xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision aa8feeefd3ac6c78ee8f67bf033976fc7d68bc6d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGHLSLRuntime.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeGPU.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ConvertUTF.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/MD5.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/X86TargetParser.h"
68 
69 using namespace clang;
70 using namespace CodeGen;
71 
72 static llvm::cl::opt<bool> LimitedCoverage(
73     "limited-coverage-experimental", llvm::cl::Hidden,
74     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
75 
76 static const char AnnotationSection[] = "llvm.metadata";
77 
78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
79   switch (CGM.getContext().getCXXABIKind()) {
80   case TargetCXXABI::AppleARM64:
81   case TargetCXXABI::Fuchsia:
82   case TargetCXXABI::GenericAArch64:
83   case TargetCXXABI::GenericARM:
84   case TargetCXXABI::iOS:
85   case TargetCXXABI::WatchOS:
86   case TargetCXXABI::GenericMIPS:
87   case TargetCXXABI::GenericItanium:
88   case TargetCXXABI::WebAssembly:
89   case TargetCXXABI::XL:
90     return CreateItaniumCXXABI(CGM);
91   case TargetCXXABI::Microsoft:
92     return CreateMicrosoftCXXABI(CGM);
93   }
94 
95   llvm_unreachable("invalid C++ ABI kind");
96 }
97 
98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
99                              const PreprocessorOptions &PPO,
100                              const CodeGenOptions &CGO, llvm::Module &M,
101                              DiagnosticsEngine &diags,
102                              CoverageSourceInfo *CoverageInfo)
103     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
104       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
105       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
106       VMContext(M.getContext()), Types(*this), VTables(*this),
107       SanitizerMD(new SanitizerMetadata(*this)) {
108 
109   // Initialize the type cache.
110   llvm::LLVMContext &LLVMContext = M.getContext();
111   VoidTy = llvm::Type::getVoidTy(LLVMContext);
112   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
113   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
114   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
115   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
116   HalfTy = llvm::Type::getHalfTy(LLVMContext);
117   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
118   FloatTy = llvm::Type::getFloatTy(LLVMContext);
119   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
120   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
121   PointerAlignInBytes =
122     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
123   SizeSizeInBytes =
124     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
125   IntAlignInBytes =
126     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
127   CharTy =
128     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
129   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
130   IntPtrTy = llvm::IntegerType::get(LLVMContext,
131     C.getTargetInfo().getMaxPointerWidth());
132   Int8PtrTy = Int8Ty->getPointerTo(0);
133   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
134   const llvm::DataLayout &DL = M.getDataLayout();
135   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
136   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
137   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
138 
139   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
140 
141   if (LangOpts.ObjC)
142     createObjCRuntime();
143   if (LangOpts.OpenCL)
144     createOpenCLRuntime();
145   if (LangOpts.OpenMP)
146     createOpenMPRuntime();
147   if (LangOpts.CUDA)
148     createCUDARuntime();
149   if (LangOpts.HLSL)
150     createHLSLRuntime();
151 
152   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
153   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
154       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
155     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
156                                getCXXABI().getMangleContext()));
157 
158   // If debug info or coverage generation is enabled, create the CGDebugInfo
159   // object.
160   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
161       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
162     DebugInfo.reset(new CGDebugInfo(*this));
163 
164   Block.GlobalUniqueCount = 0;
165 
166   if (C.getLangOpts().ObjC)
167     ObjCData.reset(new ObjCEntrypoints());
168 
169   if (CodeGenOpts.hasProfileClangUse()) {
170     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
171         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
172     if (auto E = ReaderOrErr.takeError()) {
173       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
174                                               "Could not read profile %0: %1");
175       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
176         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
177                                   << EI.message();
178       });
179     } else
180       PGOReader = std::move(ReaderOrErr.get());
181   }
182 
183   // If coverage mapping generation is enabled, create the
184   // CoverageMappingModuleGen object.
185   if (CodeGenOpts.CoverageMapping)
186     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
187 
188   // Generate the module name hash here if needed.
189   if (CodeGenOpts.UniqueInternalLinkageNames &&
190       !getModule().getSourceFileName().empty()) {
191     std::string Path = getModule().getSourceFileName();
192     // Check if a path substitution is needed from the MacroPrefixMap.
193     for (const auto &Entry : LangOpts.MacroPrefixMap)
194       if (Path.rfind(Entry.first, 0) != std::string::npos) {
195         Path = Entry.second + Path.substr(Entry.first.size());
196         break;
197       }
198     llvm::MD5 Md5;
199     Md5.update(Path);
200     llvm::MD5::MD5Result R;
201     Md5.final(R);
202     SmallString<32> Str;
203     llvm::MD5::stringifyResult(R, Str);
204     // Convert MD5hash to Decimal. Demangler suffixes can either contain
205     // numbers or characters but not both.
206     llvm::APInt IntHash(128, Str.str(), 16);
207     // Prepend "__uniq" before the hash for tools like profilers to understand
208     // that this symbol is of internal linkage type.  The "__uniq" is the
209     // pre-determined prefix that is used to tell tools that this symbol was
210     // created with -funique-internal-linakge-symbols and the tools can strip or
211     // keep the prefix as needed.
212     ModuleNameHash = (Twine(".__uniq.") +
213         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
214   }
215 }
216 
217 CodeGenModule::~CodeGenModule() {}
218 
219 void CodeGenModule::createObjCRuntime() {
220   // This is just isGNUFamily(), but we want to force implementors of
221   // new ABIs to decide how best to do this.
222   switch (LangOpts.ObjCRuntime.getKind()) {
223   case ObjCRuntime::GNUstep:
224   case ObjCRuntime::GCC:
225   case ObjCRuntime::ObjFW:
226     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
227     return;
228 
229   case ObjCRuntime::FragileMacOSX:
230   case ObjCRuntime::MacOSX:
231   case ObjCRuntime::iOS:
232   case ObjCRuntime::WatchOS:
233     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
234     return;
235   }
236   llvm_unreachable("bad runtime kind");
237 }
238 
239 void CodeGenModule::createOpenCLRuntime() {
240   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
241 }
242 
243 void CodeGenModule::createOpenMPRuntime() {
244   // Select a specialized code generation class based on the target, if any.
245   // If it does not exist use the default implementation.
246   switch (getTriple().getArch()) {
247   case llvm::Triple::nvptx:
248   case llvm::Triple::nvptx64:
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::createHLSLRuntime() {
268   HLSLRuntime.reset(new CGHLSLRuntime(*this));
269 }
270 
271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
272   Replacements[Name] = C;
273 }
274 
275 void CodeGenModule::applyReplacements() {
276   for (auto &I : Replacements) {
277     StringRef MangledName = I.first();
278     llvm::Constant *Replacement = I.second;
279     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
280     if (!Entry)
281       continue;
282     auto *OldF = cast<llvm::Function>(Entry);
283     auto *NewF = dyn_cast<llvm::Function>(Replacement);
284     if (!NewF) {
285       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
286         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
287       } else {
288         auto *CE = cast<llvm::ConstantExpr>(Replacement);
289         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
290                CE->getOpcode() == llvm::Instruction::GetElementPtr);
291         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
292       }
293     }
294 
295     // Replace old with new, but keep the old order.
296     OldF->replaceAllUsesWith(Replacement);
297     if (NewF) {
298       NewF->removeFromParent();
299       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
300                                                        NewF);
301     }
302     OldF->eraseFromParent();
303   }
304 }
305 
306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
307   GlobalValReplacements.push_back(std::make_pair(GV, C));
308 }
309 
310 void CodeGenModule::applyGlobalValReplacements() {
311   for (auto &I : GlobalValReplacements) {
312     llvm::GlobalValue *GV = I.first;
313     llvm::Constant *C = I.second;
314 
315     GV->replaceAllUsesWith(C);
316     GV->eraseFromParent();
317   }
318 }
319 
320 // This is only used in aliases that we created and we know they have a
321 // linear structure.
322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
323   const llvm::Constant *C;
324   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
325     C = GA->getAliasee();
326   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
327     C = GI->getResolver();
328   else
329     return GV;
330 
331   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
332   if (!AliaseeGV)
333     return nullptr;
334 
335   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
336   if (FinalGV == GV)
337     return nullptr;
338 
339   return FinalGV;
340 }
341 
342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
343                                SourceLocation Location, bool IsIFunc,
344                                const llvm::GlobalValue *Alias,
345                                const llvm::GlobalValue *&GV) {
346   GV = getAliasedGlobal(Alias);
347   if (!GV) {
348     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
349     return false;
350   }
351 
352   if (GV->isDeclaration()) {
353     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
354     return false;
355   }
356 
357   if (IsIFunc) {
358     // Check resolver function type.
359     const auto *F = dyn_cast<llvm::Function>(GV);
360     if (!F) {
361       Diags.Report(Location, diag::err_alias_to_undefined)
362           << IsIFunc << IsIFunc;
363       return false;
364     }
365 
366     llvm::FunctionType *FTy = F->getFunctionType();
367     if (!FTy->getReturnType()->isPointerTy()) {
368       Diags.Report(Location, diag::err_ifunc_resolver_return);
369       return false;
370     }
371   }
372 
373   return true;
374 }
375 
376 void CodeGenModule::checkAliases() {
377   // Check if the constructed aliases are well formed. It is really unfortunate
378   // that we have to do this in CodeGen, but we only construct mangled names
379   // and aliases during codegen.
380   bool Error = false;
381   DiagnosticsEngine &Diags = getDiags();
382   for (const GlobalDecl &GD : Aliases) {
383     const auto *D = cast<ValueDecl>(GD.getDecl());
384     SourceLocation Location;
385     bool IsIFunc = D->hasAttr<IFuncAttr>();
386     if (const Attr *A = D->getDefiningAttr())
387       Location = A->getLocation();
388     else
389       llvm_unreachable("Not an alias or ifunc?");
390 
391     StringRef MangledName = getMangledName(GD);
392     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
393     const llvm::GlobalValue *GV = nullptr;
394     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
395       Error = true;
396       continue;
397     }
398 
399     llvm::Constant *Aliasee =
400         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
401                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
402 
403     llvm::GlobalValue *AliaseeGV;
404     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
405       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
406     else
407       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
408 
409     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
410       StringRef AliasSection = SA->getName();
411       if (AliasSection != AliaseeGV->getSection())
412         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
413             << AliasSection << IsIFunc << IsIFunc;
414     }
415 
416     // We have to handle alias to weak aliases in here. LLVM itself disallows
417     // this since the object semantics would not match the IL one. For
418     // compatibility with gcc we implement it by just pointing the alias
419     // to its aliasee's aliasee. We also warn, since the user is probably
420     // expecting the link to be weak.
421     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
422       if (GA->isInterposable()) {
423         Diags.Report(Location, diag::warn_alias_to_weak_alias)
424             << GV->getName() << GA->getName() << IsIFunc;
425         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
426             GA->getAliasee(), Alias->getType());
427 
428         if (IsIFunc)
429           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
430         else
431           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
432       }
433     }
434   }
435   if (!Error)
436     return;
437 
438   for (const GlobalDecl &GD : Aliases) {
439     StringRef MangledName = getMangledName(GD);
440     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
441     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
442     Alias->eraseFromParent();
443   }
444 }
445 
446 void CodeGenModule::clear() {
447   DeferredDeclsToEmit.clear();
448   if (OpenMPRuntime)
449     OpenMPRuntime->clear();
450 }
451 
452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
453                                        StringRef MainFile) {
454   if (!hasDiagnostics())
455     return;
456   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
457     if (MainFile.empty())
458       MainFile = "<stdin>";
459     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
460   } else {
461     if (Mismatched > 0)
462       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
463 
464     if (Missing > 0)
465       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
466   }
467 }
468 
469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
470                                              llvm::Module &M) {
471   if (!LO.VisibilityFromDLLStorageClass)
472     return;
473 
474   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
475       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
476   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
477       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
478   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
479       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
480   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
481       CodeGenModule::GetLLVMVisibility(
482           LO.getExternDeclNoDLLStorageClassVisibility());
483 
484   for (llvm::GlobalValue &GV : M.global_values()) {
485     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
486       continue;
487 
488     // Reset DSO locality before setting the visibility. This removes
489     // any effects that visibility options and annotations may have
490     // had on the DSO locality. Setting the visibility will implicitly set
491     // appropriate globals to DSO Local; however, this will be pessimistic
492     // w.r.t. to the normal compiler IRGen.
493     GV.setDSOLocal(false);
494 
495     if (GV.isDeclarationForLinker()) {
496       GV.setVisibility(GV.getDLLStorageClass() ==
497                                llvm::GlobalValue::DLLImportStorageClass
498                            ? ExternDeclDLLImportVisibility
499                            : ExternDeclNoDLLStorageClassVisibility);
500     } else {
501       GV.setVisibility(GV.getDLLStorageClass() ==
502                                llvm::GlobalValue::DLLExportStorageClass
503                            ? DLLExportVisibility
504                            : NoDLLStorageClassVisibility);
505     }
506 
507     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
508   }
509 }
510 
511 void CodeGenModule::Release() {
512   EmitDeferred();
513   EmitVTablesOpportunistically();
514   applyGlobalValReplacements();
515   applyReplacements();
516   emitMultiVersionFunctions();
517   EmitCXXGlobalInitFunc();
518   EmitCXXGlobalCleanUpFunc();
519   registerGlobalDtorsWithAtExit();
520   EmitCXXThreadLocalInitFunc();
521   if (ObjCRuntime)
522     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
523       AddGlobalCtor(ObjCInitFunction);
524   if (Context.getLangOpts().CUDA && CUDARuntime) {
525     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
526       AddGlobalCtor(CudaCtorFunction);
527   }
528   if (OpenMPRuntime) {
529     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
530             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
531       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
532     }
533     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
534     OpenMPRuntime->clear();
535   }
536   if (PGOReader) {
537     getModule().setProfileSummary(
538         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
539         llvm::ProfileSummary::PSK_Instr);
540     if (PGOStats.hasDiagnostics())
541       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
542   }
543   EmitCtorList(GlobalCtors, "llvm.global_ctors");
544   EmitCtorList(GlobalDtors, "llvm.global_dtors");
545   EmitGlobalAnnotations();
546   EmitStaticExternCAliases();
547   checkAliases();
548   EmitDeferredUnusedCoverageMappings();
549   CodeGenPGO(*this).setValueProfilingFlag(getModule());
550   if (CoverageMapping)
551     CoverageMapping->emit();
552   if (CodeGenOpts.SanitizeCfiCrossDso) {
553     CodeGenFunction(*this).EmitCfiCheckFail();
554     CodeGenFunction(*this).EmitCfiCheckStub();
555   }
556   emitAtAvailableLinkGuard();
557   if (Context.getTargetInfo().getTriple().isWasm())
558     EmitMainVoidAlias();
559 
560   if (getTriple().isAMDGPU()) {
561     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
562     // preserve ASAN functions in bitcode libraries.
563     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
564       auto *FT = llvm::FunctionType::get(VoidTy, {});
565       auto *F = llvm::Function::Create(
566           FT, llvm::GlobalValue::ExternalLinkage,
567           "__amdgpu_device_library_preserve_asan_functions", &getModule());
568       auto *Var = new llvm::GlobalVariable(
569           getModule(), FT->getPointerTo(),
570           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
571           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
572           llvm::GlobalVariable::NotThreadLocal);
573       addCompilerUsedGlobal(Var);
574     }
575     // Emit amdgpu_code_object_version module flag, which is code object version
576     // times 100.
577     // ToDo: Enable module flag for all code object version when ROCm device
578     // library is ready.
579     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
580       getModule().addModuleFlag(llvm::Module::Error,
581                                 "amdgpu_code_object_version",
582                                 getTarget().getTargetOpts().CodeObjectVersion);
583     }
584   }
585 
586   // Emit a global array containing all external kernels or device variables
587   // used by host functions and mark it as used for CUDA/HIP. This is necessary
588   // to get kernels or device variables in archives linked in even if these
589   // kernels or device variables are only used in host functions.
590   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
591     SmallVector<llvm::Constant *, 8> UsedArray;
592     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
593       GlobalDecl GD;
594       if (auto *FD = dyn_cast<FunctionDecl>(D))
595         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
596       else
597         GD = GlobalDecl(D);
598       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
599           GetAddrOfGlobal(GD), Int8PtrTy));
600     }
601 
602     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
603 
604     auto *GV = new llvm::GlobalVariable(
605         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
606         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
607     addCompilerUsedGlobal(GV);
608   }
609 
610   emitLLVMUsed();
611   if (SanStats)
612     SanStats->finish();
613 
614   if (CodeGenOpts.Autolink &&
615       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
616     EmitModuleLinkOptions();
617   }
618 
619   // On ELF we pass the dependent library specifiers directly to the linker
620   // without manipulating them. This is in contrast to other platforms where
621   // they are mapped to a specific linker option by the compiler. This
622   // difference is a result of the greater variety of ELF linkers and the fact
623   // that ELF linkers tend to handle libraries in a more complicated fashion
624   // than on other platforms. This forces us to defer handling the dependent
625   // libs to the linker.
626   //
627   // CUDA/HIP device and host libraries are different. Currently there is no
628   // way to differentiate dependent libraries for host or device. Existing
629   // usage of #pragma comment(lib, *) is intended for host libraries on
630   // Windows. Therefore emit llvm.dependent-libraries only for host.
631   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
632     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
633     for (auto *MD : ELFDependentLibraries)
634       NMD->addOperand(MD);
635   }
636 
637   // Record mregparm value now so it is visible through rest of codegen.
638   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
639     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
640                               CodeGenOpts.NumRegisterParameters);
641 
642   if (CodeGenOpts.DwarfVersion) {
643     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
644                               CodeGenOpts.DwarfVersion);
645   }
646 
647   if (CodeGenOpts.Dwarf64)
648     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
649 
650   if (Context.getLangOpts().SemanticInterposition)
651     // Require various optimization to respect semantic interposition.
652     getModule().setSemanticInterposition(true);
653 
654   if (CodeGenOpts.EmitCodeView) {
655     // Indicate that we want CodeView in the metadata.
656     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
657   }
658   if (CodeGenOpts.CodeViewGHash) {
659     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
660   }
661   if (CodeGenOpts.ControlFlowGuard) {
662     // Function ID tables and checks for Control Flow Guard (cfguard=2).
663     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
664   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
665     // Function ID tables for Control Flow Guard (cfguard=1).
666     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
667   }
668   if (CodeGenOpts.EHContGuard) {
669     // Function ID tables for EH Continuation Guard.
670     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
671   }
672   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
673     // We don't support LTO with 2 with different StrictVTablePointers
674     // FIXME: we could support it by stripping all the information introduced
675     // by StrictVTablePointers.
676 
677     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
678 
679     llvm::Metadata *Ops[2] = {
680               llvm::MDString::get(VMContext, "StrictVTablePointers"),
681               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
682                   llvm::Type::getInt32Ty(VMContext), 1))};
683 
684     getModule().addModuleFlag(llvm::Module::Require,
685                               "StrictVTablePointersRequirement",
686                               llvm::MDNode::get(VMContext, Ops));
687   }
688   if (getModuleDebugInfo())
689     // We support a single version in the linked module. The LLVM
690     // parser will drop debug info with a different version number
691     // (and warn about it, too).
692     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
693                               llvm::DEBUG_METADATA_VERSION);
694 
695   // We need to record the widths of enums and wchar_t, so that we can generate
696   // the correct build attributes in the ARM backend. wchar_size is also used by
697   // TargetLibraryInfo.
698   uint64_t WCharWidth =
699       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
700   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
701 
702   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
703   if (   Arch == llvm::Triple::arm
704       || Arch == llvm::Triple::armeb
705       || Arch == llvm::Triple::thumb
706       || Arch == llvm::Triple::thumbeb) {
707     // The minimum width of an enum in bytes
708     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
709     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
710   }
711 
712   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
713     StringRef ABIStr = Target.getABI();
714     llvm::LLVMContext &Ctx = TheModule.getContext();
715     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
716                               llvm::MDString::get(Ctx, ABIStr));
717   }
718 
719   if (CodeGenOpts.SanitizeCfiCrossDso) {
720     // Indicate that we want cross-DSO control flow integrity checks.
721     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
722   }
723 
724   if (CodeGenOpts.WholeProgramVTables) {
725     // Indicate whether VFE was enabled for this module, so that the
726     // vcall_visibility metadata added under whole program vtables is handled
727     // appropriately in the optimizer.
728     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
729                               CodeGenOpts.VirtualFunctionElimination);
730   }
731 
732   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
733     getModule().addModuleFlag(llvm::Module::Override,
734                               "CFI Canonical Jump Tables",
735                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
736   }
737 
738   if (CodeGenOpts.CFProtectionReturn &&
739       Target.checkCFProtectionReturnSupported(getDiags())) {
740     // Indicate that we want to instrument return control flow protection.
741     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
742                               1);
743   }
744 
745   if (CodeGenOpts.CFProtectionBranch &&
746       Target.checkCFProtectionBranchSupported(getDiags())) {
747     // Indicate that we want to instrument branch control flow protection.
748     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
749                               1);
750   }
751 
752   if (CodeGenOpts.IBTSeal)
753     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
754 
755   // Add module metadata for return address signing (ignoring
756   // non-leaf/all) and stack tagging. These are actually turned on by function
757   // attributes, but we use module metadata to emit build attributes. This is
758   // needed for LTO, where the function attributes are inside bitcode
759   // serialised into a global variable by the time build attributes are
760   // emitted, so we can't access them. LTO objects could be compiled with
761   // different flags therefore module flags are set to "Min" behavior to achieve
762   // the same end result of the normal build where e.g BTI is off if any object
763   // doesn't support it.
764   if (Context.getTargetInfo().hasFeature("ptrauth") &&
765       LangOpts.getSignReturnAddressScope() !=
766           LangOptions::SignReturnAddressScopeKind::None)
767     getModule().addModuleFlag(llvm::Module::Override,
768                               "sign-return-address-buildattr", 1);
769   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
770     getModule().addModuleFlag(llvm::Module::Override,
771                               "tag-stack-memory-buildattr", 1);
772 
773   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
774       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
775       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
776       Arch == llvm::Triple::aarch64_be) {
777     getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
778                               LangOpts.BranchTargetEnforcement);
779 
780     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address",
781                               LangOpts.hasSignReturnAddress());
782 
783     getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
784                               LangOpts.isSignReturnAddressScopeAll());
785 
786     getModule().addModuleFlag(llvm::Module::Min,
787                               "sign-return-address-with-bkey",
788                               !LangOpts.isSignReturnAddressWithAKey());
789   }
790 
791   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
792     llvm::LLVMContext &Ctx = TheModule.getContext();
793     getModule().addModuleFlag(
794         llvm::Module::Error, "MemProfProfileFilename",
795         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
796   }
797 
798   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
799     // Indicate whether __nvvm_reflect should be configured to flush denormal
800     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
801     // property.)
802     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
803                               CodeGenOpts.FP32DenormalMode.Output !=
804                                   llvm::DenormalMode::IEEE);
805   }
806 
807   if (LangOpts.EHAsynch)
808     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
809 
810   // Indicate whether this Module was compiled with -fopenmp
811   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
812     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
813   if (getLangOpts().OpenMPIsDevice)
814     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
815                               LangOpts.OpenMP);
816 
817   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
818   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
819     EmitOpenCLMetadata();
820     // Emit SPIR version.
821     if (getTriple().isSPIR()) {
822       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
823       // opencl.spir.version named metadata.
824       // C++ for OpenCL has a distinct mapping for version compatibility with
825       // OpenCL.
826       auto Version = LangOpts.getOpenCLCompatibleVersion();
827       llvm::Metadata *SPIRVerElts[] = {
828           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
829               Int32Ty, Version / 100)),
830           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
831               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
832       llvm::NamedMDNode *SPIRVerMD =
833           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
834       llvm::LLVMContext &Ctx = TheModule.getContext();
835       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
836     }
837   }
838 
839   // HLSL related end of code gen work items.
840   if (LangOpts.HLSL)
841     getHLSLRuntime().finishCodeGen();
842 
843   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
844     assert(PLevel < 3 && "Invalid PIC Level");
845     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
846     if (Context.getLangOpts().PIE)
847       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
848   }
849 
850   if (getCodeGenOpts().CodeModel.size() > 0) {
851     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
852                   .Case("tiny", llvm::CodeModel::Tiny)
853                   .Case("small", llvm::CodeModel::Small)
854                   .Case("kernel", llvm::CodeModel::Kernel)
855                   .Case("medium", llvm::CodeModel::Medium)
856                   .Case("large", llvm::CodeModel::Large)
857                   .Default(~0u);
858     if (CM != ~0u) {
859       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
860       getModule().setCodeModel(codeModel);
861     }
862   }
863 
864   if (CodeGenOpts.NoPLT)
865     getModule().setRtLibUseGOT();
866   if (CodeGenOpts.UnwindTables)
867     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
868 
869   switch (CodeGenOpts.getFramePointer()) {
870   case CodeGenOptions::FramePointerKind::None:
871     // 0 ("none") is the default.
872     break;
873   case CodeGenOptions::FramePointerKind::NonLeaf:
874     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
875     break;
876   case CodeGenOptions::FramePointerKind::All:
877     getModule().setFramePointer(llvm::FramePointerKind::All);
878     break;
879   }
880 
881   SimplifyPersonality();
882 
883   if (getCodeGenOpts().EmitDeclMetadata)
884     EmitDeclMetadata();
885 
886   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
887     EmitCoverageFile();
888 
889   if (CGDebugInfo *DI = getModuleDebugInfo())
890     DI->finalize();
891 
892   if (getCodeGenOpts().EmitVersionIdentMetadata)
893     EmitVersionIdentMetadata();
894 
895   if (!getCodeGenOpts().RecordCommandLine.empty())
896     EmitCommandLineMetadata();
897 
898   if (!getCodeGenOpts().StackProtectorGuard.empty())
899     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
900   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
901     getModule().setStackProtectorGuardReg(
902         getCodeGenOpts().StackProtectorGuardReg);
903   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
904     getModule().setStackProtectorGuardOffset(
905         getCodeGenOpts().StackProtectorGuardOffset);
906   if (getCodeGenOpts().StackAlignment)
907     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
908   if (getCodeGenOpts().SkipRaxSetup)
909     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
910 
911   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
912 
913   EmitBackendOptionsMetadata(getCodeGenOpts());
914 
915   // If there is device offloading code embed it in the host now.
916   EmbedObject(&getModule(), CodeGenOpts, getDiags());
917 
918   // Set visibility from DLL storage class
919   // We do this at the end of LLVM IR generation; after any operation
920   // that might affect the DLL storage class or the visibility, and
921   // before anything that might act on these.
922   setVisibilityFromDLLStorageClass(LangOpts, getModule());
923 }
924 
925 void CodeGenModule::EmitOpenCLMetadata() {
926   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
927   // opencl.ocl.version named metadata node.
928   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
929   auto Version = LangOpts.getOpenCLCompatibleVersion();
930   llvm::Metadata *OCLVerElts[] = {
931       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
932           Int32Ty, Version / 100)),
933       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
934           Int32Ty, (Version % 100) / 10))};
935   llvm::NamedMDNode *OCLVerMD =
936       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
937   llvm::LLVMContext &Ctx = TheModule.getContext();
938   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
939 }
940 
941 void CodeGenModule::EmitBackendOptionsMetadata(
942     const CodeGenOptions CodeGenOpts) {
943   switch (getTriple().getArch()) {
944   default:
945     break;
946   case llvm::Triple::riscv32:
947   case llvm::Triple::riscv64:
948     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
949                               CodeGenOpts.SmallDataLimit);
950     break;
951   }
952 }
953 
954 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
955   // Make sure that this type is translated.
956   Types.UpdateCompletedType(TD);
957 }
958 
959 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
960   // Make sure that this type is translated.
961   Types.RefreshTypeCacheForClass(RD);
962 }
963 
964 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
965   if (!TBAA)
966     return nullptr;
967   return TBAA->getTypeInfo(QTy);
968 }
969 
970 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
971   if (!TBAA)
972     return TBAAAccessInfo();
973   if (getLangOpts().CUDAIsDevice) {
974     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
975     // access info.
976     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
977       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
978           nullptr)
979         return TBAAAccessInfo();
980     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
981       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
982           nullptr)
983         return TBAAAccessInfo();
984     }
985   }
986   return TBAA->getAccessInfo(AccessType);
987 }
988 
989 TBAAAccessInfo
990 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
991   if (!TBAA)
992     return TBAAAccessInfo();
993   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
994 }
995 
996 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
997   if (!TBAA)
998     return nullptr;
999   return TBAA->getTBAAStructInfo(QTy);
1000 }
1001 
1002 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1003   if (!TBAA)
1004     return nullptr;
1005   return TBAA->getBaseTypeInfo(QTy);
1006 }
1007 
1008 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1009   if (!TBAA)
1010     return nullptr;
1011   return TBAA->getAccessTagInfo(Info);
1012 }
1013 
1014 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1015                                                    TBAAAccessInfo TargetInfo) {
1016   if (!TBAA)
1017     return TBAAAccessInfo();
1018   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1019 }
1020 
1021 TBAAAccessInfo
1022 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1023                                                    TBAAAccessInfo InfoB) {
1024   if (!TBAA)
1025     return TBAAAccessInfo();
1026   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1027 }
1028 
1029 TBAAAccessInfo
1030 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1031                                               TBAAAccessInfo SrcInfo) {
1032   if (!TBAA)
1033     return TBAAAccessInfo();
1034   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1035 }
1036 
1037 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1038                                                 TBAAAccessInfo TBAAInfo) {
1039   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1040     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1041 }
1042 
1043 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1044     llvm::Instruction *I, const CXXRecordDecl *RD) {
1045   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1046                  llvm::MDNode::get(getLLVMContext(), {}));
1047 }
1048 
1049 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1050   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1051   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1052 }
1053 
1054 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1055 /// specified stmt yet.
1056 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1057   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1058                                                "cannot compile this %0 yet");
1059   std::string Msg = Type;
1060   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1061       << Msg << S->getSourceRange();
1062 }
1063 
1064 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1065 /// specified decl yet.
1066 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1067   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1068                                                "cannot compile this %0 yet");
1069   std::string Msg = Type;
1070   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1071 }
1072 
1073 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1074   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1075 }
1076 
1077 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1078                                         const NamedDecl *D) const {
1079   if (GV->hasDLLImportStorageClass())
1080     return;
1081   // Internal definitions always have default visibility.
1082   if (GV->hasLocalLinkage()) {
1083     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1084     return;
1085   }
1086   if (!D)
1087     return;
1088   // Set visibility for definitions, and for declarations if requested globally
1089   // or set explicitly.
1090   LinkageInfo LV = D->getLinkageAndVisibility();
1091   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1092       !GV->isDeclarationForLinker())
1093     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1094 }
1095 
1096 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1097                                  llvm::GlobalValue *GV) {
1098   if (GV->hasLocalLinkage())
1099     return true;
1100 
1101   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1102     return true;
1103 
1104   // DLLImport explicitly marks the GV as external.
1105   if (GV->hasDLLImportStorageClass())
1106     return false;
1107 
1108   const llvm::Triple &TT = CGM.getTriple();
1109   if (TT.isWindowsGNUEnvironment()) {
1110     // In MinGW, variables without DLLImport can still be automatically
1111     // imported from a DLL by the linker; don't mark variables that
1112     // potentially could come from another DLL as DSO local.
1113 
1114     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1115     // (and this actually happens in the public interface of libstdc++), so
1116     // such variables can't be marked as DSO local. (Native TLS variables
1117     // can't be dllimported at all, though.)
1118     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1119         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1120       return false;
1121   }
1122 
1123   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1124   // remain unresolved in the link, they can be resolved to zero, which is
1125   // outside the current DSO.
1126   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1127     return false;
1128 
1129   // Every other GV is local on COFF.
1130   // Make an exception for windows OS in the triple: Some firmware builds use
1131   // *-win32-macho triples. This (accidentally?) produced windows relocations
1132   // without GOT tables in older clang versions; Keep this behaviour.
1133   // FIXME: even thread local variables?
1134   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1135     return true;
1136 
1137   // Only handle COFF and ELF for now.
1138   if (!TT.isOSBinFormatELF())
1139     return false;
1140 
1141   // If this is not an executable, don't assume anything is local.
1142   const auto &CGOpts = CGM.getCodeGenOpts();
1143   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1144   const auto &LOpts = CGM.getLangOpts();
1145   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1146     // On ELF, if -fno-semantic-interposition is specified and the target
1147     // supports local aliases, there will be neither CC1
1148     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1149     // dso_local on the function if using a local alias is preferable (can avoid
1150     // PLT indirection).
1151     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1152       return false;
1153     return !(CGM.getLangOpts().SemanticInterposition ||
1154              CGM.getLangOpts().HalfNoSemanticInterposition);
1155   }
1156 
1157   // A definition cannot be preempted from an executable.
1158   if (!GV->isDeclarationForLinker())
1159     return true;
1160 
1161   // Most PIC code sequences that assume that a symbol is local cannot produce a
1162   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1163   // depended, it seems worth it to handle it here.
1164   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1165     return false;
1166 
1167   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1168   if (TT.isPPC64())
1169     return false;
1170 
1171   if (CGOpts.DirectAccessExternalData) {
1172     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1173     // for non-thread-local variables. If the symbol is not defined in the
1174     // executable, a copy relocation will be needed at link time. dso_local is
1175     // excluded for thread-local variables because they generally don't support
1176     // copy relocations.
1177     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1178       if (!Var->isThreadLocal())
1179         return true;
1180 
1181     // -fno-pic sets dso_local on a function declaration to allow direct
1182     // accesses when taking its address (similar to a data symbol). If the
1183     // function is not defined in the executable, a canonical PLT entry will be
1184     // needed at link time. -fno-direct-access-external-data can avoid the
1185     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1186     // it could just cause trouble without providing perceptible benefits.
1187     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1188       return true;
1189   }
1190 
1191   // If we can use copy relocations we can assume it is local.
1192 
1193   // Otherwise don't assume it is local.
1194   return false;
1195 }
1196 
1197 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1198   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1199 }
1200 
1201 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1202                                           GlobalDecl GD) const {
1203   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1204   // C++ destructors have a few C++ ABI specific special cases.
1205   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1206     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1207     return;
1208   }
1209   setDLLImportDLLExport(GV, D);
1210 }
1211 
1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1213                                           const NamedDecl *D) const {
1214   if (D && D->isExternallyVisible()) {
1215     if (D->hasAttr<DLLImportAttr>())
1216       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1217     else if ((D->hasAttr<DLLExportAttr>() ||
1218               shouldMapVisibilityToDLLExport(D)) &&
1219              !GV->isDeclarationForLinker())
1220       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1221   }
1222 }
1223 
1224 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1225                                     GlobalDecl GD) const {
1226   setDLLImportDLLExport(GV, GD);
1227   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1228 }
1229 
1230 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1231                                     const NamedDecl *D) const {
1232   setDLLImportDLLExport(GV, D);
1233   setGVPropertiesAux(GV, D);
1234 }
1235 
1236 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1237                                        const NamedDecl *D) const {
1238   setGlobalVisibility(GV, D);
1239   setDSOLocal(GV);
1240   GV->setPartition(CodeGenOpts.SymbolPartition);
1241 }
1242 
1243 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1244   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1245       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1246       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1247       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1248       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1249 }
1250 
1251 llvm::GlobalVariable::ThreadLocalMode
1252 CodeGenModule::GetDefaultLLVMTLSModel() const {
1253   switch (CodeGenOpts.getDefaultTLSModel()) {
1254   case CodeGenOptions::GeneralDynamicTLSModel:
1255     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1256   case CodeGenOptions::LocalDynamicTLSModel:
1257     return llvm::GlobalVariable::LocalDynamicTLSModel;
1258   case CodeGenOptions::InitialExecTLSModel:
1259     return llvm::GlobalVariable::InitialExecTLSModel;
1260   case CodeGenOptions::LocalExecTLSModel:
1261     return llvm::GlobalVariable::LocalExecTLSModel;
1262   }
1263   llvm_unreachable("Invalid TLS model!");
1264 }
1265 
1266 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1267   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1268 
1269   llvm::GlobalValue::ThreadLocalMode TLM;
1270   TLM = GetDefaultLLVMTLSModel();
1271 
1272   // Override the TLS model if it is explicitly specified.
1273   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1274     TLM = GetLLVMTLSModel(Attr->getModel());
1275   }
1276 
1277   GV->setThreadLocalMode(TLM);
1278 }
1279 
1280 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1281                                           StringRef Name) {
1282   const TargetInfo &Target = CGM.getTarget();
1283   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1284 }
1285 
1286 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1287                                                  const CPUSpecificAttr *Attr,
1288                                                  unsigned CPUIndex,
1289                                                  raw_ostream &Out) {
1290   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1291   // supported.
1292   if (Attr)
1293     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1294   else if (CGM.getTarget().supportsIFunc())
1295     Out << ".resolver";
1296 }
1297 
1298 static void AppendTargetMangling(const CodeGenModule &CGM,
1299                                  const TargetAttr *Attr, raw_ostream &Out) {
1300   if (Attr->isDefaultVersion())
1301     return;
1302 
1303   Out << '.';
1304   const TargetInfo &Target = CGM.getTarget();
1305   ParsedTargetAttr Info =
1306       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1307         // Multiversioning doesn't allow "no-${feature}", so we can
1308         // only have "+" prefixes here.
1309         assert(LHS.startswith("+") && RHS.startswith("+") &&
1310                "Features should always have a prefix.");
1311         return Target.multiVersionSortPriority(LHS.substr(1)) >
1312                Target.multiVersionSortPriority(RHS.substr(1));
1313       });
1314 
1315   bool IsFirst = true;
1316 
1317   if (!Info.Architecture.empty()) {
1318     IsFirst = false;
1319     Out << "arch_" << Info.Architecture;
1320   }
1321 
1322   for (StringRef Feat : Info.Features) {
1323     if (!IsFirst)
1324       Out << '_';
1325     IsFirst = false;
1326     Out << Feat.substr(1);
1327   }
1328 }
1329 
1330 // Returns true if GD is a function decl with internal linkage and
1331 // needs a unique suffix after the mangled name.
1332 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1333                                         CodeGenModule &CGM) {
1334   const Decl *D = GD.getDecl();
1335   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1336          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1337 }
1338 
1339 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1340                                        const TargetClonesAttr *Attr,
1341                                        unsigned VersionIndex,
1342                                        raw_ostream &Out) {
1343   Out << '.';
1344   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1345   if (FeatureStr.startswith("arch="))
1346     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1347   else
1348     Out << FeatureStr;
1349 
1350   Out << '.' << Attr->getMangledIndex(VersionIndex);
1351 }
1352 
1353 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1354                                       const NamedDecl *ND,
1355                                       bool OmitMultiVersionMangling = false) {
1356   SmallString<256> Buffer;
1357   llvm::raw_svector_ostream Out(Buffer);
1358   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1359   if (!CGM.getModuleNameHash().empty())
1360     MC.needsUniqueInternalLinkageNames();
1361   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1362   if (ShouldMangle)
1363     MC.mangleName(GD.getWithDecl(ND), Out);
1364   else {
1365     IdentifierInfo *II = ND->getIdentifier();
1366     assert(II && "Attempt to mangle unnamed decl.");
1367     const auto *FD = dyn_cast<FunctionDecl>(ND);
1368 
1369     if (FD &&
1370         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1371       Out << "__regcall3__" << II->getName();
1372     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1373                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1374       Out << "__device_stub__" << II->getName();
1375     } else {
1376       Out << II->getName();
1377     }
1378   }
1379 
1380   // Check if the module name hash should be appended for internal linkage
1381   // symbols.   This should come before multi-version target suffixes are
1382   // appended. This is to keep the name and module hash suffix of the
1383   // internal linkage function together.  The unique suffix should only be
1384   // added when name mangling is done to make sure that the final name can
1385   // be properly demangled.  For example, for C functions without prototypes,
1386   // name mangling is not done and the unique suffix should not be appeneded
1387   // then.
1388   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1389     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1390            "Hash computed when not explicitly requested");
1391     Out << CGM.getModuleNameHash();
1392   }
1393 
1394   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1395     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1396       switch (FD->getMultiVersionKind()) {
1397       case MultiVersionKind::CPUDispatch:
1398       case MultiVersionKind::CPUSpecific:
1399         AppendCPUSpecificCPUDispatchMangling(CGM,
1400                                              FD->getAttr<CPUSpecificAttr>(),
1401                                              GD.getMultiVersionIndex(), Out);
1402         break;
1403       case MultiVersionKind::Target:
1404         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1405         break;
1406       case MultiVersionKind::TargetClones:
1407         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1408                                    GD.getMultiVersionIndex(), Out);
1409         break;
1410       case MultiVersionKind::None:
1411         llvm_unreachable("None multiversion type isn't valid here");
1412       }
1413     }
1414 
1415   // Make unique name for device side static file-scope variable for HIP.
1416   if (CGM.getContext().shouldExternalize(ND) &&
1417       CGM.getLangOpts().GPURelocatableDeviceCode &&
1418       CGM.getLangOpts().CUDAIsDevice)
1419     CGM.printPostfixForExternalizedDecl(Out, ND);
1420 
1421   return std::string(Out.str());
1422 }
1423 
1424 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1425                                             const FunctionDecl *FD,
1426                                             StringRef &CurName) {
1427   if (!FD->isMultiVersion())
1428     return;
1429 
1430   // Get the name of what this would be without the 'target' attribute.  This
1431   // allows us to lookup the version that was emitted when this wasn't a
1432   // multiversion function.
1433   std::string NonTargetName =
1434       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1435   GlobalDecl OtherGD;
1436   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1437     assert(OtherGD.getCanonicalDecl()
1438                .getDecl()
1439                ->getAsFunction()
1440                ->isMultiVersion() &&
1441            "Other GD should now be a multiversioned function");
1442     // OtherFD is the version of this function that was mangled BEFORE
1443     // becoming a MultiVersion function.  It potentially needs to be updated.
1444     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1445                                       .getDecl()
1446                                       ->getAsFunction()
1447                                       ->getMostRecentDecl();
1448     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1449     // This is so that if the initial version was already the 'default'
1450     // version, we don't try to update it.
1451     if (OtherName != NonTargetName) {
1452       // Remove instead of erase, since others may have stored the StringRef
1453       // to this.
1454       const auto ExistingRecord = Manglings.find(NonTargetName);
1455       if (ExistingRecord != std::end(Manglings))
1456         Manglings.remove(&(*ExistingRecord));
1457       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1458       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1459           Result.first->first();
1460       // If this is the current decl is being created, make sure we update the name.
1461       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1462         CurName = OtherNameRef;
1463       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1464         Entry->setName(OtherName);
1465     }
1466   }
1467 }
1468 
1469 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1470   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1471 
1472   // Some ABIs don't have constructor variants.  Make sure that base and
1473   // complete constructors get mangled the same.
1474   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1475     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1476       CXXCtorType OrigCtorType = GD.getCtorType();
1477       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1478       if (OrigCtorType == Ctor_Base)
1479         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1480     }
1481   }
1482 
1483   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1484   // static device variable depends on whether the variable is referenced by
1485   // a host or device host function. Therefore the mangled name cannot be
1486   // cached.
1487   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1488     auto FoundName = MangledDeclNames.find(CanonicalGD);
1489     if (FoundName != MangledDeclNames.end())
1490       return FoundName->second;
1491   }
1492 
1493   // Keep the first result in the case of a mangling collision.
1494   const auto *ND = cast<NamedDecl>(GD.getDecl());
1495   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1496 
1497   // Ensure either we have different ABIs between host and device compilations,
1498   // says host compilation following MSVC ABI but device compilation follows
1499   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1500   // mangling should be the same after name stubbing. The later checking is
1501   // very important as the device kernel name being mangled in host-compilation
1502   // is used to resolve the device binaries to be executed. Inconsistent naming
1503   // result in undefined behavior. Even though we cannot check that naming
1504   // directly between host- and device-compilations, the host- and
1505   // device-mangling in host compilation could help catching certain ones.
1506   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1507          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1508          (getContext().getAuxTargetInfo() &&
1509           (getContext().getAuxTargetInfo()->getCXXABI() !=
1510            getContext().getTargetInfo().getCXXABI())) ||
1511          getCUDARuntime().getDeviceSideName(ND) ==
1512              getMangledNameImpl(
1513                  *this,
1514                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1515                  ND));
1516 
1517   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1518   return MangledDeclNames[CanonicalGD] = Result.first->first();
1519 }
1520 
1521 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1522                                              const BlockDecl *BD) {
1523   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1524   const Decl *D = GD.getDecl();
1525 
1526   SmallString<256> Buffer;
1527   llvm::raw_svector_ostream Out(Buffer);
1528   if (!D)
1529     MangleCtx.mangleGlobalBlock(BD,
1530       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1531   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1532     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1533   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1534     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1535   else
1536     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1537 
1538   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1539   return Result.first->first();
1540 }
1541 
1542 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1543   auto it = MangledDeclNames.begin();
1544   while (it != MangledDeclNames.end()) {
1545     if (it->second == Name)
1546       return it->first;
1547     it++;
1548   }
1549   return GlobalDecl();
1550 }
1551 
1552 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1553   return getModule().getNamedValue(Name);
1554 }
1555 
1556 /// AddGlobalCtor - Add a function to the list that will be called before
1557 /// main() runs.
1558 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1559                                   llvm::Constant *AssociatedData) {
1560   // FIXME: Type coercion of void()* types.
1561   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1562 }
1563 
1564 /// AddGlobalDtor - Add a function to the list that will be called
1565 /// when the module is unloaded.
1566 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1567                                   bool IsDtorAttrFunc) {
1568   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1569       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1570     DtorsUsingAtExit[Priority].push_back(Dtor);
1571     return;
1572   }
1573 
1574   // FIXME: Type coercion of void()* types.
1575   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1576 }
1577 
1578 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1579   if (Fns.empty()) return;
1580 
1581   // Ctor function type is void()*.
1582   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1583   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1584       TheModule.getDataLayout().getProgramAddressSpace());
1585 
1586   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1587   llvm::StructType *CtorStructTy = llvm::StructType::get(
1588       Int32Ty, CtorPFTy, VoidPtrTy);
1589 
1590   // Construct the constructor and destructor arrays.
1591   ConstantInitBuilder builder(*this);
1592   auto ctors = builder.beginArray(CtorStructTy);
1593   for (const auto &I : Fns) {
1594     auto ctor = ctors.beginStruct(CtorStructTy);
1595     ctor.addInt(Int32Ty, I.Priority);
1596     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1597     if (I.AssociatedData)
1598       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1599     else
1600       ctor.addNullPointer(VoidPtrTy);
1601     ctor.finishAndAddTo(ctors);
1602   }
1603 
1604   auto list =
1605     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1606                                 /*constant*/ false,
1607                                 llvm::GlobalValue::AppendingLinkage);
1608 
1609   // The LTO linker doesn't seem to like it when we set an alignment
1610   // on appending variables.  Take it off as a workaround.
1611   list->setAlignment(llvm::None);
1612 
1613   Fns.clear();
1614 }
1615 
1616 llvm::GlobalValue::LinkageTypes
1617 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1618   const auto *D = cast<FunctionDecl>(GD.getDecl());
1619 
1620   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1621 
1622   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1623     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1624 
1625   if (isa<CXXConstructorDecl>(D) &&
1626       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1627       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1628     // Our approach to inheriting constructors is fundamentally different from
1629     // that used by the MS ABI, so keep our inheriting constructor thunks
1630     // internal rather than trying to pick an unambiguous mangling for them.
1631     return llvm::GlobalValue::InternalLinkage;
1632   }
1633 
1634   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1635 }
1636 
1637 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1638   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1639   if (!MDS) return nullptr;
1640 
1641   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1642 }
1643 
1644 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1645                                               const CGFunctionInfo &Info,
1646                                               llvm::Function *F, bool IsThunk) {
1647   unsigned CallingConv;
1648   llvm::AttributeList PAL;
1649   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1650                          /*AttrOnCallSite=*/false, IsThunk);
1651   F->setAttributes(PAL);
1652   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1653 }
1654 
1655 static void removeImageAccessQualifier(std::string& TyName) {
1656   std::string ReadOnlyQual("__read_only");
1657   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1658   if (ReadOnlyPos != std::string::npos)
1659     // "+ 1" for the space after access qualifier.
1660     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1661   else {
1662     std::string WriteOnlyQual("__write_only");
1663     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1664     if (WriteOnlyPos != std::string::npos)
1665       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1666     else {
1667       std::string ReadWriteQual("__read_write");
1668       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1669       if (ReadWritePos != std::string::npos)
1670         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1671     }
1672   }
1673 }
1674 
1675 // Returns the address space id that should be produced to the
1676 // kernel_arg_addr_space metadata. This is always fixed to the ids
1677 // as specified in the SPIR 2.0 specification in order to differentiate
1678 // for example in clGetKernelArgInfo() implementation between the address
1679 // spaces with targets without unique mapping to the OpenCL address spaces
1680 // (basically all single AS CPUs).
1681 static unsigned ArgInfoAddressSpace(LangAS AS) {
1682   switch (AS) {
1683   case LangAS::opencl_global:
1684     return 1;
1685   case LangAS::opencl_constant:
1686     return 2;
1687   case LangAS::opencl_local:
1688     return 3;
1689   case LangAS::opencl_generic:
1690     return 4; // Not in SPIR 2.0 specs.
1691   case LangAS::opencl_global_device:
1692     return 5;
1693   case LangAS::opencl_global_host:
1694     return 6;
1695   default:
1696     return 0; // Assume private.
1697   }
1698 }
1699 
1700 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1701                                          const FunctionDecl *FD,
1702                                          CodeGenFunction *CGF) {
1703   assert(((FD && CGF) || (!FD && !CGF)) &&
1704          "Incorrect use - FD and CGF should either be both null or not!");
1705   // Create MDNodes that represent the kernel arg metadata.
1706   // Each MDNode is a list in the form of "key", N number of values which is
1707   // the same number of values as their are kernel arguments.
1708 
1709   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1710 
1711   // MDNode for the kernel argument address space qualifiers.
1712   SmallVector<llvm::Metadata *, 8> addressQuals;
1713 
1714   // MDNode for the kernel argument access qualifiers (images only).
1715   SmallVector<llvm::Metadata *, 8> accessQuals;
1716 
1717   // MDNode for the kernel argument type names.
1718   SmallVector<llvm::Metadata *, 8> argTypeNames;
1719 
1720   // MDNode for the kernel argument base type names.
1721   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1722 
1723   // MDNode for the kernel argument type qualifiers.
1724   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1725 
1726   // MDNode for the kernel argument names.
1727   SmallVector<llvm::Metadata *, 8> argNames;
1728 
1729   if (FD && CGF)
1730     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1731       const ParmVarDecl *parm = FD->getParamDecl(i);
1732       // Get argument name.
1733       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1734 
1735       if (!getLangOpts().OpenCL)
1736         continue;
1737       QualType ty = parm->getType();
1738       std::string typeQuals;
1739 
1740       // Get image and pipe access qualifier:
1741       if (ty->isImageType() || ty->isPipeType()) {
1742         const Decl *PDecl = parm;
1743         if (auto *TD = dyn_cast<TypedefType>(ty))
1744           PDecl = TD->getDecl();
1745         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1746         if (A && A->isWriteOnly())
1747           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1748         else if (A && A->isReadWrite())
1749           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1750         else
1751           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1752       } else
1753         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1754 
1755       auto getTypeSpelling = [&](QualType Ty) {
1756         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1757 
1758         if (Ty.isCanonical()) {
1759           StringRef typeNameRef = typeName;
1760           // Turn "unsigned type" to "utype"
1761           if (typeNameRef.consume_front("unsigned "))
1762             return std::string("u") + typeNameRef.str();
1763           if (typeNameRef.consume_front("signed "))
1764             return typeNameRef.str();
1765         }
1766 
1767         return typeName;
1768       };
1769 
1770       if (ty->isPointerType()) {
1771         QualType pointeeTy = ty->getPointeeType();
1772 
1773         // Get address qualifier.
1774         addressQuals.push_back(
1775             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1776                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1777 
1778         // Get argument type name.
1779         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1780         std::string baseTypeName =
1781             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1782         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1783         argBaseTypeNames.push_back(
1784             llvm::MDString::get(VMContext, baseTypeName));
1785 
1786         // Get argument type qualifiers:
1787         if (ty.isRestrictQualified())
1788           typeQuals = "restrict";
1789         if (pointeeTy.isConstQualified() ||
1790             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1791           typeQuals += typeQuals.empty() ? "const" : " const";
1792         if (pointeeTy.isVolatileQualified())
1793           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1794       } else {
1795         uint32_t AddrSpc = 0;
1796         bool isPipe = ty->isPipeType();
1797         if (ty->isImageType() || isPipe)
1798           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1799 
1800         addressQuals.push_back(
1801             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1802 
1803         // Get argument type name.
1804         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1805         std::string typeName = getTypeSpelling(ty);
1806         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1807 
1808         // Remove access qualifiers on images
1809         // (as they are inseparable from type in clang implementation,
1810         // but OpenCL spec provides a special query to get access qualifier
1811         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1812         if (ty->isImageType()) {
1813           removeImageAccessQualifier(typeName);
1814           removeImageAccessQualifier(baseTypeName);
1815         }
1816 
1817         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1818         argBaseTypeNames.push_back(
1819             llvm::MDString::get(VMContext, baseTypeName));
1820 
1821         if (isPipe)
1822           typeQuals = "pipe";
1823       }
1824       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1825     }
1826 
1827   if (getLangOpts().OpenCL) {
1828     Fn->setMetadata("kernel_arg_addr_space",
1829                     llvm::MDNode::get(VMContext, addressQuals));
1830     Fn->setMetadata("kernel_arg_access_qual",
1831                     llvm::MDNode::get(VMContext, accessQuals));
1832     Fn->setMetadata("kernel_arg_type",
1833                     llvm::MDNode::get(VMContext, argTypeNames));
1834     Fn->setMetadata("kernel_arg_base_type",
1835                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1836     Fn->setMetadata("kernel_arg_type_qual",
1837                     llvm::MDNode::get(VMContext, argTypeQuals));
1838   }
1839   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1840       getCodeGenOpts().HIPSaveKernelArgName)
1841     Fn->setMetadata("kernel_arg_name",
1842                     llvm::MDNode::get(VMContext, argNames));
1843 }
1844 
1845 /// Determines whether the language options require us to model
1846 /// unwind exceptions.  We treat -fexceptions as mandating this
1847 /// except under the fragile ObjC ABI with only ObjC exceptions
1848 /// enabled.  This means, for example, that C with -fexceptions
1849 /// enables this.
1850 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1851   // If exceptions are completely disabled, obviously this is false.
1852   if (!LangOpts.Exceptions) return false;
1853 
1854   // If C++ exceptions are enabled, this is true.
1855   if (LangOpts.CXXExceptions) return true;
1856 
1857   // If ObjC exceptions are enabled, this depends on the ABI.
1858   if (LangOpts.ObjCExceptions) {
1859     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1860   }
1861 
1862   return true;
1863 }
1864 
1865 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1866                                                       const CXXMethodDecl *MD) {
1867   // Check that the type metadata can ever actually be used by a call.
1868   if (!CGM.getCodeGenOpts().LTOUnit ||
1869       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1870     return false;
1871 
1872   // Only functions whose address can be taken with a member function pointer
1873   // need this sort of type metadata.
1874   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1875          !isa<CXXDestructorDecl>(MD);
1876 }
1877 
1878 std::vector<const CXXRecordDecl *>
1879 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1880   llvm::SetVector<const CXXRecordDecl *> MostBases;
1881 
1882   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1883   CollectMostBases = [&](const CXXRecordDecl *RD) {
1884     if (RD->getNumBases() == 0)
1885       MostBases.insert(RD);
1886     for (const CXXBaseSpecifier &B : RD->bases())
1887       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1888   };
1889   CollectMostBases(RD);
1890   return MostBases.takeVector();
1891 }
1892 
1893 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1894                                                            llvm::Function *F) {
1895   llvm::AttrBuilder B(F->getContext());
1896 
1897   if (CodeGenOpts.UnwindTables)
1898     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1899 
1900   if (CodeGenOpts.StackClashProtector)
1901     B.addAttribute("probe-stack", "inline-asm");
1902 
1903   if (!hasUnwindExceptions(LangOpts))
1904     B.addAttribute(llvm::Attribute::NoUnwind);
1905 
1906   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1907     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1908       B.addAttribute(llvm::Attribute::StackProtect);
1909     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1910       B.addAttribute(llvm::Attribute::StackProtectStrong);
1911     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1912       B.addAttribute(llvm::Attribute::StackProtectReq);
1913   }
1914 
1915   if (!D) {
1916     // If we don't have a declaration to control inlining, the function isn't
1917     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1918     // disabled, mark the function as noinline.
1919     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1920         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1921       B.addAttribute(llvm::Attribute::NoInline);
1922 
1923     F->addFnAttrs(B);
1924     return;
1925   }
1926 
1927   // Track whether we need to add the optnone LLVM attribute,
1928   // starting with the default for this optimization level.
1929   bool ShouldAddOptNone =
1930       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1931   // We can't add optnone in the following cases, it won't pass the verifier.
1932   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1933   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1934 
1935   // Add optnone, but do so only if the function isn't always_inline.
1936   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1937       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1938     B.addAttribute(llvm::Attribute::OptimizeNone);
1939 
1940     // OptimizeNone implies noinline; we should not be inlining such functions.
1941     B.addAttribute(llvm::Attribute::NoInline);
1942 
1943     // We still need to handle naked functions even though optnone subsumes
1944     // much of their semantics.
1945     if (D->hasAttr<NakedAttr>())
1946       B.addAttribute(llvm::Attribute::Naked);
1947 
1948     // OptimizeNone wins over OptimizeForSize and MinSize.
1949     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1950     F->removeFnAttr(llvm::Attribute::MinSize);
1951   } else if (D->hasAttr<NakedAttr>()) {
1952     // Naked implies noinline: we should not be inlining such functions.
1953     B.addAttribute(llvm::Attribute::Naked);
1954     B.addAttribute(llvm::Attribute::NoInline);
1955   } else if (D->hasAttr<NoDuplicateAttr>()) {
1956     B.addAttribute(llvm::Attribute::NoDuplicate);
1957   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1958     // Add noinline if the function isn't always_inline.
1959     B.addAttribute(llvm::Attribute::NoInline);
1960   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1961              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1962     // (noinline wins over always_inline, and we can't specify both in IR)
1963     B.addAttribute(llvm::Attribute::AlwaysInline);
1964   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1965     // If we're not inlining, then force everything that isn't always_inline to
1966     // carry an explicit noinline attribute.
1967     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1968       B.addAttribute(llvm::Attribute::NoInline);
1969   } else {
1970     // Otherwise, propagate the inline hint attribute and potentially use its
1971     // absence to mark things as noinline.
1972     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1973       // Search function and template pattern redeclarations for inline.
1974       auto CheckForInline = [](const FunctionDecl *FD) {
1975         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1976           return Redecl->isInlineSpecified();
1977         };
1978         if (any_of(FD->redecls(), CheckRedeclForInline))
1979           return true;
1980         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1981         if (!Pattern)
1982           return false;
1983         return any_of(Pattern->redecls(), CheckRedeclForInline);
1984       };
1985       if (CheckForInline(FD)) {
1986         B.addAttribute(llvm::Attribute::InlineHint);
1987       } else if (CodeGenOpts.getInlining() ==
1988                      CodeGenOptions::OnlyHintInlining &&
1989                  !FD->isInlined() &&
1990                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1991         B.addAttribute(llvm::Attribute::NoInline);
1992       }
1993     }
1994   }
1995 
1996   // Add other optimization related attributes if we are optimizing this
1997   // function.
1998   if (!D->hasAttr<OptimizeNoneAttr>()) {
1999     if (D->hasAttr<ColdAttr>()) {
2000       if (!ShouldAddOptNone)
2001         B.addAttribute(llvm::Attribute::OptimizeForSize);
2002       B.addAttribute(llvm::Attribute::Cold);
2003     }
2004     if (D->hasAttr<HotAttr>())
2005       B.addAttribute(llvm::Attribute::Hot);
2006     if (D->hasAttr<MinSizeAttr>())
2007       B.addAttribute(llvm::Attribute::MinSize);
2008   }
2009 
2010   F->addFnAttrs(B);
2011 
2012   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2013   if (alignment)
2014     F->setAlignment(llvm::Align(alignment));
2015 
2016   if (!D->hasAttr<AlignedAttr>())
2017     if (LangOpts.FunctionAlignment)
2018       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2019 
2020   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2021   // reserve a bit for differentiating between virtual and non-virtual member
2022   // functions. If the current target's C++ ABI requires this and this is a
2023   // member function, set its alignment accordingly.
2024   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2025     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2026       F->setAlignment(llvm::Align(2));
2027   }
2028 
2029   // In the cross-dso CFI mode with canonical jump tables, we want !type
2030   // attributes on definitions only.
2031   if (CodeGenOpts.SanitizeCfiCrossDso &&
2032       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2033     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2034       // Skip available_externally functions. They won't be codegen'ed in the
2035       // current module anyway.
2036       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2037         CreateFunctionTypeMetadataForIcall(FD, F);
2038     }
2039   }
2040 
2041   // Emit type metadata on member functions for member function pointer checks.
2042   // These are only ever necessary on definitions; we're guaranteed that the
2043   // definition will be present in the LTO unit as a result of LTO visibility.
2044   auto *MD = dyn_cast<CXXMethodDecl>(D);
2045   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2046     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2047       llvm::Metadata *Id =
2048           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2049               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2050       F->addTypeMetadata(0, Id);
2051     }
2052   }
2053 }
2054 
2055 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2056                                                   llvm::Function *F) {
2057   if (D->hasAttr<StrictFPAttr>()) {
2058     llvm::AttrBuilder FuncAttrs(F->getContext());
2059     FuncAttrs.addAttribute("strictfp");
2060     F->addFnAttrs(FuncAttrs);
2061   }
2062 }
2063 
2064 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2065   const Decl *D = GD.getDecl();
2066   if (isa_and_nonnull<NamedDecl>(D))
2067     setGVProperties(GV, GD);
2068   else
2069     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2070 
2071   if (D && D->hasAttr<UsedAttr>())
2072     addUsedOrCompilerUsedGlobal(GV);
2073 
2074   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2075     const auto *VD = cast<VarDecl>(D);
2076     if (VD->getType().isConstQualified() &&
2077         VD->getStorageDuration() == SD_Static)
2078       addUsedOrCompilerUsedGlobal(GV);
2079   }
2080 }
2081 
2082 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2083                                                 llvm::AttrBuilder &Attrs) {
2084   // Add target-cpu and target-features attributes to functions. If
2085   // we have a decl for the function and it has a target attribute then
2086   // parse that and add it to the feature set.
2087   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2088   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2089   std::vector<std::string> Features;
2090   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2091   FD = FD ? FD->getMostRecentDecl() : FD;
2092   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2093   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2094   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2095   bool AddedAttr = false;
2096   if (TD || SD || TC) {
2097     llvm::StringMap<bool> FeatureMap;
2098     getContext().getFunctionFeatureMap(FeatureMap, GD);
2099 
2100     // Produce the canonical string for this set of features.
2101     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2102       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2103 
2104     // Now add the target-cpu and target-features to the function.
2105     // While we populated the feature map above, we still need to
2106     // get and parse the target attribute so we can get the cpu for
2107     // the function.
2108     if (TD) {
2109       ParsedTargetAttr ParsedAttr = TD->parse();
2110       if (!ParsedAttr.Architecture.empty() &&
2111           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2112         TargetCPU = ParsedAttr.Architecture;
2113         TuneCPU = ""; // Clear the tune CPU.
2114       }
2115       if (!ParsedAttr.Tune.empty() &&
2116           getTarget().isValidCPUName(ParsedAttr.Tune))
2117         TuneCPU = ParsedAttr.Tune;
2118     }
2119 
2120     if (SD) {
2121       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2122       // favor this processor.
2123       TuneCPU = getTarget().getCPUSpecificTuneName(
2124           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2125     }
2126   } else {
2127     // Otherwise just add the existing target cpu and target features to the
2128     // function.
2129     Features = getTarget().getTargetOpts().Features;
2130   }
2131 
2132   if (!TargetCPU.empty()) {
2133     Attrs.addAttribute("target-cpu", TargetCPU);
2134     AddedAttr = true;
2135   }
2136   if (!TuneCPU.empty()) {
2137     Attrs.addAttribute("tune-cpu", TuneCPU);
2138     AddedAttr = true;
2139   }
2140   if (!Features.empty()) {
2141     llvm::sort(Features);
2142     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2143     AddedAttr = true;
2144   }
2145 
2146   return AddedAttr;
2147 }
2148 
2149 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2150                                           llvm::GlobalObject *GO) {
2151   const Decl *D = GD.getDecl();
2152   SetCommonAttributes(GD, GO);
2153 
2154   if (D) {
2155     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2156       if (D->hasAttr<RetainAttr>())
2157         addUsedGlobal(GV);
2158       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2159         GV->addAttribute("bss-section", SA->getName());
2160       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2161         GV->addAttribute("data-section", SA->getName());
2162       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2163         GV->addAttribute("rodata-section", SA->getName());
2164       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2165         GV->addAttribute("relro-section", SA->getName());
2166     }
2167 
2168     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2169       if (D->hasAttr<RetainAttr>())
2170         addUsedGlobal(F);
2171       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2172         if (!D->getAttr<SectionAttr>())
2173           F->addFnAttr("implicit-section-name", SA->getName());
2174 
2175       llvm::AttrBuilder Attrs(F->getContext());
2176       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2177         // We know that GetCPUAndFeaturesAttributes will always have the
2178         // newest set, since it has the newest possible FunctionDecl, so the
2179         // new ones should replace the old.
2180         llvm::AttributeMask RemoveAttrs;
2181         RemoveAttrs.addAttribute("target-cpu");
2182         RemoveAttrs.addAttribute("target-features");
2183         RemoveAttrs.addAttribute("tune-cpu");
2184         F->removeFnAttrs(RemoveAttrs);
2185         F->addFnAttrs(Attrs);
2186       }
2187     }
2188 
2189     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2190       GO->setSection(CSA->getName());
2191     else if (const auto *SA = D->getAttr<SectionAttr>())
2192       GO->setSection(SA->getName());
2193   }
2194 
2195   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2196 }
2197 
2198 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2199                                                   llvm::Function *F,
2200                                                   const CGFunctionInfo &FI) {
2201   const Decl *D = GD.getDecl();
2202   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2203   SetLLVMFunctionAttributesForDefinition(D, F);
2204 
2205   F->setLinkage(llvm::Function::InternalLinkage);
2206 
2207   setNonAliasAttributes(GD, F);
2208 }
2209 
2210 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2211   // Set linkage and visibility in case we never see a definition.
2212   LinkageInfo LV = ND->getLinkageAndVisibility();
2213   // Don't set internal linkage on declarations.
2214   // "extern_weak" is overloaded in LLVM; we probably should have
2215   // separate linkage types for this.
2216   if (isExternallyVisible(LV.getLinkage()) &&
2217       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2218     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2219 }
2220 
2221 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2222                                                        llvm::Function *F) {
2223   // Only if we are checking indirect calls.
2224   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2225     return;
2226 
2227   // Non-static class methods are handled via vtable or member function pointer
2228   // checks elsewhere.
2229   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2230     return;
2231 
2232   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2233   F->addTypeMetadata(0, MD);
2234   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2235 
2236   // Emit a hash-based bit set entry for cross-DSO calls.
2237   if (CodeGenOpts.SanitizeCfiCrossDso)
2238     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2239       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2240 }
2241 
2242 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2243                                           bool IsIncompleteFunction,
2244                                           bool IsThunk) {
2245 
2246   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2247     // If this is an intrinsic function, set the function's attributes
2248     // to the intrinsic's attributes.
2249     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2250     return;
2251   }
2252 
2253   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2254 
2255   if (!IsIncompleteFunction)
2256     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2257                               IsThunk);
2258 
2259   // Add the Returned attribute for "this", except for iOS 5 and earlier
2260   // where substantial code, including the libstdc++ dylib, was compiled with
2261   // GCC and does not actually return "this".
2262   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2263       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2264     assert(!F->arg_empty() &&
2265            F->arg_begin()->getType()
2266              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2267            "unexpected this return");
2268     F->addParamAttr(0, llvm::Attribute::Returned);
2269   }
2270 
2271   // Only a few attributes are set on declarations; these may later be
2272   // overridden by a definition.
2273 
2274   setLinkageForGV(F, FD);
2275   setGVProperties(F, FD);
2276 
2277   // Setup target-specific attributes.
2278   if (!IsIncompleteFunction && F->isDeclaration())
2279     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2280 
2281   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2282     F->setSection(CSA->getName());
2283   else if (const auto *SA = FD->getAttr<SectionAttr>())
2284      F->setSection(SA->getName());
2285 
2286   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2287     if (EA->isError())
2288       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2289     else if (EA->isWarning())
2290       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2291   }
2292 
2293   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2294   if (FD->isInlineBuiltinDeclaration()) {
2295     const FunctionDecl *FDBody;
2296     bool HasBody = FD->hasBody(FDBody);
2297     (void)HasBody;
2298     assert(HasBody && "Inline builtin declarations should always have an "
2299                       "available body!");
2300     if (shouldEmitFunction(FDBody))
2301       F->addFnAttr(llvm::Attribute::NoBuiltin);
2302   }
2303 
2304   if (FD->isReplaceableGlobalAllocationFunction()) {
2305     // A replaceable global allocation function does not act like a builtin by
2306     // default, only if it is invoked by a new-expression or delete-expression.
2307     F->addFnAttr(llvm::Attribute::NoBuiltin);
2308   }
2309 
2310   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2311     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2312   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2313     if (MD->isVirtual())
2314       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2315 
2316   // Don't emit entries for function declarations in the cross-DSO mode. This
2317   // is handled with better precision by the receiving DSO. But if jump tables
2318   // are non-canonical then we need type metadata in order to produce the local
2319   // jump table.
2320   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2321       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2322     CreateFunctionTypeMetadataForIcall(FD, F);
2323 
2324   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2325     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2326 
2327   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2328     // Annotate the callback behavior as metadata:
2329     //  - The callback callee (as argument number).
2330     //  - The callback payloads (as argument numbers).
2331     llvm::LLVMContext &Ctx = F->getContext();
2332     llvm::MDBuilder MDB(Ctx);
2333 
2334     // The payload indices are all but the first one in the encoding. The first
2335     // identifies the callback callee.
2336     int CalleeIdx = *CB->encoding_begin();
2337     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2338     F->addMetadata(llvm::LLVMContext::MD_callback,
2339                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2340                                                CalleeIdx, PayloadIndices,
2341                                                /* VarArgsArePassed */ false)}));
2342   }
2343 }
2344 
2345 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2346   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2347          "Only globals with definition can force usage.");
2348   LLVMUsed.emplace_back(GV);
2349 }
2350 
2351 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2352   assert(!GV->isDeclaration() &&
2353          "Only globals with definition can force usage.");
2354   LLVMCompilerUsed.emplace_back(GV);
2355 }
2356 
2357 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2358   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2359          "Only globals with definition can force usage.");
2360   if (getTriple().isOSBinFormatELF())
2361     LLVMCompilerUsed.emplace_back(GV);
2362   else
2363     LLVMUsed.emplace_back(GV);
2364 }
2365 
2366 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2367                      std::vector<llvm::WeakTrackingVH> &List) {
2368   // Don't create llvm.used if there is no need.
2369   if (List.empty())
2370     return;
2371 
2372   // Convert List to what ConstantArray needs.
2373   SmallVector<llvm::Constant*, 8> UsedArray;
2374   UsedArray.resize(List.size());
2375   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2376     UsedArray[i] =
2377         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2378             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2379   }
2380 
2381   if (UsedArray.empty())
2382     return;
2383   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2384 
2385   auto *GV = new llvm::GlobalVariable(
2386       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2387       llvm::ConstantArray::get(ATy, UsedArray), Name);
2388 
2389   GV->setSection("llvm.metadata");
2390 }
2391 
2392 void CodeGenModule::emitLLVMUsed() {
2393   emitUsed(*this, "llvm.used", LLVMUsed);
2394   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2395 }
2396 
2397 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2398   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2399   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2400 }
2401 
2402 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2403   llvm::SmallString<32> Opt;
2404   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2405   if (Opt.empty())
2406     return;
2407   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2408   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2409 }
2410 
2411 void CodeGenModule::AddDependentLib(StringRef Lib) {
2412   auto &C = getLLVMContext();
2413   if (getTarget().getTriple().isOSBinFormatELF()) {
2414       ELFDependentLibraries.push_back(
2415         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2416     return;
2417   }
2418 
2419   llvm::SmallString<24> Opt;
2420   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2421   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2422   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2423 }
2424 
2425 /// Add link options implied by the given module, including modules
2426 /// it depends on, using a postorder walk.
2427 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2428                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2429                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2430   // Import this module's parent.
2431   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2432     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2433   }
2434 
2435   // Import this module's dependencies.
2436   for (Module *Import : llvm::reverse(Mod->Imports)) {
2437     if (Visited.insert(Import).second)
2438       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2439   }
2440 
2441   // Add linker options to link against the libraries/frameworks
2442   // described by this module.
2443   llvm::LLVMContext &Context = CGM.getLLVMContext();
2444   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2445 
2446   // For modules that use export_as for linking, use that module
2447   // name instead.
2448   if (Mod->UseExportAsModuleLinkName)
2449     return;
2450 
2451   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2452     // Link against a framework.  Frameworks are currently Darwin only, so we
2453     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2454     if (LL.IsFramework) {
2455       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2456                                  llvm::MDString::get(Context, LL.Library)};
2457 
2458       Metadata.push_back(llvm::MDNode::get(Context, Args));
2459       continue;
2460     }
2461 
2462     // Link against a library.
2463     if (IsELF) {
2464       llvm::Metadata *Args[2] = {
2465           llvm::MDString::get(Context, "lib"),
2466           llvm::MDString::get(Context, LL.Library),
2467       };
2468       Metadata.push_back(llvm::MDNode::get(Context, Args));
2469     } else {
2470       llvm::SmallString<24> Opt;
2471       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2472       auto *OptString = llvm::MDString::get(Context, Opt);
2473       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2474     }
2475   }
2476 }
2477 
2478 void CodeGenModule::EmitModuleLinkOptions() {
2479   // Collect the set of all of the modules we want to visit to emit link
2480   // options, which is essentially the imported modules and all of their
2481   // non-explicit child modules.
2482   llvm::SetVector<clang::Module *> LinkModules;
2483   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2484   SmallVector<clang::Module *, 16> Stack;
2485 
2486   // Seed the stack with imported modules.
2487   for (Module *M : ImportedModules) {
2488     // Do not add any link flags when an implementation TU of a module imports
2489     // a header of that same module.
2490     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2491         !getLangOpts().isCompilingModule())
2492       continue;
2493     if (Visited.insert(M).second)
2494       Stack.push_back(M);
2495   }
2496 
2497   // Find all of the modules to import, making a little effort to prune
2498   // non-leaf modules.
2499   while (!Stack.empty()) {
2500     clang::Module *Mod = Stack.pop_back_val();
2501 
2502     bool AnyChildren = false;
2503 
2504     // Visit the submodules of this module.
2505     for (const auto &SM : Mod->submodules()) {
2506       // Skip explicit children; they need to be explicitly imported to be
2507       // linked against.
2508       if (SM->IsExplicit)
2509         continue;
2510 
2511       if (Visited.insert(SM).second) {
2512         Stack.push_back(SM);
2513         AnyChildren = true;
2514       }
2515     }
2516 
2517     // We didn't find any children, so add this module to the list of
2518     // modules to link against.
2519     if (!AnyChildren) {
2520       LinkModules.insert(Mod);
2521     }
2522   }
2523 
2524   // Add link options for all of the imported modules in reverse topological
2525   // order.  We don't do anything to try to order import link flags with respect
2526   // to linker options inserted by things like #pragma comment().
2527   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2528   Visited.clear();
2529   for (Module *M : LinkModules)
2530     if (Visited.insert(M).second)
2531       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2532   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2533   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2534 
2535   // Add the linker options metadata flag.
2536   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2537   for (auto *MD : LinkerOptionsMetadata)
2538     NMD->addOperand(MD);
2539 }
2540 
2541 void CodeGenModule::EmitDeferred() {
2542   // Emit deferred declare target declarations.
2543   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2544     getOpenMPRuntime().emitDeferredTargetDecls();
2545 
2546   // Emit code for any potentially referenced deferred decls.  Since a
2547   // previously unused static decl may become used during the generation of code
2548   // for a static function, iterate until no changes are made.
2549 
2550   if (!DeferredVTables.empty()) {
2551     EmitDeferredVTables();
2552 
2553     // Emitting a vtable doesn't directly cause more vtables to
2554     // become deferred, although it can cause functions to be
2555     // emitted that then need those vtables.
2556     assert(DeferredVTables.empty());
2557   }
2558 
2559   // Emit CUDA/HIP static device variables referenced by host code only.
2560   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2561   // needed for further handling.
2562   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2563     llvm::append_range(DeferredDeclsToEmit,
2564                        getContext().CUDADeviceVarODRUsedByHost);
2565 
2566   // Stop if we're out of both deferred vtables and deferred declarations.
2567   if (DeferredDeclsToEmit.empty())
2568     return;
2569 
2570   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2571   // work, it will not interfere with this.
2572   std::vector<GlobalDecl> CurDeclsToEmit;
2573   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2574 
2575   for (GlobalDecl &D : CurDeclsToEmit) {
2576     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2577     // to get GlobalValue with exactly the type we need, not something that
2578     // might had been created for another decl with the same mangled name but
2579     // different type.
2580     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2581         GetAddrOfGlobal(D, ForDefinition));
2582 
2583     // In case of different address spaces, we may still get a cast, even with
2584     // IsForDefinition equal to true. Query mangled names table to get
2585     // GlobalValue.
2586     if (!GV)
2587       GV = GetGlobalValue(getMangledName(D));
2588 
2589     // Make sure GetGlobalValue returned non-null.
2590     assert(GV);
2591 
2592     // Check to see if we've already emitted this.  This is necessary
2593     // for a couple of reasons: first, decls can end up in the
2594     // deferred-decls queue multiple times, and second, decls can end
2595     // up with definitions in unusual ways (e.g. by an extern inline
2596     // function acquiring a strong function redefinition).  Just
2597     // ignore these cases.
2598     if (!GV->isDeclaration())
2599       continue;
2600 
2601     // If this is OpenMP, check if it is legal to emit this global normally.
2602     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2603       continue;
2604 
2605     // Otherwise, emit the definition and move on to the next one.
2606     EmitGlobalDefinition(D, GV);
2607 
2608     // If we found out that we need to emit more decls, do that recursively.
2609     // This has the advantage that the decls are emitted in a DFS and related
2610     // ones are close together, which is convenient for testing.
2611     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2612       EmitDeferred();
2613       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2614     }
2615   }
2616 }
2617 
2618 void CodeGenModule::EmitVTablesOpportunistically() {
2619   // Try to emit external vtables as available_externally if they have emitted
2620   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2621   // is not allowed to create new references to things that need to be emitted
2622   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2623 
2624   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2625          && "Only emit opportunistic vtables with optimizations");
2626 
2627   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2628     assert(getVTables().isVTableExternal(RD) &&
2629            "This queue should only contain external vtables");
2630     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2631       VTables.GenerateClassData(RD);
2632   }
2633   OpportunisticVTables.clear();
2634 }
2635 
2636 void CodeGenModule::EmitGlobalAnnotations() {
2637   if (Annotations.empty())
2638     return;
2639 
2640   // Create a new global variable for the ConstantStruct in the Module.
2641   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2642     Annotations[0]->getType(), Annotations.size()), Annotations);
2643   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2644                                       llvm::GlobalValue::AppendingLinkage,
2645                                       Array, "llvm.global.annotations");
2646   gv->setSection(AnnotationSection);
2647 }
2648 
2649 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2650   llvm::Constant *&AStr = AnnotationStrings[Str];
2651   if (AStr)
2652     return AStr;
2653 
2654   // Not found yet, create a new global.
2655   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2656   auto *gv =
2657       new llvm::GlobalVariable(getModule(), s->getType(), true,
2658                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2659   gv->setSection(AnnotationSection);
2660   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2661   AStr = gv;
2662   return gv;
2663 }
2664 
2665 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2666   SourceManager &SM = getContext().getSourceManager();
2667   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2668   if (PLoc.isValid())
2669     return EmitAnnotationString(PLoc.getFilename());
2670   return EmitAnnotationString(SM.getBufferName(Loc));
2671 }
2672 
2673 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2674   SourceManager &SM = getContext().getSourceManager();
2675   PresumedLoc PLoc = SM.getPresumedLoc(L);
2676   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2677     SM.getExpansionLineNumber(L);
2678   return llvm::ConstantInt::get(Int32Ty, LineNo);
2679 }
2680 
2681 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2682   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2683   if (Exprs.empty())
2684     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2685 
2686   llvm::FoldingSetNodeID ID;
2687   for (Expr *E : Exprs) {
2688     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2689   }
2690   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2691   if (Lookup)
2692     return Lookup;
2693 
2694   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2695   LLVMArgs.reserve(Exprs.size());
2696   ConstantEmitter ConstEmiter(*this);
2697   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2698     const auto *CE = cast<clang::ConstantExpr>(E);
2699     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2700                                     CE->getType());
2701   });
2702   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2703   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2704                                       llvm::GlobalValue::PrivateLinkage, Struct,
2705                                       ".args");
2706   GV->setSection(AnnotationSection);
2707   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2708   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2709 
2710   Lookup = Bitcasted;
2711   return Bitcasted;
2712 }
2713 
2714 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2715                                                 const AnnotateAttr *AA,
2716                                                 SourceLocation L) {
2717   // Get the globals for file name, annotation, and the line number.
2718   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2719                  *UnitGV = EmitAnnotationUnit(L),
2720                  *LineNoCst = EmitAnnotationLineNo(L),
2721                  *Args = EmitAnnotationArgs(AA);
2722 
2723   llvm::Constant *GVInGlobalsAS = GV;
2724   if (GV->getAddressSpace() !=
2725       getDataLayout().getDefaultGlobalsAddressSpace()) {
2726     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2727         GV, GV->getValueType()->getPointerTo(
2728                 getDataLayout().getDefaultGlobalsAddressSpace()));
2729   }
2730 
2731   // Create the ConstantStruct for the global annotation.
2732   llvm::Constant *Fields[] = {
2733       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2734       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2735       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2736       LineNoCst,
2737       Args,
2738   };
2739   return llvm::ConstantStruct::getAnon(Fields);
2740 }
2741 
2742 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2743                                          llvm::GlobalValue *GV) {
2744   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2745   // Get the struct elements for these annotations.
2746   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2747     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2748 }
2749 
2750 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2751                                        SourceLocation Loc) const {
2752   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2753   // NoSanitize by function name.
2754   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2755     return true;
2756   // NoSanitize by location.
2757   if (Loc.isValid())
2758     return NoSanitizeL.containsLocation(Kind, Loc);
2759   // If location is unknown, this may be a compiler-generated function. Assume
2760   // it's located in the main file.
2761   auto &SM = Context.getSourceManager();
2762   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2763     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2764   }
2765   return false;
2766 }
2767 
2768 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2769                                        llvm::GlobalVariable *GV,
2770                                        SourceLocation Loc, QualType Ty,
2771                                        StringRef Category) const {
2772   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2773   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2774     return true;
2775   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2776     return true;
2777   // Check global type.
2778   if (!Ty.isNull()) {
2779     // Drill down the array types: if global variable of a fixed type is
2780     // not sanitized, we also don't instrument arrays of them.
2781     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2782       Ty = AT->getElementType();
2783     Ty = Ty.getCanonicalType().getUnqualifiedType();
2784     // Only record types (classes, structs etc.) are ignored.
2785     if (Ty->isRecordType()) {
2786       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2787       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2788         return true;
2789     }
2790   }
2791   return false;
2792 }
2793 
2794 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2795                                    StringRef Category) const {
2796   const auto &XRayFilter = getContext().getXRayFilter();
2797   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2798   auto Attr = ImbueAttr::NONE;
2799   if (Loc.isValid())
2800     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2801   if (Attr == ImbueAttr::NONE)
2802     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2803   switch (Attr) {
2804   case ImbueAttr::NONE:
2805     return false;
2806   case ImbueAttr::ALWAYS:
2807     Fn->addFnAttr("function-instrument", "xray-always");
2808     break;
2809   case ImbueAttr::ALWAYS_ARG1:
2810     Fn->addFnAttr("function-instrument", "xray-always");
2811     Fn->addFnAttr("xray-log-args", "1");
2812     break;
2813   case ImbueAttr::NEVER:
2814     Fn->addFnAttr("function-instrument", "xray-never");
2815     break;
2816   }
2817   return true;
2818 }
2819 
2820 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2821                                            SourceLocation Loc) const {
2822   const auto &ProfileList = getContext().getProfileList();
2823   // If the profile list is empty, then instrument everything.
2824   if (ProfileList.isEmpty())
2825     return false;
2826   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2827   // First, check the function name.
2828   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2829   if (V)
2830     return *V;
2831   // Next, check the source location.
2832   if (Loc.isValid()) {
2833     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2834     if (V)
2835       return *V;
2836   }
2837   // If location is unknown, this may be a compiler-generated function. Assume
2838   // it's located in the main file.
2839   auto &SM = Context.getSourceManager();
2840   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2841     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2842     if (V)
2843       return *V;
2844   }
2845   return ProfileList.getDefault();
2846 }
2847 
2848 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2849   // Never defer when EmitAllDecls is specified.
2850   if (LangOpts.EmitAllDecls)
2851     return true;
2852 
2853   if (CodeGenOpts.KeepStaticConsts) {
2854     const auto *VD = dyn_cast<VarDecl>(Global);
2855     if (VD && VD->getType().isConstQualified() &&
2856         VD->getStorageDuration() == SD_Static)
2857       return true;
2858   }
2859 
2860   return getContext().DeclMustBeEmitted(Global);
2861 }
2862 
2863 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2864   // In OpenMP 5.0 variables and function may be marked as
2865   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2866   // that they must be emitted on the host/device. To be sure we need to have
2867   // seen a declare target with an explicit mentioning of the function, we know
2868   // we have if the level of the declare target attribute is -1. Note that we
2869   // check somewhere else if we should emit this at all.
2870   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2871     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2872         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2873     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2874       return false;
2875   }
2876 
2877   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2878     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2879       // Implicit template instantiations may change linkage if they are later
2880       // explicitly instantiated, so they should not be emitted eagerly.
2881       return false;
2882   }
2883   if (const auto *VD = dyn_cast<VarDecl>(Global))
2884     if (Context.getInlineVariableDefinitionKind(VD) ==
2885         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2886       // A definition of an inline constexpr static data member may change
2887       // linkage later if it's redeclared outside the class.
2888       return false;
2889   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2890   // codegen for global variables, because they may be marked as threadprivate.
2891   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2892       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2893       !isTypeConstant(Global->getType(), false) &&
2894       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2895     return false;
2896 
2897   return true;
2898 }
2899 
2900 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2901   StringRef Name = getMangledName(GD);
2902 
2903   // The UUID descriptor should be pointer aligned.
2904   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2905 
2906   // Look for an existing global.
2907   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2908     return ConstantAddress(GV, GV->getValueType(), Alignment);
2909 
2910   ConstantEmitter Emitter(*this);
2911   llvm::Constant *Init;
2912 
2913   APValue &V = GD->getAsAPValue();
2914   if (!V.isAbsent()) {
2915     // If possible, emit the APValue version of the initializer. In particular,
2916     // this gets the type of the constant right.
2917     Init = Emitter.emitForInitializer(
2918         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2919   } else {
2920     // As a fallback, directly construct the constant.
2921     // FIXME: This may get padding wrong under esoteric struct layout rules.
2922     // MSVC appears to create a complete type 'struct __s_GUID' that it
2923     // presumably uses to represent these constants.
2924     MSGuidDecl::Parts Parts = GD->getParts();
2925     llvm::Constant *Fields[4] = {
2926         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2927         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2928         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2929         llvm::ConstantDataArray::getRaw(
2930             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2931             Int8Ty)};
2932     Init = llvm::ConstantStruct::getAnon(Fields);
2933   }
2934 
2935   auto *GV = new llvm::GlobalVariable(
2936       getModule(), Init->getType(),
2937       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2938   if (supportsCOMDAT())
2939     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2940   setDSOLocal(GV);
2941 
2942   if (!V.isAbsent()) {
2943     Emitter.finalize(GV);
2944     return ConstantAddress(GV, GV->getValueType(), Alignment);
2945   }
2946 
2947   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2948   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2949       GV, Ty->getPointerTo(GV->getAddressSpace()));
2950   return ConstantAddress(Addr, Ty, Alignment);
2951 }
2952 
2953 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
2954     const UnnamedGlobalConstantDecl *GCD) {
2955   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
2956 
2957   llvm::GlobalVariable **Entry = nullptr;
2958   Entry = &UnnamedGlobalConstantDeclMap[GCD];
2959   if (*Entry)
2960     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
2961 
2962   ConstantEmitter Emitter(*this);
2963   llvm::Constant *Init;
2964 
2965   const APValue &V = GCD->getValue();
2966 
2967   assert(!V.isAbsent());
2968   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
2969                                     GCD->getType());
2970 
2971   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
2972                                       /*isConstant=*/true,
2973                                       llvm::GlobalValue::PrivateLinkage, Init,
2974                                       ".constant");
2975   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2976   GV->setAlignment(Alignment.getAsAlign());
2977 
2978   Emitter.finalize(GV);
2979 
2980   *Entry = GV;
2981   return ConstantAddress(GV, GV->getValueType(), Alignment);
2982 }
2983 
2984 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2985     const TemplateParamObjectDecl *TPO) {
2986   StringRef Name = getMangledName(TPO);
2987   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2988 
2989   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2990     return ConstantAddress(GV, GV->getValueType(), Alignment);
2991 
2992   ConstantEmitter Emitter(*this);
2993   llvm::Constant *Init = Emitter.emitForInitializer(
2994         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2995 
2996   if (!Init) {
2997     ErrorUnsupported(TPO, "template parameter object");
2998     return ConstantAddress::invalid();
2999   }
3000 
3001   auto *GV = new llvm::GlobalVariable(
3002       getModule(), Init->getType(),
3003       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3004   if (supportsCOMDAT())
3005     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3006   Emitter.finalize(GV);
3007 
3008   return ConstantAddress(GV, GV->getValueType(), Alignment);
3009 }
3010 
3011 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3012   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3013   assert(AA && "No alias?");
3014 
3015   CharUnits Alignment = getContext().getDeclAlign(VD);
3016   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3017 
3018   // See if there is already something with the target's name in the module.
3019   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3020   if (Entry) {
3021     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3022     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3023     return ConstantAddress(Ptr, DeclTy, Alignment);
3024   }
3025 
3026   llvm::Constant *Aliasee;
3027   if (isa<llvm::FunctionType>(DeclTy))
3028     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3029                                       GlobalDecl(cast<FunctionDecl>(VD)),
3030                                       /*ForVTable=*/false);
3031   else
3032     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3033                                     nullptr);
3034 
3035   auto *F = cast<llvm::GlobalValue>(Aliasee);
3036   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3037   WeakRefReferences.insert(F);
3038 
3039   return ConstantAddress(Aliasee, DeclTy, Alignment);
3040 }
3041 
3042 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3043   const auto *Global = cast<ValueDecl>(GD.getDecl());
3044 
3045   // Weak references don't produce any output by themselves.
3046   if (Global->hasAttr<WeakRefAttr>())
3047     return;
3048 
3049   // If this is an alias definition (which otherwise looks like a declaration)
3050   // emit it now.
3051   if (Global->hasAttr<AliasAttr>())
3052     return EmitAliasDefinition(GD);
3053 
3054   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3055   if (Global->hasAttr<IFuncAttr>())
3056     return emitIFuncDefinition(GD);
3057 
3058   // If this is a cpu_dispatch multiversion function, emit the resolver.
3059   if (Global->hasAttr<CPUDispatchAttr>())
3060     return emitCPUDispatchDefinition(GD);
3061 
3062   // If this is CUDA, be selective about which declarations we emit.
3063   if (LangOpts.CUDA) {
3064     if (LangOpts.CUDAIsDevice) {
3065       if (!Global->hasAttr<CUDADeviceAttr>() &&
3066           !Global->hasAttr<CUDAGlobalAttr>() &&
3067           !Global->hasAttr<CUDAConstantAttr>() &&
3068           !Global->hasAttr<CUDASharedAttr>() &&
3069           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3070           !Global->getType()->isCUDADeviceBuiltinTextureType())
3071         return;
3072     } else {
3073       // We need to emit host-side 'shadows' for all global
3074       // device-side variables because the CUDA runtime needs their
3075       // size and host-side address in order to provide access to
3076       // their device-side incarnations.
3077 
3078       // So device-only functions are the only things we skip.
3079       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3080           Global->hasAttr<CUDADeviceAttr>())
3081         return;
3082 
3083       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3084              "Expected Variable or Function");
3085     }
3086   }
3087 
3088   if (LangOpts.OpenMP) {
3089     // If this is OpenMP, check if it is legal to emit this global normally.
3090     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3091       return;
3092     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3093       if (MustBeEmitted(Global))
3094         EmitOMPDeclareReduction(DRD);
3095       return;
3096     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3097       if (MustBeEmitted(Global))
3098         EmitOMPDeclareMapper(DMD);
3099       return;
3100     }
3101   }
3102 
3103   // Ignore declarations, they will be emitted on their first use.
3104   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3105     // Forward declarations are emitted lazily on first use.
3106     if (!FD->doesThisDeclarationHaveABody()) {
3107       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3108         return;
3109 
3110       StringRef MangledName = getMangledName(GD);
3111 
3112       // Compute the function info and LLVM type.
3113       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3114       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3115 
3116       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3117                               /*DontDefer=*/false);
3118       return;
3119     }
3120   } else {
3121     const auto *VD = cast<VarDecl>(Global);
3122     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3123     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3124         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3125       if (LangOpts.OpenMP) {
3126         // Emit declaration of the must-be-emitted declare target variable.
3127         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3128                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3129           bool UnifiedMemoryEnabled =
3130               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3131           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3132               !UnifiedMemoryEnabled) {
3133             (void)GetAddrOfGlobalVar(VD);
3134           } else {
3135             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3136                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3137                      UnifiedMemoryEnabled)) &&
3138                    "Link clause or to clause with unified memory expected.");
3139             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3140           }
3141 
3142           return;
3143         }
3144       }
3145       // If this declaration may have caused an inline variable definition to
3146       // change linkage, make sure that it's emitted.
3147       if (Context.getInlineVariableDefinitionKind(VD) ==
3148           ASTContext::InlineVariableDefinitionKind::Strong)
3149         GetAddrOfGlobalVar(VD);
3150       return;
3151     }
3152   }
3153 
3154   // Defer code generation to first use when possible, e.g. if this is an inline
3155   // function. If the global must always be emitted, do it eagerly if possible
3156   // to benefit from cache locality.
3157   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3158     // Emit the definition if it can't be deferred.
3159     EmitGlobalDefinition(GD);
3160     return;
3161   }
3162 
3163   // If we're deferring emission of a C++ variable with an
3164   // initializer, remember the order in which it appeared in the file.
3165   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3166       cast<VarDecl>(Global)->hasInit()) {
3167     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3168     CXXGlobalInits.push_back(nullptr);
3169   }
3170 
3171   StringRef MangledName = getMangledName(GD);
3172   if (GetGlobalValue(MangledName) != nullptr) {
3173     // The value has already been used and should therefore be emitted.
3174     addDeferredDeclToEmit(GD);
3175   } else if (MustBeEmitted(Global)) {
3176     // The value must be emitted, but cannot be emitted eagerly.
3177     assert(!MayBeEmittedEagerly(Global));
3178     addDeferredDeclToEmit(GD);
3179   } else {
3180     // Otherwise, remember that we saw a deferred decl with this name.  The
3181     // first use of the mangled name will cause it to move into
3182     // DeferredDeclsToEmit.
3183     DeferredDecls[MangledName] = GD;
3184   }
3185 }
3186 
3187 // Check if T is a class type with a destructor that's not dllimport.
3188 static bool HasNonDllImportDtor(QualType T) {
3189   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3190     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3191       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3192         return true;
3193 
3194   return false;
3195 }
3196 
3197 namespace {
3198   struct FunctionIsDirectlyRecursive
3199       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3200     const StringRef Name;
3201     const Builtin::Context &BI;
3202     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3203         : Name(N), BI(C) {}
3204 
3205     bool VisitCallExpr(const CallExpr *E) {
3206       const FunctionDecl *FD = E->getDirectCallee();
3207       if (!FD)
3208         return false;
3209       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3210       if (Attr && Name == Attr->getLabel())
3211         return true;
3212       unsigned BuiltinID = FD->getBuiltinID();
3213       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3214         return false;
3215       StringRef BuiltinName = BI.getName(BuiltinID);
3216       if (BuiltinName.startswith("__builtin_") &&
3217           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3218         return true;
3219       }
3220       return false;
3221     }
3222 
3223     bool VisitStmt(const Stmt *S) {
3224       for (const Stmt *Child : S->children())
3225         if (Child && this->Visit(Child))
3226           return true;
3227       return false;
3228     }
3229   };
3230 
3231   // Make sure we're not referencing non-imported vars or functions.
3232   struct DLLImportFunctionVisitor
3233       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3234     bool SafeToInline = true;
3235 
3236     bool shouldVisitImplicitCode() const { return true; }
3237 
3238     bool VisitVarDecl(VarDecl *VD) {
3239       if (VD->getTLSKind()) {
3240         // A thread-local variable cannot be imported.
3241         SafeToInline = false;
3242         return SafeToInline;
3243       }
3244 
3245       // A variable definition might imply a destructor call.
3246       if (VD->isThisDeclarationADefinition())
3247         SafeToInline = !HasNonDllImportDtor(VD->getType());
3248 
3249       return SafeToInline;
3250     }
3251 
3252     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3253       if (const auto *D = E->getTemporary()->getDestructor())
3254         SafeToInline = D->hasAttr<DLLImportAttr>();
3255       return SafeToInline;
3256     }
3257 
3258     bool VisitDeclRefExpr(DeclRefExpr *E) {
3259       ValueDecl *VD = E->getDecl();
3260       if (isa<FunctionDecl>(VD))
3261         SafeToInline = VD->hasAttr<DLLImportAttr>();
3262       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3263         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3264       return SafeToInline;
3265     }
3266 
3267     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3268       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3269       return SafeToInline;
3270     }
3271 
3272     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3273       CXXMethodDecl *M = E->getMethodDecl();
3274       if (!M) {
3275         // Call through a pointer to member function. This is safe to inline.
3276         SafeToInline = true;
3277       } else {
3278         SafeToInline = M->hasAttr<DLLImportAttr>();
3279       }
3280       return SafeToInline;
3281     }
3282 
3283     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3284       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3285       return SafeToInline;
3286     }
3287 
3288     bool VisitCXXNewExpr(CXXNewExpr *E) {
3289       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3290       return SafeToInline;
3291     }
3292   };
3293 }
3294 
3295 // isTriviallyRecursive - Check if this function calls another
3296 // decl that, because of the asm attribute or the other decl being a builtin,
3297 // ends up pointing to itself.
3298 bool
3299 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3300   StringRef Name;
3301   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3302     // asm labels are a special kind of mangling we have to support.
3303     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3304     if (!Attr)
3305       return false;
3306     Name = Attr->getLabel();
3307   } else {
3308     Name = FD->getName();
3309   }
3310 
3311   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3312   const Stmt *Body = FD->getBody();
3313   return Body ? Walker.Visit(Body) : false;
3314 }
3315 
3316 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3317   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3318     return true;
3319   const auto *F = cast<FunctionDecl>(GD.getDecl());
3320   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3321     return false;
3322 
3323   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3324     // Check whether it would be safe to inline this dllimport function.
3325     DLLImportFunctionVisitor Visitor;
3326     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3327     if (!Visitor.SafeToInline)
3328       return false;
3329 
3330     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3331       // Implicit destructor invocations aren't captured in the AST, so the
3332       // check above can't see them. Check for them manually here.
3333       for (const Decl *Member : Dtor->getParent()->decls())
3334         if (isa<FieldDecl>(Member))
3335           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3336             return false;
3337       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3338         if (HasNonDllImportDtor(B.getType()))
3339           return false;
3340     }
3341   }
3342 
3343   // Inline builtins declaration must be emitted. They often are fortified
3344   // functions.
3345   if (F->isInlineBuiltinDeclaration())
3346     return true;
3347 
3348   // PR9614. Avoid cases where the source code is lying to us. An available
3349   // externally function should have an equivalent function somewhere else,
3350   // but a function that calls itself through asm label/`__builtin_` trickery is
3351   // clearly not equivalent to the real implementation.
3352   // This happens in glibc's btowc and in some configure checks.
3353   return !isTriviallyRecursive(F);
3354 }
3355 
3356 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3357   return CodeGenOpts.OptimizationLevel > 0;
3358 }
3359 
3360 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3361                                                        llvm::GlobalValue *GV) {
3362   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3363 
3364   if (FD->isCPUSpecificMultiVersion()) {
3365     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3366     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3367       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3368   } else if (FD->isTargetClonesMultiVersion()) {
3369     auto *Clone = FD->getAttr<TargetClonesAttr>();
3370     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3371       if (Clone->isFirstOfVersion(I))
3372         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3373     // Ensure that the resolver function is also emitted.
3374     GetOrCreateMultiVersionResolver(GD);
3375   } else
3376     EmitGlobalFunctionDefinition(GD, GV);
3377 }
3378 
3379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3380   const auto *D = cast<ValueDecl>(GD.getDecl());
3381 
3382   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3383                                  Context.getSourceManager(),
3384                                  "Generating code for declaration");
3385 
3386   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3387     // At -O0, don't generate IR for functions with available_externally
3388     // linkage.
3389     if (!shouldEmitFunction(GD))
3390       return;
3391 
3392     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3393       std::string Name;
3394       llvm::raw_string_ostream OS(Name);
3395       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3396                                /*Qualified=*/true);
3397       return Name;
3398     });
3399 
3400     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3401       // Make sure to emit the definition(s) before we emit the thunks.
3402       // This is necessary for the generation of certain thunks.
3403       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3404         ABI->emitCXXStructor(GD);
3405       else if (FD->isMultiVersion())
3406         EmitMultiVersionFunctionDefinition(GD, GV);
3407       else
3408         EmitGlobalFunctionDefinition(GD, GV);
3409 
3410       if (Method->isVirtual())
3411         getVTables().EmitThunks(GD);
3412 
3413       return;
3414     }
3415 
3416     if (FD->isMultiVersion())
3417       return EmitMultiVersionFunctionDefinition(GD, GV);
3418     return EmitGlobalFunctionDefinition(GD, GV);
3419   }
3420 
3421   if (const auto *VD = dyn_cast<VarDecl>(D))
3422     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3423 
3424   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3425 }
3426 
3427 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3428                                                       llvm::Function *NewFn);
3429 
3430 static unsigned
3431 TargetMVPriority(const TargetInfo &TI,
3432                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3433   unsigned Priority = 0;
3434   for (StringRef Feat : RO.Conditions.Features)
3435     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3436 
3437   if (!RO.Conditions.Architecture.empty())
3438     Priority = std::max(
3439         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3440   return Priority;
3441 }
3442 
3443 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3444 // TU can forward declare the function without causing problems.  Particularly
3445 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3446 // work with internal linkage functions, so that the same function name can be
3447 // used with internal linkage in multiple TUs.
3448 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3449                                                        GlobalDecl GD) {
3450   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3451   if (FD->getFormalLinkage() == InternalLinkage)
3452     return llvm::GlobalValue::InternalLinkage;
3453   return llvm::GlobalValue::WeakODRLinkage;
3454 }
3455 
3456 void CodeGenModule::emitMultiVersionFunctions() {
3457   std::vector<GlobalDecl> MVFuncsToEmit;
3458   MultiVersionFuncs.swap(MVFuncsToEmit);
3459   for (GlobalDecl GD : MVFuncsToEmit) {
3460     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3461     assert(FD && "Expected a FunctionDecl");
3462 
3463     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3464     if (FD->isTargetMultiVersion()) {
3465       getContext().forEachMultiversionedFunctionVersion(
3466           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3467             GlobalDecl CurGD{
3468                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3469             StringRef MangledName = getMangledName(CurGD);
3470             llvm::Constant *Func = GetGlobalValue(MangledName);
3471             if (!Func) {
3472               if (CurFD->isDefined()) {
3473                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3474                 Func = GetGlobalValue(MangledName);
3475               } else {
3476                 const CGFunctionInfo &FI =
3477                     getTypes().arrangeGlobalDeclaration(GD);
3478                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3479                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3480                                          /*DontDefer=*/false, ForDefinition);
3481               }
3482               assert(Func && "This should have just been created");
3483             }
3484 
3485             const auto *TA = CurFD->getAttr<TargetAttr>();
3486             llvm::SmallVector<StringRef, 8> Feats;
3487             TA->getAddedFeatures(Feats);
3488 
3489             Options.emplace_back(cast<llvm::Function>(Func),
3490                                  TA->getArchitecture(), Feats);
3491           });
3492     } else if (FD->isTargetClonesMultiVersion()) {
3493       const auto *TC = FD->getAttr<TargetClonesAttr>();
3494       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3495            ++VersionIndex) {
3496         if (!TC->isFirstOfVersion(VersionIndex))
3497           continue;
3498         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3499                          VersionIndex};
3500         StringRef Version = TC->getFeatureStr(VersionIndex);
3501         StringRef MangledName = getMangledName(CurGD);
3502         llvm::Constant *Func = GetGlobalValue(MangledName);
3503         if (!Func) {
3504           if (FD->isDefined()) {
3505             EmitGlobalFunctionDefinition(CurGD, nullptr);
3506             Func = GetGlobalValue(MangledName);
3507           } else {
3508             const CGFunctionInfo &FI =
3509                 getTypes().arrangeGlobalDeclaration(CurGD);
3510             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3511             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3512                                      /*DontDefer=*/false, ForDefinition);
3513           }
3514           assert(Func && "This should have just been created");
3515         }
3516 
3517         StringRef Architecture;
3518         llvm::SmallVector<StringRef, 1> Feature;
3519 
3520         if (Version.startswith("arch="))
3521           Architecture = Version.drop_front(sizeof("arch=") - 1);
3522         else if (Version != "default")
3523           Feature.push_back(Version);
3524 
3525         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3526       }
3527     } else {
3528       assert(0 && "Expected a target or target_clones multiversion function");
3529       continue;
3530     }
3531 
3532     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3533     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3534       ResolverConstant = IFunc->getResolver();
3535     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3536 
3537     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3538 
3539     if (supportsCOMDAT())
3540       ResolverFunc->setComdat(
3541           getModule().getOrInsertComdat(ResolverFunc->getName()));
3542 
3543     const TargetInfo &TI = getTarget();
3544     llvm::stable_sort(
3545         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3546                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3547           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3548         });
3549     CodeGenFunction CGF(*this);
3550     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3551   }
3552 
3553   // Ensure that any additions to the deferred decls list caused by emitting a
3554   // variant are emitted.  This can happen when the variant itself is inline and
3555   // calls a function without linkage.
3556   if (!MVFuncsToEmit.empty())
3557     EmitDeferred();
3558 
3559   // Ensure that any additions to the multiversion funcs list from either the
3560   // deferred decls or the multiversion functions themselves are emitted.
3561   if (!MultiVersionFuncs.empty())
3562     emitMultiVersionFunctions();
3563 }
3564 
3565 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3566   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3567   assert(FD && "Not a FunctionDecl?");
3568   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3569   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3570   assert(DD && "Not a cpu_dispatch Function?");
3571 
3572   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3573   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3574 
3575   StringRef ResolverName = getMangledName(GD);
3576   UpdateMultiVersionNames(GD, FD, ResolverName);
3577 
3578   llvm::Type *ResolverType;
3579   GlobalDecl ResolverGD;
3580   if (getTarget().supportsIFunc()) {
3581     ResolverType = llvm::FunctionType::get(
3582         llvm::PointerType::get(DeclTy,
3583                                Context.getTargetAddressSpace(FD->getType())),
3584         false);
3585   }
3586   else {
3587     ResolverType = DeclTy;
3588     ResolverGD = GD;
3589   }
3590 
3591   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3592       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3593   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3594   if (supportsCOMDAT())
3595     ResolverFunc->setComdat(
3596         getModule().getOrInsertComdat(ResolverFunc->getName()));
3597 
3598   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3599   const TargetInfo &Target = getTarget();
3600   unsigned Index = 0;
3601   for (const IdentifierInfo *II : DD->cpus()) {
3602     // Get the name of the target function so we can look it up/create it.
3603     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3604                               getCPUSpecificMangling(*this, II->getName());
3605 
3606     llvm::Constant *Func = GetGlobalValue(MangledName);
3607 
3608     if (!Func) {
3609       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3610       if (ExistingDecl.getDecl() &&
3611           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3612         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3613         Func = GetGlobalValue(MangledName);
3614       } else {
3615         if (!ExistingDecl.getDecl())
3616           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3617 
3618       Func = GetOrCreateLLVMFunction(
3619           MangledName, DeclTy, ExistingDecl,
3620           /*ForVTable=*/false, /*DontDefer=*/true,
3621           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3622       }
3623     }
3624 
3625     llvm::SmallVector<StringRef, 32> Features;
3626     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3627     llvm::transform(Features, Features.begin(),
3628                     [](StringRef Str) { return Str.substr(1); });
3629     llvm::erase_if(Features, [&Target](StringRef Feat) {
3630       return !Target.validateCpuSupports(Feat);
3631     });
3632     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3633     ++Index;
3634   }
3635 
3636   llvm::stable_sort(
3637       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3638                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3639         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3640                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3641       });
3642 
3643   // If the list contains multiple 'default' versions, such as when it contains
3644   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3645   // always run on at least a 'pentium'). We do this by deleting the 'least
3646   // advanced' (read, lowest mangling letter).
3647   while (Options.size() > 1 &&
3648          llvm::X86::getCpuSupportsMask(
3649              (Options.end() - 2)->Conditions.Features) == 0) {
3650     StringRef LHSName = (Options.end() - 2)->Function->getName();
3651     StringRef RHSName = (Options.end() - 1)->Function->getName();
3652     if (LHSName.compare(RHSName) < 0)
3653       Options.erase(Options.end() - 2);
3654     else
3655       Options.erase(Options.end() - 1);
3656   }
3657 
3658   CodeGenFunction CGF(*this);
3659   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3660 
3661   if (getTarget().supportsIFunc()) {
3662     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3663     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3664 
3665     // Fix up function declarations that were created for cpu_specific before
3666     // cpu_dispatch was known
3667     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3668       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3669       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3670                                            &getModule());
3671       GI->takeName(IFunc);
3672       IFunc->replaceAllUsesWith(GI);
3673       IFunc->eraseFromParent();
3674       IFunc = GI;
3675     }
3676 
3677     std::string AliasName = getMangledNameImpl(
3678         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3679     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3680     if (!AliasFunc) {
3681       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3682                                            &getModule());
3683       SetCommonAttributes(GD, GA);
3684     }
3685   }
3686 }
3687 
3688 /// If a dispatcher for the specified mangled name is not in the module, create
3689 /// and return an llvm Function with the specified type.
3690 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3691   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3692   assert(FD && "Not a FunctionDecl?");
3693 
3694   std::string MangledName =
3695       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3696 
3697   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3698   // a separate resolver).
3699   std::string ResolverName = MangledName;
3700   if (getTarget().supportsIFunc())
3701     ResolverName += ".ifunc";
3702   else if (FD->isTargetMultiVersion())
3703     ResolverName += ".resolver";
3704 
3705   // If the resolver has already been created, just return it.
3706   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3707     return ResolverGV;
3708 
3709   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3710   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3711 
3712   // The resolver needs to be created. For target and target_clones, defer
3713   // creation until the end of the TU.
3714   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3715     MultiVersionFuncs.push_back(GD);
3716 
3717   // For cpu_specific, don't create an ifunc yet because we don't know if the
3718   // cpu_dispatch will be emitted in this translation unit.
3719   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3720     llvm::Type *ResolverType = llvm::FunctionType::get(
3721         llvm::PointerType::get(
3722             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3723         false);
3724     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3725         MangledName + ".resolver", ResolverType, GlobalDecl{},
3726         /*ForVTable=*/false);
3727     llvm::GlobalIFunc *GIF =
3728         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3729                                   "", Resolver, &getModule());
3730     GIF->setName(ResolverName);
3731     SetCommonAttributes(FD, GIF);
3732 
3733     return GIF;
3734   }
3735 
3736   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3737       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3738   assert(isa<llvm::GlobalValue>(Resolver) &&
3739          "Resolver should be created for the first time");
3740   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3741   return Resolver;
3742 }
3743 
3744 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3745 /// module, create and return an llvm Function with the specified type. If there
3746 /// is something in the module with the specified name, return it potentially
3747 /// bitcasted to the right type.
3748 ///
3749 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3750 /// to set the attributes on the function when it is first created.
3751 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3752     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3753     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3754     ForDefinition_t IsForDefinition) {
3755   const Decl *D = GD.getDecl();
3756 
3757   // Any attempts to use a MultiVersion function should result in retrieving
3758   // the iFunc instead. Name Mangling will handle the rest of the changes.
3759   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3760     // For the device mark the function as one that should be emitted.
3761     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3762         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3763         !DontDefer && !IsForDefinition) {
3764       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3765         GlobalDecl GDDef;
3766         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3767           GDDef = GlobalDecl(CD, GD.getCtorType());
3768         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3769           GDDef = GlobalDecl(DD, GD.getDtorType());
3770         else
3771           GDDef = GlobalDecl(FDDef);
3772         EmitGlobal(GDDef);
3773       }
3774     }
3775 
3776     if (FD->isMultiVersion()) {
3777       UpdateMultiVersionNames(GD, FD, MangledName);
3778       if (!IsForDefinition)
3779         return GetOrCreateMultiVersionResolver(GD);
3780     }
3781   }
3782 
3783   // Lookup the entry, lazily creating it if necessary.
3784   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3785   if (Entry) {
3786     if (WeakRefReferences.erase(Entry)) {
3787       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3788       if (FD && !FD->hasAttr<WeakAttr>())
3789         Entry->setLinkage(llvm::Function::ExternalLinkage);
3790     }
3791 
3792     // Handle dropped DLL attributes.
3793     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3794         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3795       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3796       setDSOLocal(Entry);
3797     }
3798 
3799     // If there are two attempts to define the same mangled name, issue an
3800     // error.
3801     if (IsForDefinition && !Entry->isDeclaration()) {
3802       GlobalDecl OtherGD;
3803       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3804       // to make sure that we issue an error only once.
3805       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3806           (GD.getCanonicalDecl().getDecl() !=
3807            OtherGD.getCanonicalDecl().getDecl()) &&
3808           DiagnosedConflictingDefinitions.insert(GD).second) {
3809         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3810             << MangledName;
3811         getDiags().Report(OtherGD.getDecl()->getLocation(),
3812                           diag::note_previous_definition);
3813       }
3814     }
3815 
3816     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3817         (Entry->getValueType() == Ty)) {
3818       return Entry;
3819     }
3820 
3821     // Make sure the result is of the correct type.
3822     // (If function is requested for a definition, we always need to create a new
3823     // function, not just return a bitcast.)
3824     if (!IsForDefinition)
3825       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3826   }
3827 
3828   // This function doesn't have a complete type (for example, the return
3829   // type is an incomplete struct). Use a fake type instead, and make
3830   // sure not to try to set attributes.
3831   bool IsIncompleteFunction = false;
3832 
3833   llvm::FunctionType *FTy;
3834   if (isa<llvm::FunctionType>(Ty)) {
3835     FTy = cast<llvm::FunctionType>(Ty);
3836   } else {
3837     FTy = llvm::FunctionType::get(VoidTy, false);
3838     IsIncompleteFunction = true;
3839   }
3840 
3841   llvm::Function *F =
3842       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3843                              Entry ? StringRef() : MangledName, &getModule());
3844 
3845   // If we already created a function with the same mangled name (but different
3846   // type) before, take its name and add it to the list of functions to be
3847   // replaced with F at the end of CodeGen.
3848   //
3849   // This happens if there is a prototype for a function (e.g. "int f()") and
3850   // then a definition of a different type (e.g. "int f(int x)").
3851   if (Entry) {
3852     F->takeName(Entry);
3853 
3854     // This might be an implementation of a function without a prototype, in
3855     // which case, try to do special replacement of calls which match the new
3856     // prototype.  The really key thing here is that we also potentially drop
3857     // arguments from the call site so as to make a direct call, which makes the
3858     // inliner happier and suppresses a number of optimizer warnings (!) about
3859     // dropping arguments.
3860     if (!Entry->use_empty()) {
3861       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3862       Entry->removeDeadConstantUsers();
3863     }
3864 
3865     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3866         F, Entry->getValueType()->getPointerTo());
3867     addGlobalValReplacement(Entry, BC);
3868   }
3869 
3870   assert(F->getName() == MangledName && "name was uniqued!");
3871   if (D)
3872     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3873   if (ExtraAttrs.hasFnAttrs()) {
3874     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3875     F->addFnAttrs(B);
3876   }
3877 
3878   if (!DontDefer) {
3879     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3880     // each other bottoming out with the base dtor.  Therefore we emit non-base
3881     // dtors on usage, even if there is no dtor definition in the TU.
3882     if (D && isa<CXXDestructorDecl>(D) &&
3883         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3884                                            GD.getDtorType()))
3885       addDeferredDeclToEmit(GD);
3886 
3887     // This is the first use or definition of a mangled name.  If there is a
3888     // deferred decl with this name, remember that we need to emit it at the end
3889     // of the file.
3890     auto DDI = DeferredDecls.find(MangledName);
3891     if (DDI != DeferredDecls.end()) {
3892       // Move the potentially referenced deferred decl to the
3893       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3894       // don't need it anymore).
3895       addDeferredDeclToEmit(DDI->second);
3896       DeferredDecls.erase(DDI);
3897 
3898       // Otherwise, there are cases we have to worry about where we're
3899       // using a declaration for which we must emit a definition but where
3900       // we might not find a top-level definition:
3901       //   - member functions defined inline in their classes
3902       //   - friend functions defined inline in some class
3903       //   - special member functions with implicit definitions
3904       // If we ever change our AST traversal to walk into class methods,
3905       // this will be unnecessary.
3906       //
3907       // We also don't emit a definition for a function if it's going to be an
3908       // entry in a vtable, unless it's already marked as used.
3909     } else if (getLangOpts().CPlusPlus && D) {
3910       // Look for a declaration that's lexically in a record.
3911       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3912            FD = FD->getPreviousDecl()) {
3913         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3914           if (FD->doesThisDeclarationHaveABody()) {
3915             addDeferredDeclToEmit(GD.getWithDecl(FD));
3916             break;
3917           }
3918         }
3919       }
3920     }
3921   }
3922 
3923   // Make sure the result is of the requested type.
3924   if (!IsIncompleteFunction) {
3925     assert(F->getFunctionType() == Ty);
3926     return F;
3927   }
3928 
3929   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3930   return llvm::ConstantExpr::getBitCast(F, PTy);
3931 }
3932 
3933 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3934 /// non-null, then this function will use the specified type if it has to
3935 /// create it (this occurs when we see a definition of the function).
3936 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3937                                                  llvm::Type *Ty,
3938                                                  bool ForVTable,
3939                                                  bool DontDefer,
3940                                               ForDefinition_t IsForDefinition) {
3941   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3942          "consteval function should never be emitted");
3943   // If there was no specific requested type, just convert it now.
3944   if (!Ty) {
3945     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3946     Ty = getTypes().ConvertType(FD->getType());
3947   }
3948 
3949   // Devirtualized destructor calls may come through here instead of via
3950   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3951   // of the complete destructor when necessary.
3952   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3953     if (getTarget().getCXXABI().isMicrosoft() &&
3954         GD.getDtorType() == Dtor_Complete &&
3955         DD->getParent()->getNumVBases() == 0)
3956       GD = GlobalDecl(DD, Dtor_Base);
3957   }
3958 
3959   StringRef MangledName = getMangledName(GD);
3960   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3961                                     /*IsThunk=*/false, llvm::AttributeList(),
3962                                     IsForDefinition);
3963   // Returns kernel handle for HIP kernel stub function.
3964   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3965       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3966     auto *Handle = getCUDARuntime().getKernelHandle(
3967         cast<llvm::Function>(F->stripPointerCasts()), GD);
3968     if (IsForDefinition)
3969       return F;
3970     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3971   }
3972   return F;
3973 }
3974 
3975 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3976   llvm::GlobalValue *F =
3977       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3978 
3979   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3980                                         llvm::Type::getInt8PtrTy(VMContext));
3981 }
3982 
3983 static const FunctionDecl *
3984 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3985   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3986   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3987 
3988   IdentifierInfo &CII = C.Idents.get(Name);
3989   for (const auto *Result : DC->lookup(&CII))
3990     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3991       return FD;
3992 
3993   if (!C.getLangOpts().CPlusPlus)
3994     return nullptr;
3995 
3996   // Demangle the premangled name from getTerminateFn()
3997   IdentifierInfo &CXXII =
3998       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3999           ? C.Idents.get("terminate")
4000           : C.Idents.get(Name);
4001 
4002   for (const auto &N : {"__cxxabiv1", "std"}) {
4003     IdentifierInfo &NS = C.Idents.get(N);
4004     for (const auto *Result : DC->lookup(&NS)) {
4005       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4006       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4007         for (const auto *Result : LSD->lookup(&NS))
4008           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4009             break;
4010 
4011       if (ND)
4012         for (const auto *Result : ND->lookup(&CXXII))
4013           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4014             return FD;
4015     }
4016   }
4017 
4018   return nullptr;
4019 }
4020 
4021 /// CreateRuntimeFunction - Create a new runtime function with the specified
4022 /// type and name.
4023 llvm::FunctionCallee
4024 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4025                                      llvm::AttributeList ExtraAttrs, bool Local,
4026                                      bool AssumeConvergent) {
4027   if (AssumeConvergent) {
4028     ExtraAttrs =
4029         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4030   }
4031 
4032   llvm::Constant *C =
4033       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4034                               /*DontDefer=*/false, /*IsThunk=*/false,
4035                               ExtraAttrs);
4036 
4037   if (auto *F = dyn_cast<llvm::Function>(C)) {
4038     if (F->empty()) {
4039       F->setCallingConv(getRuntimeCC());
4040 
4041       // In Windows Itanium environments, try to mark runtime functions
4042       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4043       // will link their standard library statically or dynamically. Marking
4044       // functions imported when they are not imported can cause linker errors
4045       // and warnings.
4046       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4047           !getCodeGenOpts().LTOVisibilityPublicStd) {
4048         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4049         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4050           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4051           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4052         }
4053       }
4054       setDSOLocal(F);
4055     }
4056   }
4057 
4058   return {FTy, C};
4059 }
4060 
4061 /// isTypeConstant - Determine whether an object of this type can be emitted
4062 /// as a constant.
4063 ///
4064 /// If ExcludeCtor is true, the duration when the object's constructor runs
4065 /// will not be considered. The caller will need to verify that the object is
4066 /// not written to during its construction.
4067 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4068   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4069     return false;
4070 
4071   if (Context.getLangOpts().CPlusPlus) {
4072     if (const CXXRecordDecl *Record
4073           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4074       return ExcludeCtor && !Record->hasMutableFields() &&
4075              Record->hasTrivialDestructor();
4076   }
4077 
4078   return true;
4079 }
4080 
4081 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4082 /// create and return an llvm GlobalVariable with the specified type and address
4083 /// space. If there is something in the module with the specified name, return
4084 /// it potentially bitcasted to the right type.
4085 ///
4086 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4087 /// to set the attributes on the global when it is first created.
4088 ///
4089 /// If IsForDefinition is true, it is guaranteed that an actual global with
4090 /// type Ty will be returned, not conversion of a variable with the same
4091 /// mangled name but some other type.
4092 llvm::Constant *
4093 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4094                                      LangAS AddrSpace, const VarDecl *D,
4095                                      ForDefinition_t IsForDefinition) {
4096   // Lookup the entry, lazily creating it if necessary.
4097   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4098   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4099   if (Entry) {
4100     if (WeakRefReferences.erase(Entry)) {
4101       if (D && !D->hasAttr<WeakAttr>())
4102         Entry->setLinkage(llvm::Function::ExternalLinkage);
4103     }
4104 
4105     // Handle dropped DLL attributes.
4106     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4107         !shouldMapVisibilityToDLLExport(D))
4108       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4109 
4110     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4111       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4112 
4113     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4114       return Entry;
4115 
4116     // If there are two attempts to define the same mangled name, issue an
4117     // error.
4118     if (IsForDefinition && !Entry->isDeclaration()) {
4119       GlobalDecl OtherGD;
4120       const VarDecl *OtherD;
4121 
4122       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4123       // to make sure that we issue an error only once.
4124       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4125           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4126           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4127           OtherD->hasInit() &&
4128           DiagnosedConflictingDefinitions.insert(D).second) {
4129         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4130             << MangledName;
4131         getDiags().Report(OtherGD.getDecl()->getLocation(),
4132                           diag::note_previous_definition);
4133       }
4134     }
4135 
4136     // Make sure the result is of the correct type.
4137     if (Entry->getType()->getAddressSpace() != TargetAS) {
4138       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4139                                                   Ty->getPointerTo(TargetAS));
4140     }
4141 
4142     // (If global is requested for a definition, we always need to create a new
4143     // global, not just return a bitcast.)
4144     if (!IsForDefinition)
4145       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4146   }
4147 
4148   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4149 
4150   auto *GV = new llvm::GlobalVariable(
4151       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4152       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4153       getContext().getTargetAddressSpace(DAddrSpace));
4154 
4155   // If we already created a global with the same mangled name (but different
4156   // type) before, take its name and remove it from its parent.
4157   if (Entry) {
4158     GV->takeName(Entry);
4159 
4160     if (!Entry->use_empty()) {
4161       llvm::Constant *NewPtrForOldDecl =
4162           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4163       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4164     }
4165 
4166     Entry->eraseFromParent();
4167   }
4168 
4169   // This is the first use or definition of a mangled name.  If there is a
4170   // deferred decl with this name, remember that we need to emit it at the end
4171   // of the file.
4172   auto DDI = DeferredDecls.find(MangledName);
4173   if (DDI != DeferredDecls.end()) {
4174     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4175     // list, and remove it from DeferredDecls (since we don't need it anymore).
4176     addDeferredDeclToEmit(DDI->second);
4177     DeferredDecls.erase(DDI);
4178   }
4179 
4180   // Handle things which are present even on external declarations.
4181   if (D) {
4182     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4183       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4184 
4185     // FIXME: This code is overly simple and should be merged with other global
4186     // handling.
4187     GV->setConstant(isTypeConstant(D->getType(), false));
4188 
4189     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4190 
4191     setLinkageForGV(GV, D);
4192 
4193     if (D->getTLSKind()) {
4194       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4195         CXXThreadLocals.push_back(D);
4196       setTLSMode(GV, *D);
4197     }
4198 
4199     setGVProperties(GV, D);
4200 
4201     // If required by the ABI, treat declarations of static data members with
4202     // inline initializers as definitions.
4203     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4204       EmitGlobalVarDefinition(D);
4205     }
4206 
4207     // Emit section information for extern variables.
4208     if (D->hasExternalStorage()) {
4209       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4210         GV->setSection(SA->getName());
4211     }
4212 
4213     // Handle XCore specific ABI requirements.
4214     if (getTriple().getArch() == llvm::Triple::xcore &&
4215         D->getLanguageLinkage() == CLanguageLinkage &&
4216         D->getType().isConstant(Context) &&
4217         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4218       GV->setSection(".cp.rodata");
4219 
4220     // Check if we a have a const declaration with an initializer, we may be
4221     // able to emit it as available_externally to expose it's value to the
4222     // optimizer.
4223     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4224         D->getType().isConstQualified() && !GV->hasInitializer() &&
4225         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4226       const auto *Record =
4227           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4228       bool HasMutableFields = Record && Record->hasMutableFields();
4229       if (!HasMutableFields) {
4230         const VarDecl *InitDecl;
4231         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4232         if (InitExpr) {
4233           ConstantEmitter emitter(*this);
4234           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4235           if (Init) {
4236             auto *InitType = Init->getType();
4237             if (GV->getValueType() != InitType) {
4238               // The type of the initializer does not match the definition.
4239               // This happens when an initializer has a different type from
4240               // the type of the global (because of padding at the end of a
4241               // structure for instance).
4242               GV->setName(StringRef());
4243               // Make a new global with the correct type, this is now guaranteed
4244               // to work.
4245               auto *NewGV = cast<llvm::GlobalVariable>(
4246                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4247                       ->stripPointerCasts());
4248 
4249               // Erase the old global, since it is no longer used.
4250               GV->eraseFromParent();
4251               GV = NewGV;
4252             } else {
4253               GV->setInitializer(Init);
4254               GV->setConstant(true);
4255               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4256             }
4257             emitter.finalize(GV);
4258           }
4259         }
4260       }
4261     }
4262   }
4263 
4264   if (GV->isDeclaration()) {
4265     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4266     // External HIP managed variables needed to be recorded for transformation
4267     // in both device and host compilations.
4268     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4269         D->hasExternalStorage())
4270       getCUDARuntime().handleVarRegistration(D, *GV);
4271   }
4272 
4273   LangAS ExpectedAS =
4274       D ? D->getType().getAddressSpace()
4275         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4276   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4277   if (DAddrSpace != ExpectedAS) {
4278     return getTargetCodeGenInfo().performAddrSpaceCast(
4279         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4280   }
4281 
4282   return GV;
4283 }
4284 
4285 llvm::Constant *
4286 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4287   const Decl *D = GD.getDecl();
4288 
4289   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4290     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4291                                 /*DontDefer=*/false, IsForDefinition);
4292 
4293   if (isa<CXXMethodDecl>(D)) {
4294     auto FInfo =
4295         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4296     auto Ty = getTypes().GetFunctionType(*FInfo);
4297     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4298                              IsForDefinition);
4299   }
4300 
4301   if (isa<FunctionDecl>(D)) {
4302     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4303     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4304     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4305                              IsForDefinition);
4306   }
4307 
4308   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4309 }
4310 
4311 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4312     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4313     unsigned Alignment) {
4314   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4315   llvm::GlobalVariable *OldGV = nullptr;
4316 
4317   if (GV) {
4318     // Check if the variable has the right type.
4319     if (GV->getValueType() == Ty)
4320       return GV;
4321 
4322     // Because C++ name mangling, the only way we can end up with an already
4323     // existing global with the same name is if it has been declared extern "C".
4324     assert(GV->isDeclaration() && "Declaration has wrong type!");
4325     OldGV = GV;
4326   }
4327 
4328   // Create a new variable.
4329   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4330                                 Linkage, nullptr, Name);
4331 
4332   if (OldGV) {
4333     // Replace occurrences of the old variable if needed.
4334     GV->takeName(OldGV);
4335 
4336     if (!OldGV->use_empty()) {
4337       llvm::Constant *NewPtrForOldDecl =
4338       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4339       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4340     }
4341 
4342     OldGV->eraseFromParent();
4343   }
4344 
4345   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4346       !GV->hasAvailableExternallyLinkage())
4347     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4348 
4349   GV->setAlignment(llvm::MaybeAlign(Alignment));
4350 
4351   return GV;
4352 }
4353 
4354 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4355 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4356 /// then it will be created with the specified type instead of whatever the
4357 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4358 /// that an actual global with type Ty will be returned, not conversion of a
4359 /// variable with the same mangled name but some other type.
4360 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4361                                                   llvm::Type *Ty,
4362                                            ForDefinition_t IsForDefinition) {
4363   assert(D->hasGlobalStorage() && "Not a global variable");
4364   QualType ASTTy = D->getType();
4365   if (!Ty)
4366     Ty = getTypes().ConvertTypeForMem(ASTTy);
4367 
4368   StringRef MangledName = getMangledName(D);
4369   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4370                                IsForDefinition);
4371 }
4372 
4373 /// CreateRuntimeVariable - Create a new runtime global variable with the
4374 /// specified type and name.
4375 llvm::Constant *
4376 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4377                                      StringRef Name) {
4378   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4379                                                        : LangAS::Default;
4380   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4381   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4382   return Ret;
4383 }
4384 
4385 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4386   assert(!D->getInit() && "Cannot emit definite definitions here!");
4387 
4388   StringRef MangledName = getMangledName(D);
4389   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4390 
4391   // We already have a definition, not declaration, with the same mangled name.
4392   // Emitting of declaration is not required (and actually overwrites emitted
4393   // definition).
4394   if (GV && !GV->isDeclaration())
4395     return;
4396 
4397   // If we have not seen a reference to this variable yet, place it into the
4398   // deferred declarations table to be emitted if needed later.
4399   if (!MustBeEmitted(D) && !GV) {
4400       DeferredDecls[MangledName] = D;
4401       return;
4402   }
4403 
4404   // The tentative definition is the only definition.
4405   EmitGlobalVarDefinition(D);
4406 }
4407 
4408 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4409   EmitExternalVarDeclaration(D);
4410 }
4411 
4412 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4413   return Context.toCharUnitsFromBits(
4414       getDataLayout().getTypeStoreSizeInBits(Ty));
4415 }
4416 
4417 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4418   if (LangOpts.OpenCL) {
4419     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4420     assert(AS == LangAS::opencl_global ||
4421            AS == LangAS::opencl_global_device ||
4422            AS == LangAS::opencl_global_host ||
4423            AS == LangAS::opencl_constant ||
4424            AS == LangAS::opencl_local ||
4425            AS >= LangAS::FirstTargetAddressSpace);
4426     return AS;
4427   }
4428 
4429   if (LangOpts.SYCLIsDevice &&
4430       (!D || D->getType().getAddressSpace() == LangAS::Default))
4431     return LangAS::sycl_global;
4432 
4433   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4434     if (D && D->hasAttr<CUDAConstantAttr>())
4435       return LangAS::cuda_constant;
4436     else if (D && D->hasAttr<CUDASharedAttr>())
4437       return LangAS::cuda_shared;
4438     else if (D && D->hasAttr<CUDADeviceAttr>())
4439       return LangAS::cuda_device;
4440     else if (D && D->getType().isConstQualified())
4441       return LangAS::cuda_constant;
4442     else
4443       return LangAS::cuda_device;
4444   }
4445 
4446   if (LangOpts.OpenMP) {
4447     LangAS AS;
4448     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4449       return AS;
4450   }
4451   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4452 }
4453 
4454 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4455   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4456   if (LangOpts.OpenCL)
4457     return LangAS::opencl_constant;
4458   if (LangOpts.SYCLIsDevice)
4459     return LangAS::sycl_global;
4460   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4461     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4462     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4463     // with OpVariable instructions with Generic storage class which is not
4464     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4465     // UniformConstant storage class is not viable as pointers to it may not be
4466     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4467     return LangAS::cuda_device;
4468   if (auto AS = getTarget().getConstantAddressSpace())
4469     return *AS;
4470   return LangAS::Default;
4471 }
4472 
4473 // In address space agnostic languages, string literals are in default address
4474 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4475 // emitted in constant address space in LLVM IR. To be consistent with other
4476 // parts of AST, string literal global variables in constant address space
4477 // need to be casted to default address space before being put into address
4478 // map and referenced by other part of CodeGen.
4479 // In OpenCL, string literals are in constant address space in AST, therefore
4480 // they should not be casted to default address space.
4481 static llvm::Constant *
4482 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4483                                        llvm::GlobalVariable *GV) {
4484   llvm::Constant *Cast = GV;
4485   if (!CGM.getLangOpts().OpenCL) {
4486     auto AS = CGM.GetGlobalConstantAddressSpace();
4487     if (AS != LangAS::Default)
4488       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4489           CGM, GV, AS, LangAS::Default,
4490           GV->getValueType()->getPointerTo(
4491               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4492   }
4493   return Cast;
4494 }
4495 
4496 template<typename SomeDecl>
4497 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4498                                                llvm::GlobalValue *GV) {
4499   if (!getLangOpts().CPlusPlus)
4500     return;
4501 
4502   // Must have 'used' attribute, or else inline assembly can't rely on
4503   // the name existing.
4504   if (!D->template hasAttr<UsedAttr>())
4505     return;
4506 
4507   // Must have internal linkage and an ordinary name.
4508   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4509     return;
4510 
4511   // Must be in an extern "C" context. Entities declared directly within
4512   // a record are not extern "C" even if the record is in such a context.
4513   const SomeDecl *First = D->getFirstDecl();
4514   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4515     return;
4516 
4517   // OK, this is an internal linkage entity inside an extern "C" linkage
4518   // specification. Make a note of that so we can give it the "expected"
4519   // mangled name if nothing else is using that name.
4520   std::pair<StaticExternCMap::iterator, bool> R =
4521       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4522 
4523   // If we have multiple internal linkage entities with the same name
4524   // in extern "C" regions, none of them gets that name.
4525   if (!R.second)
4526     R.first->second = nullptr;
4527 }
4528 
4529 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4530   if (!CGM.supportsCOMDAT())
4531     return false;
4532 
4533   if (D.hasAttr<SelectAnyAttr>())
4534     return true;
4535 
4536   GVALinkage Linkage;
4537   if (auto *VD = dyn_cast<VarDecl>(&D))
4538     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4539   else
4540     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4541 
4542   switch (Linkage) {
4543   case GVA_Internal:
4544   case GVA_AvailableExternally:
4545   case GVA_StrongExternal:
4546     return false;
4547   case GVA_DiscardableODR:
4548   case GVA_StrongODR:
4549     return true;
4550   }
4551   llvm_unreachable("No such linkage");
4552 }
4553 
4554 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4555                                           llvm::GlobalObject &GO) {
4556   if (!shouldBeInCOMDAT(*this, D))
4557     return;
4558   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4559 }
4560 
4561 /// Pass IsTentative as true if you want to create a tentative definition.
4562 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4563                                             bool IsTentative) {
4564   // OpenCL global variables of sampler type are translated to function calls,
4565   // therefore no need to be translated.
4566   QualType ASTTy = D->getType();
4567   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4568     return;
4569 
4570   // If this is OpenMP device, check if it is legal to emit this global
4571   // normally.
4572   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4573       OpenMPRuntime->emitTargetGlobalVariable(D))
4574     return;
4575 
4576   llvm::TrackingVH<llvm::Constant> Init;
4577   bool NeedsGlobalCtor = false;
4578   bool NeedsGlobalDtor =
4579       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4580 
4581   const VarDecl *InitDecl;
4582   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4583 
4584   Optional<ConstantEmitter> emitter;
4585 
4586   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4587   // as part of their declaration."  Sema has already checked for
4588   // error cases, so we just need to set Init to UndefValue.
4589   bool IsCUDASharedVar =
4590       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4591   // Shadows of initialized device-side global variables are also left
4592   // undefined.
4593   // Managed Variables should be initialized on both host side and device side.
4594   bool IsCUDAShadowVar =
4595       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4596       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4597        D->hasAttr<CUDASharedAttr>());
4598   bool IsCUDADeviceShadowVar =
4599       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4600       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4601        D->getType()->isCUDADeviceBuiltinTextureType());
4602   if (getLangOpts().CUDA &&
4603       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4604     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4605   else if (D->hasAttr<LoaderUninitializedAttr>())
4606     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4607   else if (!InitExpr) {
4608     // This is a tentative definition; tentative definitions are
4609     // implicitly initialized with { 0 }.
4610     //
4611     // Note that tentative definitions are only emitted at the end of
4612     // a translation unit, so they should never have incomplete
4613     // type. In addition, EmitTentativeDefinition makes sure that we
4614     // never attempt to emit a tentative definition if a real one
4615     // exists. A use may still exists, however, so we still may need
4616     // to do a RAUW.
4617     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4618     Init = EmitNullConstant(D->getType());
4619   } else {
4620     initializedGlobalDecl = GlobalDecl(D);
4621     emitter.emplace(*this);
4622     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4623     if (!Initializer) {
4624       QualType T = InitExpr->getType();
4625       if (D->getType()->isReferenceType())
4626         T = D->getType();
4627 
4628       if (getLangOpts().CPlusPlus) {
4629         if (InitDecl->hasFlexibleArrayInit(getContext()))
4630           ErrorUnsupported(D, "flexible array initializer");
4631         Init = EmitNullConstant(T);
4632         NeedsGlobalCtor = true;
4633       } else {
4634         ErrorUnsupported(D, "static initializer");
4635         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4636       }
4637     } else {
4638       Init = Initializer;
4639       // We don't need an initializer, so remove the entry for the delayed
4640       // initializer position (just in case this entry was delayed) if we
4641       // also don't need to register a destructor.
4642       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4643         DelayedCXXInitPosition.erase(D);
4644 
4645 #ifndef NDEBUG
4646       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4647                           InitDecl->getFlexibleArrayInitChars(getContext());
4648       CharUnits CstSize = CharUnits::fromQuantity(
4649           getDataLayout().getTypeAllocSize(Init->getType()));
4650       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4651 #endif
4652     }
4653   }
4654 
4655   llvm::Type* InitType = Init->getType();
4656   llvm::Constant *Entry =
4657       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4658 
4659   // Strip off pointer casts if we got them.
4660   Entry = Entry->stripPointerCasts();
4661 
4662   // Entry is now either a Function or GlobalVariable.
4663   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4664 
4665   // We have a definition after a declaration with the wrong type.
4666   // We must make a new GlobalVariable* and update everything that used OldGV
4667   // (a declaration or tentative definition) with the new GlobalVariable*
4668   // (which will be a definition).
4669   //
4670   // This happens if there is a prototype for a global (e.g.
4671   // "extern int x[];") and then a definition of a different type (e.g.
4672   // "int x[10];"). This also happens when an initializer has a different type
4673   // from the type of the global (this happens with unions).
4674   if (!GV || GV->getValueType() != InitType ||
4675       GV->getType()->getAddressSpace() !=
4676           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4677 
4678     // Move the old entry aside so that we'll create a new one.
4679     Entry->setName(StringRef());
4680 
4681     // Make a new global with the correct type, this is now guaranteed to work.
4682     GV = cast<llvm::GlobalVariable>(
4683         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4684             ->stripPointerCasts());
4685 
4686     // Replace all uses of the old global with the new global
4687     llvm::Constant *NewPtrForOldDecl =
4688         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4689                                                              Entry->getType());
4690     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4691 
4692     // Erase the old global, since it is no longer used.
4693     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4694   }
4695 
4696   MaybeHandleStaticInExternC(D, GV);
4697 
4698   if (D->hasAttr<AnnotateAttr>())
4699     AddGlobalAnnotations(D, GV);
4700 
4701   // Set the llvm linkage type as appropriate.
4702   llvm::GlobalValue::LinkageTypes Linkage =
4703       getLLVMLinkageVarDefinition(D, GV->isConstant());
4704 
4705   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4706   // the device. [...]"
4707   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4708   // __device__, declares a variable that: [...]
4709   // Is accessible from all the threads within the grid and from the host
4710   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4711   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4712   if (GV && LangOpts.CUDA) {
4713     if (LangOpts.CUDAIsDevice) {
4714       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4715           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4716            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4717            D->getType()->isCUDADeviceBuiltinTextureType()))
4718         GV->setExternallyInitialized(true);
4719     } else {
4720       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4721     }
4722     getCUDARuntime().handleVarRegistration(D, *GV);
4723   }
4724 
4725   GV->setInitializer(Init);
4726   if (emitter)
4727     emitter->finalize(GV);
4728 
4729   // If it is safe to mark the global 'constant', do so now.
4730   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4731                   isTypeConstant(D->getType(), true));
4732 
4733   // If it is in a read-only section, mark it 'constant'.
4734   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4735     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4736     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4737       GV->setConstant(true);
4738   }
4739 
4740   CharUnits AlignVal = getContext().getDeclAlign(D);
4741   // Check for alignment specifed in an 'omp allocate' directive.
4742   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4743           getOMPAllocateAlignment(D))
4744     AlignVal = *AlignValFromAllocate;
4745   GV->setAlignment(AlignVal.getAsAlign());
4746 
4747   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4748   // function is only defined alongside the variable, not also alongside
4749   // callers. Normally, all accesses to a thread_local go through the
4750   // thread-wrapper in order to ensure initialization has occurred, underlying
4751   // variable will never be used other than the thread-wrapper, so it can be
4752   // converted to internal linkage.
4753   //
4754   // However, if the variable has the 'constinit' attribute, it _can_ be
4755   // referenced directly, without calling the thread-wrapper, so the linkage
4756   // must not be changed.
4757   //
4758   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4759   // weak or linkonce, the de-duplication semantics are important to preserve,
4760   // so we don't change the linkage.
4761   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4762       Linkage == llvm::GlobalValue::ExternalLinkage &&
4763       Context.getTargetInfo().getTriple().isOSDarwin() &&
4764       !D->hasAttr<ConstInitAttr>())
4765     Linkage = llvm::GlobalValue::InternalLinkage;
4766 
4767   GV->setLinkage(Linkage);
4768   if (D->hasAttr<DLLImportAttr>())
4769     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4770   else if (D->hasAttr<DLLExportAttr>())
4771     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4772   else
4773     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4774 
4775   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4776     // common vars aren't constant even if declared const.
4777     GV->setConstant(false);
4778     // Tentative definition of global variables may be initialized with
4779     // non-zero null pointers. In this case they should have weak linkage
4780     // since common linkage must have zero initializer and must not have
4781     // explicit section therefore cannot have non-zero initial value.
4782     if (!GV->getInitializer()->isNullValue())
4783       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4784   }
4785 
4786   setNonAliasAttributes(D, GV);
4787 
4788   if (D->getTLSKind() && !GV->isThreadLocal()) {
4789     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4790       CXXThreadLocals.push_back(D);
4791     setTLSMode(GV, *D);
4792   }
4793 
4794   maybeSetTrivialComdat(*D, *GV);
4795 
4796   // Emit the initializer function if necessary.
4797   if (NeedsGlobalCtor || NeedsGlobalDtor)
4798     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4799 
4800   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4801 
4802   // Emit global variable debug information.
4803   if (CGDebugInfo *DI = getModuleDebugInfo())
4804     if (getCodeGenOpts().hasReducedDebugInfo())
4805       DI->EmitGlobalVariable(GV, D);
4806 }
4807 
4808 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4809   if (CGDebugInfo *DI = getModuleDebugInfo())
4810     if (getCodeGenOpts().hasReducedDebugInfo()) {
4811       QualType ASTTy = D->getType();
4812       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4813       llvm::Constant *GV =
4814           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4815       DI->EmitExternalVariable(
4816           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4817     }
4818 }
4819 
4820 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4821                                       CodeGenModule &CGM, const VarDecl *D,
4822                                       bool NoCommon) {
4823   // Don't give variables common linkage if -fno-common was specified unless it
4824   // was overridden by a NoCommon attribute.
4825   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4826     return true;
4827 
4828   // C11 6.9.2/2:
4829   //   A declaration of an identifier for an object that has file scope without
4830   //   an initializer, and without a storage-class specifier or with the
4831   //   storage-class specifier static, constitutes a tentative definition.
4832   if (D->getInit() || D->hasExternalStorage())
4833     return true;
4834 
4835   // A variable cannot be both common and exist in a section.
4836   if (D->hasAttr<SectionAttr>())
4837     return true;
4838 
4839   // A variable cannot be both common and exist in a section.
4840   // We don't try to determine which is the right section in the front-end.
4841   // If no specialized section name is applicable, it will resort to default.
4842   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4843       D->hasAttr<PragmaClangDataSectionAttr>() ||
4844       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4845       D->hasAttr<PragmaClangRodataSectionAttr>())
4846     return true;
4847 
4848   // Thread local vars aren't considered common linkage.
4849   if (D->getTLSKind())
4850     return true;
4851 
4852   // Tentative definitions marked with WeakImportAttr are true definitions.
4853   if (D->hasAttr<WeakImportAttr>())
4854     return true;
4855 
4856   // A variable cannot be both common and exist in a comdat.
4857   if (shouldBeInCOMDAT(CGM, *D))
4858     return true;
4859 
4860   // Declarations with a required alignment do not have common linkage in MSVC
4861   // mode.
4862   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4863     if (D->hasAttr<AlignedAttr>())
4864       return true;
4865     QualType VarType = D->getType();
4866     if (Context.isAlignmentRequired(VarType))
4867       return true;
4868 
4869     if (const auto *RT = VarType->getAs<RecordType>()) {
4870       const RecordDecl *RD = RT->getDecl();
4871       for (const FieldDecl *FD : RD->fields()) {
4872         if (FD->isBitField())
4873           continue;
4874         if (FD->hasAttr<AlignedAttr>())
4875           return true;
4876         if (Context.isAlignmentRequired(FD->getType()))
4877           return true;
4878       }
4879     }
4880   }
4881 
4882   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4883   // common symbols, so symbols with greater alignment requirements cannot be
4884   // common.
4885   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4886   // alignments for common symbols via the aligncomm directive, so this
4887   // restriction only applies to MSVC environments.
4888   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4889       Context.getTypeAlignIfKnown(D->getType()) >
4890           Context.toBits(CharUnits::fromQuantity(32)))
4891     return true;
4892 
4893   return false;
4894 }
4895 
4896 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4897     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4898   if (Linkage == GVA_Internal)
4899     return llvm::Function::InternalLinkage;
4900 
4901   if (D->hasAttr<WeakAttr>())
4902     return llvm::GlobalVariable::WeakAnyLinkage;
4903 
4904   if (const auto *FD = D->getAsFunction())
4905     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4906       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4907 
4908   // We are guaranteed to have a strong definition somewhere else,
4909   // so we can use available_externally linkage.
4910   if (Linkage == GVA_AvailableExternally)
4911     return llvm::GlobalValue::AvailableExternallyLinkage;
4912 
4913   // Note that Apple's kernel linker doesn't support symbol
4914   // coalescing, so we need to avoid linkonce and weak linkages there.
4915   // Normally, this means we just map to internal, but for explicit
4916   // instantiations we'll map to external.
4917 
4918   // In C++, the compiler has to emit a definition in every translation unit
4919   // that references the function.  We should use linkonce_odr because
4920   // a) if all references in this translation unit are optimized away, we
4921   // don't need to codegen it.  b) if the function persists, it needs to be
4922   // merged with other definitions. c) C++ has the ODR, so we know the
4923   // definition is dependable.
4924   if (Linkage == GVA_DiscardableODR)
4925     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4926                                             : llvm::Function::InternalLinkage;
4927 
4928   // An explicit instantiation of a template has weak linkage, since
4929   // explicit instantiations can occur in multiple translation units
4930   // and must all be equivalent. However, we are not allowed to
4931   // throw away these explicit instantiations.
4932   //
4933   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4934   // so say that CUDA templates are either external (for kernels) or internal.
4935   // This lets llvm perform aggressive inter-procedural optimizations. For
4936   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4937   // therefore we need to follow the normal linkage paradigm.
4938   if (Linkage == GVA_StrongODR) {
4939     if (getLangOpts().AppleKext)
4940       return llvm::Function::ExternalLinkage;
4941     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4942         !getLangOpts().GPURelocatableDeviceCode)
4943       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4944                                           : llvm::Function::InternalLinkage;
4945     return llvm::Function::WeakODRLinkage;
4946   }
4947 
4948   // C++ doesn't have tentative definitions and thus cannot have common
4949   // linkage.
4950   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4951       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4952                                  CodeGenOpts.NoCommon))
4953     return llvm::GlobalVariable::CommonLinkage;
4954 
4955   // selectany symbols are externally visible, so use weak instead of
4956   // linkonce.  MSVC optimizes away references to const selectany globals, so
4957   // all definitions should be the same and ODR linkage should be used.
4958   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4959   if (D->hasAttr<SelectAnyAttr>())
4960     return llvm::GlobalVariable::WeakODRLinkage;
4961 
4962   // Otherwise, we have strong external linkage.
4963   assert(Linkage == GVA_StrongExternal);
4964   return llvm::GlobalVariable::ExternalLinkage;
4965 }
4966 
4967 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4968     const VarDecl *VD, bool IsConstant) {
4969   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4970   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4971 }
4972 
4973 /// Replace the uses of a function that was declared with a non-proto type.
4974 /// We want to silently drop extra arguments from call sites
4975 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4976                                           llvm::Function *newFn) {
4977   // Fast path.
4978   if (old->use_empty()) return;
4979 
4980   llvm::Type *newRetTy = newFn->getReturnType();
4981   SmallVector<llvm::Value*, 4> newArgs;
4982 
4983   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4984          ui != ue; ) {
4985     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4986     llvm::User *user = use->getUser();
4987 
4988     // Recognize and replace uses of bitcasts.  Most calls to
4989     // unprototyped functions will use bitcasts.
4990     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4991       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4992         replaceUsesOfNonProtoConstant(bitcast, newFn);
4993       continue;
4994     }
4995 
4996     // Recognize calls to the function.
4997     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4998     if (!callSite) continue;
4999     if (!callSite->isCallee(&*use))
5000       continue;
5001 
5002     // If the return types don't match exactly, then we can't
5003     // transform this call unless it's dead.
5004     if (callSite->getType() != newRetTy && !callSite->use_empty())
5005       continue;
5006 
5007     // Get the call site's attribute list.
5008     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5009     llvm::AttributeList oldAttrs = callSite->getAttributes();
5010 
5011     // If the function was passed too few arguments, don't transform.
5012     unsigned newNumArgs = newFn->arg_size();
5013     if (callSite->arg_size() < newNumArgs)
5014       continue;
5015 
5016     // If extra arguments were passed, we silently drop them.
5017     // If any of the types mismatch, we don't transform.
5018     unsigned argNo = 0;
5019     bool dontTransform = false;
5020     for (llvm::Argument &A : newFn->args()) {
5021       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5022         dontTransform = true;
5023         break;
5024       }
5025 
5026       // Add any parameter attributes.
5027       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5028       argNo++;
5029     }
5030     if (dontTransform)
5031       continue;
5032 
5033     // Okay, we can transform this.  Create the new call instruction and copy
5034     // over the required information.
5035     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5036 
5037     // Copy over any operand bundles.
5038     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5039     callSite->getOperandBundlesAsDefs(newBundles);
5040 
5041     llvm::CallBase *newCall;
5042     if (isa<llvm::CallInst>(callSite)) {
5043       newCall =
5044           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5045     } else {
5046       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5047       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5048                                          oldInvoke->getUnwindDest(), newArgs,
5049                                          newBundles, "", callSite);
5050     }
5051     newArgs.clear(); // for the next iteration
5052 
5053     if (!newCall->getType()->isVoidTy())
5054       newCall->takeName(callSite);
5055     newCall->setAttributes(
5056         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5057                                  oldAttrs.getRetAttrs(), newArgAttrs));
5058     newCall->setCallingConv(callSite->getCallingConv());
5059 
5060     // Finally, remove the old call, replacing any uses with the new one.
5061     if (!callSite->use_empty())
5062       callSite->replaceAllUsesWith(newCall);
5063 
5064     // Copy debug location attached to CI.
5065     if (callSite->getDebugLoc())
5066       newCall->setDebugLoc(callSite->getDebugLoc());
5067 
5068     callSite->eraseFromParent();
5069   }
5070 }
5071 
5072 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5073 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5074 /// existing call uses of the old function in the module, this adjusts them to
5075 /// call the new function directly.
5076 ///
5077 /// This is not just a cleanup: the always_inline pass requires direct calls to
5078 /// functions to be able to inline them.  If there is a bitcast in the way, it
5079 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5080 /// run at -O0.
5081 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5082                                                       llvm::Function *NewFn) {
5083   // If we're redefining a global as a function, don't transform it.
5084   if (!isa<llvm::Function>(Old)) return;
5085 
5086   replaceUsesOfNonProtoConstant(Old, NewFn);
5087 }
5088 
5089 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5090   auto DK = VD->isThisDeclarationADefinition();
5091   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5092     return;
5093 
5094   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5095   // If we have a definition, this might be a deferred decl. If the
5096   // instantiation is explicit, make sure we emit it at the end.
5097   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5098     GetAddrOfGlobalVar(VD);
5099 
5100   EmitTopLevelDecl(VD);
5101 }
5102 
5103 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5104                                                  llvm::GlobalValue *GV) {
5105   const auto *D = cast<FunctionDecl>(GD.getDecl());
5106 
5107   // Compute the function info and LLVM type.
5108   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5109   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5110 
5111   // Get or create the prototype for the function.
5112   if (!GV || (GV->getValueType() != Ty))
5113     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5114                                                    /*DontDefer=*/true,
5115                                                    ForDefinition));
5116 
5117   // Already emitted.
5118   if (!GV->isDeclaration())
5119     return;
5120 
5121   // We need to set linkage and visibility on the function before
5122   // generating code for it because various parts of IR generation
5123   // want to propagate this information down (e.g. to local static
5124   // declarations).
5125   auto *Fn = cast<llvm::Function>(GV);
5126   setFunctionLinkage(GD, Fn);
5127 
5128   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5129   setGVProperties(Fn, GD);
5130 
5131   MaybeHandleStaticInExternC(D, Fn);
5132 
5133   maybeSetTrivialComdat(*D, *Fn);
5134 
5135   // Set CodeGen attributes that represent floating point environment.
5136   setLLVMFunctionFEnvAttributes(D, Fn);
5137 
5138   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5139 
5140   setNonAliasAttributes(GD, Fn);
5141   SetLLVMFunctionAttributesForDefinition(D, Fn);
5142 
5143   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5144     AddGlobalCtor(Fn, CA->getPriority());
5145   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5146     AddGlobalDtor(Fn, DA->getPriority(), true);
5147   if (D->hasAttr<AnnotateAttr>())
5148     AddGlobalAnnotations(D, Fn);
5149 }
5150 
5151 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5152   const auto *D = cast<ValueDecl>(GD.getDecl());
5153   const AliasAttr *AA = D->getAttr<AliasAttr>();
5154   assert(AA && "Not an alias?");
5155 
5156   StringRef MangledName = getMangledName(GD);
5157 
5158   if (AA->getAliasee() == MangledName) {
5159     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5160     return;
5161   }
5162 
5163   // If there is a definition in the module, then it wins over the alias.
5164   // This is dubious, but allow it to be safe.  Just ignore the alias.
5165   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5166   if (Entry && !Entry->isDeclaration())
5167     return;
5168 
5169   Aliases.push_back(GD);
5170 
5171   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5172 
5173   // Create a reference to the named value.  This ensures that it is emitted
5174   // if a deferred decl.
5175   llvm::Constant *Aliasee;
5176   llvm::GlobalValue::LinkageTypes LT;
5177   if (isa<llvm::FunctionType>(DeclTy)) {
5178     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5179                                       /*ForVTable=*/false);
5180     LT = getFunctionLinkage(GD);
5181   } else {
5182     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5183                                     /*D=*/nullptr);
5184     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5185       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5186     else
5187       LT = getFunctionLinkage(GD);
5188   }
5189 
5190   // Create the new alias itself, but don't set a name yet.
5191   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5192   auto *GA =
5193       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5194 
5195   if (Entry) {
5196     if (GA->getAliasee() == Entry) {
5197       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5198       return;
5199     }
5200 
5201     assert(Entry->isDeclaration());
5202 
5203     // If there is a declaration in the module, then we had an extern followed
5204     // by the alias, as in:
5205     //   extern int test6();
5206     //   ...
5207     //   int test6() __attribute__((alias("test7")));
5208     //
5209     // Remove it and replace uses of it with the alias.
5210     GA->takeName(Entry);
5211 
5212     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5213                                                           Entry->getType()));
5214     Entry->eraseFromParent();
5215   } else {
5216     GA->setName(MangledName);
5217   }
5218 
5219   // Set attributes which are particular to an alias; this is a
5220   // specialization of the attributes which may be set on a global
5221   // variable/function.
5222   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5223       D->isWeakImported()) {
5224     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5225   }
5226 
5227   if (const auto *VD = dyn_cast<VarDecl>(D))
5228     if (VD->getTLSKind())
5229       setTLSMode(GA, *VD);
5230 
5231   SetCommonAttributes(GD, GA);
5232 
5233   // Emit global alias debug information.
5234   if (isa<VarDecl>(D))
5235     if (CGDebugInfo *DI = getModuleDebugInfo())
5236       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5237 }
5238 
5239 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5240   const auto *D = cast<ValueDecl>(GD.getDecl());
5241   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5242   assert(IFA && "Not an ifunc?");
5243 
5244   StringRef MangledName = getMangledName(GD);
5245 
5246   if (IFA->getResolver() == MangledName) {
5247     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5248     return;
5249   }
5250 
5251   // Report an error if some definition overrides ifunc.
5252   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5253   if (Entry && !Entry->isDeclaration()) {
5254     GlobalDecl OtherGD;
5255     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5256         DiagnosedConflictingDefinitions.insert(GD).second) {
5257       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5258           << MangledName;
5259       Diags.Report(OtherGD.getDecl()->getLocation(),
5260                    diag::note_previous_definition);
5261     }
5262     return;
5263   }
5264 
5265   Aliases.push_back(GD);
5266 
5267   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5268   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5269   llvm::Constant *Resolver =
5270       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5271                               /*ForVTable=*/false);
5272   llvm::GlobalIFunc *GIF =
5273       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5274                                 "", Resolver, &getModule());
5275   if (Entry) {
5276     if (GIF->getResolver() == Entry) {
5277       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5278       return;
5279     }
5280     assert(Entry->isDeclaration());
5281 
5282     // If there is a declaration in the module, then we had an extern followed
5283     // by the ifunc, as in:
5284     //   extern int test();
5285     //   ...
5286     //   int test() __attribute__((ifunc("resolver")));
5287     //
5288     // Remove it and replace uses of it with the ifunc.
5289     GIF->takeName(Entry);
5290 
5291     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5292                                                           Entry->getType()));
5293     Entry->eraseFromParent();
5294   } else
5295     GIF->setName(MangledName);
5296 
5297   SetCommonAttributes(GD, GIF);
5298 }
5299 
5300 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5301                                             ArrayRef<llvm::Type*> Tys) {
5302   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5303                                          Tys);
5304 }
5305 
5306 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5307 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5308                          const StringLiteral *Literal, bool TargetIsLSB,
5309                          bool &IsUTF16, unsigned &StringLength) {
5310   StringRef String = Literal->getString();
5311   unsigned NumBytes = String.size();
5312 
5313   // Check for simple case.
5314   if (!Literal->containsNonAsciiOrNull()) {
5315     StringLength = NumBytes;
5316     return *Map.insert(std::make_pair(String, nullptr)).first;
5317   }
5318 
5319   // Otherwise, convert the UTF8 literals into a string of shorts.
5320   IsUTF16 = true;
5321 
5322   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5323   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5324   llvm::UTF16 *ToPtr = &ToBuf[0];
5325 
5326   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5327                                  ToPtr + NumBytes, llvm::strictConversion);
5328 
5329   // ConvertUTF8toUTF16 returns the length in ToPtr.
5330   StringLength = ToPtr - &ToBuf[0];
5331 
5332   // Add an explicit null.
5333   *ToPtr = 0;
5334   return *Map.insert(std::make_pair(
5335                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5336                                    (StringLength + 1) * 2),
5337                          nullptr)).first;
5338 }
5339 
5340 ConstantAddress
5341 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5342   unsigned StringLength = 0;
5343   bool isUTF16 = false;
5344   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5345       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5346                                getDataLayout().isLittleEndian(), isUTF16,
5347                                StringLength);
5348 
5349   if (auto *C = Entry.second)
5350     return ConstantAddress(
5351         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5352 
5353   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5354   llvm::Constant *Zeros[] = { Zero, Zero };
5355 
5356   const ASTContext &Context = getContext();
5357   const llvm::Triple &Triple = getTriple();
5358 
5359   const auto CFRuntime = getLangOpts().CFRuntime;
5360   const bool IsSwiftABI =
5361       static_cast<unsigned>(CFRuntime) >=
5362       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5363   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5364 
5365   // If we don't already have it, get __CFConstantStringClassReference.
5366   if (!CFConstantStringClassRef) {
5367     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5368     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5369     Ty = llvm::ArrayType::get(Ty, 0);
5370 
5371     switch (CFRuntime) {
5372     default: break;
5373     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5374     case LangOptions::CoreFoundationABI::Swift5_0:
5375       CFConstantStringClassName =
5376           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5377                               : "$s10Foundation19_NSCFConstantStringCN";
5378       Ty = IntPtrTy;
5379       break;
5380     case LangOptions::CoreFoundationABI::Swift4_2:
5381       CFConstantStringClassName =
5382           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5383                               : "$S10Foundation19_NSCFConstantStringCN";
5384       Ty = IntPtrTy;
5385       break;
5386     case LangOptions::CoreFoundationABI::Swift4_1:
5387       CFConstantStringClassName =
5388           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5389                               : "__T010Foundation19_NSCFConstantStringCN";
5390       Ty = IntPtrTy;
5391       break;
5392     }
5393 
5394     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5395 
5396     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5397       llvm::GlobalValue *GV = nullptr;
5398 
5399       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5400         IdentifierInfo &II = Context.Idents.get(GV->getName());
5401         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5402         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5403 
5404         const VarDecl *VD = nullptr;
5405         for (const auto *Result : DC->lookup(&II))
5406           if ((VD = dyn_cast<VarDecl>(Result)))
5407             break;
5408 
5409         if (Triple.isOSBinFormatELF()) {
5410           if (!VD)
5411             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5412         } else {
5413           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5414           if (!VD || !VD->hasAttr<DLLExportAttr>())
5415             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5416           else
5417             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5418         }
5419 
5420         setDSOLocal(GV);
5421       }
5422     }
5423 
5424     // Decay array -> ptr
5425     CFConstantStringClassRef =
5426         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5427                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5428   }
5429 
5430   QualType CFTy = Context.getCFConstantStringType();
5431 
5432   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5433 
5434   ConstantInitBuilder Builder(*this);
5435   auto Fields = Builder.beginStruct(STy);
5436 
5437   // Class pointer.
5438   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5439 
5440   // Flags.
5441   if (IsSwiftABI) {
5442     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5443     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5444   } else {
5445     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5446   }
5447 
5448   // String pointer.
5449   llvm::Constant *C = nullptr;
5450   if (isUTF16) {
5451     auto Arr = llvm::makeArrayRef(
5452         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5453         Entry.first().size() / 2);
5454     C = llvm::ConstantDataArray::get(VMContext, Arr);
5455   } else {
5456     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5457   }
5458 
5459   // Note: -fwritable-strings doesn't make the backing store strings of
5460   // CFStrings writable. (See <rdar://problem/10657500>)
5461   auto *GV =
5462       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5463                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5464   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5465   // Don't enforce the target's minimum global alignment, since the only use
5466   // of the string is via this class initializer.
5467   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5468                             : Context.getTypeAlignInChars(Context.CharTy);
5469   GV->setAlignment(Align.getAsAlign());
5470 
5471   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5472   // Without it LLVM can merge the string with a non unnamed_addr one during
5473   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5474   if (Triple.isOSBinFormatMachO())
5475     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5476                            : "__TEXT,__cstring,cstring_literals");
5477   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5478   // the static linker to adjust permissions to read-only later on.
5479   else if (Triple.isOSBinFormatELF())
5480     GV->setSection(".rodata");
5481 
5482   // String.
5483   llvm::Constant *Str =
5484       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5485 
5486   if (isUTF16)
5487     // Cast the UTF16 string to the correct type.
5488     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5489   Fields.add(Str);
5490 
5491   // String length.
5492   llvm::IntegerType *LengthTy =
5493       llvm::IntegerType::get(getModule().getContext(),
5494                              Context.getTargetInfo().getLongWidth());
5495   if (IsSwiftABI) {
5496     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5497         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5498       LengthTy = Int32Ty;
5499     else
5500       LengthTy = IntPtrTy;
5501   }
5502   Fields.addInt(LengthTy, StringLength);
5503 
5504   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5505   // properly aligned on 32-bit platforms.
5506   CharUnits Alignment =
5507       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5508 
5509   // The struct.
5510   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5511                                     /*isConstant=*/false,
5512                                     llvm::GlobalVariable::PrivateLinkage);
5513   GV->addAttribute("objc_arc_inert");
5514   switch (Triple.getObjectFormat()) {
5515   case llvm::Triple::UnknownObjectFormat:
5516     llvm_unreachable("unknown file format");
5517   case llvm::Triple::DXContainer:
5518   case llvm::Triple::GOFF:
5519   case llvm::Triple::SPIRV:
5520   case llvm::Triple::XCOFF:
5521     llvm_unreachable("unimplemented");
5522   case llvm::Triple::COFF:
5523   case llvm::Triple::ELF:
5524   case llvm::Triple::Wasm:
5525     GV->setSection("cfstring");
5526     break;
5527   case llvm::Triple::MachO:
5528     GV->setSection("__DATA,__cfstring");
5529     break;
5530   }
5531   Entry.second = GV;
5532 
5533   return ConstantAddress(GV, GV->getValueType(), Alignment);
5534 }
5535 
5536 bool CodeGenModule::getExpressionLocationsEnabled() const {
5537   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5538 }
5539 
5540 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5541   if (ObjCFastEnumerationStateType.isNull()) {
5542     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5543     D->startDefinition();
5544 
5545     QualType FieldTypes[] = {
5546       Context.UnsignedLongTy,
5547       Context.getPointerType(Context.getObjCIdType()),
5548       Context.getPointerType(Context.UnsignedLongTy),
5549       Context.getConstantArrayType(Context.UnsignedLongTy,
5550                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5551     };
5552 
5553     for (size_t i = 0; i < 4; ++i) {
5554       FieldDecl *Field = FieldDecl::Create(Context,
5555                                            D,
5556                                            SourceLocation(),
5557                                            SourceLocation(), nullptr,
5558                                            FieldTypes[i], /*TInfo=*/nullptr,
5559                                            /*BitWidth=*/nullptr,
5560                                            /*Mutable=*/false,
5561                                            ICIS_NoInit);
5562       Field->setAccess(AS_public);
5563       D->addDecl(Field);
5564     }
5565 
5566     D->completeDefinition();
5567     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5568   }
5569 
5570   return ObjCFastEnumerationStateType;
5571 }
5572 
5573 llvm::Constant *
5574 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5575   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5576 
5577   // Don't emit it as the address of the string, emit the string data itself
5578   // as an inline array.
5579   if (E->getCharByteWidth() == 1) {
5580     SmallString<64> Str(E->getString());
5581 
5582     // Resize the string to the right size, which is indicated by its type.
5583     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5584     Str.resize(CAT->getSize().getZExtValue());
5585     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5586   }
5587 
5588   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5589   llvm::Type *ElemTy = AType->getElementType();
5590   unsigned NumElements = AType->getNumElements();
5591 
5592   // Wide strings have either 2-byte or 4-byte elements.
5593   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5594     SmallVector<uint16_t, 32> Elements;
5595     Elements.reserve(NumElements);
5596 
5597     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5598       Elements.push_back(E->getCodeUnit(i));
5599     Elements.resize(NumElements);
5600     return llvm::ConstantDataArray::get(VMContext, Elements);
5601   }
5602 
5603   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5604   SmallVector<uint32_t, 32> Elements;
5605   Elements.reserve(NumElements);
5606 
5607   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5608     Elements.push_back(E->getCodeUnit(i));
5609   Elements.resize(NumElements);
5610   return llvm::ConstantDataArray::get(VMContext, Elements);
5611 }
5612 
5613 static llvm::GlobalVariable *
5614 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5615                       CodeGenModule &CGM, StringRef GlobalName,
5616                       CharUnits Alignment) {
5617   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5618       CGM.GetGlobalConstantAddressSpace());
5619 
5620   llvm::Module &M = CGM.getModule();
5621   // Create a global variable for this string
5622   auto *GV = new llvm::GlobalVariable(
5623       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5624       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5625   GV->setAlignment(Alignment.getAsAlign());
5626   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5627   if (GV->isWeakForLinker()) {
5628     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5629     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5630   }
5631   CGM.setDSOLocal(GV);
5632 
5633   return GV;
5634 }
5635 
5636 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5637 /// constant array for the given string literal.
5638 ConstantAddress
5639 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5640                                                   StringRef Name) {
5641   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5642 
5643   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5644   llvm::GlobalVariable **Entry = nullptr;
5645   if (!LangOpts.WritableStrings) {
5646     Entry = &ConstantStringMap[C];
5647     if (auto GV = *Entry) {
5648       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5649         GV->setAlignment(Alignment.getAsAlign());
5650       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5651                              GV->getValueType(), Alignment);
5652     }
5653   }
5654 
5655   SmallString<256> MangledNameBuffer;
5656   StringRef GlobalVariableName;
5657   llvm::GlobalValue::LinkageTypes LT;
5658 
5659   // Mangle the string literal if that's how the ABI merges duplicate strings.
5660   // Don't do it if they are writable, since we don't want writes in one TU to
5661   // affect strings in another.
5662   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5663       !LangOpts.WritableStrings) {
5664     llvm::raw_svector_ostream Out(MangledNameBuffer);
5665     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5666     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5667     GlobalVariableName = MangledNameBuffer;
5668   } else {
5669     LT = llvm::GlobalValue::PrivateLinkage;
5670     GlobalVariableName = Name;
5671   }
5672 
5673   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5674 
5675   CGDebugInfo *DI = getModuleDebugInfo();
5676   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5677     DI->AddStringLiteralDebugInfo(GV, S);
5678 
5679   if (Entry)
5680     *Entry = GV;
5681 
5682   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5683 
5684   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5685                          GV->getValueType(), Alignment);
5686 }
5687 
5688 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5689 /// array for the given ObjCEncodeExpr node.
5690 ConstantAddress
5691 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5692   std::string Str;
5693   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5694 
5695   return GetAddrOfConstantCString(Str);
5696 }
5697 
5698 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5699 /// the literal and a terminating '\0' character.
5700 /// The result has pointer to array type.
5701 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5702     const std::string &Str, const char *GlobalName) {
5703   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5704   CharUnits Alignment =
5705     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5706 
5707   llvm::Constant *C =
5708       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5709 
5710   // Don't share any string literals if strings aren't constant.
5711   llvm::GlobalVariable **Entry = nullptr;
5712   if (!LangOpts.WritableStrings) {
5713     Entry = &ConstantStringMap[C];
5714     if (auto GV = *Entry) {
5715       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5716         GV->setAlignment(Alignment.getAsAlign());
5717       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5718                              GV->getValueType(), Alignment);
5719     }
5720   }
5721 
5722   // Get the default prefix if a name wasn't specified.
5723   if (!GlobalName)
5724     GlobalName = ".str";
5725   // Create a global variable for this.
5726   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5727                                   GlobalName, Alignment);
5728   if (Entry)
5729     *Entry = GV;
5730 
5731   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5732                          GV->getValueType(), Alignment);
5733 }
5734 
5735 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5736     const MaterializeTemporaryExpr *E, const Expr *Init) {
5737   assert((E->getStorageDuration() == SD_Static ||
5738           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5739   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5740 
5741   // If we're not materializing a subobject of the temporary, keep the
5742   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5743   QualType MaterializedType = Init->getType();
5744   if (Init == E->getSubExpr())
5745     MaterializedType = E->getType();
5746 
5747   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5748 
5749   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5750   if (!InsertResult.second) {
5751     // We've seen this before: either we already created it or we're in the
5752     // process of doing so.
5753     if (!InsertResult.first->second) {
5754       // We recursively re-entered this function, probably during emission of
5755       // the initializer. Create a placeholder. We'll clean this up in the
5756       // outer call, at the end of this function.
5757       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5758       InsertResult.first->second = new llvm::GlobalVariable(
5759           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5760           nullptr);
5761     }
5762     return ConstantAddress(InsertResult.first->second,
5763                            llvm::cast<llvm::GlobalVariable>(
5764                                InsertResult.first->second->stripPointerCasts())
5765                                ->getValueType(),
5766                            Align);
5767   }
5768 
5769   // FIXME: If an externally-visible declaration extends multiple temporaries,
5770   // we need to give each temporary the same name in every translation unit (and
5771   // we also need to make the temporaries externally-visible).
5772   SmallString<256> Name;
5773   llvm::raw_svector_ostream Out(Name);
5774   getCXXABI().getMangleContext().mangleReferenceTemporary(
5775       VD, E->getManglingNumber(), Out);
5776 
5777   APValue *Value = nullptr;
5778   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5779     // If the initializer of the extending declaration is a constant
5780     // initializer, we should have a cached constant initializer for this
5781     // temporary. Note that this might have a different value from the value
5782     // computed by evaluating the initializer if the surrounding constant
5783     // expression modifies the temporary.
5784     Value = E->getOrCreateValue(false);
5785   }
5786 
5787   // Try evaluating it now, it might have a constant initializer.
5788   Expr::EvalResult EvalResult;
5789   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5790       !EvalResult.hasSideEffects())
5791     Value = &EvalResult.Val;
5792 
5793   LangAS AddrSpace =
5794       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5795 
5796   Optional<ConstantEmitter> emitter;
5797   llvm::Constant *InitialValue = nullptr;
5798   bool Constant = false;
5799   llvm::Type *Type;
5800   if (Value) {
5801     // The temporary has a constant initializer, use it.
5802     emitter.emplace(*this);
5803     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5804                                                MaterializedType);
5805     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5806     Type = InitialValue->getType();
5807   } else {
5808     // No initializer, the initialization will be provided when we
5809     // initialize the declaration which performed lifetime extension.
5810     Type = getTypes().ConvertTypeForMem(MaterializedType);
5811   }
5812 
5813   // Create a global variable for this lifetime-extended temporary.
5814   llvm::GlobalValue::LinkageTypes Linkage =
5815       getLLVMLinkageVarDefinition(VD, Constant);
5816   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5817     const VarDecl *InitVD;
5818     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5819         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5820       // Temporaries defined inside a class get linkonce_odr linkage because the
5821       // class can be defined in multiple translation units.
5822       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5823     } else {
5824       // There is no need for this temporary to have external linkage if the
5825       // VarDecl has external linkage.
5826       Linkage = llvm::GlobalVariable::InternalLinkage;
5827     }
5828   }
5829   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5830   auto *GV = new llvm::GlobalVariable(
5831       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5832       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5833   if (emitter) emitter->finalize(GV);
5834   setGVProperties(GV, VD);
5835   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5836     // The reference temporary should never be dllexport.
5837     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5838   GV->setAlignment(Align.getAsAlign());
5839   if (supportsCOMDAT() && GV->isWeakForLinker())
5840     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5841   if (VD->getTLSKind())
5842     setTLSMode(GV, *VD);
5843   llvm::Constant *CV = GV;
5844   if (AddrSpace != LangAS::Default)
5845     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5846         *this, GV, AddrSpace, LangAS::Default,
5847         Type->getPointerTo(
5848             getContext().getTargetAddressSpace(LangAS::Default)));
5849 
5850   // Update the map with the new temporary. If we created a placeholder above,
5851   // replace it with the new global now.
5852   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5853   if (Entry) {
5854     Entry->replaceAllUsesWith(
5855         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5856     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5857   }
5858   Entry = CV;
5859 
5860   return ConstantAddress(CV, Type, Align);
5861 }
5862 
5863 /// EmitObjCPropertyImplementations - Emit information for synthesized
5864 /// properties for an implementation.
5865 void CodeGenModule::EmitObjCPropertyImplementations(const
5866                                                     ObjCImplementationDecl *D) {
5867   for (const auto *PID : D->property_impls()) {
5868     // Dynamic is just for type-checking.
5869     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5870       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5871 
5872       // Determine which methods need to be implemented, some may have
5873       // been overridden. Note that ::isPropertyAccessor is not the method
5874       // we want, that just indicates if the decl came from a
5875       // property. What we want to know is if the method is defined in
5876       // this implementation.
5877       auto *Getter = PID->getGetterMethodDecl();
5878       if (!Getter || Getter->isSynthesizedAccessorStub())
5879         CodeGenFunction(*this).GenerateObjCGetter(
5880             const_cast<ObjCImplementationDecl *>(D), PID);
5881       auto *Setter = PID->getSetterMethodDecl();
5882       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5883         CodeGenFunction(*this).GenerateObjCSetter(
5884                                  const_cast<ObjCImplementationDecl *>(D), PID);
5885     }
5886   }
5887 }
5888 
5889 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5890   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5891   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5892        ivar; ivar = ivar->getNextIvar())
5893     if (ivar->getType().isDestructedType())
5894       return true;
5895 
5896   return false;
5897 }
5898 
5899 static bool AllTrivialInitializers(CodeGenModule &CGM,
5900                                    ObjCImplementationDecl *D) {
5901   CodeGenFunction CGF(CGM);
5902   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5903        E = D->init_end(); B != E; ++B) {
5904     CXXCtorInitializer *CtorInitExp = *B;
5905     Expr *Init = CtorInitExp->getInit();
5906     if (!CGF.isTrivialInitializer(Init))
5907       return false;
5908   }
5909   return true;
5910 }
5911 
5912 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5913 /// for an implementation.
5914 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5915   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5916   if (needsDestructMethod(D)) {
5917     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5918     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5919     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5920         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5921         getContext().VoidTy, nullptr, D,
5922         /*isInstance=*/true, /*isVariadic=*/false,
5923         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5924         /*isImplicitlyDeclared=*/true,
5925         /*isDefined=*/false, ObjCMethodDecl::Required);
5926     D->addInstanceMethod(DTORMethod);
5927     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5928     D->setHasDestructors(true);
5929   }
5930 
5931   // If the implementation doesn't have any ivar initializers, we don't need
5932   // a .cxx_construct.
5933   if (D->getNumIvarInitializers() == 0 ||
5934       AllTrivialInitializers(*this, D))
5935     return;
5936 
5937   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5938   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5939   // The constructor returns 'self'.
5940   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5941       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5942       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5943       /*isVariadic=*/false,
5944       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5945       /*isImplicitlyDeclared=*/true,
5946       /*isDefined=*/false, ObjCMethodDecl::Required);
5947   D->addInstanceMethod(CTORMethod);
5948   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5949   D->setHasNonZeroConstructors(true);
5950 }
5951 
5952 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5953 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5954   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5955       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5956     ErrorUnsupported(LSD, "linkage spec");
5957     return;
5958   }
5959 
5960   EmitDeclContext(LSD);
5961 }
5962 
5963 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5964   for (auto *I : DC->decls()) {
5965     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5966     // are themselves considered "top-level", so EmitTopLevelDecl on an
5967     // ObjCImplDecl does not recursively visit them. We need to do that in
5968     // case they're nested inside another construct (LinkageSpecDecl /
5969     // ExportDecl) that does stop them from being considered "top-level".
5970     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5971       for (auto *M : OID->methods())
5972         EmitTopLevelDecl(M);
5973     }
5974 
5975     EmitTopLevelDecl(I);
5976   }
5977 }
5978 
5979 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5980 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5981   // Ignore dependent declarations.
5982   if (D->isTemplated())
5983     return;
5984 
5985   // Consteval function shouldn't be emitted.
5986   if (auto *FD = dyn_cast<FunctionDecl>(D))
5987     if (FD->isConsteval())
5988       return;
5989 
5990   switch (D->getKind()) {
5991   case Decl::CXXConversion:
5992   case Decl::CXXMethod:
5993   case Decl::Function:
5994     EmitGlobal(cast<FunctionDecl>(D));
5995     // Always provide some coverage mapping
5996     // even for the functions that aren't emitted.
5997     AddDeferredUnusedCoverageMapping(D);
5998     break;
5999 
6000   case Decl::CXXDeductionGuide:
6001     // Function-like, but does not result in code emission.
6002     break;
6003 
6004   case Decl::Var:
6005   case Decl::Decomposition:
6006   case Decl::VarTemplateSpecialization:
6007     EmitGlobal(cast<VarDecl>(D));
6008     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6009       for (auto *B : DD->bindings())
6010         if (auto *HD = B->getHoldingVar())
6011           EmitGlobal(HD);
6012     break;
6013 
6014   // Indirect fields from global anonymous structs and unions can be
6015   // ignored; only the actual variable requires IR gen support.
6016   case Decl::IndirectField:
6017     break;
6018 
6019   // C++ Decls
6020   case Decl::Namespace:
6021     EmitDeclContext(cast<NamespaceDecl>(D));
6022     break;
6023   case Decl::ClassTemplateSpecialization: {
6024     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6025     if (CGDebugInfo *DI = getModuleDebugInfo())
6026       if (Spec->getSpecializationKind() ==
6027               TSK_ExplicitInstantiationDefinition &&
6028           Spec->hasDefinition())
6029         DI->completeTemplateDefinition(*Spec);
6030   } LLVM_FALLTHROUGH;
6031   case Decl::CXXRecord: {
6032     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6033     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6034       if (CRD->hasDefinition())
6035         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6036       if (auto *ES = D->getASTContext().getExternalSource())
6037         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6038           DI->completeUnusedClass(*CRD);
6039     }
6040     // Emit any static data members, they may be definitions.
6041     for (auto *I : CRD->decls())
6042       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6043         EmitTopLevelDecl(I);
6044     break;
6045   }
6046     // No code generation needed.
6047   case Decl::UsingShadow:
6048   case Decl::ClassTemplate:
6049   case Decl::VarTemplate:
6050   case Decl::Concept:
6051   case Decl::VarTemplatePartialSpecialization:
6052   case Decl::FunctionTemplate:
6053   case Decl::TypeAliasTemplate:
6054   case Decl::Block:
6055   case Decl::Empty:
6056   case Decl::Binding:
6057     break;
6058   case Decl::Using:          // using X; [C++]
6059     if (CGDebugInfo *DI = getModuleDebugInfo())
6060         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6061     break;
6062   case Decl::UsingEnum: // using enum X; [C++]
6063     if (CGDebugInfo *DI = getModuleDebugInfo())
6064       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6065     break;
6066   case Decl::NamespaceAlias:
6067     if (CGDebugInfo *DI = getModuleDebugInfo())
6068         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6069     break;
6070   case Decl::UsingDirective: // using namespace X; [C++]
6071     if (CGDebugInfo *DI = getModuleDebugInfo())
6072       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6073     break;
6074   case Decl::CXXConstructor:
6075     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6076     break;
6077   case Decl::CXXDestructor:
6078     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6079     break;
6080 
6081   case Decl::StaticAssert:
6082     // Nothing to do.
6083     break;
6084 
6085   // Objective-C Decls
6086 
6087   // Forward declarations, no (immediate) code generation.
6088   case Decl::ObjCInterface:
6089   case Decl::ObjCCategory:
6090     break;
6091 
6092   case Decl::ObjCProtocol: {
6093     auto *Proto = cast<ObjCProtocolDecl>(D);
6094     if (Proto->isThisDeclarationADefinition())
6095       ObjCRuntime->GenerateProtocol(Proto);
6096     break;
6097   }
6098 
6099   case Decl::ObjCCategoryImpl:
6100     // Categories have properties but don't support synthesize so we
6101     // can ignore them here.
6102     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6103     break;
6104 
6105   case Decl::ObjCImplementation: {
6106     auto *OMD = cast<ObjCImplementationDecl>(D);
6107     EmitObjCPropertyImplementations(OMD);
6108     EmitObjCIvarInitializations(OMD);
6109     ObjCRuntime->GenerateClass(OMD);
6110     // Emit global variable debug information.
6111     if (CGDebugInfo *DI = getModuleDebugInfo())
6112       if (getCodeGenOpts().hasReducedDebugInfo())
6113         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6114             OMD->getClassInterface()), OMD->getLocation());
6115     break;
6116   }
6117   case Decl::ObjCMethod: {
6118     auto *OMD = cast<ObjCMethodDecl>(D);
6119     // If this is not a prototype, emit the body.
6120     if (OMD->getBody())
6121       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6122     break;
6123   }
6124   case Decl::ObjCCompatibleAlias:
6125     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6126     break;
6127 
6128   case Decl::PragmaComment: {
6129     const auto *PCD = cast<PragmaCommentDecl>(D);
6130     switch (PCD->getCommentKind()) {
6131     case PCK_Unknown:
6132       llvm_unreachable("unexpected pragma comment kind");
6133     case PCK_Linker:
6134       AppendLinkerOptions(PCD->getArg());
6135       break;
6136     case PCK_Lib:
6137         AddDependentLib(PCD->getArg());
6138       break;
6139     case PCK_Compiler:
6140     case PCK_ExeStr:
6141     case PCK_User:
6142       break; // We ignore all of these.
6143     }
6144     break;
6145   }
6146 
6147   case Decl::PragmaDetectMismatch: {
6148     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6149     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6150     break;
6151   }
6152 
6153   case Decl::LinkageSpec:
6154     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6155     break;
6156 
6157   case Decl::FileScopeAsm: {
6158     // File-scope asm is ignored during device-side CUDA compilation.
6159     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6160       break;
6161     // File-scope asm is ignored during device-side OpenMP compilation.
6162     if (LangOpts.OpenMPIsDevice)
6163       break;
6164     // File-scope asm is ignored during device-side SYCL compilation.
6165     if (LangOpts.SYCLIsDevice)
6166       break;
6167     auto *AD = cast<FileScopeAsmDecl>(D);
6168     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6169     break;
6170   }
6171 
6172   case Decl::Import: {
6173     auto *Import = cast<ImportDecl>(D);
6174 
6175     // If we've already imported this module, we're done.
6176     if (!ImportedModules.insert(Import->getImportedModule()))
6177       break;
6178 
6179     // Emit debug information for direct imports.
6180     if (!Import->getImportedOwningModule()) {
6181       if (CGDebugInfo *DI = getModuleDebugInfo())
6182         DI->EmitImportDecl(*Import);
6183     }
6184 
6185     // Find all of the submodules and emit the module initializers.
6186     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6187     SmallVector<clang::Module *, 16> Stack;
6188     Visited.insert(Import->getImportedModule());
6189     Stack.push_back(Import->getImportedModule());
6190 
6191     while (!Stack.empty()) {
6192       clang::Module *Mod = Stack.pop_back_val();
6193       if (!EmittedModuleInitializers.insert(Mod).second)
6194         continue;
6195 
6196       for (auto *D : Context.getModuleInitializers(Mod))
6197         EmitTopLevelDecl(D);
6198 
6199       // Visit the submodules of this module.
6200       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6201                                              SubEnd = Mod->submodule_end();
6202            Sub != SubEnd; ++Sub) {
6203         // Skip explicit children; they need to be explicitly imported to emit
6204         // the initializers.
6205         if ((*Sub)->IsExplicit)
6206           continue;
6207 
6208         if (Visited.insert(*Sub).second)
6209           Stack.push_back(*Sub);
6210       }
6211     }
6212     break;
6213   }
6214 
6215   case Decl::Export:
6216     EmitDeclContext(cast<ExportDecl>(D));
6217     break;
6218 
6219   case Decl::OMPThreadPrivate:
6220     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6221     break;
6222 
6223   case Decl::OMPAllocate:
6224     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6225     break;
6226 
6227   case Decl::OMPDeclareReduction:
6228     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6229     break;
6230 
6231   case Decl::OMPDeclareMapper:
6232     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6233     break;
6234 
6235   case Decl::OMPRequires:
6236     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6237     break;
6238 
6239   case Decl::Typedef:
6240   case Decl::TypeAlias: // using foo = bar; [C++11]
6241     if (CGDebugInfo *DI = getModuleDebugInfo())
6242       DI->EmitAndRetainType(
6243           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6244     break;
6245 
6246   case Decl::Record:
6247     if (CGDebugInfo *DI = getModuleDebugInfo())
6248       if (cast<RecordDecl>(D)->getDefinition())
6249         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6250     break;
6251 
6252   case Decl::Enum:
6253     if (CGDebugInfo *DI = getModuleDebugInfo())
6254       if (cast<EnumDecl>(D)->getDefinition())
6255         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6256     break;
6257 
6258   default:
6259     // Make sure we handled everything we should, every other kind is a
6260     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6261     // function. Need to recode Decl::Kind to do that easily.
6262     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6263     break;
6264   }
6265 }
6266 
6267 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6268   // Do we need to generate coverage mapping?
6269   if (!CodeGenOpts.CoverageMapping)
6270     return;
6271   switch (D->getKind()) {
6272   case Decl::CXXConversion:
6273   case Decl::CXXMethod:
6274   case Decl::Function:
6275   case Decl::ObjCMethod:
6276   case Decl::CXXConstructor:
6277   case Decl::CXXDestructor: {
6278     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6279       break;
6280     SourceManager &SM = getContext().getSourceManager();
6281     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6282       break;
6283     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6284     if (I == DeferredEmptyCoverageMappingDecls.end())
6285       DeferredEmptyCoverageMappingDecls[D] = true;
6286     break;
6287   }
6288   default:
6289     break;
6290   };
6291 }
6292 
6293 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6294   // Do we need to generate coverage mapping?
6295   if (!CodeGenOpts.CoverageMapping)
6296     return;
6297   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6298     if (Fn->isTemplateInstantiation())
6299       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6300   }
6301   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6302   if (I == DeferredEmptyCoverageMappingDecls.end())
6303     DeferredEmptyCoverageMappingDecls[D] = false;
6304   else
6305     I->second = false;
6306 }
6307 
6308 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6309   // We call takeVector() here to avoid use-after-free.
6310   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6311   // we deserialize function bodies to emit coverage info for them, and that
6312   // deserializes more declarations. How should we handle that case?
6313   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6314     if (!Entry.second)
6315       continue;
6316     const Decl *D = Entry.first;
6317     switch (D->getKind()) {
6318     case Decl::CXXConversion:
6319     case Decl::CXXMethod:
6320     case Decl::Function:
6321     case Decl::ObjCMethod: {
6322       CodeGenPGO PGO(*this);
6323       GlobalDecl GD(cast<FunctionDecl>(D));
6324       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6325                                   getFunctionLinkage(GD));
6326       break;
6327     }
6328     case Decl::CXXConstructor: {
6329       CodeGenPGO PGO(*this);
6330       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6331       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6332                                   getFunctionLinkage(GD));
6333       break;
6334     }
6335     case Decl::CXXDestructor: {
6336       CodeGenPGO PGO(*this);
6337       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6338       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6339                                   getFunctionLinkage(GD));
6340       break;
6341     }
6342     default:
6343       break;
6344     };
6345   }
6346 }
6347 
6348 void CodeGenModule::EmitMainVoidAlias() {
6349   // In order to transition away from "__original_main" gracefully, emit an
6350   // alias for "main" in the no-argument case so that libc can detect when
6351   // new-style no-argument main is in used.
6352   if (llvm::Function *F = getModule().getFunction("main")) {
6353     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6354         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6355       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6356       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6357     }
6358   }
6359 }
6360 
6361 /// Turns the given pointer into a constant.
6362 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6363                                           const void *Ptr) {
6364   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6365   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6366   return llvm::ConstantInt::get(i64, PtrInt);
6367 }
6368 
6369 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6370                                    llvm::NamedMDNode *&GlobalMetadata,
6371                                    GlobalDecl D,
6372                                    llvm::GlobalValue *Addr) {
6373   if (!GlobalMetadata)
6374     GlobalMetadata =
6375       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6376 
6377   // TODO: should we report variant information for ctors/dtors?
6378   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6379                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6380                                CGM.getLLVMContext(), D.getDecl()))};
6381   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6382 }
6383 
6384 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6385                                                  llvm::GlobalValue *CppFunc) {
6386   // Store the list of ifuncs we need to replace uses in.
6387   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6388   // List of ConstantExprs that we should be able to delete when we're done
6389   // here.
6390   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6391 
6392   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6393   if (Elem == CppFunc)
6394     return false;
6395 
6396   // First make sure that all users of this are ifuncs (or ifuncs via a
6397   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6398   // later.
6399   for (llvm::User *User : Elem->users()) {
6400     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6401     // ifunc directly. In any other case, just give up, as we don't know what we
6402     // could break by changing those.
6403     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6404       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6405         return false;
6406 
6407       for (llvm::User *CEUser : ConstExpr->users()) {
6408         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6409           IFuncs.push_back(IFunc);
6410         } else {
6411           return false;
6412         }
6413       }
6414       CEs.push_back(ConstExpr);
6415     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6416       IFuncs.push_back(IFunc);
6417     } else {
6418       // This user is one we don't know how to handle, so fail redirection. This
6419       // will result in an ifunc retaining a resolver name that will ultimately
6420       // fail to be resolved to a defined function.
6421       return false;
6422     }
6423   }
6424 
6425   // Now we know this is a valid case where we can do this alias replacement, we
6426   // need to remove all of the references to Elem (and the bitcasts!) so we can
6427   // delete it.
6428   for (llvm::GlobalIFunc *IFunc : IFuncs)
6429     IFunc->setResolver(nullptr);
6430   for (llvm::ConstantExpr *ConstExpr : CEs)
6431     ConstExpr->destroyConstant();
6432 
6433   // We should now be out of uses for the 'old' version of this function, so we
6434   // can erase it as well.
6435   Elem->eraseFromParent();
6436 
6437   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6438     // The type of the resolver is always just a function-type that returns the
6439     // type of the IFunc, so create that here. If the type of the actual
6440     // resolver doesn't match, it just gets bitcast to the right thing.
6441     auto *ResolverTy =
6442         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6443     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6444         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6445     IFunc->setResolver(Resolver);
6446   }
6447   return true;
6448 }
6449 
6450 /// For each function which is declared within an extern "C" region and marked
6451 /// as 'used', but has internal linkage, create an alias from the unmangled
6452 /// name to the mangled name if possible. People expect to be able to refer
6453 /// to such functions with an unmangled name from inline assembly within the
6454 /// same translation unit.
6455 void CodeGenModule::EmitStaticExternCAliases() {
6456   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6457     return;
6458   for (auto &I : StaticExternCValues) {
6459     IdentifierInfo *Name = I.first;
6460     llvm::GlobalValue *Val = I.second;
6461 
6462     // If Val is null, that implies there were multiple declarations that each
6463     // had a claim to the unmangled name. In this case, generation of the alias
6464     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6465     if (!Val)
6466       break;
6467 
6468     llvm::GlobalValue *ExistingElem =
6469         getModule().getNamedValue(Name->getName());
6470 
6471     // If there is either not something already by this name, or we were able to
6472     // replace all uses from IFuncs, create the alias.
6473     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6474       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6475   }
6476 }
6477 
6478 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6479                                              GlobalDecl &Result) const {
6480   auto Res = Manglings.find(MangledName);
6481   if (Res == Manglings.end())
6482     return false;
6483   Result = Res->getValue();
6484   return true;
6485 }
6486 
6487 /// Emits metadata nodes associating all the global values in the
6488 /// current module with the Decls they came from.  This is useful for
6489 /// projects using IR gen as a subroutine.
6490 ///
6491 /// Since there's currently no way to associate an MDNode directly
6492 /// with an llvm::GlobalValue, we create a global named metadata
6493 /// with the name 'clang.global.decl.ptrs'.
6494 void CodeGenModule::EmitDeclMetadata() {
6495   llvm::NamedMDNode *GlobalMetadata = nullptr;
6496 
6497   for (auto &I : MangledDeclNames) {
6498     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6499     // Some mangled names don't necessarily have an associated GlobalValue
6500     // in this module, e.g. if we mangled it for DebugInfo.
6501     if (Addr)
6502       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6503   }
6504 }
6505 
6506 /// Emits metadata nodes for all the local variables in the current
6507 /// function.
6508 void CodeGenFunction::EmitDeclMetadata() {
6509   if (LocalDeclMap.empty()) return;
6510 
6511   llvm::LLVMContext &Context = getLLVMContext();
6512 
6513   // Find the unique metadata ID for this name.
6514   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6515 
6516   llvm::NamedMDNode *GlobalMetadata = nullptr;
6517 
6518   for (auto &I : LocalDeclMap) {
6519     const Decl *D = I.first;
6520     llvm::Value *Addr = I.second.getPointer();
6521     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6522       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6523       Alloca->setMetadata(
6524           DeclPtrKind, llvm::MDNode::get(
6525                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6526     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6527       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6528       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6529     }
6530   }
6531 }
6532 
6533 void CodeGenModule::EmitVersionIdentMetadata() {
6534   llvm::NamedMDNode *IdentMetadata =
6535     TheModule.getOrInsertNamedMetadata("llvm.ident");
6536   std::string Version = getClangFullVersion();
6537   llvm::LLVMContext &Ctx = TheModule.getContext();
6538 
6539   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6540   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6541 }
6542 
6543 void CodeGenModule::EmitCommandLineMetadata() {
6544   llvm::NamedMDNode *CommandLineMetadata =
6545     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6546   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6547   llvm::LLVMContext &Ctx = TheModule.getContext();
6548 
6549   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6550   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6551 }
6552 
6553 void CodeGenModule::EmitCoverageFile() {
6554   if (getCodeGenOpts().CoverageDataFile.empty() &&
6555       getCodeGenOpts().CoverageNotesFile.empty())
6556     return;
6557 
6558   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6559   if (!CUNode)
6560     return;
6561 
6562   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6563   llvm::LLVMContext &Ctx = TheModule.getContext();
6564   auto *CoverageDataFile =
6565       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6566   auto *CoverageNotesFile =
6567       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6568   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6569     llvm::MDNode *CU = CUNode->getOperand(i);
6570     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6571     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6572   }
6573 }
6574 
6575 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6576                                                        bool ForEH) {
6577   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6578   // FIXME: should we even be calling this method if RTTI is disabled
6579   // and it's not for EH?
6580   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6581       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6582        getTriple().isNVPTX()))
6583     return llvm::Constant::getNullValue(Int8PtrTy);
6584 
6585   if (ForEH && Ty->isObjCObjectPointerType() &&
6586       LangOpts.ObjCRuntime.isGNUFamily())
6587     return ObjCRuntime->GetEHType(Ty);
6588 
6589   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6590 }
6591 
6592 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6593   // Do not emit threadprivates in simd-only mode.
6594   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6595     return;
6596   for (auto RefExpr : D->varlists()) {
6597     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6598     bool PerformInit =
6599         VD->getAnyInitializer() &&
6600         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6601                                                         /*ForRef=*/false);
6602 
6603     Address Addr(GetAddrOfGlobalVar(VD),
6604                  getTypes().ConvertTypeForMem(VD->getType()),
6605                  getContext().getDeclAlign(VD));
6606     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6607             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6608       CXXGlobalInits.push_back(InitFunction);
6609   }
6610 }
6611 
6612 llvm::Metadata *
6613 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6614                                             StringRef Suffix) {
6615   if (auto *FnType = T->getAs<FunctionProtoType>())
6616     T = getContext().getFunctionType(
6617         FnType->getReturnType(), FnType->getParamTypes(),
6618         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6619 
6620   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6621   if (InternalId)
6622     return InternalId;
6623 
6624   if (isExternallyVisible(T->getLinkage())) {
6625     std::string OutName;
6626     llvm::raw_string_ostream Out(OutName);
6627     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6628     Out << Suffix;
6629 
6630     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6631   } else {
6632     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6633                                            llvm::ArrayRef<llvm::Metadata *>());
6634   }
6635 
6636   return InternalId;
6637 }
6638 
6639 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6640   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6641 }
6642 
6643 llvm::Metadata *
6644 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6645   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6646 }
6647 
6648 // Generalize pointer types to a void pointer with the qualifiers of the
6649 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6650 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6651 // 'void *'.
6652 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6653   if (!Ty->isPointerType())
6654     return Ty;
6655 
6656   return Ctx.getPointerType(
6657       QualType(Ctx.VoidTy).withCVRQualifiers(
6658           Ty->getPointeeType().getCVRQualifiers()));
6659 }
6660 
6661 // Apply type generalization to a FunctionType's return and argument types
6662 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6663   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6664     SmallVector<QualType, 8> GeneralizedParams;
6665     for (auto &Param : FnType->param_types())
6666       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6667 
6668     return Ctx.getFunctionType(
6669         GeneralizeType(Ctx, FnType->getReturnType()),
6670         GeneralizedParams, FnType->getExtProtoInfo());
6671   }
6672 
6673   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6674     return Ctx.getFunctionNoProtoType(
6675         GeneralizeType(Ctx, FnType->getReturnType()));
6676 
6677   llvm_unreachable("Encountered unknown FunctionType");
6678 }
6679 
6680 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6681   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6682                                       GeneralizedMetadataIdMap, ".generalized");
6683 }
6684 
6685 /// Returns whether this module needs the "all-vtables" type identifier.
6686 bool CodeGenModule::NeedAllVtablesTypeId() const {
6687   // Returns true if at least one of vtable-based CFI checkers is enabled and
6688   // is not in the trapping mode.
6689   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6690            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6691           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6692            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6693           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6694            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6695           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6696            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6697 }
6698 
6699 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6700                                           CharUnits Offset,
6701                                           const CXXRecordDecl *RD) {
6702   llvm::Metadata *MD =
6703       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6704   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6705 
6706   if (CodeGenOpts.SanitizeCfiCrossDso)
6707     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6708       VTable->addTypeMetadata(Offset.getQuantity(),
6709                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6710 
6711   if (NeedAllVtablesTypeId()) {
6712     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6713     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6714   }
6715 }
6716 
6717 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6718   if (!SanStats)
6719     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6720 
6721   return *SanStats;
6722 }
6723 
6724 llvm::Value *
6725 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6726                                                   CodeGenFunction &CGF) {
6727   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6728   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6729   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6730   auto *Call = CGF.EmitRuntimeCall(
6731       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6732   return Call;
6733 }
6734 
6735 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6736     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6737   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6738                                  /* forPointeeType= */ true);
6739 }
6740 
6741 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6742                                                  LValueBaseInfo *BaseInfo,
6743                                                  TBAAAccessInfo *TBAAInfo,
6744                                                  bool forPointeeType) {
6745   if (TBAAInfo)
6746     *TBAAInfo = getTBAAAccessInfo(T);
6747 
6748   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6749   // that doesn't return the information we need to compute BaseInfo.
6750 
6751   // Honor alignment typedef attributes even on incomplete types.
6752   // We also honor them straight for C++ class types, even as pointees;
6753   // there's an expressivity gap here.
6754   if (auto TT = T->getAs<TypedefType>()) {
6755     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6756       if (BaseInfo)
6757         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6758       return getContext().toCharUnitsFromBits(Align);
6759     }
6760   }
6761 
6762   bool AlignForArray = T->isArrayType();
6763 
6764   // Analyze the base element type, so we don't get confused by incomplete
6765   // array types.
6766   T = getContext().getBaseElementType(T);
6767 
6768   if (T->isIncompleteType()) {
6769     // We could try to replicate the logic from
6770     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6771     // type is incomplete, so it's impossible to test. We could try to reuse
6772     // getTypeAlignIfKnown, but that doesn't return the information we need
6773     // to set BaseInfo.  So just ignore the possibility that the alignment is
6774     // greater than one.
6775     if (BaseInfo)
6776       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6777     return CharUnits::One();
6778   }
6779 
6780   if (BaseInfo)
6781     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6782 
6783   CharUnits Alignment;
6784   const CXXRecordDecl *RD;
6785   if (T.getQualifiers().hasUnaligned()) {
6786     Alignment = CharUnits::One();
6787   } else if (forPointeeType && !AlignForArray &&
6788              (RD = T->getAsCXXRecordDecl())) {
6789     // For C++ class pointees, we don't know whether we're pointing at a
6790     // base or a complete object, so we generally need to use the
6791     // non-virtual alignment.
6792     Alignment = getClassPointerAlignment(RD);
6793   } else {
6794     Alignment = getContext().getTypeAlignInChars(T);
6795   }
6796 
6797   // Cap to the global maximum type alignment unless the alignment
6798   // was somehow explicit on the type.
6799   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6800     if (Alignment.getQuantity() > MaxAlign &&
6801         !getContext().isAlignmentRequired(T))
6802       Alignment = CharUnits::fromQuantity(MaxAlign);
6803   }
6804   return Alignment;
6805 }
6806 
6807 bool CodeGenModule::stopAutoInit() {
6808   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6809   if (StopAfter) {
6810     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6811     // used
6812     if (NumAutoVarInit >= StopAfter) {
6813       return true;
6814     }
6815     if (!NumAutoVarInit) {
6816       unsigned DiagID = getDiags().getCustomDiagID(
6817           DiagnosticsEngine::Warning,
6818           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6819           "number of times ftrivial-auto-var-init=%1 gets applied.");
6820       getDiags().Report(DiagID)
6821           << StopAfter
6822           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6823                       LangOptions::TrivialAutoVarInitKind::Zero
6824                   ? "zero"
6825                   : "pattern");
6826     }
6827     ++NumAutoVarInit;
6828   }
6829   return false;
6830 }
6831 
6832 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6833                                                     const Decl *D) const {
6834   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6835   // postfix beginning with '.' since the symbol name can be demangled.
6836   if (LangOpts.HIP)
6837     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6838   else
6839     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6840 
6841   // If the CUID is not specified we try to generate a unique postfix.
6842   if (getLangOpts().CUID.empty()) {
6843     SourceManager &SM = getContext().getSourceManager();
6844     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6845     assert(PLoc.isValid() && "Source location is expected to be valid.");
6846 
6847     // Get the hash of the user defined macros.
6848     llvm::MD5 Hash;
6849     llvm::MD5::MD5Result Result;
6850     for (const auto &Arg : PreprocessorOpts.Macros)
6851       Hash.update(Arg.first);
6852     Hash.final(Result);
6853 
6854     // Get the UniqueID for the file containing the decl.
6855     llvm::sys::fs::UniqueID ID;
6856     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6857       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6858       assert(PLoc.isValid() && "Source location is expected to be valid.");
6859       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6860         SM.getDiagnostics().Report(diag::err_cannot_open_file)
6861             << PLoc.getFilename() << EC.message();
6862     }
6863     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6864        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6865   } else {
6866     OS << getContext().getCUIDHash();
6867   }
6868 }
6869