1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 #include "llvm/Support/X86TargetParser.h" 67 68 using namespace clang; 69 using namespace CodeGen; 70 71 static llvm::cl::opt<bool> LimitedCoverage( 72 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 73 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 74 llvm::cl::init(false)); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 150 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 151 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 152 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 153 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 154 getCXXABI().getMangleContext())); 155 156 // If debug info or coverage generation is enabled, create the CGDebugInfo 157 // object. 158 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 159 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 160 DebugInfo.reset(new CGDebugInfo(*this)); 161 162 Block.GlobalUniqueCount = 0; 163 164 if (C.getLangOpts().ObjC) 165 ObjCData.reset(new ObjCEntrypoints()); 166 167 if (CodeGenOpts.hasProfileClangUse()) { 168 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 169 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 170 if (auto E = ReaderOrErr.takeError()) { 171 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 172 "Could not read profile %0: %1"); 173 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 174 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 175 << EI.message(); 176 }); 177 } else 178 PGOReader = std::move(ReaderOrErr.get()); 179 } 180 181 // If coverage mapping generation is enabled, create the 182 // CoverageMappingModuleGen object. 183 if (CodeGenOpts.CoverageMapping) 184 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 185 186 // Generate the module name hash here if needed. 187 if (CodeGenOpts.UniqueInternalLinkageNames && 188 !getModule().getSourceFileName().empty()) { 189 std::string Path = getModule().getSourceFileName(); 190 // Check if a path substitution is needed from the MacroPrefixMap. 191 for (const auto &Entry : LangOpts.MacroPrefixMap) 192 if (Path.rfind(Entry.first, 0) != std::string::npos) { 193 Path = Entry.second + Path.substr(Entry.first.size()); 194 break; 195 } 196 llvm::MD5 Md5; 197 Md5.update(Path); 198 llvm::MD5::MD5Result R; 199 Md5.final(R); 200 SmallString<32> Str; 201 llvm::MD5::stringifyResult(R, Str); 202 // Convert MD5hash to Decimal. Demangler suffixes can either contain 203 // numbers or characters but not both. 204 llvm::APInt IntHash(128, Str.str(), 16); 205 // Prepend "__uniq" before the hash for tools like profilers to understand 206 // that this symbol is of internal linkage type. The "__uniq" is the 207 // pre-determined prefix that is used to tell tools that this symbol was 208 // created with -funique-internal-linakge-symbols and the tools can strip or 209 // keep the prefix as needed. 210 ModuleNameHash = (Twine(".__uniq.") + 211 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 250 break; 251 case llvm::Triple::amdgcn: 252 assert(getLangOpts().OpenMPIsDevice && 253 "OpenMP AMDGCN is only prepared to deal with device code."); 254 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 255 break; 256 default: 257 if (LangOpts.OpenMPSimd) 258 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 259 else 260 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 261 break; 262 } 263 } 264 265 void CodeGenModule::createCUDARuntime() { 266 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 267 } 268 269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 270 Replacements[Name] = C; 271 } 272 273 void CodeGenModule::applyReplacements() { 274 for (auto &I : Replacements) { 275 StringRef MangledName = I.first(); 276 llvm::Constant *Replacement = I.second; 277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 278 if (!Entry) 279 continue; 280 auto *OldF = cast<llvm::Function>(Entry); 281 auto *NewF = dyn_cast<llvm::Function>(Replacement); 282 if (!NewF) { 283 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 284 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 285 } else { 286 auto *CE = cast<llvm::ConstantExpr>(Replacement); 287 assert(CE->getOpcode() == llvm::Instruction::BitCast || 288 CE->getOpcode() == llvm::Instruction::GetElementPtr); 289 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 290 } 291 } 292 293 // Replace old with new, but keep the old order. 294 OldF->replaceAllUsesWith(Replacement); 295 if (NewF) { 296 NewF->removeFromParent(); 297 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 298 NewF); 299 } 300 OldF->eraseFromParent(); 301 } 302 } 303 304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 305 GlobalValReplacements.push_back(std::make_pair(GV, C)); 306 } 307 308 void CodeGenModule::applyGlobalValReplacements() { 309 for (auto &I : GlobalValReplacements) { 310 llvm::GlobalValue *GV = I.first; 311 llvm::Constant *C = I.second; 312 313 GV->replaceAllUsesWith(C); 314 GV->eraseFromParent(); 315 } 316 } 317 318 // This is only used in aliases that we created and we know they have a 319 // linear structure. 320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 321 llvm::SmallPtrSet<const llvm::GlobalValue *, 4> Visited; 322 for (;;) { 323 if (!GV || !Visited.insert(GV).second) 324 return nullptr; 325 326 const llvm::Constant *C; 327 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 328 C = GA->getAliasee(); 329 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 330 C = GI->getResolver(); 331 else 332 return GV; 333 334 GV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 335 } 336 } 337 338 void CodeGenModule::checkAliases() { 339 // Check if the constructed aliases are well formed. It is really unfortunate 340 // that we have to do this in CodeGen, but we only construct mangled names 341 // and aliases during codegen. 342 bool Error = false; 343 DiagnosticsEngine &Diags = getDiags(); 344 for (const GlobalDecl &GD : Aliases) { 345 const auto *D = cast<ValueDecl>(GD.getDecl()); 346 SourceLocation Location; 347 bool IsIFunc = D->hasAttr<IFuncAttr>(); 348 if (const Attr *A = D->getDefiningAttr()) 349 Location = A->getLocation(); 350 else 351 llvm_unreachable("Not an alias or ifunc?"); 352 StringRef MangledName = getMangledName(GD); 353 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 354 const llvm::GlobalValue *GV = getAliasedGlobal(Alias); 355 if (!GV) { 356 Error = true; 357 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 358 } else if (GV->isDeclaration()) { 359 Error = true; 360 Diags.Report(Location, diag::err_alias_to_undefined) 361 << IsIFunc << IsIFunc; 362 } else if (IsIFunc) { 363 // Check resolver function type. 364 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 365 GV->getType()->getPointerElementType()); 366 assert(FTy); 367 if (!FTy->getReturnType()->isPointerTy()) 368 Diags.Report(Location, diag::err_ifunc_resolver_return); 369 } 370 371 llvm::Constant *Aliasee = 372 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 373 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 374 375 llvm::GlobalValue *AliaseeGV; 376 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 377 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 378 else 379 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 380 381 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 382 StringRef AliasSection = SA->getName(); 383 if (AliasSection != AliaseeGV->getSection()) 384 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 385 << AliasSection << IsIFunc << IsIFunc; 386 } 387 388 // We have to handle alias to weak aliases in here. LLVM itself disallows 389 // this since the object semantics would not match the IL one. For 390 // compatibility with gcc we implement it by just pointing the alias 391 // to its aliasee's aliasee. We also warn, since the user is probably 392 // expecting the link to be weak. 393 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 394 if (GA->isInterposable()) { 395 Diags.Report(Location, diag::warn_alias_to_weak_alias) 396 << GV->getName() << GA->getName() << IsIFunc; 397 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 398 GA->getAliasee(), Alias->getType()); 399 400 if (IsIFunc) 401 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 402 else 403 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 404 } 405 } 406 } 407 if (!Error) 408 return; 409 410 for (const GlobalDecl &GD : Aliases) { 411 StringRef MangledName = getMangledName(GD); 412 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 413 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 414 Alias->eraseFromParent(); 415 } 416 } 417 418 void CodeGenModule::clear() { 419 DeferredDeclsToEmit.clear(); 420 if (OpenMPRuntime) 421 OpenMPRuntime->clear(); 422 } 423 424 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 425 StringRef MainFile) { 426 if (!hasDiagnostics()) 427 return; 428 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 429 if (MainFile.empty()) 430 MainFile = "<stdin>"; 431 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 432 } else { 433 if (Mismatched > 0) 434 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 435 436 if (Missing > 0) 437 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 438 } 439 } 440 441 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 442 llvm::Module &M) { 443 if (!LO.VisibilityFromDLLStorageClass) 444 return; 445 446 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 447 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 448 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 449 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 450 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 451 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 452 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 453 CodeGenModule::GetLLVMVisibility( 454 LO.getExternDeclNoDLLStorageClassVisibility()); 455 456 for (llvm::GlobalValue &GV : M.global_values()) { 457 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 458 continue; 459 460 // Reset DSO locality before setting the visibility. This removes 461 // any effects that visibility options and annotations may have 462 // had on the DSO locality. Setting the visibility will implicitly set 463 // appropriate globals to DSO Local; however, this will be pessimistic 464 // w.r.t. to the normal compiler IRGen. 465 GV.setDSOLocal(false); 466 467 if (GV.isDeclarationForLinker()) { 468 GV.setVisibility(GV.getDLLStorageClass() == 469 llvm::GlobalValue::DLLImportStorageClass 470 ? ExternDeclDLLImportVisibility 471 : ExternDeclNoDLLStorageClassVisibility); 472 } else { 473 GV.setVisibility(GV.getDLLStorageClass() == 474 llvm::GlobalValue::DLLExportStorageClass 475 ? DLLExportVisibility 476 : NoDLLStorageClassVisibility); 477 } 478 479 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 480 } 481 } 482 483 void CodeGenModule::Release() { 484 EmitDeferred(); 485 EmitVTablesOpportunistically(); 486 applyGlobalValReplacements(); 487 applyReplacements(); 488 checkAliases(); 489 emitMultiVersionFunctions(); 490 EmitCXXGlobalInitFunc(); 491 EmitCXXGlobalCleanUpFunc(); 492 registerGlobalDtorsWithAtExit(); 493 EmitCXXThreadLocalInitFunc(); 494 if (ObjCRuntime) 495 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 496 AddGlobalCtor(ObjCInitFunction); 497 if (Context.getLangOpts().CUDA && CUDARuntime) { 498 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 499 AddGlobalCtor(CudaCtorFunction); 500 } 501 if (OpenMPRuntime) { 502 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 503 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 504 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 505 } 506 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 507 OpenMPRuntime->clear(); 508 } 509 if (PGOReader) { 510 getModule().setProfileSummary( 511 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 512 llvm::ProfileSummary::PSK_Instr); 513 if (PGOStats.hasDiagnostics()) 514 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 515 } 516 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 517 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 518 EmitGlobalAnnotations(); 519 EmitStaticExternCAliases(); 520 EmitDeferredUnusedCoverageMappings(); 521 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 522 if (CoverageMapping) 523 CoverageMapping->emit(); 524 if (CodeGenOpts.SanitizeCfiCrossDso) { 525 CodeGenFunction(*this).EmitCfiCheckFail(); 526 CodeGenFunction(*this).EmitCfiCheckStub(); 527 } 528 emitAtAvailableLinkGuard(); 529 if (Context.getTargetInfo().getTriple().isWasm() && 530 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 531 EmitMainVoidAlias(); 532 } 533 534 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 535 // preserve ASAN functions in bitcode libraries. 536 if (LangOpts.Sanitize.has(SanitizerKind::Address) && getTriple().isAMDGPU()) { 537 auto *FT = llvm::FunctionType::get(VoidTy, {}); 538 auto *F = llvm::Function::Create( 539 FT, llvm::GlobalValue::ExternalLinkage, 540 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 541 auto *Var = new llvm::GlobalVariable( 542 getModule(), FT->getPointerTo(), 543 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 544 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 545 llvm::GlobalVariable::NotThreadLocal); 546 addCompilerUsedGlobal(Var); 547 } 548 549 emitLLVMUsed(); 550 if (SanStats) 551 SanStats->finish(); 552 553 if (CodeGenOpts.Autolink && 554 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 555 EmitModuleLinkOptions(); 556 } 557 558 // On ELF we pass the dependent library specifiers directly to the linker 559 // without manipulating them. This is in contrast to other platforms where 560 // they are mapped to a specific linker option by the compiler. This 561 // difference is a result of the greater variety of ELF linkers and the fact 562 // that ELF linkers tend to handle libraries in a more complicated fashion 563 // than on other platforms. This forces us to defer handling the dependent 564 // libs to the linker. 565 // 566 // CUDA/HIP device and host libraries are different. Currently there is no 567 // way to differentiate dependent libraries for host or device. Existing 568 // usage of #pragma comment(lib, *) is intended for host libraries on 569 // Windows. Therefore emit llvm.dependent-libraries only for host. 570 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 571 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 572 for (auto *MD : ELFDependentLibraries) 573 NMD->addOperand(MD); 574 } 575 576 // Record mregparm value now so it is visible through rest of codegen. 577 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 578 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 579 CodeGenOpts.NumRegisterParameters); 580 581 if (CodeGenOpts.DwarfVersion) { 582 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 583 CodeGenOpts.DwarfVersion); 584 } 585 586 if (CodeGenOpts.Dwarf64) 587 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 588 589 if (Context.getLangOpts().SemanticInterposition) 590 // Require various optimization to respect semantic interposition. 591 getModule().setSemanticInterposition(1); 592 593 if (CodeGenOpts.EmitCodeView) { 594 // Indicate that we want CodeView in the metadata. 595 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 596 } 597 if (CodeGenOpts.CodeViewGHash) { 598 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 599 } 600 if (CodeGenOpts.ControlFlowGuard) { 601 // Function ID tables and checks for Control Flow Guard (cfguard=2). 602 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 603 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 604 // Function ID tables for Control Flow Guard (cfguard=1). 605 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 606 } 607 if (CodeGenOpts.EHContGuard) { 608 // Function ID tables for EH Continuation Guard. 609 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 610 } 611 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 612 // We don't support LTO with 2 with different StrictVTablePointers 613 // FIXME: we could support it by stripping all the information introduced 614 // by StrictVTablePointers. 615 616 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 617 618 llvm::Metadata *Ops[2] = { 619 llvm::MDString::get(VMContext, "StrictVTablePointers"), 620 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 621 llvm::Type::getInt32Ty(VMContext), 1))}; 622 623 getModule().addModuleFlag(llvm::Module::Require, 624 "StrictVTablePointersRequirement", 625 llvm::MDNode::get(VMContext, Ops)); 626 } 627 if (getModuleDebugInfo()) 628 // We support a single version in the linked module. The LLVM 629 // parser will drop debug info with a different version number 630 // (and warn about it, too). 631 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 632 llvm::DEBUG_METADATA_VERSION); 633 634 // We need to record the widths of enums and wchar_t, so that we can generate 635 // the correct build attributes in the ARM backend. wchar_size is also used by 636 // TargetLibraryInfo. 637 uint64_t WCharWidth = 638 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 639 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 640 641 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 642 if ( Arch == llvm::Triple::arm 643 || Arch == llvm::Triple::armeb 644 || Arch == llvm::Triple::thumb 645 || Arch == llvm::Triple::thumbeb) { 646 // The minimum width of an enum in bytes 647 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 648 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 649 } 650 651 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 652 StringRef ABIStr = Target.getABI(); 653 llvm::LLVMContext &Ctx = TheModule.getContext(); 654 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 655 llvm::MDString::get(Ctx, ABIStr)); 656 } 657 658 if (CodeGenOpts.SanitizeCfiCrossDso) { 659 // Indicate that we want cross-DSO control flow integrity checks. 660 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 661 } 662 663 if (CodeGenOpts.WholeProgramVTables) { 664 // Indicate whether VFE was enabled for this module, so that the 665 // vcall_visibility metadata added under whole program vtables is handled 666 // appropriately in the optimizer. 667 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 668 CodeGenOpts.VirtualFunctionElimination); 669 } 670 671 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 672 getModule().addModuleFlag(llvm::Module::Override, 673 "CFI Canonical Jump Tables", 674 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 675 } 676 677 if (CodeGenOpts.CFProtectionReturn && 678 Target.checkCFProtectionReturnSupported(getDiags())) { 679 // Indicate that we want to instrument return control flow protection. 680 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 681 1); 682 } 683 684 if (CodeGenOpts.CFProtectionBranch && 685 Target.checkCFProtectionBranchSupported(getDiags())) { 686 // Indicate that we want to instrument branch control flow protection. 687 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 688 1); 689 } 690 691 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 692 Arch == llvm::Triple::aarch64_be) { 693 getModule().addModuleFlag(llvm::Module::Error, 694 "branch-target-enforcement", 695 LangOpts.BranchTargetEnforcement); 696 697 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 698 LangOpts.hasSignReturnAddress()); 699 700 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 701 LangOpts.isSignReturnAddressScopeAll()); 702 703 getModule().addModuleFlag(llvm::Module::Error, 704 "sign-return-address-with-bkey", 705 !LangOpts.isSignReturnAddressWithAKey()); 706 } 707 708 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 709 llvm::LLVMContext &Ctx = TheModule.getContext(); 710 getModule().addModuleFlag( 711 llvm::Module::Error, "MemProfProfileFilename", 712 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 713 } 714 715 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 716 // Indicate whether __nvvm_reflect should be configured to flush denormal 717 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 718 // property.) 719 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 720 CodeGenOpts.FP32DenormalMode.Output != 721 llvm::DenormalMode::IEEE); 722 } 723 724 if (LangOpts.EHAsynch) 725 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 726 727 // Indicate whether this Module was compiled with -fopenmp 728 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 729 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 730 if (getLangOpts().OpenMPIsDevice) 731 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 732 LangOpts.OpenMP); 733 734 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 735 if (LangOpts.OpenCL) { 736 EmitOpenCLMetadata(); 737 // Emit SPIR version. 738 if (getTriple().isSPIR()) { 739 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 740 // opencl.spir.version named metadata. 741 // C++ for OpenCL has a distinct mapping for version compatibility with 742 // OpenCL. 743 auto Version = LangOpts.getOpenCLCompatibleVersion(); 744 llvm::Metadata *SPIRVerElts[] = { 745 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 746 Int32Ty, Version / 100)), 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 749 llvm::NamedMDNode *SPIRVerMD = 750 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 751 llvm::LLVMContext &Ctx = TheModule.getContext(); 752 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 753 } 754 } 755 756 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 757 assert(PLevel < 3 && "Invalid PIC Level"); 758 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 759 if (Context.getLangOpts().PIE) 760 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 761 } 762 763 if (getCodeGenOpts().CodeModel.size() > 0) { 764 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 765 .Case("tiny", llvm::CodeModel::Tiny) 766 .Case("small", llvm::CodeModel::Small) 767 .Case("kernel", llvm::CodeModel::Kernel) 768 .Case("medium", llvm::CodeModel::Medium) 769 .Case("large", llvm::CodeModel::Large) 770 .Default(~0u); 771 if (CM != ~0u) { 772 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 773 getModule().setCodeModel(codeModel); 774 } 775 } 776 777 if (CodeGenOpts.NoPLT) 778 getModule().setRtLibUseGOT(); 779 if (CodeGenOpts.UnwindTables) 780 getModule().setUwtable(); 781 782 switch (CodeGenOpts.getFramePointer()) { 783 case CodeGenOptions::FramePointerKind::None: 784 // 0 ("none") is the default. 785 break; 786 case CodeGenOptions::FramePointerKind::NonLeaf: 787 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 788 break; 789 case CodeGenOptions::FramePointerKind::All: 790 getModule().setFramePointer(llvm::FramePointerKind::All); 791 break; 792 } 793 794 SimplifyPersonality(); 795 796 if (getCodeGenOpts().EmitDeclMetadata) 797 EmitDeclMetadata(); 798 799 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 800 EmitCoverageFile(); 801 802 if (CGDebugInfo *DI = getModuleDebugInfo()) 803 DI->finalize(); 804 805 if (getCodeGenOpts().EmitVersionIdentMetadata) 806 EmitVersionIdentMetadata(); 807 808 if (!getCodeGenOpts().RecordCommandLine.empty()) 809 EmitCommandLineMetadata(); 810 811 if (!getCodeGenOpts().StackProtectorGuard.empty()) 812 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 813 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 814 getModule().setStackProtectorGuardReg( 815 getCodeGenOpts().StackProtectorGuardReg); 816 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 817 getModule().setStackProtectorGuardOffset( 818 getCodeGenOpts().StackProtectorGuardOffset); 819 if (getCodeGenOpts().StackAlignment) 820 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 821 822 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 823 824 EmitBackendOptionsMetadata(getCodeGenOpts()); 825 826 // Set visibility from DLL storage class 827 // We do this at the end of LLVM IR generation; after any operation 828 // that might affect the DLL storage class or the visibility, and 829 // before anything that might act on these. 830 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 831 } 832 833 void CodeGenModule::EmitOpenCLMetadata() { 834 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 835 // opencl.ocl.version named metadata node. 836 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 837 auto Version = LangOpts.getOpenCLCompatibleVersion(); 838 llvm::Metadata *OCLVerElts[] = { 839 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 840 Int32Ty, Version / 100)), 841 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 842 Int32Ty, (Version % 100) / 10))}; 843 llvm::NamedMDNode *OCLVerMD = 844 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 845 llvm::LLVMContext &Ctx = TheModule.getContext(); 846 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 847 } 848 849 void CodeGenModule::EmitBackendOptionsMetadata( 850 const CodeGenOptions CodeGenOpts) { 851 switch (getTriple().getArch()) { 852 default: 853 break; 854 case llvm::Triple::riscv32: 855 case llvm::Triple::riscv64: 856 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 857 CodeGenOpts.SmallDataLimit); 858 break; 859 } 860 } 861 862 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 863 // Make sure that this type is translated. 864 Types.UpdateCompletedType(TD); 865 } 866 867 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 868 // Make sure that this type is translated. 869 Types.RefreshTypeCacheForClass(RD); 870 } 871 872 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 873 if (!TBAA) 874 return nullptr; 875 return TBAA->getTypeInfo(QTy); 876 } 877 878 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 879 if (!TBAA) 880 return TBAAAccessInfo(); 881 if (getLangOpts().CUDAIsDevice) { 882 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 883 // access info. 884 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 885 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 886 nullptr) 887 return TBAAAccessInfo(); 888 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 889 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 890 nullptr) 891 return TBAAAccessInfo(); 892 } 893 } 894 return TBAA->getAccessInfo(AccessType); 895 } 896 897 TBAAAccessInfo 898 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 899 if (!TBAA) 900 return TBAAAccessInfo(); 901 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 902 } 903 904 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 905 if (!TBAA) 906 return nullptr; 907 return TBAA->getTBAAStructInfo(QTy); 908 } 909 910 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 911 if (!TBAA) 912 return nullptr; 913 return TBAA->getBaseTypeInfo(QTy); 914 } 915 916 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 917 if (!TBAA) 918 return nullptr; 919 return TBAA->getAccessTagInfo(Info); 920 } 921 922 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 923 TBAAAccessInfo TargetInfo) { 924 if (!TBAA) 925 return TBAAAccessInfo(); 926 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 927 } 928 929 TBAAAccessInfo 930 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 931 TBAAAccessInfo InfoB) { 932 if (!TBAA) 933 return TBAAAccessInfo(); 934 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 935 } 936 937 TBAAAccessInfo 938 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 939 TBAAAccessInfo SrcInfo) { 940 if (!TBAA) 941 return TBAAAccessInfo(); 942 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 943 } 944 945 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 946 TBAAAccessInfo TBAAInfo) { 947 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 948 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 949 } 950 951 void CodeGenModule::DecorateInstructionWithInvariantGroup( 952 llvm::Instruction *I, const CXXRecordDecl *RD) { 953 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 954 llvm::MDNode::get(getLLVMContext(), {})); 955 } 956 957 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 958 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 959 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 960 } 961 962 /// ErrorUnsupported - Print out an error that codegen doesn't support the 963 /// specified stmt yet. 964 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 965 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 966 "cannot compile this %0 yet"); 967 std::string Msg = Type; 968 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 969 << Msg << S->getSourceRange(); 970 } 971 972 /// ErrorUnsupported - Print out an error that codegen doesn't support the 973 /// specified decl yet. 974 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 975 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 976 "cannot compile this %0 yet"); 977 std::string Msg = Type; 978 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 979 } 980 981 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 982 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 983 } 984 985 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 986 const NamedDecl *D) const { 987 if (GV->hasDLLImportStorageClass()) 988 return; 989 // Internal definitions always have default visibility. 990 if (GV->hasLocalLinkage()) { 991 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 992 return; 993 } 994 if (!D) 995 return; 996 // Set visibility for definitions, and for declarations if requested globally 997 // or set explicitly. 998 LinkageInfo LV = D->getLinkageAndVisibility(); 999 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1000 !GV->isDeclarationForLinker()) 1001 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1002 } 1003 1004 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1005 llvm::GlobalValue *GV) { 1006 if (GV->hasLocalLinkage()) 1007 return true; 1008 1009 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1010 return true; 1011 1012 // DLLImport explicitly marks the GV as external. 1013 if (GV->hasDLLImportStorageClass()) 1014 return false; 1015 1016 const llvm::Triple &TT = CGM.getTriple(); 1017 if (TT.isWindowsGNUEnvironment()) { 1018 // In MinGW, variables without DLLImport can still be automatically 1019 // imported from a DLL by the linker; don't mark variables that 1020 // potentially could come from another DLL as DSO local. 1021 1022 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1023 // (and this actually happens in the public interface of libstdc++), so 1024 // such variables can't be marked as DSO local. (Native TLS variables 1025 // can't be dllimported at all, though.) 1026 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1027 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1028 return false; 1029 } 1030 1031 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1032 // remain unresolved in the link, they can be resolved to zero, which is 1033 // outside the current DSO. 1034 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1035 return false; 1036 1037 // Every other GV is local on COFF. 1038 // Make an exception for windows OS in the triple: Some firmware builds use 1039 // *-win32-macho triples. This (accidentally?) produced windows relocations 1040 // without GOT tables in older clang versions; Keep this behaviour. 1041 // FIXME: even thread local variables? 1042 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1043 return true; 1044 1045 // Only handle COFF and ELF for now. 1046 if (!TT.isOSBinFormatELF()) 1047 return false; 1048 1049 // If this is not an executable, don't assume anything is local. 1050 const auto &CGOpts = CGM.getCodeGenOpts(); 1051 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1052 const auto &LOpts = CGM.getLangOpts(); 1053 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1054 // On ELF, if -fno-semantic-interposition is specified and the target 1055 // supports local aliases, there will be neither CC1 1056 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1057 // dso_local on the function if using a local alias is preferable (can avoid 1058 // PLT indirection). 1059 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1060 return false; 1061 return !(CGM.getLangOpts().SemanticInterposition || 1062 CGM.getLangOpts().HalfNoSemanticInterposition); 1063 } 1064 1065 // A definition cannot be preempted from an executable. 1066 if (!GV->isDeclarationForLinker()) 1067 return true; 1068 1069 // Most PIC code sequences that assume that a symbol is local cannot produce a 1070 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1071 // depended, it seems worth it to handle it here. 1072 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1073 return false; 1074 1075 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1076 if (TT.isPPC64()) 1077 return false; 1078 1079 if (CGOpts.DirectAccessExternalData) { 1080 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1081 // for non-thread-local variables. If the symbol is not defined in the 1082 // executable, a copy relocation will be needed at link time. dso_local is 1083 // excluded for thread-local variables because they generally don't support 1084 // copy relocations. 1085 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1086 if (!Var->isThreadLocal()) 1087 return true; 1088 1089 // -fno-pic sets dso_local on a function declaration to allow direct 1090 // accesses when taking its address (similar to a data symbol). If the 1091 // function is not defined in the executable, a canonical PLT entry will be 1092 // needed at link time. -fno-direct-access-external-data can avoid the 1093 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1094 // it could just cause trouble without providing perceptible benefits. 1095 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1096 return true; 1097 } 1098 1099 // If we can use copy relocations we can assume it is local. 1100 1101 // Otherwise don't assume it is local. 1102 return false; 1103 } 1104 1105 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1106 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1107 } 1108 1109 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1110 GlobalDecl GD) const { 1111 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1112 // C++ destructors have a few C++ ABI specific special cases. 1113 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1114 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1115 return; 1116 } 1117 setDLLImportDLLExport(GV, D); 1118 } 1119 1120 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1121 const NamedDecl *D) const { 1122 if (D && D->isExternallyVisible()) { 1123 if (D->hasAttr<DLLImportAttr>()) 1124 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1125 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1126 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1127 } 1128 } 1129 1130 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1131 GlobalDecl GD) const { 1132 setDLLImportDLLExport(GV, GD); 1133 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1134 } 1135 1136 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1137 const NamedDecl *D) const { 1138 setDLLImportDLLExport(GV, D); 1139 setGVPropertiesAux(GV, D); 1140 } 1141 1142 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1143 const NamedDecl *D) const { 1144 setGlobalVisibility(GV, D); 1145 setDSOLocal(GV); 1146 GV->setPartition(CodeGenOpts.SymbolPartition); 1147 } 1148 1149 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1150 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1151 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1152 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1153 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1154 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1155 } 1156 1157 llvm::GlobalVariable::ThreadLocalMode 1158 CodeGenModule::GetDefaultLLVMTLSModel() const { 1159 switch (CodeGenOpts.getDefaultTLSModel()) { 1160 case CodeGenOptions::GeneralDynamicTLSModel: 1161 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1162 case CodeGenOptions::LocalDynamicTLSModel: 1163 return llvm::GlobalVariable::LocalDynamicTLSModel; 1164 case CodeGenOptions::InitialExecTLSModel: 1165 return llvm::GlobalVariable::InitialExecTLSModel; 1166 case CodeGenOptions::LocalExecTLSModel: 1167 return llvm::GlobalVariable::LocalExecTLSModel; 1168 } 1169 llvm_unreachable("Invalid TLS model!"); 1170 } 1171 1172 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1173 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1174 1175 llvm::GlobalValue::ThreadLocalMode TLM; 1176 TLM = GetDefaultLLVMTLSModel(); 1177 1178 // Override the TLS model if it is explicitly specified. 1179 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1180 TLM = GetLLVMTLSModel(Attr->getModel()); 1181 } 1182 1183 GV->setThreadLocalMode(TLM); 1184 } 1185 1186 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1187 StringRef Name) { 1188 const TargetInfo &Target = CGM.getTarget(); 1189 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1190 } 1191 1192 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1193 const CPUSpecificAttr *Attr, 1194 unsigned CPUIndex, 1195 raw_ostream &Out) { 1196 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1197 // supported. 1198 if (Attr) 1199 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1200 else if (CGM.getTarget().supportsIFunc()) 1201 Out << ".resolver"; 1202 } 1203 1204 static void AppendTargetMangling(const CodeGenModule &CGM, 1205 const TargetAttr *Attr, raw_ostream &Out) { 1206 if (Attr->isDefaultVersion()) 1207 return; 1208 1209 Out << '.'; 1210 const TargetInfo &Target = CGM.getTarget(); 1211 ParsedTargetAttr Info = 1212 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1213 // Multiversioning doesn't allow "no-${feature}", so we can 1214 // only have "+" prefixes here. 1215 assert(LHS.startswith("+") && RHS.startswith("+") && 1216 "Features should always have a prefix."); 1217 return Target.multiVersionSortPriority(LHS.substr(1)) > 1218 Target.multiVersionSortPriority(RHS.substr(1)); 1219 }); 1220 1221 bool IsFirst = true; 1222 1223 if (!Info.Architecture.empty()) { 1224 IsFirst = false; 1225 Out << "arch_" << Info.Architecture; 1226 } 1227 1228 for (StringRef Feat : Info.Features) { 1229 if (!IsFirst) 1230 Out << '_'; 1231 IsFirst = false; 1232 Out << Feat.substr(1); 1233 } 1234 } 1235 1236 // Returns true if GD is a function decl with internal linkage and 1237 // needs a unique suffix after the mangled name. 1238 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1239 CodeGenModule &CGM) { 1240 const Decl *D = GD.getDecl(); 1241 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1242 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1243 } 1244 1245 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1246 const NamedDecl *ND, 1247 bool OmitMultiVersionMangling = false) { 1248 SmallString<256> Buffer; 1249 llvm::raw_svector_ostream Out(Buffer); 1250 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1251 if (!CGM.getModuleNameHash().empty()) 1252 MC.needsUniqueInternalLinkageNames(); 1253 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1254 if (ShouldMangle) 1255 MC.mangleName(GD.getWithDecl(ND), Out); 1256 else { 1257 IdentifierInfo *II = ND->getIdentifier(); 1258 assert(II && "Attempt to mangle unnamed decl."); 1259 const auto *FD = dyn_cast<FunctionDecl>(ND); 1260 1261 if (FD && 1262 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1263 Out << "__regcall3__" << II->getName(); 1264 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1265 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1266 Out << "__device_stub__" << II->getName(); 1267 } else { 1268 Out << II->getName(); 1269 } 1270 } 1271 1272 // Check if the module name hash should be appended for internal linkage 1273 // symbols. This should come before multi-version target suffixes are 1274 // appended. This is to keep the name and module hash suffix of the 1275 // internal linkage function together. The unique suffix should only be 1276 // added when name mangling is done to make sure that the final name can 1277 // be properly demangled. For example, for C functions without prototypes, 1278 // name mangling is not done and the unique suffix should not be appeneded 1279 // then. 1280 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1281 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1282 "Hash computed when not explicitly requested"); 1283 Out << CGM.getModuleNameHash(); 1284 } 1285 1286 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1287 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1288 switch (FD->getMultiVersionKind()) { 1289 case MultiVersionKind::CPUDispatch: 1290 case MultiVersionKind::CPUSpecific: 1291 AppendCPUSpecificCPUDispatchMangling(CGM, 1292 FD->getAttr<CPUSpecificAttr>(), 1293 GD.getMultiVersionIndex(), Out); 1294 break; 1295 case MultiVersionKind::Target: 1296 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1297 break; 1298 case MultiVersionKind::None: 1299 llvm_unreachable("None multiversion type isn't valid here"); 1300 } 1301 } 1302 1303 // Make unique name for device side static file-scope variable for HIP. 1304 if (CGM.getContext().shouldExternalizeStaticVar(ND) && 1305 CGM.getLangOpts().GPURelocatableDeviceCode && 1306 CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty()) 1307 CGM.printPostfixForExternalizedStaticVar(Out); 1308 return std::string(Out.str()); 1309 } 1310 1311 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1312 const FunctionDecl *FD) { 1313 if (!FD->isMultiVersion()) 1314 return; 1315 1316 // Get the name of what this would be without the 'target' attribute. This 1317 // allows us to lookup the version that was emitted when this wasn't a 1318 // multiversion function. 1319 std::string NonTargetName = 1320 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1321 GlobalDecl OtherGD; 1322 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1323 assert(OtherGD.getCanonicalDecl() 1324 .getDecl() 1325 ->getAsFunction() 1326 ->isMultiVersion() && 1327 "Other GD should now be a multiversioned function"); 1328 // OtherFD is the version of this function that was mangled BEFORE 1329 // becoming a MultiVersion function. It potentially needs to be updated. 1330 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1331 .getDecl() 1332 ->getAsFunction() 1333 ->getMostRecentDecl(); 1334 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1335 // This is so that if the initial version was already the 'default' 1336 // version, we don't try to update it. 1337 if (OtherName != NonTargetName) { 1338 // Remove instead of erase, since others may have stored the StringRef 1339 // to this. 1340 const auto ExistingRecord = Manglings.find(NonTargetName); 1341 if (ExistingRecord != std::end(Manglings)) 1342 Manglings.remove(&(*ExistingRecord)); 1343 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1344 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1345 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1346 Entry->setName(OtherName); 1347 } 1348 } 1349 } 1350 1351 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1352 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1353 1354 // Some ABIs don't have constructor variants. Make sure that base and 1355 // complete constructors get mangled the same. 1356 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1357 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1358 CXXCtorType OrigCtorType = GD.getCtorType(); 1359 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1360 if (OrigCtorType == Ctor_Base) 1361 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1362 } 1363 } 1364 1365 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1366 // static device variable depends on whether the variable is referenced by 1367 // a host or device host function. Therefore the mangled name cannot be 1368 // cached. 1369 if (!LangOpts.CUDAIsDevice || 1370 !getContext().mayExternalizeStaticVar(GD.getDecl())) { 1371 auto FoundName = MangledDeclNames.find(CanonicalGD); 1372 if (FoundName != MangledDeclNames.end()) 1373 return FoundName->second; 1374 } 1375 1376 // Keep the first result in the case of a mangling collision. 1377 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1378 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1379 1380 // Ensure either we have different ABIs between host and device compilations, 1381 // says host compilation following MSVC ABI but device compilation follows 1382 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1383 // mangling should be the same after name stubbing. The later checking is 1384 // very important as the device kernel name being mangled in host-compilation 1385 // is used to resolve the device binaries to be executed. Inconsistent naming 1386 // result in undefined behavior. Even though we cannot check that naming 1387 // directly between host- and device-compilations, the host- and 1388 // device-mangling in host compilation could help catching certain ones. 1389 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1390 getLangOpts().CUDAIsDevice || 1391 (getContext().getAuxTargetInfo() && 1392 (getContext().getAuxTargetInfo()->getCXXABI() != 1393 getContext().getTargetInfo().getCXXABI())) || 1394 getCUDARuntime().getDeviceSideName(ND) == 1395 getMangledNameImpl( 1396 *this, 1397 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1398 ND)); 1399 1400 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1401 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1402 } 1403 1404 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1405 const BlockDecl *BD) { 1406 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1407 const Decl *D = GD.getDecl(); 1408 1409 SmallString<256> Buffer; 1410 llvm::raw_svector_ostream Out(Buffer); 1411 if (!D) 1412 MangleCtx.mangleGlobalBlock(BD, 1413 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1414 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1415 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1416 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1417 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1418 else 1419 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1420 1421 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1422 return Result.first->first(); 1423 } 1424 1425 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1426 return getModule().getNamedValue(Name); 1427 } 1428 1429 /// AddGlobalCtor - Add a function to the list that will be called before 1430 /// main() runs. 1431 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1432 llvm::Constant *AssociatedData) { 1433 // FIXME: Type coercion of void()* types. 1434 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1435 } 1436 1437 /// AddGlobalDtor - Add a function to the list that will be called 1438 /// when the module is unloaded. 1439 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1440 bool IsDtorAttrFunc) { 1441 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1442 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1443 DtorsUsingAtExit[Priority].push_back(Dtor); 1444 return; 1445 } 1446 1447 // FIXME: Type coercion of void()* types. 1448 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1449 } 1450 1451 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1452 if (Fns.empty()) return; 1453 1454 // Ctor function type is void()*. 1455 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1456 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1457 TheModule.getDataLayout().getProgramAddressSpace()); 1458 1459 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1460 llvm::StructType *CtorStructTy = llvm::StructType::get( 1461 Int32Ty, CtorPFTy, VoidPtrTy); 1462 1463 // Construct the constructor and destructor arrays. 1464 ConstantInitBuilder builder(*this); 1465 auto ctors = builder.beginArray(CtorStructTy); 1466 for (const auto &I : Fns) { 1467 auto ctor = ctors.beginStruct(CtorStructTy); 1468 ctor.addInt(Int32Ty, I.Priority); 1469 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1470 if (I.AssociatedData) 1471 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1472 else 1473 ctor.addNullPointer(VoidPtrTy); 1474 ctor.finishAndAddTo(ctors); 1475 } 1476 1477 auto list = 1478 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1479 /*constant*/ false, 1480 llvm::GlobalValue::AppendingLinkage); 1481 1482 // The LTO linker doesn't seem to like it when we set an alignment 1483 // on appending variables. Take it off as a workaround. 1484 list->setAlignment(llvm::None); 1485 1486 Fns.clear(); 1487 } 1488 1489 llvm::GlobalValue::LinkageTypes 1490 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1491 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1492 1493 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1494 1495 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1496 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1497 1498 if (isa<CXXConstructorDecl>(D) && 1499 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1500 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1501 // Our approach to inheriting constructors is fundamentally different from 1502 // that used by the MS ABI, so keep our inheriting constructor thunks 1503 // internal rather than trying to pick an unambiguous mangling for them. 1504 return llvm::GlobalValue::InternalLinkage; 1505 } 1506 1507 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1508 } 1509 1510 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1511 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1512 if (!MDS) return nullptr; 1513 1514 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1515 } 1516 1517 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1518 const CGFunctionInfo &Info, 1519 llvm::Function *F, bool IsThunk) { 1520 unsigned CallingConv; 1521 llvm::AttributeList PAL; 1522 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1523 /*AttrOnCallSite=*/false, IsThunk); 1524 F->setAttributes(PAL); 1525 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1526 } 1527 1528 static void removeImageAccessQualifier(std::string& TyName) { 1529 std::string ReadOnlyQual("__read_only"); 1530 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1531 if (ReadOnlyPos != std::string::npos) 1532 // "+ 1" for the space after access qualifier. 1533 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1534 else { 1535 std::string WriteOnlyQual("__write_only"); 1536 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1537 if (WriteOnlyPos != std::string::npos) 1538 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1539 else { 1540 std::string ReadWriteQual("__read_write"); 1541 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1542 if (ReadWritePos != std::string::npos) 1543 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1544 } 1545 } 1546 } 1547 1548 // Returns the address space id that should be produced to the 1549 // kernel_arg_addr_space metadata. This is always fixed to the ids 1550 // as specified in the SPIR 2.0 specification in order to differentiate 1551 // for example in clGetKernelArgInfo() implementation between the address 1552 // spaces with targets without unique mapping to the OpenCL address spaces 1553 // (basically all single AS CPUs). 1554 static unsigned ArgInfoAddressSpace(LangAS AS) { 1555 switch (AS) { 1556 case LangAS::opencl_global: 1557 return 1; 1558 case LangAS::opencl_constant: 1559 return 2; 1560 case LangAS::opencl_local: 1561 return 3; 1562 case LangAS::opencl_generic: 1563 return 4; // Not in SPIR 2.0 specs. 1564 case LangAS::opencl_global_device: 1565 return 5; 1566 case LangAS::opencl_global_host: 1567 return 6; 1568 default: 1569 return 0; // Assume private. 1570 } 1571 } 1572 1573 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1574 const FunctionDecl *FD, 1575 CodeGenFunction *CGF) { 1576 assert(((FD && CGF) || (!FD && !CGF)) && 1577 "Incorrect use - FD and CGF should either be both null or not!"); 1578 // Create MDNodes that represent the kernel arg metadata. 1579 // Each MDNode is a list in the form of "key", N number of values which is 1580 // the same number of values as their are kernel arguments. 1581 1582 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1583 1584 // MDNode for the kernel argument address space qualifiers. 1585 SmallVector<llvm::Metadata *, 8> addressQuals; 1586 1587 // MDNode for the kernel argument access qualifiers (images only). 1588 SmallVector<llvm::Metadata *, 8> accessQuals; 1589 1590 // MDNode for the kernel argument type names. 1591 SmallVector<llvm::Metadata *, 8> argTypeNames; 1592 1593 // MDNode for the kernel argument base type names. 1594 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1595 1596 // MDNode for the kernel argument type qualifiers. 1597 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1598 1599 // MDNode for the kernel argument names. 1600 SmallVector<llvm::Metadata *, 8> argNames; 1601 1602 if (FD && CGF) 1603 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1604 const ParmVarDecl *parm = FD->getParamDecl(i); 1605 QualType ty = parm->getType(); 1606 std::string typeQuals; 1607 1608 // Get image and pipe access qualifier: 1609 if (ty->isImageType() || ty->isPipeType()) { 1610 const Decl *PDecl = parm; 1611 if (auto *TD = dyn_cast<TypedefType>(ty)) 1612 PDecl = TD->getDecl(); 1613 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1614 if (A && A->isWriteOnly()) 1615 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1616 else if (A && A->isReadWrite()) 1617 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1618 else 1619 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1620 } else 1621 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1622 1623 // Get argument name. 1624 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1625 1626 auto getTypeSpelling = [&](QualType Ty) { 1627 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1628 1629 if (Ty.isCanonical()) { 1630 StringRef typeNameRef = typeName; 1631 // Turn "unsigned type" to "utype" 1632 if (typeNameRef.consume_front("unsigned ")) 1633 return std::string("u") + typeNameRef.str(); 1634 if (typeNameRef.consume_front("signed ")) 1635 return typeNameRef.str(); 1636 } 1637 1638 return typeName; 1639 }; 1640 1641 if (ty->isPointerType()) { 1642 QualType pointeeTy = ty->getPointeeType(); 1643 1644 // Get address qualifier. 1645 addressQuals.push_back( 1646 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1647 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1648 1649 // Get argument type name. 1650 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1651 std::string baseTypeName = 1652 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1653 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1654 argBaseTypeNames.push_back( 1655 llvm::MDString::get(VMContext, baseTypeName)); 1656 1657 // Get argument type qualifiers: 1658 if (ty.isRestrictQualified()) 1659 typeQuals = "restrict"; 1660 if (pointeeTy.isConstQualified() || 1661 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1662 typeQuals += typeQuals.empty() ? "const" : " const"; 1663 if (pointeeTy.isVolatileQualified()) 1664 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1665 } else { 1666 uint32_t AddrSpc = 0; 1667 bool isPipe = ty->isPipeType(); 1668 if (ty->isImageType() || isPipe) 1669 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1670 1671 addressQuals.push_back( 1672 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1673 1674 // Get argument type name. 1675 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1676 std::string typeName = getTypeSpelling(ty); 1677 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1678 1679 // Remove access qualifiers on images 1680 // (as they are inseparable from type in clang implementation, 1681 // but OpenCL spec provides a special query to get access qualifier 1682 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1683 if (ty->isImageType()) { 1684 removeImageAccessQualifier(typeName); 1685 removeImageAccessQualifier(baseTypeName); 1686 } 1687 1688 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1689 argBaseTypeNames.push_back( 1690 llvm::MDString::get(VMContext, baseTypeName)); 1691 1692 if (isPipe) 1693 typeQuals = "pipe"; 1694 } 1695 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1696 } 1697 1698 Fn->setMetadata("kernel_arg_addr_space", 1699 llvm::MDNode::get(VMContext, addressQuals)); 1700 Fn->setMetadata("kernel_arg_access_qual", 1701 llvm::MDNode::get(VMContext, accessQuals)); 1702 Fn->setMetadata("kernel_arg_type", 1703 llvm::MDNode::get(VMContext, argTypeNames)); 1704 Fn->setMetadata("kernel_arg_base_type", 1705 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1706 Fn->setMetadata("kernel_arg_type_qual", 1707 llvm::MDNode::get(VMContext, argTypeQuals)); 1708 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1709 Fn->setMetadata("kernel_arg_name", 1710 llvm::MDNode::get(VMContext, argNames)); 1711 } 1712 1713 /// Determines whether the language options require us to model 1714 /// unwind exceptions. We treat -fexceptions as mandating this 1715 /// except under the fragile ObjC ABI with only ObjC exceptions 1716 /// enabled. This means, for example, that C with -fexceptions 1717 /// enables this. 1718 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1719 // If exceptions are completely disabled, obviously this is false. 1720 if (!LangOpts.Exceptions) return false; 1721 1722 // If C++ exceptions are enabled, this is true. 1723 if (LangOpts.CXXExceptions) return true; 1724 1725 // If ObjC exceptions are enabled, this depends on the ABI. 1726 if (LangOpts.ObjCExceptions) { 1727 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1728 } 1729 1730 return true; 1731 } 1732 1733 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1734 const CXXMethodDecl *MD) { 1735 // Check that the type metadata can ever actually be used by a call. 1736 if (!CGM.getCodeGenOpts().LTOUnit || 1737 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1738 return false; 1739 1740 // Only functions whose address can be taken with a member function pointer 1741 // need this sort of type metadata. 1742 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1743 !isa<CXXDestructorDecl>(MD); 1744 } 1745 1746 std::vector<const CXXRecordDecl *> 1747 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1748 llvm::SetVector<const CXXRecordDecl *> MostBases; 1749 1750 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1751 CollectMostBases = [&](const CXXRecordDecl *RD) { 1752 if (RD->getNumBases() == 0) 1753 MostBases.insert(RD); 1754 for (const CXXBaseSpecifier &B : RD->bases()) 1755 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1756 }; 1757 CollectMostBases(RD); 1758 return MostBases.takeVector(); 1759 } 1760 1761 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1762 llvm::Function *F) { 1763 llvm::AttrBuilder B; 1764 1765 if (CodeGenOpts.UnwindTables) 1766 B.addAttribute(llvm::Attribute::UWTable); 1767 1768 if (CodeGenOpts.StackClashProtector) 1769 B.addAttribute("probe-stack", "inline-asm"); 1770 1771 if (!hasUnwindExceptions(LangOpts)) 1772 B.addAttribute(llvm::Attribute::NoUnwind); 1773 1774 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1775 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1776 B.addAttribute(llvm::Attribute::StackProtect); 1777 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1778 B.addAttribute(llvm::Attribute::StackProtectStrong); 1779 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1780 B.addAttribute(llvm::Attribute::StackProtectReq); 1781 } 1782 1783 if (!D) { 1784 // If we don't have a declaration to control inlining, the function isn't 1785 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1786 // disabled, mark the function as noinline. 1787 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1788 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1789 B.addAttribute(llvm::Attribute::NoInline); 1790 1791 F->addFnAttrs(B); 1792 return; 1793 } 1794 1795 // Track whether we need to add the optnone LLVM attribute, 1796 // starting with the default for this optimization level. 1797 bool ShouldAddOptNone = 1798 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1799 // We can't add optnone in the following cases, it won't pass the verifier. 1800 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1801 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1802 1803 // Add optnone, but do so only if the function isn't always_inline. 1804 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1805 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1806 B.addAttribute(llvm::Attribute::OptimizeNone); 1807 1808 // OptimizeNone implies noinline; we should not be inlining such functions. 1809 B.addAttribute(llvm::Attribute::NoInline); 1810 1811 // We still need to handle naked functions even though optnone subsumes 1812 // much of their semantics. 1813 if (D->hasAttr<NakedAttr>()) 1814 B.addAttribute(llvm::Attribute::Naked); 1815 1816 // OptimizeNone wins over OptimizeForSize and MinSize. 1817 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1818 F->removeFnAttr(llvm::Attribute::MinSize); 1819 } else if (D->hasAttr<NakedAttr>()) { 1820 // Naked implies noinline: we should not be inlining such functions. 1821 B.addAttribute(llvm::Attribute::Naked); 1822 B.addAttribute(llvm::Attribute::NoInline); 1823 } else if (D->hasAttr<NoDuplicateAttr>()) { 1824 B.addAttribute(llvm::Attribute::NoDuplicate); 1825 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1826 // Add noinline if the function isn't always_inline. 1827 B.addAttribute(llvm::Attribute::NoInline); 1828 } else if (D->hasAttr<AlwaysInlineAttr>() && 1829 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1830 // (noinline wins over always_inline, and we can't specify both in IR) 1831 B.addAttribute(llvm::Attribute::AlwaysInline); 1832 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1833 // If we're not inlining, then force everything that isn't always_inline to 1834 // carry an explicit noinline attribute. 1835 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1836 B.addAttribute(llvm::Attribute::NoInline); 1837 } else { 1838 // Otherwise, propagate the inline hint attribute and potentially use its 1839 // absence to mark things as noinline. 1840 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1841 // Search function and template pattern redeclarations for inline. 1842 auto CheckForInline = [](const FunctionDecl *FD) { 1843 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1844 return Redecl->isInlineSpecified(); 1845 }; 1846 if (any_of(FD->redecls(), CheckRedeclForInline)) 1847 return true; 1848 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1849 if (!Pattern) 1850 return false; 1851 return any_of(Pattern->redecls(), CheckRedeclForInline); 1852 }; 1853 if (CheckForInline(FD)) { 1854 B.addAttribute(llvm::Attribute::InlineHint); 1855 } else if (CodeGenOpts.getInlining() == 1856 CodeGenOptions::OnlyHintInlining && 1857 !FD->isInlined() && 1858 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1859 B.addAttribute(llvm::Attribute::NoInline); 1860 } 1861 } 1862 } 1863 1864 // Add other optimization related attributes if we are optimizing this 1865 // function. 1866 if (!D->hasAttr<OptimizeNoneAttr>()) { 1867 if (D->hasAttr<ColdAttr>()) { 1868 if (!ShouldAddOptNone) 1869 B.addAttribute(llvm::Attribute::OptimizeForSize); 1870 B.addAttribute(llvm::Attribute::Cold); 1871 } 1872 if (D->hasAttr<HotAttr>()) 1873 B.addAttribute(llvm::Attribute::Hot); 1874 if (D->hasAttr<MinSizeAttr>()) 1875 B.addAttribute(llvm::Attribute::MinSize); 1876 } 1877 1878 F->addFnAttrs(B); 1879 1880 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1881 if (alignment) 1882 F->setAlignment(llvm::Align(alignment)); 1883 1884 if (!D->hasAttr<AlignedAttr>()) 1885 if (LangOpts.FunctionAlignment) 1886 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1887 1888 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1889 // reserve a bit for differentiating between virtual and non-virtual member 1890 // functions. If the current target's C++ ABI requires this and this is a 1891 // member function, set its alignment accordingly. 1892 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1893 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1894 F->setAlignment(llvm::Align(2)); 1895 } 1896 1897 // In the cross-dso CFI mode with canonical jump tables, we want !type 1898 // attributes on definitions only. 1899 if (CodeGenOpts.SanitizeCfiCrossDso && 1900 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1901 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1902 // Skip available_externally functions. They won't be codegen'ed in the 1903 // current module anyway. 1904 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1905 CreateFunctionTypeMetadataForIcall(FD, F); 1906 } 1907 } 1908 1909 // Emit type metadata on member functions for member function pointer checks. 1910 // These are only ever necessary on definitions; we're guaranteed that the 1911 // definition will be present in the LTO unit as a result of LTO visibility. 1912 auto *MD = dyn_cast<CXXMethodDecl>(D); 1913 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1914 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1915 llvm::Metadata *Id = 1916 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1917 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1918 F->addTypeMetadata(0, Id); 1919 } 1920 } 1921 } 1922 1923 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1924 llvm::Function *F) { 1925 if (D->hasAttr<StrictFPAttr>()) { 1926 llvm::AttrBuilder FuncAttrs; 1927 FuncAttrs.addAttribute("strictfp"); 1928 F->addFnAttrs(FuncAttrs); 1929 } 1930 } 1931 1932 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1933 const Decl *D = GD.getDecl(); 1934 if (dyn_cast_or_null<NamedDecl>(D)) 1935 setGVProperties(GV, GD); 1936 else 1937 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1938 1939 if (D && D->hasAttr<UsedAttr>()) 1940 addUsedOrCompilerUsedGlobal(GV); 1941 1942 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1943 const auto *VD = cast<VarDecl>(D); 1944 if (VD->getType().isConstQualified() && 1945 VD->getStorageDuration() == SD_Static) 1946 addUsedOrCompilerUsedGlobal(GV); 1947 } 1948 } 1949 1950 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1951 llvm::AttrBuilder &Attrs) { 1952 // Add target-cpu and target-features attributes to functions. If 1953 // we have a decl for the function and it has a target attribute then 1954 // parse that and add it to the feature set. 1955 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1956 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1957 std::vector<std::string> Features; 1958 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1959 FD = FD ? FD->getMostRecentDecl() : FD; 1960 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1961 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1962 bool AddedAttr = false; 1963 if (TD || SD) { 1964 llvm::StringMap<bool> FeatureMap; 1965 getContext().getFunctionFeatureMap(FeatureMap, GD); 1966 1967 // Produce the canonical string for this set of features. 1968 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1969 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1970 1971 // Now add the target-cpu and target-features to the function. 1972 // While we populated the feature map above, we still need to 1973 // get and parse the target attribute so we can get the cpu for 1974 // the function. 1975 if (TD) { 1976 ParsedTargetAttr ParsedAttr = TD->parse(); 1977 if (!ParsedAttr.Architecture.empty() && 1978 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1979 TargetCPU = ParsedAttr.Architecture; 1980 TuneCPU = ""; // Clear the tune CPU. 1981 } 1982 if (!ParsedAttr.Tune.empty() && 1983 getTarget().isValidCPUName(ParsedAttr.Tune)) 1984 TuneCPU = ParsedAttr.Tune; 1985 } 1986 } else { 1987 // Otherwise just add the existing target cpu and target features to the 1988 // function. 1989 Features = getTarget().getTargetOpts().Features; 1990 } 1991 1992 if (!TargetCPU.empty()) { 1993 Attrs.addAttribute("target-cpu", TargetCPU); 1994 AddedAttr = true; 1995 } 1996 if (!TuneCPU.empty()) { 1997 Attrs.addAttribute("tune-cpu", TuneCPU); 1998 AddedAttr = true; 1999 } 2000 if (!Features.empty()) { 2001 llvm::sort(Features); 2002 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2003 AddedAttr = true; 2004 } 2005 2006 return AddedAttr; 2007 } 2008 2009 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2010 llvm::GlobalObject *GO) { 2011 const Decl *D = GD.getDecl(); 2012 SetCommonAttributes(GD, GO); 2013 2014 if (D) { 2015 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2016 if (D->hasAttr<RetainAttr>()) 2017 addUsedGlobal(GV); 2018 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2019 GV->addAttribute("bss-section", SA->getName()); 2020 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2021 GV->addAttribute("data-section", SA->getName()); 2022 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2023 GV->addAttribute("rodata-section", SA->getName()); 2024 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2025 GV->addAttribute("relro-section", SA->getName()); 2026 } 2027 2028 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2029 if (D->hasAttr<RetainAttr>()) 2030 addUsedGlobal(F); 2031 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2032 if (!D->getAttr<SectionAttr>()) 2033 F->addFnAttr("implicit-section-name", SA->getName()); 2034 2035 llvm::AttrBuilder Attrs; 2036 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2037 // We know that GetCPUAndFeaturesAttributes will always have the 2038 // newest set, since it has the newest possible FunctionDecl, so the 2039 // new ones should replace the old. 2040 llvm::AttrBuilder RemoveAttrs; 2041 RemoveAttrs.addAttribute("target-cpu"); 2042 RemoveAttrs.addAttribute("target-features"); 2043 RemoveAttrs.addAttribute("tune-cpu"); 2044 F->removeFnAttrs(RemoveAttrs); 2045 F->addFnAttrs(Attrs); 2046 } 2047 } 2048 2049 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2050 GO->setSection(CSA->getName()); 2051 else if (const auto *SA = D->getAttr<SectionAttr>()) 2052 GO->setSection(SA->getName()); 2053 } 2054 2055 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2056 } 2057 2058 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2059 llvm::Function *F, 2060 const CGFunctionInfo &FI) { 2061 const Decl *D = GD.getDecl(); 2062 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2063 SetLLVMFunctionAttributesForDefinition(D, F); 2064 2065 F->setLinkage(llvm::Function::InternalLinkage); 2066 2067 setNonAliasAttributes(GD, F); 2068 } 2069 2070 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2071 // Set linkage and visibility in case we never see a definition. 2072 LinkageInfo LV = ND->getLinkageAndVisibility(); 2073 // Don't set internal linkage on declarations. 2074 // "extern_weak" is overloaded in LLVM; we probably should have 2075 // separate linkage types for this. 2076 if (isExternallyVisible(LV.getLinkage()) && 2077 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2078 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2079 } 2080 2081 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2082 llvm::Function *F) { 2083 // Only if we are checking indirect calls. 2084 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2085 return; 2086 2087 // Non-static class methods are handled via vtable or member function pointer 2088 // checks elsewhere. 2089 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2090 return; 2091 2092 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2093 F->addTypeMetadata(0, MD); 2094 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2095 2096 // Emit a hash-based bit set entry for cross-DSO calls. 2097 if (CodeGenOpts.SanitizeCfiCrossDso) 2098 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2099 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2100 } 2101 2102 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2103 bool IsIncompleteFunction, 2104 bool IsThunk) { 2105 2106 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2107 // If this is an intrinsic function, set the function's attributes 2108 // to the intrinsic's attributes. 2109 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2110 return; 2111 } 2112 2113 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2114 2115 if (!IsIncompleteFunction) 2116 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2117 IsThunk); 2118 2119 // Add the Returned attribute for "this", except for iOS 5 and earlier 2120 // where substantial code, including the libstdc++ dylib, was compiled with 2121 // GCC and does not actually return "this". 2122 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2123 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2124 assert(!F->arg_empty() && 2125 F->arg_begin()->getType() 2126 ->canLosslesslyBitCastTo(F->getReturnType()) && 2127 "unexpected this return"); 2128 F->addParamAttr(0, llvm::Attribute::Returned); 2129 } 2130 2131 // Only a few attributes are set on declarations; these may later be 2132 // overridden by a definition. 2133 2134 setLinkageForGV(F, FD); 2135 setGVProperties(F, FD); 2136 2137 // Setup target-specific attributes. 2138 if (!IsIncompleteFunction && F->isDeclaration()) 2139 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2140 2141 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2142 F->setSection(CSA->getName()); 2143 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2144 F->setSection(SA->getName()); 2145 2146 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2147 if (EA->isError()) 2148 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2149 else if (EA->isWarning()) 2150 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2151 } 2152 2153 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2154 if (FD->isInlineBuiltinDeclaration()) { 2155 const FunctionDecl *FDBody; 2156 bool HasBody = FD->hasBody(FDBody); 2157 (void)HasBody; 2158 assert(HasBody && "Inline builtin declarations should always have an " 2159 "available body!"); 2160 if (shouldEmitFunction(FDBody)) 2161 F->addFnAttr(llvm::Attribute::NoBuiltin); 2162 } 2163 2164 if (FD->isReplaceableGlobalAllocationFunction()) { 2165 // A replaceable global allocation function does not act like a builtin by 2166 // default, only if it is invoked by a new-expression or delete-expression. 2167 F->addFnAttr(llvm::Attribute::NoBuiltin); 2168 } 2169 2170 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2171 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2172 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2173 if (MD->isVirtual()) 2174 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2175 2176 // Don't emit entries for function declarations in the cross-DSO mode. This 2177 // is handled with better precision by the receiving DSO. But if jump tables 2178 // are non-canonical then we need type metadata in order to produce the local 2179 // jump table. 2180 if (!CodeGenOpts.SanitizeCfiCrossDso || 2181 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2182 CreateFunctionTypeMetadataForIcall(FD, F); 2183 2184 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2185 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2186 2187 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2188 // Annotate the callback behavior as metadata: 2189 // - The callback callee (as argument number). 2190 // - The callback payloads (as argument numbers). 2191 llvm::LLVMContext &Ctx = F->getContext(); 2192 llvm::MDBuilder MDB(Ctx); 2193 2194 // The payload indices are all but the first one in the encoding. The first 2195 // identifies the callback callee. 2196 int CalleeIdx = *CB->encoding_begin(); 2197 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2198 F->addMetadata(llvm::LLVMContext::MD_callback, 2199 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2200 CalleeIdx, PayloadIndices, 2201 /* VarArgsArePassed */ false)})); 2202 } 2203 } 2204 2205 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2206 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2207 "Only globals with definition can force usage."); 2208 LLVMUsed.emplace_back(GV); 2209 } 2210 2211 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2212 assert(!GV->isDeclaration() && 2213 "Only globals with definition can force usage."); 2214 LLVMCompilerUsed.emplace_back(GV); 2215 } 2216 2217 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2218 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2219 "Only globals with definition can force usage."); 2220 if (getTriple().isOSBinFormatELF()) 2221 LLVMCompilerUsed.emplace_back(GV); 2222 else 2223 LLVMUsed.emplace_back(GV); 2224 } 2225 2226 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2227 std::vector<llvm::WeakTrackingVH> &List) { 2228 // Don't create llvm.used if there is no need. 2229 if (List.empty()) 2230 return; 2231 2232 // Convert List to what ConstantArray needs. 2233 SmallVector<llvm::Constant*, 8> UsedArray; 2234 UsedArray.resize(List.size()); 2235 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2236 UsedArray[i] = 2237 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2238 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2239 } 2240 2241 if (UsedArray.empty()) 2242 return; 2243 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2244 2245 auto *GV = new llvm::GlobalVariable( 2246 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2247 llvm::ConstantArray::get(ATy, UsedArray), Name); 2248 2249 GV->setSection("llvm.metadata"); 2250 } 2251 2252 void CodeGenModule::emitLLVMUsed() { 2253 emitUsed(*this, "llvm.used", LLVMUsed); 2254 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2255 } 2256 2257 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2258 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2259 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2260 } 2261 2262 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2263 llvm::SmallString<32> Opt; 2264 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2265 if (Opt.empty()) 2266 return; 2267 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2268 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2269 } 2270 2271 void CodeGenModule::AddDependentLib(StringRef Lib) { 2272 auto &C = getLLVMContext(); 2273 if (getTarget().getTriple().isOSBinFormatELF()) { 2274 ELFDependentLibraries.push_back( 2275 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2276 return; 2277 } 2278 2279 llvm::SmallString<24> Opt; 2280 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2281 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2282 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2283 } 2284 2285 /// Add link options implied by the given module, including modules 2286 /// it depends on, using a postorder walk. 2287 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2288 SmallVectorImpl<llvm::MDNode *> &Metadata, 2289 llvm::SmallPtrSet<Module *, 16> &Visited) { 2290 // Import this module's parent. 2291 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2292 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2293 } 2294 2295 // Import this module's dependencies. 2296 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2297 if (Visited.insert(Mod->Imports[I - 1]).second) 2298 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2299 } 2300 2301 // Add linker options to link against the libraries/frameworks 2302 // described by this module. 2303 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2304 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2305 2306 // For modules that use export_as for linking, use that module 2307 // name instead. 2308 if (Mod->UseExportAsModuleLinkName) 2309 return; 2310 2311 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2312 // Link against a framework. Frameworks are currently Darwin only, so we 2313 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2314 if (Mod->LinkLibraries[I-1].IsFramework) { 2315 llvm::Metadata *Args[2] = { 2316 llvm::MDString::get(Context, "-framework"), 2317 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2318 2319 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2320 continue; 2321 } 2322 2323 // Link against a library. 2324 if (IsELF) { 2325 llvm::Metadata *Args[2] = { 2326 llvm::MDString::get(Context, "lib"), 2327 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2328 }; 2329 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2330 } else { 2331 llvm::SmallString<24> Opt; 2332 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2333 Mod->LinkLibraries[I - 1].Library, Opt); 2334 auto *OptString = llvm::MDString::get(Context, Opt); 2335 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2336 } 2337 } 2338 } 2339 2340 void CodeGenModule::EmitModuleLinkOptions() { 2341 // Collect the set of all of the modules we want to visit to emit link 2342 // options, which is essentially the imported modules and all of their 2343 // non-explicit child modules. 2344 llvm::SetVector<clang::Module *> LinkModules; 2345 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2346 SmallVector<clang::Module *, 16> Stack; 2347 2348 // Seed the stack with imported modules. 2349 for (Module *M : ImportedModules) { 2350 // Do not add any link flags when an implementation TU of a module imports 2351 // a header of that same module. 2352 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2353 !getLangOpts().isCompilingModule()) 2354 continue; 2355 if (Visited.insert(M).second) 2356 Stack.push_back(M); 2357 } 2358 2359 // Find all of the modules to import, making a little effort to prune 2360 // non-leaf modules. 2361 while (!Stack.empty()) { 2362 clang::Module *Mod = Stack.pop_back_val(); 2363 2364 bool AnyChildren = false; 2365 2366 // Visit the submodules of this module. 2367 for (const auto &SM : Mod->submodules()) { 2368 // Skip explicit children; they need to be explicitly imported to be 2369 // linked against. 2370 if (SM->IsExplicit) 2371 continue; 2372 2373 if (Visited.insert(SM).second) { 2374 Stack.push_back(SM); 2375 AnyChildren = true; 2376 } 2377 } 2378 2379 // We didn't find any children, so add this module to the list of 2380 // modules to link against. 2381 if (!AnyChildren) { 2382 LinkModules.insert(Mod); 2383 } 2384 } 2385 2386 // Add link options for all of the imported modules in reverse topological 2387 // order. We don't do anything to try to order import link flags with respect 2388 // to linker options inserted by things like #pragma comment(). 2389 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2390 Visited.clear(); 2391 for (Module *M : LinkModules) 2392 if (Visited.insert(M).second) 2393 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2394 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2395 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2396 2397 // Add the linker options metadata flag. 2398 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2399 for (auto *MD : LinkerOptionsMetadata) 2400 NMD->addOperand(MD); 2401 } 2402 2403 void CodeGenModule::EmitDeferred() { 2404 // Emit deferred declare target declarations. 2405 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2406 getOpenMPRuntime().emitDeferredTargetDecls(); 2407 2408 // Emit code for any potentially referenced deferred decls. Since a 2409 // previously unused static decl may become used during the generation of code 2410 // for a static function, iterate until no changes are made. 2411 2412 if (!DeferredVTables.empty()) { 2413 EmitDeferredVTables(); 2414 2415 // Emitting a vtable doesn't directly cause more vtables to 2416 // become deferred, although it can cause functions to be 2417 // emitted that then need those vtables. 2418 assert(DeferredVTables.empty()); 2419 } 2420 2421 // Emit CUDA/HIP static device variables referenced by host code only. 2422 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2423 // needed for further handling. 2424 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2425 for (const auto *V : getContext().CUDADeviceVarODRUsedByHost) 2426 DeferredDeclsToEmit.push_back(V); 2427 2428 // Stop if we're out of both deferred vtables and deferred declarations. 2429 if (DeferredDeclsToEmit.empty()) 2430 return; 2431 2432 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2433 // work, it will not interfere with this. 2434 std::vector<GlobalDecl> CurDeclsToEmit; 2435 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2436 2437 for (GlobalDecl &D : CurDeclsToEmit) { 2438 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2439 // to get GlobalValue with exactly the type we need, not something that 2440 // might had been created for another decl with the same mangled name but 2441 // different type. 2442 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2443 GetAddrOfGlobal(D, ForDefinition)); 2444 2445 // In case of different address spaces, we may still get a cast, even with 2446 // IsForDefinition equal to true. Query mangled names table to get 2447 // GlobalValue. 2448 if (!GV) 2449 GV = GetGlobalValue(getMangledName(D)); 2450 2451 // Make sure GetGlobalValue returned non-null. 2452 assert(GV); 2453 2454 // Check to see if we've already emitted this. This is necessary 2455 // for a couple of reasons: first, decls can end up in the 2456 // deferred-decls queue multiple times, and second, decls can end 2457 // up with definitions in unusual ways (e.g. by an extern inline 2458 // function acquiring a strong function redefinition). Just 2459 // ignore these cases. 2460 if (!GV->isDeclaration()) 2461 continue; 2462 2463 // If this is OpenMP, check if it is legal to emit this global normally. 2464 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2465 continue; 2466 2467 // Otherwise, emit the definition and move on to the next one. 2468 EmitGlobalDefinition(D, GV); 2469 2470 // If we found out that we need to emit more decls, do that recursively. 2471 // This has the advantage that the decls are emitted in a DFS and related 2472 // ones are close together, which is convenient for testing. 2473 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2474 EmitDeferred(); 2475 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2476 } 2477 } 2478 } 2479 2480 void CodeGenModule::EmitVTablesOpportunistically() { 2481 // Try to emit external vtables as available_externally if they have emitted 2482 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2483 // is not allowed to create new references to things that need to be emitted 2484 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2485 2486 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2487 && "Only emit opportunistic vtables with optimizations"); 2488 2489 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2490 assert(getVTables().isVTableExternal(RD) && 2491 "This queue should only contain external vtables"); 2492 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2493 VTables.GenerateClassData(RD); 2494 } 2495 OpportunisticVTables.clear(); 2496 } 2497 2498 void CodeGenModule::EmitGlobalAnnotations() { 2499 if (Annotations.empty()) 2500 return; 2501 2502 // Create a new global variable for the ConstantStruct in the Module. 2503 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2504 Annotations[0]->getType(), Annotations.size()), Annotations); 2505 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2506 llvm::GlobalValue::AppendingLinkage, 2507 Array, "llvm.global.annotations"); 2508 gv->setSection(AnnotationSection); 2509 } 2510 2511 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2512 llvm::Constant *&AStr = AnnotationStrings[Str]; 2513 if (AStr) 2514 return AStr; 2515 2516 // Not found yet, create a new global. 2517 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2518 auto *gv = 2519 new llvm::GlobalVariable(getModule(), s->getType(), true, 2520 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2521 gv->setSection(AnnotationSection); 2522 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2523 AStr = gv; 2524 return gv; 2525 } 2526 2527 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2528 SourceManager &SM = getContext().getSourceManager(); 2529 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2530 if (PLoc.isValid()) 2531 return EmitAnnotationString(PLoc.getFilename()); 2532 return EmitAnnotationString(SM.getBufferName(Loc)); 2533 } 2534 2535 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2536 SourceManager &SM = getContext().getSourceManager(); 2537 PresumedLoc PLoc = SM.getPresumedLoc(L); 2538 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2539 SM.getExpansionLineNumber(L); 2540 return llvm::ConstantInt::get(Int32Ty, LineNo); 2541 } 2542 2543 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2544 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2545 if (Exprs.empty()) 2546 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2547 2548 llvm::FoldingSetNodeID ID; 2549 for (Expr *E : Exprs) { 2550 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2551 } 2552 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2553 if (Lookup) 2554 return Lookup; 2555 2556 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2557 LLVMArgs.reserve(Exprs.size()); 2558 ConstantEmitter ConstEmiter(*this); 2559 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2560 const auto *CE = cast<clang::ConstantExpr>(E); 2561 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2562 CE->getType()); 2563 }); 2564 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2565 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2566 llvm::GlobalValue::PrivateLinkage, Struct, 2567 ".args"); 2568 GV->setSection(AnnotationSection); 2569 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2570 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2571 2572 Lookup = Bitcasted; 2573 return Bitcasted; 2574 } 2575 2576 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2577 const AnnotateAttr *AA, 2578 SourceLocation L) { 2579 // Get the globals for file name, annotation, and the line number. 2580 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2581 *UnitGV = EmitAnnotationUnit(L), 2582 *LineNoCst = EmitAnnotationLineNo(L), 2583 *Args = EmitAnnotationArgs(AA); 2584 2585 llvm::Constant *GVInGlobalsAS = GV; 2586 if (GV->getAddressSpace() != 2587 getDataLayout().getDefaultGlobalsAddressSpace()) { 2588 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2589 GV, GV->getValueType()->getPointerTo( 2590 getDataLayout().getDefaultGlobalsAddressSpace())); 2591 } 2592 2593 // Create the ConstantStruct for the global annotation. 2594 llvm::Constant *Fields[] = { 2595 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2596 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2597 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2598 LineNoCst, 2599 Args, 2600 }; 2601 return llvm::ConstantStruct::getAnon(Fields); 2602 } 2603 2604 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2605 llvm::GlobalValue *GV) { 2606 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2607 // Get the struct elements for these annotations. 2608 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2609 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2610 } 2611 2612 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2613 SourceLocation Loc) const { 2614 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2615 // NoSanitize by function name. 2616 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2617 return true; 2618 // NoSanitize by location. 2619 if (Loc.isValid()) 2620 return NoSanitizeL.containsLocation(Kind, Loc); 2621 // If location is unknown, this may be a compiler-generated function. Assume 2622 // it's located in the main file. 2623 auto &SM = Context.getSourceManager(); 2624 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2625 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2626 } 2627 return false; 2628 } 2629 2630 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV, 2631 SourceLocation Loc, QualType Ty, 2632 StringRef Category) const { 2633 // For now globals can be ignored only in ASan and KASan. 2634 const SanitizerMask EnabledAsanMask = 2635 LangOpts.Sanitize.Mask & 2636 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2637 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2638 SanitizerKind::MemTag); 2639 if (!EnabledAsanMask) 2640 return false; 2641 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2642 if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category)) 2643 return true; 2644 if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category)) 2645 return true; 2646 // Check global type. 2647 if (!Ty.isNull()) { 2648 // Drill down the array types: if global variable of a fixed type is 2649 // not sanitized, we also don't instrument arrays of them. 2650 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2651 Ty = AT->getElementType(); 2652 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2653 // Only record types (classes, structs etc.) are ignored. 2654 if (Ty->isRecordType()) { 2655 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2656 if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category)) 2657 return true; 2658 } 2659 } 2660 return false; 2661 } 2662 2663 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2664 StringRef Category) const { 2665 const auto &XRayFilter = getContext().getXRayFilter(); 2666 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2667 auto Attr = ImbueAttr::NONE; 2668 if (Loc.isValid()) 2669 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2670 if (Attr == ImbueAttr::NONE) 2671 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2672 switch (Attr) { 2673 case ImbueAttr::NONE: 2674 return false; 2675 case ImbueAttr::ALWAYS: 2676 Fn->addFnAttr("function-instrument", "xray-always"); 2677 break; 2678 case ImbueAttr::ALWAYS_ARG1: 2679 Fn->addFnAttr("function-instrument", "xray-always"); 2680 Fn->addFnAttr("xray-log-args", "1"); 2681 break; 2682 case ImbueAttr::NEVER: 2683 Fn->addFnAttr("function-instrument", "xray-never"); 2684 break; 2685 } 2686 return true; 2687 } 2688 2689 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2690 SourceLocation Loc) const { 2691 const auto &ProfileList = getContext().getProfileList(); 2692 // If the profile list is empty, then instrument everything. 2693 if (ProfileList.isEmpty()) 2694 return false; 2695 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2696 // First, check the function name. 2697 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2698 if (V.hasValue()) 2699 return *V; 2700 // Next, check the source location. 2701 if (Loc.isValid()) { 2702 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2703 if (V.hasValue()) 2704 return *V; 2705 } 2706 // If location is unknown, this may be a compiler-generated function. Assume 2707 // it's located in the main file. 2708 auto &SM = Context.getSourceManager(); 2709 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2710 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2711 if (V.hasValue()) 2712 return *V; 2713 } 2714 return ProfileList.getDefault(); 2715 } 2716 2717 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2718 // Never defer when EmitAllDecls is specified. 2719 if (LangOpts.EmitAllDecls) 2720 return true; 2721 2722 if (CodeGenOpts.KeepStaticConsts) { 2723 const auto *VD = dyn_cast<VarDecl>(Global); 2724 if (VD && VD->getType().isConstQualified() && 2725 VD->getStorageDuration() == SD_Static) 2726 return true; 2727 } 2728 2729 return getContext().DeclMustBeEmitted(Global); 2730 } 2731 2732 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2733 // In OpenMP 5.0 variables and function may be marked as 2734 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2735 // that they must be emitted on the host/device. To be sure we need to have 2736 // seen a declare target with an explicit mentioning of the function, we know 2737 // we have if the level of the declare target attribute is -1. Note that we 2738 // check somewhere else if we should emit this at all. 2739 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2740 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2741 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2742 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2743 return false; 2744 } 2745 2746 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2747 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2748 // Implicit template instantiations may change linkage if they are later 2749 // explicitly instantiated, so they should not be emitted eagerly. 2750 return false; 2751 } 2752 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2753 if (Context.getInlineVariableDefinitionKind(VD) == 2754 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2755 // A definition of an inline constexpr static data member may change 2756 // linkage later if it's redeclared outside the class. 2757 return false; 2758 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2759 // codegen for global variables, because they may be marked as threadprivate. 2760 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2761 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2762 !isTypeConstant(Global->getType(), false) && 2763 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2764 return false; 2765 2766 return true; 2767 } 2768 2769 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2770 StringRef Name = getMangledName(GD); 2771 2772 // The UUID descriptor should be pointer aligned. 2773 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2774 2775 // Look for an existing global. 2776 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2777 return ConstantAddress(GV, Alignment); 2778 2779 ConstantEmitter Emitter(*this); 2780 llvm::Constant *Init; 2781 2782 APValue &V = GD->getAsAPValue(); 2783 if (!V.isAbsent()) { 2784 // If possible, emit the APValue version of the initializer. In particular, 2785 // this gets the type of the constant right. 2786 Init = Emitter.emitForInitializer( 2787 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2788 } else { 2789 // As a fallback, directly construct the constant. 2790 // FIXME: This may get padding wrong under esoteric struct layout rules. 2791 // MSVC appears to create a complete type 'struct __s_GUID' that it 2792 // presumably uses to represent these constants. 2793 MSGuidDecl::Parts Parts = GD->getParts(); 2794 llvm::Constant *Fields[4] = { 2795 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2796 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2797 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2798 llvm::ConstantDataArray::getRaw( 2799 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2800 Int8Ty)}; 2801 Init = llvm::ConstantStruct::getAnon(Fields); 2802 } 2803 2804 auto *GV = new llvm::GlobalVariable( 2805 getModule(), Init->getType(), 2806 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2807 if (supportsCOMDAT()) 2808 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2809 setDSOLocal(GV); 2810 2811 llvm::Constant *Addr = GV; 2812 if (!V.isAbsent()) { 2813 Emitter.finalize(GV); 2814 } else { 2815 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2816 Addr = llvm::ConstantExpr::getBitCast( 2817 GV, Ty->getPointerTo(GV->getAddressSpace())); 2818 } 2819 return ConstantAddress(Addr, Alignment); 2820 } 2821 2822 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2823 const TemplateParamObjectDecl *TPO) { 2824 StringRef Name = getMangledName(TPO); 2825 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2826 2827 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2828 return ConstantAddress(GV, Alignment); 2829 2830 ConstantEmitter Emitter(*this); 2831 llvm::Constant *Init = Emitter.emitForInitializer( 2832 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2833 2834 if (!Init) { 2835 ErrorUnsupported(TPO, "template parameter object"); 2836 return ConstantAddress::invalid(); 2837 } 2838 2839 auto *GV = new llvm::GlobalVariable( 2840 getModule(), Init->getType(), 2841 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2842 if (supportsCOMDAT()) 2843 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2844 Emitter.finalize(GV); 2845 2846 return ConstantAddress(GV, Alignment); 2847 } 2848 2849 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2850 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2851 assert(AA && "No alias?"); 2852 2853 CharUnits Alignment = getContext().getDeclAlign(VD); 2854 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2855 2856 // See if there is already something with the target's name in the module. 2857 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2858 if (Entry) { 2859 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2860 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2861 return ConstantAddress(Ptr, Alignment); 2862 } 2863 2864 llvm::Constant *Aliasee; 2865 if (isa<llvm::FunctionType>(DeclTy)) 2866 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2867 GlobalDecl(cast<FunctionDecl>(VD)), 2868 /*ForVTable=*/false); 2869 else 2870 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 2871 nullptr); 2872 2873 auto *F = cast<llvm::GlobalValue>(Aliasee); 2874 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2875 WeakRefReferences.insert(F); 2876 2877 return ConstantAddress(Aliasee, Alignment); 2878 } 2879 2880 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2881 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2882 2883 // Weak references don't produce any output by themselves. 2884 if (Global->hasAttr<WeakRefAttr>()) 2885 return; 2886 2887 // If this is an alias definition (which otherwise looks like a declaration) 2888 // emit it now. 2889 if (Global->hasAttr<AliasAttr>()) 2890 return EmitAliasDefinition(GD); 2891 2892 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2893 if (Global->hasAttr<IFuncAttr>()) 2894 return emitIFuncDefinition(GD); 2895 2896 // If this is a cpu_dispatch multiversion function, emit the resolver. 2897 if (Global->hasAttr<CPUDispatchAttr>()) 2898 return emitCPUDispatchDefinition(GD); 2899 2900 // If this is CUDA, be selective about which declarations we emit. 2901 if (LangOpts.CUDA) { 2902 if (LangOpts.CUDAIsDevice) { 2903 if (!Global->hasAttr<CUDADeviceAttr>() && 2904 !Global->hasAttr<CUDAGlobalAttr>() && 2905 !Global->hasAttr<CUDAConstantAttr>() && 2906 !Global->hasAttr<CUDASharedAttr>() && 2907 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2908 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2909 return; 2910 } else { 2911 // We need to emit host-side 'shadows' for all global 2912 // device-side variables because the CUDA runtime needs their 2913 // size and host-side address in order to provide access to 2914 // their device-side incarnations. 2915 2916 // So device-only functions are the only things we skip. 2917 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2918 Global->hasAttr<CUDADeviceAttr>()) 2919 return; 2920 2921 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2922 "Expected Variable or Function"); 2923 } 2924 } 2925 2926 if (LangOpts.OpenMP) { 2927 // If this is OpenMP, check if it is legal to emit this global normally. 2928 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2929 return; 2930 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2931 if (MustBeEmitted(Global)) 2932 EmitOMPDeclareReduction(DRD); 2933 return; 2934 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2935 if (MustBeEmitted(Global)) 2936 EmitOMPDeclareMapper(DMD); 2937 return; 2938 } 2939 } 2940 2941 // Ignore declarations, they will be emitted on their first use. 2942 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2943 // Forward declarations are emitted lazily on first use. 2944 if (!FD->doesThisDeclarationHaveABody()) { 2945 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2946 return; 2947 2948 StringRef MangledName = getMangledName(GD); 2949 2950 // Compute the function info and LLVM type. 2951 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2952 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2953 2954 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2955 /*DontDefer=*/false); 2956 return; 2957 } 2958 } else { 2959 const auto *VD = cast<VarDecl>(Global); 2960 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2961 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2962 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2963 if (LangOpts.OpenMP) { 2964 // Emit declaration of the must-be-emitted declare target variable. 2965 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2966 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2967 bool UnifiedMemoryEnabled = 2968 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2969 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2970 !UnifiedMemoryEnabled) { 2971 (void)GetAddrOfGlobalVar(VD); 2972 } else { 2973 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2974 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2975 UnifiedMemoryEnabled)) && 2976 "Link clause or to clause with unified memory expected."); 2977 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2978 } 2979 2980 return; 2981 } 2982 } 2983 // If this declaration may have caused an inline variable definition to 2984 // change linkage, make sure that it's emitted. 2985 if (Context.getInlineVariableDefinitionKind(VD) == 2986 ASTContext::InlineVariableDefinitionKind::Strong) 2987 GetAddrOfGlobalVar(VD); 2988 return; 2989 } 2990 } 2991 2992 // Defer code generation to first use when possible, e.g. if this is an inline 2993 // function. If the global must always be emitted, do it eagerly if possible 2994 // to benefit from cache locality. 2995 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2996 // Emit the definition if it can't be deferred. 2997 EmitGlobalDefinition(GD); 2998 return; 2999 } 3000 3001 // If we're deferring emission of a C++ variable with an 3002 // initializer, remember the order in which it appeared in the file. 3003 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3004 cast<VarDecl>(Global)->hasInit()) { 3005 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3006 CXXGlobalInits.push_back(nullptr); 3007 } 3008 3009 StringRef MangledName = getMangledName(GD); 3010 if (GetGlobalValue(MangledName) != nullptr) { 3011 // The value has already been used and should therefore be emitted. 3012 addDeferredDeclToEmit(GD); 3013 } else if (MustBeEmitted(Global)) { 3014 // The value must be emitted, but cannot be emitted eagerly. 3015 assert(!MayBeEmittedEagerly(Global)); 3016 addDeferredDeclToEmit(GD); 3017 } else { 3018 // Otherwise, remember that we saw a deferred decl with this name. The 3019 // first use of the mangled name will cause it to move into 3020 // DeferredDeclsToEmit. 3021 DeferredDecls[MangledName] = GD; 3022 } 3023 } 3024 3025 // Check if T is a class type with a destructor that's not dllimport. 3026 static bool HasNonDllImportDtor(QualType T) { 3027 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3028 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3029 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3030 return true; 3031 3032 return false; 3033 } 3034 3035 namespace { 3036 struct FunctionIsDirectlyRecursive 3037 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3038 const StringRef Name; 3039 const Builtin::Context &BI; 3040 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3041 : Name(N), BI(C) {} 3042 3043 bool VisitCallExpr(const CallExpr *E) { 3044 const FunctionDecl *FD = E->getDirectCallee(); 3045 if (!FD) 3046 return false; 3047 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3048 if (Attr && Name == Attr->getLabel()) 3049 return true; 3050 unsigned BuiltinID = FD->getBuiltinID(); 3051 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3052 return false; 3053 StringRef BuiltinName = BI.getName(BuiltinID); 3054 if (BuiltinName.startswith("__builtin_") && 3055 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3056 return true; 3057 } 3058 return false; 3059 } 3060 3061 bool VisitStmt(const Stmt *S) { 3062 for (const Stmt *Child : S->children()) 3063 if (Child && this->Visit(Child)) 3064 return true; 3065 return false; 3066 } 3067 }; 3068 3069 // Make sure we're not referencing non-imported vars or functions. 3070 struct DLLImportFunctionVisitor 3071 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3072 bool SafeToInline = true; 3073 3074 bool shouldVisitImplicitCode() const { return true; } 3075 3076 bool VisitVarDecl(VarDecl *VD) { 3077 if (VD->getTLSKind()) { 3078 // A thread-local variable cannot be imported. 3079 SafeToInline = false; 3080 return SafeToInline; 3081 } 3082 3083 // A variable definition might imply a destructor call. 3084 if (VD->isThisDeclarationADefinition()) 3085 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3086 3087 return SafeToInline; 3088 } 3089 3090 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3091 if (const auto *D = E->getTemporary()->getDestructor()) 3092 SafeToInline = D->hasAttr<DLLImportAttr>(); 3093 return SafeToInline; 3094 } 3095 3096 bool VisitDeclRefExpr(DeclRefExpr *E) { 3097 ValueDecl *VD = E->getDecl(); 3098 if (isa<FunctionDecl>(VD)) 3099 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3100 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3101 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3102 return SafeToInline; 3103 } 3104 3105 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3106 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3107 return SafeToInline; 3108 } 3109 3110 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3111 CXXMethodDecl *M = E->getMethodDecl(); 3112 if (!M) { 3113 // Call through a pointer to member function. This is safe to inline. 3114 SafeToInline = true; 3115 } else { 3116 SafeToInline = M->hasAttr<DLLImportAttr>(); 3117 } 3118 return SafeToInline; 3119 } 3120 3121 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3122 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3123 return SafeToInline; 3124 } 3125 3126 bool VisitCXXNewExpr(CXXNewExpr *E) { 3127 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3128 return SafeToInline; 3129 } 3130 }; 3131 } 3132 3133 // isTriviallyRecursive - Check if this function calls another 3134 // decl that, because of the asm attribute or the other decl being a builtin, 3135 // ends up pointing to itself. 3136 bool 3137 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3138 StringRef Name; 3139 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3140 // asm labels are a special kind of mangling we have to support. 3141 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3142 if (!Attr) 3143 return false; 3144 Name = Attr->getLabel(); 3145 } else { 3146 Name = FD->getName(); 3147 } 3148 3149 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3150 const Stmt *Body = FD->getBody(); 3151 return Body ? Walker.Visit(Body) : false; 3152 } 3153 3154 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3155 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3156 return true; 3157 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3158 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3159 return false; 3160 3161 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3162 // Check whether it would be safe to inline this dllimport function. 3163 DLLImportFunctionVisitor Visitor; 3164 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3165 if (!Visitor.SafeToInline) 3166 return false; 3167 3168 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3169 // Implicit destructor invocations aren't captured in the AST, so the 3170 // check above can't see them. Check for them manually here. 3171 for (const Decl *Member : Dtor->getParent()->decls()) 3172 if (isa<FieldDecl>(Member)) 3173 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3174 return false; 3175 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3176 if (HasNonDllImportDtor(B.getType())) 3177 return false; 3178 } 3179 } 3180 3181 // Inline builtins declaration must be emitted. They often are fortified 3182 // functions. 3183 if (F->isInlineBuiltinDeclaration()) 3184 return true; 3185 3186 // PR9614. Avoid cases where the source code is lying to us. An available 3187 // externally function should have an equivalent function somewhere else, 3188 // but a function that calls itself through asm label/`__builtin_` trickery is 3189 // clearly not equivalent to the real implementation. 3190 // This happens in glibc's btowc and in some configure checks. 3191 return !isTriviallyRecursive(F); 3192 } 3193 3194 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3195 return CodeGenOpts.OptimizationLevel > 0; 3196 } 3197 3198 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3199 llvm::GlobalValue *GV) { 3200 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3201 3202 if (FD->isCPUSpecificMultiVersion()) { 3203 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3204 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3205 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3206 // Requires multiple emits. 3207 } else 3208 EmitGlobalFunctionDefinition(GD, GV); 3209 } 3210 3211 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3212 const auto *D = cast<ValueDecl>(GD.getDecl()); 3213 3214 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3215 Context.getSourceManager(), 3216 "Generating code for declaration"); 3217 3218 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3219 // At -O0, don't generate IR for functions with available_externally 3220 // linkage. 3221 if (!shouldEmitFunction(GD)) 3222 return; 3223 3224 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3225 std::string Name; 3226 llvm::raw_string_ostream OS(Name); 3227 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3228 /*Qualified=*/true); 3229 return Name; 3230 }); 3231 3232 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3233 // Make sure to emit the definition(s) before we emit the thunks. 3234 // This is necessary for the generation of certain thunks. 3235 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3236 ABI->emitCXXStructor(GD); 3237 else if (FD->isMultiVersion()) 3238 EmitMultiVersionFunctionDefinition(GD, GV); 3239 else 3240 EmitGlobalFunctionDefinition(GD, GV); 3241 3242 if (Method->isVirtual()) 3243 getVTables().EmitThunks(GD); 3244 3245 return; 3246 } 3247 3248 if (FD->isMultiVersion()) 3249 return EmitMultiVersionFunctionDefinition(GD, GV); 3250 return EmitGlobalFunctionDefinition(GD, GV); 3251 } 3252 3253 if (const auto *VD = dyn_cast<VarDecl>(D)) 3254 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3255 3256 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3257 } 3258 3259 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3260 llvm::Function *NewFn); 3261 3262 static unsigned 3263 TargetMVPriority(const TargetInfo &TI, 3264 const CodeGenFunction::MultiVersionResolverOption &RO) { 3265 unsigned Priority = 0; 3266 for (StringRef Feat : RO.Conditions.Features) 3267 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3268 3269 if (!RO.Conditions.Architecture.empty()) 3270 Priority = std::max( 3271 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3272 return Priority; 3273 } 3274 3275 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3276 // TU can forward declare the function without causing problems. Particularly 3277 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3278 // work with internal linkage functions, so that the same function name can be 3279 // used with internal linkage in multiple TUs. 3280 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3281 GlobalDecl GD) { 3282 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3283 if (FD->getFormalLinkage() == InternalLinkage) 3284 return llvm::GlobalValue::InternalLinkage; 3285 return llvm::GlobalValue::WeakODRLinkage; 3286 } 3287 3288 void CodeGenModule::emitMultiVersionFunctions() { 3289 std::vector<GlobalDecl> MVFuncsToEmit; 3290 MultiVersionFuncs.swap(MVFuncsToEmit); 3291 for (GlobalDecl GD : MVFuncsToEmit) { 3292 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3293 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3294 getContext().forEachMultiversionedFunctionVersion( 3295 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3296 GlobalDecl CurGD{ 3297 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3298 StringRef MangledName = getMangledName(CurGD); 3299 llvm::Constant *Func = GetGlobalValue(MangledName); 3300 if (!Func) { 3301 if (CurFD->isDefined()) { 3302 EmitGlobalFunctionDefinition(CurGD, nullptr); 3303 Func = GetGlobalValue(MangledName); 3304 } else { 3305 const CGFunctionInfo &FI = 3306 getTypes().arrangeGlobalDeclaration(GD); 3307 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3308 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3309 /*DontDefer=*/false, ForDefinition); 3310 } 3311 assert(Func && "This should have just been created"); 3312 } 3313 3314 const auto *TA = CurFD->getAttr<TargetAttr>(); 3315 llvm::SmallVector<StringRef, 8> Feats; 3316 TA->getAddedFeatures(Feats); 3317 3318 Options.emplace_back(cast<llvm::Function>(Func), 3319 TA->getArchitecture(), Feats); 3320 }); 3321 3322 llvm::Function *ResolverFunc; 3323 const TargetInfo &TI = getTarget(); 3324 3325 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3326 ResolverFunc = cast<llvm::Function>( 3327 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3328 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3329 } else { 3330 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3331 } 3332 3333 if (supportsCOMDAT()) 3334 ResolverFunc->setComdat( 3335 getModule().getOrInsertComdat(ResolverFunc->getName())); 3336 3337 llvm::stable_sort( 3338 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3339 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3340 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3341 }); 3342 CodeGenFunction CGF(*this); 3343 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3344 } 3345 3346 // Ensure that any additions to the deferred decls list caused by emitting a 3347 // variant are emitted. This can happen when the variant itself is inline and 3348 // calls a function without linkage. 3349 if (!MVFuncsToEmit.empty()) 3350 EmitDeferred(); 3351 3352 // Ensure that any additions to the multiversion funcs list from either the 3353 // deferred decls or the multiversion functions themselves are emitted. 3354 if (!MultiVersionFuncs.empty()) 3355 emitMultiVersionFunctions(); 3356 } 3357 3358 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3359 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3360 assert(FD && "Not a FunctionDecl?"); 3361 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3362 assert(DD && "Not a cpu_dispatch Function?"); 3363 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3364 3365 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3366 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3367 DeclTy = getTypes().GetFunctionType(FInfo); 3368 } 3369 3370 StringRef ResolverName = getMangledName(GD); 3371 3372 llvm::Type *ResolverType; 3373 GlobalDecl ResolverGD; 3374 if (getTarget().supportsIFunc()) 3375 ResolverType = llvm::FunctionType::get( 3376 llvm::PointerType::get(DeclTy, 3377 Context.getTargetAddressSpace(FD->getType())), 3378 false); 3379 else { 3380 ResolverType = DeclTy; 3381 ResolverGD = GD; 3382 } 3383 3384 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3385 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3386 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3387 if (supportsCOMDAT()) 3388 ResolverFunc->setComdat( 3389 getModule().getOrInsertComdat(ResolverFunc->getName())); 3390 3391 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3392 const TargetInfo &Target = getTarget(); 3393 unsigned Index = 0; 3394 for (const IdentifierInfo *II : DD->cpus()) { 3395 // Get the name of the target function so we can look it up/create it. 3396 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3397 getCPUSpecificMangling(*this, II->getName()); 3398 3399 llvm::Constant *Func = GetGlobalValue(MangledName); 3400 3401 if (!Func) { 3402 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3403 if (ExistingDecl.getDecl() && 3404 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3405 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3406 Func = GetGlobalValue(MangledName); 3407 } else { 3408 if (!ExistingDecl.getDecl()) 3409 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3410 3411 Func = GetOrCreateLLVMFunction( 3412 MangledName, DeclTy, ExistingDecl, 3413 /*ForVTable=*/false, /*DontDefer=*/true, 3414 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3415 } 3416 } 3417 3418 llvm::SmallVector<StringRef, 32> Features; 3419 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3420 llvm::transform(Features, Features.begin(), 3421 [](StringRef Str) { return Str.substr(1); }); 3422 llvm::erase_if(Features, [&Target](StringRef Feat) { 3423 return !Target.validateCpuSupports(Feat); 3424 }); 3425 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3426 ++Index; 3427 } 3428 3429 llvm::stable_sort( 3430 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3431 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3432 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3433 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3434 }); 3435 3436 // If the list contains multiple 'default' versions, such as when it contains 3437 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3438 // always run on at least a 'pentium'). We do this by deleting the 'least 3439 // advanced' (read, lowest mangling letter). 3440 while (Options.size() > 1 && 3441 llvm::X86::getCpuSupportsMask( 3442 (Options.end() - 2)->Conditions.Features) == 0) { 3443 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3444 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3445 if (LHSName.compare(RHSName) < 0) 3446 Options.erase(Options.end() - 2); 3447 else 3448 Options.erase(Options.end() - 1); 3449 } 3450 3451 CodeGenFunction CGF(*this); 3452 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3453 3454 if (getTarget().supportsIFunc()) { 3455 std::string AliasName = getMangledNameImpl( 3456 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3457 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3458 if (!AliasFunc) { 3459 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3460 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3461 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3462 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, 3463 getMultiversionLinkage(*this, GD), 3464 AliasName, IFunc, &getModule()); 3465 SetCommonAttributes(GD, GA); 3466 } 3467 } 3468 } 3469 3470 /// If a dispatcher for the specified mangled name is not in the module, create 3471 /// and return an llvm Function with the specified type. 3472 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3473 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3474 std::string MangledName = 3475 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3476 3477 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3478 // a separate resolver). 3479 std::string ResolverName = MangledName; 3480 if (getTarget().supportsIFunc()) 3481 ResolverName += ".ifunc"; 3482 else if (FD->isTargetMultiVersion()) 3483 ResolverName += ".resolver"; 3484 3485 // If this already exists, just return that one. 3486 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3487 return ResolverGV; 3488 3489 // Since this is the first time we've created this IFunc, make sure 3490 // that we put this multiversioned function into the list to be 3491 // replaced later if necessary (target multiversioning only). 3492 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3493 MultiVersionFuncs.push_back(GD); 3494 3495 if (getTarget().supportsIFunc()) { 3496 llvm::Type *ResolverType = llvm::FunctionType::get( 3497 llvm::PointerType::get( 3498 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3499 false); 3500 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3501 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3502 /*ForVTable=*/false); 3503 llvm::GlobalIFunc *GIF = 3504 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3505 "", Resolver, &getModule()); 3506 GIF->setName(ResolverName); 3507 SetCommonAttributes(FD, GIF); 3508 3509 return GIF; 3510 } 3511 3512 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3513 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3514 assert(isa<llvm::GlobalValue>(Resolver) && 3515 "Resolver should be created for the first time"); 3516 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3517 return Resolver; 3518 } 3519 3520 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3521 /// module, create and return an llvm Function with the specified type. If there 3522 /// is something in the module with the specified name, return it potentially 3523 /// bitcasted to the right type. 3524 /// 3525 /// If D is non-null, it specifies a decl that correspond to this. This is used 3526 /// to set the attributes on the function when it is first created. 3527 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3528 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3529 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3530 ForDefinition_t IsForDefinition) { 3531 const Decl *D = GD.getDecl(); 3532 3533 // Any attempts to use a MultiVersion function should result in retrieving 3534 // the iFunc instead. Name Mangling will handle the rest of the changes. 3535 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3536 // For the device mark the function as one that should be emitted. 3537 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3538 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3539 !DontDefer && !IsForDefinition) { 3540 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3541 GlobalDecl GDDef; 3542 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3543 GDDef = GlobalDecl(CD, GD.getCtorType()); 3544 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3545 GDDef = GlobalDecl(DD, GD.getDtorType()); 3546 else 3547 GDDef = GlobalDecl(FDDef); 3548 EmitGlobal(GDDef); 3549 } 3550 } 3551 3552 if (FD->isMultiVersion()) { 3553 if (FD->hasAttr<TargetAttr>()) 3554 UpdateMultiVersionNames(GD, FD); 3555 if (!IsForDefinition) 3556 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3557 } 3558 } 3559 3560 // Lookup the entry, lazily creating it if necessary. 3561 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3562 if (Entry) { 3563 if (WeakRefReferences.erase(Entry)) { 3564 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3565 if (FD && !FD->hasAttr<WeakAttr>()) 3566 Entry->setLinkage(llvm::Function::ExternalLinkage); 3567 } 3568 3569 // Handle dropped DLL attributes. 3570 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3571 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3572 setDSOLocal(Entry); 3573 } 3574 3575 // If there are two attempts to define the same mangled name, issue an 3576 // error. 3577 if (IsForDefinition && !Entry->isDeclaration()) { 3578 GlobalDecl OtherGD; 3579 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3580 // to make sure that we issue an error only once. 3581 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3582 (GD.getCanonicalDecl().getDecl() != 3583 OtherGD.getCanonicalDecl().getDecl()) && 3584 DiagnosedConflictingDefinitions.insert(GD).second) { 3585 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3586 << MangledName; 3587 getDiags().Report(OtherGD.getDecl()->getLocation(), 3588 diag::note_previous_definition); 3589 } 3590 } 3591 3592 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3593 (Entry->getValueType() == Ty)) { 3594 return Entry; 3595 } 3596 3597 // Make sure the result is of the correct type. 3598 // (If function is requested for a definition, we always need to create a new 3599 // function, not just return a bitcast.) 3600 if (!IsForDefinition) 3601 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3602 } 3603 3604 // This function doesn't have a complete type (for example, the return 3605 // type is an incomplete struct). Use a fake type instead, and make 3606 // sure not to try to set attributes. 3607 bool IsIncompleteFunction = false; 3608 3609 llvm::FunctionType *FTy; 3610 if (isa<llvm::FunctionType>(Ty)) { 3611 FTy = cast<llvm::FunctionType>(Ty); 3612 } else { 3613 FTy = llvm::FunctionType::get(VoidTy, false); 3614 IsIncompleteFunction = true; 3615 } 3616 3617 llvm::Function *F = 3618 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3619 Entry ? StringRef() : MangledName, &getModule()); 3620 3621 // If we already created a function with the same mangled name (but different 3622 // type) before, take its name and add it to the list of functions to be 3623 // replaced with F at the end of CodeGen. 3624 // 3625 // This happens if there is a prototype for a function (e.g. "int f()") and 3626 // then a definition of a different type (e.g. "int f(int x)"). 3627 if (Entry) { 3628 F->takeName(Entry); 3629 3630 // This might be an implementation of a function without a prototype, in 3631 // which case, try to do special replacement of calls which match the new 3632 // prototype. The really key thing here is that we also potentially drop 3633 // arguments from the call site so as to make a direct call, which makes the 3634 // inliner happier and suppresses a number of optimizer warnings (!) about 3635 // dropping arguments. 3636 if (!Entry->use_empty()) { 3637 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3638 Entry->removeDeadConstantUsers(); 3639 } 3640 3641 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3642 F, Entry->getValueType()->getPointerTo()); 3643 addGlobalValReplacement(Entry, BC); 3644 } 3645 3646 assert(F->getName() == MangledName && "name was uniqued!"); 3647 if (D) 3648 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3649 if (ExtraAttrs.hasFnAttrs()) { 3650 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3651 F->addFnAttrs(B); 3652 } 3653 3654 if (!DontDefer) { 3655 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3656 // each other bottoming out with the base dtor. Therefore we emit non-base 3657 // dtors on usage, even if there is no dtor definition in the TU. 3658 if (D && isa<CXXDestructorDecl>(D) && 3659 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3660 GD.getDtorType())) 3661 addDeferredDeclToEmit(GD); 3662 3663 // This is the first use or definition of a mangled name. If there is a 3664 // deferred decl with this name, remember that we need to emit it at the end 3665 // of the file. 3666 auto DDI = DeferredDecls.find(MangledName); 3667 if (DDI != DeferredDecls.end()) { 3668 // Move the potentially referenced deferred decl to the 3669 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3670 // don't need it anymore). 3671 addDeferredDeclToEmit(DDI->second); 3672 DeferredDecls.erase(DDI); 3673 3674 // Otherwise, there are cases we have to worry about where we're 3675 // using a declaration for which we must emit a definition but where 3676 // we might not find a top-level definition: 3677 // - member functions defined inline in their classes 3678 // - friend functions defined inline in some class 3679 // - special member functions with implicit definitions 3680 // If we ever change our AST traversal to walk into class methods, 3681 // this will be unnecessary. 3682 // 3683 // We also don't emit a definition for a function if it's going to be an 3684 // entry in a vtable, unless it's already marked as used. 3685 } else if (getLangOpts().CPlusPlus && D) { 3686 // Look for a declaration that's lexically in a record. 3687 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3688 FD = FD->getPreviousDecl()) { 3689 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3690 if (FD->doesThisDeclarationHaveABody()) { 3691 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3692 break; 3693 } 3694 } 3695 } 3696 } 3697 } 3698 3699 // Make sure the result is of the requested type. 3700 if (!IsIncompleteFunction) { 3701 assert(F->getFunctionType() == Ty); 3702 return F; 3703 } 3704 3705 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3706 return llvm::ConstantExpr::getBitCast(F, PTy); 3707 } 3708 3709 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3710 /// non-null, then this function will use the specified type if it has to 3711 /// create it (this occurs when we see a definition of the function). 3712 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3713 llvm::Type *Ty, 3714 bool ForVTable, 3715 bool DontDefer, 3716 ForDefinition_t IsForDefinition) { 3717 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3718 "consteval function should never be emitted"); 3719 // If there was no specific requested type, just convert it now. 3720 if (!Ty) { 3721 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3722 Ty = getTypes().ConvertType(FD->getType()); 3723 } 3724 3725 // Devirtualized destructor calls may come through here instead of via 3726 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3727 // of the complete destructor when necessary. 3728 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3729 if (getTarget().getCXXABI().isMicrosoft() && 3730 GD.getDtorType() == Dtor_Complete && 3731 DD->getParent()->getNumVBases() == 0) 3732 GD = GlobalDecl(DD, Dtor_Base); 3733 } 3734 3735 StringRef MangledName = getMangledName(GD); 3736 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3737 /*IsThunk=*/false, llvm::AttributeList(), 3738 IsForDefinition); 3739 // Returns kernel handle for HIP kernel stub function. 3740 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3741 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3742 auto *Handle = getCUDARuntime().getKernelHandle( 3743 cast<llvm::Function>(F->stripPointerCasts()), GD); 3744 if (IsForDefinition) 3745 return F; 3746 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3747 } 3748 return F; 3749 } 3750 3751 static const FunctionDecl * 3752 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3753 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3754 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3755 3756 IdentifierInfo &CII = C.Idents.get(Name); 3757 for (const auto *Result : DC->lookup(&CII)) 3758 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3759 return FD; 3760 3761 if (!C.getLangOpts().CPlusPlus) 3762 return nullptr; 3763 3764 // Demangle the premangled name from getTerminateFn() 3765 IdentifierInfo &CXXII = 3766 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3767 ? C.Idents.get("terminate") 3768 : C.Idents.get(Name); 3769 3770 for (const auto &N : {"__cxxabiv1", "std"}) { 3771 IdentifierInfo &NS = C.Idents.get(N); 3772 for (const auto *Result : DC->lookup(&NS)) { 3773 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3774 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 3775 for (const auto *Result : LSD->lookup(&NS)) 3776 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3777 break; 3778 3779 if (ND) 3780 for (const auto *Result : ND->lookup(&CXXII)) 3781 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3782 return FD; 3783 } 3784 } 3785 3786 return nullptr; 3787 } 3788 3789 /// CreateRuntimeFunction - Create a new runtime function with the specified 3790 /// type and name. 3791 llvm::FunctionCallee 3792 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3793 llvm::AttributeList ExtraAttrs, bool Local, 3794 bool AssumeConvergent) { 3795 if (AssumeConvergent) { 3796 ExtraAttrs = 3797 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 3798 } 3799 3800 llvm::Constant *C = 3801 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3802 /*DontDefer=*/false, /*IsThunk=*/false, 3803 ExtraAttrs); 3804 3805 if (auto *F = dyn_cast<llvm::Function>(C)) { 3806 if (F->empty()) { 3807 F->setCallingConv(getRuntimeCC()); 3808 3809 // In Windows Itanium environments, try to mark runtime functions 3810 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3811 // will link their standard library statically or dynamically. Marking 3812 // functions imported when they are not imported can cause linker errors 3813 // and warnings. 3814 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3815 !getCodeGenOpts().LTOVisibilityPublicStd) { 3816 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3817 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3818 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3819 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3820 } 3821 } 3822 setDSOLocal(F); 3823 } 3824 } 3825 3826 return {FTy, C}; 3827 } 3828 3829 /// isTypeConstant - Determine whether an object of this type can be emitted 3830 /// as a constant. 3831 /// 3832 /// If ExcludeCtor is true, the duration when the object's constructor runs 3833 /// will not be considered. The caller will need to verify that the object is 3834 /// not written to during its construction. 3835 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3836 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3837 return false; 3838 3839 if (Context.getLangOpts().CPlusPlus) { 3840 if (const CXXRecordDecl *Record 3841 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3842 return ExcludeCtor && !Record->hasMutableFields() && 3843 Record->hasTrivialDestructor(); 3844 } 3845 3846 return true; 3847 } 3848 3849 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3850 /// create and return an llvm GlobalVariable with the specified type and address 3851 /// space. If there is something in the module with the specified name, return 3852 /// it potentially bitcasted to the right type. 3853 /// 3854 /// If D is non-null, it specifies a decl that correspond to this. This is used 3855 /// to set the attributes on the global when it is first created. 3856 /// 3857 /// If IsForDefinition is true, it is guaranteed that an actual global with 3858 /// type Ty will be returned, not conversion of a variable with the same 3859 /// mangled name but some other type. 3860 llvm::Constant * 3861 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 3862 LangAS AddrSpace, const VarDecl *D, 3863 ForDefinition_t IsForDefinition) { 3864 // Lookup the entry, lazily creating it if necessary. 3865 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3866 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3867 if (Entry) { 3868 if (WeakRefReferences.erase(Entry)) { 3869 if (D && !D->hasAttr<WeakAttr>()) 3870 Entry->setLinkage(llvm::Function::ExternalLinkage); 3871 } 3872 3873 // Handle dropped DLL attributes. 3874 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3875 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3876 3877 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3878 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3879 3880 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 3881 return Entry; 3882 3883 // If there are two attempts to define the same mangled name, issue an 3884 // error. 3885 if (IsForDefinition && !Entry->isDeclaration()) { 3886 GlobalDecl OtherGD; 3887 const VarDecl *OtherD; 3888 3889 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3890 // to make sure that we issue an error only once. 3891 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3892 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3893 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3894 OtherD->hasInit() && 3895 DiagnosedConflictingDefinitions.insert(D).second) { 3896 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3897 << MangledName; 3898 getDiags().Report(OtherGD.getDecl()->getLocation(), 3899 diag::note_previous_definition); 3900 } 3901 } 3902 3903 // Make sure the result is of the correct type. 3904 if (Entry->getType()->getAddressSpace() != TargetAS) { 3905 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 3906 Ty->getPointerTo(TargetAS)); 3907 } 3908 3909 // (If global is requested for a definition, we always need to create a new 3910 // global, not just return a bitcast.) 3911 if (!IsForDefinition) 3912 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 3913 } 3914 3915 auto DAddrSpace = GetGlobalVarAddressSpace(D); 3916 3917 auto *GV = new llvm::GlobalVariable( 3918 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 3919 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 3920 getContext().getTargetAddressSpace(DAddrSpace)); 3921 3922 // If we already created a global with the same mangled name (but different 3923 // type) before, take its name and remove it from its parent. 3924 if (Entry) { 3925 GV->takeName(Entry); 3926 3927 if (!Entry->use_empty()) { 3928 llvm::Constant *NewPtrForOldDecl = 3929 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3930 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3931 } 3932 3933 Entry->eraseFromParent(); 3934 } 3935 3936 // This is the first use or definition of a mangled name. If there is a 3937 // deferred decl with this name, remember that we need to emit it at the end 3938 // of the file. 3939 auto DDI = DeferredDecls.find(MangledName); 3940 if (DDI != DeferredDecls.end()) { 3941 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3942 // list, and remove it from DeferredDecls (since we don't need it anymore). 3943 addDeferredDeclToEmit(DDI->second); 3944 DeferredDecls.erase(DDI); 3945 } 3946 3947 // Handle things which are present even on external declarations. 3948 if (D) { 3949 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3950 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3951 3952 // FIXME: This code is overly simple and should be merged with other global 3953 // handling. 3954 GV->setConstant(isTypeConstant(D->getType(), false)); 3955 3956 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3957 3958 setLinkageForGV(GV, D); 3959 3960 if (D->getTLSKind()) { 3961 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3962 CXXThreadLocals.push_back(D); 3963 setTLSMode(GV, *D); 3964 } 3965 3966 setGVProperties(GV, D); 3967 3968 // If required by the ABI, treat declarations of static data members with 3969 // inline initializers as definitions. 3970 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3971 EmitGlobalVarDefinition(D); 3972 } 3973 3974 // Emit section information for extern variables. 3975 if (D->hasExternalStorage()) { 3976 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3977 GV->setSection(SA->getName()); 3978 } 3979 3980 // Handle XCore specific ABI requirements. 3981 if (getTriple().getArch() == llvm::Triple::xcore && 3982 D->getLanguageLinkage() == CLanguageLinkage && 3983 D->getType().isConstant(Context) && 3984 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3985 GV->setSection(".cp.rodata"); 3986 3987 // Check if we a have a const declaration with an initializer, we may be 3988 // able to emit it as available_externally to expose it's value to the 3989 // optimizer. 3990 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3991 D->getType().isConstQualified() && !GV->hasInitializer() && 3992 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3993 const auto *Record = 3994 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3995 bool HasMutableFields = Record && Record->hasMutableFields(); 3996 if (!HasMutableFields) { 3997 const VarDecl *InitDecl; 3998 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3999 if (InitExpr) { 4000 ConstantEmitter emitter(*this); 4001 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4002 if (Init) { 4003 auto *InitType = Init->getType(); 4004 if (GV->getValueType() != InitType) { 4005 // The type of the initializer does not match the definition. 4006 // This happens when an initializer has a different type from 4007 // the type of the global (because of padding at the end of a 4008 // structure for instance). 4009 GV->setName(StringRef()); 4010 // Make a new global with the correct type, this is now guaranteed 4011 // to work. 4012 auto *NewGV = cast<llvm::GlobalVariable>( 4013 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4014 ->stripPointerCasts()); 4015 4016 // Erase the old global, since it is no longer used. 4017 GV->eraseFromParent(); 4018 GV = NewGV; 4019 } else { 4020 GV->setInitializer(Init); 4021 GV->setConstant(true); 4022 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4023 } 4024 emitter.finalize(GV); 4025 } 4026 } 4027 } 4028 } 4029 } 4030 4031 if (GV->isDeclaration()) { 4032 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4033 // External HIP managed variables needed to be recorded for transformation 4034 // in both device and host compilations. 4035 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4036 D->hasExternalStorage()) 4037 getCUDARuntime().handleVarRegistration(D, *GV); 4038 } 4039 4040 LangAS ExpectedAS = 4041 D ? D->getType().getAddressSpace() 4042 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4043 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4044 if (DAddrSpace != ExpectedAS) { 4045 return getTargetCodeGenInfo().performAddrSpaceCast( 4046 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4047 } 4048 4049 return GV; 4050 } 4051 4052 llvm::Constant * 4053 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4054 const Decl *D = GD.getDecl(); 4055 4056 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4057 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4058 /*DontDefer=*/false, IsForDefinition); 4059 4060 if (isa<CXXMethodDecl>(D)) { 4061 auto FInfo = 4062 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4063 auto Ty = getTypes().GetFunctionType(*FInfo); 4064 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4065 IsForDefinition); 4066 } 4067 4068 if (isa<FunctionDecl>(D)) { 4069 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4070 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4071 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4072 IsForDefinition); 4073 } 4074 4075 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4076 } 4077 4078 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4079 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4080 unsigned Alignment) { 4081 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4082 llvm::GlobalVariable *OldGV = nullptr; 4083 4084 if (GV) { 4085 // Check if the variable has the right type. 4086 if (GV->getValueType() == Ty) 4087 return GV; 4088 4089 // Because C++ name mangling, the only way we can end up with an already 4090 // existing global with the same name is if it has been declared extern "C". 4091 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4092 OldGV = GV; 4093 } 4094 4095 // Create a new variable. 4096 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4097 Linkage, nullptr, Name); 4098 4099 if (OldGV) { 4100 // Replace occurrences of the old variable if needed. 4101 GV->takeName(OldGV); 4102 4103 if (!OldGV->use_empty()) { 4104 llvm::Constant *NewPtrForOldDecl = 4105 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4106 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4107 } 4108 4109 OldGV->eraseFromParent(); 4110 } 4111 4112 if (supportsCOMDAT() && GV->isWeakForLinker() && 4113 !GV->hasAvailableExternallyLinkage()) 4114 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4115 4116 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4117 4118 return GV; 4119 } 4120 4121 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4122 /// given global variable. If Ty is non-null and if the global doesn't exist, 4123 /// then it will be created with the specified type instead of whatever the 4124 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4125 /// that an actual global with type Ty will be returned, not conversion of a 4126 /// variable with the same mangled name but some other type. 4127 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4128 llvm::Type *Ty, 4129 ForDefinition_t IsForDefinition) { 4130 assert(D->hasGlobalStorage() && "Not a global variable"); 4131 QualType ASTTy = D->getType(); 4132 if (!Ty) 4133 Ty = getTypes().ConvertTypeForMem(ASTTy); 4134 4135 StringRef MangledName = getMangledName(D); 4136 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4137 IsForDefinition); 4138 } 4139 4140 /// CreateRuntimeVariable - Create a new runtime global variable with the 4141 /// specified type and name. 4142 llvm::Constant * 4143 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4144 StringRef Name) { 4145 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4146 : LangAS::Default; 4147 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4148 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4149 return Ret; 4150 } 4151 4152 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4153 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4154 4155 StringRef MangledName = getMangledName(D); 4156 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4157 4158 // We already have a definition, not declaration, with the same mangled name. 4159 // Emitting of declaration is not required (and actually overwrites emitted 4160 // definition). 4161 if (GV && !GV->isDeclaration()) 4162 return; 4163 4164 // If we have not seen a reference to this variable yet, place it into the 4165 // deferred declarations table to be emitted if needed later. 4166 if (!MustBeEmitted(D) && !GV) { 4167 DeferredDecls[MangledName] = D; 4168 return; 4169 } 4170 4171 // The tentative definition is the only definition. 4172 EmitGlobalVarDefinition(D); 4173 } 4174 4175 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4176 EmitExternalVarDeclaration(D); 4177 } 4178 4179 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4180 return Context.toCharUnitsFromBits( 4181 getDataLayout().getTypeStoreSizeInBits(Ty)); 4182 } 4183 4184 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4185 if (LangOpts.OpenCL) { 4186 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4187 assert(AS == LangAS::opencl_global || 4188 AS == LangAS::opencl_global_device || 4189 AS == LangAS::opencl_global_host || 4190 AS == LangAS::opencl_constant || 4191 AS == LangAS::opencl_local || 4192 AS >= LangAS::FirstTargetAddressSpace); 4193 return AS; 4194 } 4195 4196 if (LangOpts.SYCLIsDevice && 4197 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4198 return LangAS::sycl_global; 4199 4200 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4201 if (D && D->hasAttr<CUDAConstantAttr>()) 4202 return LangAS::cuda_constant; 4203 else if (D && D->hasAttr<CUDASharedAttr>()) 4204 return LangAS::cuda_shared; 4205 else if (D && D->hasAttr<CUDADeviceAttr>()) 4206 return LangAS::cuda_device; 4207 else if (D && D->getType().isConstQualified()) 4208 return LangAS::cuda_constant; 4209 else 4210 return LangAS::cuda_device; 4211 } 4212 4213 if (LangOpts.OpenMP) { 4214 LangAS AS; 4215 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4216 return AS; 4217 } 4218 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4219 } 4220 4221 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4222 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4223 if (LangOpts.OpenCL) 4224 return LangAS::opencl_constant; 4225 if (LangOpts.SYCLIsDevice) 4226 return LangAS::sycl_global; 4227 if (auto AS = getTarget().getConstantAddressSpace()) 4228 return AS.getValue(); 4229 return LangAS::Default; 4230 } 4231 4232 // In address space agnostic languages, string literals are in default address 4233 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4234 // emitted in constant address space in LLVM IR. To be consistent with other 4235 // parts of AST, string literal global variables in constant address space 4236 // need to be casted to default address space before being put into address 4237 // map and referenced by other part of CodeGen. 4238 // In OpenCL, string literals are in constant address space in AST, therefore 4239 // they should not be casted to default address space. 4240 static llvm::Constant * 4241 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4242 llvm::GlobalVariable *GV) { 4243 llvm::Constant *Cast = GV; 4244 if (!CGM.getLangOpts().OpenCL) { 4245 auto AS = CGM.GetGlobalConstantAddressSpace(); 4246 if (AS != LangAS::Default) 4247 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4248 CGM, GV, AS, LangAS::Default, 4249 GV->getValueType()->getPointerTo( 4250 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4251 } 4252 return Cast; 4253 } 4254 4255 template<typename SomeDecl> 4256 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4257 llvm::GlobalValue *GV) { 4258 if (!getLangOpts().CPlusPlus) 4259 return; 4260 4261 // Must have 'used' attribute, or else inline assembly can't rely on 4262 // the name existing. 4263 if (!D->template hasAttr<UsedAttr>()) 4264 return; 4265 4266 // Must have internal linkage and an ordinary name. 4267 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4268 return; 4269 4270 // Must be in an extern "C" context. Entities declared directly within 4271 // a record are not extern "C" even if the record is in such a context. 4272 const SomeDecl *First = D->getFirstDecl(); 4273 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4274 return; 4275 4276 // OK, this is an internal linkage entity inside an extern "C" linkage 4277 // specification. Make a note of that so we can give it the "expected" 4278 // mangled name if nothing else is using that name. 4279 std::pair<StaticExternCMap::iterator, bool> R = 4280 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4281 4282 // If we have multiple internal linkage entities with the same name 4283 // in extern "C" regions, none of them gets that name. 4284 if (!R.second) 4285 R.first->second = nullptr; 4286 } 4287 4288 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4289 if (!CGM.supportsCOMDAT()) 4290 return false; 4291 4292 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4293 // them being "merged" by the COMDAT Folding linker optimization. 4294 if (D.hasAttr<CUDAGlobalAttr>()) 4295 return false; 4296 4297 if (D.hasAttr<SelectAnyAttr>()) 4298 return true; 4299 4300 GVALinkage Linkage; 4301 if (auto *VD = dyn_cast<VarDecl>(&D)) 4302 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4303 else 4304 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4305 4306 switch (Linkage) { 4307 case GVA_Internal: 4308 case GVA_AvailableExternally: 4309 case GVA_StrongExternal: 4310 return false; 4311 case GVA_DiscardableODR: 4312 case GVA_StrongODR: 4313 return true; 4314 } 4315 llvm_unreachable("No such linkage"); 4316 } 4317 4318 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4319 llvm::GlobalObject &GO) { 4320 if (!shouldBeInCOMDAT(*this, D)) 4321 return; 4322 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4323 } 4324 4325 /// Pass IsTentative as true if you want to create a tentative definition. 4326 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4327 bool IsTentative) { 4328 // OpenCL global variables of sampler type are translated to function calls, 4329 // therefore no need to be translated. 4330 QualType ASTTy = D->getType(); 4331 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4332 return; 4333 4334 // If this is OpenMP device, check if it is legal to emit this global 4335 // normally. 4336 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4337 OpenMPRuntime->emitTargetGlobalVariable(D)) 4338 return; 4339 4340 llvm::TrackingVH<llvm::Constant> Init; 4341 bool NeedsGlobalCtor = false; 4342 bool NeedsGlobalDtor = 4343 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4344 4345 const VarDecl *InitDecl; 4346 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4347 4348 Optional<ConstantEmitter> emitter; 4349 4350 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4351 // as part of their declaration." Sema has already checked for 4352 // error cases, so we just need to set Init to UndefValue. 4353 bool IsCUDASharedVar = 4354 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4355 // Shadows of initialized device-side global variables are also left 4356 // undefined. 4357 // Managed Variables should be initialized on both host side and device side. 4358 bool IsCUDAShadowVar = 4359 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4360 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4361 D->hasAttr<CUDASharedAttr>()); 4362 bool IsCUDADeviceShadowVar = 4363 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4364 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4365 D->getType()->isCUDADeviceBuiltinTextureType()); 4366 if (getLangOpts().CUDA && 4367 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4368 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4369 else if (D->hasAttr<LoaderUninitializedAttr>()) 4370 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4371 else if (!InitExpr) { 4372 // This is a tentative definition; tentative definitions are 4373 // implicitly initialized with { 0 }. 4374 // 4375 // Note that tentative definitions are only emitted at the end of 4376 // a translation unit, so they should never have incomplete 4377 // type. In addition, EmitTentativeDefinition makes sure that we 4378 // never attempt to emit a tentative definition if a real one 4379 // exists. A use may still exists, however, so we still may need 4380 // to do a RAUW. 4381 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4382 Init = EmitNullConstant(D->getType()); 4383 } else { 4384 initializedGlobalDecl = GlobalDecl(D); 4385 emitter.emplace(*this); 4386 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4387 if (!Initializer) { 4388 QualType T = InitExpr->getType(); 4389 if (D->getType()->isReferenceType()) 4390 T = D->getType(); 4391 4392 if (getLangOpts().CPlusPlus) { 4393 Init = EmitNullConstant(T); 4394 NeedsGlobalCtor = true; 4395 } else { 4396 ErrorUnsupported(D, "static initializer"); 4397 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4398 } 4399 } else { 4400 Init = Initializer; 4401 // We don't need an initializer, so remove the entry for the delayed 4402 // initializer position (just in case this entry was delayed) if we 4403 // also don't need to register a destructor. 4404 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4405 DelayedCXXInitPosition.erase(D); 4406 } 4407 } 4408 4409 llvm::Type* InitType = Init->getType(); 4410 llvm::Constant *Entry = 4411 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4412 4413 // Strip off pointer casts if we got them. 4414 Entry = Entry->stripPointerCasts(); 4415 4416 // Entry is now either a Function or GlobalVariable. 4417 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4418 4419 // We have a definition after a declaration with the wrong type. 4420 // We must make a new GlobalVariable* and update everything that used OldGV 4421 // (a declaration or tentative definition) with the new GlobalVariable* 4422 // (which will be a definition). 4423 // 4424 // This happens if there is a prototype for a global (e.g. 4425 // "extern int x[];") and then a definition of a different type (e.g. 4426 // "int x[10];"). This also happens when an initializer has a different type 4427 // from the type of the global (this happens with unions). 4428 if (!GV || GV->getValueType() != InitType || 4429 GV->getType()->getAddressSpace() != 4430 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4431 4432 // Move the old entry aside so that we'll create a new one. 4433 Entry->setName(StringRef()); 4434 4435 // Make a new global with the correct type, this is now guaranteed to work. 4436 GV = cast<llvm::GlobalVariable>( 4437 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4438 ->stripPointerCasts()); 4439 4440 // Replace all uses of the old global with the new global 4441 llvm::Constant *NewPtrForOldDecl = 4442 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4443 Entry->getType()); 4444 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4445 4446 // Erase the old global, since it is no longer used. 4447 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4448 } 4449 4450 MaybeHandleStaticInExternC(D, GV); 4451 4452 if (D->hasAttr<AnnotateAttr>()) 4453 AddGlobalAnnotations(D, GV); 4454 4455 // Set the llvm linkage type as appropriate. 4456 llvm::GlobalValue::LinkageTypes Linkage = 4457 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4458 4459 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4460 // the device. [...]" 4461 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4462 // __device__, declares a variable that: [...] 4463 // Is accessible from all the threads within the grid and from the host 4464 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4465 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4466 if (GV && LangOpts.CUDA) { 4467 if (LangOpts.CUDAIsDevice) { 4468 if (Linkage != llvm::GlobalValue::InternalLinkage && 4469 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4470 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4471 D->getType()->isCUDADeviceBuiltinTextureType())) 4472 GV->setExternallyInitialized(true); 4473 } else { 4474 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4475 } 4476 getCUDARuntime().handleVarRegistration(D, *GV); 4477 } 4478 4479 GV->setInitializer(Init); 4480 if (emitter) 4481 emitter->finalize(GV); 4482 4483 // If it is safe to mark the global 'constant', do so now. 4484 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4485 isTypeConstant(D->getType(), true)); 4486 4487 // If it is in a read-only section, mark it 'constant'. 4488 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4489 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4490 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4491 GV->setConstant(true); 4492 } 4493 4494 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4495 4496 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4497 // function is only defined alongside the variable, not also alongside 4498 // callers. Normally, all accesses to a thread_local go through the 4499 // thread-wrapper in order to ensure initialization has occurred, underlying 4500 // variable will never be used other than the thread-wrapper, so it can be 4501 // converted to internal linkage. 4502 // 4503 // However, if the variable has the 'constinit' attribute, it _can_ be 4504 // referenced directly, without calling the thread-wrapper, so the linkage 4505 // must not be changed. 4506 // 4507 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4508 // weak or linkonce, the de-duplication semantics are important to preserve, 4509 // so we don't change the linkage. 4510 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4511 Linkage == llvm::GlobalValue::ExternalLinkage && 4512 Context.getTargetInfo().getTriple().isOSDarwin() && 4513 !D->hasAttr<ConstInitAttr>()) 4514 Linkage = llvm::GlobalValue::InternalLinkage; 4515 4516 GV->setLinkage(Linkage); 4517 if (D->hasAttr<DLLImportAttr>()) 4518 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4519 else if (D->hasAttr<DLLExportAttr>()) 4520 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4521 else 4522 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4523 4524 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4525 // common vars aren't constant even if declared const. 4526 GV->setConstant(false); 4527 // Tentative definition of global variables may be initialized with 4528 // non-zero null pointers. In this case they should have weak linkage 4529 // since common linkage must have zero initializer and must not have 4530 // explicit section therefore cannot have non-zero initial value. 4531 if (!GV->getInitializer()->isNullValue()) 4532 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4533 } 4534 4535 setNonAliasAttributes(D, GV); 4536 4537 if (D->getTLSKind() && !GV->isThreadLocal()) { 4538 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4539 CXXThreadLocals.push_back(D); 4540 setTLSMode(GV, *D); 4541 } 4542 4543 maybeSetTrivialComdat(*D, *GV); 4544 4545 // Emit the initializer function if necessary. 4546 if (NeedsGlobalCtor || NeedsGlobalDtor) 4547 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4548 4549 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4550 4551 // Emit global variable debug information. 4552 if (CGDebugInfo *DI = getModuleDebugInfo()) 4553 if (getCodeGenOpts().hasReducedDebugInfo()) 4554 DI->EmitGlobalVariable(GV, D); 4555 } 4556 4557 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4558 if (CGDebugInfo *DI = getModuleDebugInfo()) 4559 if (getCodeGenOpts().hasReducedDebugInfo()) { 4560 QualType ASTTy = D->getType(); 4561 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4562 llvm::Constant *GV = 4563 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4564 DI->EmitExternalVariable( 4565 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4566 } 4567 } 4568 4569 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4570 CodeGenModule &CGM, const VarDecl *D, 4571 bool NoCommon) { 4572 // Don't give variables common linkage if -fno-common was specified unless it 4573 // was overridden by a NoCommon attribute. 4574 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4575 return true; 4576 4577 // C11 6.9.2/2: 4578 // A declaration of an identifier for an object that has file scope without 4579 // an initializer, and without a storage-class specifier or with the 4580 // storage-class specifier static, constitutes a tentative definition. 4581 if (D->getInit() || D->hasExternalStorage()) 4582 return true; 4583 4584 // A variable cannot be both common and exist in a section. 4585 if (D->hasAttr<SectionAttr>()) 4586 return true; 4587 4588 // A variable cannot be both common and exist in a section. 4589 // We don't try to determine which is the right section in the front-end. 4590 // If no specialized section name is applicable, it will resort to default. 4591 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4592 D->hasAttr<PragmaClangDataSectionAttr>() || 4593 D->hasAttr<PragmaClangRelroSectionAttr>() || 4594 D->hasAttr<PragmaClangRodataSectionAttr>()) 4595 return true; 4596 4597 // Thread local vars aren't considered common linkage. 4598 if (D->getTLSKind()) 4599 return true; 4600 4601 // Tentative definitions marked with WeakImportAttr are true definitions. 4602 if (D->hasAttr<WeakImportAttr>()) 4603 return true; 4604 4605 // A variable cannot be both common and exist in a comdat. 4606 if (shouldBeInCOMDAT(CGM, *D)) 4607 return true; 4608 4609 // Declarations with a required alignment do not have common linkage in MSVC 4610 // mode. 4611 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4612 if (D->hasAttr<AlignedAttr>()) 4613 return true; 4614 QualType VarType = D->getType(); 4615 if (Context.isAlignmentRequired(VarType)) 4616 return true; 4617 4618 if (const auto *RT = VarType->getAs<RecordType>()) { 4619 const RecordDecl *RD = RT->getDecl(); 4620 for (const FieldDecl *FD : RD->fields()) { 4621 if (FD->isBitField()) 4622 continue; 4623 if (FD->hasAttr<AlignedAttr>()) 4624 return true; 4625 if (Context.isAlignmentRequired(FD->getType())) 4626 return true; 4627 } 4628 } 4629 } 4630 4631 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4632 // common symbols, so symbols with greater alignment requirements cannot be 4633 // common. 4634 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4635 // alignments for common symbols via the aligncomm directive, so this 4636 // restriction only applies to MSVC environments. 4637 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4638 Context.getTypeAlignIfKnown(D->getType()) > 4639 Context.toBits(CharUnits::fromQuantity(32))) 4640 return true; 4641 4642 return false; 4643 } 4644 4645 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4646 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4647 if (Linkage == GVA_Internal) 4648 return llvm::Function::InternalLinkage; 4649 4650 if (D->hasAttr<WeakAttr>()) { 4651 if (IsConstantVariable) 4652 return llvm::GlobalVariable::WeakODRLinkage; 4653 else 4654 return llvm::GlobalVariable::WeakAnyLinkage; 4655 } 4656 4657 if (const auto *FD = D->getAsFunction()) 4658 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4659 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4660 4661 // We are guaranteed to have a strong definition somewhere else, 4662 // so we can use available_externally linkage. 4663 if (Linkage == GVA_AvailableExternally) 4664 return llvm::GlobalValue::AvailableExternallyLinkage; 4665 4666 // Note that Apple's kernel linker doesn't support symbol 4667 // coalescing, so we need to avoid linkonce and weak linkages there. 4668 // Normally, this means we just map to internal, but for explicit 4669 // instantiations we'll map to external. 4670 4671 // In C++, the compiler has to emit a definition in every translation unit 4672 // that references the function. We should use linkonce_odr because 4673 // a) if all references in this translation unit are optimized away, we 4674 // don't need to codegen it. b) if the function persists, it needs to be 4675 // merged with other definitions. c) C++ has the ODR, so we know the 4676 // definition is dependable. 4677 if (Linkage == GVA_DiscardableODR) 4678 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4679 : llvm::Function::InternalLinkage; 4680 4681 // An explicit instantiation of a template has weak linkage, since 4682 // explicit instantiations can occur in multiple translation units 4683 // and must all be equivalent. However, we are not allowed to 4684 // throw away these explicit instantiations. 4685 // 4686 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4687 // so say that CUDA templates are either external (for kernels) or internal. 4688 // This lets llvm perform aggressive inter-procedural optimizations. For 4689 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4690 // therefore we need to follow the normal linkage paradigm. 4691 if (Linkage == GVA_StrongODR) { 4692 if (getLangOpts().AppleKext) 4693 return llvm::Function::ExternalLinkage; 4694 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4695 !getLangOpts().GPURelocatableDeviceCode) 4696 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4697 : llvm::Function::InternalLinkage; 4698 return llvm::Function::WeakODRLinkage; 4699 } 4700 4701 // C++ doesn't have tentative definitions and thus cannot have common 4702 // linkage. 4703 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4704 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4705 CodeGenOpts.NoCommon)) 4706 return llvm::GlobalVariable::CommonLinkage; 4707 4708 // selectany symbols are externally visible, so use weak instead of 4709 // linkonce. MSVC optimizes away references to const selectany globals, so 4710 // all definitions should be the same and ODR linkage should be used. 4711 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4712 if (D->hasAttr<SelectAnyAttr>()) 4713 return llvm::GlobalVariable::WeakODRLinkage; 4714 4715 // Otherwise, we have strong external linkage. 4716 assert(Linkage == GVA_StrongExternal); 4717 return llvm::GlobalVariable::ExternalLinkage; 4718 } 4719 4720 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4721 const VarDecl *VD, bool IsConstant) { 4722 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4723 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4724 } 4725 4726 /// Replace the uses of a function that was declared with a non-proto type. 4727 /// We want to silently drop extra arguments from call sites 4728 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4729 llvm::Function *newFn) { 4730 // Fast path. 4731 if (old->use_empty()) return; 4732 4733 llvm::Type *newRetTy = newFn->getReturnType(); 4734 SmallVector<llvm::Value*, 4> newArgs; 4735 4736 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4737 ui != ue; ) { 4738 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4739 llvm::User *user = use->getUser(); 4740 4741 // Recognize and replace uses of bitcasts. Most calls to 4742 // unprototyped functions will use bitcasts. 4743 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4744 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4745 replaceUsesOfNonProtoConstant(bitcast, newFn); 4746 continue; 4747 } 4748 4749 // Recognize calls to the function. 4750 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4751 if (!callSite) continue; 4752 if (!callSite->isCallee(&*use)) 4753 continue; 4754 4755 // If the return types don't match exactly, then we can't 4756 // transform this call unless it's dead. 4757 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4758 continue; 4759 4760 // Get the call site's attribute list. 4761 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4762 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4763 4764 // If the function was passed too few arguments, don't transform. 4765 unsigned newNumArgs = newFn->arg_size(); 4766 if (callSite->arg_size() < newNumArgs) 4767 continue; 4768 4769 // If extra arguments were passed, we silently drop them. 4770 // If any of the types mismatch, we don't transform. 4771 unsigned argNo = 0; 4772 bool dontTransform = false; 4773 for (llvm::Argument &A : newFn->args()) { 4774 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4775 dontTransform = true; 4776 break; 4777 } 4778 4779 // Add any parameter attributes. 4780 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 4781 argNo++; 4782 } 4783 if (dontTransform) 4784 continue; 4785 4786 // Okay, we can transform this. Create the new call instruction and copy 4787 // over the required information. 4788 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4789 4790 // Copy over any operand bundles. 4791 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4792 callSite->getOperandBundlesAsDefs(newBundles); 4793 4794 llvm::CallBase *newCall; 4795 if (dyn_cast<llvm::CallInst>(callSite)) { 4796 newCall = 4797 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4798 } else { 4799 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4800 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4801 oldInvoke->getUnwindDest(), newArgs, 4802 newBundles, "", callSite); 4803 } 4804 newArgs.clear(); // for the next iteration 4805 4806 if (!newCall->getType()->isVoidTy()) 4807 newCall->takeName(callSite); 4808 newCall->setAttributes( 4809 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 4810 oldAttrs.getRetAttrs(), newArgAttrs)); 4811 newCall->setCallingConv(callSite->getCallingConv()); 4812 4813 // Finally, remove the old call, replacing any uses with the new one. 4814 if (!callSite->use_empty()) 4815 callSite->replaceAllUsesWith(newCall); 4816 4817 // Copy debug location attached to CI. 4818 if (callSite->getDebugLoc()) 4819 newCall->setDebugLoc(callSite->getDebugLoc()); 4820 4821 callSite->eraseFromParent(); 4822 } 4823 } 4824 4825 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4826 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4827 /// existing call uses of the old function in the module, this adjusts them to 4828 /// call the new function directly. 4829 /// 4830 /// This is not just a cleanup: the always_inline pass requires direct calls to 4831 /// functions to be able to inline them. If there is a bitcast in the way, it 4832 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4833 /// run at -O0. 4834 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4835 llvm::Function *NewFn) { 4836 // If we're redefining a global as a function, don't transform it. 4837 if (!isa<llvm::Function>(Old)) return; 4838 4839 replaceUsesOfNonProtoConstant(Old, NewFn); 4840 } 4841 4842 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4843 auto DK = VD->isThisDeclarationADefinition(); 4844 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4845 return; 4846 4847 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4848 // If we have a definition, this might be a deferred decl. If the 4849 // instantiation is explicit, make sure we emit it at the end. 4850 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4851 GetAddrOfGlobalVar(VD); 4852 4853 EmitTopLevelDecl(VD); 4854 } 4855 4856 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4857 llvm::GlobalValue *GV) { 4858 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4859 4860 // Compute the function info and LLVM type. 4861 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4862 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4863 4864 // Get or create the prototype for the function. 4865 if (!GV || (GV->getValueType() != Ty)) 4866 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4867 /*DontDefer=*/true, 4868 ForDefinition)); 4869 4870 // Already emitted. 4871 if (!GV->isDeclaration()) 4872 return; 4873 4874 // We need to set linkage and visibility on the function before 4875 // generating code for it because various parts of IR generation 4876 // want to propagate this information down (e.g. to local static 4877 // declarations). 4878 auto *Fn = cast<llvm::Function>(GV); 4879 setFunctionLinkage(GD, Fn); 4880 4881 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4882 setGVProperties(Fn, GD); 4883 4884 MaybeHandleStaticInExternC(D, Fn); 4885 4886 maybeSetTrivialComdat(*D, *Fn); 4887 4888 // Set CodeGen attributes that represent floating point environment. 4889 setLLVMFunctionFEnvAttributes(D, Fn); 4890 4891 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4892 4893 setNonAliasAttributes(GD, Fn); 4894 SetLLVMFunctionAttributesForDefinition(D, Fn); 4895 4896 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4897 AddGlobalCtor(Fn, CA->getPriority()); 4898 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4899 AddGlobalDtor(Fn, DA->getPriority(), true); 4900 if (D->hasAttr<AnnotateAttr>()) 4901 AddGlobalAnnotations(D, Fn); 4902 } 4903 4904 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4905 const auto *D = cast<ValueDecl>(GD.getDecl()); 4906 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4907 assert(AA && "Not an alias?"); 4908 4909 StringRef MangledName = getMangledName(GD); 4910 4911 if (AA->getAliasee() == MangledName) { 4912 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4913 return; 4914 } 4915 4916 // If there is a definition in the module, then it wins over the alias. 4917 // This is dubious, but allow it to be safe. Just ignore the alias. 4918 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4919 if (Entry && !Entry->isDeclaration()) 4920 return; 4921 4922 Aliases.push_back(GD); 4923 4924 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4925 4926 // Create a reference to the named value. This ensures that it is emitted 4927 // if a deferred decl. 4928 llvm::Constant *Aliasee; 4929 llvm::GlobalValue::LinkageTypes LT; 4930 if (isa<llvm::FunctionType>(DeclTy)) { 4931 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4932 /*ForVTable=*/false); 4933 LT = getFunctionLinkage(GD); 4934 } else { 4935 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 4936 /*D=*/nullptr); 4937 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4938 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4939 else 4940 LT = getFunctionLinkage(GD); 4941 } 4942 4943 // Create the new alias itself, but don't set a name yet. 4944 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4945 auto *GA = 4946 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4947 4948 if (Entry) { 4949 if (GA->getAliasee() == Entry) { 4950 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4951 return; 4952 } 4953 4954 assert(Entry->isDeclaration()); 4955 4956 // If there is a declaration in the module, then we had an extern followed 4957 // by the alias, as in: 4958 // extern int test6(); 4959 // ... 4960 // int test6() __attribute__((alias("test7"))); 4961 // 4962 // Remove it and replace uses of it with the alias. 4963 GA->takeName(Entry); 4964 4965 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4966 Entry->getType())); 4967 Entry->eraseFromParent(); 4968 } else { 4969 GA->setName(MangledName); 4970 } 4971 4972 // Set attributes which are particular to an alias; this is a 4973 // specialization of the attributes which may be set on a global 4974 // variable/function. 4975 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4976 D->isWeakImported()) { 4977 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4978 } 4979 4980 if (const auto *VD = dyn_cast<VarDecl>(D)) 4981 if (VD->getTLSKind()) 4982 setTLSMode(GA, *VD); 4983 4984 SetCommonAttributes(GD, GA); 4985 } 4986 4987 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4988 const auto *D = cast<ValueDecl>(GD.getDecl()); 4989 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4990 assert(IFA && "Not an ifunc?"); 4991 4992 StringRef MangledName = getMangledName(GD); 4993 4994 if (IFA->getResolver() == MangledName) { 4995 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4996 return; 4997 } 4998 4999 // Report an error if some definition overrides ifunc. 5000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5001 if (Entry && !Entry->isDeclaration()) { 5002 GlobalDecl OtherGD; 5003 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5004 DiagnosedConflictingDefinitions.insert(GD).second) { 5005 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5006 << MangledName; 5007 Diags.Report(OtherGD.getDecl()->getLocation(), 5008 diag::note_previous_definition); 5009 } 5010 return; 5011 } 5012 5013 Aliases.push_back(GD); 5014 5015 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5016 llvm::Constant *Resolver = 5017 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 5018 /*ForVTable=*/false); 5019 llvm::GlobalIFunc *GIF = 5020 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5021 "", Resolver, &getModule()); 5022 if (Entry) { 5023 if (GIF->getResolver() == Entry) { 5024 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5025 return; 5026 } 5027 assert(Entry->isDeclaration()); 5028 5029 // If there is a declaration in the module, then we had an extern followed 5030 // by the ifunc, as in: 5031 // extern int test(); 5032 // ... 5033 // int test() __attribute__((ifunc("resolver"))); 5034 // 5035 // Remove it and replace uses of it with the ifunc. 5036 GIF->takeName(Entry); 5037 5038 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5039 Entry->getType())); 5040 Entry->eraseFromParent(); 5041 } else 5042 GIF->setName(MangledName); 5043 5044 SetCommonAttributes(GD, GIF); 5045 } 5046 5047 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5048 ArrayRef<llvm::Type*> Tys) { 5049 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5050 Tys); 5051 } 5052 5053 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5054 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5055 const StringLiteral *Literal, bool TargetIsLSB, 5056 bool &IsUTF16, unsigned &StringLength) { 5057 StringRef String = Literal->getString(); 5058 unsigned NumBytes = String.size(); 5059 5060 // Check for simple case. 5061 if (!Literal->containsNonAsciiOrNull()) { 5062 StringLength = NumBytes; 5063 return *Map.insert(std::make_pair(String, nullptr)).first; 5064 } 5065 5066 // Otherwise, convert the UTF8 literals into a string of shorts. 5067 IsUTF16 = true; 5068 5069 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5070 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5071 llvm::UTF16 *ToPtr = &ToBuf[0]; 5072 5073 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5074 ToPtr + NumBytes, llvm::strictConversion); 5075 5076 // ConvertUTF8toUTF16 returns the length in ToPtr. 5077 StringLength = ToPtr - &ToBuf[0]; 5078 5079 // Add an explicit null. 5080 *ToPtr = 0; 5081 return *Map.insert(std::make_pair( 5082 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5083 (StringLength + 1) * 2), 5084 nullptr)).first; 5085 } 5086 5087 ConstantAddress 5088 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5089 unsigned StringLength = 0; 5090 bool isUTF16 = false; 5091 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5092 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5093 getDataLayout().isLittleEndian(), isUTF16, 5094 StringLength); 5095 5096 if (auto *C = Entry.second) 5097 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 5098 5099 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5100 llvm::Constant *Zeros[] = { Zero, Zero }; 5101 5102 const ASTContext &Context = getContext(); 5103 const llvm::Triple &Triple = getTriple(); 5104 5105 const auto CFRuntime = getLangOpts().CFRuntime; 5106 const bool IsSwiftABI = 5107 static_cast<unsigned>(CFRuntime) >= 5108 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5109 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5110 5111 // If we don't already have it, get __CFConstantStringClassReference. 5112 if (!CFConstantStringClassRef) { 5113 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5114 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5115 Ty = llvm::ArrayType::get(Ty, 0); 5116 5117 switch (CFRuntime) { 5118 default: break; 5119 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5120 case LangOptions::CoreFoundationABI::Swift5_0: 5121 CFConstantStringClassName = 5122 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5123 : "$s10Foundation19_NSCFConstantStringCN"; 5124 Ty = IntPtrTy; 5125 break; 5126 case LangOptions::CoreFoundationABI::Swift4_2: 5127 CFConstantStringClassName = 5128 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5129 : "$S10Foundation19_NSCFConstantStringCN"; 5130 Ty = IntPtrTy; 5131 break; 5132 case LangOptions::CoreFoundationABI::Swift4_1: 5133 CFConstantStringClassName = 5134 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5135 : "__T010Foundation19_NSCFConstantStringCN"; 5136 Ty = IntPtrTy; 5137 break; 5138 } 5139 5140 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5141 5142 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5143 llvm::GlobalValue *GV = nullptr; 5144 5145 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5146 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5147 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5148 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5149 5150 const VarDecl *VD = nullptr; 5151 for (const auto *Result : DC->lookup(&II)) 5152 if ((VD = dyn_cast<VarDecl>(Result))) 5153 break; 5154 5155 if (Triple.isOSBinFormatELF()) { 5156 if (!VD) 5157 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5158 } else { 5159 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5160 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5161 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5162 else 5163 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5164 } 5165 5166 setDSOLocal(GV); 5167 } 5168 } 5169 5170 // Decay array -> ptr 5171 CFConstantStringClassRef = 5172 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5173 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5174 } 5175 5176 QualType CFTy = Context.getCFConstantStringType(); 5177 5178 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5179 5180 ConstantInitBuilder Builder(*this); 5181 auto Fields = Builder.beginStruct(STy); 5182 5183 // Class pointer. 5184 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5185 5186 // Flags. 5187 if (IsSwiftABI) { 5188 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5189 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5190 } else { 5191 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5192 } 5193 5194 // String pointer. 5195 llvm::Constant *C = nullptr; 5196 if (isUTF16) { 5197 auto Arr = llvm::makeArrayRef( 5198 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5199 Entry.first().size() / 2); 5200 C = llvm::ConstantDataArray::get(VMContext, Arr); 5201 } else { 5202 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5203 } 5204 5205 // Note: -fwritable-strings doesn't make the backing store strings of 5206 // CFStrings writable. (See <rdar://problem/10657500>) 5207 auto *GV = 5208 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5209 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5210 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5211 // Don't enforce the target's minimum global alignment, since the only use 5212 // of the string is via this class initializer. 5213 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5214 : Context.getTypeAlignInChars(Context.CharTy); 5215 GV->setAlignment(Align.getAsAlign()); 5216 5217 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5218 // Without it LLVM can merge the string with a non unnamed_addr one during 5219 // LTO. Doing that changes the section it ends in, which surprises ld64. 5220 if (Triple.isOSBinFormatMachO()) 5221 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5222 : "__TEXT,__cstring,cstring_literals"); 5223 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5224 // the static linker to adjust permissions to read-only later on. 5225 else if (Triple.isOSBinFormatELF()) 5226 GV->setSection(".rodata"); 5227 5228 // String. 5229 llvm::Constant *Str = 5230 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5231 5232 if (isUTF16) 5233 // Cast the UTF16 string to the correct type. 5234 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5235 Fields.add(Str); 5236 5237 // String length. 5238 llvm::IntegerType *LengthTy = 5239 llvm::IntegerType::get(getModule().getContext(), 5240 Context.getTargetInfo().getLongWidth()); 5241 if (IsSwiftABI) { 5242 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5243 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5244 LengthTy = Int32Ty; 5245 else 5246 LengthTy = IntPtrTy; 5247 } 5248 Fields.addInt(LengthTy, StringLength); 5249 5250 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5251 // properly aligned on 32-bit platforms. 5252 CharUnits Alignment = 5253 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5254 5255 // The struct. 5256 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5257 /*isConstant=*/false, 5258 llvm::GlobalVariable::PrivateLinkage); 5259 GV->addAttribute("objc_arc_inert"); 5260 switch (Triple.getObjectFormat()) { 5261 case llvm::Triple::UnknownObjectFormat: 5262 llvm_unreachable("unknown file format"); 5263 case llvm::Triple::GOFF: 5264 llvm_unreachable("GOFF is not yet implemented"); 5265 case llvm::Triple::XCOFF: 5266 llvm_unreachable("XCOFF is not yet implemented"); 5267 case llvm::Triple::COFF: 5268 case llvm::Triple::ELF: 5269 case llvm::Triple::Wasm: 5270 GV->setSection("cfstring"); 5271 break; 5272 case llvm::Triple::MachO: 5273 GV->setSection("__DATA,__cfstring"); 5274 break; 5275 } 5276 Entry.second = GV; 5277 5278 return ConstantAddress(GV, Alignment); 5279 } 5280 5281 bool CodeGenModule::getExpressionLocationsEnabled() const { 5282 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5283 } 5284 5285 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5286 if (ObjCFastEnumerationStateType.isNull()) { 5287 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5288 D->startDefinition(); 5289 5290 QualType FieldTypes[] = { 5291 Context.UnsignedLongTy, 5292 Context.getPointerType(Context.getObjCIdType()), 5293 Context.getPointerType(Context.UnsignedLongTy), 5294 Context.getConstantArrayType(Context.UnsignedLongTy, 5295 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5296 }; 5297 5298 for (size_t i = 0; i < 4; ++i) { 5299 FieldDecl *Field = FieldDecl::Create(Context, 5300 D, 5301 SourceLocation(), 5302 SourceLocation(), nullptr, 5303 FieldTypes[i], /*TInfo=*/nullptr, 5304 /*BitWidth=*/nullptr, 5305 /*Mutable=*/false, 5306 ICIS_NoInit); 5307 Field->setAccess(AS_public); 5308 D->addDecl(Field); 5309 } 5310 5311 D->completeDefinition(); 5312 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5313 } 5314 5315 return ObjCFastEnumerationStateType; 5316 } 5317 5318 llvm::Constant * 5319 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5320 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5321 5322 // Don't emit it as the address of the string, emit the string data itself 5323 // as an inline array. 5324 if (E->getCharByteWidth() == 1) { 5325 SmallString<64> Str(E->getString()); 5326 5327 // Resize the string to the right size, which is indicated by its type. 5328 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5329 Str.resize(CAT->getSize().getZExtValue()); 5330 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5331 } 5332 5333 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5334 llvm::Type *ElemTy = AType->getElementType(); 5335 unsigned NumElements = AType->getNumElements(); 5336 5337 // Wide strings have either 2-byte or 4-byte elements. 5338 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5339 SmallVector<uint16_t, 32> Elements; 5340 Elements.reserve(NumElements); 5341 5342 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5343 Elements.push_back(E->getCodeUnit(i)); 5344 Elements.resize(NumElements); 5345 return llvm::ConstantDataArray::get(VMContext, Elements); 5346 } 5347 5348 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5349 SmallVector<uint32_t, 32> Elements; 5350 Elements.reserve(NumElements); 5351 5352 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5353 Elements.push_back(E->getCodeUnit(i)); 5354 Elements.resize(NumElements); 5355 return llvm::ConstantDataArray::get(VMContext, Elements); 5356 } 5357 5358 static llvm::GlobalVariable * 5359 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5360 CodeGenModule &CGM, StringRef GlobalName, 5361 CharUnits Alignment) { 5362 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5363 CGM.GetGlobalConstantAddressSpace()); 5364 5365 llvm::Module &M = CGM.getModule(); 5366 // Create a global variable for this string 5367 auto *GV = new llvm::GlobalVariable( 5368 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5369 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5370 GV->setAlignment(Alignment.getAsAlign()); 5371 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5372 if (GV->isWeakForLinker()) { 5373 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5374 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5375 } 5376 CGM.setDSOLocal(GV); 5377 5378 return GV; 5379 } 5380 5381 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5382 /// constant array for the given string literal. 5383 ConstantAddress 5384 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5385 StringRef Name) { 5386 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5387 5388 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5389 llvm::GlobalVariable **Entry = nullptr; 5390 if (!LangOpts.WritableStrings) { 5391 Entry = &ConstantStringMap[C]; 5392 if (auto GV = *Entry) { 5393 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5394 GV->setAlignment(Alignment.getAsAlign()); 5395 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5396 Alignment); 5397 } 5398 } 5399 5400 SmallString<256> MangledNameBuffer; 5401 StringRef GlobalVariableName; 5402 llvm::GlobalValue::LinkageTypes LT; 5403 5404 // Mangle the string literal if that's how the ABI merges duplicate strings. 5405 // Don't do it if they are writable, since we don't want writes in one TU to 5406 // affect strings in another. 5407 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5408 !LangOpts.WritableStrings) { 5409 llvm::raw_svector_ostream Out(MangledNameBuffer); 5410 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5411 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5412 GlobalVariableName = MangledNameBuffer; 5413 } else { 5414 LT = llvm::GlobalValue::PrivateLinkage; 5415 GlobalVariableName = Name; 5416 } 5417 5418 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5419 if (Entry) 5420 *Entry = GV; 5421 5422 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5423 QualType()); 5424 5425 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5426 Alignment); 5427 } 5428 5429 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5430 /// array for the given ObjCEncodeExpr node. 5431 ConstantAddress 5432 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5433 std::string Str; 5434 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5435 5436 return GetAddrOfConstantCString(Str); 5437 } 5438 5439 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5440 /// the literal and a terminating '\0' character. 5441 /// The result has pointer to array type. 5442 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5443 const std::string &Str, const char *GlobalName) { 5444 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5445 CharUnits Alignment = 5446 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5447 5448 llvm::Constant *C = 5449 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5450 5451 // Don't share any string literals if strings aren't constant. 5452 llvm::GlobalVariable **Entry = nullptr; 5453 if (!LangOpts.WritableStrings) { 5454 Entry = &ConstantStringMap[C]; 5455 if (auto GV = *Entry) { 5456 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5457 GV->setAlignment(Alignment.getAsAlign()); 5458 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5459 Alignment); 5460 } 5461 } 5462 5463 // Get the default prefix if a name wasn't specified. 5464 if (!GlobalName) 5465 GlobalName = ".str"; 5466 // Create a global variable for this. 5467 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5468 GlobalName, Alignment); 5469 if (Entry) 5470 *Entry = GV; 5471 5472 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5473 Alignment); 5474 } 5475 5476 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5477 const MaterializeTemporaryExpr *E, const Expr *Init) { 5478 assert((E->getStorageDuration() == SD_Static || 5479 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5480 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5481 5482 // If we're not materializing a subobject of the temporary, keep the 5483 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5484 QualType MaterializedType = Init->getType(); 5485 if (Init == E->getSubExpr()) 5486 MaterializedType = E->getType(); 5487 5488 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5489 5490 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5491 if (!InsertResult.second) { 5492 // We've seen this before: either we already created it or we're in the 5493 // process of doing so. 5494 if (!InsertResult.first->second) { 5495 // We recursively re-entered this function, probably during emission of 5496 // the initializer. Create a placeholder. We'll clean this up in the 5497 // outer call, at the end of this function. 5498 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5499 InsertResult.first->second = new llvm::GlobalVariable( 5500 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5501 nullptr); 5502 } 5503 return ConstantAddress(InsertResult.first->second, Align); 5504 } 5505 5506 // FIXME: If an externally-visible declaration extends multiple temporaries, 5507 // we need to give each temporary the same name in every translation unit (and 5508 // we also need to make the temporaries externally-visible). 5509 SmallString<256> Name; 5510 llvm::raw_svector_ostream Out(Name); 5511 getCXXABI().getMangleContext().mangleReferenceTemporary( 5512 VD, E->getManglingNumber(), Out); 5513 5514 APValue *Value = nullptr; 5515 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5516 // If the initializer of the extending declaration is a constant 5517 // initializer, we should have a cached constant initializer for this 5518 // temporary. Note that this might have a different value from the value 5519 // computed by evaluating the initializer if the surrounding constant 5520 // expression modifies the temporary. 5521 Value = E->getOrCreateValue(false); 5522 } 5523 5524 // Try evaluating it now, it might have a constant initializer. 5525 Expr::EvalResult EvalResult; 5526 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5527 !EvalResult.hasSideEffects()) 5528 Value = &EvalResult.Val; 5529 5530 LangAS AddrSpace = 5531 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5532 5533 Optional<ConstantEmitter> emitter; 5534 llvm::Constant *InitialValue = nullptr; 5535 bool Constant = false; 5536 llvm::Type *Type; 5537 if (Value) { 5538 // The temporary has a constant initializer, use it. 5539 emitter.emplace(*this); 5540 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5541 MaterializedType); 5542 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5543 Type = InitialValue->getType(); 5544 } else { 5545 // No initializer, the initialization will be provided when we 5546 // initialize the declaration which performed lifetime extension. 5547 Type = getTypes().ConvertTypeForMem(MaterializedType); 5548 } 5549 5550 // Create a global variable for this lifetime-extended temporary. 5551 llvm::GlobalValue::LinkageTypes Linkage = 5552 getLLVMLinkageVarDefinition(VD, Constant); 5553 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5554 const VarDecl *InitVD; 5555 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5556 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5557 // Temporaries defined inside a class get linkonce_odr linkage because the 5558 // class can be defined in multiple translation units. 5559 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5560 } else { 5561 // There is no need for this temporary to have external linkage if the 5562 // VarDecl has external linkage. 5563 Linkage = llvm::GlobalVariable::InternalLinkage; 5564 } 5565 } 5566 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5567 auto *GV = new llvm::GlobalVariable( 5568 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5569 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5570 if (emitter) emitter->finalize(GV); 5571 setGVProperties(GV, VD); 5572 GV->setAlignment(Align.getAsAlign()); 5573 if (supportsCOMDAT() && GV->isWeakForLinker()) 5574 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5575 if (VD->getTLSKind()) 5576 setTLSMode(GV, *VD); 5577 llvm::Constant *CV = GV; 5578 if (AddrSpace != LangAS::Default) 5579 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5580 *this, GV, AddrSpace, LangAS::Default, 5581 Type->getPointerTo( 5582 getContext().getTargetAddressSpace(LangAS::Default))); 5583 5584 // Update the map with the new temporary. If we created a placeholder above, 5585 // replace it with the new global now. 5586 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5587 if (Entry) { 5588 Entry->replaceAllUsesWith( 5589 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5590 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5591 } 5592 Entry = CV; 5593 5594 return ConstantAddress(CV, Align); 5595 } 5596 5597 /// EmitObjCPropertyImplementations - Emit information for synthesized 5598 /// properties for an implementation. 5599 void CodeGenModule::EmitObjCPropertyImplementations(const 5600 ObjCImplementationDecl *D) { 5601 for (const auto *PID : D->property_impls()) { 5602 // Dynamic is just for type-checking. 5603 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5604 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5605 5606 // Determine which methods need to be implemented, some may have 5607 // been overridden. Note that ::isPropertyAccessor is not the method 5608 // we want, that just indicates if the decl came from a 5609 // property. What we want to know is if the method is defined in 5610 // this implementation. 5611 auto *Getter = PID->getGetterMethodDecl(); 5612 if (!Getter || Getter->isSynthesizedAccessorStub()) 5613 CodeGenFunction(*this).GenerateObjCGetter( 5614 const_cast<ObjCImplementationDecl *>(D), PID); 5615 auto *Setter = PID->getSetterMethodDecl(); 5616 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5617 CodeGenFunction(*this).GenerateObjCSetter( 5618 const_cast<ObjCImplementationDecl *>(D), PID); 5619 } 5620 } 5621 } 5622 5623 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5624 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5625 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5626 ivar; ivar = ivar->getNextIvar()) 5627 if (ivar->getType().isDestructedType()) 5628 return true; 5629 5630 return false; 5631 } 5632 5633 static bool AllTrivialInitializers(CodeGenModule &CGM, 5634 ObjCImplementationDecl *D) { 5635 CodeGenFunction CGF(CGM); 5636 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5637 E = D->init_end(); B != E; ++B) { 5638 CXXCtorInitializer *CtorInitExp = *B; 5639 Expr *Init = CtorInitExp->getInit(); 5640 if (!CGF.isTrivialInitializer(Init)) 5641 return false; 5642 } 5643 return true; 5644 } 5645 5646 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5647 /// for an implementation. 5648 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5649 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5650 if (needsDestructMethod(D)) { 5651 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5652 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5653 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5654 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5655 getContext().VoidTy, nullptr, D, 5656 /*isInstance=*/true, /*isVariadic=*/false, 5657 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5658 /*isImplicitlyDeclared=*/true, 5659 /*isDefined=*/false, ObjCMethodDecl::Required); 5660 D->addInstanceMethod(DTORMethod); 5661 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5662 D->setHasDestructors(true); 5663 } 5664 5665 // If the implementation doesn't have any ivar initializers, we don't need 5666 // a .cxx_construct. 5667 if (D->getNumIvarInitializers() == 0 || 5668 AllTrivialInitializers(*this, D)) 5669 return; 5670 5671 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5672 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5673 // The constructor returns 'self'. 5674 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5675 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5676 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5677 /*isVariadic=*/false, 5678 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5679 /*isImplicitlyDeclared=*/true, 5680 /*isDefined=*/false, ObjCMethodDecl::Required); 5681 D->addInstanceMethod(CTORMethod); 5682 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5683 D->setHasNonZeroConstructors(true); 5684 } 5685 5686 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5687 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5688 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5689 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5690 ErrorUnsupported(LSD, "linkage spec"); 5691 return; 5692 } 5693 5694 EmitDeclContext(LSD); 5695 } 5696 5697 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5698 for (auto *I : DC->decls()) { 5699 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5700 // are themselves considered "top-level", so EmitTopLevelDecl on an 5701 // ObjCImplDecl does not recursively visit them. We need to do that in 5702 // case they're nested inside another construct (LinkageSpecDecl / 5703 // ExportDecl) that does stop them from being considered "top-level". 5704 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5705 for (auto *M : OID->methods()) 5706 EmitTopLevelDecl(M); 5707 } 5708 5709 EmitTopLevelDecl(I); 5710 } 5711 } 5712 5713 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5714 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5715 // Ignore dependent declarations. 5716 if (D->isTemplated()) 5717 return; 5718 5719 // Consteval function shouldn't be emitted. 5720 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5721 if (FD->isConsteval()) 5722 return; 5723 5724 switch (D->getKind()) { 5725 case Decl::CXXConversion: 5726 case Decl::CXXMethod: 5727 case Decl::Function: 5728 EmitGlobal(cast<FunctionDecl>(D)); 5729 // Always provide some coverage mapping 5730 // even for the functions that aren't emitted. 5731 AddDeferredUnusedCoverageMapping(D); 5732 break; 5733 5734 case Decl::CXXDeductionGuide: 5735 // Function-like, but does not result in code emission. 5736 break; 5737 5738 case Decl::Var: 5739 case Decl::Decomposition: 5740 case Decl::VarTemplateSpecialization: 5741 EmitGlobal(cast<VarDecl>(D)); 5742 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5743 for (auto *B : DD->bindings()) 5744 if (auto *HD = B->getHoldingVar()) 5745 EmitGlobal(HD); 5746 break; 5747 5748 // Indirect fields from global anonymous structs and unions can be 5749 // ignored; only the actual variable requires IR gen support. 5750 case Decl::IndirectField: 5751 break; 5752 5753 // C++ Decls 5754 case Decl::Namespace: 5755 EmitDeclContext(cast<NamespaceDecl>(D)); 5756 break; 5757 case Decl::ClassTemplateSpecialization: { 5758 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5759 if (CGDebugInfo *DI = getModuleDebugInfo()) 5760 if (Spec->getSpecializationKind() == 5761 TSK_ExplicitInstantiationDefinition && 5762 Spec->hasDefinition()) 5763 DI->completeTemplateDefinition(*Spec); 5764 } LLVM_FALLTHROUGH; 5765 case Decl::CXXRecord: { 5766 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5767 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5768 if (CRD->hasDefinition()) 5769 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5770 if (auto *ES = D->getASTContext().getExternalSource()) 5771 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5772 DI->completeUnusedClass(*CRD); 5773 } 5774 // Emit any static data members, they may be definitions. 5775 for (auto *I : CRD->decls()) 5776 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5777 EmitTopLevelDecl(I); 5778 break; 5779 } 5780 // No code generation needed. 5781 case Decl::UsingShadow: 5782 case Decl::ClassTemplate: 5783 case Decl::VarTemplate: 5784 case Decl::Concept: 5785 case Decl::VarTemplatePartialSpecialization: 5786 case Decl::FunctionTemplate: 5787 case Decl::TypeAliasTemplate: 5788 case Decl::Block: 5789 case Decl::Empty: 5790 case Decl::Binding: 5791 break; 5792 case Decl::Using: // using X; [C++] 5793 if (CGDebugInfo *DI = getModuleDebugInfo()) 5794 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5795 break; 5796 case Decl::UsingEnum: // using enum X; [C++] 5797 if (CGDebugInfo *DI = getModuleDebugInfo()) 5798 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 5799 break; 5800 case Decl::NamespaceAlias: 5801 if (CGDebugInfo *DI = getModuleDebugInfo()) 5802 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5803 break; 5804 case Decl::UsingDirective: // using namespace X; [C++] 5805 if (CGDebugInfo *DI = getModuleDebugInfo()) 5806 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5807 break; 5808 case Decl::CXXConstructor: 5809 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5810 break; 5811 case Decl::CXXDestructor: 5812 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5813 break; 5814 5815 case Decl::StaticAssert: 5816 // Nothing to do. 5817 break; 5818 5819 // Objective-C Decls 5820 5821 // Forward declarations, no (immediate) code generation. 5822 case Decl::ObjCInterface: 5823 case Decl::ObjCCategory: 5824 break; 5825 5826 case Decl::ObjCProtocol: { 5827 auto *Proto = cast<ObjCProtocolDecl>(D); 5828 if (Proto->isThisDeclarationADefinition()) 5829 ObjCRuntime->GenerateProtocol(Proto); 5830 break; 5831 } 5832 5833 case Decl::ObjCCategoryImpl: 5834 // Categories have properties but don't support synthesize so we 5835 // can ignore them here. 5836 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5837 break; 5838 5839 case Decl::ObjCImplementation: { 5840 auto *OMD = cast<ObjCImplementationDecl>(D); 5841 EmitObjCPropertyImplementations(OMD); 5842 EmitObjCIvarInitializations(OMD); 5843 ObjCRuntime->GenerateClass(OMD); 5844 // Emit global variable debug information. 5845 if (CGDebugInfo *DI = getModuleDebugInfo()) 5846 if (getCodeGenOpts().hasReducedDebugInfo()) 5847 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5848 OMD->getClassInterface()), OMD->getLocation()); 5849 break; 5850 } 5851 case Decl::ObjCMethod: { 5852 auto *OMD = cast<ObjCMethodDecl>(D); 5853 // If this is not a prototype, emit the body. 5854 if (OMD->getBody()) 5855 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5856 break; 5857 } 5858 case Decl::ObjCCompatibleAlias: 5859 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5860 break; 5861 5862 case Decl::PragmaComment: { 5863 const auto *PCD = cast<PragmaCommentDecl>(D); 5864 switch (PCD->getCommentKind()) { 5865 case PCK_Unknown: 5866 llvm_unreachable("unexpected pragma comment kind"); 5867 case PCK_Linker: 5868 AppendLinkerOptions(PCD->getArg()); 5869 break; 5870 case PCK_Lib: 5871 AddDependentLib(PCD->getArg()); 5872 break; 5873 case PCK_Compiler: 5874 case PCK_ExeStr: 5875 case PCK_User: 5876 break; // We ignore all of these. 5877 } 5878 break; 5879 } 5880 5881 case Decl::PragmaDetectMismatch: { 5882 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5883 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5884 break; 5885 } 5886 5887 case Decl::LinkageSpec: 5888 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5889 break; 5890 5891 case Decl::FileScopeAsm: { 5892 // File-scope asm is ignored during device-side CUDA compilation. 5893 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5894 break; 5895 // File-scope asm is ignored during device-side OpenMP compilation. 5896 if (LangOpts.OpenMPIsDevice) 5897 break; 5898 // File-scope asm is ignored during device-side SYCL compilation. 5899 if (LangOpts.SYCLIsDevice) 5900 break; 5901 auto *AD = cast<FileScopeAsmDecl>(D); 5902 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5903 break; 5904 } 5905 5906 case Decl::Import: { 5907 auto *Import = cast<ImportDecl>(D); 5908 5909 // If we've already imported this module, we're done. 5910 if (!ImportedModules.insert(Import->getImportedModule())) 5911 break; 5912 5913 // Emit debug information for direct imports. 5914 if (!Import->getImportedOwningModule()) { 5915 if (CGDebugInfo *DI = getModuleDebugInfo()) 5916 DI->EmitImportDecl(*Import); 5917 } 5918 5919 // Find all of the submodules and emit the module initializers. 5920 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5921 SmallVector<clang::Module *, 16> Stack; 5922 Visited.insert(Import->getImportedModule()); 5923 Stack.push_back(Import->getImportedModule()); 5924 5925 while (!Stack.empty()) { 5926 clang::Module *Mod = Stack.pop_back_val(); 5927 if (!EmittedModuleInitializers.insert(Mod).second) 5928 continue; 5929 5930 for (auto *D : Context.getModuleInitializers(Mod)) 5931 EmitTopLevelDecl(D); 5932 5933 // Visit the submodules of this module. 5934 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5935 SubEnd = Mod->submodule_end(); 5936 Sub != SubEnd; ++Sub) { 5937 // Skip explicit children; they need to be explicitly imported to emit 5938 // the initializers. 5939 if ((*Sub)->IsExplicit) 5940 continue; 5941 5942 if (Visited.insert(*Sub).second) 5943 Stack.push_back(*Sub); 5944 } 5945 } 5946 break; 5947 } 5948 5949 case Decl::Export: 5950 EmitDeclContext(cast<ExportDecl>(D)); 5951 break; 5952 5953 case Decl::OMPThreadPrivate: 5954 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5955 break; 5956 5957 case Decl::OMPAllocate: 5958 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 5959 break; 5960 5961 case Decl::OMPDeclareReduction: 5962 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5963 break; 5964 5965 case Decl::OMPDeclareMapper: 5966 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5967 break; 5968 5969 case Decl::OMPRequires: 5970 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5971 break; 5972 5973 case Decl::Typedef: 5974 case Decl::TypeAlias: // using foo = bar; [C++11] 5975 if (CGDebugInfo *DI = getModuleDebugInfo()) 5976 DI->EmitAndRetainType( 5977 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5978 break; 5979 5980 case Decl::Record: 5981 if (CGDebugInfo *DI = getModuleDebugInfo()) 5982 if (cast<RecordDecl>(D)->getDefinition()) 5983 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5984 break; 5985 5986 case Decl::Enum: 5987 if (CGDebugInfo *DI = getModuleDebugInfo()) 5988 if (cast<EnumDecl>(D)->getDefinition()) 5989 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5990 break; 5991 5992 default: 5993 // Make sure we handled everything we should, every other kind is a 5994 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5995 // function. Need to recode Decl::Kind to do that easily. 5996 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5997 break; 5998 } 5999 } 6000 6001 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6002 // Do we need to generate coverage mapping? 6003 if (!CodeGenOpts.CoverageMapping) 6004 return; 6005 switch (D->getKind()) { 6006 case Decl::CXXConversion: 6007 case Decl::CXXMethod: 6008 case Decl::Function: 6009 case Decl::ObjCMethod: 6010 case Decl::CXXConstructor: 6011 case Decl::CXXDestructor: { 6012 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6013 break; 6014 SourceManager &SM = getContext().getSourceManager(); 6015 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6016 break; 6017 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6018 if (I == DeferredEmptyCoverageMappingDecls.end()) 6019 DeferredEmptyCoverageMappingDecls[D] = true; 6020 break; 6021 } 6022 default: 6023 break; 6024 }; 6025 } 6026 6027 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6028 // Do we need to generate coverage mapping? 6029 if (!CodeGenOpts.CoverageMapping) 6030 return; 6031 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6032 if (Fn->isTemplateInstantiation()) 6033 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6034 } 6035 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6036 if (I == DeferredEmptyCoverageMappingDecls.end()) 6037 DeferredEmptyCoverageMappingDecls[D] = false; 6038 else 6039 I->second = false; 6040 } 6041 6042 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6043 // We call takeVector() here to avoid use-after-free. 6044 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6045 // we deserialize function bodies to emit coverage info for them, and that 6046 // deserializes more declarations. How should we handle that case? 6047 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6048 if (!Entry.second) 6049 continue; 6050 const Decl *D = Entry.first; 6051 switch (D->getKind()) { 6052 case Decl::CXXConversion: 6053 case Decl::CXXMethod: 6054 case Decl::Function: 6055 case Decl::ObjCMethod: { 6056 CodeGenPGO PGO(*this); 6057 GlobalDecl GD(cast<FunctionDecl>(D)); 6058 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6059 getFunctionLinkage(GD)); 6060 break; 6061 } 6062 case Decl::CXXConstructor: { 6063 CodeGenPGO PGO(*this); 6064 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6065 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6066 getFunctionLinkage(GD)); 6067 break; 6068 } 6069 case Decl::CXXDestructor: { 6070 CodeGenPGO PGO(*this); 6071 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6072 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6073 getFunctionLinkage(GD)); 6074 break; 6075 } 6076 default: 6077 break; 6078 }; 6079 } 6080 } 6081 6082 void CodeGenModule::EmitMainVoidAlias() { 6083 // In order to transition away from "__original_main" gracefully, emit an 6084 // alias for "main" in the no-argument case so that libc can detect when 6085 // new-style no-argument main is in used. 6086 if (llvm::Function *F = getModule().getFunction("main")) { 6087 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6088 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 6089 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 6090 } 6091 } 6092 6093 /// Turns the given pointer into a constant. 6094 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6095 const void *Ptr) { 6096 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6097 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6098 return llvm::ConstantInt::get(i64, PtrInt); 6099 } 6100 6101 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6102 llvm::NamedMDNode *&GlobalMetadata, 6103 GlobalDecl D, 6104 llvm::GlobalValue *Addr) { 6105 if (!GlobalMetadata) 6106 GlobalMetadata = 6107 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6108 6109 // TODO: should we report variant information for ctors/dtors? 6110 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6111 llvm::ConstantAsMetadata::get(GetPointerConstant( 6112 CGM.getLLVMContext(), D.getDecl()))}; 6113 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6114 } 6115 6116 /// For each function which is declared within an extern "C" region and marked 6117 /// as 'used', but has internal linkage, create an alias from the unmangled 6118 /// name to the mangled name if possible. People expect to be able to refer 6119 /// to such functions with an unmangled name from inline assembly within the 6120 /// same translation unit. 6121 void CodeGenModule::EmitStaticExternCAliases() { 6122 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6123 return; 6124 for (auto &I : StaticExternCValues) { 6125 IdentifierInfo *Name = I.first; 6126 llvm::GlobalValue *Val = I.second; 6127 if (Val && !getModule().getNamedValue(Name->getName())) 6128 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6129 } 6130 } 6131 6132 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6133 GlobalDecl &Result) const { 6134 auto Res = Manglings.find(MangledName); 6135 if (Res == Manglings.end()) 6136 return false; 6137 Result = Res->getValue(); 6138 return true; 6139 } 6140 6141 /// Emits metadata nodes associating all the global values in the 6142 /// current module with the Decls they came from. This is useful for 6143 /// projects using IR gen as a subroutine. 6144 /// 6145 /// Since there's currently no way to associate an MDNode directly 6146 /// with an llvm::GlobalValue, we create a global named metadata 6147 /// with the name 'clang.global.decl.ptrs'. 6148 void CodeGenModule::EmitDeclMetadata() { 6149 llvm::NamedMDNode *GlobalMetadata = nullptr; 6150 6151 for (auto &I : MangledDeclNames) { 6152 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6153 // Some mangled names don't necessarily have an associated GlobalValue 6154 // in this module, e.g. if we mangled it for DebugInfo. 6155 if (Addr) 6156 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6157 } 6158 } 6159 6160 /// Emits metadata nodes for all the local variables in the current 6161 /// function. 6162 void CodeGenFunction::EmitDeclMetadata() { 6163 if (LocalDeclMap.empty()) return; 6164 6165 llvm::LLVMContext &Context = getLLVMContext(); 6166 6167 // Find the unique metadata ID for this name. 6168 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6169 6170 llvm::NamedMDNode *GlobalMetadata = nullptr; 6171 6172 for (auto &I : LocalDeclMap) { 6173 const Decl *D = I.first; 6174 llvm::Value *Addr = I.second.getPointer(); 6175 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6176 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6177 Alloca->setMetadata( 6178 DeclPtrKind, llvm::MDNode::get( 6179 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6180 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6181 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6182 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6183 } 6184 } 6185 } 6186 6187 void CodeGenModule::EmitVersionIdentMetadata() { 6188 llvm::NamedMDNode *IdentMetadata = 6189 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6190 std::string Version = getClangFullVersion(); 6191 llvm::LLVMContext &Ctx = TheModule.getContext(); 6192 6193 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6194 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6195 } 6196 6197 void CodeGenModule::EmitCommandLineMetadata() { 6198 llvm::NamedMDNode *CommandLineMetadata = 6199 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6200 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6201 llvm::LLVMContext &Ctx = TheModule.getContext(); 6202 6203 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6204 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6205 } 6206 6207 void CodeGenModule::EmitCoverageFile() { 6208 if (getCodeGenOpts().CoverageDataFile.empty() && 6209 getCodeGenOpts().CoverageNotesFile.empty()) 6210 return; 6211 6212 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6213 if (!CUNode) 6214 return; 6215 6216 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6217 llvm::LLVMContext &Ctx = TheModule.getContext(); 6218 auto *CoverageDataFile = 6219 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6220 auto *CoverageNotesFile = 6221 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6222 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6223 llvm::MDNode *CU = CUNode->getOperand(i); 6224 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6225 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6226 } 6227 } 6228 6229 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6230 bool ForEH) { 6231 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6232 // FIXME: should we even be calling this method if RTTI is disabled 6233 // and it's not for EH? 6234 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6235 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6236 getTriple().isNVPTX())) 6237 return llvm::Constant::getNullValue(Int8PtrTy); 6238 6239 if (ForEH && Ty->isObjCObjectPointerType() && 6240 LangOpts.ObjCRuntime.isGNUFamily()) 6241 return ObjCRuntime->GetEHType(Ty); 6242 6243 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6244 } 6245 6246 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6247 // Do not emit threadprivates in simd-only mode. 6248 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6249 return; 6250 for (auto RefExpr : D->varlists()) { 6251 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6252 bool PerformInit = 6253 VD->getAnyInitializer() && 6254 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6255 /*ForRef=*/false); 6256 6257 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6258 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6259 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6260 CXXGlobalInits.push_back(InitFunction); 6261 } 6262 } 6263 6264 llvm::Metadata * 6265 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6266 StringRef Suffix) { 6267 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6268 if (InternalId) 6269 return InternalId; 6270 6271 if (isExternallyVisible(T->getLinkage())) { 6272 std::string OutName; 6273 llvm::raw_string_ostream Out(OutName); 6274 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6275 Out << Suffix; 6276 6277 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6278 } else { 6279 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6280 llvm::ArrayRef<llvm::Metadata *>()); 6281 } 6282 6283 return InternalId; 6284 } 6285 6286 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6287 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6288 } 6289 6290 llvm::Metadata * 6291 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6292 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6293 } 6294 6295 // Generalize pointer types to a void pointer with the qualifiers of the 6296 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6297 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6298 // 'void *'. 6299 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6300 if (!Ty->isPointerType()) 6301 return Ty; 6302 6303 return Ctx.getPointerType( 6304 QualType(Ctx.VoidTy).withCVRQualifiers( 6305 Ty->getPointeeType().getCVRQualifiers())); 6306 } 6307 6308 // Apply type generalization to a FunctionType's return and argument types 6309 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6310 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6311 SmallVector<QualType, 8> GeneralizedParams; 6312 for (auto &Param : FnType->param_types()) 6313 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6314 6315 return Ctx.getFunctionType( 6316 GeneralizeType(Ctx, FnType->getReturnType()), 6317 GeneralizedParams, FnType->getExtProtoInfo()); 6318 } 6319 6320 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6321 return Ctx.getFunctionNoProtoType( 6322 GeneralizeType(Ctx, FnType->getReturnType())); 6323 6324 llvm_unreachable("Encountered unknown FunctionType"); 6325 } 6326 6327 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6328 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6329 GeneralizedMetadataIdMap, ".generalized"); 6330 } 6331 6332 /// Returns whether this module needs the "all-vtables" type identifier. 6333 bool CodeGenModule::NeedAllVtablesTypeId() const { 6334 // Returns true if at least one of vtable-based CFI checkers is enabled and 6335 // is not in the trapping mode. 6336 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6337 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6338 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6339 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6340 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6341 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6342 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6343 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6344 } 6345 6346 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6347 CharUnits Offset, 6348 const CXXRecordDecl *RD) { 6349 llvm::Metadata *MD = 6350 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6351 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6352 6353 if (CodeGenOpts.SanitizeCfiCrossDso) 6354 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6355 VTable->addTypeMetadata(Offset.getQuantity(), 6356 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6357 6358 if (NeedAllVtablesTypeId()) { 6359 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6360 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6361 } 6362 } 6363 6364 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6365 if (!SanStats) 6366 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6367 6368 return *SanStats; 6369 } 6370 6371 llvm::Value * 6372 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6373 CodeGenFunction &CGF) { 6374 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6375 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6376 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6377 auto *Call = CGF.EmitRuntimeCall( 6378 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6379 return Call; 6380 } 6381 6382 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6383 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6384 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6385 /* forPointeeType= */ true); 6386 } 6387 6388 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6389 LValueBaseInfo *BaseInfo, 6390 TBAAAccessInfo *TBAAInfo, 6391 bool forPointeeType) { 6392 if (TBAAInfo) 6393 *TBAAInfo = getTBAAAccessInfo(T); 6394 6395 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6396 // that doesn't return the information we need to compute BaseInfo. 6397 6398 // Honor alignment typedef attributes even on incomplete types. 6399 // We also honor them straight for C++ class types, even as pointees; 6400 // there's an expressivity gap here. 6401 if (auto TT = T->getAs<TypedefType>()) { 6402 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6403 if (BaseInfo) 6404 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6405 return getContext().toCharUnitsFromBits(Align); 6406 } 6407 } 6408 6409 bool AlignForArray = T->isArrayType(); 6410 6411 // Analyze the base element type, so we don't get confused by incomplete 6412 // array types. 6413 T = getContext().getBaseElementType(T); 6414 6415 if (T->isIncompleteType()) { 6416 // We could try to replicate the logic from 6417 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6418 // type is incomplete, so it's impossible to test. We could try to reuse 6419 // getTypeAlignIfKnown, but that doesn't return the information we need 6420 // to set BaseInfo. So just ignore the possibility that the alignment is 6421 // greater than one. 6422 if (BaseInfo) 6423 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6424 return CharUnits::One(); 6425 } 6426 6427 if (BaseInfo) 6428 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6429 6430 CharUnits Alignment; 6431 const CXXRecordDecl *RD; 6432 if (T.getQualifiers().hasUnaligned()) { 6433 Alignment = CharUnits::One(); 6434 } else if (forPointeeType && !AlignForArray && 6435 (RD = T->getAsCXXRecordDecl())) { 6436 // For C++ class pointees, we don't know whether we're pointing at a 6437 // base or a complete object, so we generally need to use the 6438 // non-virtual alignment. 6439 Alignment = getClassPointerAlignment(RD); 6440 } else { 6441 Alignment = getContext().getTypeAlignInChars(T); 6442 } 6443 6444 // Cap to the global maximum type alignment unless the alignment 6445 // was somehow explicit on the type. 6446 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6447 if (Alignment.getQuantity() > MaxAlign && 6448 !getContext().isAlignmentRequired(T)) 6449 Alignment = CharUnits::fromQuantity(MaxAlign); 6450 } 6451 return Alignment; 6452 } 6453 6454 bool CodeGenModule::stopAutoInit() { 6455 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6456 if (StopAfter) { 6457 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6458 // used 6459 if (NumAutoVarInit >= StopAfter) { 6460 return true; 6461 } 6462 if (!NumAutoVarInit) { 6463 unsigned DiagID = getDiags().getCustomDiagID( 6464 DiagnosticsEngine::Warning, 6465 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6466 "number of times ftrivial-auto-var-init=%1 gets applied."); 6467 getDiags().Report(DiagID) 6468 << StopAfter 6469 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6470 LangOptions::TrivialAutoVarInitKind::Zero 6471 ? "zero" 6472 : "pattern"); 6473 } 6474 ++NumAutoVarInit; 6475 } 6476 return false; 6477 } 6478 6479 void CodeGenModule::printPostfixForExternalizedStaticVar( 6480 llvm::raw_ostream &OS) const { 6481 OS << "__static__" << getContext().getCUIDHash(); 6482 } 6483