503     if (CXX20ModuleInits && VD->getOwningModule() &&
3504         !VD->getOwningModule()->isModuleMapModule()) {
3505       // For CXX20, module-owned initializers need to be deferred, since it is
3506       // not known at this point if they will be run for the current module or
3507       // as part of the initializer for an imported one.
3508       return false;
3509     }
3510   }
3511   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3512   // codegen for global variables, because they may be marked as threadprivate.
3513   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3514       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3515       !Global->getType().isConstantStorage(getContext(), false, false) &&
3516       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3517     return false;
3518 
3519   return true;
3520 }
3521 
3522 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3523   StringRef Name = getMangledName(GD);
3524 
3525   // The UUID descriptor should be pointer aligned.
3526   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3527 
3528   // Look for an existing global.
3529   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3530     return ConstantAddress(GV, GV->getValueType(), Alignment);
3531 
3532   ConstantEmitter Emitter(*this);
3533   llvm::Constant *Init;
3534 
3535   APValue &V = GD->getAsAPValue();
3536   if (!V.isAbsent()) {
3537     // If possible, emit the APValue version of the initializer. In particular,
3538     // this gets the type of the constant right.
3539     Init = Emitter.emitForInitializer(
3540         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3541   } else {
3542     // As a fallback, directly construct the constant.
3543     // FIXME: This may get padding wrong under esoteric struct layout rules.
3544     // MSVC appears to create a complete type 'struct __s_GUID' that it
3545     // presumably uses to represent these constants.
3546     MSGuidDecl::Parts Parts = GD->getParts();
3547     llvm::Constant *Fields[4] = {
3548         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3549         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3550         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3551         llvm::ConstantDataArray::getRaw(
3552             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3553             Int8Ty)};
3554     Init = llvm::ConstantStruct::getAnon(Fields);
3555   }
3556 
3557   auto *GV = new llvm::GlobalVariable(
3558       getModule(), Init->getType(),
3559       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3560   if (supportsCOMDAT())
3561     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3562   setDSOLocal(GV);
3563 
3564   if (!V.isAbsent()) {
3565     Emitter.finalize(GV);
3566     return ConstantAddress(GV, GV->getValueType(), Alignment);
3567   }
3568 
3569   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3570   return ConstantAddress(GV, Ty, Alignment);
3571 }
3572 
3573 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3574     const UnnamedGlobalConstantDecl *GCD) {
3575   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3576 
3577   llvm::GlobalVariable **Entry = nullptr;
3578   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3579   if (*Entry)
3580     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3581 
3582   ConstantEmitter Emitter(*this);
3583   llvm::Constant *Init;
3584 
3585   const APValue &V = GCD->getValue();
3586 
3587   assert(!V.isAbsent());
3588   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3589                                     GCD->getType());
3590 
3591   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3592                                       /*isConstant=*/true,
3593                                       llvm::GlobalValue::PrivateLinkage, Init,
3594                                       ".constant");
3595   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3596   GV->setAlignment(Alignment.getAsAlign());
3597 
3598   Emitter.finalize(GV);
3599 
3600   *Entry = GV;
3601   return ConstantAddress(GV, GV->getValueType(), Alignment);
3602 }
3603 
3604 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3605     const TemplateParamObjectDecl *TPO) {
3606   StringRef Name = getMangledName(TPO);
3607   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3608 
3609   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3610     return ConstantAddress(GV, GV->getValueType(), Alignment);
3611 
3612   ConstantEmitter Emitter(*this);
3613   llvm::Constant *Init = Emitter.emitForInitializer(
3614         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3615 
3616   if (!Init) {
3617     ErrorUnsupported(TPO, "template parameter object");
3618     return ConstantAddress::invalid();
3619   }
3620 
3621   llvm::GlobalValue::LinkageTypes Linkage =
3622       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3623           ? llvm::GlobalValue::LinkOnceODRLinkage
3624           : llvm::GlobalValue::InternalLinkage;
3625   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3626                                       /*isConstant=*/true, Linkage, Init, Name);
3627   setGVProperties(GV, TPO);
3628   if (supportsCOMDAT())
3629     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3630   Emitter.finalize(GV);
3631 
3632     return ConstantAddress(GV, GV->getValueType(), Alignment);
3633 }
3634 
3635 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3636   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3637   assert(AA && "No alias?");
3638 
3639   CharUnits Alignment = getContext().getDeclAlign(VD);
3640   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3641 
3642   // See if there is already something with the target's name in the module.
3643   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3644   if (Entry)
3645     return ConstantAddress(Entry, DeclTy, Alignment);
3646 
3647   llvm::Constant *Aliasee;
3648   if (isa<llvm::FunctionType>(DeclTy))
3649     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3650                                       GlobalDecl(cast<FunctionDecl>(VD)),
3651                                       /*ForVTable=*/false);
3652   else
3653     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3654                                     nullptr);
3655 
3656   auto *F = cast<llvm::GlobalValue>(Aliasee);
3657   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3658   WeakRefReferences.insert(F);
3659 
3660   return ConstantAddress(Aliasee, DeclTy, Alignment);
3661 }
3662 
3663 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3664   if (!D)
3665     return false;
3666   if (auto *A = D->getAttr<AttrT>())
3667     return A->isImplicit();
3668   return D->isImplicit();
3669 }
3670 
3671 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3672   const auto *Global = cast<ValueDecl>(GD.getDecl());
3673 
3674   // Weak references don't produce any output by themselves.
3675   if (Global->hasAttr<WeakRefAttr>())
3676     return;
3677 
3678   // If this is an alias definition (which otherwise looks like a declaration)
3679   // emit it now.
3680   if (Global->hasAttr<AliasAttr>())
3681     return EmitAliasDefinition(GD);
3682 
3683   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3684   if (Global->hasAttr<IFuncAttr>())
3685     return emitIFuncDefinition(GD);
3686 
3687   // If this is a cpu_dispatch multiversion function, emit the resolver.
3688   if (Global->hasAttr<CPUDispatchAttr>())
3689     return emitCPUDispatchDefinition(GD);
3690 
3691   // If this is CUDA, be selective about which declarations we emit.
3692   // Non-constexpr non-lambda implicit host device functions are not emitted
3693   // unless they are used on device side.
3694   if (LangOpts.CUDA) {
3695     if (LangOpts.CUDAIsDevice) {
3696       const auto *FD = dyn_cast<FunctionDecl>(Global);
3697       if ((!Global->hasAttr<CUDADeviceAttr>() ||
3698            (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3699             hasImplicitAttr<CUDAHostAttr>(FD) &&
3700             hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3701             !isLambdaCallOperator(FD) &&
3702             !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3703           !Global->hasAttr<CUDAGlobalAttr>() &&
3704           !Global->hasAttr<CUDAConstantAttr>() &&
3705           !Global->hasAttr<CUDASharedAttr>() &&
3706           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3707           !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3708           !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3709             !Global->hasAttr<CUDAHostAttr>()))
3710         return;
3711     } else {
3712       // We need to emit host-side 'shadows' for all global
3713       // device-side variables because the CUDA runtime needs their
3714       // size and host-side address in order to provide access to
3715       // their device-side incarnations.
3716 
3717       // So device-only functions are the only things we skip.
3718       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3719           Global->hasAttr<CUDADeviceAttr>())
3720         return;
3721 
3722       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3723              "Expected Variable or Function");
3724     }
3725   }
3726 
3727   if (LangOpts.OpenMP) {
3728     // If this is OpenMP, check if it is legal to emit this global normally.
3729     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3730       return;
3731     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3732       if (MustBeEmitted(Global))
3733         EmitOMPDeclareReduction(DRD);
3734       return;
3735     }
3736     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3737       if (MustBeEmitted(Global))
3738         EmitOMPDeclareMapper(DMD);
3739       return;
3740     }
3741   }
3742 
3743   // Ignore declarations, they will be emitted on their first use.
3744   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3745     // Update deferred annotations with the latest declaration if the function
3746     // function was already used or defined.
3747     if (FD->hasAttr<AnnotateAttr>()) {
3748       StringRef MangledName = getMangledName(GD);
3749       if (GetGlobalValue(MangledName))
3750         DeferredAnnotations[MangledName] = FD;
3751     }
3752 
3753     // Forward declarations are emitted lazily on first use.
3754     if (!FD->doesThisDeclarationHaveABody()) {
3755       if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3756           (!FD->isMultiVersion() ||
3757            !FD->getASTContext().getTargetInfo().getTriple().isAArch64()))
3758         return;
3759 
3760       StringRef MangledName = getMangledName(GD);
3761 
3762       // Compute the function info and LLVM type.
3763       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3764       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3765 
3766       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3767                               /*DontDefer=*/false);
3768       return;
3769     }
3770   } else {
3771     const auto *VD = cast<VarDecl>(Global);
3772     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3773     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3774         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3775       if (LangOpts.OpenMP) {
3776         // Emit declaration of the must-be-emitted declare target variable.
3777         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3778                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3779 
3780           // If this variable has external storage and doesn't require special
3781           // link handling we defer to its canonical definition.
3782           if (VD->hasExternalStorage() &&
3783               Res != OMPDeclareTargetDeclAttr::MT_Link)
3784             return;
3785 
3786           bool UnifiedMemoryEnabled =
3787               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3788           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3789                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3790               !UnifiedMemoryEnabled) {
3791             (void)GetAddrOfGlobalVar(VD);
3792           } else {
3793             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3794                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3795                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3796                      UnifiedMemoryEnabled)) &&
3797                    "Link clause or to clause with unified memory expected.");
3798             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3799           }
3800 
3801           return;
3802         }
3803       }
3804       // If this declaration may have caused an inline variable definition to
3805       // change linkage, make sure that it's emitted.
3806       if (Context.getInlineVariableDefinitionKind(VD) ==
3807           ASTContext::InlineVariableDefinitionKind::Strong)
3808         GetAddrOfGlobalVar(VD);
3809       return;
3810     }
3811   }
3812 
3813   // Defer code generation to first use when possible, e.g. if this is an inline
3814   // function. If the global must always be emitted, do it eagerly if possible
3815   // to benefit from cache locality.
3816   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3817     // Emit the definition if it can't be deferred.
3818     EmitGlobalDefinition(GD);
3819     addEmittedDeferredDecl(GD);
3820     return;
3821   }
3822 
3823   // If we're deferring emission of a C++ variable with an
3824   // initializer, remember the order in which it appeared in the file.
3825   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3826       cast<VarDecl>(Global)->hasInit()) {
3827     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3828     CXXGlobalInits.push_back(nullptr);
3829   }
3830 
3831   StringRef MangledName = getMangledName(GD);
3832   if (GetGlobalValue(MangledName) != nullptr) {
3833     // The value has already been used and should therefore be emitted.
3834     addDeferredDeclToEmit(GD);
3835   } else if (MustBeEmitted(Global)) {
3836     // The value must be emitted, but cannot be emitted eagerly.
3837     assert(!MayBeEmittedEagerly(Global));
3838     addDeferredDeclToEmit(GD);
3839   } else {
3840     // Otherwise, remember that we saw a deferred decl with this name.  The
3841     // first use of the mangled name will cause it to move into
3842     // DeferredDeclsToEmit.
3843     DeferredDecls[MangledName] = GD;
3844   }
3845 }
3846 
3847 // Check if T is a class type with a destructor that's not dllimport.
3848 static bool HasNonDllImportDtor(QualType T) {
3849   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3850     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3851       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3852         return true;
3853 
3854   return false;
3855 }
3856 
3857 namespace {
3858   struct FunctionIsDirectlyRecursive
3859       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3860     const StringRef Name;
3861     const Builtin::Context &BI;
3862     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3863         : Name(N), BI(C) {}
3864 
3865     bool VisitCallExpr(const CallExpr *E) {
3866       const FunctionDecl *FD = E->getDirectCallee();
3867       if (!FD)
3868         return false;
3869       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3870       if (Attr && Name == Attr->getLabel())
3871         return true;
3872       unsigned BuiltinID = FD->getBuiltinID();
3873       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3874         return false;
3875       StringRef BuiltinName = BI.getName(BuiltinID);
3876       if (BuiltinName.starts_with("__builtin_") &&
3877           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3878         return true;
3879       }
3880       return false;
3881     }
3882 
3883     bool VisitStmt(const Stmt *S) {
3884       for (const Stmt *Child : S->children())
3885         if (Child && this->Visit(Child))
3886           return true;
3887       return false;
3888     }
3889   };
3890 
3891   // Make sure we're not referencing non-imported vars or functions.
3892   struct DLLImportFunctionVisitor
3893       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3894     bool SafeToInline = true;
3895 
3896     bool shouldVisitImplicitCode() const { return true; }
3897 
3898     bool VisitVarDecl(VarDecl *VD) {
3899       if (VD->getTLSKind()) {
3900         // A thread-local variable cannot be imported.
3901         SafeToInline = false;
3902         return SafeToInline;
3903       }
3904 
3905       // A variable definition might imply a destructor call.
3906       if (VD->isThisDeclarationADefinition())
3907         SafeToInline = !HasNonDllImportDtor(VD->getType());
3908 
3909       return SafeToInline;
3910     }
3911 
3912     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3913       if (const auto *D = E->getTemporary()->getDestructor())
3914         SafeToInline = D->hasAttr<DLLImportAttr>();
3915       return SafeToInline;
3916     }
3917 
3918     bool VisitDeclRefExpr(DeclRefExpr *E) {
3919       ValueDecl *VD = E->getDecl();
3920       if (isa<FunctionDecl>(VD))
3921         SafeToInline = VD->hasAttr<DLLImportAttr>();
3922       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3923         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3924       return SafeToInline;
3925     }
3926 
3927     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3928       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3929       return SafeToInline;
3930     }
3931 
3932     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3933       CXXMethodDecl *M = E->getMethodDecl();
3934       if (!M) {
3935         // Call through a pointer to member function. This is safe to inline.
3936         SafeToInline = true;
3937       } else {
3938         SafeToInline = M->hasAttr<DLLImportAttr>();
3939       }
3940       return SafeToInline;
3941     }
3942 
3943     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3944       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3945       return SafeToInline;
3946     }
3947 
3948     bool VisitCXXNewExpr(CXXNewExpr *E) {
3949       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3950       return SafeToInline;
3951     }
3952   };
3953 }
3954 
3955 // isTriviallyRecursive - Check if this function calls another
3956 // decl that, because of the asm attribute or the other decl being a builtin,
3957 // ends up pointing to itself.
3958 bool
3959 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3960   StringRef Name;
3961   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3962     // asm labels are a special kind of mangling we have to support.
3963     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3964     if (!Attr)
3965       return false;
3966     Name = Attr->getLabel();
3967   } else {
3968     Name = FD->getName();
3969   }
3970 
3971   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3972   const Stmt *Body = FD->getBody();
3973   return Body ? Walker.Visit(Body) : false;
3974 }
3975 
3976 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3977   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3978     return true;
3979 
3980   const auto *F = cast<FunctionDecl>(GD.getDecl());
3981   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3982     return false;
3983 
3984   // We don't import function bodies from other named module units since that
3985   // behavior may break ABI compatibility of the current unit.
3986   if (const Module *M = F->getOwningModule();
3987       M && M->getTopLevelModule()->isNamedModule() &&
3988       getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
3989     // There are practices to mark template member function as always-inline
3990     // and mark the template as extern explicit instantiation but not give
3991     // the definition for member function. So we have to emit the function
3992     // from explicitly instantiation with always-inline.
3993     //
3994     // See https://github.com/llvm/llvm-project/issues/86893 for details.
3995     //
3996     // TODO: Maybe it is better to give it a warning if we call a non-inline
3997     // function from other module units which is marked as always-inline.
3998     if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
3999       return false;
4000     }
4001   }
4002 
4003   if (F->hasAttr<NoInlineAttr>())
4004     return false;
4005 
4006   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4007     // Check whether it would be safe to inline this dllimport function.
4008     DLLImportFunctionVisitor Visitor;
4009     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4010     if (!Visitor.SafeToInline)
4011       return false;
4012 
4013     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4014       // Implicit destructor invocations aren't captured in the AST, so the
4015       // check above can't see them. Check for them manually here.
4016       for (const Decl *Member : Dtor->getParent()->decls())
4017         if (isa<FieldDecl>(Member))
4018           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4019             return false;
4020       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4021         if (HasNonDllImportDtor(B.getType()))
4022           return false;
4023     }
4024   }
4025 
4026   // Inline builtins declaration must be emitted. They often are fortified
4027   // functions.
4028   if (F->isInlineBuiltinDeclaration())
4029     return true;
4030 
4031   // PR9614. Avoid cases where the source code is lying to us. An available
4032   // externally function should have an equivalent function somewhere else,
4033   // but a function that calls itself through asm label/`__builtin_` trickery is
4034   // clearly not equivalent to the real implementation.
4035   // This happens in glibc's btowc and in some configure checks.
4036   return !isTriviallyRecursive(F);
4037 }
4038 
4039 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4040   return CodeGenOpts.OptimizationLevel > 0;
4041 }
4042 
4043 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4044                                                        llvm::GlobalValue *GV) {
4045   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4046 
4047   if (FD->isCPUSpecificMultiVersion()) {
4048     auto *Spec = FD->getAttr<CPUSpecificAttr>();
4049     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4050       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4051   } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4052     for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4053       // AArch64 favors the default target version over the clone if any.
4054       if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4055           TC->isFirstOfVersion(I))
4056         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4057     // Ensure that the resolver function is also emitted.
4058     GetOrCreateMultiVersionResolver(GD);
4059   } else
4060     EmitGlobalFunctionDefinition(GD, GV);
4061 
4062   // Defer the resolver emission until we can reason whether the TU
4063   // contains a default target version implementation.
4064   if (FD->isTargetVersionMultiVersion())
4065     AddDeferredMultiVersionResolverToEmit(GD);
4066 }
4067 
4068 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4069   const auto *D = cast<ValueDecl>(GD.getDecl());
4070 
4071   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4072                                  Context.getSourceManager(),
4073                                  "Generating code for declaration");
4074 
4075   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4076     // At -O0, don't generate IR for functions with available_externally
4077     // linkage.
4078     if (!shouldEmitFunction(GD))
4079       return;
4080 
4081     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4082       std::string Name;
4083       llvm::raw_string_ostream OS(Name);
4084       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4085                                /*Qualified=*/true);
4086       return Name;
4087     });
4088 
4089     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4090       // Make sure to emit the definition(s) before we emit the thunks.
4091       // This is necessary for the generation of certain thunks.
4092       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4093         ABI->emitCXXStructor(GD);
4094       else if (FD->isMultiVersion())
4095         EmitMultiVersionFunctionDefinition(GD, GV);
4096       else
4097         EmitGlobalFunctionDefinition(GD, GV);
4098 
4099       if (Method->isVirtual())
4100         getVTables().EmitThunks(GD);
4101 
4102       return;
4103     }
4104 
4105     if (FD->isMultiVersion())
4106       return EmitMultiVersionFunctionDefinition(GD, GV);
4107     return EmitGlobalFunctionDefinition(GD, GV);
4108   }
4109 
4110   if (const auto *VD = dyn_cast<VarDecl>(D))
4111     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4112 
4113   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4114 }
4115 
4116 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4117                                                       llvm::Function *NewFn);
4118 
4119 static unsigned
4120 TargetMVPriority(const TargetInfo &TI,
4121                  const CodeGenFunction::MultiVersionResolverOption &RO) {
4122   unsigned Priority = 0;
4123   unsigned NumFeatures = 0;
4124   for (StringRef Feat : RO.Conditions.Features) {
4125     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4126     NumFeatures++;
4127   }
4128 
4129   if (!RO.Conditions.Architecture.empty())
4130     Priority = std::max(
4131         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4132 
4133   Priority += TI.multiVersionFeatureCost() * NumFeatures;
4134 
4135   return Priority;
4136 }
4137 
4138 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4139 // TU can forward declare the function without causing problems.  Particularly
4140 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4141 // work with internal linkage functions, so that the same function name can be
4142 // used with internal linkage in multiple TUs.
4143 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4144                                                        GlobalDecl GD) {
4145   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4146   if (FD->getFormalLinkage() == Linkage::Internal)
4147     return llvm::GlobalValue::InternalLinkage;
4148   return llvm::GlobalValue::WeakODRLinkage;
4149 }
4150 
4151 static FunctionDecl *createDefaultTargetVersionFrom(const FunctionDecl *FD) {
4152   DeclContext *DeclCtx = FD->getASTContext().getTranslationUnitDecl();
4153   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
4154   StorageClass SC = FD->getStorageClass();
4155   DeclarationName Name = FD->getNameInfo().getName();
4156 
4157   FunctionDecl *NewDecl =
4158       FunctionDecl::Create(FD->getASTContext(), DeclCtx, FD->getBeginLoc(),
4159                            FD->getEndLoc(), Name, TInfo->getType(), TInfo, SC);
4160 
4161   NewDecl->setIsMultiVersion();
4162   NewDecl->addAttr(TargetVersionAttr::CreateImplicit(
4163       NewDecl->getASTContext(), "default", NewDecl->getSourceRange()));
4164 
4165   return NewDecl;
4166 }
4167 
4168 void CodeGenModule::emitMultiVersionFunctions() {
4169   std::vector<GlobalDecl> MVFuncsToEmit;
4170   MultiVersionFuncs.swap(MVFuncsToEmit);
4171   for (GlobalDecl GD : MVFuncsToEmit) {
4172     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4173     assert(FD && "Expected a FunctionDecl");
4174 
4175     auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4176       GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4177       StringRef MangledName = getMangledName(CurGD);
4178       llvm::Constant *Func = GetGlobalValue(MangledName);
4179       if (!Func) {
4180         if (Decl->isDefined()) {
4181           EmitGlobalFunctionDefinition(CurGD, nullptr);
4182           Func = GetGlobalValue(MangledName);
4183         } else {
4184           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4185           llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4186           Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4187                                    /*DontDefer=*/false, ForDefinition);
4188         }
4189         assert(Func && "This should have just been created");
4190       }
4191       return cast<llvm::Function>(Func);
4192     };
4193 
4194     bool HasDefaultDecl = !FD->isTargetVersionMultiVersion();
4195     bool ShouldEmitResolver =
4196         !getContext().getTargetInfo().getTriple().isAArch64();
4197     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4198 
4199     getContext().forEachMultiversionedFunctionVersion(
4200         FD, [&](const FunctionDecl *CurFD) {
4201           llvm::SmallVector<StringRef, 8> Feats;
4202 
4203           if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4204             TA->getAddedFeatures(Feats);
4205             llvm::Function *Func = createFunction(CurFD);
4206             Options.emplace_back(Func, TA->getArchitecture(), Feats);
4207           } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4208             bool HasDefaultDef = TVA->isDefaultVersion() &&
4209                                  CurFD->doesThisDeclarationHaveABody();
4210             HasDefaultDecl |= TVA->isDefaultVersion();
4211             ShouldEmitResolver |= (CurFD->isUsed() || HasDefaultDef);
4212             TVA->getFeatures(Feats);
4213             llvm::Function *Func = createFunction(CurFD);
4214             Options.emplace_back(Func, /*Architecture*/ "", Feats);
4215           } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4216             ShouldEmitResolver |= CurFD->doesThisDeclarationHaveABody();
4217             for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4218               if (!TC->isFirstOfVersion(I))
4219                 continue;
4220 
4221               llvm::Function *Func = createFunction(CurFD, I);
4222               StringRef Architecture;
4223               Feats.clear();
4224               if (getTarget().getTriple().isAArch64())
4225                 TC->getFeatures(Feats, I);
4226               else {
4227                 StringRef Version = TC->getFeatureStr(I);
4228                 if (Version.starts_with("arch="))
4229                   Architecture = Version.drop_front(sizeof("arch=") - 1);
4230                 else if (Version != "default")
4231                   Feats.push_back(Version);
4232               }
4233               Options.emplace_back(Func, Architecture, Feats);
4234             }
4235           } else
4236             llvm_unreachable("unexpected MultiVersionKind");
4237         });
4238 
4239     if (!ShouldEmitResolver)
4240       continue;
4241 
4242     if (!HasDefaultDecl) {
4243       FunctionDecl *NewFD = createDefaultTargetVersionFrom(FD);
4244       llvm::Function *Func = createFunction(NewFD);
4245       llvm::SmallVector<StringRef, 1> Feats;
4246       Options.emplace_back(Func, /*Architecture*/ "", Feats);
4247     }
4248 
4249     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4250     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4251       ResolverConstant = IFunc->getResolver();
4252       if (FD->isTargetClonesMultiVersion() ||
4253           FD->isTargetVersionMultiVersion()) {
4254         std::string MangledName = getMangledNameImpl(
4255             *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4256         if (!GetGlobalValue(MangledName + ".ifunc")) {
4257           const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4258           llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4259           // In prior versions of Clang, the mangling for ifuncs incorrectly
4260           // included an .ifunc suffix. This alias is generated for backward
4261           // compatibility. It is deprecated, and may be removed in the future.
4262           auto *Alias = llvm::GlobalAlias::create(
4263               DeclTy, 0, getMultiversionLinkage(*this, GD),
4264               MangledName + ".ifunc", IFunc, &getModule());
4265           SetCommonAttributes(FD, Alias);
4266         }
4267       }
4268     }
4269     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4270 
4271     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4272 
4273     if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4274       ResolverFunc->setComdat(
4275           getModule().getOrInsertComdat(ResolverFunc->getName()));
4276 
4277     const TargetInfo &TI = getTarget();
4278     llvm::stable_sort(
4279         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4280                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
4281           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4282         });
4283     CodeGenFunction CGF(*this);
4284     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4285   }
4286 
4287   // Ensure that any additions to the deferred decls list caused by emitting a
4288   // variant are emitted.  This can happen when the variant itself is inline and
4289   // calls a function without linkage.
4290   if (!MVFuncsToEmit.empty())
4291     EmitDeferred();
4292 
4293   // Ensure that any additions to the multiversion funcs list from either the
4294   // deferred decls or the multiversion functions themselves are emitted.
4295   if (!MultiVersionFuncs.empty())
4296     emitMultiVersionFunctions();
4297 }
4298 
4299 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4300   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4301   assert(FD && "Not a FunctionDecl?");
4302   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4303   const auto *DD = FD->getAttr<CPUDispatchAttr>();
4304   assert(DD && "Not a cpu_dispatch Function?");
4305 
4306   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4307   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4308 
4309   StringRef ResolverName = getMangledName(GD);
4310   UpdateMultiVersionNames(GD, FD, ResolverName);
4311 
4312   llvm::Type *ResolverType;
4313   GlobalDecl ResolverGD;
4314   if (getTarget().supportsIFunc()) {
4315     ResolverType = llvm::FunctionType::get(
4316         llvm::PointerType::get(DeclTy,
4317                                getTypes().getTargetAddressSpace(FD->getType())),
4318         false);
4319   }
4320   else {
4321     ResolverType = DeclTy;
4322     ResolverGD = GD;
4323   }
4324 
4325   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4326       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4327   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4328   if (supportsCOMDAT())
4329     ResolverFunc->setComdat(
4330         getModule().getOrInsertComdat(ResolverFunc->getName()));
4331 
4332   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4333   const TargetInfo &Target = getTarget();
4334   unsigned Index = 0;
4335   for (const IdentifierInfo *II : DD->cpus()) {
4336     // Get the name of the target function so we can look it up/create it.
4337     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4338                               getCPUSpecificMangling(*this, II->getName());
4339 
4340     llvm::Constant *Func = GetGlobalValue(MangledName);
4341 
4342     if (!Func) {
4343       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4344       if (ExistingDecl.getDecl() &&
4345           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4346         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4347         Func = GetGlobalValue(MangledName);
4348       } else {
4349         if (!ExistingDecl.getDecl())
4350           ExistingDecl = GD.getWithMultiVersionIndex(Index);
4351 
4352       Func = GetOrCreateLLVMFunction(
4353           MangledName, DeclTy, ExistingDecl,
4354           /*ForVTable=*/false, /*DontDefer=*/true,
4355           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4356       }
4357     }
4358 
4359     llvm::SmallVector<StringRef, 32> Features;
4360     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4361     llvm::transform(Features, Features.begin(),
4362                     [](StringRef Str) { return Str.substr(1); });
4363     llvm::erase_if(Features, [&Target](StringRef Feat) {
4364       return !Target.validateCpuSupports(Feat);
4365     });
4366     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4367     ++Index;
4368   }
4369 
4370   llvm::stable_sort(
4371       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4372                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
4373         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4374                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4375       });
4376 
4377   // If the list contains multiple 'default' versions, such as when it contains
4378   // 'pentium' and 'generic', don't emit the call to the generic one (since we
4379   // always run on at least a 'pentium'). We do this by deleting the 'least
4380   // advanced' (read, lowest mangling letter).
4381   while (Options.size() > 1 &&
4382          llvm::all_of(llvm::X86::getCpuSupportsMask(
4383                           (Options.end() - 2)->Conditions.Features),
4384                       [](auto X) { return X == 0; })) {
4385     StringRef LHSName = (Options.end() - 2)->Function->getName();
4386     StringRef RHSName = (Options.end() - 1)->Function->getName();
4387     if (LHSName.compare(RHSName) < 0)
4388       Options.erase(Options.end() - 2);
4389     else
4390       Options.erase(Options.end() - 1);
4391   }
4392 
4393   CodeGenFunction CGF(*this);
4394   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4395 
4396   if (getTarget().supportsIFunc()) {
4397     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4398     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4399 
4400     // Fix up function declarations that were created for cpu_specific before
4401     // cpu_dispatch was known
4402     if (!isa<llvm::GlobalIFunc>(IFunc)) {
4403       assert(cast<llvm::Function>(IFunc)->isDeclaration());
4404       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4405                                            &getModule());
4406       GI->takeName(IFunc);
4407       IFunc->replaceAllUsesWith(GI);
4408       IFunc->eraseFromParent();
4409       IFunc = GI;
4410     }
4411 
4412     std::string AliasName = getMangledNameImpl(
4413         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4414     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4415     if (!AliasFunc) {
4416       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4417                                            &getModule());
4418       SetCommonAttributes(GD, GA);
4419     }
4420   }
4421 }
4422 
4423 /// Adds a declaration to the list of multi version functions if not present.
4424 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4425   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4426   assert(FD && "Not a FunctionDecl?");
4427 
4428   if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4429     std::string MangledName =
4430         getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4431     if (!DeferredResolversToEmit.insert(MangledName).second)
4432       return;
4433   }
4434   MultiVersionFuncs.push_back(GD);
4435 }
4436 
4437 /// If a dispatcher for the specified mangled name is not in the module, create
4438 /// and return an llvm Function with the specified type.
4439 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4440   const auto *FD = cast<FunctionDecl>(GD.getDecl());
4441   assert(FD && "Not a FunctionDecl?");
4442 
4443   std::string MangledName =
4444       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4445 
4446   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4447   // a separate resolver).
4448   std::string ResolverName = MangledName;
4449   if (getTarget().supportsIFunc()) {
4450     switch (FD->getMultiVersionKind()) {
4451     case MultiVersionKind::None:
4452       llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4453     case MultiVersionKind::Target:
4454     case MultiVersionKind::CPUSpecific:
4455     case MultiVersionKind::CPUDispatch:
4456       ResolverName += ".ifunc";
4457       break;
4458     case MultiVersionKind::TargetClones:
4459     case MultiVersionKind::TargetVersion:
4460       break;
4461     }
4462   } else if (FD->isTargetMultiVersion()) {
4463     ResolverName += ".resolver";
4464   }
4465 
4466   // If the resolver has already been created, just return it.
4467   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4468     return ResolverGV;
4469 
4470   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4471   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4472 
4473   // The resolver needs to be created. For target and target_clones, defer
4474   // creation until the end of the TU.
4475   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4476     AddDeferredMultiVersionResolverToEmit(GD);
4477 
4478   // For cpu_specific, don't create an ifunc yet because we don't know if the
4479   // cpu_dispatch will be emitted in this translation unit.
4480   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4481     llvm::Type *ResolverType = llvm::FunctionType::get(
4482         llvm::PointerType::get(DeclTy,
4483                                getTypes().getTargetAddressSpace(FD->getType())),
4484         false);
4485     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4486         MangledName + ".resolver", ResolverType, GlobalDecl{},
4487         /*ForVTable=*/false);
4488     llvm::GlobalIFunc *GIF =
4489         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4490                                   "", Resolver, &getModule());
4491     GIF->setName(ResolverName);
4492     SetCommonAttributes(FD, GIF);
4493 
4494     return GIF;
4495   }
4496 
4497   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4498       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4499   assert(isa<llvm::GlobalValue>(Resolver) &&
4500          "Resolver should be created for the first time");
4501   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4502   return Resolver;
4503 }
4504 
4505 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4506 /// module, create and return an llvm Function with the specified type. If there
4507 /// is something in the module with the specified name, return it potentially
4508 /// bitcasted to the right type.
4509 ///
4510 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4511 /// to set the attributes on the function when it is first created.
4512 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4513     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4514     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4515     ForDefinition_t IsForDefinition) {
4516   const Decl *D = GD.getDecl();
4517 
4518   // Any attempts to use a MultiVersion function should result in retrieving
4519   // the iFunc instead. Name Mangling will handle the rest of the changes.
4520   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4521     // For the device mark the function as one that should be emitted.
4522     if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4523         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4524         !DontDefer && !IsForDefinition) {
4525       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4526         GlobalDecl GDDef;
4527         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4528           GDDef = GlobalDecl(CD, GD.getCtorType());
4529         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4530           GDDef = GlobalDecl(DD, GD.getDtorType());
4531         else
4532           GDDef = GlobalDecl(FDDef);
4533         EmitGlobal(GDDef);
4534       }
4535     }
4536 
4537     if (FD->isMultiVersion()) {
4538       UpdateMultiVersionNames(GD, FD, MangledName);
4539       if (FD->getASTContext().getTargetInfo().getTriple().isAArch64() &&
4540           !FD->isUsed())
4541         AddDeferredMultiVersionResolverToEmit(GD);
4542       else if (!IsForDefinition)
4543         return GetOrCreateMultiVersionResolver(GD);
4544     }
4545   }
4546 
4547   // Lookup the entry, lazily creating it if necessary.
4548   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4549   if (Entry) {
4550     if (WeakRefReferences.erase(Entry)) {
4551       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4552       if (FD && !FD->hasAttr<WeakAttr>())
4553         Entry->setLinkage(llvm::Function::ExternalLinkage);
4554     }
4555 
4556     // Handle dropped DLL attributes.
4557     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4558         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4559       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4560       setDSOLocal(Entry);
4561     }
4562 
4563     // If there are two attempts to define the same mangled name, issue an
4564     // error.
4565     if (IsForDefinition && !Entry->isDeclaration()) {
4566       GlobalDecl OtherGD;
4567       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4568       // to make sure that we issue an error only once.
4569       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4570           (GD.getCanonicalDecl().getDecl() !=
4571            OtherGD.getCanonicalDecl().getDecl()) &&
4572           DiagnosedConflictingDefinitions.insert(GD).second) {
4573         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4574             << MangledName;
4575         getDiags().Report(OtherGD.getDecl()->getLocation(),
4576                           diag::note_previous_definition);
4577       }
4578     }
4579 
4580     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4581         (Entry->getValueType() == Ty)) {
4582       return Entry;
4583     }
4584 
4585     // Make sure the result is of the correct type.
4586     // (If function is requested for a definition, we always need to create a new
4587     // function, not just return a bitcast.)
4588     if (!IsForDefinition)
4589       return Entry;
4590   }
4591 
4592   // This function doesn't have a complete type (for example, the return
4593   // type is an incomplete struct). Use a fake type instead, and make
4594   // sure not to try to set attributes.
4595   bool IsIncompleteFunction = false;
4596 
4597   llvm::FunctionType *FTy;
4598   if (isa<llvm::FunctionType>(Ty)) {
4599     FTy = cast<llvm::FunctionType>(Ty);
4600   } else {
4601     FTy = llvm::FunctionType::get(VoidTy, false);
4602     IsIncompleteFunction = true;
4603   }
4604 
4605   llvm::Function *F =
4606       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4607                              Entry ? StringRef() : MangledName, &getModule());
4608 
4609   // Store the declaration associated with this function so it is potentially
4610   // updated by further declarations or definitions and emitted at the end.
4611   if (D && D->hasAttr<AnnotateAttr>())
4612     DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4613 
4614   // If we already created a function with the same mangled name (but different
4615   // type) before, take its name and add it to the list of functions to be
4616   // replaced with F at the end of CodeGen.
4617   //
4618   // This happens if there is a prototype for a function (e.g. "int f()") and
4619   // then a definition of a different type (e.g. "int f(int x)").
4620   if (Entry) {
4621     F->takeName(Entry);
4622 
4623     // This might be an implementation of a function without a prototype, in
4624     // which case, try to do special replacement of calls which match the new
4625     // prototype.  The really key thing here is that we also potentially drop
4626     // arguments from the call site so as to make a direct call, which makes the
4627     // inliner happier and suppresses a number of optimizer warnings (!) about
4628     // dropping arguments.
4629     if (!Entry->use_empty()) {
4630       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4631       Entry->removeDeadConstantUsers();
4632     }
4633 
4634     addGlobalValReplacement(Entry, F);
4635   }
4636 
4637   assert(F->getName() == MangledName && "name was uniqued!");
4638   if (D)
4639     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4640   if (ExtraAttrs.hasFnAttrs()) {
4641     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4642     F->addFnAttrs(B);
4643   }
4644 
4645   if (!DontDefer) {
4646     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4647     // each other bottoming out with the base dtor.  Therefore we emit non-base
4648     // dtors on usage, even if there is no dtor definition in the TU.
4649     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4650         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4651                                            GD.getDtorType()))
4652       addDeferredDeclToEmit(GD);
4653 
4654     // This is the first use or definition of a mangled name.  If there is a
4655     // deferred decl with this name, remember that we need to emit it at the end
4656     // of the file.
4657     auto DDI = DeferredDecls.find(MangledName);
4658     if (DDI != DeferredDecls.end()) {
4659       // Move the potentially referenced deferred decl to the
4660       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4661       // don't need it anymore).
4662       addDeferredDeclToEmit(DDI->second);
4663       DeferredDecls.erase(DDI);
4664 
4665       // Otherwise, there are cases we have to worry about where we're
4666       // using a declaration for which we must emit a definition but where
4667       // we might not find a top-level definition:
4668       //   - member functions defined inline in their classes
4669       //   - friend functions defined inline in some class
4670       //   - special member functions with implicit definitions
4671       // If we ever change our AST traversal to walk into class methods,
4672       // this will be unnecessary.
4673       //
4674       // We also don't emit a definition for a function if it's going to be an
4675       // entry in a vtable, unless it's already marked as used.
4676     } else if (getLangOpts().CPlusPlus && D) {
4677       // Look for a declaration that's lexically in a record.
4678       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4679            FD = FD->getPreviousDecl()) {
4680         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4681           if (FD->doesThisDeclarationHaveABody()) {
4682             addDeferredDeclToEmit(GD.getWithDecl(FD));
4683             break;
4684           }
4685         }
4686       }
4687     }
4688   }
4689 
4690   // Make sure the result is of the requested type.
4691   if (!IsIncompleteFunction) {
4692     assert(F->getFunctionType() == Ty);
4693     return F;
4694   }
4695 
4696   return F;
4697 }
4698 
4699 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4700 /// non-null, then this function will use the specified type if it has to
4701 /// create it (this occurs when we see a definition of the function).
4702 llvm::Constant *
4703 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4704                                  bool DontDefer,
4705                                  ForDefinition_t IsForDefinition) {
4706   // If there was no specific requested type, just convert it now.
4707   if (!Ty) {
4708     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4709     Ty = getTypes().ConvertType(FD->getType());
4710   }
4711 
4712   // Devirtualized destructor calls may come through here instead of via
4713   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4714   // of the complete destructor when necessary.
4715   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4716     if (getTarget().getCXXABI().isMicrosoft() &&
4717         GD.getDtorType() == Dtor_Complete &&
4718         DD->getParent()->getNumVBases() == 0)
4719       GD = GlobalDecl(DD, Dtor_Base);
4720   }
4721 
4722   StringRef MangledName = getMangledName(GD);
4723   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4724                                     /*IsThunk=*/false, llvm::AttributeList(),
4725                                     IsForDefinition);
4726   // Returns kernel handle for HIP kernel stub function.
4727   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4728       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4729     auto *Handle = getCUDARuntime().getKernelHandle(
4730         cast<llvm::Function>(F->stripPointerCasts()), GD);
4731     if (IsForDefinition)
4732       return F;
4733     return Handle;
4734   }
4735   return F;
4736 }
4737 
4738 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4739   llvm::GlobalValue *F =
4740       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4741 
4742   return llvm::NoCFIValue::get(F);
4743 }
4744 
4745 static const FunctionDecl *
4746 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4747   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4748   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4749 
4750   IdentifierInfo &CII = C.Idents.get(Name);
4751   for (const auto *Result : DC->lookup(&CII))
4752     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4753       return FD;
4754 
4755   if (!C.getLangOpts().CPlusPlus)
4756     return nullptr;
4757 
4758   // Demangle the premangled name from getTerminateFn()
4759   IdentifierInfo &CXXII =
4760       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4761           ? C.Idents.get("terminate")
4762           : C.Idents.get(Name);
4763 
4764   for (const auto &N : {"__cxxabiv1", "std"}) {
4765     IdentifierInfo &NS = C.Idents.get(N);
4766     for (const auto *Result : DC->lookup(&NS)) {
4767       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4768       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4769         for (const auto *Result : LSD->lookup(&NS))
4770           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4771             break;
4772 
4773       if (ND)
4774         for (const auto *Result : ND->lookup(&CXXII))
4775           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4776             return FD;
4777     }
4778   }
4779 
4780   return nullptr;
4781 }
4782 
4783 /// CreateRuntimeFunction - Create a new runtime function with the specified
4784 /// type and name.
4785 llvm::FunctionCallee
4786 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4787                                      llvm::AttributeList ExtraAttrs, bool Local,
4788                                      bool AssumeConvergent) {
4789   if (AssumeConvergent) {
4790     ExtraAttrs =
4791         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4792   }
4793 
4794   llvm::Constant *C =
4795       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4796                               /*DontDefer=*/false, /*IsThunk=*/false,
4797                               ExtraAttrs);
4798 
4799   if (auto *F = dyn_cast<llvm::Function>(C)) {
4800     if (F->empty()) {
4801       F->setCallingConv(getRuntimeCC());
4802 
4803       // In Windows Itanium environments, try to mark runtime functions
4804       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4805       // will link their standard library statically or dynamically. Marking
4806       // functions imported when they are not imported can cause linker errors
4807       // and warnings.
4808       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4809           !getCodeGenOpts().LTOVisibilityPublicStd) {
4810         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4811         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4812           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4813           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4814         }
4815       }
4816       setDSOLocal(F);
4817       // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4818       // of trying to approximate the attributes using the LLVM function
4819       // signature. This requires revising the API of CreateRuntimeFunction().
4820       markRegisterParameterAttributes(F);
4821     }
4822   }
4823 
4824   return {FTy, C};
4825 }
4826 
4827 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4828 /// create and return an llvm GlobalVariable with the specified type and address
4829 /// space. If there is something in the module with the specified name, return
4830 /// it potentially bitcasted to the right type.
4831 ///
4832 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4833 /// to set the attributes on the global when it is first created.
4834 ///
4835 /// If IsForDefinition is true, it is guaranteed that an actual global with
4836 /// type Ty will be returned, not conversion of a variable with the same
4837 /// mangled name but some other type.
4838 llvm::Constant *
4839 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4840                                      LangAS AddrSpace, const VarDecl *D,
4841                                      ForDefinition_t IsForDefinition) {
4842   // Lookup the entry, lazily creating it if necessary.
4843   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4844   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4845   if (Entry) {
4846     if (WeakRefReferences.erase(Entry)) {
4847       if (D && !D->hasAttr<WeakAttr>())
4848         Entry->setLinkage(llvm::Function::ExternalLinkage);
4849     }
4850 
4851     // Handle dropped DLL attributes.
4852     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4853         !shouldMapVisibilityToDLLExport(D))
4854       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4855 
4856     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4857       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4858 
4859     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4860       return Entry;
4861 
4862     // If there are two attempts to define the same mangled name, issue an
4863     // error.
4864     if (IsForDefinition && !Entry->isDeclaration()) {
4865       GlobalDecl OtherGD;
4866       const VarDecl *OtherD;
4867 
4868       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4869       // to make sure that we issue an error only once.
4870       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4871           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4872           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4873           OtherD->hasInit() &&
4874           DiagnosedConflictingDefinitions.insert(D).second) {
4875         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4876             << MangledName;
4877         getDiags().Report(OtherGD.getDecl()->getLocation(),
4878                           diag::note_previous_definition);
4879       }
4880     }
4881 
4882     // Make sure the result is of the correct type.
4883     if (Entry->getType()->getAddressSpace() != TargetAS)
4884       return llvm::ConstantExpr::getAddrSpaceCast(
4885           Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4886 
4887     // (If global is requested for a definition, we always need to create a new
4888     // global, not just return a bitcast.)
4889     if (!IsForDefinition)
4890       return Entry;
4891   }
4892 
4893   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4894 
4895   auto *GV = new llvm::GlobalVariable(
4896       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4897       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4898       getContext().getTargetAddressSpace(DAddrSpace));
4899 
4900   // If we already created a global with the same mangled name (but different
4901   // type) before, take its name and remove it from its parent.
4902   if (Entry) {
4903     GV->takeName(Entry);
4904 
4905     if (!Entry->use_empty()) {
4906       Entry->replaceAllUsesWith(GV);
4907     }
4908 
4909     Entry->eraseFromParent();
4910   }
4911 
4912   // This is the first use or definition of a mangled name.  If there is a
4913   // deferred decl with this name, remember that we need to emit it at the end
4914   // of the file.
4915   auto DDI = DeferredDecls.find(MangledName);
4916   if (DDI != DeferredDecls.end()) {
4917     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4918     // list, and remove it from DeferredDecls (since we don't need it anymore).
4919     addDeferredDeclToEmit(DDI->second);
4920     DeferredDecls.erase(DDI);
4921   }
4922 
4923   // Handle things which are present even on external declarations.
4924   if (D) {
4925     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4926       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4927 
4928     // FIXME: This code is overly simple and should be merged with other global
4929     // handling.
4930     GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4931 
4932     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4933 
4934     setLinkageForGV(GV, D);
4935 
4936     if (D->getTLSKind()) {
4937       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4938         CXXThreadLocals.push_back(D);
4939       setTLSMode(GV, *D);
4940     }
4941 
4942     setGVProperties(GV, D);
4943 
4944     // If required by the ABI, treat declarations of static data members with
4945     // inline initializers as definitions.
4946     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4947       EmitGlobalVarDefinition(D);
4948     }
4949 
4950     // Emit section information for extern variables.
4951     if (D->hasExternalStorage()) {
4952       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4953         GV->setSection(SA->getName());
4954     }
4955 
4956     // Handle XCore specific ABI requirements.
4957     if (getTriple().getArch() == llvm::Triple::xcore &&
4958         D->getLanguageLinkage() == CLanguageLinkage &&
4959         D->getType().isConstant(Context) &&
4960         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4961       GV->setSection(".cp.rodata");
4962 
4963     // Handle code model attribute
4964     if (const auto *CMA = D->getAttr<CodeModelAttr>())
4965       GV->setCodeModel(CMA->getModel());
4966 
4967     // Check if we a have a const declaration with an initializer, we may be
4968     // able to emit it as available_externally to expose it's value to the
4969     // optimizer.
4970     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4971         D->getType().isConstQualified() && !GV->hasInitializer() &&
4972         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4973       const auto *Record =
4974           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4975       bool HasMutableFields = Record && Record->hasMutableFields();
4976       if (!HasMutableFields) {
4977         const VarDecl *InitDecl;
4978         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4979         if (InitExpr) {
4980           ConstantEmitter emitter(*this);
4981           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4982           if (Init) {
4983             auto *InitType = Init->getType();
4984             if (GV->getValueType() != InitType) {
4985               // The type of the initializer does not match the definition.
4986               // This happens when an initializer has a different type from
4987               // the type of the global (because of padding at the end of a
4988               // structure for instance).
4989               GV->setName(StringRef());
4990               // Make a new global with the correct type, this is now guaranteed
4991               // to work.
4992               auto *NewGV = cast<llvm::GlobalVariable>(
4993                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4994                       ->stripPointerCasts());
4995 
4996               // Erase the old global, since it is no longer used.
4997               GV->eraseFromParent();
4998               GV = NewGV;
4999             } else {
5000               GV->setInitializer(Init);
5001               GV->setConstant(true);
5002               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5003             }
5004             emitter.finalize(GV);
5005           }
5006         }
5007       }
5008     }
5009   }
5010 
5011   if (D &&
5012       D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5013     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5014     // External HIP managed variables needed to be recorded for transformation
5015     // in both device and host compilations.
5016     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5017         D->hasExternalStorage())
5018       getCUDARuntime().handleVarRegistration(D, *GV);
5019   }
5020 
5021   if (D)
5022     SanitizerMD->reportGlobal(GV, *D);
5023 
5024   LangAS ExpectedAS =
5025       D ? D->getType().getAddressSpace()
5026         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5027   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5028   if (DAddrSpace != ExpectedAS) {
5029     return getTargetCodeGenInfo().performAddrSpaceCast(
5030         *this, GV, DAddrSpace, ExpectedAS,
5031         llvm::PointerType::get(getLLVMContext(), TargetAS));
5032   }
5033 
5034   return GV;
5035 }
5036 
5037 llvm::Constant *
5038 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5039   const Decl *D = GD.getDecl();
5040 
5041   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5042     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5043                                 /*DontDefer=*/false, IsForDefinition);
5044 
5045   if (isa<CXXMethodDecl>(D)) {
5046     auto FInfo =
5047         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5048     auto Ty = getTypes().GetFunctionType(*FInfo);
5049     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5050                              IsForDefinition);
5051   }
5052 
5053   if (isa<FunctionDecl>(D)) {
5054     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5055     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5056     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5057                              IsForDefinition);
5058   }
5059 
5060   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5061 }
5062 
5063 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5064     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5065     llvm::Align Alignment) {
5066   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5067   llvm::GlobalVariable *OldGV = nullptr;
5068 
5069   if (GV) {
5070     // Check if the variable has the right type.
5071     if (GV->getValueType() == Ty)
5072       return GV;
5073 
5074     // Because C++ name mangling, the only way we can end up with an already
5075     // existing global with the same name is if it has been declared extern "C".
5076     assert(GV->isDeclaration() && "Declaration has wrong type!");
5077     OldGV = GV;
5078   }
5079 
5080   // Create a new variable.
5081   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5082                                 Linkage, nullptr, Name);
5083 
5084   if (OldGV) {
5085     // Replace occurrences of the old variable if needed.
5086     GV->takeName(OldGV);
5087 
5088     if (!OldGV->use_empty()) {
5089       OldGV->replaceAllUsesWith(GV);
5090     }
5091 
5092     OldGV->eraseFromParent();
5093   }
5094 
5095   if (supportsCOMDAT() && GV->isWeakForLinker() &&
5096       !GV->hasAvailableExternallyLinkage())
5097     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5098 
5099   GV->setAlignment(Alignment);
5100 
5101   return GV;
5102 }
5103 
5104 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5105 /// given global variable.  If Ty is non-null and if the global doesn't exist,
5106 /// then it will be created with the specified type instead of whatever the
5107 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5108 /// that an actual global with type Ty will be returned, not conversion of a
5109 /// variable with the same mangled name but some other type.
5110 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5111                                                   llvm::Type *Ty,
5112                                            ForDefinition_t IsForDefinition) {
5113   assert(D->hasGlobalStorage() && "Not a global variable");
5114   QualType ASTTy = D->getType();
5115   if (!Ty)
5116     Ty = getTypes().ConvertTypeForMem(ASTTy);
5117 
5118   StringRef MangledName = getMangledName(D);
5119   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5120                                IsForDefinition);
5121 }
5122 
5123 /// CreateRuntimeVariable - Create a new runtime global variable with the
5124 /// specified type and name.
5125 llvm::Constant *
5126 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5127                                      StringRef Name) {
5128   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5129                                                        : LangAS::Default;
5130   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5131   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5132   return Ret;
5133 }
5134 
5135 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5136   assert(!D->getInit() && "Cannot emit definite definitions here!");
5137 
5138   StringRef MangledName = getMangledName(D);
5139   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5140 
5141   // We already have a definition, not declaration, with the same mangled name.
5142   // Emitting of declaration is not required (and actually overwrites emitted
5143   // definition).
5144   if (GV && !GV->isDeclaration())
5145     return;
5146 
5147   // If we have not seen a reference to this variable yet, place it into the
5148   // deferred declarations table to be emitted if needed later.
5149   if (!MustBeEmitted(D) && !GV) {
5150       DeferredDecls[MangledName] = D;
5151       return;
5152   }
5153 
5154   // The tentative definition is the only definition.
5155   EmitGlobalVarDefinition(D);
5156 }
5157 
5158 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5159   EmitExternalVarDeclaration(D);
5160 }
5161 
5162 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5163   return Context.toCharUnitsFromBits(
5164       getDataLayout().getTypeStoreSizeInBits(Ty));
5165 }
5166 
5167 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5168   if (LangOpts.OpenCL) {
5169     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5170     assert(AS == LangAS::opencl_global ||
5171            AS == LangAS::opencl_global_device ||
5172            AS == LangAS::opencl_global_host ||
5173            AS == LangAS::opencl_constant ||
5174            AS == LangAS::opencl_local ||
5175            AS >= LangAS::FirstTargetAddressSpace);
5176     return AS;
5177   }
5178 
5179   if (LangOpts.SYCLIsDevice &&
5180       (!D || D->getType().getAddressSpace() == LangAS::Default))
5181     return LangAS::sycl_global;
5182 
5183   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5184     if (D) {
5185       if (D->hasAttr<CUDAConstantAttr>())
5186         return LangAS::cuda_constant;
5187       if (D->hasAttr<CUDASharedAttr>())
5188         return LangAS::cuda_shared;
5189       if (D->hasAttr<CUDADeviceAttr>())
5190         return LangAS::cuda_device;
5191       if (D->getType().isConstQualified())
5192         return LangAS::cuda_constant;
5193     }
5194     return LangAS::cuda_device;
5195   }
5196 
5197   if (LangOpts.OpenMP) {
5198     LangAS AS;
5199     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5200       return AS;
5201   }
5202   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5203 }
5204 
5205 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5206   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5207   if (LangOpts.OpenCL)
5208     return LangAS::opencl_constant;
5209   if (LangOpts.SYCLIsDevice)
5210     return LangAS::sycl_global;
5211   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5212     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5213     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5214     // with OpVariable instructions with Generic storage class which is not
5215     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5216     // UniformConstant storage class is not viable as pointers to it may not be
5217     // casted to Generic pointers which are used to model HIP's "flat" pointers.
5218     return LangAS::cuda_device;
5219   if (auto AS = getTarget().getConstantAddressSpace())
5220     return *AS;
5221   return LangAS::Default;
5222 }
5223 
5224 // In address space agnostic languages, string literals are in default address
5225 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5226 // emitted in constant address space in LLVM IR. To be consistent with other
5227 // parts of AST, string literal global variables in constant address space
5228 // need to be casted to default address space before being put into address
5229 // map and referenced by other part of CodeGen.
5230 // In OpenCL, string literals are in constant address space in AST, therefore
5231 // they should not be casted to default address space.
5232 static llvm::Constant *
5233 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5234                                        llvm::GlobalVariable *GV) {
5235   llvm::Constant *Cast = GV;
5236   if (!CGM.getLangOpts().OpenCL) {
5237     auto AS = CGM.GetGlobalConstantAddressSpace();
5238     if (AS != LangAS::Default)
5239       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5240           CGM, GV, AS, LangAS::Default,
5241           llvm::PointerType::get(
5242               CGM.getLLVMContext(),
5243               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5244   }
5245   return Cast;
5246 }
5247 
5248 template<typename SomeDecl>
5249 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5250                                                llvm::GlobalValue *GV) {
5251   if (!getLangOpts().CPlusPlus)
5252     return;
5253 
5254   // Must have 'used' attribute, or else inline assembly can't rely on
5255   // the name existing.
5256   if (!D->template hasAttr<UsedAttr>())
5257     return;
5258 
5259   // Must have internal linkage and an ordinary name.
5260   if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5261     return;
5262 
5263   // Must be in an extern "C" context. Entities declared directly within
5264   // a record are not extern "C" even if the record is in such a context.
5265   const SomeDecl *First = D->getFirstDecl();
5266   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5267     return;
5268 
5269   // OK, this is an internal linkage entity inside an extern "C" linkage
5270   // specification. Make a note of that so we can give it the "expected"
5271   // mangled name if nothing else is using that name.
5272   std::pair<StaticExternCMap::iterator, bool> R =
5273       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5274 
5275   // If we have multiple internal linkage entities with the same name
5276   // in extern "C" regions, none of them gets that name.
5277   if (!R.second)
5278     R.first->second = nullptr;
5279 }
5280 
5281 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5282   if (!CGM.supportsCOMDAT())
5283     return false;
5284 
5285   if (D.hasAttr<SelectAnyAttr>())
5286     return true;
5287 
5288   GVALinkage Linkage;
5289   if (auto *VD = dyn_cast<VarDecl>(&D))
5290     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5291   else
5292     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5293 
5294   switch (Linkage) {
5295   case GVA_Internal:
5296   case GVA_AvailableExternally:
5297   case GVA_StrongExternal:
5298     return false;
5299   case GVA_DiscardableODR:
5300   case GVA_StrongODR:
5301     return true;
5302   }
5303   llvm_unreachable("No such linkage");
5304 }
5305 
5306 bool CodeGenModule::supportsCOMDAT() const {
5307   return getTriple().supportsCOMDAT();
5308 }
5309 
5310 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5311                                           llvm::GlobalObject &GO) {
5312   if (!shouldBeInCOMDAT(*this, D))
5313     return;
5314   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5315 }
5316 
5317 /// Pass IsTentative as true if you want to create a tentative definition.
5318 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5319                                             bool IsTentative) {
5320   // OpenCL global variables of sampler type are translated to function calls,
5321   // therefore no need to be translated.
5322   QualType ASTTy = D->getType();
5323   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5324     return;
5325 
5326   // If this is OpenMP device, check if it is legal to emit this global
5327   // normally.
5328   if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5329       OpenMPRuntime->emitTargetGlobalVariable(D))
5330     return;
5331 
5332   llvm::TrackingVH<llvm::Constant> Init;
5333   bool NeedsGlobalCtor = false;
5334   // Whether the definition of the variable is available externally.
5335   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5336   // since this is the job for its original source.
5337   bool IsDefinitionAvailableExternally =
5338       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5339   bool NeedsGlobalDtor =
5340       !IsDefinitionAvailableExternally &&
5341       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5342 
5343   const VarDecl *InitDecl;
5344   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5345 
5346   std::optional<ConstantEmitter> emitter;
5347 
5348   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5349   // as part of their declaration."  Sema has already checked for
5350   // error cases, so we just need to set Init to UndefValue.
5351   bool IsCUDASharedVar =
5352       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5353   // Shadows of initialized device-side global variables are also left
5354   // undefined.
5355   // Managed Variables should be initialized on both host side and device side.
5356   bool IsCUDAShadowVar =
5357       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5358       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5359        D->hasAttr<CUDASharedAttr>());
5360   bool IsCUDADeviceShadowVar =
5361       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5362       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5363        D->getType()->isCUDADeviceBuiltinTextureType());
5364   if (getLangOpts().CUDA &&
5365       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5366     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5367   else if (D->hasAttr<LoaderUninitializedAttr>())
5368     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5369   else if (!InitExpr) {
5370     // This is a tentative definition; tentative definitions are
5371     // implicitly initialized with { 0 }.
5372     //
5373     // Note that tentative definitions are only emitted at the end of
5374     // a translation unit, so they should never have incomplete
5375     // type. In addition, EmitTentativeDefinition makes sure that we
5376     // never attempt to emit a tentative definition if a real one
5377     // exists. A use may still exists, however, so we still may need
5378     // to do a RAUW.
5379     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5380     Init = EmitNullConstant(D->getType());
5381   } else {
5382     initializedGlobalDecl = GlobalDecl(D);
5383     emitter.emplace(*this);
5384     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5385     if (!Initializer) {
5386       QualType T = InitExpr->getType();
5387       if (D->getType()->isReferenceType())
5388         T = D->getType();
5389 
5390       if (getLangOpts().CPlusPlus) {
5391         if (InitDecl->hasFlexibleArrayInit(getContext()))
5392           ErrorUnsupported(D, "flexible array initializer");
5393         Init = EmitNullConstant(T);
5394 
5395         if (!IsDefinitionAvailableExternally)
5396           NeedsGlobalCtor = true;
5397       } else {
5398         ErrorUnsupported(D, "static initializer");
5399         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5400       }
5401     } else {
5402       Init = Initializer;
5403       // We don't need an initializer, so remove the entry for the delayed
5404       // initializer position (just in case this entry was delayed) if we
5405       // also don't need to register a destructor.
5406       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5407         DelayedCXXInitPosition.erase(D);
5408 
5409 #ifndef NDEBUG
5410       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5411                           InitDecl->getFlexibleArrayInitChars(getContext());
5412       CharUnits CstSize = CharUnits::fromQuantity(
5413           getDataLayout().getTypeAllocSize(Init->getType()));
5414       assert(VarSize == CstSize && "Emitted constant has unexpected size");
5415 #endif
5416     }
5417   }
5418 
5419   llvm::Type* InitType = Init->getType();
5420   llvm::Constant *Entry =
5421       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5422 
5423   // Strip off pointer casts if we got them.
5424   Entry = Entry->stripPointerCasts();
5425 
5426   // Entry is now either a Function or GlobalVariable.
5427   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5428 
5429   // We have a definition after a declaration with the wrong type.
5430   // We must make a new GlobalVariable* and update everything that used OldGV
5431   // (a declaration or tentative definition) with the new GlobalVariable*
5432   // (which will be a definition).
5433   //
5434   // This happens if there is a prototype for a global (e.g.
5435   // "extern int x[];") and then a definition of a different type (e.g.
5436   // "int x[10];"). This also happens when an initializer has a different type
5437   // from the type of the global (this happens with unions).
5438   if (!GV || GV->getValueType() != InitType ||
5439       GV->getType()->getAddressSpace() !=
5440           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5441 
5442     // Move the old entry aside so that we'll create a new one.
5443     Entry->setName(StringRef());
5444 
5445     // Make a new global with the correct type, this is now guaranteed to work.
5446     GV = cast<llvm::GlobalVariable>(
5447         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5448             ->stripPointerCasts());
5449 
5450     // Replace all uses of the old global with the new global
5451     llvm::Constant *NewPtrForOldDecl =
5452         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5453                                                              Entry->getType());
5454     Entry->replaceAllUsesWith(NewPtrForOldDecl);
5455 
5456     // Erase the old global, since it is no longer used.
5457     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5458   }
5459 
5460   MaybeHandleStaticInExternC(D, GV);
5461 
5462   if (D->hasAttr<AnnotateAttr>())
5463     AddGlobalAnnotations(D, GV);
5464 
5465   // Set the llvm linkage type as appropriate.
5466   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5467 
5468   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5469   // the device. [...]"
5470   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5471   // __device__, declares a variable that: [...]
5472   // Is accessible from all the threads within the grid and from the host
5473   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5474   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5475   if (LangOpts.CUDA) {
5476     if (LangOpts.CUDAIsDevice) {
5477       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5478           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5479            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5480            D->getType()->isCUDADeviceBuiltinTextureType()))
5481         GV->setExternallyInitialized(true);
5482     } else {
5483       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5484     }
5485     getCUDARuntime().handleVarRegistration(D, *GV);
5486   }
5487 
5488   GV->setInitializer(Init);
5489   if (emitter)
5490     emitter->finalize(GV);
5491 
5492   // If it is safe to mark the global 'constant', do so now.
5493   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5494                   D->getType().isConstantStorage(getContext(), true, true));
5495 
5496   // If it is in a read-only section, mark it 'constant'.
5497   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5498     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5499     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5500       GV->setConstant(true);
5501   }
5502 
5503   CharUnits AlignVal = getContext().getDeclAlign(D);
5504   // Check for alignment specifed in an 'omp allocate' directive.
5505   if (std::optional<CharUnits> AlignValFromAllocate =
5506           getOMPAllocateAlignment(D))
5507     AlignVal = *AlignValFromAllocate;
5508   GV->setAlignment(AlignVal.getAsAlign());
5509 
5510   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5511   // function is only defined alongside the variable, not also alongside
5512   // callers. Normally, all accesses to a thread_local go through the
5513   // thread-wrapper in order to ensure initialization has occurred, underlying
5514   // variable will never be used other than the thread-wrapper, so it can be
5515   // converted to internal linkage.
5516   //
5517   // However, if the variable has the 'constinit' attribute, it _can_ be
5518   // referenced directly, without calling the thread-wrapper, so the linkage
5519   // must not be changed.
5520   //
5521   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5522   // weak or linkonce, the de-duplication semantics are important to preserve,
5523   // so we don't change the linkage.
5524   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5525       Linkage == llvm::GlobalValue::ExternalLinkage &&
5526       Context.getTargetInfo().getTriple().isOSDarwin() &&
5527       !D->hasAttr<ConstInitAttr>())
5528     Linkage = llvm::GlobalValue::InternalLinkage;
5529 
5530   GV->setLinkage(Linkage);
5531   if (D->hasAttr<DLLImportAttr>())
5532     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5533   else if (D->hasAttr<DLLExportAttr>())
5534     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5535   else
5536     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5537 
5538   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5539     // common vars aren't constant even if declared const.
5540     GV->setConstant(false);
5541     // Tentative definition of global variables may be initialized with
5542     // non-zero null pointers. In this case they should have weak linkage
5543     // since common linkage must have zero initializer and must not have
5544     // explicit section therefore cannot have non-zero initial value.
5545     if (!GV->getInitializer()->isNullValue())
5546       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5547   }
5548 
5549   setNonAliasAttributes(D, GV);
5550 
5551   if (D->getTLSKind() && !GV->isThreadLocal()) {
5552     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5553       CXXThreadLocals.push_back(D);
5554     setTLSMode(GV, *D);
5555   }
5556 
5557   maybeSetTrivialComdat(*D, *GV);
5558 
5559   // Emit the initializer function if necessary.
5560   if (NeedsGlobalCtor || NeedsGlobalDtor)
5561     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5562 
5563   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5564 
5565   // Emit global variable debug information.
5566   if (CGDebugInfo *DI = getModuleDebugInfo())
5567     if (getCodeGenOpts().hasReducedDebugInfo())
5568       DI->EmitGlobalVariable(GV, D);
5569 }
5570 
5571 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5572   if (CGDebugInfo *DI = getModuleDebugInfo())
5573     if (getCodeGenOpts().hasReducedDebugInfo()) {
5574       QualType ASTTy = D->getType();
5575       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5576       llvm::Constant *GV =
5577           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5578       DI->EmitExternalVariable(
5579           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5580     }
5581 }
5582 
5583 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5584                                       CodeGenModule &CGM, const VarDecl *D,
5585                                       bool NoCommon) {
5586   // Don't give variables common linkage if -fno-common was specified unless it
5587   // was overridden by a NoCommon attribute.
5588   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5589     return true;
5590 
5591   // C11 6.9.2/2:
5592   //   A declaration of an identifier for an object that has file scope without
5593   //   an initializer, and without a storage-class specifier or with the
5594   //   storage-class specifier static, constitutes a tentative definition.
5595   if (D->getInit() || D->hasExternalStorage())
5596     return true;
5597 
5598   // A variable cannot be both common and exist in a section.
5599   if (D->hasAttr<SectionAttr>())
5600     return true;
5601 
5602   // A variable cannot be both common and exist in a section.
5603   // We don't try to determine which is the right section in the front-end.
5604   // If no specialized section name is applicable, it will resort to default.
5605   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5606       D->hasAttr<PragmaClangDataSectionAttr>() ||
5607       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5608       D->hasAttr<PragmaClangRodataSectionAttr>())
5609     return true;
5610 
5611   // Thread local vars aren't considered common linkage.
5612   if (D->getTLSKind())
5613     return true;
5614 
5615   // Tentative definitions marked with WeakImportAttr are true definitions.
5616   if (D->hasAttr<WeakImportAttr>())
5617     return true;
5618 
5619   // A variable cannot be both common and exist in a comdat.
5620   if (shouldBeInCOMDAT(CGM, *D))
5621     return true;
5622 
5623   // Declarations with a required alignment do not have common linkage in MSVC
5624   // mode.
5625   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5626     if (D->hasAttr<AlignedAttr>())
5627       return true;
5628     QualType VarType = D->getType();
5629     if (Context.isAlignmentRequired(VarType))
5630       return true;
5631 
5632     if (const auto *RT = VarType->getAs<RecordType>()) {
5633       const RecordDecl *RD = RT->getDecl();
5634       for (const FieldDecl *FD : RD->fields()) {
5635         if (FD->isBitField())
5636           continue;
5637         if (FD->hasAttr<AlignedAttr>())
5638           return true;
5639         if (Context.isAlignmentRequired(FD->getType()))
5640           return true;
5641       }
5642     }
5643   }
5644 
5645   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5646   // common symbols, so symbols with greater alignment requirements cannot be
5647   // common.
5648   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5649   // alignments for common symbols via the aligncomm directive, so this
5650   // restriction only applies to MSVC environments.
5651   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5652       Context.getTypeAlignIfKnown(D->getType()) >
5653           Context.toBits(CharUnits::fromQuantity(32)))
5654     return true;
5655 
5656   return false;
5657 }
5658 
5659 llvm::GlobalValue::LinkageTypes
5660 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5661                                            GVALinkage Linkage) {
5662   if (Linkage == GVA_Internal)
5663     return llvm::Function::InternalLinkage;
5664 
5665   if (D->hasAttr<WeakAttr>())
5666     return llvm::GlobalVariable::WeakAnyLinkage;
5667 
5668   if (const auto *FD = D->getAsFunction())
5669     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5670       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5671 
5672   // We are guaranteed to have a strong definition somewhere else,
5673   // so we can use available_externally linkage.
5674   if (Linkage == GVA_AvailableExternally)
5675     return llvm::GlobalValue::AvailableExternallyLinkage;
5676 
5677   // Note that Apple's kernel linker doesn't support symbol
5678   // coalescing, so we need to avoid linkonce and weak linkages there.
5679   // Normally, this means we just map to internal, but for explicit
5680   // instantiations we'll map to external.
5681 
5682   // In C++, the compiler has to emit a definition in every translation unit
5683   // that references the function.  We should use linkonce_odr because
5684   // a) if all references in this translation unit are optimized away, we
5685   // don't need to codegen it.  b) if the function persists, it needs to be
5686   // merged with other definitions. c) C++ has the ODR, so we know the
5687   // definition is dependable.
5688   if (Linkage == GVA_DiscardableODR)
5689     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5690                                             : llvm::Function::InternalLinkage;
5691 
5692   // An explicit instantiation of a template has weak linkage, since
5693   // explicit instantiations can occur in multiple translation units
5694   // and must all be equivalent. However, we are not allowed to
5695   // throw away these explicit instantiations.
5696   //
5697   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5698   // so say that CUDA templates are either external (for kernels) or internal.
5699   // This lets llvm perform aggressive inter-procedural optimizations. For
5700   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5701   // therefore we need to follow the normal linkage paradigm.
5702   if (Linkage == GVA_StrongODR) {
5703     if (getLangOpts().AppleKext)
5704       return llvm::Function::ExternalLinkage;
5705     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5706         !getLangOpts().GPURelocatableDeviceCode)
5707       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5708                                           : llvm::Function::InternalLinkage;
5709     return llvm::Function::WeakODRLinkage;
5710   }
5711 
5712   // C++ doesn't have tentative definitions and thus cannot have common
5713   // linkage.
5714   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5715       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5716                                  CodeGenOpts.NoCommon))
5717     return llvm::GlobalVariable::CommonLinkage;
5718 
5719   // selectany symbols are externally visible, so use weak instead of
5720   // linkonce.  MSVC optimizes away references to const selectany globals, so
5721   // all definitions should be the same and ODR linkage should be used.
5722   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5723   if (D->hasAttr<SelectAnyAttr>())
5724     return llvm::GlobalVariable::WeakODRLinkage;
5725 
5726   // Otherwise, we have strong external linkage.
5727   assert(Linkage == GVA_StrongExternal);
5728   return llvm::GlobalVariable::ExternalLinkage;
5729 }
5730 
5731 llvm::GlobalValue::LinkageTypes
5732 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5733   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5734   return getLLVMLinkageForDeclarator(VD, Linkage);
5735 }
5736 
5737 /// Replace the uses of a function that was declared with a non-proto type.
5738 /// We want to silently drop extra arguments from call sites
5739 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5740                                           llvm::Function *newFn) {
5741   // Fast path.
5742   if (old->use_empty()) return;
5743 
5744   llvm::Type *newRetTy = newFn->getReturnType();
5745   SmallVector<llvm::Value*, 4> newArgs;
5746 
5747   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5748          ui != ue; ) {
5749     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5750     llvm::User *user = use->getUser();
5751 
5752     // Recognize and replace uses of bitcasts.  Most calls to
5753     // unprototyped functions will use bitcasts.
5754     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5755       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5756         replaceUsesOfNonProtoConstant(bitcast, newFn);
5757       continue;
5758     }
5759 
5760     // Recognize calls to the function.
5761     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5762     if (!callSite) continue;
5763     if (!callSite->isCallee(&*use))
5764       continue;
5765 
5766     // If the return types don't match exactly, then we can't
5767     // transform this call unless it's dead.
5768     if (callSite->getType() != newRetTy && !callSite->use_empty())
5769       continue;
5770 
5771     // Get the call site's attribute list.
5772     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5773     llvm::AttributeList oldAttrs = callSite->getAttributes();
5774 
5775     // If the function was passed too few arguments, don't transform.
5776     unsigned newNumArgs = newFn->arg_size();
5777     if (callSite->arg_size() < newNumArgs)
5778       continue;
5779 
5780     // If extra arguments were passed, we silently drop them.
5781     // If any of the types mismatch, we don't transform.
5782     unsigned argNo = 0;
5783     bool dontTransform = false;
5784     for (llvm::Argument &A : newFn->args()) {
5785       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5786         dontTransform = true;
5787         break;
5788       }
5789 
5790       // Add any parameter attributes.
5791       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5792       argNo++;
5793     }
5794     if (dontTransform)
5795       continue;
5796 
5797     // Okay, we can transform this.  Create the new call instruction and copy
5798     // over the required information.
5799     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5800 
5801     // Copy over any operand bundles.
5802     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5803     callSite->getOperandBundlesAsDefs(newBundles);
5804 
5805     llvm::CallBase *newCall;
5806     if (isa<llvm::CallInst>(callSite)) {
5807       newCall =
5808           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5809     } else {
5810       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5811       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5812                                          oldInvoke->getUnwindDest(), newArgs,
5813                                          newBundles, "", callSite);
5814     }
5815     newArgs.clear(); // for the next iteration
5816 
5817     if (!newCall->getType()->isVoidTy())
5818       newCall->takeName(callSite);
5819     newCall->setAttributes(
5820         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5821                                  oldAttrs.getRetAttrs(), newArgAttrs));
5822     newCall->setCallingConv(callSite->getCallingConv());
5823 
5824     // Finally, remove the old call, replacing any uses with the new one.
5825     if (!callSite->use_empty())
5826       callSite->replaceAllUsesWith(newCall);
5827 
5828     // Copy debug location attached to CI.
5829     if (callSite->getDebugLoc())
5830       newCall->setDebugLoc(callSite->getDebugLoc());
5831 
5832     callSite->eraseFromParent();
5833   }
5834 }
5835 
5836 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5837 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5838 /// existing call uses of the old function in the module, this adjusts them to
5839 /// call the new function directly.
5840 ///
5841 /// This is not just a cleanup: the always_inline pass requires direct calls to
5842 /// functions to be able to inline them.  If there is a bitcast in the way, it
5843 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5844 /// run at -O0.
5845 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5846                                                       llvm::Function *NewFn) {
5847   // If we're redefining a global as a function, don't transform it.
5848   if (!isa<llvm::Function>(Old)) return;
5849 
5850   replaceUsesOfNonProtoConstant(Old, NewFn);
5851 }
5852 
5853 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5854   auto DK = VD->isThisDeclarationADefinition();
5855   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5856     return;
5857 
5858   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5859   // If we have a definition, this might be a deferred decl. If the
5860   // instantiation is explicit, make sure we emit it at the end.
5861   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5862     GetAddrOfGlobalVar(VD);
5863 
5864   EmitTopLevelDecl(VD);
5865 }
5866 
5867 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5868                                                  llvm::GlobalValue *GV) {
5869   const auto *D = cast<FunctionDecl>(GD.getDecl());
5870 
5871   // Compute the function info and LLVM type.
5872   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5873   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5874 
5875   // Get or create the prototype for the function.
5876   if (!GV || (GV->getValueType() != Ty))
5877     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5878                                                    /*DontDefer=*/true,
5879                                                    ForDefinition));
5880 
5881   // Already emitted.
5882   if (!GV->isDeclaration())
5883     return;
5884 
5885   // We need to set linkage and visibility on the function before
5886   // generating code for it because various parts of IR generation
5887   // want to propagate this information down (e.g. to local static
5888   // declarations).
5889   auto *Fn = cast<llvm::Function>(GV);
5890   setFunctionLinkage(GD, Fn);
5891 
5892   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5893   setGVProperties(Fn, GD);
5894 
5895   MaybeHandleStaticInExternC(D, Fn);
5896 
5897   maybeSetTrivialComdat(*D, *Fn);
5898 
5899   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5900 
5901   setNonAliasAttributes(GD, Fn);
5902   SetLLVMFunctionAttributesForDefinition(D, Fn);
5903 
5904   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5905     AddGlobalCtor(Fn, CA->getPriority());
5906   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5907     AddGlobalDtor(Fn, DA->getPriority(), true);
5908   if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5909     getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5910 }
5911 
5912 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5913   const auto *D = cast<ValueDecl>(GD.getDecl());
5914   const AliasAttr *AA = D->getAttr<AliasAttr>();
5915   assert(AA && "Not an alias?");
5916 
5917   StringRef MangledName = getMangledName(GD);
5918 
5919   if (AA->getAliasee() == MangledName) {
5920     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5921     return;
5922   }
5923 
5924   // If there is a definition in the module, then it wins over the alias.
5925   // This is dubious, but allow it to be safe.  Just ignore the alias.
5926   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5927   if (Entry && !Entry->isDeclaration())
5928     return;
5929 
5930   Aliases.push_back(GD);
5931 
5932   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5933 
5934   // Create a reference to the named value.  This ensures that it is emitted
5935   // if a deferred decl.
5936   llvm::Constant *Aliasee;
5937   llvm::GlobalValue::LinkageTypes LT;
5938   if (isa<llvm::FunctionType>(DeclTy)) {
5939     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5940                                       /*ForVTable=*/false);
5941     LT = getFunctionLinkage(GD);
5942   } else {
5943     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5944                                     /*D=*/nullptr);
5945     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5946       LT = getLLVMLinkageVarDefinition(VD);
5947     else
5948       LT = getFunctionLinkage(GD);
5949   }
5950 
5951   // Create the new alias itself, but don't set a name yet.
5952   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5953   auto *GA =
5954       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5955 
5956   if (Entry) {
5957     if (GA->getAliasee() == Entry) {
5958       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5959       return;
5960     }
5961 
5962     assert(Entry->isDeclaration());
5963 
5964     // If there is a declaration in the module, then we had an extern followed
5965     // by the alias, as in:
5966     //   extern int test6();
5967     //   ...
5968     //   int test6() __attribute__((alias("test7")));
5969     //
5970     // Remove it and replace uses of it with the alias.
5971     GA->takeName(Entry);
5972 
5973     Entry->replaceAllUsesWith(GA);
5974     Entry->eraseFromParent();
5975   } else {
5976     GA->setName(MangledName);
5977   }
5978 
5979   // Set attributes which are particular to an alias; this is a
5980   // specialization of the attributes which may be set on a global
5981   // variable/function.
5982   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5983       D->isWeakImported()) {
5984     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5985   }
5986 
5987   if (const auto *VD = dyn_cast<VarDecl>(D))
5988     if (VD->getTLSKind())
5989       setTLSMode(GA, *VD);
5990 
5991   SetCommonAttributes(GD, GA);
5992 
5993   // Emit global alias debug information.
5994   if (isa<VarDecl>(D))
5995     if (CGDebugInfo *DI = getModuleDebugInfo())
5996       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5997 }
5998 
5999 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6000   const auto *D = cast<ValueDecl>(GD.getDecl());
6001   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6002   assert(IFA && "Not an ifunc?");
6003 
6004   StringRef MangledName = getMangledName(GD);
6005 
6006   if (IFA->getResolver() == MangledName) {
6007     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6008     return;
6009   }
6010 
6011   // Report an error if some definition overrides ifunc.
6012   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6013   if (Entry && !Entry->isDeclaration()) {
6014     GlobalDecl OtherGD;
6015     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6016         DiagnosedConflictingDefinitions.insert(GD).second) {
6017       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6018           << MangledName;
6019       Diags.Report(OtherGD.getDecl()->getLocation(),
6020                    diag::note_previous_definition);
6021     }
6022     return;
6023   }
6024 
6025   Aliases.push_back(GD);
6026 
6027   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6028   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
6029   llvm::Constant *Resolver =
6030       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
6031                               /*ForVTable=*/false);
6032   llvm::GlobalIFunc *GIF =
6033       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
6034                                 "", Resolver, &getModule());
6035   if (Entry) {
6036     if (GIF->getResolver() == Entry) {
6037       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6038       return;
6039     }
6040     assert(Entry->isDeclaration());
6041 
6042     // If there is a declaration in the module, then we had an extern followed
6043     // by the ifunc, as in:
6044     //   extern int test();
6045     //   ...
6046     //   int test() __attribute__((ifunc("resolver")));
6047     //
6048     // Remove it and replace uses of it with the ifunc.
6049     GIF->takeName(Entry);
6050 
6051     Entry->replaceAllUsesWith(GIF);
6052     Entry->eraseFromParent();
6053   } else
6054     GIF->setName(MangledName);
6055   if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
6056     F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
6057   }
6058   SetCommonAttributes(GD, GIF);
6059 }
6060 
6061 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6062                                             ArrayRef<llvm::Type*> Tys) {
6063   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
6064                                          Tys);
6065 }
6066 
6067 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6068 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6069                          const StringLiteral *Literal, bool TargetIsLSB,
6070                          bool &IsUTF16, unsigned &StringLength) {
6071   StringRef String = Literal->getString();
6072   unsigned NumBytes = String.size();
6073 
6074   // Check for simple case.
6075   if (!Literal->containsNonAsciiOrNull()) {
6076     StringLength = NumBytes;
6077     return *Map.insert(std::make_pair(String, nullptr)).first;
6078   }
6079 
6080   // Otherwise, convert the UTF8 literals into a string of shorts.
6081   IsUTF16 = true;
6082 
6083   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6084   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6085   llvm::UTF16 *ToPtr = &ToBuf[0];
6086 
6087   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6088                                  ToPtr + NumBytes, llvm::strictConversion);
6089 
6090   // ConvertUTF8toUTF16 returns the length in ToPtr.
6091   StringLength = ToPtr - &ToBuf[0];
6092 
6093   // Add an explicit null.
6094   *ToPtr = 0;
6095   return *Map.insert(std::make_pair(
6096                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6097                                    (StringLength + 1) * 2),
6098                          nullptr)).first;
6099 }
6100 
6101 ConstantAddress
6102 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6103   unsigned StringLength = 0;
6104   bool isUTF16 = false;
6105   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6106       GetConstantCFStringEntry(CFConstantStringMap, Literal,
6107                                getDataLayout().isLittleEndian(), isUTF16,
6108                                StringLength);
6109 
6110   if (auto *C = Entry.second)
6111     return ConstantAddress(
6112         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6113 
6114   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
6115   llvm::Constant *Zeros[] = { Zero, Zero };
6116 
6117   const ASTContext &Context = getContext();
6118   const llvm::Triple &Triple = getTriple();
6119 
6120   const auto CFRuntime = getLangOpts().CFRuntime;
6121   const bool IsSwiftABI =
6122       static_cast<unsigned>(CFRuntime) >=
6123       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6124   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6125 
6126   // If we don't already have it, get __CFConstantStringClassReference.
6127   if (!CFConstantStringClassRef) {
6128     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6129     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6130     Ty = llvm::ArrayType::get(Ty, 0);
6131 
6132     switch (CFRuntime) {
6133     default: break;
6134     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6135     case LangOptions::CoreFoundationABI::Swift5_0:
6136       CFConstantStringClassName =
6137           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6138                               : "$s10Foundation19_NSCFConstantStringCN";
6139       Ty = IntPtrTy;
6140       break;
6141     case LangOptions::CoreFoundationABI::Swift4_2:
6142       CFConstantStringClassName =
6143           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6144                               : "$S10Foundation19_NSCFConstantStringCN";
6145       Ty = IntPtrTy;
6146       break;
6147     case LangOptions::CoreFoundationABI::Swift4_1:
6148       CFConstantStringClassName =
6149           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6150                               : "__T010Foundation19_NSCFConstantStringCN";
6151       Ty = IntPtrTy;
6152       break;
6153     }
6154 
6155     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6156 
6157     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6158       llvm::GlobalValue *GV = nullptr;
6159 
6160       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6161         IdentifierInfo &II = Context.Idents.get(GV->getName());
6162         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6163         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6164 
6165         const VarDecl *VD = nullptr;
6166         for (const auto *Result : DC->lookup(&II))
6167           if ((VD = dyn_cast<VarDecl>(Result)))
6168             break;
6169 
6170         if (Triple.isOSBinFormatELF()) {
6171           if (!VD)
6172             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6173         } else {
6174           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6175           if (!VD || !VD->hasAttr<DLLExportAttr>())
6176             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6177           else
6178             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6179         }
6180 
6181         setDSOLocal(GV);
6182       }
6183     }
6184 
6185     // Decay array -> ptr
6186     CFConstantStringClassRef =
6187         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6188                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
6189   }
6190 
6191   QualType CFTy = Context.getCFConstantStringType();
6192 
6193   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6194 
6195   ConstantInitBuilder Builder(*this);
6196   auto Fields = Builder.beginStruct(STy);
6197 
6198   // Class pointer.
6199   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6200 
6201   // Flags.
6202   if (IsSwiftABI) {
6203     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6204     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6205   } else {
6206     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6207   }
6208 
6209   // String pointer.
6210   llvm::Constant *C = nullptr;
6211   if (isUTF16) {
6212     auto Arr = llvm::ArrayRef(
6213         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6214         Entry.first().size() / 2);
6215     C = llvm::ConstantDataArray::get(VMContext, Arr);
6216   } else {
6217     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6218   }
6219 
6220   // Note: -fwritable-strings doesn't make the backing store strings of
6221   // CFStrings writable.
6222   auto *GV =
6223       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6224                                llvm::GlobalValue::PrivateLinkage, C, ".str");
6225   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6226   // Don't enforce the target's minimum global alignment, since the only use
6227   // of the string is via this class initializer.
6228   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6229                             : Context.getTypeAlignInChars(Context.CharTy);
6230   GV->setAlignment(Align.getAsAlign());
6231 
6232   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6233   // Without it LLVM can merge the string with a non unnamed_addr one during
6234   // LTO.  Doing that changes the section it ends in, which surprises ld64.
6235   if (Triple.isOSBinFormatMachO())
6236     GV->setSection(isUTF16 ? "__TEXT,__ustring"
6237                            : "__TEXT,__cstring,cstring_literals");
6238   // Make sure the literal ends up in .rodata to allow for safe ICF and for
6239   // the static linker to adjust permissions to read-only later on.
6240   else if (Triple.isOSBinFormatELF())
6241     GV->setSection(".rodata");
6242 
6243   // String.
6244   llvm::Constant *Str =
6245       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6246 
6247   Fields.add(Str);
6248 
6249   // String length.
6250   llvm::IntegerType *LengthTy =
6251       llvm::IntegerType::get(getModule().getContext(),
6252                              Context.getTargetInfo().getLongWidth());
6253   if (IsSwiftABI) {
6254     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6255         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6256       LengthTy = Int32Ty;
6257     else
6258       LengthTy = IntPtrTy;
6259   }
6260   Fields.addInt(LengthTy, StringLength);
6261 
6262   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6263   // properly aligned on 32-bit platforms.
6264   CharUnits Alignment =
6265       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6266 
6267   // The struct.
6268   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6269                                     /*isConstant=*/false,
6270                                     llvm::GlobalVariable::PrivateLinkage);
6271   GV->addAttribute("objc_arc_inert");
6272   switch (Triple.getObjectFormat()) {
6273   case llvm::Triple::UnknownObjectFormat:
6274     llvm_unreachable("unknown file format");
6275   case llvm::Triple::DXContainer:
6276   case llvm::Triple::GOFF:
6277   case llvm::Triple::SPIRV:
6278   case llvm::Triple::XCOFF:
6279     llvm_unreachable("unimplemented");
6280   case llvm::Triple::COFF:
6281   case llvm::Triple::ELF:
6282   case llvm::Triple::Wasm:
6283     GV->setSection("cfstring");
6284     break;
6285   case llvm::Triple::MachO:
6286     GV->setSection("__DATA,__cfstring");
6287     break;
6288   }
6289   Entry.second = GV;
6290 
6291   return ConstantAddress(GV, GV->getValueType(), Alignment);
6292 }
6293 
6294 bool CodeGenModule::getExpressionLocationsEnabled() const {
6295   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6296 }
6297 
6298 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6299   if (ObjCFastEnumerationStateType.isNull()) {
6300     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6301     D->startDefinition();
6302 
6303     QualType FieldTypes[] = {
6304         Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6305         Context.getPointerType(Context.UnsignedLongTy),
6306         Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6307                                      nullptr, ArraySizeModifier::Normal, 0)};
6308 
6309     for (size_t i = 0; i < 4; ++i) {
6310       FieldDecl *Field = FieldDecl::Create(Context,
6311                                            D,
6312                                            SourceLocation(),
6313                                            SourceLocation(), nullptr,
6314                                            FieldTypes[i], /*TInfo=*/nullptr,
6315                                            /*BitWidth=*/nullptr,
6316                                            /*Mutable=*/false,
6317                                            ICIS_NoInit);
6318       Field->setAccess(AS_public);
6319       D->addDecl(Field);
6320     }
6321 
6322     D->completeDefinition();
6323     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6324   }
6325 
6326   return ObjCFastEnumerationStateType;
6327 }
6328 
6329 llvm::Constant *
6330 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6331   assert(!E->getType()->isPointerType() && "Strings are always arrays");
6332 
6333   // Don't emit it as the address of the string, emit the string data itself
6334   // as an inline array.
6335   if (E->getCharByteWidth() == 1) {
6336     SmallString<64> Str(E->getString());
6337 
6338     // Resize the string to the right size, which is indicated by its type.
6339     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6340     assert(CAT && "String literal not of constant array type!");
6341     Str.resize(CAT->getZExtSize());
6342     return llvm::ConstantDataArray::getString(VMContext, Str, false);
6343   }
6344 
6345   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6346   llvm::Type *ElemTy = AType->getElementType();
6347   unsigned NumElements = AType->getNumElements();
6348 
6349   // Wide strings have either 2-byte or 4-byte elements.
6350   if (ElemTy->getPrimitiveSizeInBits() == 16) {
6351     SmallVector<uint16_t, 32> Elements;
6352     Elements.reserve(NumElements);
6353 
6354     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6355       Elements.push_back(E->getCodeUnit(i));
6356     Elements.resize(NumElements);
6357     return llvm::ConstantDataArray::get(VMContext, Elements);
6358   }
6359 
6360   assert(ElemTy->getPrimitiveSizeInBits() == 32);
6361   SmallVector<uint32_t, 32> Elements;
6362   Elements.reserve(NumElements);
6363 
6364   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6365     Elements.push_back(E->getCodeUnit(i));
6366   Elements.resize(NumElements);
6367   return llvm::ConstantDataArray::get(VMContext, Elements);
6368 }
6369 
6370 static llvm::GlobalVariable *
6371 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6372                       CodeGenModule &CGM, StringRef GlobalName,
6373                       CharUnits Alignment) {
6374   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6375       CGM.GetGlobalConstantAddressSpace());
6376 
6377   llvm::Module &M = CGM.getModule();
6378   // Create a global variable for this string
6379   auto *GV = new llvm::GlobalVariable(
6380       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6381       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6382   GV->setAlignment(Alignment.getAsAlign());
6383   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6384   if (GV->isWeakForLinker()) {
6385     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6386     GV->setComdat(M.getOrInsertComdat(GV->getName()));
6387   }
6388   CGM.setDSOLocal(GV);
6389 
6390   return GV;
6391 }
6392 
6393 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6394 /// constant array for the given string literal.
6395 ConstantAddress
6396 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6397                                                   StringRef Name) {
6398   CharUnits Alignment =
6399       getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6400 
6401   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6402   llvm::GlobalVariable **Entry = nullptr;
6403   if (!LangOpts.WritableStrings) {
6404     Entry = &ConstantStringMap[C];
6405     if (auto GV = *Entry) {
6406       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6407         GV->setAlignment(Alignment.getAsAlign());
6408       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6409                              GV->getValueType(), Alignment);
6410     }
6411   }
6412 
6413   SmallString<256> MangledNameBuffer;
6414   StringRef GlobalVariableName;
6415   llvm::GlobalValue::LinkageTypes LT;
6416 
6417   // Mangle the string literal if that's how the ABI merges duplicate strings.
6418   // Don't do it if they are writable, since we don't want writes in one TU to
6419   // affect strings in another.
6420   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6421       !LangOpts.WritableStrings) {
6422     llvm::raw_svector_ostream Out(MangledNameBuffer);
6423     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6424     LT = llvm::GlobalValue::LinkOnceODRLinkage;
6425     GlobalVariableName = MangledNameBuffer;
6426   } else {
6427     LT = llvm::GlobalValue::PrivateLinkage;
6428     GlobalVariableName = Name;
6429   }
6430 
6431   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6432 
6433   CGDebugInfo *DI = getModuleDebugInfo();
6434   if (DI && getCodeGenOpts().hasReducedDebugInfo())
6435     DI->AddStringLiteralDebugInfo(GV, S);
6436 
6437   if (Entry)
6438     *Entry = GV;
6439 
6440   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6441 
6442   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6443                          GV->getValueType(), Alignment);
6444 }
6445 
6446 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6447 /// array for the given ObjCEncodeExpr node.
6448 ConstantAddress
6449 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6450   std::string Str;
6451   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6452 
6453   return GetAddrOfConstantCString(Str);
6454 }
6455 
6456 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6457 /// the literal and a terminating '\0' character.
6458 /// The result has pointer to array type.
6459 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6460     const std::string &Str, const char *GlobalName) {
6461   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6462   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6463       getContext().CharTy, /*VD=*/nullptr);
6464 
6465   llvm::Constant *C =
6466       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6467 
6468   // Don't share any string literals if strings aren't constant.
6469   llvm::GlobalVariable **Entry = nullptr;
6470   if (!LangOpts.WritableStrings) {
6471     Entry = &ConstantStringMap[C];
6472     if (auto GV = *Entry) {
6473       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6474         GV->setAlignment(Alignment.getAsAlign());
6475       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6476                              GV->getValueType(), Alignment);
6477     }
6478   }
6479 
6480   // Get the default prefix if a name wasn't specified.
6481   if (!GlobalName)
6482     GlobalName = ".str";
6483   // Create a global variable for this.
6484   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6485                                   GlobalName, Alignment);
6486   if (Entry)
6487     *Entry = GV;
6488 
6489   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6490                          GV->getValueType(), Alignment);
6491 }
6492 
6493 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6494     const MaterializeTemporaryExpr *E, const Expr *Init) {
6495   assert((E->getStorageDuration() == SD_Static ||
6496           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6497   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6498 
6499   // If we're not materializing a subobject of the temporary, keep the
6500   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6501   QualType MaterializedType = Init->getType();
6502   if (Init == E->getSubExpr())
6503     MaterializedType = E->getType();
6504 
6505   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6506 
6507   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6508   if (!InsertResult.second) {
6509     // We've seen this before: either we already created it or we're in the
6510     // process of doing so.
6511     if (!InsertResult.first->second) {
6512       // We recursively re-entered this function, probably during emission of
6513       // the initializer. Create a placeholder. We'll clean this up in the
6514       // outer call, at the end of this function.
6515       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6516       InsertResult.first->second = new llvm::GlobalVariable(
6517           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6518           nullptr);
6519     }
6520     return ConstantAddress(InsertResult.first->second,
6521                            llvm::cast<llvm::GlobalVariable>(
6522                                InsertResult.first->second->stripPointerCasts())
6523                                ->getValueType(),
6524                            Align);
6525   }
6526 
6527   // FIXME: If an externally-visible declaration extends multiple temporaries,
6528   // we need to give each temporary the same name in every translation unit (and
6529   // we also need to make the temporaries externally-visible).
6530   SmallString<256> Name;
6531   llvm::raw_svector_ostream Out(Name);
6532   getCXXABI().getMangleContext().mangleReferenceTemporary(
6533       VD, E->getManglingNumber(), Out);
6534 
6535   APValue *Value = nullptr;
6536   if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6537     // If the initializer of the extending declaration is a constant
6538     // initializer, we should have a cached constant initializer for this
6539     // temporary. Note that this might have a different value from the value
6540     // computed by evaluating the initializer if the surrounding constant
6541     // expression modifies the temporary.
6542     Value = E->getOrCreateValue(false);
6543   }
6544 
6545   // Try evaluating it now, it might have a constant initializer.
6546   Expr::EvalResult EvalResult;
6547   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6548       !EvalResult.hasSideEffects())
6549     Value = &EvalResult.Val;
6550 
6551   LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6552 
6553   std::optional<ConstantEmitter> emitter;
6554   llvm::Constant *InitialValue = nullptr;
6555   bool Constant = false;
6556   llvm::Type *Type;
6557   if (Value) {
6558     // The temporary has a constant initializer, use it.
6559     emitter.emplace(*this);
6560     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6561                                                MaterializedType);
6562     Constant =
6563         MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6564                                            /*ExcludeDtor*/ false);
6565     Type = InitialValue->getType();
6566   } else {
6567     // No initializer, the initialization will be provided when we
6568     // initialize the declaration which performed lifetime extension.
6569     Type = getTypes().ConvertTypeForMem(MaterializedType);
6570   }
6571 
6572   // Create a global variable for this lifetime-extended temporary.
6573   llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6574   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6575     const VarDecl *InitVD;
6576     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6577         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6578       // Temporaries defined inside a class get linkonce_odr linkage because the
6579       // class can be defined in multiple translation units.
6580       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6581     } else {
6582       // There is no need for this temporary to have external linkage if the
6583       // VarDecl has external linkage.
6584       Linkage = llvm::GlobalVariable::InternalLinkage;
6585     }
6586   }
6587   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6588   auto *GV = new llvm::GlobalVariable(
6589       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6590       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6591   if (emitter) emitter->finalize(GV);
6592   // Don't assign dllimport or dllexport to local linkage globals.
6593   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6594     setGVProperties(GV, VD);
6595     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6596       // The reference temporary should never be dllexport.
6597       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6598   }
6599   GV->setAlignment(Align.getAsAlign());
6600   if (supportsCOMDAT() && GV->isWeakForLinker())
6601     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6602   if (VD->getTLSKind())
6603     setTLSMode(GV, *VD);
6604   llvm::Constant *CV = GV;
6605   if (AddrSpace != LangAS::Default)
6606     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6607         *this, GV, AddrSpace, LangAS::Default,
6608         llvm::PointerType::get(
6609             getLLVMContext(),
6610             getContext().getTargetAddressSpace(LangAS::Default)));
6611 
6612   // Update the map with the new temporary. If we created a placeholder above,
6613   // replace it with the new global now.
6614   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6615   if (Entry) {
6616     Entry->replaceAllUsesWith(CV);
6617     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6618   }
6619   Entry = CV;
6620 
6621   return ConstantAddress(CV, Type, Align);
6622 }
6623 
6624 /// EmitObjCPropertyImplementations - Emit information for synthesized
6625 /// properties for an implementation.
6626 void CodeGenModule::EmitObjCPropertyImplementations(const
6627                                                     ObjCImplementationDecl *D) {
6628   for (const auto *PID : D->property_impls()) {
6629     // Dynamic is just for type-checking.
6630     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6631       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6632 
6633       // Determine which methods need to be implemented, some may have
6634       // been overridden. Note that ::isPropertyAccessor is not the method
6635       // we want, that just indicates if the decl came from a
6636       // property. What we want to know is if the method is defined in
6637       // this implementation.
6638       auto *Getter = PID->getGetterMethodDecl();
6639       if (!Getter || Getter->isSynthesizedAccessorStub())
6640         CodeGenFunction(*this).GenerateObjCGetter(
6641             const_cast<ObjCImplementationDecl *>(D), PID);
6642       auto *Setter = PID->getSetterMethodDecl();
6643       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6644         CodeGenFunction(*this).GenerateObjCSetter(
6645                                  const_cast<ObjCImplementationDecl *>(D), PID);
6646     }
6647   }
6648 }
6649 
6650 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6651   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6652   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6653        ivar; ivar = ivar->getNextIvar())
6654     if (ivar->getType().isDestructedType())
6655       return true;
6656 
6657   return false;
6658 }
6659 
6660 static bool AllTrivialInitializers(CodeGenModule &CGM,
6661                                    ObjCImplementationDecl *D) {
6662   CodeGenFunction CGF(CGM);
6663   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6664        E = D->init_end(); B != E; ++B) {
6665     CXXCtorInitializer *CtorInitExp = *B;
6666     Expr *Init = CtorInitExp->getInit();
6667     if (!CGF.isTrivialInitializer(Init))
6668       return false;
6669   }
6670   return true;
6671 }
6672 
6673 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6674 /// for an implementation.
6675 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6676   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6677   if (needsDestructMethod(D)) {
6678     const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6679     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6680     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6681         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6682         getContext().VoidTy, nullptr, D,
6683         /*isInstance=*/true, /*isVariadic=*/false,
6684         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6685         /*isImplicitlyDeclared=*/true,
6686         /*isDefined=*/false, ObjCImplementationControl::Required);
6687     D->addInstanceMethod(DTORMethod);
6688     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6689     D->setHasDestructors(true);
6690   }
6691 
6692   // If the implementation doesn't have any ivar initializers, we don't need
6693   // a .cxx_construct.
6694   if (D->getNumIvarInitializers() == 0 ||
6695       AllTrivialInitializers(*this, D))
6696     return;
6697 
6698   const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6699   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6700   // The constructor returns 'self'.
6701   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6702       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6703       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6704       /*isVariadic=*/false,
6705       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6706       /*isImplicitlyDeclared=*/true,
6707       /*isDefined=*/false, ObjCImplementationControl::Required);
6708   D->addInstanceMethod(CTORMethod);
6709   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6710   D->setHasNonZeroConstructors(true);
6711 }
6712 
6713 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6714 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6715   if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6716       LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6717     ErrorUnsupported(LSD, "linkage spec");
6718     return;
6719   }
6720 
6721   EmitDeclContext(LSD);
6722 }
6723 
6724 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6725   // Device code should not be at top level.
6726   if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6727     return;
6728 
6729   std::unique_ptr<CodeGenFunction> &CurCGF =
6730       GlobalTopLevelStmtBlockInFlight.first;
6731 
6732   // We emitted a top-level stmt but after it there is initialization.
6733   // Stop squashing the top-level stmts into a single function.
6734   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6735     CurCGF->FinishFunction(D->getEndLoc());
6736     CurCGF = nullptr;
6737   }
6738 
6739   if (!CurCGF) {
6740     // void __stmts__N(void)
6741     // FIXME: Ask the ABI name mangler to pick a name.
6742     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6743     FunctionArgList Args;
6744     QualType RetTy = getContext().VoidTy;
6745     const CGFunctionInfo &FnInfo =
6746         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6747     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6748     llvm::Function *Fn = llvm::Function::Create(
6749         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6750 
6751     CurCGF.reset(new CodeGenFunction(*this));
6752     GlobalTopLevelStmtBlockInFlight.second = D;
6753     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6754                           D->getBeginLoc(), D->getBeginLoc());
6755     CXXGlobalInits.push_back(Fn);
6756   }
6757 
6758   CurCGF->EmitStmt(D->getStmt());
6759 }
6760 
6761 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6762   for (auto *I : DC->decls()) {
6763     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6764     // are themselves considered "top-level", so EmitTopLevelDecl on an
6765     // ObjCImplDecl does not recursively visit them. We need to do that in
6766     // case they're nested inside another construct (LinkageSpecDecl /
6767     // ExportDecl) that does stop them from being considered "top-level".
6768     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6769       for (auto *M : OID->methods())
6770         EmitTopLevelDecl(M);
6771     }
6772 
6773     EmitTopLevelDecl(I);
6774   }
6775 }
6776 
6777 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6778 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6779   // Ignore dependent declarations.
6780   if (D->isTemplated())
6781     return;
6782 
6783   // Consteval function shouldn't be emitted.
6784   if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6785     return;
6786 
6787   switch (D->getKind()) {
6788   case Decl::CXXConversion:
6789   case Decl::CXXMethod:
6790   case Decl::Function:
6791     EmitGlobal(cast<FunctionDecl>(D));
6792     // Always provide some coverage mapping
6793     // even for the functions that aren't emitted.
6794     AddDeferredUnusedCoverageMapping(D);
6795     break;
6796 
6797   case Decl::CXXDeductionGuide:
6798     // Function-like, but does not result in code emission.
6799     break;
6800 
6801   case Decl::Var:
6802   case Decl::Decomposition:
6803   case Decl::VarTemplateSpecialization:
6804     EmitGlobal(cast<VarDecl>(D));
6805     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6806       for (auto *B : DD->bindings())
6807         if (auto *HD = B->getHoldingVar())
6808           EmitGlobal(HD);
6809     break;
6810 
6811   // Indirect fields from global anonymous structs and unions can be
6812   // ignored; only the actual variable requires IR gen support.
6813   case Decl::IndirectField:
6814     break;
6815 
6816   // C++ Decls
6817   case Decl::Namespace:
6818     EmitDeclContext(cast<NamespaceDecl>(D));
6819     break;
6820   case Decl::ClassTemplateSpecialization: {
6821     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6822     if (CGDebugInfo *DI = getModuleDebugInfo())
6823       if (Spec->getSpecializationKind() ==
6824               TSK_ExplicitInstantiationDefinition &&
6825           Spec->hasDefinition())
6826         DI->completeTemplateDefinition(*Spec);
6827   } [[fallthrough]];
6828   case Decl::CXXRecord: {
6829     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6830     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6831       if (CRD->hasDefinition())
6832         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6833       if (auto *ES = D->getASTContext().getExternalSource())
6834         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6835           DI->completeUnusedClass(*CRD);
6836     }
6837     // Emit any static data members, they may be definitions.
6838     for (auto *I : CRD->decls())
6839       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6840         EmitTopLevelDecl(I);
6841     break;
6842   }
6843     // No code generation needed.
6844   case Decl::UsingShadow:
6845   case Decl::ClassTemplate:
6846   case Decl::VarTemplate:
6847   case Decl::Concept:
6848   case Decl::VarTemplatePartialSpecialization:
6849   case Decl::FunctionTemplate:
6850   case Decl::TypeAliasTemplate:
6851   case Decl::Block:
6852   case Decl::Empty:
6853   case Decl::Binding:
6854     break;
6855   case Decl::Using:          // using X; [C++]
6856     if (CGDebugInfo *DI = getModuleDebugInfo())
6857         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6858     break;
6859   case Decl::UsingEnum: // using enum X; [C++]
6860     if (CGDebugInfo *DI = getModuleDebugInfo())
6861       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6862     break;
6863   case Decl::NamespaceAlias:
6864     if (CGDebugInfo *DI = getModuleDebugInfo())
6865         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6866     break;
6867   case Decl::UsingDirective: // using namespace X; [C++]
6868     if (CGDebugInfo *DI = getModuleDebugInfo())
6869       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6870     break;
6871   case Decl::CXXConstructor:
6872     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6873     break;
6874   case Decl::CXXDestructor:
6875     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6876     break;
6877 
6878   case Decl::StaticAssert:
6879     // Nothing to do.
6880     break;
6881 
6882   // Objective-C Decls
6883 
6884   // Forward declarations, no (immediate) code generation.
6885   case Decl::ObjCInterface:
6886   case Decl::ObjCCategory:
6887     break;
6888 
6889   case Decl::ObjCProtocol: {
6890     auto *Proto = cast<ObjCProtocolDecl>(D);
6891     if (Proto->isThisDeclarationADefinition())
6892       ObjCRuntime->GenerateProtocol(Proto);
6893     break;
6894   }
6895 
6896   case Decl::ObjCCategoryImpl:
6897     // Categories have properties but don't support synthesize so we
6898     // can ignore them here.
6899     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6900     break;
6901 
6902   case Decl::ObjCImplementation: {
6903     auto *OMD = cast<ObjCImplementationDecl>(D);
6904     EmitObjCPropertyImplementations(OMD);
6905     EmitObjCIvarInitializations(OMD);
6906     ObjCRuntime->GenerateClass(OMD);
6907     // Emit global variable debug information.
6908     if (CGDebugInfo *DI = getModuleDebugInfo())
6909       if (getCodeGenOpts().hasReducedDebugInfo())
6910         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6911             OMD->getClassInterface()), OMD->getLocation());
6912     break;
6913   }
6914   case Decl::ObjCMethod: {
6915     auto *OMD = cast<ObjCMethodDecl>(D);
6916     // If this is not a prototype, emit the body.
6917     if (OMD->getBody())
6918       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6919     break;
6920   }
6921   case Decl::ObjCCompatibleAlias:
6922     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6923     break;
6924 
6925   case Decl::PragmaComment: {
6926     const auto *PCD = cast<PragmaCommentDecl>(D);
6927     switch (PCD->getCommentKind()) {
6928     case PCK_Unknown:
6929       llvm_unreachable("unexpected pragma comment kind");
6930     case PCK_Linker:
6931       AppendLinkerOptions(PCD->getArg());
6932       break;
6933     case PCK_Lib:
6934         AddDependentLib(PCD->getArg());
6935       break;
6936     case PCK_Compiler:
6937     case PCK_ExeStr:
6938     case PCK_User:
6939       break; // We ignore all of these.
6940     }
6941     break;
6942   }
6943 
6944   case Decl::PragmaDetectMismatch: {
6945     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6946     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6947     break;
6948   }
6949 
6950   case Decl::LinkageSpec:
6951     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6952     break;
6953 
6954   case Decl::FileScopeAsm: {
6955     // File-scope asm is ignored during device-side CUDA compilation.
6956     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6957       break;
6958     // File-scope asm is ignored during device-side OpenMP compilation.
6959     if (LangOpts.OpenMPIsTargetDevice)
6960       break;
6961     // File-scope asm is ignored during device-side SYCL compilation.
6962     if (LangOpts.SYCLIsDevice)
6963       break;
6964     auto *AD = cast<FileScopeAsmDecl>(D);
6965     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6966     break;
6967   }
6968 
6969   case Decl::TopLevelStmt:
6970     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6971     break;
6972 
6973   case Decl::Import: {
6974     auto *Import = cast<ImportDecl>(D);
6975 
6976     // If we've already imported this module, we're done.
6977     if (!ImportedModules.insert(Import->getImportedModule()))
6978       break;
6979 
6980     // Emit debug information for direct imports.
6981     if (!Import->getImportedOwningModule()) {
6982       if (CGDebugInfo *DI = getModuleDebugInfo())
6983         DI->EmitImportDecl(*Import);
6984     }
6985 
6986     // For C++ standard modules we are done - we will call the module
6987     // initializer for imported modules, and that will likewise call those for
6988     // any imports it has.
6989     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6990         !Import->getImportedOwningModule()->isModuleMapModule())
6991       break;
6992 
6993     // For clang C++ module map modules the initializers for sub-modules are
6994     // emitted here.
6995 
6996     // Find all of the submodules and emit the module initializers.
6997     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6998     SmallVector<clang::Module *, 16> Stack;
6999     Visited.insert(Import->getImportedModule());
7000     Stack.push_back(Import->getImportedModule());
7001 
7002     while (!Stack.empty()) {
7003       clang::Module *Mod = Stack.pop_back_val();
7004       if (!EmittedModuleInitializers.insert(Mod).second)
7005         continue;
7006 
7007       for (auto *D : Context.getModuleInitializers(Mod))
7008         EmitTopLevelDecl(D);
7009 
7010       // Visit the submodules of this module.
7011       for (auto *Submodule : Mod->submodules()) {
7012         // Skip explicit children; they need to be explicitly imported to emit
7013         // the initializers.
7014         if (Submodule->IsExplicit)
7015           continue;
7016 
7017         if (Visited.insert(Submodule).second)
7018           Stack.push_back(Submodule);
7019       }
7020     }
7021     break;
7022   }
7023 
7024   case Decl::Export:
7025     EmitDeclContext(cast<ExportDecl>(D));
7026     break;
7027 
7028   case Decl::OMPThreadPrivate:
7029     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7030     break;
7031 
7032   case Decl::OMPAllocate:
7033     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7034     break;
7035 
7036   case Decl::OMPDeclareReduction:
7037     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7038     break;
7039 
7040   case Decl::OMPDeclareMapper:
7041     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7042     break;
7043 
7044   case Decl::OMPRequires:
7045     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7046     break;
7047 
7048   case Decl::Typedef:
7049   case Decl::TypeAlias: // using foo = bar; [C++11]
7050     if (CGDebugInfo *DI = getModuleDebugInfo())
7051       DI->EmitAndRetainType(
7052           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7053     break;
7054 
7055   case Decl::Record:
7056     if (CGDebugInfo *DI = getModuleDebugInfo())
7057       if (cast<RecordDecl>(D)->getDefinition())
7058         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7059     break;
7060 
7061   case Decl::Enum:
7062     if (CGDebugInfo *DI = getModuleDebugInfo())
7063       if (cast<EnumDecl>(D)->getDefinition())
7064         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7065     break;
7066 
7067   case Decl::HLSLBuffer:
7068     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7069     break;
7070 
7071   default:
7072     // Make sure we handled everything we should, every other kind is a
7073     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
7074     // function. Need to recode Decl::Kind to do that easily.
7075     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7076     break;
7077   }
7078 }
7079 
7080 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7081   // Do we need to generate coverage mapping?
7082   if (!CodeGenOpts.CoverageMapping)
7083     return;
7084   switch (D->getKind()) {
7085   case Decl::CXXConversion:
7086   case Decl::CXXMethod:
7087   case Decl::Function:
7088   case Decl::ObjCMethod:
7089   case Decl::CXXConstructor:
7090   case Decl::CXXDestructor: {
7091     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7092       break;
7093     SourceManager &SM = getContext().getSourceManager();
7094     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7095       break;
7096     DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7097     break;
7098   }
7099   default:
7100     break;
7101   };
7102 }
7103 
7104 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7105   // Do we need to generate coverage mapping?
7106   if (!CodeGenOpts.CoverageMapping)
7107     return;
7108   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7109     if (Fn->isTemplateInstantiation())
7110       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7111   }
7112   DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7113 }
7114 
7115 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7116   // We call takeVector() here to avoid use-after-free.
7117   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7118   // we deserialize function bodies to emit coverage info for them, and that
7119   // deserializes more declarations. How should we handle that case?
7120   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7121     if (!Entry.second)
7122       continue;
7123     const Decl *D = Entry.first;
7124     switch (D->getKind()) {
7125     case Decl::CXXConversion:
7126     case Decl::CXXMethod:
7127     case Decl::Function:
7128     case Decl::ObjCMethod: {
7129       CodeGenPGO PGO(*this);
7130       GlobalDecl GD(cast<FunctionDecl>(D));
7131       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7132                                   getFunctionLinkage(GD));
7133       break;
7134     }
7135     case Decl::CXXConstructor: {
7136       CodeGenPGO PGO(*this);
7137       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7138       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7139                                   getFunctionLinkage(GD));
7140       break;
7141     }
7142     case Decl::CXXDestructor: {
7143       CodeGenPGO PGO(*this);
7144       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7145       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7146                                   getFunctionLinkage(GD));
7147       break;
7148     }
7149     default:
7150       break;
7151     };
7152   }
7153 }
7154 
7155 void CodeGenModule::EmitMainVoidAlias() {
7156   // In order to transition away from "__original_main" gracefully, emit an
7157   // alias for "main" in the no-argument case so that libc can detect when
7158   // new-style no-argument main is in used.
7159   if (llvm::Function *F = getModule().getFunction("main")) {
7160     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7161         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7162       auto *GA = llvm::GlobalAlias::create("__main_void", F);
7163       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7164     }
7165   }
7166 }
7167 
7168 /// Turns the given pointer into a constant.
7169 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7170                                           const void *Ptr) {
7171   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7172   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7173   return llvm::ConstantInt::get(i64, PtrInt);
7174 }
7175 
7176 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7177                                    llvm::NamedMDNode *&GlobalMetadata,
7178                                    GlobalDecl D,
7179                                    llvm::GlobalValue *Addr) {
7180   if (!GlobalMetadata)
7181     GlobalMetadata =
7182       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7183 
7184   // TODO: should we report variant information for ctors/dtors?
7185   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7186                            llvm::ConstantAsMetadata::get(GetPointerConstant(
7187                                CGM.getLLVMContext(), D.getDecl()))};
7188   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7189 }
7190 
7191 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7192                                                  llvm::GlobalValue *CppFunc) {
7193   // Store the list of ifuncs we need to replace uses in.
7194   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7195   // List of ConstantExprs that we should be able to delete when we're done
7196   // here.
7197   llvm::SmallVector<llvm::ConstantExpr *> CEs;
7198 
7199   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7200   if (Elem == CppFunc)
7201     return false;
7202 
7203   // First make sure that all users of this are ifuncs (or ifuncs via a
7204   // bitcast), and collect the list of ifuncs and CEs so we can work on them
7205   // later.
7206   for (llvm::User *User : Elem->users()) {
7207     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7208     // ifunc directly. In any other case, just give up, as we don't know what we
7209     // could break by changing those.
7210     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7211       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7212         return false;
7213 
7214       for (llvm::User *CEUser : ConstExpr->users()) {
7215         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7216           IFuncs.push_back(IFunc);
7217         } else {
7218           return false;
7219         }
7220       }
7221       CEs.push_back(ConstExpr);
7222     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7223       IFuncs.push_back(IFunc);
7224     } else {
7225       // This user is one we don't know how to handle, so fail redirection. This
7226       // will result in an ifunc retaining a resolver name that will ultimately
7227       // fail to be resolved to a defined function.
7228       return false;
7229     }
7230   }
7231 
7232   // Now we know this is a valid case where we can do this alias replacement, we
7233   // need to remove all of the references to Elem (and the bitcasts!) so we can
7234   // delete it.
7235   for (llvm::GlobalIFunc *IFunc : IFuncs)
7236     IFunc->setResolver(nullptr);
7237   for (llvm::ConstantExpr *ConstExpr : CEs)
7238     ConstExpr->destroyConstant();
7239 
7240   // We should now be out of uses for the 'old' version of this function, so we
7241   // can erase it as well.
7242   Elem->eraseFromParent();
7243 
7244   for (llvm::GlobalIFunc *IFunc : IFuncs) {
7245     // The type of the resolver is always just a function-type that returns the
7246     // type of the IFunc, so create that here. If the type of the actual
7247     // resolver doesn't match, it just gets bitcast to the right thing.
7248     auto *ResolverTy =
7249         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7250     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7251         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7252     IFunc->setResolver(Resolver);
7253   }
7254   return true;
7255 }
7256 
7257 /// For each function which is declared within an extern "C" region and marked
7258 /// as 'used', but has internal linkage, create an alias from the unmangled
7259 /// name to the mangled name if possible. People expect to be able to refer
7260 /// to such functions with an unmangled name from inline assembly within the
7261 /// same translation unit.
7262 void CodeGenModule::EmitStaticExternCAliases() {
7263   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7264     return;
7265   for (auto &I : StaticExternCValues) {
7266     const IdentifierInfo *Name = I.first;
7267     llvm::GlobalValue *Val = I.second;
7268 
7269     // If Val is null, that implies there were multiple declarations that each
7270     // had a claim to the unmangled name. In this case, generation of the alias
7271     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7272     if (!Val)
7273       break;
7274 
7275     llvm::GlobalValue *ExistingElem =
7276         getModule().getNamedValue(Name->getName());
7277 
7278     // If there is either not something already by this name, or we were able to
7279     // replace all uses from IFuncs, create the alias.
7280     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7281       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7282   }
7283 }
7284 
7285 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7286                                              GlobalDecl &Result) const {
7287   auto Res = Manglings.find(MangledName);
7288   if (Res == Manglings.end())
7289     return false;
7290   Result = Res->getValue();
7291   return true;
7292 }
7293 
7294 /// Emits metadata nodes associating all the global values in the
7295 /// current module with the Decls they came from.  This is useful for
7296 /// projects using IR gen as a subroutine.
7297 ///
7298 /// Since there's currently no way to associate an MDNode directly
7299 /// with an llvm::GlobalValue, we create a global named metadata
7300 /// with the name 'clang.global.decl.ptrs'.
7301 void CodeGenModule::EmitDeclMetadata() {
7302   llvm::NamedMDNode *GlobalMetadata = nullptr;
7303 
7304   for (auto &I : MangledDeclNames) {
7305     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7306     // Some mangled names don't necessarily have an associated GlobalValue
7307     // in this module, e.g. if we mangled it for DebugInfo.
7308     if (Addr)
7309       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7310   }
7311 }
7312 
7313 /// Emits metadata nodes for all the local variables in the current
7314 /// function.
7315 void CodeGenFunction::EmitDeclMetadata() {
7316   if (LocalDeclMap.empty()) return;
7317 
7318   llvm::LLVMContext &Context = getLLVMContext();
7319 
7320   // Find the unique metadata ID for this name.
7321   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7322 
7323   llvm::NamedMDNode *GlobalMetadata = nullptr;
7324 
7325   for (auto &I : LocalDeclMap) {
7326     const Decl *D = I.first;
7327     llvm::Value *Addr = I.second.emitRawPointer(*this);
7328     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7329       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7330       Alloca->setMetadata(
7331           DeclPtrKind, llvm::MDNode::get(
7332                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7333     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7334       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7335       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7336     }
7337   }
7338 }
7339 
7340 void CodeGenModule::EmitVersionIdentMetadata() {
7341   llvm::NamedMDNode *IdentMetadata =
7342     TheModule.getOrInsertNamedMetadata("llvm.ident");
7343   std::string Version = getClangFullVersion();
7344   llvm::LLVMContext &Ctx = TheModule.getContext();
7345 
7346   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7347   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7348 }
7349 
7350 void CodeGenModule::EmitCommandLineMetadata() {
7351   llvm::NamedMDNode *CommandLineMetadata =
7352     TheModule.getOrInsertNamedMetadata("llvm.commandline");
7353   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7354   llvm::LLVMContext &Ctx = TheModule.getContext();
7355 
7356   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7357   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7358 }
7359 
7360 void CodeGenModule::EmitCoverageFile() {
7361   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7362   if (!CUNode)
7363     return;
7364 
7365   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7366   llvm::LLVMContext &Ctx = TheModule.getContext();
7367   auto *CoverageDataFile =
7368       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7369   auto *CoverageNotesFile =
7370       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7371   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7372     llvm::MDNode *CU = CUNode->getOperand(i);
7373     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7374     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7375   }
7376 }
7377 
7378 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7379                                                        bool ForEH) {
7380   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7381   // FIXME: should we even be calling this method if RTTI is disabled
7382   // and it's not for EH?
7383   if (!shouldEmitRTTI(ForEH))
7384     return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7385 
7386   if (ForEH && Ty->isObjCObjectPointerType() &&
7387       LangOpts.ObjCRuntime.isGNUFamily())
7388     return ObjCRuntime->GetEHType(Ty);
7389 
7390   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7391 }
7392 
7393 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7394   // Do not emit threadprivates in simd-only mode.
7395   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7396     return;
7397   for (auto RefExpr : D->varlists()) {
7398     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7399     bool PerformInit =
7400         VD->getAnyInitializer() &&
7401         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7402                                                         /*ForRef=*/false);
7403 
7404     Address Addr(GetAddrOfGlobalVar(VD),
7405                  getTypes().ConvertTypeForMem(VD->getType()),
7406                  getContext().getDeclAlign(VD));
7407     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7408             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7409       CXXGlobalInits.push_back(InitFunction);
7410   }
7411 }
7412 
7413 llvm::Metadata *
7414 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7415                                             StringRef Suffix) {
7416   if (auto *FnType = T->getAs<FunctionProtoType>())
7417     T = getContext().getFunctionType(
7418         FnType->getReturnType(), FnType->getParamTypes(),
7419         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7420 
7421   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7422   if (InternalId)
7423     return InternalId;
7424 
7425   if (isExternallyVisible(T->getLinkage())) {
7426     std::string OutName;
7427     llvm::raw_string_ostream Out(OutName);
7428     getCXXABI().getMangleContext().mangleCanonicalTypeName(
7429         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7430 
7431     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7432       Out << ".normalized";
7433 
7434     Out << Suffix;
7435 
7436     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7437   } else {
7438     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7439                                            llvm::ArrayRef<llvm::Metadata *>());
7440   }
7441 
7442   return InternalId;
7443 }
7444 
7445 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7446   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7447 }
7448 
7449 llvm::Metadata *
7450 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7451   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7452 }
7453 
7454 // Generalize pointer types to a void pointer with the qualifiers of the
7455 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7456 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7457 // 'void *'.
7458 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7459   if (!Ty->isPointerType())
7460     return Ty;
7461 
7462   return Ctx.getPointerType(
7463       QualType(Ctx.VoidTy).withCVRQualifiers(
7464           Ty->getPointeeType().getCVRQualifiers()));
7465 }
7466 
7467 // Apply type generalization to a FunctionType's return and argument types
7468 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7469   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7470     SmallVector<QualType, 8> GeneralizedParams;
7471     for (auto &Param : FnType->param_types())
7472       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7473 
7474     return Ctx.getFunctionType(
7475         GeneralizeType(Ctx, FnType->getReturnType()),
7476         GeneralizedParams, FnType->getExtProtoInfo());
7477   }
7478 
7479   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7480     return Ctx.getFunctionNoProtoType(
7481         GeneralizeType(Ctx, FnType->getReturnType()));
7482 
7483   llvm_unreachable("Encountered unknown FunctionType");
7484 }
7485 
7486 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7487   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7488                                       GeneralizedMetadataIdMap, ".generalized");
7489 }
7490 
7491 /// Returns whether this module needs the "all-vtables" type identifier.
7492 bool CodeGenModule::NeedAllVtablesTypeId() const {
7493   // Returns true if at least one of vtable-based CFI checkers is enabled and
7494   // is not in the trapping mode.
7495   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7496            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7497           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7498            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7499           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7500            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7501           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7502            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7503 }
7504 
7505 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7506                                           CharUnits Offset,
7507                                           const CXXRecordDecl *RD) {
7508   llvm::Metadata *MD =
7509       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7510   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7511 
7512   if (CodeGenOpts.SanitizeCfiCrossDso)
7513     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7514       VTable->addTypeMetadata(Offset.getQuantity(),
7515                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7516 
7517   if (NeedAllVtablesTypeId()) {
7518     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7519     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7520   }
7521 }
7522 
7523 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7524   if (!SanStats)
7525     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7526 
7527   return *SanStats;
7528 }
7529 
7530 llvm::Value *
7531 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7532                                                   CodeGenFunction &CGF) {
7533   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7534   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7535   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7536   auto *Call = CGF.EmitRuntimeCall(
7537       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7538   return Call;
7539 }
7540 
7541 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7542     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7543   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7544                                  /* forPointeeType= */ true);
7545 }
7546 
7547 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7548                                                  LValueBaseInfo *BaseInfo,
7549                                                  TBAAAccessInfo *TBAAInfo,
7550                                                  bool forPointeeType) {
7551   if (TBAAInfo)
7552     *TBAAInfo = getTBAAAccessInfo(T);
7553 
7554   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7555   // that doesn't return the information we need to compute BaseInfo.
7556 
7557   // Honor alignment typedef attributes even on incomplete types.
7558   // We also honor them straight for C++ class types, even as pointees;
7559   // there's an expressivity gap here.
7560   if (auto TT = T->getAs<TypedefType>()) {
7561     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7562       if (BaseInfo)
7563         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7564       return getContext().toCharUnitsFromBits(Align);
7565     }
7566   }
7567 
7568   bool AlignForArray = T->isArrayType();
7569 
7570   // Analyze the base element type, so we don't get confused by incomplete
7571   // array types.
7572   T = getContext().getBaseElementType(T);
7573 
7574   if (T->isIncompleteType()) {
7575     // We could try to replicate the logic from
7576     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7577     // type is incomplete, so it's impossible to test. We could try to reuse
7578     // getTypeAlignIfKnown, but that doesn't return the information we need
7579     // to set BaseInfo.  So just ignore the possibility that the alignment is
7580     // greater than one.
7581     if (BaseInfo)
7582       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7583     return CharUnits::One();
7584   }
7585 
7586   if (BaseInfo)
7587     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7588 
7589   CharUnits Alignment;
7590   const CXXRecordDecl *RD;
7591   if (T.getQualifiers().hasUnaligned()) {
7592     Alignment = CharUnits::One();
7593   } else if (forPointeeType && !AlignForArray &&
7594              (RD = T->getAsCXXRecordDecl())) {
7595     // For C++ class pointees, we don't know whether we're pointing at a
7596     // base or a complete object, so we generally need to use the
7597     // non-virtual alignment.
7598     Alignment = getClassPointerAlignment(RD);
7599   } else {
7600     Alignment = getContext().getTypeAlignInChars(T);
7601   }
7602 
7603   // Cap to the global maximum type alignment unless the alignment
7604   // was somehow explicit on the type.
7605   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7606     if (Alignment.getQuantity() > MaxAlign &&
7607         !getContext().isAlignmentRequired(T))
7608       Alignment = CharUnits::fromQuantity(MaxAlign);
7609   }
7610   return Alignment;
7611 }
7612 
7613 bool CodeGenModule::stopAutoInit() {
7614   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7615   if (StopAfter) {
7616     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7617     // used
7618     if (NumAutoVarInit >= StopAfter) {
7619       return true;
7620     }
7621     if (!NumAutoVarInit) {
7622       unsigned DiagID = getDiags().getCustomDiagID(
7623           DiagnosticsEngine::Warning,
7624           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7625           "number of times ftrivial-auto-var-init=%1 gets applied.");
7626       getDiags().Report(DiagID)
7627           << StopAfter
7628           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7629                       LangOptions::TrivialAutoVarInitKind::Zero
7630                   ? "zero"
7631                   : "pattern");
7632     }
7633     ++NumAutoVarInit;
7634   }
7635   return false;
7636 }
7637 
7638 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7639                                                     const Decl *D) const {
7640   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7641   // postfix beginning with '.' since the symbol name can be demangled.
7642   if (LangOpts.HIP)
7643     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7644   else
7645     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7646 
7647   // If the CUID is not specified we try to generate a unique postfix.
7648   if (getLangOpts().CUID.empty()) {
7649     SourceManager &SM = getContext().getSourceManager();
7650     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7651     assert(PLoc.isValid() && "Source location is expected to be valid.");
7652 
7653     // Get the hash of the user defined macros.
7654     llvm::MD5 Hash;
7655     llvm::MD5::MD5Result Result;
7656     for (const auto &Arg : PreprocessorOpts.Macros)
7657       Hash.update(Arg.first);
7658     Hash.final(Result);
7659 
7660     // Get the UniqueID for the file containing the decl.
7661     llvm::sys::fs::UniqueID ID;
7662     if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7663       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7664       assert(PLoc.isValid() && "Source location is expected to be valid.");
7665       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7666         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7667             << PLoc.getFilename() << EC.message();
7668     }
7669     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7670        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7671   } else {
7672     OS << getContext().getCUIDHash();
7673   }
7674 }
7675 
7676 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7677   assert(DeferredDeclsToEmit.empty() &&
7678          "Should have emitted all decls deferred to emit.");
7679   assert(NewBuilder->DeferredDecls.empty() &&
7680          "Newly created module should not have deferred decls");
7681   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7682   assert(EmittedDeferredDecls.empty() &&
7683          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7684 
7685   assert(NewBuilder->DeferredVTables.empty() &&
7686          "Newly created module should not have deferred vtables");
7687   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7688 
7689   assert(NewBuilder->MangledDeclNames.empty() &&
7690          "Newly created module should not have mangled decl names");
7691   assert(NewBuilder->Manglings.empty() &&
7692          "Newly created module should not have manglings");
7693   NewBuilder->Manglings = std::move(Manglings);
7694 
7695   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7696 
7697   NewBuilder->TBAA = std::move(TBAA);
7698 
7699   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7700 }
7701