xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ab49747f9d67d82a1cf0f19196ff29f01d4384f5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/ProfileSummary.h"
61 #include "llvm/ProfileData/InstrProfReader.h"
62 #include "llvm/ProfileData/SampleProf.h"
63 #include "llvm/Support/CRC.h"
64 #include "llvm/Support/CodeGen.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/ConvertUTF.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/TimeProfiler.h"
69 #include "llvm/Support/xxhash.h"
70 #include "llvm/TargetParser/Triple.h"
71 #include "llvm/TargetParser/X86TargetParser.h"
72 #include <optional>
73 
74 using namespace clang;
75 using namespace CodeGen;
76 
77 static llvm::cl::opt<bool> LimitedCoverage(
78     "limited-coverage-experimental", llvm::cl::Hidden,
79     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
80 
81 static const char AnnotationSection[] = "llvm.metadata";
82 
83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
84   switch (CGM.getContext().getCXXABIKind()) {
85   case TargetCXXABI::AppleARM64:
86   case TargetCXXABI::Fuchsia:
87   case TargetCXXABI::GenericAArch64:
88   case TargetCXXABI::GenericARM:
89   case TargetCXXABI::iOS:
90   case TargetCXXABI::WatchOS:
91   case TargetCXXABI::GenericMIPS:
92   case TargetCXXABI::GenericItanium:
93   case TargetCXXABI::WebAssembly:
94   case TargetCXXABI::XL:
95     return CreateItaniumCXXABI(CGM);
96   case TargetCXXABI::Microsoft:
97     return CreateMicrosoftCXXABI(CGM);
98   }
99 
100   llvm_unreachable("invalid C++ ABI kind");
101 }
102 
103 CodeGenModule::CodeGenModule(ASTContext &C,
104                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
105                              const HeaderSearchOptions &HSO,
106                              const PreprocessorOptions &PPO,
107                              const CodeGenOptions &CGO, llvm::Module &M,
108                              DiagnosticsEngine &diags,
109                              CoverageSourceInfo *CoverageInfo)
110     : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
111       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
112       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
113       VMContext(M.getContext()), Types(*this), VTables(*this),
114       SanitizerMD(new SanitizerMetadata(*this)) {
115 
116   // Initialize the type cache.
117   llvm::LLVMContext &LLVMContext = M.getContext();
118   VoidTy = llvm::Type::getVoidTy(LLVMContext);
119   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
120   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
121   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
122   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
123   HalfTy = llvm::Type::getHalfTy(LLVMContext);
124   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
125   FloatTy = llvm::Type::getFloatTy(LLVMContext);
126   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
127   PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
128   PointerAlignInBytes =
129       C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
130           .getQuantity();
131   SizeSizeInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
133   IntAlignInBytes =
134     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
135   CharTy =
136     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
137   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
138   IntPtrTy = llvm::IntegerType::get(LLVMContext,
139     C.getTargetInfo().getMaxPointerWidth());
140   Int8PtrTy = Int8Ty->getPointerTo(0);
141   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
142   const llvm::DataLayout &DL = M.getDataLayout();
143   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
144   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
145   ConstGlobalsPtrTy = Int8Ty->getPointerTo(
146       C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
147   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
148 
149   // Build C++20 Module initializers.
150   // TODO: Add Microsoft here once we know the mangling required for the
151   // initializers.
152   CXX20ModuleInits =
153       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
154                                        ItaniumMangleContext::MK_Itanium;
155 
156   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
157 
158   if (LangOpts.ObjC)
159     createObjCRuntime();
160   if (LangOpts.OpenCL)
161     createOpenCLRuntime();
162   if (LangOpts.OpenMP)
163     createOpenMPRuntime();
164   if (LangOpts.CUDA)
165     createCUDARuntime();
166   if (LangOpts.HLSL)
167     createHLSLRuntime();
168 
169   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
170   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
171       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
172     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
173                                getCXXABI().getMangleContext()));
174 
175   // If debug info or coverage generation is enabled, create the CGDebugInfo
176   // object.
177   if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
178       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
179     DebugInfo.reset(new CGDebugInfo(*this));
180 
181   Block.GlobalUniqueCount = 0;
182 
183   if (C.getLangOpts().ObjC)
184     ObjCData.reset(new ObjCEntrypoints());
185 
186   if (CodeGenOpts.hasProfileClangUse()) {
187     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
188         CodeGenOpts.ProfileInstrumentUsePath, *FS,
189         CodeGenOpts.ProfileRemappingFile);
190     // We're checking for profile read errors in CompilerInvocation, so if
191     // there was an error it should've already been caught. If it hasn't been
192     // somehow, trip an assertion.
193     assert(ReaderOrErr);
194     PGOReader = std::move(ReaderOrErr.get());
195   }
196 
197   // If coverage mapping generation is enabled, create the
198   // CoverageMappingModuleGen object.
199   if (CodeGenOpts.CoverageMapping)
200     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
201 
202   // Generate the module name hash here if needed.
203   if (CodeGenOpts.UniqueInternalLinkageNames &&
204       !getModule().getSourceFileName().empty()) {
205     std::string Path = getModule().getSourceFileName();
206     // Check if a path substitution is needed from the MacroPrefixMap.
207     for (const auto &Entry : LangOpts.MacroPrefixMap)
208       if (Path.rfind(Entry.first, 0) != std::string::npos) {
209         Path = Entry.second + Path.substr(Entry.first.size());
210         break;
211       }
212     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
213   }
214 }
215 
216 CodeGenModule::~CodeGenModule() {}
217 
218 void CodeGenModule::createObjCRuntime() {
219   // This is just isGNUFamily(), but we want to force implementors of
220   // new ABIs to decide how best to do this.
221   switch (LangOpts.ObjCRuntime.getKind()) {
222   case ObjCRuntime::GNUstep:
223   case ObjCRuntime::GCC:
224   case ObjCRuntime::ObjFW:
225     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
226     return;
227 
228   case ObjCRuntime::FragileMacOSX:
229   case ObjCRuntime::MacOSX:
230   case ObjCRuntime::iOS:
231   case ObjCRuntime::WatchOS:
232     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
233     return;
234   }
235   llvm_unreachable("bad runtime kind");
236 }
237 
238 void CodeGenModule::createOpenCLRuntime() {
239   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
240 }
241 
242 void CodeGenModule::createOpenMPRuntime() {
243   // Select a specialized code generation class based on the target, if any.
244   // If it does not exist use the default implementation.
245   switch (getTriple().getArch()) {
246   case llvm::Triple::nvptx:
247   case llvm::Triple::nvptx64:
248   case llvm::Triple::amdgcn:
249     assert(getLangOpts().OpenMPIsDevice &&
250            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
251     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
252     break;
253   default:
254     if (LangOpts.OpenMPSimd)
255       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
256     else
257       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
258     break;
259   }
260 }
261 
262 void CodeGenModule::createCUDARuntime() {
263   CUDARuntime.reset(CreateNVCUDARuntime(*this));
264 }
265 
266 void CodeGenModule::createHLSLRuntime() {
267   HLSLRuntime.reset(new CGHLSLRuntime(*this));
268 }
269 
270 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
271   Replacements[Name] = C;
272 }
273 
274 void CodeGenModule::applyReplacements() {
275   for (auto &I : Replacements) {
276     StringRef MangledName = I.first();
277     llvm::Constant *Replacement = I.second;
278     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
279     if (!Entry)
280       continue;
281     auto *OldF = cast<llvm::Function>(Entry);
282     auto *NewF = dyn_cast<llvm::Function>(Replacement);
283     if (!NewF) {
284       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
285         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
286       } else {
287         auto *CE = cast<llvm::ConstantExpr>(Replacement);
288         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
289                CE->getOpcode() == llvm::Instruction::GetElementPtr);
290         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
291       }
292     }
293 
294     // Replace old with new, but keep the old order.
295     OldF->replaceAllUsesWith(Replacement);
296     if (NewF) {
297       NewF->removeFromParent();
298       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
299                                                        NewF);
300     }
301     OldF->eraseFromParent();
302   }
303 }
304 
305 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
306   GlobalValReplacements.push_back(std::make_pair(GV, C));
307 }
308 
309 void CodeGenModule::applyGlobalValReplacements() {
310   for (auto &I : GlobalValReplacements) {
311     llvm::GlobalValue *GV = I.first;
312     llvm::Constant *C = I.second;
313 
314     GV->replaceAllUsesWith(C);
315     GV->eraseFromParent();
316   }
317 }
318 
319 // This is only used in aliases that we created and we know they have a
320 // linear structure.
321 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
322   const llvm::Constant *C;
323   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
324     C = GA->getAliasee();
325   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
326     C = GI->getResolver();
327   else
328     return GV;
329 
330   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
331   if (!AliaseeGV)
332     return nullptr;
333 
334   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
335   if (FinalGV == GV)
336     return nullptr;
337 
338   return FinalGV;
339 }
340 
341 static bool checkAliasedGlobal(
342     DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc,
343     const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
344     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
345     SourceRange AliasRange) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     Diags.Report(Location, diag::note_alias_requires_mangled_name)
355         << IsIFunc << IsIFunc;
356     // Provide a note if the given function is not found and exists as a
357     // mangled name.
358     for (const auto &[Decl, Name] : MangledDeclNames) {
359       if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
360         if (ND->getName() == GV->getName()) {
361           Diags.Report(Location, diag::note_alias_mangled_name_alternative)
362               << Name
363               << FixItHint::CreateReplacement(
364                      AliasRange,
365                      (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
366                          .str());
367         }
368       }
369     }
370     return false;
371   }
372 
373   if (IsIFunc) {
374     // Check resolver function type.
375     const auto *F = dyn_cast<llvm::Function>(GV);
376     if (!F) {
377       Diags.Report(Location, diag::err_alias_to_undefined)
378           << IsIFunc << IsIFunc;
379       return false;
380     }
381 
382     llvm::FunctionType *FTy = F->getFunctionType();
383     if (!FTy->getReturnType()->isPointerTy()) {
384       Diags.Report(Location, diag::err_ifunc_resolver_return);
385       return false;
386     }
387   }
388 
389   return true;
390 }
391 
392 void CodeGenModule::checkAliases() {
393   // Check if the constructed aliases are well formed. It is really unfortunate
394   // that we have to do this in CodeGen, but we only construct mangled names
395   // and aliases during codegen.
396   bool Error = false;
397   DiagnosticsEngine &Diags = getDiags();
398   for (const GlobalDecl &GD : Aliases) {
399     const auto *D = cast<ValueDecl>(GD.getDecl());
400     SourceLocation Location;
401     SourceRange Range;
402     bool IsIFunc = D->hasAttr<IFuncAttr>();
403     if (const Attr *A = D->getDefiningAttr()) {
404       Location = A->getLocation();
405       Range = A->getRange();
406     } else
407       llvm_unreachable("Not an alias or ifunc?");
408 
409     StringRef MangledName = getMangledName(GD);
410     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
411     const llvm::GlobalValue *GV = nullptr;
412     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV,
413                             MangledDeclNames, Range)) {
414       Error = true;
415       continue;
416     }
417 
418     llvm::Constant *Aliasee =
419         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
420                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
421 
422     llvm::GlobalValue *AliaseeGV;
423     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
424       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
425     else
426       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
427 
428     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
429       StringRef AliasSection = SA->getName();
430       if (AliasSection != AliaseeGV->getSection())
431         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
432             << AliasSection << IsIFunc << IsIFunc;
433     }
434 
435     // We have to handle alias to weak aliases in here. LLVM itself disallows
436     // this since the object semantics would not match the IL one. For
437     // compatibility with gcc we implement it by just pointing the alias
438     // to its aliasee's aliasee. We also warn, since the user is probably
439     // expecting the link to be weak.
440     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
441       if (GA->isInterposable()) {
442         Diags.Report(Location, diag::warn_alias_to_weak_alias)
443             << GV->getName() << GA->getName() << IsIFunc;
444         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
445             GA->getAliasee(), Alias->getType());
446 
447         if (IsIFunc)
448           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
449         else
450           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
451       }
452     }
453   }
454   if (!Error)
455     return;
456 
457   for (const GlobalDecl &GD : Aliases) {
458     StringRef MangledName = getMangledName(GD);
459     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
460     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
461     Alias->eraseFromParent();
462   }
463 }
464 
465 void CodeGenModule::clear() {
466   DeferredDeclsToEmit.clear();
467   EmittedDeferredDecls.clear();
468   if (OpenMPRuntime)
469     OpenMPRuntime->clear();
470 }
471 
472 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
473                                        StringRef MainFile) {
474   if (!hasDiagnostics())
475     return;
476   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
477     if (MainFile.empty())
478       MainFile = "<stdin>";
479     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
480   } else {
481     if (Mismatched > 0)
482       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
483 
484     if (Missing > 0)
485       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
486   }
487 }
488 
489 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
490                                              llvm::Module &M) {
491   if (!LO.VisibilityFromDLLStorageClass)
492     return;
493 
494   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
495       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
496   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
497       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
498   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
499       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
500   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
501       CodeGenModule::GetLLVMVisibility(
502           LO.getExternDeclNoDLLStorageClassVisibility());
503 
504   for (llvm::GlobalValue &GV : M.global_values()) {
505     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
506       continue;
507 
508     // Reset DSO locality before setting the visibility. This removes
509     // any effects that visibility options and annotations may have
510     // had on the DSO locality. Setting the visibility will implicitly set
511     // appropriate globals to DSO Local; however, this will be pessimistic
512     // w.r.t. to the normal compiler IRGen.
513     GV.setDSOLocal(false);
514 
515     if (GV.isDeclarationForLinker()) {
516       GV.setVisibility(GV.getDLLStorageClass() ==
517                                llvm::GlobalValue::DLLImportStorageClass
518                            ? ExternDeclDLLImportVisibility
519                            : ExternDeclNoDLLStorageClassVisibility);
520     } else {
521       GV.setVisibility(GV.getDLLStorageClass() ==
522                                llvm::GlobalValue::DLLExportStorageClass
523                            ? DLLExportVisibility
524                            : NoDLLStorageClassVisibility);
525     }
526 
527     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
528   }
529 }
530 
531 void CodeGenModule::Release() {
532   Module *Primary = getContext().getNamedModuleForCodeGen();
533   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
534     EmitModuleInitializers(Primary);
535   EmitDeferred();
536   DeferredDecls.insert(EmittedDeferredDecls.begin(),
537                        EmittedDeferredDecls.end());
538   EmittedDeferredDecls.clear();
539   EmitVTablesOpportunistically();
540   applyGlobalValReplacements();
541   applyReplacements();
542   emitMultiVersionFunctions();
543 
544   if (Context.getLangOpts().IncrementalExtensions &&
545       GlobalTopLevelStmtBlockInFlight.first) {
546     const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
547     GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
548     GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
549   }
550 
551   // Module implementations are initialized the same way as a regular TU that
552   // imports one or more modules.
553   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
554     EmitCXXModuleInitFunc(Primary);
555   else
556     EmitCXXGlobalInitFunc();
557   EmitCXXGlobalCleanUpFunc();
558   registerGlobalDtorsWithAtExit();
559   EmitCXXThreadLocalInitFunc();
560   if (ObjCRuntime)
561     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
562       AddGlobalCtor(ObjCInitFunction);
563   if (Context.getLangOpts().CUDA && CUDARuntime) {
564     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
565       AddGlobalCtor(CudaCtorFunction);
566   }
567   if (OpenMPRuntime) {
568     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
569             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
570       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
571     }
572     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
573     OpenMPRuntime->clear();
574   }
575   if (PGOReader) {
576     getModule().setProfileSummary(
577         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
578         llvm::ProfileSummary::PSK_Instr);
579     if (PGOStats.hasDiagnostics())
580       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
581   }
582   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
583     return L.LexOrder < R.LexOrder;
584   });
585   EmitCtorList(GlobalCtors, "llvm.global_ctors");
586   EmitCtorList(GlobalDtors, "llvm.global_dtors");
587   EmitGlobalAnnotations();
588   EmitStaticExternCAliases();
589   checkAliases();
590   EmitDeferredUnusedCoverageMappings();
591   CodeGenPGO(*this).setValueProfilingFlag(getModule());
592   if (CoverageMapping)
593     CoverageMapping->emit();
594   if (CodeGenOpts.SanitizeCfiCrossDso) {
595     CodeGenFunction(*this).EmitCfiCheckFail();
596     CodeGenFunction(*this).EmitCfiCheckStub();
597   }
598   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
599     finalizeKCFITypes();
600   emitAtAvailableLinkGuard();
601   if (Context.getTargetInfo().getTriple().isWasm())
602     EmitMainVoidAlias();
603 
604   if (getTriple().isAMDGPU()) {
605     // Emit amdgpu_code_object_version module flag, which is code object version
606     // times 100.
607     if (getTarget().getTargetOpts().CodeObjectVersion !=
608         TargetOptions::COV_None) {
609       getModule().addModuleFlag(llvm::Module::Error,
610                                 "amdgpu_code_object_version",
611                                 getTarget().getTargetOpts().CodeObjectVersion);
612     }
613   }
614 
615   // Emit a global array containing all external kernels or device variables
616   // used by host functions and mark it as used for CUDA/HIP. This is necessary
617   // to get kernels or device variables in archives linked in even if these
618   // kernels or device variables are only used in host functions.
619   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
620     SmallVector<llvm::Constant *, 8> UsedArray;
621     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
622       GlobalDecl GD;
623       if (auto *FD = dyn_cast<FunctionDecl>(D))
624         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
625       else
626         GD = GlobalDecl(D);
627       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
628           GetAddrOfGlobal(GD), Int8PtrTy));
629     }
630 
631     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
632 
633     auto *GV = new llvm::GlobalVariable(
634         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
635         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
636     addCompilerUsedGlobal(GV);
637   }
638 
639   emitLLVMUsed();
640   if (SanStats)
641     SanStats->finish();
642 
643   if (CodeGenOpts.Autolink &&
644       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
645     EmitModuleLinkOptions();
646   }
647 
648   // On ELF we pass the dependent library specifiers directly to the linker
649   // without manipulating them. This is in contrast to other platforms where
650   // they are mapped to a specific linker option by the compiler. This
651   // difference is a result of the greater variety of ELF linkers and the fact
652   // that ELF linkers tend to handle libraries in a more complicated fashion
653   // than on other platforms. This forces us to defer handling the dependent
654   // libs to the linker.
655   //
656   // CUDA/HIP device and host libraries are different. Currently there is no
657   // way to differentiate dependent libraries for host or device. Existing
658   // usage of #pragma comment(lib, *) is intended for host libraries on
659   // Windows. Therefore emit llvm.dependent-libraries only for host.
660   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
661     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
662     for (auto *MD : ELFDependentLibraries)
663       NMD->addOperand(MD);
664   }
665 
666   // Record mregparm value now so it is visible through rest of codegen.
667   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
668     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
669                               CodeGenOpts.NumRegisterParameters);
670 
671   if (CodeGenOpts.DwarfVersion) {
672     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
673                               CodeGenOpts.DwarfVersion);
674   }
675 
676   if (CodeGenOpts.Dwarf64)
677     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
678 
679   if (Context.getLangOpts().SemanticInterposition)
680     // Require various optimization to respect semantic interposition.
681     getModule().setSemanticInterposition(true);
682 
683   if (CodeGenOpts.EmitCodeView) {
684     // Indicate that we want CodeView in the metadata.
685     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
686   }
687   if (CodeGenOpts.CodeViewGHash) {
688     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
689   }
690   if (CodeGenOpts.ControlFlowGuard) {
691     // Function ID tables and checks for Control Flow Guard (cfguard=2).
692     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
693   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
694     // Function ID tables for Control Flow Guard (cfguard=1).
695     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
696   }
697   if (CodeGenOpts.EHContGuard) {
698     // Function ID tables for EH Continuation Guard.
699     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
700   }
701   if (Context.getLangOpts().Kernel) {
702     // Note if we are compiling with /kernel.
703     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
704   }
705   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
706     // We don't support LTO with 2 with different StrictVTablePointers
707     // FIXME: we could support it by stripping all the information introduced
708     // by StrictVTablePointers.
709 
710     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
711 
712     llvm::Metadata *Ops[2] = {
713               llvm::MDString::get(VMContext, "StrictVTablePointers"),
714               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715                   llvm::Type::getInt32Ty(VMContext), 1))};
716 
717     getModule().addModuleFlag(llvm::Module::Require,
718                               "StrictVTablePointersRequirement",
719                               llvm::MDNode::get(VMContext, Ops));
720   }
721   if (getModuleDebugInfo())
722     // We support a single version in the linked module. The LLVM
723     // parser will drop debug info with a different version number
724     // (and warn about it, too).
725     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
726                               llvm::DEBUG_METADATA_VERSION);
727 
728   // We need to record the widths of enums and wchar_t, so that we can generate
729   // the correct build attributes in the ARM backend. wchar_size is also used by
730   // TargetLibraryInfo.
731   uint64_t WCharWidth =
732       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
733   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
734 
735   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
736   if (   Arch == llvm::Triple::arm
737       || Arch == llvm::Triple::armeb
738       || Arch == llvm::Triple::thumb
739       || Arch == llvm::Triple::thumbeb) {
740     // The minimum width of an enum in bytes
741     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
742     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
743   }
744 
745   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
746     StringRef ABIStr = Target.getABI();
747     llvm::LLVMContext &Ctx = TheModule.getContext();
748     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
749                               llvm::MDString::get(Ctx, ABIStr));
750   }
751 
752   if (CodeGenOpts.SanitizeCfiCrossDso) {
753     // Indicate that we want cross-DSO control flow integrity checks.
754     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
755   }
756 
757   if (CodeGenOpts.WholeProgramVTables) {
758     // Indicate whether VFE was enabled for this module, so that the
759     // vcall_visibility metadata added under whole program vtables is handled
760     // appropriately in the optimizer.
761     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
762                               CodeGenOpts.VirtualFunctionElimination);
763   }
764 
765   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
766     getModule().addModuleFlag(llvm::Module::Override,
767                               "CFI Canonical Jump Tables",
768                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
769   }
770 
771   if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
772     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
773     // KCFI assumes patchable-function-prefix is the same for all indirectly
774     // called functions. Store the expected offset for code generation.
775     if (CodeGenOpts.PatchableFunctionEntryOffset)
776       getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
777                                 CodeGenOpts.PatchableFunctionEntryOffset);
778   }
779 
780   if (CodeGenOpts.CFProtectionReturn &&
781       Target.checkCFProtectionReturnSupported(getDiags())) {
782     // Indicate that we want to instrument return control flow protection.
783     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
784                               1);
785   }
786 
787   if (CodeGenOpts.CFProtectionBranch &&
788       Target.checkCFProtectionBranchSupported(getDiags())) {
789     // Indicate that we want to instrument branch control flow protection.
790     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
791                               1);
792   }
793 
794   if (CodeGenOpts.FunctionReturnThunks)
795     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
796 
797   if (CodeGenOpts.IndirectBranchCSPrefix)
798     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
799 
800   // Add module metadata for return address signing (ignoring
801   // non-leaf/all) and stack tagging. These are actually turned on by function
802   // attributes, but we use module metadata to emit build attributes. This is
803   // needed for LTO, where the function attributes are inside bitcode
804   // serialised into a global variable by the time build attributes are
805   // emitted, so we can't access them. LTO objects could be compiled with
806   // different flags therefore module flags are set to "Min" behavior to achieve
807   // the same end result of the normal build where e.g BTI is off if any object
808   // doesn't support it.
809   if (Context.getTargetInfo().hasFeature("ptrauth") &&
810       LangOpts.getSignReturnAddressScope() !=
811           LangOptions::SignReturnAddressScopeKind::None)
812     getModule().addModuleFlag(llvm::Module::Override,
813                               "sign-return-address-buildattr", 1);
814   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
815     getModule().addModuleFlag(llvm::Module::Override,
816                               "tag-stack-memory-buildattr", 1);
817 
818   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
819       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
820       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
821       Arch == llvm::Triple::aarch64_be) {
822     if (LangOpts.BranchTargetEnforcement)
823       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
824                                 1);
825     if (LangOpts.hasSignReturnAddress())
826       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
827     if (LangOpts.isSignReturnAddressScopeAll())
828       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
829                                 1);
830     if (!LangOpts.isSignReturnAddressWithAKey())
831       getModule().addModuleFlag(llvm::Module::Min,
832                                 "sign-return-address-with-bkey", 1);
833   }
834 
835   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
836     llvm::LLVMContext &Ctx = TheModule.getContext();
837     getModule().addModuleFlag(
838         llvm::Module::Error, "MemProfProfileFilename",
839         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
840   }
841 
842   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
843     // Indicate whether __nvvm_reflect should be configured to flush denormal
844     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
845     // property.)
846     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
847                               CodeGenOpts.FP32DenormalMode.Output !=
848                                   llvm::DenormalMode::IEEE);
849   }
850 
851   if (LangOpts.EHAsynch)
852     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
853 
854   // Indicate whether this Module was compiled with -fopenmp
855   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
856     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
857   if (getLangOpts().OpenMPIsDevice)
858     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
859                               LangOpts.OpenMP);
860 
861   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
862   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
863     EmitOpenCLMetadata();
864     // Emit SPIR version.
865     if (getTriple().isSPIR()) {
866       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
867       // opencl.spir.version named metadata.
868       // C++ for OpenCL has a distinct mapping for version compatibility with
869       // OpenCL.
870       auto Version = LangOpts.getOpenCLCompatibleVersion();
871       llvm::Metadata *SPIRVerElts[] = {
872           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
873               Int32Ty, Version / 100)),
874           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
875               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
876       llvm::NamedMDNode *SPIRVerMD =
877           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
878       llvm::LLVMContext &Ctx = TheModule.getContext();
879       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
880     }
881   }
882 
883   // HLSL related end of code gen work items.
884   if (LangOpts.HLSL)
885     getHLSLRuntime().finishCodeGen();
886 
887   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
888     assert(PLevel < 3 && "Invalid PIC Level");
889     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
890     if (Context.getLangOpts().PIE)
891       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
892   }
893 
894   if (getCodeGenOpts().CodeModel.size() > 0) {
895     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
896                   .Case("tiny", llvm::CodeModel::Tiny)
897                   .Case("small", llvm::CodeModel::Small)
898                   .Case("kernel", llvm::CodeModel::Kernel)
899                   .Case("medium", llvm::CodeModel::Medium)
900                   .Case("large", llvm::CodeModel::Large)
901                   .Default(~0u);
902     if (CM != ~0u) {
903       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
904       getModule().setCodeModel(codeModel);
905     }
906   }
907 
908   if (CodeGenOpts.NoPLT)
909     getModule().setRtLibUseGOT();
910   if (CodeGenOpts.UnwindTables)
911     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
912 
913   switch (CodeGenOpts.getFramePointer()) {
914   case CodeGenOptions::FramePointerKind::None:
915     // 0 ("none") is the default.
916     break;
917   case CodeGenOptions::FramePointerKind::NonLeaf:
918     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
919     break;
920   case CodeGenOptions::FramePointerKind::All:
921     getModule().setFramePointer(llvm::FramePointerKind::All);
922     break;
923   }
924 
925   SimplifyPersonality();
926 
927   if (getCodeGenOpts().EmitDeclMetadata)
928     EmitDeclMetadata();
929 
930   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
931     EmitCoverageFile();
932 
933   if (CGDebugInfo *DI = getModuleDebugInfo())
934     DI->finalize();
935 
936   if (getCodeGenOpts().EmitVersionIdentMetadata)
937     EmitVersionIdentMetadata();
938 
939   if (!getCodeGenOpts().RecordCommandLine.empty())
940     EmitCommandLineMetadata();
941 
942   if (!getCodeGenOpts().StackProtectorGuard.empty())
943     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
944   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
945     getModule().setStackProtectorGuardReg(
946         getCodeGenOpts().StackProtectorGuardReg);
947   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
948     getModule().setStackProtectorGuardSymbol(
949         getCodeGenOpts().StackProtectorGuardSymbol);
950   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
951     getModule().setStackProtectorGuardOffset(
952         getCodeGenOpts().StackProtectorGuardOffset);
953   if (getCodeGenOpts().StackAlignment)
954     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
955   if (getCodeGenOpts().SkipRaxSetup)
956     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
957 
958   if (getContext().getTargetInfo().getMaxTLSAlign())
959     getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
960                               getContext().getTargetInfo().getMaxTLSAlign());
961 
962   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
963 
964   EmitBackendOptionsMetadata(getCodeGenOpts());
965 
966   // If there is device offloading code embed it in the host now.
967   EmbedObject(&getModule(), CodeGenOpts, getDiags());
968 
969   // Set visibility from DLL storage class
970   // We do this at the end of LLVM IR generation; after any operation
971   // that might affect the DLL storage class or the visibility, and
972   // before anything that might act on these.
973   setVisibilityFromDLLStorageClass(LangOpts, getModule());
974 }
975 
976 void CodeGenModule::EmitOpenCLMetadata() {
977   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
978   // opencl.ocl.version named metadata node.
979   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
980   auto Version = LangOpts.getOpenCLCompatibleVersion();
981   llvm::Metadata *OCLVerElts[] = {
982       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
983           Int32Ty, Version / 100)),
984       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
985           Int32Ty, (Version % 100) / 10))};
986   llvm::NamedMDNode *OCLVerMD =
987       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
988   llvm::LLVMContext &Ctx = TheModule.getContext();
989   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
990 }
991 
992 void CodeGenModule::EmitBackendOptionsMetadata(
993     const CodeGenOptions CodeGenOpts) {
994   if (getTriple().isRISCV()) {
995     getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
996                               CodeGenOpts.SmallDataLimit);
997   }
998 }
999 
1000 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1001   // Make sure that this type is translated.
1002   Types.UpdateCompletedType(TD);
1003 }
1004 
1005 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1006   // Make sure that this type is translated.
1007   Types.RefreshTypeCacheForClass(RD);
1008 }
1009 
1010 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1011   if (!TBAA)
1012     return nullptr;
1013   return TBAA->getTypeInfo(QTy);
1014 }
1015 
1016 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1017   if (!TBAA)
1018     return TBAAAccessInfo();
1019   if (getLangOpts().CUDAIsDevice) {
1020     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1021     // access info.
1022     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1023       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1024           nullptr)
1025         return TBAAAccessInfo();
1026     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1027       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1028           nullptr)
1029         return TBAAAccessInfo();
1030     }
1031   }
1032   return TBAA->getAccessInfo(AccessType);
1033 }
1034 
1035 TBAAAccessInfo
1036 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1037   if (!TBAA)
1038     return TBAAAccessInfo();
1039   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1040 }
1041 
1042 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1043   if (!TBAA)
1044     return nullptr;
1045   return TBAA->getTBAAStructInfo(QTy);
1046 }
1047 
1048 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1049   if (!TBAA)
1050     return nullptr;
1051   return TBAA->getBaseTypeInfo(QTy);
1052 }
1053 
1054 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1055   if (!TBAA)
1056     return nullptr;
1057   return TBAA->getAccessTagInfo(Info);
1058 }
1059 
1060 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1061                                                    TBAAAccessInfo TargetInfo) {
1062   if (!TBAA)
1063     return TBAAAccessInfo();
1064   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1065 }
1066 
1067 TBAAAccessInfo
1068 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1069                                                    TBAAAccessInfo InfoB) {
1070   if (!TBAA)
1071     return TBAAAccessInfo();
1072   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1073 }
1074 
1075 TBAAAccessInfo
1076 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1077                                               TBAAAccessInfo SrcInfo) {
1078   if (!TBAA)
1079     return TBAAAccessInfo();
1080   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1081 }
1082 
1083 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1084                                                 TBAAAccessInfo TBAAInfo) {
1085   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1086     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1087 }
1088 
1089 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1090     llvm::Instruction *I, const CXXRecordDecl *RD) {
1091   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1092                  llvm::MDNode::get(getLLVMContext(), {}));
1093 }
1094 
1095 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1096   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1097   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1098 }
1099 
1100 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1101 /// specified stmt yet.
1102 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1103   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1104                                                "cannot compile this %0 yet");
1105   std::string Msg = Type;
1106   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1107       << Msg << S->getSourceRange();
1108 }
1109 
1110 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1111 /// specified decl yet.
1112 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1113   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1114                                                "cannot compile this %0 yet");
1115   std::string Msg = Type;
1116   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1117 }
1118 
1119 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1120   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1121 }
1122 
1123 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1124                                         const NamedDecl *D) const {
1125   // Internal definitions always have default visibility.
1126   if (GV->hasLocalLinkage()) {
1127     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1128     return;
1129   }
1130   if (!D)
1131     return;
1132   // Set visibility for definitions, and for declarations if requested globally
1133   // or set explicitly.
1134   LinkageInfo LV = D->getLinkageAndVisibility();
1135   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1136     // Reject incompatible dlllstorage and visibility annotations.
1137     if (!LV.isVisibilityExplicit())
1138       return;
1139     if (GV->hasDLLExportStorageClass()) {
1140       if (LV.getVisibility() == HiddenVisibility)
1141         getDiags().Report(D->getLocation(),
1142                           diag::err_hidden_visibility_dllexport);
1143     } else if (LV.getVisibility() != DefaultVisibility) {
1144       getDiags().Report(D->getLocation(),
1145                         diag::err_non_default_visibility_dllimport);
1146     }
1147     return;
1148   }
1149 
1150   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1151       !GV->isDeclarationForLinker())
1152     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1153 }
1154 
1155 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1156                                  llvm::GlobalValue *GV) {
1157   if (GV->hasLocalLinkage())
1158     return true;
1159 
1160   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1161     return true;
1162 
1163   // DLLImport explicitly marks the GV as external.
1164   if (GV->hasDLLImportStorageClass())
1165     return false;
1166 
1167   const llvm::Triple &TT = CGM.getTriple();
1168   if (TT.isWindowsGNUEnvironment()) {
1169     // In MinGW, variables without DLLImport can still be automatically
1170     // imported from a DLL by the linker; don't mark variables that
1171     // potentially could come from another DLL as DSO local.
1172 
1173     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1174     // (and this actually happens in the public interface of libstdc++), so
1175     // such variables can't be marked as DSO local. (Native TLS variables
1176     // can't be dllimported at all, though.)
1177     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1178         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1179       return false;
1180   }
1181 
1182   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1183   // remain unresolved in the link, they can be resolved to zero, which is
1184   // outside the current DSO.
1185   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1186     return false;
1187 
1188   // Every other GV is local on COFF.
1189   // Make an exception for windows OS in the triple: Some firmware builds use
1190   // *-win32-macho triples. This (accidentally?) produced windows relocations
1191   // without GOT tables in older clang versions; Keep this behaviour.
1192   // FIXME: even thread local variables?
1193   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1194     return true;
1195 
1196   // Only handle COFF and ELF for now.
1197   if (!TT.isOSBinFormatELF())
1198     return false;
1199 
1200   // If this is not an executable, don't assume anything is local.
1201   const auto &CGOpts = CGM.getCodeGenOpts();
1202   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1203   const auto &LOpts = CGM.getLangOpts();
1204   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1205     // On ELF, if -fno-semantic-interposition is specified and the target
1206     // supports local aliases, there will be neither CC1
1207     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1208     // dso_local on the function if using a local alias is preferable (can avoid
1209     // PLT indirection).
1210     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1211       return false;
1212     return !(CGM.getLangOpts().SemanticInterposition ||
1213              CGM.getLangOpts().HalfNoSemanticInterposition);
1214   }
1215 
1216   // A definition cannot be preempted from an executable.
1217   if (!GV->isDeclarationForLinker())
1218     return true;
1219 
1220   // Most PIC code sequences that assume that a symbol is local cannot produce a
1221   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1222   // depended, it seems worth it to handle it here.
1223   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1224     return false;
1225 
1226   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1227   if (TT.isPPC64())
1228     return false;
1229 
1230   if (CGOpts.DirectAccessExternalData) {
1231     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1232     // for non-thread-local variables. If the symbol is not defined in the
1233     // executable, a copy relocation will be needed at link time. dso_local is
1234     // excluded for thread-local variables because they generally don't support
1235     // copy relocations.
1236     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1237       if (!Var->isThreadLocal())
1238         return true;
1239 
1240     // -fno-pic sets dso_local on a function declaration to allow direct
1241     // accesses when taking its address (similar to a data symbol). If the
1242     // function is not defined in the executable, a canonical PLT entry will be
1243     // needed at link time. -fno-direct-access-external-data can avoid the
1244     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1245     // it could just cause trouble without providing perceptible benefits.
1246     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1247       return true;
1248   }
1249 
1250   // If we can use copy relocations we can assume it is local.
1251 
1252   // Otherwise don't assume it is local.
1253   return false;
1254 }
1255 
1256 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1257   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1258 }
1259 
1260 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1261                                           GlobalDecl GD) const {
1262   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1263   // C++ destructors have a few C++ ABI specific special cases.
1264   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1265     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1266     return;
1267   }
1268   setDLLImportDLLExport(GV, D);
1269 }
1270 
1271 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1272                                           const NamedDecl *D) const {
1273   if (D && D->isExternallyVisible()) {
1274     if (D->hasAttr<DLLImportAttr>())
1275       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1276     else if ((D->hasAttr<DLLExportAttr>() ||
1277               shouldMapVisibilityToDLLExport(D)) &&
1278              !GV->isDeclarationForLinker())
1279       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1280   }
1281 }
1282 
1283 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1284                                     GlobalDecl GD) const {
1285   setDLLImportDLLExport(GV, GD);
1286   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1287 }
1288 
1289 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1290                                     const NamedDecl *D) const {
1291   setDLLImportDLLExport(GV, D);
1292   setGVPropertiesAux(GV, D);
1293 }
1294 
1295 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1296                                        const NamedDecl *D) const {
1297   setGlobalVisibility(GV, D);
1298   setDSOLocal(GV);
1299   GV->setPartition(CodeGenOpts.SymbolPartition);
1300 }
1301 
1302 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1303   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1304       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1305       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1306       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1307       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1308 }
1309 
1310 llvm::GlobalVariable::ThreadLocalMode
1311 CodeGenModule::GetDefaultLLVMTLSModel() const {
1312   switch (CodeGenOpts.getDefaultTLSModel()) {
1313   case CodeGenOptions::GeneralDynamicTLSModel:
1314     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1315   case CodeGenOptions::LocalDynamicTLSModel:
1316     return llvm::GlobalVariable::LocalDynamicTLSModel;
1317   case CodeGenOptions::InitialExecTLSModel:
1318     return llvm::GlobalVariable::InitialExecTLSModel;
1319   case CodeGenOptions::LocalExecTLSModel:
1320     return llvm::GlobalVariable::LocalExecTLSModel;
1321   }
1322   llvm_unreachable("Invalid TLS model!");
1323 }
1324 
1325 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1326   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1327 
1328   llvm::GlobalValue::ThreadLocalMode TLM;
1329   TLM = GetDefaultLLVMTLSModel();
1330 
1331   // Override the TLS model if it is explicitly specified.
1332   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1333     TLM = GetLLVMTLSModel(Attr->getModel());
1334   }
1335 
1336   GV->setThreadLocalMode(TLM);
1337 }
1338 
1339 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1340                                           StringRef Name) {
1341   const TargetInfo &Target = CGM.getTarget();
1342   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1343 }
1344 
1345 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1346                                                  const CPUSpecificAttr *Attr,
1347                                                  unsigned CPUIndex,
1348                                                  raw_ostream &Out) {
1349   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1350   // supported.
1351   if (Attr)
1352     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1353   else if (CGM.getTarget().supportsIFunc())
1354     Out << ".resolver";
1355 }
1356 
1357 static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1358                                         const TargetVersionAttr *Attr,
1359                                         raw_ostream &Out) {
1360   if (Attr->isDefaultVersion())
1361     return;
1362   Out << "._";
1363   llvm::SmallVector<StringRef, 8> Feats;
1364   Attr->getFeatures(Feats);
1365   for (const auto &Feat : Feats) {
1366     Out << 'M';
1367     Out << Feat;
1368   }
1369 }
1370 
1371 static void AppendTargetMangling(const CodeGenModule &CGM,
1372                                  const TargetAttr *Attr, raw_ostream &Out) {
1373   if (Attr->isDefaultVersion())
1374     return;
1375 
1376   Out << '.';
1377   const TargetInfo &Target = CGM.getTarget();
1378   ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1379   llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1380     // Multiversioning doesn't allow "no-${feature}", so we can
1381     // only have "+" prefixes here.
1382     assert(LHS.startswith("+") && RHS.startswith("+") &&
1383            "Features should always have a prefix.");
1384     return Target.multiVersionSortPriority(LHS.substr(1)) >
1385            Target.multiVersionSortPriority(RHS.substr(1));
1386   });
1387 
1388   bool IsFirst = true;
1389 
1390   if (!Info.CPU.empty()) {
1391     IsFirst = false;
1392     Out << "arch_" << Info.CPU;
1393   }
1394 
1395   for (StringRef Feat : Info.Features) {
1396     if (!IsFirst)
1397       Out << '_';
1398     IsFirst = false;
1399     Out << Feat.substr(1);
1400   }
1401 }
1402 
1403 // Returns true if GD is a function decl with internal linkage and
1404 // needs a unique suffix after the mangled name.
1405 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1406                                         CodeGenModule &CGM) {
1407   const Decl *D = GD.getDecl();
1408   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1409          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1410 }
1411 
1412 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1413                                        const TargetClonesAttr *Attr,
1414                                        unsigned VersionIndex,
1415                                        raw_ostream &Out) {
1416   if (CGM.getTarget().getTriple().isAArch64()) {
1417     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1418     if (FeatureStr == "default")
1419       return;
1420     Out << "._";
1421     SmallVector<StringRef, 8> Features;
1422     FeatureStr.split(Features, "+");
1423     for (auto &Feat : Features) {
1424       Out << 'M';
1425       Out << Feat;
1426     }
1427   } else {
1428     Out << '.';
1429     StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1430     if (FeatureStr.startswith("arch="))
1431       Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1432     else
1433       Out << FeatureStr;
1434 
1435     Out << '.' << Attr->getMangledIndex(VersionIndex);
1436   }
1437 }
1438 
1439 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1440                                       const NamedDecl *ND,
1441                                       bool OmitMultiVersionMangling = false) {
1442   SmallString<256> Buffer;
1443   llvm::raw_svector_ostream Out(Buffer);
1444   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1445   if (!CGM.getModuleNameHash().empty())
1446     MC.needsUniqueInternalLinkageNames();
1447   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1448   if (ShouldMangle)
1449     MC.mangleName(GD.getWithDecl(ND), Out);
1450   else {
1451     IdentifierInfo *II = ND->getIdentifier();
1452     assert(II && "Attempt to mangle unnamed decl.");
1453     const auto *FD = dyn_cast<FunctionDecl>(ND);
1454 
1455     if (FD &&
1456         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1457       Out << "__regcall3__" << II->getName();
1458     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1459                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1460       Out << "__device_stub__" << II->getName();
1461     } else {
1462       Out << II->getName();
1463     }
1464   }
1465 
1466   // Check if the module name hash should be appended for internal linkage
1467   // symbols.   This should come before multi-version target suffixes are
1468   // appended. This is to keep the name and module hash suffix of the
1469   // internal linkage function together.  The unique suffix should only be
1470   // added when name mangling is done to make sure that the final name can
1471   // be properly demangled.  For example, for C functions without prototypes,
1472   // name mangling is not done and the unique suffix should not be appeneded
1473   // then.
1474   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1475     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1476            "Hash computed when not explicitly requested");
1477     Out << CGM.getModuleNameHash();
1478   }
1479 
1480   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1481     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1482       switch (FD->getMultiVersionKind()) {
1483       case MultiVersionKind::CPUDispatch:
1484       case MultiVersionKind::CPUSpecific:
1485         AppendCPUSpecificCPUDispatchMangling(CGM,
1486                                              FD->getAttr<CPUSpecificAttr>(),
1487                                              GD.getMultiVersionIndex(), Out);
1488         break;
1489       case MultiVersionKind::Target:
1490         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1491         break;
1492       case MultiVersionKind::TargetVersion:
1493         AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1494         break;
1495       case MultiVersionKind::TargetClones:
1496         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1497                                    GD.getMultiVersionIndex(), Out);
1498         break;
1499       case MultiVersionKind::None:
1500         llvm_unreachable("None multiversion type isn't valid here");
1501       }
1502     }
1503 
1504   // Make unique name for device side static file-scope variable for HIP.
1505   if (CGM.getContext().shouldExternalize(ND) &&
1506       CGM.getLangOpts().GPURelocatableDeviceCode &&
1507       CGM.getLangOpts().CUDAIsDevice)
1508     CGM.printPostfixForExternalizedDecl(Out, ND);
1509 
1510   return std::string(Out.str());
1511 }
1512 
1513 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1514                                             const FunctionDecl *FD,
1515                                             StringRef &CurName) {
1516   if (!FD->isMultiVersion())
1517     return;
1518 
1519   // Get the name of what this would be without the 'target' attribute.  This
1520   // allows us to lookup the version that was emitted when this wasn't a
1521   // multiversion function.
1522   std::string NonTargetName =
1523       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1524   GlobalDecl OtherGD;
1525   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1526     assert(OtherGD.getCanonicalDecl()
1527                .getDecl()
1528                ->getAsFunction()
1529                ->isMultiVersion() &&
1530            "Other GD should now be a multiversioned function");
1531     // OtherFD is the version of this function that was mangled BEFORE
1532     // becoming a MultiVersion function.  It potentially needs to be updated.
1533     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1534                                       .getDecl()
1535                                       ->getAsFunction()
1536                                       ->getMostRecentDecl();
1537     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1538     // This is so that if the initial version was already the 'default'
1539     // version, we don't try to update it.
1540     if (OtherName != NonTargetName) {
1541       // Remove instead of erase, since others may have stored the StringRef
1542       // to this.
1543       const auto ExistingRecord = Manglings.find(NonTargetName);
1544       if (ExistingRecord != std::end(Manglings))
1545         Manglings.remove(&(*ExistingRecord));
1546       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1547       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1548           Result.first->first();
1549       // If this is the current decl is being created, make sure we update the name.
1550       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1551         CurName = OtherNameRef;
1552       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1553         Entry->setName(OtherName);
1554     }
1555   }
1556 }
1557 
1558 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1559   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1560 
1561   // Some ABIs don't have constructor variants.  Make sure that base and
1562   // complete constructors get mangled the same.
1563   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1564     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1565       CXXCtorType OrigCtorType = GD.getCtorType();
1566       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1567       if (OrigCtorType == Ctor_Base)
1568         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1569     }
1570   }
1571 
1572   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1573   // static device variable depends on whether the variable is referenced by
1574   // a host or device host function. Therefore the mangled name cannot be
1575   // cached.
1576   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1577     auto FoundName = MangledDeclNames.find(CanonicalGD);
1578     if (FoundName != MangledDeclNames.end())
1579       return FoundName->second;
1580   }
1581 
1582   // Keep the first result in the case of a mangling collision.
1583   const auto *ND = cast<NamedDecl>(GD.getDecl());
1584   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1585 
1586   // Ensure either we have different ABIs between host and device compilations,
1587   // says host compilation following MSVC ABI but device compilation follows
1588   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1589   // mangling should be the same after name stubbing. The later checking is
1590   // very important as the device kernel name being mangled in host-compilation
1591   // is used to resolve the device binaries to be executed. Inconsistent naming
1592   // result in undefined behavior. Even though we cannot check that naming
1593   // directly between host- and device-compilations, the host- and
1594   // device-mangling in host compilation could help catching certain ones.
1595   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1596          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1597          (getContext().getAuxTargetInfo() &&
1598           (getContext().getAuxTargetInfo()->getCXXABI() !=
1599            getContext().getTargetInfo().getCXXABI())) ||
1600          getCUDARuntime().getDeviceSideName(ND) ==
1601              getMangledNameImpl(
1602                  *this,
1603                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1604                  ND));
1605 
1606   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1607   return MangledDeclNames[CanonicalGD] = Result.first->first();
1608 }
1609 
1610 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1611                                              const BlockDecl *BD) {
1612   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1613   const Decl *D = GD.getDecl();
1614 
1615   SmallString<256> Buffer;
1616   llvm::raw_svector_ostream Out(Buffer);
1617   if (!D)
1618     MangleCtx.mangleGlobalBlock(BD,
1619       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1620   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1621     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1622   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1623     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1624   else
1625     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1626 
1627   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1628   return Result.first->first();
1629 }
1630 
1631 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1632   auto it = MangledDeclNames.begin();
1633   while (it != MangledDeclNames.end()) {
1634     if (it->second == Name)
1635       return it->first;
1636     it++;
1637   }
1638   return GlobalDecl();
1639 }
1640 
1641 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1642   return getModule().getNamedValue(Name);
1643 }
1644 
1645 /// AddGlobalCtor - Add a function to the list that will be called before
1646 /// main() runs.
1647 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1648                                   unsigned LexOrder,
1649                                   llvm::Constant *AssociatedData) {
1650   // FIXME: Type coercion of void()* types.
1651   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1652 }
1653 
1654 /// AddGlobalDtor - Add a function to the list that will be called
1655 /// when the module is unloaded.
1656 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1657                                   bool IsDtorAttrFunc) {
1658   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1659       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1660     DtorsUsingAtExit[Priority].push_back(Dtor);
1661     return;
1662   }
1663 
1664   // FIXME: Type coercion of void()* types.
1665   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1666 }
1667 
1668 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1669   if (Fns.empty()) return;
1670 
1671   // Ctor function type is void()*.
1672   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1673   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1674       TheModule.getDataLayout().getProgramAddressSpace());
1675 
1676   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1677   llvm::StructType *CtorStructTy = llvm::StructType::get(
1678       Int32Ty, CtorPFTy, VoidPtrTy);
1679 
1680   // Construct the constructor and destructor arrays.
1681   ConstantInitBuilder builder(*this);
1682   auto ctors = builder.beginArray(CtorStructTy);
1683   for (const auto &I : Fns) {
1684     auto ctor = ctors.beginStruct(CtorStructTy);
1685     ctor.addInt(Int32Ty, I.Priority);
1686     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1687     if (I.AssociatedData)
1688       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1689     else
1690       ctor.addNullPointer(VoidPtrTy);
1691     ctor.finishAndAddTo(ctors);
1692   }
1693 
1694   auto list =
1695     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1696                                 /*constant*/ false,
1697                                 llvm::GlobalValue::AppendingLinkage);
1698 
1699   // The LTO linker doesn't seem to like it when we set an alignment
1700   // on appending variables.  Take it off as a workaround.
1701   list->setAlignment(std::nullopt);
1702 
1703   Fns.clear();
1704 }
1705 
1706 llvm::GlobalValue::LinkageTypes
1707 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1708   const auto *D = cast<FunctionDecl>(GD.getDecl());
1709 
1710   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1711 
1712   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1713     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1714 
1715   if (isa<CXXConstructorDecl>(D) &&
1716       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1717       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1718     // Our approach to inheriting constructors is fundamentally different from
1719     // that used by the MS ABI, so keep our inheriting constructor thunks
1720     // internal rather than trying to pick an unambiguous mangling for them.
1721     return llvm::GlobalValue::InternalLinkage;
1722   }
1723 
1724   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1725 }
1726 
1727 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1728   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1729   if (!MDS) return nullptr;
1730 
1731   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1732 }
1733 
1734 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1735   if (auto *FnType = T->getAs<FunctionProtoType>())
1736     T = getContext().getFunctionType(
1737         FnType->getReturnType(), FnType->getParamTypes(),
1738         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1739 
1740   std::string OutName;
1741   llvm::raw_string_ostream Out(OutName);
1742   getCXXABI().getMangleContext().mangleTypeName(
1743       T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
1744 
1745   if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
1746     Out << ".normalized";
1747 
1748   return llvm::ConstantInt::get(Int32Ty,
1749                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1750 }
1751 
1752 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1753                                               const CGFunctionInfo &Info,
1754                                               llvm::Function *F, bool IsThunk) {
1755   unsigned CallingConv;
1756   llvm::AttributeList PAL;
1757   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1758                          /*AttrOnCallSite=*/false, IsThunk);
1759   F->setAttributes(PAL);
1760   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1761 }
1762 
1763 static void removeImageAccessQualifier(std::string& TyName) {
1764   std::string ReadOnlyQual("__read_only");
1765   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1766   if (ReadOnlyPos != std::string::npos)
1767     // "+ 1" for the space after access qualifier.
1768     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1769   else {
1770     std::string WriteOnlyQual("__write_only");
1771     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1772     if (WriteOnlyPos != std::string::npos)
1773       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1774     else {
1775       std::string ReadWriteQual("__read_write");
1776       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1777       if (ReadWritePos != std::string::npos)
1778         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1779     }
1780   }
1781 }
1782 
1783 // Returns the address space id that should be produced to the
1784 // kernel_arg_addr_space metadata. This is always fixed to the ids
1785 // as specified in the SPIR 2.0 specification in order to differentiate
1786 // for example in clGetKernelArgInfo() implementation between the address
1787 // spaces with targets without unique mapping to the OpenCL address spaces
1788 // (basically all single AS CPUs).
1789 static unsigned ArgInfoAddressSpace(LangAS AS) {
1790   switch (AS) {
1791   case LangAS::opencl_global:
1792     return 1;
1793   case LangAS::opencl_constant:
1794     return 2;
1795   case LangAS::opencl_local:
1796     return 3;
1797   case LangAS::opencl_generic:
1798     return 4; // Not in SPIR 2.0 specs.
1799   case LangAS::opencl_global_device:
1800     return 5;
1801   case LangAS::opencl_global_host:
1802     return 6;
1803   default:
1804     return 0; // Assume private.
1805   }
1806 }
1807 
1808 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1809                                          const FunctionDecl *FD,
1810                                          CodeGenFunction *CGF) {
1811   assert(((FD && CGF) || (!FD && !CGF)) &&
1812          "Incorrect use - FD and CGF should either be both null or not!");
1813   // Create MDNodes that represent the kernel arg metadata.
1814   // Each MDNode is a list in the form of "key", N number of values which is
1815   // the same number of values as their are kernel arguments.
1816 
1817   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1818 
1819   // MDNode for the kernel argument address space qualifiers.
1820   SmallVector<llvm::Metadata *, 8> addressQuals;
1821 
1822   // MDNode for the kernel argument access qualifiers (images only).
1823   SmallVector<llvm::Metadata *, 8> accessQuals;
1824 
1825   // MDNode for the kernel argument type names.
1826   SmallVector<llvm::Metadata *, 8> argTypeNames;
1827 
1828   // MDNode for the kernel argument base type names.
1829   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1830 
1831   // MDNode for the kernel argument type qualifiers.
1832   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1833 
1834   // MDNode for the kernel argument names.
1835   SmallVector<llvm::Metadata *, 8> argNames;
1836 
1837   if (FD && CGF)
1838     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1839       const ParmVarDecl *parm = FD->getParamDecl(i);
1840       // Get argument name.
1841       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1842 
1843       if (!getLangOpts().OpenCL)
1844         continue;
1845       QualType ty = parm->getType();
1846       std::string typeQuals;
1847 
1848       // Get image and pipe access qualifier:
1849       if (ty->isImageType() || ty->isPipeType()) {
1850         const Decl *PDecl = parm;
1851         if (const auto *TD = ty->getAs<TypedefType>())
1852           PDecl = TD->getDecl();
1853         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1854         if (A && A->isWriteOnly())
1855           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1856         else if (A && A->isReadWrite())
1857           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1858         else
1859           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1860       } else
1861         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1862 
1863       auto getTypeSpelling = [&](QualType Ty) {
1864         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1865 
1866         if (Ty.isCanonical()) {
1867           StringRef typeNameRef = typeName;
1868           // Turn "unsigned type" to "utype"
1869           if (typeNameRef.consume_front("unsigned "))
1870             return std::string("u") + typeNameRef.str();
1871           if (typeNameRef.consume_front("signed "))
1872             return typeNameRef.str();
1873         }
1874 
1875         return typeName;
1876       };
1877 
1878       if (ty->isPointerType()) {
1879         QualType pointeeTy = ty->getPointeeType();
1880 
1881         // Get address qualifier.
1882         addressQuals.push_back(
1883             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1884                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1885 
1886         // Get argument type name.
1887         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1888         std::string baseTypeName =
1889             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1890         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1891         argBaseTypeNames.push_back(
1892             llvm::MDString::get(VMContext, baseTypeName));
1893 
1894         // Get argument type qualifiers:
1895         if (ty.isRestrictQualified())
1896           typeQuals = "restrict";
1897         if (pointeeTy.isConstQualified() ||
1898             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1899           typeQuals += typeQuals.empty() ? "const" : " const";
1900         if (pointeeTy.isVolatileQualified())
1901           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1902       } else {
1903         uint32_t AddrSpc = 0;
1904         bool isPipe = ty->isPipeType();
1905         if (ty->isImageType() || isPipe)
1906           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1907 
1908         addressQuals.push_back(
1909             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1910 
1911         // Get argument type name.
1912         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1913         std::string typeName = getTypeSpelling(ty);
1914         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1915 
1916         // Remove access qualifiers on images
1917         // (as they are inseparable from type in clang implementation,
1918         // but OpenCL spec provides a special query to get access qualifier
1919         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1920         if (ty->isImageType()) {
1921           removeImageAccessQualifier(typeName);
1922           removeImageAccessQualifier(baseTypeName);
1923         }
1924 
1925         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1926         argBaseTypeNames.push_back(
1927             llvm::MDString::get(VMContext, baseTypeName));
1928 
1929         if (isPipe)
1930           typeQuals = "pipe";
1931       }
1932       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1933     }
1934 
1935   if (getLangOpts().OpenCL) {
1936     Fn->setMetadata("kernel_arg_addr_space",
1937                     llvm::MDNode::get(VMContext, addressQuals));
1938     Fn->setMetadata("kernel_arg_access_qual",
1939                     llvm::MDNode::get(VMContext, accessQuals));
1940     Fn->setMetadata("kernel_arg_type",
1941                     llvm::MDNode::get(VMContext, argTypeNames));
1942     Fn->setMetadata("kernel_arg_base_type",
1943                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1944     Fn->setMetadata("kernel_arg_type_qual",
1945                     llvm::MDNode::get(VMContext, argTypeQuals));
1946   }
1947   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1948       getCodeGenOpts().HIPSaveKernelArgName)
1949     Fn->setMetadata("kernel_arg_name",
1950                     llvm::MDNode::get(VMContext, argNames));
1951 }
1952 
1953 /// Determines whether the language options require us to model
1954 /// unwind exceptions.  We treat -fexceptions as mandating this
1955 /// except under the fragile ObjC ABI with only ObjC exceptions
1956 /// enabled.  This means, for example, that C with -fexceptions
1957 /// enables this.
1958 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1959   // If exceptions are completely disabled, obviously this is false.
1960   if (!LangOpts.Exceptions) return false;
1961 
1962   // If C++ exceptions are enabled, this is true.
1963   if (LangOpts.CXXExceptions) return true;
1964 
1965   // If ObjC exceptions are enabled, this depends on the ABI.
1966   if (LangOpts.ObjCExceptions) {
1967     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1968   }
1969 
1970   return true;
1971 }
1972 
1973 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1974                                                       const CXXMethodDecl *MD) {
1975   // Check that the type metadata can ever actually be used by a call.
1976   if (!CGM.getCodeGenOpts().LTOUnit ||
1977       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1978     return false;
1979 
1980   // Only functions whose address can be taken with a member function pointer
1981   // need this sort of type metadata.
1982   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1983          !isa<CXXDestructorDecl>(MD);
1984 }
1985 
1986 std::vector<const CXXRecordDecl *>
1987 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1988   llvm::SetVector<const CXXRecordDecl *> MostBases;
1989 
1990   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1991   CollectMostBases = [&](const CXXRecordDecl *RD) {
1992     if (RD->getNumBases() == 0)
1993       MostBases.insert(RD);
1994     for (const CXXBaseSpecifier &B : RD->bases())
1995       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1996   };
1997   CollectMostBases(RD);
1998   return MostBases.takeVector();
1999 }
2000 
2001 llvm::GlobalVariable *
2002 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
2003   auto It = RTTIProxyMap.find(Addr);
2004   if (It != RTTIProxyMap.end())
2005     return It->second;
2006 
2007   auto *FTRTTIProxy = new llvm::GlobalVariable(
2008       TheModule, Addr->getType(),
2009       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
2010       "__llvm_rtti_proxy");
2011   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2012 
2013   RTTIProxyMap[Addr] = FTRTTIProxy;
2014   return FTRTTIProxy;
2015 }
2016 
2017 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2018                                                            llvm::Function *F) {
2019   llvm::AttrBuilder B(F->getContext());
2020 
2021   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2022     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2023 
2024   if (CodeGenOpts.StackClashProtector)
2025     B.addAttribute("probe-stack", "inline-asm");
2026 
2027   if (!hasUnwindExceptions(LangOpts))
2028     B.addAttribute(llvm::Attribute::NoUnwind);
2029 
2030   if (D && D->hasAttr<NoStackProtectorAttr>())
2031     ; // Do nothing.
2032   else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2033            LangOpts.getStackProtector() == LangOptions::SSPOn)
2034     B.addAttribute(llvm::Attribute::StackProtectStrong);
2035   else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
2036     B.addAttribute(llvm::Attribute::StackProtect);
2037   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
2038     B.addAttribute(llvm::Attribute::StackProtectStrong);
2039   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
2040     B.addAttribute(llvm::Attribute::StackProtectReq);
2041 
2042   if (!D) {
2043     // If we don't have a declaration to control inlining, the function isn't
2044     // explicitly marked as alwaysinline for semantic reasons, and inlining is
2045     // disabled, mark the function as noinline.
2046     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2047         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2048       B.addAttribute(llvm::Attribute::NoInline);
2049 
2050     F->addFnAttrs(B);
2051     return;
2052   }
2053 
2054   // Track whether we need to add the optnone LLVM attribute,
2055   // starting with the default for this optimization level.
2056   bool ShouldAddOptNone =
2057       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2058   // We can't add optnone in the following cases, it won't pass the verifier.
2059   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2060   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2061 
2062   // Add optnone, but do so only if the function isn't always_inline.
2063   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2064       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2065     B.addAttribute(llvm::Attribute::OptimizeNone);
2066 
2067     // OptimizeNone implies noinline; we should not be inlining such functions.
2068     B.addAttribute(llvm::Attribute::NoInline);
2069 
2070     // We still need to handle naked functions even though optnone subsumes
2071     // much of their semantics.
2072     if (D->hasAttr<NakedAttr>())
2073       B.addAttribute(llvm::Attribute::Naked);
2074 
2075     // OptimizeNone wins over OptimizeForSize and MinSize.
2076     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2077     F->removeFnAttr(llvm::Attribute::MinSize);
2078   } else if (D->hasAttr<NakedAttr>()) {
2079     // Naked implies noinline: we should not be inlining such functions.
2080     B.addAttribute(llvm::Attribute::Naked);
2081     B.addAttribute(llvm::Attribute::NoInline);
2082   } else if (D->hasAttr<NoDuplicateAttr>()) {
2083     B.addAttribute(llvm::Attribute::NoDuplicate);
2084   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2085     // Add noinline if the function isn't always_inline.
2086     B.addAttribute(llvm::Attribute::NoInline);
2087   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2088              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2089     // (noinline wins over always_inline, and we can't specify both in IR)
2090     B.addAttribute(llvm::Attribute::AlwaysInline);
2091   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2092     // If we're not inlining, then force everything that isn't always_inline to
2093     // carry an explicit noinline attribute.
2094     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2095       B.addAttribute(llvm::Attribute::NoInline);
2096   } else {
2097     // Otherwise, propagate the inline hint attribute and potentially use its
2098     // absence to mark things as noinline.
2099     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2100       // Search function and template pattern redeclarations for inline.
2101       auto CheckForInline = [](const FunctionDecl *FD) {
2102         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2103           return Redecl->isInlineSpecified();
2104         };
2105         if (any_of(FD->redecls(), CheckRedeclForInline))
2106           return true;
2107         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2108         if (!Pattern)
2109           return false;
2110         return any_of(Pattern->redecls(), CheckRedeclForInline);
2111       };
2112       if (CheckForInline(FD)) {
2113         B.addAttribute(llvm::Attribute::InlineHint);
2114       } else if (CodeGenOpts.getInlining() ==
2115                      CodeGenOptions::OnlyHintInlining &&
2116                  !FD->isInlined() &&
2117                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2118         B.addAttribute(llvm::Attribute::NoInline);
2119       }
2120     }
2121   }
2122 
2123   // Add other optimization related attributes if we are optimizing this
2124   // function.
2125   if (!D->hasAttr<OptimizeNoneAttr>()) {
2126     if (D->hasAttr<ColdAttr>()) {
2127       if (!ShouldAddOptNone)
2128         B.addAttribute(llvm::Attribute::OptimizeForSize);
2129       B.addAttribute(llvm::Attribute::Cold);
2130     }
2131     if (D->hasAttr<HotAttr>())
2132       B.addAttribute(llvm::Attribute::Hot);
2133     if (D->hasAttr<MinSizeAttr>())
2134       B.addAttribute(llvm::Attribute::MinSize);
2135   }
2136 
2137   F->addFnAttrs(B);
2138 
2139   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2140   if (alignment)
2141     F->setAlignment(llvm::Align(alignment));
2142 
2143   if (!D->hasAttr<AlignedAttr>())
2144     if (LangOpts.FunctionAlignment)
2145       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2146 
2147   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2148   // reserve a bit for differentiating between virtual and non-virtual member
2149   // functions. If the current target's C++ ABI requires this and this is a
2150   // member function, set its alignment accordingly.
2151   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2152     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2153       F->setAlignment(llvm::Align(2));
2154   }
2155 
2156   // In the cross-dso CFI mode with canonical jump tables, we want !type
2157   // attributes on definitions only.
2158   if (CodeGenOpts.SanitizeCfiCrossDso &&
2159       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2160     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2161       // Skip available_externally functions. They won't be codegen'ed in the
2162       // current module anyway.
2163       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2164         CreateFunctionTypeMetadataForIcall(FD, F);
2165     }
2166   }
2167 
2168   // Emit type metadata on member functions for member function pointer checks.
2169   // These are only ever necessary on definitions; we're guaranteed that the
2170   // definition will be present in the LTO unit as a result of LTO visibility.
2171   auto *MD = dyn_cast<CXXMethodDecl>(D);
2172   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2173     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2174       llvm::Metadata *Id =
2175           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2176               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2177       F->addTypeMetadata(0, Id);
2178     }
2179   }
2180 }
2181 
2182 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2183                                                   llvm::Function *F) {
2184   if (D->hasAttr<StrictFPAttr>()) {
2185     llvm::AttrBuilder FuncAttrs(F->getContext());
2186     FuncAttrs.addAttribute("strictfp");
2187     F->addFnAttrs(FuncAttrs);
2188   }
2189 }
2190 
2191 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2192   const Decl *D = GD.getDecl();
2193   if (isa_and_nonnull<NamedDecl>(D))
2194     setGVProperties(GV, GD);
2195   else
2196     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2197 
2198   if (D && D->hasAttr<UsedAttr>())
2199     addUsedOrCompilerUsedGlobal(GV);
2200 
2201   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2202     const auto *VD = cast<VarDecl>(D);
2203     if (VD->getType().isConstQualified() &&
2204         VD->getStorageDuration() == SD_Static)
2205       addUsedOrCompilerUsedGlobal(GV);
2206   }
2207 }
2208 
2209 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2210                                                 llvm::AttrBuilder &Attrs) {
2211   // Add target-cpu and target-features attributes to functions. If
2212   // we have a decl for the function and it has a target attribute then
2213   // parse that and add it to the feature set.
2214   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2215   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2216   std::vector<std::string> Features;
2217   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2218   FD = FD ? FD->getMostRecentDecl() : FD;
2219   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2220   const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2221   assert((!TD || !TV) && "both target_version and target specified");
2222   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2223   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2224   bool AddedAttr = false;
2225   if (TD || TV || SD || TC) {
2226     llvm::StringMap<bool> FeatureMap;
2227     getContext().getFunctionFeatureMap(FeatureMap, GD);
2228 
2229     // Produce the canonical string for this set of features.
2230     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2231       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2232 
2233     // Now add the target-cpu and target-features to the function.
2234     // While we populated the feature map above, we still need to
2235     // get and parse the target attribute so we can get the cpu for
2236     // the function.
2237     if (TD) {
2238       ParsedTargetAttr ParsedAttr =
2239           Target.parseTargetAttr(TD->getFeaturesStr());
2240       if (!ParsedAttr.CPU.empty() &&
2241           getTarget().isValidCPUName(ParsedAttr.CPU)) {
2242         TargetCPU = ParsedAttr.CPU;
2243         TuneCPU = ""; // Clear the tune CPU.
2244       }
2245       if (!ParsedAttr.Tune.empty() &&
2246           getTarget().isValidCPUName(ParsedAttr.Tune))
2247         TuneCPU = ParsedAttr.Tune;
2248     }
2249 
2250     if (SD) {
2251       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2252       // favor this processor.
2253       TuneCPU = getTarget().getCPUSpecificTuneName(
2254           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2255     }
2256   } else {
2257     // Otherwise just add the existing target cpu and target features to the
2258     // function.
2259     Features = getTarget().getTargetOpts().Features;
2260   }
2261 
2262   if (!TargetCPU.empty()) {
2263     Attrs.addAttribute("target-cpu", TargetCPU);
2264     AddedAttr = true;
2265   }
2266   if (!TuneCPU.empty()) {
2267     Attrs.addAttribute("tune-cpu", TuneCPU);
2268     AddedAttr = true;
2269   }
2270   if (!Features.empty()) {
2271     llvm::sort(Features);
2272     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2273     AddedAttr = true;
2274   }
2275 
2276   return AddedAttr;
2277 }
2278 
2279 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2280                                           llvm::GlobalObject *GO) {
2281   const Decl *D = GD.getDecl();
2282   SetCommonAttributes(GD, GO);
2283 
2284   if (D) {
2285     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2286       if (D->hasAttr<RetainAttr>())
2287         addUsedGlobal(GV);
2288       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2289         GV->addAttribute("bss-section", SA->getName());
2290       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2291         GV->addAttribute("data-section", SA->getName());
2292       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2293         GV->addAttribute("rodata-section", SA->getName());
2294       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2295         GV->addAttribute("relro-section", SA->getName());
2296     }
2297 
2298     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2299       if (D->hasAttr<RetainAttr>())
2300         addUsedGlobal(F);
2301       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2302         if (!D->getAttr<SectionAttr>())
2303           F->addFnAttr("implicit-section-name", SA->getName());
2304 
2305       llvm::AttrBuilder Attrs(F->getContext());
2306       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2307         // We know that GetCPUAndFeaturesAttributes will always have the
2308         // newest set, since it has the newest possible FunctionDecl, so the
2309         // new ones should replace the old.
2310         llvm::AttributeMask RemoveAttrs;
2311         RemoveAttrs.addAttribute("target-cpu");
2312         RemoveAttrs.addAttribute("target-features");
2313         RemoveAttrs.addAttribute("tune-cpu");
2314         F->removeFnAttrs(RemoveAttrs);
2315         F->addFnAttrs(Attrs);
2316       }
2317     }
2318 
2319     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2320       GO->setSection(CSA->getName());
2321     else if (const auto *SA = D->getAttr<SectionAttr>())
2322       GO->setSection(SA->getName());
2323   }
2324 
2325   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2326 }
2327 
2328 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2329                                                   llvm::Function *F,
2330                                                   const CGFunctionInfo &FI) {
2331   const Decl *D = GD.getDecl();
2332   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2333   SetLLVMFunctionAttributesForDefinition(D, F);
2334 
2335   F->setLinkage(llvm::Function::InternalLinkage);
2336 
2337   setNonAliasAttributes(GD, F);
2338 }
2339 
2340 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2341   // Set linkage and visibility in case we never see a definition.
2342   LinkageInfo LV = ND->getLinkageAndVisibility();
2343   // Don't set internal linkage on declarations.
2344   // "extern_weak" is overloaded in LLVM; we probably should have
2345   // separate linkage types for this.
2346   if (isExternallyVisible(LV.getLinkage()) &&
2347       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2348     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2349 }
2350 
2351 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2352                                                        llvm::Function *F) {
2353   // Only if we are checking indirect calls.
2354   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2355     return;
2356 
2357   // Non-static class methods are handled via vtable or member function pointer
2358   // checks elsewhere.
2359   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2360     return;
2361 
2362   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2363   F->addTypeMetadata(0, MD);
2364   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2365 
2366   // Emit a hash-based bit set entry for cross-DSO calls.
2367   if (CodeGenOpts.SanitizeCfiCrossDso)
2368     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2369       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2370 }
2371 
2372 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2373   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2374     return;
2375 
2376   llvm::LLVMContext &Ctx = F->getContext();
2377   llvm::MDBuilder MDB(Ctx);
2378   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2379                  llvm::MDNode::get(
2380                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2381 }
2382 
2383 static bool allowKCFIIdentifier(StringRef Name) {
2384   // KCFI type identifier constants are only necessary for external assembly
2385   // functions, which means it's safe to skip unusual names. Subset of
2386   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2387   return llvm::all_of(Name, [](const char &C) {
2388     return llvm::isAlnum(C) || C == '_' || C == '.';
2389   });
2390 }
2391 
2392 void CodeGenModule::finalizeKCFITypes() {
2393   llvm::Module &M = getModule();
2394   for (auto &F : M.functions()) {
2395     // Remove KCFI type metadata from non-address-taken local functions.
2396     bool AddressTaken = F.hasAddressTaken();
2397     if (!AddressTaken && F.hasLocalLinkage())
2398       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2399 
2400     // Generate a constant with the expected KCFI type identifier for all
2401     // address-taken function declarations to support annotating indirectly
2402     // called assembly functions.
2403     if (!AddressTaken || !F.isDeclaration())
2404       continue;
2405 
2406     const llvm::ConstantInt *Type;
2407     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2408       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2409     else
2410       continue;
2411 
2412     StringRef Name = F.getName();
2413     if (!allowKCFIIdentifier(Name))
2414       continue;
2415 
2416     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2417                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2418                           .str();
2419     M.appendModuleInlineAsm(Asm);
2420   }
2421 }
2422 
2423 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2424                                           bool IsIncompleteFunction,
2425                                           bool IsThunk) {
2426 
2427   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2428     // If this is an intrinsic function, set the function's attributes
2429     // to the intrinsic's attributes.
2430     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2431     return;
2432   }
2433 
2434   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2435 
2436   if (!IsIncompleteFunction)
2437     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2438                               IsThunk);
2439 
2440   // Add the Returned attribute for "this", except for iOS 5 and earlier
2441   // where substantial code, including the libstdc++ dylib, was compiled with
2442   // GCC and does not actually return "this".
2443   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2444       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2445     assert(!F->arg_empty() &&
2446            F->arg_begin()->getType()
2447              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2448            "unexpected this return");
2449     F->addParamAttr(0, llvm::Attribute::Returned);
2450   }
2451 
2452   // Only a few attributes are set on declarations; these may later be
2453   // overridden by a definition.
2454 
2455   setLinkageForGV(F, FD);
2456   setGVProperties(F, FD);
2457 
2458   // Setup target-specific attributes.
2459   if (!IsIncompleteFunction && F->isDeclaration())
2460     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2461 
2462   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2463     F->setSection(CSA->getName());
2464   else if (const auto *SA = FD->getAttr<SectionAttr>())
2465      F->setSection(SA->getName());
2466 
2467   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2468     if (EA->isError())
2469       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2470     else if (EA->isWarning())
2471       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2472   }
2473 
2474   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2475   if (FD->isInlineBuiltinDeclaration()) {
2476     const FunctionDecl *FDBody;
2477     bool HasBody = FD->hasBody(FDBody);
2478     (void)HasBody;
2479     assert(HasBody && "Inline builtin declarations should always have an "
2480                       "available body!");
2481     if (shouldEmitFunction(FDBody))
2482       F->addFnAttr(llvm::Attribute::NoBuiltin);
2483   }
2484 
2485   if (FD->isReplaceableGlobalAllocationFunction()) {
2486     // A replaceable global allocation function does not act like a builtin by
2487     // default, only if it is invoked by a new-expression or delete-expression.
2488     F->addFnAttr(llvm::Attribute::NoBuiltin);
2489   }
2490 
2491   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2492     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2493   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2494     if (MD->isVirtual())
2495       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2496 
2497   // Don't emit entries for function declarations in the cross-DSO mode. This
2498   // is handled with better precision by the receiving DSO. But if jump tables
2499   // are non-canonical then we need type metadata in order to produce the local
2500   // jump table.
2501   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2502       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2503     CreateFunctionTypeMetadataForIcall(FD, F);
2504 
2505   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2506     setKCFIType(FD, F);
2507 
2508   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2509     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2510 
2511   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2512     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2513 
2514   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2515     // Annotate the callback behavior as metadata:
2516     //  - The callback callee (as argument number).
2517     //  - The callback payloads (as argument numbers).
2518     llvm::LLVMContext &Ctx = F->getContext();
2519     llvm::MDBuilder MDB(Ctx);
2520 
2521     // The payload indices are all but the first one in the encoding. The first
2522     // identifies the callback callee.
2523     int CalleeIdx = *CB->encoding_begin();
2524     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2525     F->addMetadata(llvm::LLVMContext::MD_callback,
2526                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2527                                                CalleeIdx, PayloadIndices,
2528                                                /* VarArgsArePassed */ false)}));
2529   }
2530 }
2531 
2532 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2533   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2534          "Only globals with definition can force usage.");
2535   LLVMUsed.emplace_back(GV);
2536 }
2537 
2538 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2539   assert(!GV->isDeclaration() &&
2540          "Only globals with definition can force usage.");
2541   LLVMCompilerUsed.emplace_back(GV);
2542 }
2543 
2544 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2545   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2546          "Only globals with definition can force usage.");
2547   if (getTriple().isOSBinFormatELF())
2548     LLVMCompilerUsed.emplace_back(GV);
2549   else
2550     LLVMUsed.emplace_back(GV);
2551 }
2552 
2553 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2554                      std::vector<llvm::WeakTrackingVH> &List) {
2555   // Don't create llvm.used if there is no need.
2556   if (List.empty())
2557     return;
2558 
2559   // Convert List to what ConstantArray needs.
2560   SmallVector<llvm::Constant*, 8> UsedArray;
2561   UsedArray.resize(List.size());
2562   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2563     UsedArray[i] =
2564         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2565             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2566   }
2567 
2568   if (UsedArray.empty())
2569     return;
2570   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2571 
2572   auto *GV = new llvm::GlobalVariable(
2573       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2574       llvm::ConstantArray::get(ATy, UsedArray), Name);
2575 
2576   GV->setSection("llvm.metadata");
2577 }
2578 
2579 void CodeGenModule::emitLLVMUsed() {
2580   emitUsed(*this, "llvm.used", LLVMUsed);
2581   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2582 }
2583 
2584 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2585   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2586   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2587 }
2588 
2589 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2590   llvm::SmallString<32> Opt;
2591   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2592   if (Opt.empty())
2593     return;
2594   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2595   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2596 }
2597 
2598 void CodeGenModule::AddDependentLib(StringRef Lib) {
2599   auto &C = getLLVMContext();
2600   if (getTarget().getTriple().isOSBinFormatELF()) {
2601       ELFDependentLibraries.push_back(
2602         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2603     return;
2604   }
2605 
2606   llvm::SmallString<24> Opt;
2607   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2608   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2609   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2610 }
2611 
2612 /// Add link options implied by the given module, including modules
2613 /// it depends on, using a postorder walk.
2614 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2615                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2616                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2617   // Import this module's parent.
2618   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2619     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2620   }
2621 
2622   // Import this module's dependencies.
2623   for (Module *Import : llvm::reverse(Mod->Imports)) {
2624     if (Visited.insert(Import).second)
2625       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2626   }
2627 
2628   // Add linker options to link against the libraries/frameworks
2629   // described by this module.
2630   llvm::LLVMContext &Context = CGM.getLLVMContext();
2631   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2632 
2633   // For modules that use export_as for linking, use that module
2634   // name instead.
2635   if (Mod->UseExportAsModuleLinkName)
2636     return;
2637 
2638   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2639     // Link against a framework.  Frameworks are currently Darwin only, so we
2640     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2641     if (LL.IsFramework) {
2642       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2643                                  llvm::MDString::get(Context, LL.Library)};
2644 
2645       Metadata.push_back(llvm::MDNode::get(Context, Args));
2646       continue;
2647     }
2648 
2649     // Link against a library.
2650     if (IsELF) {
2651       llvm::Metadata *Args[2] = {
2652           llvm::MDString::get(Context, "lib"),
2653           llvm::MDString::get(Context, LL.Library),
2654       };
2655       Metadata.push_back(llvm::MDNode::get(Context, Args));
2656     } else {
2657       llvm::SmallString<24> Opt;
2658       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2659       auto *OptString = llvm::MDString::get(Context, Opt);
2660       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2661     }
2662   }
2663 }
2664 
2665 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2666   // Emit the initializers in the order that sub-modules appear in the
2667   // source, first Global Module Fragments, if present.
2668   if (auto GMF = Primary->getGlobalModuleFragment()) {
2669     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2670       if (isa<ImportDecl>(D))
2671         continue;
2672       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2673       EmitTopLevelDecl(D);
2674     }
2675   }
2676   // Second any associated with the module, itself.
2677   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2678     // Skip import decls, the inits for those are called explicitly.
2679     if (isa<ImportDecl>(D))
2680       continue;
2681     EmitTopLevelDecl(D);
2682   }
2683   // Third any associated with the Privat eMOdule Fragment, if present.
2684   if (auto PMF = Primary->getPrivateModuleFragment()) {
2685     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2686       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2687       EmitTopLevelDecl(D);
2688     }
2689   }
2690 }
2691 
2692 void CodeGenModule::EmitModuleLinkOptions() {
2693   // Collect the set of all of the modules we want to visit to emit link
2694   // options, which is essentially the imported modules and all of their
2695   // non-explicit child modules.
2696   llvm::SetVector<clang::Module *> LinkModules;
2697   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2698   SmallVector<clang::Module *, 16> Stack;
2699 
2700   // Seed the stack with imported modules.
2701   for (Module *M : ImportedModules) {
2702     // Do not add any link flags when an implementation TU of a module imports
2703     // a header of that same module.
2704     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2705         !getLangOpts().isCompilingModule())
2706       continue;
2707     if (Visited.insert(M).second)
2708       Stack.push_back(M);
2709   }
2710 
2711   // Find all of the modules to import, making a little effort to prune
2712   // non-leaf modules.
2713   while (!Stack.empty()) {
2714     clang::Module *Mod = Stack.pop_back_val();
2715 
2716     bool AnyChildren = false;
2717 
2718     // Visit the submodules of this module.
2719     for (const auto &SM : Mod->submodules()) {
2720       // Skip explicit children; they need to be explicitly imported to be
2721       // linked against.
2722       if (SM->IsExplicit)
2723         continue;
2724 
2725       if (Visited.insert(SM).second) {
2726         Stack.push_back(SM);
2727         AnyChildren = true;
2728       }
2729     }
2730 
2731     // We didn't find any children, so add this module to the list of
2732     // modules to link against.
2733     if (!AnyChildren) {
2734       LinkModules.insert(Mod);
2735     }
2736   }
2737 
2738   // Add link options for all of the imported modules in reverse topological
2739   // order.  We don't do anything to try to order import link flags with respect
2740   // to linker options inserted by things like #pragma comment().
2741   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2742   Visited.clear();
2743   for (Module *M : LinkModules)
2744     if (Visited.insert(M).second)
2745       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2746   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2747   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2748 
2749   // Add the linker options metadata flag.
2750   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2751   for (auto *MD : LinkerOptionsMetadata)
2752     NMD->addOperand(MD);
2753 }
2754 
2755 void CodeGenModule::EmitDeferred() {
2756   // Emit deferred declare target declarations.
2757   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2758     getOpenMPRuntime().emitDeferredTargetDecls();
2759 
2760   // Emit code for any potentially referenced deferred decls.  Since a
2761   // previously unused static decl may become used during the generation of code
2762   // for a static function, iterate until no changes are made.
2763 
2764   if (!DeferredVTables.empty()) {
2765     EmitDeferredVTables();
2766 
2767     // Emitting a vtable doesn't directly cause more vtables to
2768     // become deferred, although it can cause functions to be
2769     // emitted that then need those vtables.
2770     assert(DeferredVTables.empty());
2771   }
2772 
2773   // Emit CUDA/HIP static device variables referenced by host code only.
2774   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2775   // needed for further handling.
2776   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2777     llvm::append_range(DeferredDeclsToEmit,
2778                        getContext().CUDADeviceVarODRUsedByHost);
2779 
2780   // Stop if we're out of both deferred vtables and deferred declarations.
2781   if (DeferredDeclsToEmit.empty())
2782     return;
2783 
2784   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2785   // work, it will not interfere with this.
2786   std::vector<GlobalDecl> CurDeclsToEmit;
2787   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2788 
2789   for (GlobalDecl &D : CurDeclsToEmit) {
2790     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2791     // to get GlobalValue with exactly the type we need, not something that
2792     // might had been created for another decl with the same mangled name but
2793     // different type.
2794     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2795         GetAddrOfGlobal(D, ForDefinition));
2796 
2797     // In case of different address spaces, we may still get a cast, even with
2798     // IsForDefinition equal to true. Query mangled names table to get
2799     // GlobalValue.
2800     if (!GV)
2801       GV = GetGlobalValue(getMangledName(D));
2802 
2803     // Make sure GetGlobalValue returned non-null.
2804     assert(GV);
2805 
2806     // Check to see if we've already emitted this.  This is necessary
2807     // for a couple of reasons: first, decls can end up in the
2808     // deferred-decls queue multiple times, and second, decls can end
2809     // up with definitions in unusual ways (e.g. by an extern inline
2810     // function acquiring a strong function redefinition).  Just
2811     // ignore these cases.
2812     if (!GV->isDeclaration())
2813       continue;
2814 
2815     // If this is OpenMP, check if it is legal to emit this global normally.
2816     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2817       continue;
2818 
2819     // Otherwise, emit the definition and move on to the next one.
2820     EmitGlobalDefinition(D, GV);
2821 
2822     // If we found out that we need to emit more decls, do that recursively.
2823     // This has the advantage that the decls are emitted in a DFS and related
2824     // ones are close together, which is convenient for testing.
2825     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2826       EmitDeferred();
2827       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2828     }
2829   }
2830 }
2831 
2832 void CodeGenModule::EmitVTablesOpportunistically() {
2833   // Try to emit external vtables as available_externally if they have emitted
2834   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2835   // is not allowed to create new references to things that need to be emitted
2836   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2837 
2838   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2839          && "Only emit opportunistic vtables with optimizations");
2840 
2841   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2842     assert(getVTables().isVTableExternal(RD) &&
2843            "This queue should only contain external vtables");
2844     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2845       VTables.GenerateClassData(RD);
2846   }
2847   OpportunisticVTables.clear();
2848 }
2849 
2850 void CodeGenModule::EmitGlobalAnnotations() {
2851   if (Annotations.empty())
2852     return;
2853 
2854   // Create a new global variable for the ConstantStruct in the Module.
2855   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2856     Annotations[0]->getType(), Annotations.size()), Annotations);
2857   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2858                                       llvm::GlobalValue::AppendingLinkage,
2859                                       Array, "llvm.global.annotations");
2860   gv->setSection(AnnotationSection);
2861 }
2862 
2863 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2864   llvm::Constant *&AStr = AnnotationStrings[Str];
2865   if (AStr)
2866     return AStr;
2867 
2868   // Not found yet, create a new global.
2869   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2870   auto *gv = new llvm::GlobalVariable(
2871       getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
2872       ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
2873       ConstGlobalsPtrTy->getAddressSpace());
2874   gv->setSection(AnnotationSection);
2875   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2876   AStr = gv;
2877   return gv;
2878 }
2879 
2880 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2881   SourceManager &SM = getContext().getSourceManager();
2882   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2883   if (PLoc.isValid())
2884     return EmitAnnotationString(PLoc.getFilename());
2885   return EmitAnnotationString(SM.getBufferName(Loc));
2886 }
2887 
2888 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2889   SourceManager &SM = getContext().getSourceManager();
2890   PresumedLoc PLoc = SM.getPresumedLoc(L);
2891   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2892     SM.getExpansionLineNumber(L);
2893   return llvm::ConstantInt::get(Int32Ty, LineNo);
2894 }
2895 
2896 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2897   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2898   if (Exprs.empty())
2899     return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
2900 
2901   llvm::FoldingSetNodeID ID;
2902   for (Expr *E : Exprs) {
2903     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2904   }
2905   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2906   if (Lookup)
2907     return Lookup;
2908 
2909   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2910   LLVMArgs.reserve(Exprs.size());
2911   ConstantEmitter ConstEmiter(*this);
2912   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2913     const auto *CE = cast<clang::ConstantExpr>(E);
2914     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2915                                     CE->getType());
2916   });
2917   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2918   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2919                                       llvm::GlobalValue::PrivateLinkage, Struct,
2920                                       ".args");
2921   GV->setSection(AnnotationSection);
2922   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2923   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2924 
2925   Lookup = Bitcasted;
2926   return Bitcasted;
2927 }
2928 
2929 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2930                                                 const AnnotateAttr *AA,
2931                                                 SourceLocation L) {
2932   // Get the globals for file name, annotation, and the line number.
2933   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2934                  *UnitGV = EmitAnnotationUnit(L),
2935                  *LineNoCst = EmitAnnotationLineNo(L),
2936                  *Args = EmitAnnotationArgs(AA);
2937 
2938   llvm::Constant *GVInGlobalsAS = GV;
2939   if (GV->getAddressSpace() !=
2940       getDataLayout().getDefaultGlobalsAddressSpace()) {
2941     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2942         GV, GV->getValueType()->getPointerTo(
2943                 getDataLayout().getDefaultGlobalsAddressSpace()));
2944   }
2945 
2946   // Create the ConstantStruct for the global annotation.
2947   llvm::Constant *Fields[] = {
2948       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2949       llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
2950       llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
2951       LineNoCst,
2952       Args,
2953   };
2954   return llvm::ConstantStruct::getAnon(Fields);
2955 }
2956 
2957 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2958                                          llvm::GlobalValue *GV) {
2959   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2960   // Get the struct elements for these annotations.
2961   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2962     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2963 }
2964 
2965 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2966                                        SourceLocation Loc) const {
2967   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2968   // NoSanitize by function name.
2969   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2970     return true;
2971   // NoSanitize by location. Check "mainfile" prefix.
2972   auto &SM = Context.getSourceManager();
2973   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2974   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2975     return true;
2976 
2977   // Check "src" prefix.
2978   if (Loc.isValid())
2979     return NoSanitizeL.containsLocation(Kind, Loc);
2980   // If location is unknown, this may be a compiler-generated function. Assume
2981   // it's located in the main file.
2982   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2983 }
2984 
2985 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2986                                        llvm::GlobalVariable *GV,
2987                                        SourceLocation Loc, QualType Ty,
2988                                        StringRef Category) const {
2989   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2990   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2991     return true;
2992   auto &SM = Context.getSourceManager();
2993   if (NoSanitizeL.containsMainFile(
2994           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2995     return true;
2996   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2997     return true;
2998 
2999   // Check global type.
3000   if (!Ty.isNull()) {
3001     // Drill down the array types: if global variable of a fixed type is
3002     // not sanitized, we also don't instrument arrays of them.
3003     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3004       Ty = AT->getElementType();
3005     Ty = Ty.getCanonicalType().getUnqualifiedType();
3006     // Only record types (classes, structs etc.) are ignored.
3007     if (Ty->isRecordType()) {
3008       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3009       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3010         return true;
3011     }
3012   }
3013   return false;
3014 }
3015 
3016 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3017                                    StringRef Category) const {
3018   const auto &XRayFilter = getContext().getXRayFilter();
3019   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3020   auto Attr = ImbueAttr::NONE;
3021   if (Loc.isValid())
3022     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3023   if (Attr == ImbueAttr::NONE)
3024     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3025   switch (Attr) {
3026   case ImbueAttr::NONE:
3027     return false;
3028   case ImbueAttr::ALWAYS:
3029     Fn->addFnAttr("function-instrument", "xray-always");
3030     break;
3031   case ImbueAttr::ALWAYS_ARG1:
3032     Fn->addFnAttr("function-instrument", "xray-always");
3033     Fn->addFnAttr("xray-log-args", "1");
3034     break;
3035   case ImbueAttr::NEVER:
3036     Fn->addFnAttr("function-instrument", "xray-never");
3037     break;
3038   }
3039   return true;
3040 }
3041 
3042 ProfileList::ExclusionType
3043 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3044                                               SourceLocation Loc) const {
3045   const auto &ProfileList = getContext().getProfileList();
3046   // If the profile list is empty, then instrument everything.
3047   if (ProfileList.isEmpty())
3048     return ProfileList::Allow;
3049   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3050   // First, check the function name.
3051   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3052     return *V;
3053   // Next, check the source location.
3054   if (Loc.isValid())
3055     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3056       return *V;
3057   // If location is unknown, this may be a compiler-generated function. Assume
3058   // it's located in the main file.
3059   auto &SM = Context.getSourceManager();
3060   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
3061     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3062       return *V;
3063   return ProfileList.getDefault(Kind);
3064 }
3065 
3066 ProfileList::ExclusionType
3067 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3068                                                  SourceLocation Loc) const {
3069   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3070   if (V != ProfileList::Allow)
3071     return V;
3072 
3073   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3074   if (NumGroups > 1) {
3075     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3076     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3077       return ProfileList::Skip;
3078   }
3079   return ProfileList::Allow;
3080 }
3081 
3082 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3083   // Never defer when EmitAllDecls is specified.
3084   if (LangOpts.EmitAllDecls)
3085     return true;
3086 
3087   if (CodeGenOpts.KeepStaticConsts) {
3088     const auto *VD = dyn_cast<VarDecl>(Global);
3089     if (VD && VD->getType().isConstQualified() &&
3090         VD->getStorageDuration() == SD_Static)
3091       return true;
3092   }
3093 
3094   return getContext().DeclMustBeEmitted(Global);
3095 }
3096 
3097 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3098   // In OpenMP 5.0 variables and function may be marked as
3099   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3100   // that they must be emitted on the host/device. To be sure we need to have
3101   // seen a declare target with an explicit mentioning of the function, we know
3102   // we have if the level of the declare target attribute is -1. Note that we
3103   // check somewhere else if we should emit this at all.
3104   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3105     std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3106         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3107     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3108       return false;
3109   }
3110 
3111   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3112     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3113       // Implicit template instantiations may change linkage if they are later
3114       // explicitly instantiated, so they should not be emitted eagerly.
3115       return false;
3116   }
3117   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3118     if (Context.getInlineVariableDefinitionKind(VD) ==
3119         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3120       // A definition of an inline constexpr static data member may change
3121       // linkage later if it's redeclared outside the class.
3122       return false;
3123     if (CXX20ModuleInits && VD->getOwningModule() &&
3124         !VD->getOwningModule()->isModuleMapModule()) {
3125       // For CXX20, module-owned initializers need to be deferred, since it is
3126       // not known at this point if they will be run for the current module or
3127       // as part of the initializer for an imported one.
3128       return false;
3129     }
3130   }
3131   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3132   // codegen for global variables, because they may be marked as threadprivate.
3133   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3134       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3135       !isTypeConstant(Global->getType(), false, false) &&
3136       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3137     return false;
3138 
3139   return true;
3140 }
3141 
3142 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3143   StringRef Name = getMangledName(GD);
3144 
3145   // The UUID descriptor should be pointer aligned.
3146   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3147 
3148   // Look for an existing global.
3149   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3150     return ConstantAddress(GV, GV->getValueType(), Alignment);
3151 
3152   ConstantEmitter Emitter(*this);
3153   llvm::Constant *Init;
3154 
3155   APValue &V = GD->getAsAPValue();
3156   if (!V.isAbsent()) {
3157     // If possible, emit the APValue version of the initializer. In particular,
3158     // this gets the type of the constant right.
3159     Init = Emitter.emitForInitializer(
3160         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3161   } else {
3162     // As a fallback, directly construct the constant.
3163     // FIXME: This may get padding wrong under esoteric struct layout rules.
3164     // MSVC appears to create a complete type 'struct __s_GUID' that it
3165     // presumably uses to represent these constants.
3166     MSGuidDecl::Parts Parts = GD->getParts();
3167     llvm::Constant *Fields[4] = {
3168         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3169         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3170         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3171         llvm::ConstantDataArray::getRaw(
3172             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3173             Int8Ty)};
3174     Init = llvm::ConstantStruct::getAnon(Fields);
3175   }
3176 
3177   auto *GV = new llvm::GlobalVariable(
3178       getModule(), Init->getType(),
3179       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3180   if (supportsCOMDAT())
3181     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3182   setDSOLocal(GV);
3183 
3184   if (!V.isAbsent()) {
3185     Emitter.finalize(GV);
3186     return ConstantAddress(GV, GV->getValueType(), Alignment);
3187   }
3188 
3189   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3190   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3191       GV, Ty->getPointerTo(GV->getAddressSpace()));
3192   return ConstantAddress(Addr, Ty, Alignment);
3193 }
3194 
3195 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3196     const UnnamedGlobalConstantDecl *GCD) {
3197   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3198 
3199   llvm::GlobalVariable **Entry = nullptr;
3200   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3201   if (*Entry)
3202     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3203 
3204   ConstantEmitter Emitter(*this);
3205   llvm::Constant *Init;
3206 
3207   const APValue &V = GCD->getValue();
3208 
3209   assert(!V.isAbsent());
3210   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3211                                     GCD->getType());
3212 
3213   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3214                                       /*isConstant=*/true,
3215                                       llvm::GlobalValue::PrivateLinkage, Init,
3216                                       ".constant");
3217   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3218   GV->setAlignment(Alignment.getAsAlign());
3219 
3220   Emitter.finalize(GV);
3221 
3222   *Entry = GV;
3223   return ConstantAddress(GV, GV->getValueType(), Alignment);
3224 }
3225 
3226 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3227     const TemplateParamObjectDecl *TPO) {
3228   StringRef Name = getMangledName(TPO);
3229   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3230 
3231   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3232     return ConstantAddress(GV, GV->getValueType(), Alignment);
3233 
3234   ConstantEmitter Emitter(*this);
3235   llvm::Constant *Init = Emitter.emitForInitializer(
3236         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3237 
3238   if (!Init) {
3239     ErrorUnsupported(TPO, "template parameter object");
3240     return ConstantAddress::invalid();
3241   }
3242 
3243   llvm::GlobalValue::LinkageTypes Linkage =
3244       isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3245           ? llvm::GlobalValue::LinkOnceODRLinkage
3246           : llvm::GlobalValue::InternalLinkage;
3247   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3248                                       /*isConstant=*/true, Linkage, Init, Name);
3249   setGVProperties(GV, TPO);
3250   if (supportsCOMDAT())
3251     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3252   Emitter.finalize(GV);
3253 
3254   return ConstantAddress(GV, GV->getValueType(), Alignment);
3255 }
3256 
3257 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3258   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3259   assert(AA && "No alias?");
3260 
3261   CharUnits Alignment = getContext().getDeclAlign(VD);
3262   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3263 
3264   // See if there is already something with the target's name in the module.
3265   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3266   if (Entry) {
3267     unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
3268     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3269     return ConstantAddress(Ptr, DeclTy, Alignment);
3270   }
3271 
3272   llvm::Constant *Aliasee;
3273   if (isa<llvm::FunctionType>(DeclTy))
3274     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3275                                       GlobalDecl(cast<FunctionDecl>(VD)),
3276                                       /*ForVTable=*/false);
3277   else
3278     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3279                                     nullptr);
3280 
3281   auto *F = cast<llvm::GlobalValue>(Aliasee);
3282   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3283   WeakRefReferences.insert(F);
3284 
3285   return ConstantAddress(Aliasee, DeclTy, Alignment);
3286 }
3287 
3288 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3289   const auto *Global = cast<ValueDecl>(GD.getDecl());
3290 
3291   // Weak references don't produce any output by themselves.
3292   if (Global->hasAttr<WeakRefAttr>())
3293     return;
3294 
3295   // If this is an alias definition (which otherwise looks like a declaration)
3296   // emit it now.
3297   if (Global->hasAttr<AliasAttr>())
3298     return EmitAliasDefinition(GD);
3299 
3300   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3301   if (Global->hasAttr<IFuncAttr>())
3302     return emitIFuncDefinition(GD);
3303 
3304   // If this is a cpu_dispatch multiversion function, emit the resolver.
3305   if (Global->hasAttr<CPUDispatchAttr>())
3306     return emitCPUDispatchDefinition(GD);
3307 
3308   // If this is CUDA, be selective about which declarations we emit.
3309   if (LangOpts.CUDA) {
3310     if (LangOpts.CUDAIsDevice) {
3311       if (!Global->hasAttr<CUDADeviceAttr>() &&
3312           !Global->hasAttr<CUDAGlobalAttr>() &&
3313           !Global->hasAttr<CUDAConstantAttr>() &&
3314           !Global->hasAttr<CUDASharedAttr>() &&
3315           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3316           !Global->getType()->isCUDADeviceBuiltinTextureType())
3317         return;
3318     } else {
3319       // We need to emit host-side 'shadows' for all global
3320       // device-side variables because the CUDA runtime needs their
3321       // size and host-side address in order to provide access to
3322       // their device-side incarnations.
3323 
3324       // So device-only functions are the only things we skip.
3325       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3326           Global->hasAttr<CUDADeviceAttr>())
3327         return;
3328 
3329       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3330              "Expected Variable or Function");
3331     }
3332   }
3333 
3334   if (LangOpts.OpenMP) {
3335     // If this is OpenMP, check if it is legal to emit this global normally.
3336     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3337       return;
3338     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3339       if (MustBeEmitted(Global))
3340         EmitOMPDeclareReduction(DRD);
3341       return;
3342     }
3343     if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3344       if (MustBeEmitted(Global))
3345         EmitOMPDeclareMapper(DMD);
3346       return;
3347     }
3348   }
3349 
3350   // Ignore declarations, they will be emitted on their first use.
3351   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3352     // Forward declarations are emitted lazily on first use.
3353     if (!FD->doesThisDeclarationHaveABody()) {
3354       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3355         return;
3356 
3357       StringRef MangledName = getMangledName(GD);
3358 
3359       // Compute the function info and LLVM type.
3360       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3361       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3362 
3363       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3364                               /*DontDefer=*/false);
3365       return;
3366     }
3367   } else {
3368     const auto *VD = cast<VarDecl>(Global);
3369     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3370     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3371         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3372       if (LangOpts.OpenMP) {
3373         // Emit declaration of the must-be-emitted declare target variable.
3374         if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3375                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3376           bool UnifiedMemoryEnabled =
3377               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3378           if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3379                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3380               !UnifiedMemoryEnabled) {
3381             (void)GetAddrOfGlobalVar(VD);
3382           } else {
3383             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3384                     ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3385                       *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3386                      UnifiedMemoryEnabled)) &&
3387                    "Link clause or to clause with unified memory expected.");
3388             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3389           }
3390 
3391           return;
3392         }
3393       }
3394       // If this declaration may have caused an inline variable definition to
3395       // change linkage, make sure that it's emitted.
3396       if (Context.getInlineVariableDefinitionKind(VD) ==
3397           ASTContext::InlineVariableDefinitionKind::Strong)
3398         GetAddrOfGlobalVar(VD);
3399       return;
3400     }
3401   }
3402 
3403   // Defer code generation to first use when possible, e.g. if this is an inline
3404   // function. If the global must always be emitted, do it eagerly if possible
3405   // to benefit from cache locality.
3406   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3407     // Emit the definition if it can't be deferred.
3408     EmitGlobalDefinition(GD);
3409     return;
3410   }
3411 
3412   // If we're deferring emission of a C++ variable with an
3413   // initializer, remember the order in which it appeared in the file.
3414   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3415       cast<VarDecl>(Global)->hasInit()) {
3416     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3417     CXXGlobalInits.push_back(nullptr);
3418   }
3419 
3420   StringRef MangledName = getMangledName(GD);
3421   if (GetGlobalValue(MangledName) != nullptr) {
3422     // The value has already been used and should therefore be emitted.
3423     addDeferredDeclToEmit(GD);
3424   } else if (MustBeEmitted(Global)) {
3425     // The value must be emitted, but cannot be emitted eagerly.
3426     assert(!MayBeEmittedEagerly(Global));
3427     addDeferredDeclToEmit(GD);
3428     EmittedDeferredDecls[MangledName] = GD;
3429   } else {
3430     // Otherwise, remember that we saw a deferred decl with this name.  The
3431     // first use of the mangled name will cause it to move into
3432     // DeferredDeclsToEmit.
3433     DeferredDecls[MangledName] = GD;
3434   }
3435 }
3436 
3437 // Check if T is a class type with a destructor that's not dllimport.
3438 static bool HasNonDllImportDtor(QualType T) {
3439   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3440     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3441       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3442         return true;
3443 
3444   return false;
3445 }
3446 
3447 namespace {
3448   struct FunctionIsDirectlyRecursive
3449       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3450     const StringRef Name;
3451     const Builtin::Context &BI;
3452     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3453         : Name(N), BI(C) {}
3454 
3455     bool VisitCallExpr(const CallExpr *E) {
3456       const FunctionDecl *FD = E->getDirectCallee();
3457       if (!FD)
3458         return false;
3459       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3460       if (Attr && Name == Attr->getLabel())
3461         return true;
3462       unsigned BuiltinID = FD->getBuiltinID();
3463       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3464         return false;
3465       StringRef BuiltinName = BI.getName(BuiltinID);
3466       if (BuiltinName.startswith("__builtin_") &&
3467           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3468         return true;
3469       }
3470       return false;
3471     }
3472 
3473     bool VisitStmt(const Stmt *S) {
3474       for (const Stmt *Child : S->children())
3475         if (Child && this->Visit(Child))
3476           return true;
3477       return false;
3478     }
3479   };
3480 
3481   // Make sure we're not referencing non-imported vars or functions.
3482   struct DLLImportFunctionVisitor
3483       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3484     bool SafeToInline = true;
3485 
3486     bool shouldVisitImplicitCode() const { return true; }
3487 
3488     bool VisitVarDecl(VarDecl *VD) {
3489       if (VD->getTLSKind()) {
3490         // A thread-local variable cannot be imported.
3491         SafeToInline = false;
3492         return SafeToInline;
3493       }
3494 
3495       // A variable definition might imply a destructor call.
3496       if (VD->isThisDeclarationADefinition())
3497         SafeToInline = !HasNonDllImportDtor(VD->getType());
3498 
3499       return SafeToInline;
3500     }
3501 
3502     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3503       if (const auto *D = E->getTemporary()->getDestructor())
3504         SafeToInline = D->hasAttr<DLLImportAttr>();
3505       return SafeToInline;
3506     }
3507 
3508     bool VisitDeclRefExpr(DeclRefExpr *E) {
3509       ValueDecl *VD = E->getDecl();
3510       if (isa<FunctionDecl>(VD))
3511         SafeToInline = VD->hasAttr<DLLImportAttr>();
3512       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3513         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3514       return SafeToInline;
3515     }
3516 
3517     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3518       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3519       return SafeToInline;
3520     }
3521 
3522     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3523       CXXMethodDecl *M = E->getMethodDecl();
3524       if (!M) {
3525         // Call through a pointer to member function. This is safe to inline.
3526         SafeToInline = true;
3527       } else {
3528         SafeToInline = M->hasAttr<DLLImportAttr>();
3529       }
3530       return SafeToInline;
3531     }
3532 
3533     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3534       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3535       return SafeToInline;
3536     }
3537 
3538     bool VisitCXXNewExpr(CXXNewExpr *E) {
3539       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3540       return SafeToInline;
3541     }
3542   };
3543 }
3544 
3545 // isTriviallyRecursive - Check if this function calls another
3546 // decl that, because of the asm attribute or the other decl being a builtin,
3547 // ends up pointing to itself.
3548 bool
3549 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3550   StringRef Name;
3551   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3552     // asm labels are a special kind of mangling we have to support.
3553     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3554     if (!Attr)
3555       return false;
3556     Name = Attr->getLabel();
3557   } else {
3558     Name = FD->getName();
3559   }
3560 
3561   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3562   const Stmt *Body = FD->getBody();
3563   return Body ? Walker.Visit(Body) : false;
3564 }
3565 
3566 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3567   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3568     return true;
3569   const auto *F = cast<FunctionDecl>(GD.getDecl());
3570   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3571     return false;
3572 
3573   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3574     // Check whether it would be safe to inline this dllimport function.
3575     DLLImportFunctionVisitor Visitor;
3576     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3577     if (!Visitor.SafeToInline)
3578       return false;
3579 
3580     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3581       // Implicit destructor invocations aren't captured in the AST, so the
3582       // check above can't see them. Check for them manually here.
3583       for (const Decl *Member : Dtor->getParent()->decls())
3584         if (isa<FieldDecl>(Member))
3585           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3586             return false;
3587       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3588         if (HasNonDllImportDtor(B.getType()))
3589           return false;
3590     }
3591   }
3592 
3593   // Inline builtins declaration must be emitted. They often are fortified
3594   // functions.
3595   if (F->isInlineBuiltinDeclaration())
3596     return true;
3597 
3598   // PR9614. Avoid cases where the source code is lying to us. An available
3599   // externally function should have an equivalent function somewhere else,
3600   // but a function that calls itself through asm label/`__builtin_` trickery is
3601   // clearly not equivalent to the real implementation.
3602   // This happens in glibc's btowc and in some configure checks.
3603   return !isTriviallyRecursive(F);
3604 }
3605 
3606 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3607   return CodeGenOpts.OptimizationLevel > 0;
3608 }
3609 
3610 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3611                                                        llvm::GlobalValue *GV) {
3612   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3613 
3614   if (FD->isCPUSpecificMultiVersion()) {
3615     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3616     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3617       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3618   } else if (FD->isTargetClonesMultiVersion()) {
3619     auto *Clone = FD->getAttr<TargetClonesAttr>();
3620     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3621       if (Clone->isFirstOfVersion(I))
3622         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3623     // Ensure that the resolver function is also emitted.
3624     GetOrCreateMultiVersionResolver(GD);
3625   } else
3626     EmitGlobalFunctionDefinition(GD, GV);
3627 }
3628 
3629 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3630   const auto *D = cast<ValueDecl>(GD.getDecl());
3631 
3632   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3633                                  Context.getSourceManager(),
3634                                  "Generating code for declaration");
3635 
3636   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3637     // At -O0, don't generate IR for functions with available_externally
3638     // linkage.
3639     if (!shouldEmitFunction(GD))
3640       return;
3641 
3642     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3643       std::string Name;
3644       llvm::raw_string_ostream OS(Name);
3645       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3646                                /*Qualified=*/true);
3647       return Name;
3648     });
3649 
3650     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3651       // Make sure to emit the definition(s) before we emit the thunks.
3652       // This is necessary for the generation of certain thunks.
3653       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3654         ABI->emitCXXStructor(GD);
3655       else if (FD->isMultiVersion())
3656         EmitMultiVersionFunctionDefinition(GD, GV);
3657       else
3658         EmitGlobalFunctionDefinition(GD, GV);
3659 
3660       if (Method->isVirtual())
3661         getVTables().EmitThunks(GD);
3662 
3663       return;
3664     }
3665 
3666     if (FD->isMultiVersion())
3667       return EmitMultiVersionFunctionDefinition(GD, GV);
3668     return EmitGlobalFunctionDefinition(GD, GV);
3669   }
3670 
3671   if (const auto *VD = dyn_cast<VarDecl>(D))
3672     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3673 
3674   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3675 }
3676 
3677 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3678                                                       llvm::Function *NewFn);
3679 
3680 static unsigned
3681 TargetMVPriority(const TargetInfo &TI,
3682                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3683   unsigned Priority = 0;
3684   unsigned NumFeatures = 0;
3685   for (StringRef Feat : RO.Conditions.Features) {
3686     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3687     NumFeatures++;
3688   }
3689 
3690   if (!RO.Conditions.Architecture.empty())
3691     Priority = std::max(
3692         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3693 
3694   Priority += TI.multiVersionFeatureCost() * NumFeatures;
3695 
3696   return Priority;
3697 }
3698 
3699 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3700 // TU can forward declare the function without causing problems.  Particularly
3701 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3702 // work with internal linkage functions, so that the same function name can be
3703 // used with internal linkage in multiple TUs.
3704 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3705                                                        GlobalDecl GD) {
3706   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3707   if (FD->getFormalLinkage() == InternalLinkage)
3708     return llvm::GlobalValue::InternalLinkage;
3709   return llvm::GlobalValue::WeakODRLinkage;
3710 }
3711 
3712 void CodeGenModule::emitMultiVersionFunctions() {
3713   std::vector<GlobalDecl> MVFuncsToEmit;
3714   MultiVersionFuncs.swap(MVFuncsToEmit);
3715   for (GlobalDecl GD : MVFuncsToEmit) {
3716     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3717     assert(FD && "Expected a FunctionDecl");
3718 
3719     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3720     if (FD->isTargetMultiVersion()) {
3721       getContext().forEachMultiversionedFunctionVersion(
3722           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3723             GlobalDecl CurGD{
3724                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3725             StringRef MangledName = getMangledName(CurGD);
3726             llvm::Constant *Func = GetGlobalValue(MangledName);
3727             if (!Func) {
3728               if (CurFD->isDefined()) {
3729                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3730                 Func = GetGlobalValue(MangledName);
3731               } else {
3732                 const CGFunctionInfo &FI =
3733                     getTypes().arrangeGlobalDeclaration(GD);
3734                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3735                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3736                                          /*DontDefer=*/false, ForDefinition);
3737               }
3738               assert(Func && "This should have just been created");
3739             }
3740             if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
3741               const auto *TA = CurFD->getAttr<TargetAttr>();
3742               llvm::SmallVector<StringRef, 8> Feats;
3743               TA->getAddedFeatures(Feats);
3744               Options.emplace_back(cast<llvm::Function>(Func),
3745                                    TA->getArchitecture(), Feats);
3746             } else {
3747               const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
3748               llvm::SmallVector<StringRef, 8> Feats;
3749               TVA->getFeatures(Feats);
3750               Options.emplace_back(cast<llvm::Function>(Func),
3751                                    /*Architecture*/ "", Feats);
3752             }
3753           });
3754     } else if (FD->isTargetClonesMultiVersion()) {
3755       const auto *TC = FD->getAttr<TargetClonesAttr>();
3756       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3757            ++VersionIndex) {
3758         if (!TC->isFirstOfVersion(VersionIndex))
3759           continue;
3760         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3761                          VersionIndex};
3762         StringRef Version = TC->getFeatureStr(VersionIndex);
3763         StringRef MangledName = getMangledName(CurGD);
3764         llvm::Constant *Func = GetGlobalValue(MangledName);
3765         if (!Func) {
3766           if (FD->isDefined()) {
3767             EmitGlobalFunctionDefinition(CurGD, nullptr);
3768             Func = GetGlobalValue(MangledName);
3769           } else {
3770             const CGFunctionInfo &FI =
3771                 getTypes().arrangeGlobalDeclaration(CurGD);
3772             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3773             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3774                                      /*DontDefer=*/false, ForDefinition);
3775           }
3776           assert(Func && "This should have just been created");
3777         }
3778 
3779         StringRef Architecture;
3780         llvm::SmallVector<StringRef, 1> Feature;
3781 
3782         if (getTarget().getTriple().isAArch64()) {
3783           if (Version != "default") {
3784             llvm::SmallVector<StringRef, 8> VerFeats;
3785             Version.split(VerFeats, "+");
3786             for (auto &CurFeat : VerFeats)
3787               Feature.push_back(CurFeat.trim());
3788           }
3789         } else {
3790           if (Version.startswith("arch="))
3791             Architecture = Version.drop_front(sizeof("arch=") - 1);
3792           else if (Version != "default")
3793             Feature.push_back(Version);
3794         }
3795 
3796         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3797       }
3798     } else {
3799       assert(0 && "Expected a target or target_clones multiversion function");
3800       continue;
3801     }
3802 
3803     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3804     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3805       ResolverConstant = IFunc->getResolver();
3806     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3807 
3808     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3809 
3810     if (supportsCOMDAT())
3811       ResolverFunc->setComdat(
3812           getModule().getOrInsertComdat(ResolverFunc->getName()));
3813 
3814     const TargetInfo &TI = getTarget();
3815     llvm::stable_sort(
3816         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3817                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3818           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3819         });
3820     CodeGenFunction CGF(*this);
3821     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3822   }
3823 
3824   // Ensure that any additions to the deferred decls list caused by emitting a
3825   // variant are emitted.  This can happen when the variant itself is inline and
3826   // calls a function without linkage.
3827   if (!MVFuncsToEmit.empty())
3828     EmitDeferred();
3829 
3830   // Ensure that any additions to the multiversion funcs list from either the
3831   // deferred decls or the multiversion functions themselves are emitted.
3832   if (!MultiVersionFuncs.empty())
3833     emitMultiVersionFunctions();
3834 }
3835 
3836 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3837   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3838   assert(FD && "Not a FunctionDecl?");
3839   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3840   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3841   assert(DD && "Not a cpu_dispatch Function?");
3842 
3843   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3844   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3845 
3846   StringRef ResolverName = getMangledName(GD);
3847   UpdateMultiVersionNames(GD, FD, ResolverName);
3848 
3849   llvm::Type *ResolverType;
3850   GlobalDecl ResolverGD;
3851   if (getTarget().supportsIFunc()) {
3852     ResolverType = llvm::FunctionType::get(
3853         llvm::PointerType::get(DeclTy,
3854                                getTypes().getTargetAddressSpace(FD->getType())),
3855         false);
3856   }
3857   else {
3858     ResolverType = DeclTy;
3859     ResolverGD = GD;
3860   }
3861 
3862   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3863       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3864   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3865   if (supportsCOMDAT())
3866     ResolverFunc->setComdat(
3867         getModule().getOrInsertComdat(ResolverFunc->getName()));
3868 
3869   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3870   const TargetInfo &Target = getTarget();
3871   unsigned Index = 0;
3872   for (const IdentifierInfo *II : DD->cpus()) {
3873     // Get the name of the target function so we can look it up/create it.
3874     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3875                               getCPUSpecificMangling(*this, II->getName());
3876 
3877     llvm::Constant *Func = GetGlobalValue(MangledName);
3878 
3879     if (!Func) {
3880       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3881       if (ExistingDecl.getDecl() &&
3882           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3883         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3884         Func = GetGlobalValue(MangledName);
3885       } else {
3886         if (!ExistingDecl.getDecl())
3887           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3888 
3889       Func = GetOrCreateLLVMFunction(
3890           MangledName, DeclTy, ExistingDecl,
3891           /*ForVTable=*/false, /*DontDefer=*/true,
3892           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3893       }
3894     }
3895 
3896     llvm::SmallVector<StringRef, 32> Features;
3897     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3898     llvm::transform(Features, Features.begin(),
3899                     [](StringRef Str) { return Str.substr(1); });
3900     llvm::erase_if(Features, [&Target](StringRef Feat) {
3901       return !Target.validateCpuSupports(Feat);
3902     });
3903     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3904     ++Index;
3905   }
3906 
3907   llvm::stable_sort(
3908       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3909                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3910         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3911                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3912       });
3913 
3914   // If the list contains multiple 'default' versions, such as when it contains
3915   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3916   // always run on at least a 'pentium'). We do this by deleting the 'least
3917   // advanced' (read, lowest mangling letter).
3918   while (Options.size() > 1 &&
3919          llvm::X86::getCpuSupportsMask(
3920              (Options.end() - 2)->Conditions.Features) == 0) {
3921     StringRef LHSName = (Options.end() - 2)->Function->getName();
3922     StringRef RHSName = (Options.end() - 1)->Function->getName();
3923     if (LHSName.compare(RHSName) < 0)
3924       Options.erase(Options.end() - 2);
3925     else
3926       Options.erase(Options.end() - 1);
3927   }
3928 
3929   CodeGenFunction CGF(*this);
3930   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3931 
3932   if (getTarget().supportsIFunc()) {
3933     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3934     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3935 
3936     // Fix up function declarations that were created for cpu_specific before
3937     // cpu_dispatch was known
3938     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3939       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3940       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3941                                            &getModule());
3942       GI->takeName(IFunc);
3943       IFunc->replaceAllUsesWith(GI);
3944       IFunc->eraseFromParent();
3945       IFunc = GI;
3946     }
3947 
3948     std::string AliasName = getMangledNameImpl(
3949         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3950     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3951     if (!AliasFunc) {
3952       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3953                                            &getModule());
3954       SetCommonAttributes(GD, GA);
3955     }
3956   }
3957 }
3958 
3959 /// If a dispatcher for the specified mangled name is not in the module, create
3960 /// and return an llvm Function with the specified type.
3961 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3962   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3963   assert(FD && "Not a FunctionDecl?");
3964 
3965   std::string MangledName =
3966       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3967 
3968   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3969   // a separate resolver).
3970   std::string ResolverName = MangledName;
3971   if (getTarget().supportsIFunc())
3972     ResolverName += ".ifunc";
3973   else if (FD->isTargetMultiVersion())
3974     ResolverName += ".resolver";
3975 
3976   // If the resolver has already been created, just return it.
3977   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3978     return ResolverGV;
3979 
3980   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3981   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3982 
3983   // The resolver needs to be created. For target and target_clones, defer
3984   // creation until the end of the TU.
3985   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3986     MultiVersionFuncs.push_back(GD);
3987 
3988   // For cpu_specific, don't create an ifunc yet because we don't know if the
3989   // cpu_dispatch will be emitted in this translation unit.
3990   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3991     llvm::Type *ResolverType = llvm::FunctionType::get(
3992         llvm::PointerType::get(DeclTy,
3993                                getTypes().getTargetAddressSpace(FD->getType())),
3994         false);
3995     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3996         MangledName + ".resolver", ResolverType, GlobalDecl{},
3997         /*ForVTable=*/false);
3998     llvm::GlobalIFunc *GIF =
3999         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4000                                   "", Resolver, &getModule());
4001     GIF->setName(ResolverName);
4002     SetCommonAttributes(FD, GIF);
4003 
4004     return GIF;
4005   }
4006 
4007   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4008       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4009   assert(isa<llvm::GlobalValue>(Resolver) &&
4010          "Resolver should be created for the first time");
4011   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4012   return Resolver;
4013 }
4014 
4015 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4016 /// module, create and return an llvm Function with the specified type. If there
4017 /// is something in the module with the specified name, return it potentially
4018 /// bitcasted to the right type.
4019 ///
4020 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4021 /// to set the attributes on the function when it is first created.
4022 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4023     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4024     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4025     ForDefinition_t IsForDefinition) {
4026   const Decl *D = GD.getDecl();
4027 
4028   // Any attempts to use a MultiVersion function should result in retrieving
4029   // the iFunc instead. Name Mangling will handle the rest of the changes.
4030   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4031     // For the device mark the function as one that should be emitted.
4032     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
4033         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4034         !DontDefer && !IsForDefinition) {
4035       if (const FunctionDecl *FDDef = FD->getDefinition()) {
4036         GlobalDecl GDDef;
4037         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4038           GDDef = GlobalDecl(CD, GD.getCtorType());
4039         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4040           GDDef = GlobalDecl(DD, GD.getDtorType());
4041         else
4042           GDDef = GlobalDecl(FDDef);
4043         EmitGlobal(GDDef);
4044       }
4045     }
4046 
4047     if (FD->isMultiVersion()) {
4048       UpdateMultiVersionNames(GD, FD, MangledName);
4049       if (!IsForDefinition)
4050         return GetOrCreateMultiVersionResolver(GD);
4051     }
4052   }
4053 
4054   // Lookup the entry, lazily creating it if necessary.
4055   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4056   if (Entry) {
4057     if (WeakRefReferences.erase(Entry)) {
4058       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4059       if (FD && !FD->hasAttr<WeakAttr>())
4060         Entry->setLinkage(llvm::Function::ExternalLinkage);
4061     }
4062 
4063     // Handle dropped DLL attributes.
4064     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4065         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4066       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4067       setDSOLocal(Entry);
4068     }
4069 
4070     // If there are two attempts to define the same mangled name, issue an
4071     // error.
4072     if (IsForDefinition && !Entry->isDeclaration()) {
4073       GlobalDecl OtherGD;
4074       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4075       // to make sure that we issue an error only once.
4076       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4077           (GD.getCanonicalDecl().getDecl() !=
4078            OtherGD.getCanonicalDecl().getDecl()) &&
4079           DiagnosedConflictingDefinitions.insert(GD).second) {
4080         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4081             << MangledName;
4082         getDiags().Report(OtherGD.getDecl()->getLocation(),
4083                           diag::note_previous_definition);
4084       }
4085     }
4086 
4087     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4088         (Entry->getValueType() == Ty)) {
4089       return Entry;
4090     }
4091 
4092     // Make sure the result is of the correct type.
4093     // (If function is requested for a definition, we always need to create a new
4094     // function, not just return a bitcast.)
4095     if (!IsForDefinition)
4096       return llvm::ConstantExpr::getBitCast(
4097           Entry, Ty->getPointerTo(Entry->getAddressSpace()));
4098   }
4099 
4100   // This function doesn't have a complete type (for example, the return
4101   // type is an incomplete struct). Use a fake type instead, and make
4102   // sure not to try to set attributes.
4103   bool IsIncompleteFunction = false;
4104 
4105   llvm::FunctionType *FTy;
4106   if (isa<llvm::FunctionType>(Ty)) {
4107     FTy = cast<llvm::FunctionType>(Ty);
4108   } else {
4109     FTy = llvm::FunctionType::get(VoidTy, false);
4110     IsIncompleteFunction = true;
4111   }
4112 
4113   llvm::Function *F =
4114       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4115                              Entry ? StringRef() : MangledName, &getModule());
4116 
4117   // If we already created a function with the same mangled name (but different
4118   // type) before, take its name and add it to the list of functions to be
4119   // replaced with F at the end of CodeGen.
4120   //
4121   // This happens if there is a prototype for a function (e.g. "int f()") and
4122   // then a definition of a different type (e.g. "int f(int x)").
4123   if (Entry) {
4124     F->takeName(Entry);
4125 
4126     // This might be an implementation of a function without a prototype, in
4127     // which case, try to do special replacement of calls which match the new
4128     // prototype.  The really key thing here is that we also potentially drop
4129     // arguments from the call site so as to make a direct call, which makes the
4130     // inliner happier and suppresses a number of optimizer warnings (!) about
4131     // dropping arguments.
4132     if (!Entry->use_empty()) {
4133       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4134       Entry->removeDeadConstantUsers();
4135     }
4136 
4137     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4138         F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
4139     addGlobalValReplacement(Entry, BC);
4140   }
4141 
4142   assert(F->getName() == MangledName && "name was uniqued!");
4143   if (D)
4144     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4145   if (ExtraAttrs.hasFnAttrs()) {
4146     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4147     F->addFnAttrs(B);
4148   }
4149 
4150   if (!DontDefer) {
4151     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4152     // each other bottoming out with the base dtor.  Therefore we emit non-base
4153     // dtors on usage, even if there is no dtor definition in the TU.
4154     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4155         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4156                                            GD.getDtorType()))
4157       addDeferredDeclToEmit(GD);
4158 
4159     // This is the first use or definition of a mangled name.  If there is a
4160     // deferred decl with this name, remember that we need to emit it at the end
4161     // of the file.
4162     auto DDI = DeferredDecls.find(MangledName);
4163     if (DDI != DeferredDecls.end()) {
4164       // Move the potentially referenced deferred decl to the
4165       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4166       // don't need it anymore).
4167       addDeferredDeclToEmit(DDI->second);
4168       EmittedDeferredDecls[DDI->first] = DDI->second;
4169       DeferredDecls.erase(DDI);
4170 
4171       // Otherwise, there are cases we have to worry about where we're
4172       // using a declaration for which we must emit a definition but where
4173       // we might not find a top-level definition:
4174       //   - member functions defined inline in their classes
4175       //   - friend functions defined inline in some class
4176       //   - special member functions with implicit definitions
4177       // If we ever change our AST traversal to walk into class methods,
4178       // this will be unnecessary.
4179       //
4180       // We also don't emit a definition for a function if it's going to be an
4181       // entry in a vtable, unless it's already marked as used.
4182     } else if (getLangOpts().CPlusPlus && D) {
4183       // Look for a declaration that's lexically in a record.
4184       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4185            FD = FD->getPreviousDecl()) {
4186         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4187           if (FD->doesThisDeclarationHaveABody()) {
4188             addDeferredDeclToEmit(GD.getWithDecl(FD));
4189             break;
4190           }
4191         }
4192       }
4193     }
4194   }
4195 
4196   // Make sure the result is of the requested type.
4197   if (!IsIncompleteFunction) {
4198     assert(F->getFunctionType() == Ty);
4199     return F;
4200   }
4201 
4202   return llvm::ConstantExpr::getBitCast(F,
4203                                         Ty->getPointerTo(F->getAddressSpace()));
4204 }
4205 
4206 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4207 /// non-null, then this function will use the specified type if it has to
4208 /// create it (this occurs when we see a definition of the function).
4209 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4210                                                  llvm::Type *Ty,
4211                                                  bool ForVTable,
4212                                                  bool DontDefer,
4213                                               ForDefinition_t IsForDefinition) {
4214   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4215          "consteval function should never be emitted");
4216   // If there was no specific requested type, just convert it now.
4217   if (!Ty) {
4218     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4219     Ty = getTypes().ConvertType(FD->getType());
4220   }
4221 
4222   // Devirtualized destructor calls may come through here instead of via
4223   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4224   // of the complete destructor when necessary.
4225   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4226     if (getTarget().getCXXABI().isMicrosoft() &&
4227         GD.getDtorType() == Dtor_Complete &&
4228         DD->getParent()->getNumVBases() == 0)
4229       GD = GlobalDecl(DD, Dtor_Base);
4230   }
4231 
4232   StringRef MangledName = getMangledName(GD);
4233   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4234                                     /*IsThunk=*/false, llvm::AttributeList(),
4235                                     IsForDefinition);
4236   // Returns kernel handle for HIP kernel stub function.
4237   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4238       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4239     auto *Handle = getCUDARuntime().getKernelHandle(
4240         cast<llvm::Function>(F->stripPointerCasts()), GD);
4241     if (IsForDefinition)
4242       return F;
4243     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4244   }
4245   return F;
4246 }
4247 
4248 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4249   llvm::GlobalValue *F =
4250       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4251 
4252   return llvm::ConstantExpr::getBitCast(
4253       llvm::NoCFIValue::get(F),
4254       llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
4255 }
4256 
4257 static const FunctionDecl *
4258 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4259   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4260   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4261 
4262   IdentifierInfo &CII = C.Idents.get(Name);
4263   for (const auto *Result : DC->lookup(&CII))
4264     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4265       return FD;
4266 
4267   if (!C.getLangOpts().CPlusPlus)
4268     return nullptr;
4269 
4270   // Demangle the premangled name from getTerminateFn()
4271   IdentifierInfo &CXXII =
4272       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4273           ? C.Idents.get("terminate")
4274           : C.Idents.get(Name);
4275 
4276   for (const auto &N : {"__cxxabiv1", "std"}) {
4277     IdentifierInfo &NS = C.Idents.get(N);
4278     for (const auto *Result : DC->lookup(&NS)) {
4279       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4280       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4281         for (const auto *Result : LSD->lookup(&NS))
4282           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4283             break;
4284 
4285       if (ND)
4286         for (const auto *Result : ND->lookup(&CXXII))
4287           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4288             return FD;
4289     }
4290   }
4291 
4292   return nullptr;
4293 }
4294 
4295 /// CreateRuntimeFunction - Create a new runtime function with the specified
4296 /// type and name.
4297 llvm::FunctionCallee
4298 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4299                                      llvm::AttributeList ExtraAttrs, bool Local,
4300                                      bool AssumeConvergent) {
4301   if (AssumeConvergent) {
4302     ExtraAttrs =
4303         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4304   }
4305 
4306   llvm::Constant *C =
4307       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4308                               /*DontDefer=*/false, /*IsThunk=*/false,
4309                               ExtraAttrs);
4310 
4311   if (auto *F = dyn_cast<llvm::Function>(C)) {
4312     if (F->empty()) {
4313       F->setCallingConv(getRuntimeCC());
4314 
4315       // In Windows Itanium environments, try to mark runtime functions
4316       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4317       // will link their standard library statically or dynamically. Marking
4318       // functions imported when they are not imported can cause linker errors
4319       // and warnings.
4320       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4321           !getCodeGenOpts().LTOVisibilityPublicStd) {
4322         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4323         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4324           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4325           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4326         }
4327       }
4328       setDSOLocal(F);
4329     }
4330   }
4331 
4332   return {FTy, C};
4333 }
4334 
4335 /// isTypeConstant - Determine whether an object of this type can be emitted
4336 /// as a constant.
4337 ///
4338 /// If ExcludeCtor is true, the duration when the object's constructor runs
4339 /// will not be considered. The caller will need to verify that the object is
4340 /// not written to during its construction. ExcludeDtor works similarly.
4341 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor,
4342                                    bool ExcludeDtor) {
4343   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4344     return false;
4345 
4346   if (Context.getLangOpts().CPlusPlus) {
4347     if (const CXXRecordDecl *Record
4348           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4349       return ExcludeCtor && !Record->hasMutableFields() &&
4350              (Record->hasTrivialDestructor() || ExcludeDtor);
4351   }
4352 
4353   return true;
4354 }
4355 
4356 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4357 /// create and return an llvm GlobalVariable with the specified type and address
4358 /// space. If there is something in the module with the specified name, return
4359 /// it potentially bitcasted to the right type.
4360 ///
4361 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4362 /// to set the attributes on the global when it is first created.
4363 ///
4364 /// If IsForDefinition is true, it is guaranteed that an actual global with
4365 /// type Ty will be returned, not conversion of a variable with the same
4366 /// mangled name but some other type.
4367 llvm::Constant *
4368 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4369                                      LangAS AddrSpace, const VarDecl *D,
4370                                      ForDefinition_t IsForDefinition) {
4371   // Lookup the entry, lazily creating it if necessary.
4372   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4373   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4374   if (Entry) {
4375     if (WeakRefReferences.erase(Entry)) {
4376       if (D && !D->hasAttr<WeakAttr>())
4377         Entry->setLinkage(llvm::Function::ExternalLinkage);
4378     }
4379 
4380     // Handle dropped DLL attributes.
4381     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4382         !shouldMapVisibilityToDLLExport(D))
4383       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4384 
4385     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4386       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4387 
4388     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4389       return Entry;
4390 
4391     // If there are two attempts to define the same mangled name, issue an
4392     // error.
4393     if (IsForDefinition && !Entry->isDeclaration()) {
4394       GlobalDecl OtherGD;
4395       const VarDecl *OtherD;
4396 
4397       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4398       // to make sure that we issue an error only once.
4399       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4400           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4401           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4402           OtherD->hasInit() &&
4403           DiagnosedConflictingDefinitions.insert(D).second) {
4404         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4405             << MangledName;
4406         getDiags().Report(OtherGD.getDecl()->getLocation(),
4407                           diag::note_previous_definition);
4408       }
4409     }
4410 
4411     // Make sure the result is of the correct type.
4412     if (Entry->getType()->getAddressSpace() != TargetAS) {
4413       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4414                                                   Ty->getPointerTo(TargetAS));
4415     }
4416 
4417     // (If global is requested for a definition, we always need to create a new
4418     // global, not just return a bitcast.)
4419     if (!IsForDefinition)
4420       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4421   }
4422 
4423   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4424 
4425   auto *GV = new llvm::GlobalVariable(
4426       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4427       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4428       getContext().getTargetAddressSpace(DAddrSpace));
4429 
4430   // If we already created a global with the same mangled name (but different
4431   // type) before, take its name and remove it from its parent.
4432   if (Entry) {
4433     GV->takeName(Entry);
4434 
4435     if (!Entry->use_empty()) {
4436       llvm::Constant *NewPtrForOldDecl =
4437           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4438       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4439     }
4440 
4441     Entry->eraseFromParent();
4442   }
4443 
4444   // This is the first use or definition of a mangled name.  If there is a
4445   // deferred decl with this name, remember that we need to emit it at the end
4446   // of the file.
4447   auto DDI = DeferredDecls.find(MangledName);
4448   if (DDI != DeferredDecls.end()) {
4449     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4450     // list, and remove it from DeferredDecls (since we don't need it anymore).
4451     addDeferredDeclToEmit(DDI->second);
4452     EmittedDeferredDecls[DDI->first] = DDI->second;
4453     DeferredDecls.erase(DDI);
4454   }
4455 
4456   // Handle things which are present even on external declarations.
4457   if (D) {
4458     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4459       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4460 
4461     // FIXME: This code is overly simple and should be merged with other global
4462     // handling.
4463     GV->setConstant(isTypeConstant(D->getType(), false, false));
4464 
4465     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4466 
4467     setLinkageForGV(GV, D);
4468 
4469     if (D->getTLSKind()) {
4470       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4471         CXXThreadLocals.push_back(D);
4472       setTLSMode(GV, *D);
4473     }
4474 
4475     setGVProperties(GV, D);
4476 
4477     // If required by the ABI, treat declarations of static data members with
4478     // inline initializers as definitions.
4479     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4480       EmitGlobalVarDefinition(D);
4481     }
4482 
4483     // Emit section information for extern variables.
4484     if (D->hasExternalStorage()) {
4485       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4486         GV->setSection(SA->getName());
4487     }
4488 
4489     // Handle XCore specific ABI requirements.
4490     if (getTriple().getArch() == llvm::Triple::xcore &&
4491         D->getLanguageLinkage() == CLanguageLinkage &&
4492         D->getType().isConstant(Context) &&
4493         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4494       GV->setSection(".cp.rodata");
4495 
4496     // Check if we a have a const declaration with an initializer, we may be
4497     // able to emit it as available_externally to expose it's value to the
4498     // optimizer.
4499     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4500         D->getType().isConstQualified() && !GV->hasInitializer() &&
4501         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4502       const auto *Record =
4503           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4504       bool HasMutableFields = Record && Record->hasMutableFields();
4505       if (!HasMutableFields) {
4506         const VarDecl *InitDecl;
4507         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4508         if (InitExpr) {
4509           ConstantEmitter emitter(*this);
4510           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4511           if (Init) {
4512             auto *InitType = Init->getType();
4513             if (GV->getValueType() != InitType) {
4514               // The type of the initializer does not match the definition.
4515               // This happens when an initializer has a different type from
4516               // the type of the global (because of padding at the end of a
4517               // structure for instance).
4518               GV->setName(StringRef());
4519               // Make a new global with the correct type, this is now guaranteed
4520               // to work.
4521               auto *NewGV = cast<llvm::GlobalVariable>(
4522                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4523                       ->stripPointerCasts());
4524 
4525               // Erase the old global, since it is no longer used.
4526               GV->eraseFromParent();
4527               GV = NewGV;
4528             } else {
4529               GV->setInitializer(Init);
4530               GV->setConstant(true);
4531               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4532             }
4533             emitter.finalize(GV);
4534           }
4535         }
4536       }
4537     }
4538   }
4539 
4540   if (GV->isDeclaration()) {
4541     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4542     // External HIP managed variables needed to be recorded for transformation
4543     // in both device and host compilations.
4544     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4545         D->hasExternalStorage())
4546       getCUDARuntime().handleVarRegistration(D, *GV);
4547   }
4548 
4549   if (D)
4550     SanitizerMD->reportGlobal(GV, *D);
4551 
4552   LangAS ExpectedAS =
4553       D ? D->getType().getAddressSpace()
4554         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4555   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4556   if (DAddrSpace != ExpectedAS) {
4557     return getTargetCodeGenInfo().performAddrSpaceCast(
4558         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4559   }
4560 
4561   return GV;
4562 }
4563 
4564 llvm::Constant *
4565 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4566   const Decl *D = GD.getDecl();
4567 
4568   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4569     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4570                                 /*DontDefer=*/false, IsForDefinition);
4571 
4572   if (isa<CXXMethodDecl>(D)) {
4573     auto FInfo =
4574         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4575     auto Ty = getTypes().GetFunctionType(*FInfo);
4576     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4577                              IsForDefinition);
4578   }
4579 
4580   if (isa<FunctionDecl>(D)) {
4581     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4582     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4583     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4584                              IsForDefinition);
4585   }
4586 
4587   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4588 }
4589 
4590 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4591     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4592     llvm::Align Alignment) {
4593   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4594   llvm::GlobalVariable *OldGV = nullptr;
4595 
4596   if (GV) {
4597     // Check if the variable has the right type.
4598     if (GV->getValueType() == Ty)
4599       return GV;
4600 
4601     // Because C++ name mangling, the only way we can end up with an already
4602     // existing global with the same name is if it has been declared extern "C".
4603     assert(GV->isDeclaration() && "Declaration has wrong type!");
4604     OldGV = GV;
4605   }
4606 
4607   // Create a new variable.
4608   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4609                                 Linkage, nullptr, Name);
4610 
4611   if (OldGV) {
4612     // Replace occurrences of the old variable if needed.
4613     GV->takeName(OldGV);
4614 
4615     if (!OldGV->use_empty()) {
4616       llvm::Constant *NewPtrForOldDecl =
4617       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4618       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4619     }
4620 
4621     OldGV->eraseFromParent();
4622   }
4623 
4624   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4625       !GV->hasAvailableExternallyLinkage())
4626     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4627 
4628   GV->setAlignment(Alignment);
4629 
4630   return GV;
4631 }
4632 
4633 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4634 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4635 /// then it will be created with the specified type instead of whatever the
4636 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4637 /// that an actual global with type Ty will be returned, not conversion of a
4638 /// variable with the same mangled name but some other type.
4639 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4640                                                   llvm::Type *Ty,
4641                                            ForDefinition_t IsForDefinition) {
4642   assert(D->hasGlobalStorage() && "Not a global variable");
4643   QualType ASTTy = D->getType();
4644   if (!Ty)
4645     Ty = getTypes().ConvertTypeForMem(ASTTy);
4646 
4647   StringRef MangledName = getMangledName(D);
4648   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4649                                IsForDefinition);
4650 }
4651 
4652 /// CreateRuntimeVariable - Create a new runtime global variable with the
4653 /// specified type and name.
4654 llvm::Constant *
4655 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4656                                      StringRef Name) {
4657   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4658                                                        : LangAS::Default;
4659   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4660   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4661   return Ret;
4662 }
4663 
4664 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4665   assert(!D->getInit() && "Cannot emit definite definitions here!");
4666 
4667   StringRef MangledName = getMangledName(D);
4668   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4669 
4670   // We already have a definition, not declaration, with the same mangled name.
4671   // Emitting of declaration is not required (and actually overwrites emitted
4672   // definition).
4673   if (GV && !GV->isDeclaration())
4674     return;
4675 
4676   // If we have not seen a reference to this variable yet, place it into the
4677   // deferred declarations table to be emitted if needed later.
4678   if (!MustBeEmitted(D) && !GV) {
4679       DeferredDecls[MangledName] = D;
4680       return;
4681   }
4682 
4683   // The tentative definition is the only definition.
4684   EmitGlobalVarDefinition(D);
4685 }
4686 
4687 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4688   EmitExternalVarDeclaration(D);
4689 }
4690 
4691 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4692   return Context.toCharUnitsFromBits(
4693       getDataLayout().getTypeStoreSizeInBits(Ty));
4694 }
4695 
4696 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4697   if (LangOpts.OpenCL) {
4698     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4699     assert(AS == LangAS::opencl_global ||
4700            AS == LangAS::opencl_global_device ||
4701            AS == LangAS::opencl_global_host ||
4702            AS == LangAS::opencl_constant ||
4703            AS == LangAS::opencl_local ||
4704            AS >= LangAS::FirstTargetAddressSpace);
4705     return AS;
4706   }
4707 
4708   if (LangOpts.SYCLIsDevice &&
4709       (!D || D->getType().getAddressSpace() == LangAS::Default))
4710     return LangAS::sycl_global;
4711 
4712   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4713     if (D) {
4714       if (D->hasAttr<CUDAConstantAttr>())
4715         return LangAS::cuda_constant;
4716       if (D->hasAttr<CUDASharedAttr>())
4717         return LangAS::cuda_shared;
4718       if (D->hasAttr<CUDADeviceAttr>())
4719         return LangAS::cuda_device;
4720       if (D->getType().isConstQualified())
4721         return LangAS::cuda_constant;
4722     }
4723     return LangAS::cuda_device;
4724   }
4725 
4726   if (LangOpts.OpenMP) {
4727     LangAS AS;
4728     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4729       return AS;
4730   }
4731   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4732 }
4733 
4734 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4735   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4736   if (LangOpts.OpenCL)
4737     return LangAS::opencl_constant;
4738   if (LangOpts.SYCLIsDevice)
4739     return LangAS::sycl_global;
4740   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4741     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4742     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4743     // with OpVariable instructions with Generic storage class which is not
4744     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4745     // UniformConstant storage class is not viable as pointers to it may not be
4746     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4747     return LangAS::cuda_device;
4748   if (auto AS = getTarget().getConstantAddressSpace())
4749     return *AS;
4750   return LangAS::Default;
4751 }
4752 
4753 // In address space agnostic languages, string literals are in default address
4754 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4755 // emitted in constant address space in LLVM IR. To be consistent with other
4756 // parts of AST, string literal global variables in constant address space
4757 // need to be casted to default address space before being put into address
4758 // map and referenced by other part of CodeGen.
4759 // In OpenCL, string literals are in constant address space in AST, therefore
4760 // they should not be casted to default address space.
4761 static llvm::Constant *
4762 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4763                                        llvm::GlobalVariable *GV) {
4764   llvm::Constant *Cast = GV;
4765   if (!CGM.getLangOpts().OpenCL) {
4766     auto AS = CGM.GetGlobalConstantAddressSpace();
4767     if (AS != LangAS::Default)
4768       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4769           CGM, GV, AS, LangAS::Default,
4770           GV->getValueType()->getPointerTo(
4771               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4772   }
4773   return Cast;
4774 }
4775 
4776 template<typename SomeDecl>
4777 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4778                                                llvm::GlobalValue *GV) {
4779   if (!getLangOpts().CPlusPlus)
4780     return;
4781 
4782   // Must have 'used' attribute, or else inline assembly can't rely on
4783   // the name existing.
4784   if (!D->template hasAttr<UsedAttr>())
4785     return;
4786 
4787   // Must have internal linkage and an ordinary name.
4788   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4789     return;
4790 
4791   // Must be in an extern "C" context. Entities declared directly within
4792   // a record are not extern "C" even if the record is in such a context.
4793   const SomeDecl *First = D->getFirstDecl();
4794   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4795     return;
4796 
4797   // OK, this is an internal linkage entity inside an extern "C" linkage
4798   // specification. Make a note of that so we can give it the "expected"
4799   // mangled name if nothing else is using that name.
4800   std::pair<StaticExternCMap::iterator, bool> R =
4801       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4802 
4803   // If we have multiple internal linkage entities with the same name
4804   // in extern "C" regions, none of them gets that name.
4805   if (!R.second)
4806     R.first->second = nullptr;
4807 }
4808 
4809 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4810   if (!CGM.supportsCOMDAT())
4811     return false;
4812 
4813   if (D.hasAttr<SelectAnyAttr>())
4814     return true;
4815 
4816   GVALinkage Linkage;
4817   if (auto *VD = dyn_cast<VarDecl>(&D))
4818     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4819   else
4820     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4821 
4822   switch (Linkage) {
4823   case GVA_Internal:
4824   case GVA_AvailableExternally:
4825   case GVA_StrongExternal:
4826     return false;
4827   case GVA_DiscardableODR:
4828   case GVA_StrongODR:
4829     return true;
4830   }
4831   llvm_unreachable("No such linkage");
4832 }
4833 
4834 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4835                                           llvm::GlobalObject &GO) {
4836   if (!shouldBeInCOMDAT(*this, D))
4837     return;
4838   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4839 }
4840 
4841 /// Pass IsTentative as true if you want to create a tentative definition.
4842 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4843                                             bool IsTentative) {
4844   // OpenCL global variables of sampler type are translated to function calls,
4845   // therefore no need to be translated.
4846   QualType ASTTy = D->getType();
4847   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4848     return;
4849 
4850   // If this is OpenMP device, check if it is legal to emit this global
4851   // normally.
4852   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4853       OpenMPRuntime->emitTargetGlobalVariable(D))
4854     return;
4855 
4856   llvm::TrackingVH<llvm::Constant> Init;
4857   bool NeedsGlobalCtor = false;
4858   // Whether the definition of the variable is available externally.
4859   // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
4860   // since this is the job for its original source.
4861   bool IsDefinitionAvailableExternally =
4862       getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
4863   bool NeedsGlobalDtor =
4864       !IsDefinitionAvailableExternally &&
4865       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4866 
4867   const VarDecl *InitDecl;
4868   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4869 
4870   std::optional<ConstantEmitter> emitter;
4871 
4872   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4873   // as part of their declaration."  Sema has already checked for
4874   // error cases, so we just need to set Init to UndefValue.
4875   bool IsCUDASharedVar =
4876       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4877   // Shadows of initialized device-side global variables are also left
4878   // undefined.
4879   // Managed Variables should be initialized on both host side and device side.
4880   bool IsCUDAShadowVar =
4881       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4882       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4883        D->hasAttr<CUDASharedAttr>());
4884   bool IsCUDADeviceShadowVar =
4885       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4886       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4887        D->getType()->isCUDADeviceBuiltinTextureType());
4888   if (getLangOpts().CUDA &&
4889       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4890     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4891   else if (D->hasAttr<LoaderUninitializedAttr>())
4892     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4893   else if (!InitExpr) {
4894     // This is a tentative definition; tentative definitions are
4895     // implicitly initialized with { 0 }.
4896     //
4897     // Note that tentative definitions are only emitted at the end of
4898     // a translation unit, so they should never have incomplete
4899     // type. In addition, EmitTentativeDefinition makes sure that we
4900     // never attempt to emit a tentative definition if a real one
4901     // exists. A use may still exists, however, so we still may need
4902     // to do a RAUW.
4903     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4904     Init = EmitNullConstant(D->getType());
4905   } else {
4906     initializedGlobalDecl = GlobalDecl(D);
4907     emitter.emplace(*this);
4908     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4909     if (!Initializer) {
4910       QualType T = InitExpr->getType();
4911       if (D->getType()->isReferenceType())
4912         T = D->getType();
4913 
4914       if (getLangOpts().CPlusPlus) {
4915         if (InitDecl->hasFlexibleArrayInit(getContext()))
4916           ErrorUnsupported(D, "flexible array initializer");
4917         Init = EmitNullConstant(T);
4918 
4919         if (!IsDefinitionAvailableExternally)
4920           NeedsGlobalCtor = true;
4921       } else {
4922         ErrorUnsupported(D, "static initializer");
4923         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4924       }
4925     } else {
4926       Init = Initializer;
4927       // We don't need an initializer, so remove the entry for the delayed
4928       // initializer position (just in case this entry was delayed) if we
4929       // also don't need to register a destructor.
4930       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4931         DelayedCXXInitPosition.erase(D);
4932 
4933 #ifndef NDEBUG
4934       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4935                           InitDecl->getFlexibleArrayInitChars(getContext());
4936       CharUnits CstSize = CharUnits::fromQuantity(
4937           getDataLayout().getTypeAllocSize(Init->getType()));
4938       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4939 #endif
4940     }
4941   }
4942 
4943   llvm::Type* InitType = Init->getType();
4944   llvm::Constant *Entry =
4945       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4946 
4947   // Strip off pointer casts if we got them.
4948   Entry = Entry->stripPointerCasts();
4949 
4950   // Entry is now either a Function or GlobalVariable.
4951   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4952 
4953   // We have a definition after a declaration with the wrong type.
4954   // We must make a new GlobalVariable* and update everything that used OldGV
4955   // (a declaration or tentative definition) with the new GlobalVariable*
4956   // (which will be a definition).
4957   //
4958   // This happens if there is a prototype for a global (e.g.
4959   // "extern int x[];") and then a definition of a different type (e.g.
4960   // "int x[10];"). This also happens when an initializer has a different type
4961   // from the type of the global (this happens with unions).
4962   if (!GV || GV->getValueType() != InitType ||
4963       GV->getType()->getAddressSpace() !=
4964           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4965 
4966     // Move the old entry aside so that we'll create a new one.
4967     Entry->setName(StringRef());
4968 
4969     // Make a new global with the correct type, this is now guaranteed to work.
4970     GV = cast<llvm::GlobalVariable>(
4971         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4972             ->stripPointerCasts());
4973 
4974     // Replace all uses of the old global with the new global
4975     llvm::Constant *NewPtrForOldDecl =
4976         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4977                                                              Entry->getType());
4978     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4979 
4980     // Erase the old global, since it is no longer used.
4981     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4982   }
4983 
4984   MaybeHandleStaticInExternC(D, GV);
4985 
4986   if (D->hasAttr<AnnotateAttr>())
4987     AddGlobalAnnotations(D, GV);
4988 
4989   // Set the llvm linkage type as appropriate.
4990   llvm::GlobalValue::LinkageTypes Linkage =
4991       getLLVMLinkageVarDefinition(D, GV->isConstant());
4992 
4993   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4994   // the device. [...]"
4995   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4996   // __device__, declares a variable that: [...]
4997   // Is accessible from all the threads within the grid and from the host
4998   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4999   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5000   if (GV && LangOpts.CUDA) {
5001     if (LangOpts.CUDAIsDevice) {
5002       if (Linkage != llvm::GlobalValue::InternalLinkage &&
5003           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5004            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5005            D->getType()->isCUDADeviceBuiltinTextureType()))
5006         GV->setExternallyInitialized(true);
5007     } else {
5008       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5009     }
5010     getCUDARuntime().handleVarRegistration(D, *GV);
5011   }
5012 
5013   GV->setInitializer(Init);
5014   if (emitter)
5015     emitter->finalize(GV);
5016 
5017   // If it is safe to mark the global 'constant', do so now.
5018   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5019                   isTypeConstant(D->getType(), true, true));
5020 
5021   // If it is in a read-only section, mark it 'constant'.
5022   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5023     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5024     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5025       GV->setConstant(true);
5026   }
5027 
5028   CharUnits AlignVal = getContext().getDeclAlign(D);
5029   // Check for alignment specifed in an 'omp allocate' directive.
5030   if (std::optional<CharUnits> AlignValFromAllocate =
5031           getOMPAllocateAlignment(D))
5032     AlignVal = *AlignValFromAllocate;
5033   GV->setAlignment(AlignVal.getAsAlign());
5034 
5035   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5036   // function is only defined alongside the variable, not also alongside
5037   // callers. Normally, all accesses to a thread_local go through the
5038   // thread-wrapper in order to ensure initialization has occurred, underlying
5039   // variable will never be used other than the thread-wrapper, so it can be
5040   // converted to internal linkage.
5041   //
5042   // However, if the variable has the 'constinit' attribute, it _can_ be
5043   // referenced directly, without calling the thread-wrapper, so the linkage
5044   // must not be changed.
5045   //
5046   // Additionally, if the variable isn't plain external linkage, e.g. if it's
5047   // weak or linkonce, the de-duplication semantics are important to preserve,
5048   // so we don't change the linkage.
5049   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5050       Linkage == llvm::GlobalValue::ExternalLinkage &&
5051       Context.getTargetInfo().getTriple().isOSDarwin() &&
5052       !D->hasAttr<ConstInitAttr>())
5053     Linkage = llvm::GlobalValue::InternalLinkage;
5054 
5055   GV->setLinkage(Linkage);
5056   if (D->hasAttr<DLLImportAttr>())
5057     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5058   else if (D->hasAttr<DLLExportAttr>())
5059     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5060   else
5061     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5062 
5063   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5064     // common vars aren't constant even if declared const.
5065     GV->setConstant(false);
5066     // Tentative definition of global variables may be initialized with
5067     // non-zero null pointers. In this case they should have weak linkage
5068     // since common linkage must have zero initializer and must not have
5069     // explicit section therefore cannot have non-zero initial value.
5070     if (!GV->getInitializer()->isNullValue())
5071       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5072   }
5073 
5074   setNonAliasAttributes(D, GV);
5075 
5076   if (D->getTLSKind() && !GV->isThreadLocal()) {
5077     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5078       CXXThreadLocals.push_back(D);
5079     setTLSMode(GV, *D);
5080   }
5081 
5082   maybeSetTrivialComdat(*D, *GV);
5083 
5084   // Emit the initializer function if necessary.
5085   if (NeedsGlobalCtor || NeedsGlobalDtor)
5086     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5087 
5088   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5089 
5090   // Emit global variable debug information.
5091   if (CGDebugInfo *DI = getModuleDebugInfo())
5092     if (getCodeGenOpts().hasReducedDebugInfo())
5093       DI->EmitGlobalVariable(GV, D);
5094 }
5095 
5096 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5097   if (CGDebugInfo *DI = getModuleDebugInfo())
5098     if (getCodeGenOpts().hasReducedDebugInfo()) {
5099       QualType ASTTy = D->getType();
5100       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5101       llvm::Constant *GV =
5102           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5103       DI->EmitExternalVariable(
5104           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5105     }
5106 }
5107 
5108 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5109                                       CodeGenModule &CGM, const VarDecl *D,
5110                                       bool NoCommon) {
5111   // Don't give variables common linkage if -fno-common was specified unless it
5112   // was overridden by a NoCommon attribute.
5113   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5114     return true;
5115 
5116   // C11 6.9.2/2:
5117   //   A declaration of an identifier for an object that has file scope without
5118   //   an initializer, and without a storage-class specifier or with the
5119   //   storage-class specifier static, constitutes a tentative definition.
5120   if (D->getInit() || D->hasExternalStorage())
5121     return true;
5122 
5123   // A variable cannot be both common and exist in a section.
5124   if (D->hasAttr<SectionAttr>())
5125     return true;
5126 
5127   // A variable cannot be both common and exist in a section.
5128   // We don't try to determine which is the right section in the front-end.
5129   // If no specialized section name is applicable, it will resort to default.
5130   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5131       D->hasAttr<PragmaClangDataSectionAttr>() ||
5132       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5133       D->hasAttr<PragmaClangRodataSectionAttr>())
5134     return true;
5135 
5136   // Thread local vars aren't considered common linkage.
5137   if (D->getTLSKind())
5138     return true;
5139 
5140   // Tentative definitions marked with WeakImportAttr are true definitions.
5141   if (D->hasAttr<WeakImportAttr>())
5142     return true;
5143 
5144   // A variable cannot be both common and exist in a comdat.
5145   if (shouldBeInCOMDAT(CGM, *D))
5146     return true;
5147 
5148   // Declarations with a required alignment do not have common linkage in MSVC
5149   // mode.
5150   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5151     if (D->hasAttr<AlignedAttr>())
5152       return true;
5153     QualType VarType = D->getType();
5154     if (Context.isAlignmentRequired(VarType))
5155       return true;
5156 
5157     if (const auto *RT = VarType->getAs<RecordType>()) {
5158       const RecordDecl *RD = RT->getDecl();
5159       for (const FieldDecl *FD : RD->fields()) {
5160         if (FD->isBitField())
5161           continue;
5162         if (FD->hasAttr<AlignedAttr>())
5163           return true;
5164         if (Context.isAlignmentRequired(FD->getType()))
5165           return true;
5166       }
5167     }
5168   }
5169 
5170   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5171   // common symbols, so symbols with greater alignment requirements cannot be
5172   // common.
5173   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5174   // alignments for common symbols via the aligncomm directive, so this
5175   // restriction only applies to MSVC environments.
5176   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5177       Context.getTypeAlignIfKnown(D->getType()) >
5178           Context.toBits(CharUnits::fromQuantity(32)))
5179     return true;
5180 
5181   return false;
5182 }
5183 
5184 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5185     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5186   if (Linkage == GVA_Internal)
5187     return llvm::Function::InternalLinkage;
5188 
5189   if (D->hasAttr<WeakAttr>())
5190     return llvm::GlobalVariable::WeakAnyLinkage;
5191 
5192   if (const auto *FD = D->getAsFunction())
5193     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5194       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5195 
5196   // We are guaranteed to have a strong definition somewhere else,
5197   // so we can use available_externally linkage.
5198   if (Linkage == GVA_AvailableExternally)
5199     return llvm::GlobalValue::AvailableExternallyLinkage;
5200 
5201   // Note that Apple's kernel linker doesn't support symbol
5202   // coalescing, so we need to avoid linkonce and weak linkages there.
5203   // Normally, this means we just map to internal, but for explicit
5204   // instantiations we'll map to external.
5205 
5206   // In C++, the compiler has to emit a definition in every translation unit
5207   // that references the function.  We should use linkonce_odr because
5208   // a) if all references in this translation unit are optimized away, we
5209   // don't need to codegen it.  b) if the function persists, it needs to be
5210   // merged with other definitions. c) C++ has the ODR, so we know the
5211   // definition is dependable.
5212   if (Linkage == GVA_DiscardableODR)
5213     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5214                                             : llvm::Function::InternalLinkage;
5215 
5216   // An explicit instantiation of a template has weak linkage, since
5217   // explicit instantiations can occur in multiple translation units
5218   // and must all be equivalent. However, we are not allowed to
5219   // throw away these explicit instantiations.
5220   //
5221   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5222   // so say that CUDA templates are either external (for kernels) or internal.
5223   // This lets llvm perform aggressive inter-procedural optimizations. For
5224   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5225   // therefore we need to follow the normal linkage paradigm.
5226   if (Linkage == GVA_StrongODR) {
5227     if (getLangOpts().AppleKext)
5228       return llvm::Function::ExternalLinkage;
5229     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5230         !getLangOpts().GPURelocatableDeviceCode)
5231       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5232                                           : llvm::Function::InternalLinkage;
5233     return llvm::Function::WeakODRLinkage;
5234   }
5235 
5236   // C++ doesn't have tentative definitions and thus cannot have common
5237   // linkage.
5238   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5239       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5240                                  CodeGenOpts.NoCommon))
5241     return llvm::GlobalVariable::CommonLinkage;
5242 
5243   // selectany symbols are externally visible, so use weak instead of
5244   // linkonce.  MSVC optimizes away references to const selectany globals, so
5245   // all definitions should be the same and ODR linkage should be used.
5246   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5247   if (D->hasAttr<SelectAnyAttr>())
5248     return llvm::GlobalVariable::WeakODRLinkage;
5249 
5250   // Otherwise, we have strong external linkage.
5251   assert(Linkage == GVA_StrongExternal);
5252   return llvm::GlobalVariable::ExternalLinkage;
5253 }
5254 
5255 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5256     const VarDecl *VD, bool IsConstant) {
5257   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5258   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5259 }
5260 
5261 /// Replace the uses of a function that was declared with a non-proto type.
5262 /// We want to silently drop extra arguments from call sites
5263 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5264                                           llvm::Function *newFn) {
5265   // Fast path.
5266   if (old->use_empty()) return;
5267 
5268   llvm::Type *newRetTy = newFn->getReturnType();
5269   SmallVector<llvm::Value*, 4> newArgs;
5270 
5271   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5272          ui != ue; ) {
5273     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5274     llvm::User *user = use->getUser();
5275 
5276     // Recognize and replace uses of bitcasts.  Most calls to
5277     // unprototyped functions will use bitcasts.
5278     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5279       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5280         replaceUsesOfNonProtoConstant(bitcast, newFn);
5281       continue;
5282     }
5283 
5284     // Recognize calls to the function.
5285     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5286     if (!callSite) continue;
5287     if (!callSite->isCallee(&*use))
5288       continue;
5289 
5290     // If the return types don't match exactly, then we can't
5291     // transform this call unless it's dead.
5292     if (callSite->getType() != newRetTy && !callSite->use_empty())
5293       continue;
5294 
5295     // Get the call site's attribute list.
5296     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5297     llvm::AttributeList oldAttrs = callSite->getAttributes();
5298 
5299     // If the function was passed too few arguments, don't transform.
5300     unsigned newNumArgs = newFn->arg_size();
5301     if (callSite->arg_size() < newNumArgs)
5302       continue;
5303 
5304     // If extra arguments were passed, we silently drop them.
5305     // If any of the types mismatch, we don't transform.
5306     unsigned argNo = 0;
5307     bool dontTransform = false;
5308     for (llvm::Argument &A : newFn->args()) {
5309       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5310         dontTransform = true;
5311         break;
5312       }
5313 
5314       // Add any parameter attributes.
5315       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5316       argNo++;
5317     }
5318     if (dontTransform)
5319       continue;
5320 
5321     // Okay, we can transform this.  Create the new call instruction and copy
5322     // over the required information.
5323     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5324 
5325     // Copy over any operand bundles.
5326     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5327     callSite->getOperandBundlesAsDefs(newBundles);
5328 
5329     llvm::CallBase *newCall;
5330     if (isa<llvm::CallInst>(callSite)) {
5331       newCall =
5332           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5333     } else {
5334       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5335       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5336                                          oldInvoke->getUnwindDest(), newArgs,
5337                                          newBundles, "", callSite);
5338     }
5339     newArgs.clear(); // for the next iteration
5340 
5341     if (!newCall->getType()->isVoidTy())
5342       newCall->takeName(callSite);
5343     newCall->setAttributes(
5344         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5345                                  oldAttrs.getRetAttrs(), newArgAttrs));
5346     newCall->setCallingConv(callSite->getCallingConv());
5347 
5348     // Finally, remove the old call, replacing any uses with the new one.
5349     if (!callSite->use_empty())
5350       callSite->replaceAllUsesWith(newCall);
5351 
5352     // Copy debug location attached to CI.
5353     if (callSite->getDebugLoc())
5354       newCall->setDebugLoc(callSite->getDebugLoc());
5355 
5356     callSite->eraseFromParent();
5357   }
5358 }
5359 
5360 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5361 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5362 /// existing call uses of the old function in the module, this adjusts them to
5363 /// call the new function directly.
5364 ///
5365 /// This is not just a cleanup: the always_inline pass requires direct calls to
5366 /// functions to be able to inline them.  If there is a bitcast in the way, it
5367 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5368 /// run at -O0.
5369 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5370                                                       llvm::Function *NewFn) {
5371   // If we're redefining a global as a function, don't transform it.
5372   if (!isa<llvm::Function>(Old)) return;
5373 
5374   replaceUsesOfNonProtoConstant(Old, NewFn);
5375 }
5376 
5377 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5378   auto DK = VD->isThisDeclarationADefinition();
5379   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5380     return;
5381 
5382   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5383   // If we have a definition, this might be a deferred decl. If the
5384   // instantiation is explicit, make sure we emit it at the end.
5385   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5386     GetAddrOfGlobalVar(VD);
5387 
5388   EmitTopLevelDecl(VD);
5389 }
5390 
5391 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5392                                                  llvm::GlobalValue *GV) {
5393   const auto *D = cast<FunctionDecl>(GD.getDecl());
5394 
5395   // Compute the function info and LLVM type.
5396   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5397   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5398 
5399   // Get or create the prototype for the function.
5400   if (!GV || (GV->getValueType() != Ty))
5401     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5402                                                    /*DontDefer=*/true,
5403                                                    ForDefinition));
5404 
5405   // Already emitted.
5406   if (!GV->isDeclaration())
5407     return;
5408 
5409   // We need to set linkage and visibility on the function before
5410   // generating code for it because various parts of IR generation
5411   // want to propagate this information down (e.g. to local static
5412   // declarations).
5413   auto *Fn = cast<llvm::Function>(GV);
5414   setFunctionLinkage(GD, Fn);
5415 
5416   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5417   setGVProperties(Fn, GD);
5418 
5419   MaybeHandleStaticInExternC(D, Fn);
5420 
5421   maybeSetTrivialComdat(*D, *Fn);
5422 
5423   // Set CodeGen attributes that represent floating point environment.
5424   setLLVMFunctionFEnvAttributes(D, Fn);
5425 
5426   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5427 
5428   setNonAliasAttributes(GD, Fn);
5429   SetLLVMFunctionAttributesForDefinition(D, Fn);
5430 
5431   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5432     AddGlobalCtor(Fn, CA->getPriority());
5433   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5434     AddGlobalDtor(Fn, DA->getPriority(), true);
5435   if (D->hasAttr<AnnotateAttr>())
5436     AddGlobalAnnotations(D, Fn);
5437 }
5438 
5439 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5440   const auto *D = cast<ValueDecl>(GD.getDecl());
5441   const AliasAttr *AA = D->getAttr<AliasAttr>();
5442   assert(AA && "Not an alias?");
5443 
5444   StringRef MangledName = getMangledName(GD);
5445 
5446   if (AA->getAliasee() == MangledName) {
5447     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5448     return;
5449   }
5450 
5451   // If there is a definition in the module, then it wins over the alias.
5452   // This is dubious, but allow it to be safe.  Just ignore the alias.
5453   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5454   if (Entry && !Entry->isDeclaration())
5455     return;
5456 
5457   Aliases.push_back(GD);
5458 
5459   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5460 
5461   // Create a reference to the named value.  This ensures that it is emitted
5462   // if a deferred decl.
5463   llvm::Constant *Aliasee;
5464   llvm::GlobalValue::LinkageTypes LT;
5465   if (isa<llvm::FunctionType>(DeclTy)) {
5466     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5467                                       /*ForVTable=*/false);
5468     LT = getFunctionLinkage(GD);
5469   } else {
5470     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5471                                     /*D=*/nullptr);
5472     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5473       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5474     else
5475       LT = getFunctionLinkage(GD);
5476   }
5477 
5478   // Create the new alias itself, but don't set a name yet.
5479   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5480   auto *GA =
5481       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5482 
5483   if (Entry) {
5484     if (GA->getAliasee() == Entry) {
5485       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5486       return;
5487     }
5488 
5489     assert(Entry->isDeclaration());
5490 
5491     // If there is a declaration in the module, then we had an extern followed
5492     // by the alias, as in:
5493     //   extern int test6();
5494     //   ...
5495     //   int test6() __attribute__((alias("test7")));
5496     //
5497     // Remove it and replace uses of it with the alias.
5498     GA->takeName(Entry);
5499 
5500     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5501                                                           Entry->getType()));
5502     Entry->eraseFromParent();
5503   } else {
5504     GA->setName(MangledName);
5505   }
5506 
5507   // Set attributes which are particular to an alias; this is a
5508   // specialization of the attributes which may be set on a global
5509   // variable/function.
5510   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5511       D->isWeakImported()) {
5512     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5513   }
5514 
5515   if (const auto *VD = dyn_cast<VarDecl>(D))
5516     if (VD->getTLSKind())
5517       setTLSMode(GA, *VD);
5518 
5519   SetCommonAttributes(GD, GA);
5520 
5521   // Emit global alias debug information.
5522   if (isa<VarDecl>(D))
5523     if (CGDebugInfo *DI = getModuleDebugInfo())
5524       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5525 }
5526 
5527 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5528   const auto *D = cast<ValueDecl>(GD.getDecl());
5529   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5530   assert(IFA && "Not an ifunc?");
5531 
5532   StringRef MangledName = getMangledName(GD);
5533 
5534   if (IFA->getResolver() == MangledName) {
5535     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5536     return;
5537   }
5538 
5539   // Report an error if some definition overrides ifunc.
5540   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5541   if (Entry && !Entry->isDeclaration()) {
5542     GlobalDecl OtherGD;
5543     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5544         DiagnosedConflictingDefinitions.insert(GD).second) {
5545       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5546           << MangledName;
5547       Diags.Report(OtherGD.getDecl()->getLocation(),
5548                    diag::note_previous_definition);
5549     }
5550     return;
5551   }
5552 
5553   Aliases.push_back(GD);
5554 
5555   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5556   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5557   llvm::Constant *Resolver =
5558       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5559                               /*ForVTable=*/false);
5560   llvm::GlobalIFunc *GIF =
5561       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5562                                 "", Resolver, &getModule());
5563   if (Entry) {
5564     if (GIF->getResolver() == Entry) {
5565       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5566       return;
5567     }
5568     assert(Entry->isDeclaration());
5569 
5570     // If there is a declaration in the module, then we had an extern followed
5571     // by the ifunc, as in:
5572     //   extern int test();
5573     //   ...
5574     //   int test() __attribute__((ifunc("resolver")));
5575     //
5576     // Remove it and replace uses of it with the ifunc.
5577     GIF->takeName(Entry);
5578 
5579     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5580                                                           Entry->getType()));
5581     Entry->eraseFromParent();
5582   } else
5583     GIF->setName(MangledName);
5584 
5585   SetCommonAttributes(GD, GIF);
5586 }
5587 
5588 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5589                                             ArrayRef<llvm::Type*> Tys) {
5590   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5591                                          Tys);
5592 }
5593 
5594 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5595 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5596                          const StringLiteral *Literal, bool TargetIsLSB,
5597                          bool &IsUTF16, unsigned &StringLength) {
5598   StringRef String = Literal->getString();
5599   unsigned NumBytes = String.size();
5600 
5601   // Check for simple case.
5602   if (!Literal->containsNonAsciiOrNull()) {
5603     StringLength = NumBytes;
5604     return *Map.insert(std::make_pair(String, nullptr)).first;
5605   }
5606 
5607   // Otherwise, convert the UTF8 literals into a string of shorts.
5608   IsUTF16 = true;
5609 
5610   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5611   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5612   llvm::UTF16 *ToPtr = &ToBuf[0];
5613 
5614   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5615                                  ToPtr + NumBytes, llvm::strictConversion);
5616 
5617   // ConvertUTF8toUTF16 returns the length in ToPtr.
5618   StringLength = ToPtr - &ToBuf[0];
5619 
5620   // Add an explicit null.
5621   *ToPtr = 0;
5622   return *Map.insert(std::make_pair(
5623                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5624                                    (StringLength + 1) * 2),
5625                          nullptr)).first;
5626 }
5627 
5628 ConstantAddress
5629 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5630   unsigned StringLength = 0;
5631   bool isUTF16 = false;
5632   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5633       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5634                                getDataLayout().isLittleEndian(), isUTF16,
5635                                StringLength);
5636 
5637   if (auto *C = Entry.second)
5638     return ConstantAddress(
5639         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5640 
5641   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5642   llvm::Constant *Zeros[] = { Zero, Zero };
5643 
5644   const ASTContext &Context = getContext();
5645   const llvm::Triple &Triple = getTriple();
5646 
5647   const auto CFRuntime = getLangOpts().CFRuntime;
5648   const bool IsSwiftABI =
5649       static_cast<unsigned>(CFRuntime) >=
5650       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5651   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5652 
5653   // If we don't already have it, get __CFConstantStringClassReference.
5654   if (!CFConstantStringClassRef) {
5655     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5656     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5657     Ty = llvm::ArrayType::get(Ty, 0);
5658 
5659     switch (CFRuntime) {
5660     default: break;
5661     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5662     case LangOptions::CoreFoundationABI::Swift5_0:
5663       CFConstantStringClassName =
5664           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5665                               : "$s10Foundation19_NSCFConstantStringCN";
5666       Ty = IntPtrTy;
5667       break;
5668     case LangOptions::CoreFoundationABI::Swift4_2:
5669       CFConstantStringClassName =
5670           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5671                               : "$S10Foundation19_NSCFConstantStringCN";
5672       Ty = IntPtrTy;
5673       break;
5674     case LangOptions::CoreFoundationABI::Swift4_1:
5675       CFConstantStringClassName =
5676           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5677                               : "__T010Foundation19_NSCFConstantStringCN";
5678       Ty = IntPtrTy;
5679       break;
5680     }
5681 
5682     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5683 
5684     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5685       llvm::GlobalValue *GV = nullptr;
5686 
5687       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5688         IdentifierInfo &II = Context.Idents.get(GV->getName());
5689         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5690         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5691 
5692         const VarDecl *VD = nullptr;
5693         for (const auto *Result : DC->lookup(&II))
5694           if ((VD = dyn_cast<VarDecl>(Result)))
5695             break;
5696 
5697         if (Triple.isOSBinFormatELF()) {
5698           if (!VD)
5699             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5700         } else {
5701           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5702           if (!VD || !VD->hasAttr<DLLExportAttr>())
5703             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5704           else
5705             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5706         }
5707 
5708         setDSOLocal(GV);
5709       }
5710     }
5711 
5712     // Decay array -> ptr
5713     CFConstantStringClassRef =
5714         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5715                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5716   }
5717 
5718   QualType CFTy = Context.getCFConstantStringType();
5719 
5720   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5721 
5722   ConstantInitBuilder Builder(*this);
5723   auto Fields = Builder.beginStruct(STy);
5724 
5725   // Class pointer.
5726   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5727 
5728   // Flags.
5729   if (IsSwiftABI) {
5730     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5731     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5732   } else {
5733     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5734   }
5735 
5736   // String pointer.
5737   llvm::Constant *C = nullptr;
5738   if (isUTF16) {
5739     auto Arr = llvm::ArrayRef(
5740         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5741         Entry.first().size() / 2);
5742     C = llvm::ConstantDataArray::get(VMContext, Arr);
5743   } else {
5744     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5745   }
5746 
5747   // Note: -fwritable-strings doesn't make the backing store strings of
5748   // CFStrings writable. (See <rdar://problem/10657500>)
5749   auto *GV =
5750       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5751                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5752   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5753   // Don't enforce the target's minimum global alignment, since the only use
5754   // of the string is via this class initializer.
5755   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5756                             : Context.getTypeAlignInChars(Context.CharTy);
5757   GV->setAlignment(Align.getAsAlign());
5758 
5759   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5760   // Without it LLVM can merge the string with a non unnamed_addr one during
5761   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5762   if (Triple.isOSBinFormatMachO())
5763     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5764                            : "__TEXT,__cstring,cstring_literals");
5765   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5766   // the static linker to adjust permissions to read-only later on.
5767   else if (Triple.isOSBinFormatELF())
5768     GV->setSection(".rodata");
5769 
5770   // String.
5771   llvm::Constant *Str =
5772       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5773 
5774   if (isUTF16)
5775     // Cast the UTF16 string to the correct type.
5776     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5777   Fields.add(Str);
5778 
5779   // String length.
5780   llvm::IntegerType *LengthTy =
5781       llvm::IntegerType::get(getModule().getContext(),
5782                              Context.getTargetInfo().getLongWidth());
5783   if (IsSwiftABI) {
5784     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5785         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5786       LengthTy = Int32Ty;
5787     else
5788       LengthTy = IntPtrTy;
5789   }
5790   Fields.addInt(LengthTy, StringLength);
5791 
5792   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5793   // properly aligned on 32-bit platforms.
5794   CharUnits Alignment =
5795       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5796 
5797   // The struct.
5798   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5799                                     /*isConstant=*/false,
5800                                     llvm::GlobalVariable::PrivateLinkage);
5801   GV->addAttribute("objc_arc_inert");
5802   switch (Triple.getObjectFormat()) {
5803   case llvm::Triple::UnknownObjectFormat:
5804     llvm_unreachable("unknown file format");
5805   case llvm::Triple::DXContainer:
5806   case llvm::Triple::GOFF:
5807   case llvm::Triple::SPIRV:
5808   case llvm::Triple::XCOFF:
5809     llvm_unreachable("unimplemented");
5810   case llvm::Triple::COFF:
5811   case llvm::Triple::ELF:
5812   case llvm::Triple::Wasm:
5813     GV->setSection("cfstring");
5814     break;
5815   case llvm::Triple::MachO:
5816     GV->setSection("__DATA,__cfstring");
5817     break;
5818   }
5819   Entry.second = GV;
5820 
5821   return ConstantAddress(GV, GV->getValueType(), Alignment);
5822 }
5823 
5824 bool CodeGenModule::getExpressionLocationsEnabled() const {
5825   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5826 }
5827 
5828 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5829   if (ObjCFastEnumerationStateType.isNull()) {
5830     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5831     D->startDefinition();
5832 
5833     QualType FieldTypes[] = {
5834       Context.UnsignedLongTy,
5835       Context.getPointerType(Context.getObjCIdType()),
5836       Context.getPointerType(Context.UnsignedLongTy),
5837       Context.getConstantArrayType(Context.UnsignedLongTy,
5838                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5839     };
5840 
5841     for (size_t i = 0; i < 4; ++i) {
5842       FieldDecl *Field = FieldDecl::Create(Context,
5843                                            D,
5844                                            SourceLocation(),
5845                                            SourceLocation(), nullptr,
5846                                            FieldTypes[i], /*TInfo=*/nullptr,
5847                                            /*BitWidth=*/nullptr,
5848                                            /*Mutable=*/false,
5849                                            ICIS_NoInit);
5850       Field->setAccess(AS_public);
5851       D->addDecl(Field);
5852     }
5853 
5854     D->completeDefinition();
5855     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5856   }
5857 
5858   return ObjCFastEnumerationStateType;
5859 }
5860 
5861 llvm::Constant *
5862 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5863   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5864 
5865   // Don't emit it as the address of the string, emit the string data itself
5866   // as an inline array.
5867   if (E->getCharByteWidth() == 1) {
5868     SmallString<64> Str(E->getString());
5869 
5870     // Resize the string to the right size, which is indicated by its type.
5871     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5872     Str.resize(CAT->getSize().getZExtValue());
5873     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5874   }
5875 
5876   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5877   llvm::Type *ElemTy = AType->getElementType();
5878   unsigned NumElements = AType->getNumElements();
5879 
5880   // Wide strings have either 2-byte or 4-byte elements.
5881   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5882     SmallVector<uint16_t, 32> Elements;
5883     Elements.reserve(NumElements);
5884 
5885     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5886       Elements.push_back(E->getCodeUnit(i));
5887     Elements.resize(NumElements);
5888     return llvm::ConstantDataArray::get(VMContext, Elements);
5889   }
5890 
5891   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5892   SmallVector<uint32_t, 32> Elements;
5893   Elements.reserve(NumElements);
5894 
5895   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5896     Elements.push_back(E->getCodeUnit(i));
5897   Elements.resize(NumElements);
5898   return llvm::ConstantDataArray::get(VMContext, Elements);
5899 }
5900 
5901 static llvm::GlobalVariable *
5902 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5903                       CodeGenModule &CGM, StringRef GlobalName,
5904                       CharUnits Alignment) {
5905   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5906       CGM.GetGlobalConstantAddressSpace());
5907 
5908   llvm::Module &M = CGM.getModule();
5909   // Create a global variable for this string
5910   auto *GV = new llvm::GlobalVariable(
5911       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5912       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5913   GV->setAlignment(Alignment.getAsAlign());
5914   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5915   if (GV->isWeakForLinker()) {
5916     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5917     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5918   }
5919   CGM.setDSOLocal(GV);
5920 
5921   return GV;
5922 }
5923 
5924 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5925 /// constant array for the given string literal.
5926 ConstantAddress
5927 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5928                                                   StringRef Name) {
5929   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5930 
5931   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5932   llvm::GlobalVariable **Entry = nullptr;
5933   if (!LangOpts.WritableStrings) {
5934     Entry = &ConstantStringMap[C];
5935     if (auto GV = *Entry) {
5936       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5937         GV->setAlignment(Alignment.getAsAlign());
5938       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5939                              GV->getValueType(), Alignment);
5940     }
5941   }
5942 
5943   SmallString<256> MangledNameBuffer;
5944   StringRef GlobalVariableName;
5945   llvm::GlobalValue::LinkageTypes LT;
5946 
5947   // Mangle the string literal if that's how the ABI merges duplicate strings.
5948   // Don't do it if they are writable, since we don't want writes in one TU to
5949   // affect strings in another.
5950   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5951       !LangOpts.WritableStrings) {
5952     llvm::raw_svector_ostream Out(MangledNameBuffer);
5953     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5954     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5955     GlobalVariableName = MangledNameBuffer;
5956   } else {
5957     LT = llvm::GlobalValue::PrivateLinkage;
5958     GlobalVariableName = Name;
5959   }
5960 
5961   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5962 
5963   CGDebugInfo *DI = getModuleDebugInfo();
5964   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5965     DI->AddStringLiteralDebugInfo(GV, S);
5966 
5967   if (Entry)
5968     *Entry = GV;
5969 
5970   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5971 
5972   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5973                          GV->getValueType(), Alignment);
5974 }
5975 
5976 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5977 /// array for the given ObjCEncodeExpr node.
5978 ConstantAddress
5979 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5980   std::string Str;
5981   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5982 
5983   return GetAddrOfConstantCString(Str);
5984 }
5985 
5986 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5987 /// the literal and a terminating '\0' character.
5988 /// The result has pointer to array type.
5989 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5990     const std::string &Str, const char *GlobalName) {
5991   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5992   CharUnits Alignment =
5993     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5994 
5995   llvm::Constant *C =
5996       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5997 
5998   // Don't share any string literals if strings aren't constant.
5999   llvm::GlobalVariable **Entry = nullptr;
6000   if (!LangOpts.WritableStrings) {
6001     Entry = &ConstantStringMap[C];
6002     if (auto GV = *Entry) {
6003       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6004         GV->setAlignment(Alignment.getAsAlign());
6005       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6006                              GV->getValueType(), Alignment);
6007     }
6008   }
6009 
6010   // Get the default prefix if a name wasn't specified.
6011   if (!GlobalName)
6012     GlobalName = ".str";
6013   // Create a global variable for this.
6014   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6015                                   GlobalName, Alignment);
6016   if (Entry)
6017     *Entry = GV;
6018 
6019   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6020                          GV->getValueType(), Alignment);
6021 }
6022 
6023 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6024     const MaterializeTemporaryExpr *E, const Expr *Init) {
6025   assert((E->getStorageDuration() == SD_Static ||
6026           E->getStorageDuration() == SD_Thread) && "not a global temporary");
6027   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6028 
6029   // If we're not materializing a subobject of the temporary, keep the
6030   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6031   QualType MaterializedType = Init->getType();
6032   if (Init == E->getSubExpr())
6033     MaterializedType = E->getType();
6034 
6035   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6036 
6037   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6038   if (!InsertResult.second) {
6039     // We've seen this before: either we already created it or we're in the
6040     // process of doing so.
6041     if (!InsertResult.first->second) {
6042       // We recursively re-entered this function, probably during emission of
6043       // the initializer. Create a placeholder. We'll clean this up in the
6044       // outer call, at the end of this function.
6045       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6046       InsertResult.first->second = new llvm::GlobalVariable(
6047           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6048           nullptr);
6049     }
6050     return ConstantAddress(InsertResult.first->second,
6051                            llvm::cast<llvm::GlobalVariable>(
6052                                InsertResult.first->second->stripPointerCasts())
6053                                ->getValueType(),
6054                            Align);
6055   }
6056 
6057   // FIXME: If an externally-visible declaration extends multiple temporaries,
6058   // we need to give each temporary the same name in every translation unit (and
6059   // we also need to make the temporaries externally-visible).
6060   SmallString<256> Name;
6061   llvm::raw_svector_ostream Out(Name);
6062   getCXXABI().getMangleContext().mangleReferenceTemporary(
6063       VD, E->getManglingNumber(), Out);
6064 
6065   APValue *Value = nullptr;
6066   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
6067     // If the initializer of the extending declaration is a constant
6068     // initializer, we should have a cached constant initializer for this
6069     // temporary. Note that this might have a different value from the value
6070     // computed by evaluating the initializer if the surrounding constant
6071     // expression modifies the temporary.
6072     Value = E->getOrCreateValue(false);
6073   }
6074 
6075   // Try evaluating it now, it might have a constant initializer.
6076   Expr::EvalResult EvalResult;
6077   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6078       !EvalResult.hasSideEffects())
6079     Value = &EvalResult.Val;
6080 
6081   LangAS AddrSpace =
6082       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
6083 
6084   std::optional<ConstantEmitter> emitter;
6085   llvm::Constant *InitialValue = nullptr;
6086   bool Constant = false;
6087   llvm::Type *Type;
6088   if (Value) {
6089     // The temporary has a constant initializer, use it.
6090     emitter.emplace(*this);
6091     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6092                                                MaterializedType);
6093     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/ Value,
6094                               /*ExcludeDtor*/ false);
6095     Type = InitialValue->getType();
6096   } else {
6097     // No initializer, the initialization will be provided when we
6098     // initialize the declaration which performed lifetime extension.
6099     Type = getTypes().ConvertTypeForMem(MaterializedType);
6100   }
6101 
6102   // Create a global variable for this lifetime-extended temporary.
6103   llvm::GlobalValue::LinkageTypes Linkage =
6104       getLLVMLinkageVarDefinition(VD, Constant);
6105   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6106     const VarDecl *InitVD;
6107     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6108         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6109       // Temporaries defined inside a class get linkonce_odr linkage because the
6110       // class can be defined in multiple translation units.
6111       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6112     } else {
6113       // There is no need for this temporary to have external linkage if the
6114       // VarDecl has external linkage.
6115       Linkage = llvm::GlobalVariable::InternalLinkage;
6116     }
6117   }
6118   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6119   auto *GV = new llvm::GlobalVariable(
6120       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6121       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6122   if (emitter) emitter->finalize(GV);
6123   // Don't assign dllimport or dllexport to local linkage globals.
6124   if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6125     setGVProperties(GV, VD);
6126     if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6127       // The reference temporary should never be dllexport.
6128       GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6129   }
6130   GV->setAlignment(Align.getAsAlign());
6131   if (supportsCOMDAT() && GV->isWeakForLinker())
6132     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6133   if (VD->getTLSKind())
6134     setTLSMode(GV, *VD);
6135   llvm::Constant *CV = GV;
6136   if (AddrSpace != LangAS::Default)
6137     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6138         *this, GV, AddrSpace, LangAS::Default,
6139         Type->getPointerTo(
6140             getContext().getTargetAddressSpace(LangAS::Default)));
6141 
6142   // Update the map with the new temporary. If we created a placeholder above,
6143   // replace it with the new global now.
6144   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6145   if (Entry) {
6146     Entry->replaceAllUsesWith(
6147         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6148     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6149   }
6150   Entry = CV;
6151 
6152   return ConstantAddress(CV, Type, Align);
6153 }
6154 
6155 /// EmitObjCPropertyImplementations - Emit information for synthesized
6156 /// properties for an implementation.
6157 void CodeGenModule::EmitObjCPropertyImplementations(const
6158                                                     ObjCImplementationDecl *D) {
6159   for (const auto *PID : D->property_impls()) {
6160     // Dynamic is just for type-checking.
6161     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6162       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6163 
6164       // Determine which methods need to be implemented, some may have
6165       // been overridden. Note that ::isPropertyAccessor is not the method
6166       // we want, that just indicates if the decl came from a
6167       // property. What we want to know is if the method is defined in
6168       // this implementation.
6169       auto *Getter = PID->getGetterMethodDecl();
6170       if (!Getter || Getter->isSynthesizedAccessorStub())
6171         CodeGenFunction(*this).GenerateObjCGetter(
6172             const_cast<ObjCImplementationDecl *>(D), PID);
6173       auto *Setter = PID->getSetterMethodDecl();
6174       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6175         CodeGenFunction(*this).GenerateObjCSetter(
6176                                  const_cast<ObjCImplementationDecl *>(D), PID);
6177     }
6178   }
6179 }
6180 
6181 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6182   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6183   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6184        ivar; ivar = ivar->getNextIvar())
6185     if (ivar->getType().isDestructedType())
6186       return true;
6187 
6188   return false;
6189 }
6190 
6191 static bool AllTrivialInitializers(CodeGenModule &CGM,
6192                                    ObjCImplementationDecl *D) {
6193   CodeGenFunction CGF(CGM);
6194   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6195        E = D->init_end(); B != E; ++B) {
6196     CXXCtorInitializer *CtorInitExp = *B;
6197     Expr *Init = CtorInitExp->getInit();
6198     if (!CGF.isTrivialInitializer(Init))
6199       return false;
6200   }
6201   return true;
6202 }
6203 
6204 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6205 /// for an implementation.
6206 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6207   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6208   if (needsDestructMethod(D)) {
6209     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6210     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6211     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6212         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6213         getContext().VoidTy, nullptr, D,
6214         /*isInstance=*/true, /*isVariadic=*/false,
6215         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6216         /*isImplicitlyDeclared=*/true,
6217         /*isDefined=*/false, ObjCMethodDecl::Required);
6218     D->addInstanceMethod(DTORMethod);
6219     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6220     D->setHasDestructors(true);
6221   }
6222 
6223   // If the implementation doesn't have any ivar initializers, we don't need
6224   // a .cxx_construct.
6225   if (D->getNumIvarInitializers() == 0 ||
6226       AllTrivialInitializers(*this, D))
6227     return;
6228 
6229   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6230   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6231   // The constructor returns 'self'.
6232   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6233       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6234       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6235       /*isVariadic=*/false,
6236       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6237       /*isImplicitlyDeclared=*/true,
6238       /*isDefined=*/false, ObjCMethodDecl::Required);
6239   D->addInstanceMethod(CTORMethod);
6240   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6241   D->setHasNonZeroConstructors(true);
6242 }
6243 
6244 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6245 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6246   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6247       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6248     ErrorUnsupported(LSD, "linkage spec");
6249     return;
6250   }
6251 
6252   EmitDeclContext(LSD);
6253 }
6254 
6255 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6256   std::unique_ptr<CodeGenFunction> &CurCGF =
6257       GlobalTopLevelStmtBlockInFlight.first;
6258 
6259   // We emitted a top-level stmt but after it there is initialization.
6260   // Stop squashing the top-level stmts into a single function.
6261   if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6262     CurCGF->FinishFunction(D->getEndLoc());
6263     CurCGF = nullptr;
6264   }
6265 
6266   if (!CurCGF) {
6267     // void __stmts__N(void)
6268     // FIXME: Ask the ABI name mangler to pick a name.
6269     std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6270     FunctionArgList Args;
6271     QualType RetTy = getContext().VoidTy;
6272     const CGFunctionInfo &FnInfo =
6273         getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6274     llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6275     llvm::Function *Fn = llvm::Function::Create(
6276         FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6277 
6278     CurCGF.reset(new CodeGenFunction(*this));
6279     GlobalTopLevelStmtBlockInFlight.second = D;
6280     CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6281                           D->getBeginLoc(), D->getBeginLoc());
6282     CXXGlobalInits.push_back(Fn);
6283   }
6284 
6285   CurCGF->EmitStmt(D->getStmt());
6286 }
6287 
6288 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6289   for (auto *I : DC->decls()) {
6290     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6291     // are themselves considered "top-level", so EmitTopLevelDecl on an
6292     // ObjCImplDecl does not recursively visit them. We need to do that in
6293     // case they're nested inside another construct (LinkageSpecDecl /
6294     // ExportDecl) that does stop them from being considered "top-level".
6295     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6296       for (auto *M : OID->methods())
6297         EmitTopLevelDecl(M);
6298     }
6299 
6300     EmitTopLevelDecl(I);
6301   }
6302 }
6303 
6304 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6305 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6306   // Ignore dependent declarations.
6307   if (D->isTemplated())
6308     return;
6309 
6310   // Consteval function shouldn't be emitted.
6311   if (auto *FD = dyn_cast<FunctionDecl>(D))
6312     if (FD->isConsteval())
6313       return;
6314 
6315   switch (D->getKind()) {
6316   case Decl::CXXConversion:
6317   case Decl::CXXMethod:
6318   case Decl::Function:
6319     EmitGlobal(cast<FunctionDecl>(D));
6320     // Always provide some coverage mapping
6321     // even for the functions that aren't emitted.
6322     AddDeferredUnusedCoverageMapping(D);
6323     break;
6324 
6325   case Decl::CXXDeductionGuide:
6326     // Function-like, but does not result in code emission.
6327     break;
6328 
6329   case Decl::Var:
6330   case Decl::Decomposition:
6331   case Decl::VarTemplateSpecialization:
6332     EmitGlobal(cast<VarDecl>(D));
6333     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6334       for (auto *B : DD->bindings())
6335         if (auto *HD = B->getHoldingVar())
6336           EmitGlobal(HD);
6337     break;
6338 
6339   // Indirect fields from global anonymous structs and unions can be
6340   // ignored; only the actual variable requires IR gen support.
6341   case Decl::IndirectField:
6342     break;
6343 
6344   // C++ Decls
6345   case Decl::Namespace:
6346     EmitDeclContext(cast<NamespaceDecl>(D));
6347     break;
6348   case Decl::ClassTemplateSpecialization: {
6349     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6350     if (CGDebugInfo *DI = getModuleDebugInfo())
6351       if (Spec->getSpecializationKind() ==
6352               TSK_ExplicitInstantiationDefinition &&
6353           Spec->hasDefinition())
6354         DI->completeTemplateDefinition(*Spec);
6355   } [[fallthrough]];
6356   case Decl::CXXRecord: {
6357     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6358     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6359       if (CRD->hasDefinition())
6360         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6361       if (auto *ES = D->getASTContext().getExternalSource())
6362         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6363           DI->completeUnusedClass(*CRD);
6364     }
6365     // Emit any static data members, they may be definitions.
6366     for (auto *I : CRD->decls())
6367       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6368         EmitTopLevelDecl(I);
6369     break;
6370   }
6371     // No code generation needed.
6372   case Decl::UsingShadow:
6373   case Decl::ClassTemplate:
6374   case Decl::VarTemplate:
6375   case Decl::Concept:
6376   case Decl::VarTemplatePartialSpecialization:
6377   case Decl::FunctionTemplate:
6378   case Decl::TypeAliasTemplate:
6379   case Decl::Block:
6380   case Decl::Empty:
6381   case Decl::Binding:
6382     break;
6383   case Decl::Using:          // using X; [C++]
6384     if (CGDebugInfo *DI = getModuleDebugInfo())
6385         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6386     break;
6387   case Decl::UsingEnum: // using enum X; [C++]
6388     if (CGDebugInfo *DI = getModuleDebugInfo())
6389       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6390     break;
6391   case Decl::NamespaceAlias:
6392     if (CGDebugInfo *DI = getModuleDebugInfo())
6393         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6394     break;
6395   case Decl::UsingDirective: // using namespace X; [C++]
6396     if (CGDebugInfo *DI = getModuleDebugInfo())
6397       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6398     break;
6399   case Decl::CXXConstructor:
6400     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6401     break;
6402   case Decl::CXXDestructor:
6403     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6404     break;
6405 
6406   case Decl::StaticAssert:
6407     // Nothing to do.
6408     break;
6409 
6410   // Objective-C Decls
6411 
6412   // Forward declarations, no (immediate) code generation.
6413   case Decl::ObjCInterface:
6414   case Decl::ObjCCategory:
6415     break;
6416 
6417   case Decl::ObjCProtocol: {
6418     auto *Proto = cast<ObjCProtocolDecl>(D);
6419     if (Proto->isThisDeclarationADefinition())
6420       ObjCRuntime->GenerateProtocol(Proto);
6421     break;
6422   }
6423 
6424   case Decl::ObjCCategoryImpl:
6425     // Categories have properties but don't support synthesize so we
6426     // can ignore them here.
6427     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6428     break;
6429 
6430   case Decl::ObjCImplementation: {
6431     auto *OMD = cast<ObjCImplementationDecl>(D);
6432     EmitObjCPropertyImplementations(OMD);
6433     EmitObjCIvarInitializations(OMD);
6434     ObjCRuntime->GenerateClass(OMD);
6435     // Emit global variable debug information.
6436     if (CGDebugInfo *DI = getModuleDebugInfo())
6437       if (getCodeGenOpts().hasReducedDebugInfo())
6438         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6439             OMD->getClassInterface()), OMD->getLocation());
6440     break;
6441   }
6442   case Decl::ObjCMethod: {
6443     auto *OMD = cast<ObjCMethodDecl>(D);
6444     // If this is not a prototype, emit the body.
6445     if (OMD->getBody())
6446       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6447     break;
6448   }
6449   case Decl::ObjCCompatibleAlias:
6450     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6451     break;
6452 
6453   case Decl::PragmaComment: {
6454     const auto *PCD = cast<PragmaCommentDecl>(D);
6455     switch (PCD->getCommentKind()) {
6456     case PCK_Unknown:
6457       llvm_unreachable("unexpected pragma comment kind");
6458     case PCK_Linker:
6459       AppendLinkerOptions(PCD->getArg());
6460       break;
6461     case PCK_Lib:
6462         AddDependentLib(PCD->getArg());
6463       break;
6464     case PCK_Compiler:
6465     case PCK_ExeStr:
6466     case PCK_User:
6467       break; // We ignore all of these.
6468     }
6469     break;
6470   }
6471 
6472   case Decl::PragmaDetectMismatch: {
6473     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6474     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6475     break;
6476   }
6477 
6478   case Decl::LinkageSpec:
6479     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6480     break;
6481 
6482   case Decl::FileScopeAsm: {
6483     // File-scope asm is ignored during device-side CUDA compilation.
6484     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6485       break;
6486     // File-scope asm is ignored during device-side OpenMP compilation.
6487     if (LangOpts.OpenMPIsDevice)
6488       break;
6489     // File-scope asm is ignored during device-side SYCL compilation.
6490     if (LangOpts.SYCLIsDevice)
6491       break;
6492     auto *AD = cast<FileScopeAsmDecl>(D);
6493     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6494     break;
6495   }
6496 
6497   case Decl::TopLevelStmt:
6498     EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6499     break;
6500 
6501   case Decl::Import: {
6502     auto *Import = cast<ImportDecl>(D);
6503 
6504     // If we've already imported this module, we're done.
6505     if (!ImportedModules.insert(Import->getImportedModule()))
6506       break;
6507 
6508     // Emit debug information for direct imports.
6509     if (!Import->getImportedOwningModule()) {
6510       if (CGDebugInfo *DI = getModuleDebugInfo())
6511         DI->EmitImportDecl(*Import);
6512     }
6513 
6514     // For C++ standard modules we are done - we will call the module
6515     // initializer for imported modules, and that will likewise call those for
6516     // any imports it has.
6517     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6518         !Import->getImportedOwningModule()->isModuleMapModule())
6519       break;
6520 
6521     // For clang C++ module map modules the initializers for sub-modules are
6522     // emitted here.
6523 
6524     // Find all of the submodules and emit the module initializers.
6525     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6526     SmallVector<clang::Module *, 16> Stack;
6527     Visited.insert(Import->getImportedModule());
6528     Stack.push_back(Import->getImportedModule());
6529 
6530     while (!Stack.empty()) {
6531       clang::Module *Mod = Stack.pop_back_val();
6532       if (!EmittedModuleInitializers.insert(Mod).second)
6533         continue;
6534 
6535       for (auto *D : Context.getModuleInitializers(Mod))
6536         EmitTopLevelDecl(D);
6537 
6538       // Visit the submodules of this module.
6539       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6540                                              SubEnd = Mod->submodule_end();
6541            Sub != SubEnd; ++Sub) {
6542         // Skip explicit children; they need to be explicitly imported to emit
6543         // the initializers.
6544         if ((*Sub)->IsExplicit)
6545           continue;
6546 
6547         if (Visited.insert(*Sub).second)
6548           Stack.push_back(*Sub);
6549       }
6550     }
6551     break;
6552   }
6553 
6554   case Decl::Export:
6555     EmitDeclContext(cast<ExportDecl>(D));
6556     break;
6557 
6558   case Decl::OMPThreadPrivate:
6559     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6560     break;
6561 
6562   case Decl::OMPAllocate:
6563     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6564     break;
6565 
6566   case Decl::OMPDeclareReduction:
6567     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6568     break;
6569 
6570   case Decl::OMPDeclareMapper:
6571     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6572     break;
6573 
6574   case Decl::OMPRequires:
6575     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6576     break;
6577 
6578   case Decl::Typedef:
6579   case Decl::TypeAlias: // using foo = bar; [C++11]
6580     if (CGDebugInfo *DI = getModuleDebugInfo())
6581       DI->EmitAndRetainType(
6582           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6583     break;
6584 
6585   case Decl::Record:
6586     if (CGDebugInfo *DI = getModuleDebugInfo())
6587       if (cast<RecordDecl>(D)->getDefinition())
6588         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6589     break;
6590 
6591   case Decl::Enum:
6592     if (CGDebugInfo *DI = getModuleDebugInfo())
6593       if (cast<EnumDecl>(D)->getDefinition())
6594         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6595     break;
6596 
6597   case Decl::HLSLBuffer:
6598     getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6599     break;
6600 
6601   default:
6602     // Make sure we handled everything we should, every other kind is a
6603     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6604     // function. Need to recode Decl::Kind to do that easily.
6605     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6606     break;
6607   }
6608 }
6609 
6610 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6611   // Do we need to generate coverage mapping?
6612   if (!CodeGenOpts.CoverageMapping)
6613     return;
6614   switch (D->getKind()) {
6615   case Decl::CXXConversion:
6616   case Decl::CXXMethod:
6617   case Decl::Function:
6618   case Decl::ObjCMethod:
6619   case Decl::CXXConstructor:
6620   case Decl::CXXDestructor: {
6621     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6622       break;
6623     SourceManager &SM = getContext().getSourceManager();
6624     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6625       break;
6626     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6627     if (I == DeferredEmptyCoverageMappingDecls.end())
6628       DeferredEmptyCoverageMappingDecls[D] = true;
6629     break;
6630   }
6631   default:
6632     break;
6633   };
6634 }
6635 
6636 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6637   // Do we need to generate coverage mapping?
6638   if (!CodeGenOpts.CoverageMapping)
6639     return;
6640   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6641     if (Fn->isTemplateInstantiation())
6642       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6643   }
6644   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6645   if (I == DeferredEmptyCoverageMappingDecls.end())
6646     DeferredEmptyCoverageMappingDecls[D] = false;
6647   else
6648     I->second = false;
6649 }
6650 
6651 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6652   // We call takeVector() here to avoid use-after-free.
6653   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6654   // we deserialize function bodies to emit coverage info for them, and that
6655   // deserializes more declarations. How should we handle that case?
6656   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6657     if (!Entry.second)
6658       continue;
6659     const Decl *D = Entry.first;
6660     switch (D->getKind()) {
6661     case Decl::CXXConversion:
6662     case Decl::CXXMethod:
6663     case Decl::Function:
6664     case Decl::ObjCMethod: {
6665       CodeGenPGO PGO(*this);
6666       GlobalDecl GD(cast<FunctionDecl>(D));
6667       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6668                                   getFunctionLinkage(GD));
6669       break;
6670     }
6671     case Decl::CXXConstructor: {
6672       CodeGenPGO PGO(*this);
6673       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6674       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6675                                   getFunctionLinkage(GD));
6676       break;
6677     }
6678     case Decl::CXXDestructor: {
6679       CodeGenPGO PGO(*this);
6680       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6681       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6682                                   getFunctionLinkage(GD));
6683       break;
6684     }
6685     default:
6686       break;
6687     };
6688   }
6689 }
6690 
6691 void CodeGenModule::EmitMainVoidAlias() {
6692   // In order to transition away from "__original_main" gracefully, emit an
6693   // alias for "main" in the no-argument case so that libc can detect when
6694   // new-style no-argument main is in used.
6695   if (llvm::Function *F = getModule().getFunction("main")) {
6696     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6697         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6698       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6699       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6700     }
6701   }
6702 }
6703 
6704 /// Turns the given pointer into a constant.
6705 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6706                                           const void *Ptr) {
6707   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6708   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6709   return llvm::ConstantInt::get(i64, PtrInt);
6710 }
6711 
6712 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6713                                    llvm::NamedMDNode *&GlobalMetadata,
6714                                    GlobalDecl D,
6715                                    llvm::GlobalValue *Addr) {
6716   if (!GlobalMetadata)
6717     GlobalMetadata =
6718       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6719 
6720   // TODO: should we report variant information for ctors/dtors?
6721   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6722                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6723                                CGM.getLLVMContext(), D.getDecl()))};
6724   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6725 }
6726 
6727 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6728                                                  llvm::GlobalValue *CppFunc) {
6729   // Store the list of ifuncs we need to replace uses in.
6730   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6731   // List of ConstantExprs that we should be able to delete when we're done
6732   // here.
6733   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6734 
6735   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6736   if (Elem == CppFunc)
6737     return false;
6738 
6739   // First make sure that all users of this are ifuncs (or ifuncs via a
6740   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6741   // later.
6742   for (llvm::User *User : Elem->users()) {
6743     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6744     // ifunc directly. In any other case, just give up, as we don't know what we
6745     // could break by changing those.
6746     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6747       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6748         return false;
6749 
6750       for (llvm::User *CEUser : ConstExpr->users()) {
6751         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6752           IFuncs.push_back(IFunc);
6753         } else {
6754           return false;
6755         }
6756       }
6757       CEs.push_back(ConstExpr);
6758     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6759       IFuncs.push_back(IFunc);
6760     } else {
6761       // This user is one we don't know how to handle, so fail redirection. This
6762       // will result in an ifunc retaining a resolver name that will ultimately
6763       // fail to be resolved to a defined function.
6764       return false;
6765     }
6766   }
6767 
6768   // Now we know this is a valid case where we can do this alias replacement, we
6769   // need to remove all of the references to Elem (and the bitcasts!) so we can
6770   // delete it.
6771   for (llvm::GlobalIFunc *IFunc : IFuncs)
6772     IFunc->setResolver(nullptr);
6773   for (llvm::ConstantExpr *ConstExpr : CEs)
6774     ConstExpr->destroyConstant();
6775 
6776   // We should now be out of uses for the 'old' version of this function, so we
6777   // can erase it as well.
6778   Elem->eraseFromParent();
6779 
6780   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6781     // The type of the resolver is always just a function-type that returns the
6782     // type of the IFunc, so create that here. If the type of the actual
6783     // resolver doesn't match, it just gets bitcast to the right thing.
6784     auto *ResolverTy =
6785         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6786     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6787         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6788     IFunc->setResolver(Resolver);
6789   }
6790   return true;
6791 }
6792 
6793 /// For each function which is declared within an extern "C" region and marked
6794 /// as 'used', but has internal linkage, create an alias from the unmangled
6795 /// name to the mangled name if possible. People expect to be able to refer
6796 /// to such functions with an unmangled name from inline assembly within the
6797 /// same translation unit.
6798 void CodeGenModule::EmitStaticExternCAliases() {
6799   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6800     return;
6801   for (auto &I : StaticExternCValues) {
6802     IdentifierInfo *Name = I.first;
6803     llvm::GlobalValue *Val = I.second;
6804 
6805     // If Val is null, that implies there were multiple declarations that each
6806     // had a claim to the unmangled name. In this case, generation of the alias
6807     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6808     if (!Val)
6809       break;
6810 
6811     llvm::GlobalValue *ExistingElem =
6812         getModule().getNamedValue(Name->getName());
6813 
6814     // If there is either not something already by this name, or we were able to
6815     // replace all uses from IFuncs, create the alias.
6816     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6817       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6818   }
6819 }
6820 
6821 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6822                                              GlobalDecl &Result) const {
6823   auto Res = Manglings.find(MangledName);
6824   if (Res == Manglings.end())
6825     return false;
6826   Result = Res->getValue();
6827   return true;
6828 }
6829 
6830 /// Emits metadata nodes associating all the global values in the
6831 /// current module with the Decls they came from.  This is useful for
6832 /// projects using IR gen as a subroutine.
6833 ///
6834 /// Since there's currently no way to associate an MDNode directly
6835 /// with an llvm::GlobalValue, we create a global named metadata
6836 /// with the name 'clang.global.decl.ptrs'.
6837 void CodeGenModule::EmitDeclMetadata() {
6838   llvm::NamedMDNode *GlobalMetadata = nullptr;
6839 
6840   for (auto &I : MangledDeclNames) {
6841     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6842     // Some mangled names don't necessarily have an associated GlobalValue
6843     // in this module, e.g. if we mangled it for DebugInfo.
6844     if (Addr)
6845       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6846   }
6847 }
6848 
6849 /// Emits metadata nodes for all the local variables in the current
6850 /// function.
6851 void CodeGenFunction::EmitDeclMetadata() {
6852   if (LocalDeclMap.empty()) return;
6853 
6854   llvm::LLVMContext &Context = getLLVMContext();
6855 
6856   // Find the unique metadata ID for this name.
6857   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6858 
6859   llvm::NamedMDNode *GlobalMetadata = nullptr;
6860 
6861   for (auto &I : LocalDeclMap) {
6862     const Decl *D = I.first;
6863     llvm::Value *Addr = I.second.getPointer();
6864     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6865       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6866       Alloca->setMetadata(
6867           DeclPtrKind, llvm::MDNode::get(
6868                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6869     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6870       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6871       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6872     }
6873   }
6874 }
6875 
6876 void CodeGenModule::EmitVersionIdentMetadata() {
6877   llvm::NamedMDNode *IdentMetadata =
6878     TheModule.getOrInsertNamedMetadata("llvm.ident");
6879   std::string Version = getClangFullVersion();
6880   llvm::LLVMContext &Ctx = TheModule.getContext();
6881 
6882   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6883   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6884 }
6885 
6886 void CodeGenModule::EmitCommandLineMetadata() {
6887   llvm::NamedMDNode *CommandLineMetadata =
6888     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6889   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6890   llvm::LLVMContext &Ctx = TheModule.getContext();
6891 
6892   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6893   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6894 }
6895 
6896 void CodeGenModule::EmitCoverageFile() {
6897   if (getCodeGenOpts().CoverageDataFile.empty() &&
6898       getCodeGenOpts().CoverageNotesFile.empty())
6899     return;
6900 
6901   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6902   if (!CUNode)
6903     return;
6904 
6905   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6906   llvm::LLVMContext &Ctx = TheModule.getContext();
6907   auto *CoverageDataFile =
6908       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6909   auto *CoverageNotesFile =
6910       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6911   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6912     llvm::MDNode *CU = CUNode->getOperand(i);
6913     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6914     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6915   }
6916 }
6917 
6918 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6919                                                        bool ForEH) {
6920   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6921   // FIXME: should we even be calling this method if RTTI is disabled
6922   // and it's not for EH?
6923   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6924       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6925        getTriple().isNVPTX()))
6926     return llvm::Constant::getNullValue(Int8PtrTy);
6927 
6928   if (ForEH && Ty->isObjCObjectPointerType() &&
6929       LangOpts.ObjCRuntime.isGNUFamily())
6930     return ObjCRuntime->GetEHType(Ty);
6931 
6932   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6933 }
6934 
6935 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6936   // Do not emit threadprivates in simd-only mode.
6937   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6938     return;
6939   for (auto RefExpr : D->varlists()) {
6940     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6941     bool PerformInit =
6942         VD->getAnyInitializer() &&
6943         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6944                                                         /*ForRef=*/false);
6945 
6946     Address Addr(GetAddrOfGlobalVar(VD),
6947                  getTypes().ConvertTypeForMem(VD->getType()),
6948                  getContext().getDeclAlign(VD));
6949     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6950             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6951       CXXGlobalInits.push_back(InitFunction);
6952   }
6953 }
6954 
6955 llvm::Metadata *
6956 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6957                                             StringRef Suffix) {
6958   if (auto *FnType = T->getAs<FunctionProtoType>())
6959     T = getContext().getFunctionType(
6960         FnType->getReturnType(), FnType->getParamTypes(),
6961         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6962 
6963   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6964   if (InternalId)
6965     return InternalId;
6966 
6967   if (isExternallyVisible(T->getLinkage())) {
6968     std::string OutName;
6969     llvm::raw_string_ostream Out(OutName);
6970     getCXXABI().getMangleContext().mangleTypeName(
6971         T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
6972 
6973     if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
6974       Out << ".normalized";
6975 
6976     Out << Suffix;
6977 
6978     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6979   } else {
6980     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6981                                            llvm::ArrayRef<llvm::Metadata *>());
6982   }
6983 
6984   return InternalId;
6985 }
6986 
6987 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6988   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6989 }
6990 
6991 llvm::Metadata *
6992 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6993   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6994 }
6995 
6996 // Generalize pointer types to a void pointer with the qualifiers of the
6997 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6998 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6999 // 'void *'.
7000 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7001   if (!Ty->isPointerType())
7002     return Ty;
7003 
7004   return Ctx.getPointerType(
7005       QualType(Ctx.VoidTy).withCVRQualifiers(
7006           Ty->getPointeeType().getCVRQualifiers()));
7007 }
7008 
7009 // Apply type generalization to a FunctionType's return and argument types
7010 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7011   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7012     SmallVector<QualType, 8> GeneralizedParams;
7013     for (auto &Param : FnType->param_types())
7014       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7015 
7016     return Ctx.getFunctionType(
7017         GeneralizeType(Ctx, FnType->getReturnType()),
7018         GeneralizedParams, FnType->getExtProtoInfo());
7019   }
7020 
7021   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7022     return Ctx.getFunctionNoProtoType(
7023         GeneralizeType(Ctx, FnType->getReturnType()));
7024 
7025   llvm_unreachable("Encountered unknown FunctionType");
7026 }
7027 
7028 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7029   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7030                                       GeneralizedMetadataIdMap, ".generalized");
7031 }
7032 
7033 /// Returns whether this module needs the "all-vtables" type identifier.
7034 bool CodeGenModule::NeedAllVtablesTypeId() const {
7035   // Returns true if at least one of vtable-based CFI checkers is enabled and
7036   // is not in the trapping mode.
7037   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7038            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7039           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7040            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7041           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7042            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7043           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7044            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7045 }
7046 
7047 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7048                                           CharUnits Offset,
7049                                           const CXXRecordDecl *RD) {
7050   llvm::Metadata *MD =
7051       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7052   VTable->addTypeMetadata(Offset.getQuantity(), MD);
7053 
7054   if (CodeGenOpts.SanitizeCfiCrossDso)
7055     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7056       VTable->addTypeMetadata(Offset.getQuantity(),
7057                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7058 
7059   if (NeedAllVtablesTypeId()) {
7060     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7061     VTable->addTypeMetadata(Offset.getQuantity(), MD);
7062   }
7063 }
7064 
7065 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7066   if (!SanStats)
7067     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7068 
7069   return *SanStats;
7070 }
7071 
7072 llvm::Value *
7073 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7074                                                   CodeGenFunction &CGF) {
7075   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7076   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7077   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7078   auto *Call = CGF.EmitRuntimeCall(
7079       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7080   return Call;
7081 }
7082 
7083 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7084     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7085   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7086                                  /* forPointeeType= */ true);
7087 }
7088 
7089 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7090                                                  LValueBaseInfo *BaseInfo,
7091                                                  TBAAAccessInfo *TBAAInfo,
7092                                                  bool forPointeeType) {
7093   if (TBAAInfo)
7094     *TBAAInfo = getTBAAAccessInfo(T);
7095 
7096   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7097   // that doesn't return the information we need to compute BaseInfo.
7098 
7099   // Honor alignment typedef attributes even on incomplete types.
7100   // We also honor them straight for C++ class types, even as pointees;
7101   // there's an expressivity gap here.
7102   if (auto TT = T->getAs<TypedefType>()) {
7103     if (auto Align = TT->getDecl()->getMaxAlignment()) {
7104       if (BaseInfo)
7105         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7106       return getContext().toCharUnitsFromBits(Align);
7107     }
7108   }
7109 
7110   bool AlignForArray = T->isArrayType();
7111 
7112   // Analyze the base element type, so we don't get confused by incomplete
7113   // array types.
7114   T = getContext().getBaseElementType(T);
7115 
7116   if (T->isIncompleteType()) {
7117     // We could try to replicate the logic from
7118     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7119     // type is incomplete, so it's impossible to test. We could try to reuse
7120     // getTypeAlignIfKnown, but that doesn't return the information we need
7121     // to set BaseInfo.  So just ignore the possibility that the alignment is
7122     // greater than one.
7123     if (BaseInfo)
7124       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7125     return CharUnits::One();
7126   }
7127 
7128   if (BaseInfo)
7129     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7130 
7131   CharUnits Alignment;
7132   const CXXRecordDecl *RD;
7133   if (T.getQualifiers().hasUnaligned()) {
7134     Alignment = CharUnits::One();
7135   } else if (forPointeeType && !AlignForArray &&
7136              (RD = T->getAsCXXRecordDecl())) {
7137     // For C++ class pointees, we don't know whether we're pointing at a
7138     // base or a complete object, so we generally need to use the
7139     // non-virtual alignment.
7140     Alignment = getClassPointerAlignment(RD);
7141   } else {
7142     Alignment = getContext().getTypeAlignInChars(T);
7143   }
7144 
7145   // Cap to the global maximum type alignment unless the alignment
7146   // was somehow explicit on the type.
7147   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7148     if (Alignment.getQuantity() > MaxAlign &&
7149         !getContext().isAlignmentRequired(T))
7150       Alignment = CharUnits::fromQuantity(MaxAlign);
7151   }
7152   return Alignment;
7153 }
7154 
7155 bool CodeGenModule::stopAutoInit() {
7156   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7157   if (StopAfter) {
7158     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7159     // used
7160     if (NumAutoVarInit >= StopAfter) {
7161       return true;
7162     }
7163     if (!NumAutoVarInit) {
7164       unsigned DiagID = getDiags().getCustomDiagID(
7165           DiagnosticsEngine::Warning,
7166           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7167           "number of times ftrivial-auto-var-init=%1 gets applied.");
7168       getDiags().Report(DiagID)
7169           << StopAfter
7170           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7171                       LangOptions::TrivialAutoVarInitKind::Zero
7172                   ? "zero"
7173                   : "pattern");
7174     }
7175     ++NumAutoVarInit;
7176   }
7177   return false;
7178 }
7179 
7180 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7181                                                     const Decl *D) const {
7182   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7183   // postfix beginning with '.' since the symbol name can be demangled.
7184   if (LangOpts.HIP)
7185     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7186   else
7187     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7188 
7189   // If the CUID is not specified we try to generate a unique postfix.
7190   if (getLangOpts().CUID.empty()) {
7191     SourceManager &SM = getContext().getSourceManager();
7192     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7193     assert(PLoc.isValid() && "Source location is expected to be valid.");
7194 
7195     // Get the hash of the user defined macros.
7196     llvm::MD5 Hash;
7197     llvm::MD5::MD5Result Result;
7198     for (const auto &Arg : PreprocessorOpts.Macros)
7199       Hash.update(Arg.first);
7200     Hash.final(Result);
7201 
7202     // Get the UniqueID for the file containing the decl.
7203     llvm::sys::fs::UniqueID ID;
7204     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7205       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7206       assert(PLoc.isValid() && "Source location is expected to be valid.");
7207       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7208         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7209             << PLoc.getFilename() << EC.message();
7210     }
7211     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7212        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7213   } else {
7214     OS << getContext().getCUIDHash();
7215   }
7216 }
7217 
7218 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7219   assert(DeferredDeclsToEmit.empty() &&
7220          "Should have emitted all decls deferred to emit.");
7221   assert(NewBuilder->DeferredDecls.empty() &&
7222          "Newly created module should not have deferred decls");
7223   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7224 
7225   assert(NewBuilder->DeferredVTables.empty() &&
7226          "Newly created module should not have deferred vtables");
7227   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7228 
7229   assert(NewBuilder->MangledDeclNames.empty() &&
7230          "Newly created module should not have mangled decl names");
7231   assert(NewBuilder->Manglings.empty() &&
7232          "Newly created module should not have manglings");
7233   NewBuilder->Manglings = std::move(Manglings);
7234 
7235   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7236   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7237 
7238   NewBuilder->TBAA = std::move(TBAA);
7239 
7240   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7241          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7242 
7243   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7244 
7245   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7246 }
7247