xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision a596b54d471cfde548bdda3925ea2f143f06b964)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   AllocaInt8PtrTy = Int8Ty->getPointerTo(
134       M.getDataLayout().getAllocaAddrSpace());
135   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
136 
137   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
138 
139   if (LangOpts.ObjC)
140     createObjCRuntime();
141   if (LangOpts.OpenCL)
142     createOpenCLRuntime();
143   if (LangOpts.OpenMP)
144     createOpenMPRuntime();
145   if (LangOpts.CUDA)
146     createCUDARuntime();
147 
148   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
149   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
150       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
151     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
152                                getCXXABI().getMangleContext()));
153 
154   // If debug info or coverage generation is enabled, create the CGDebugInfo
155   // object.
156   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
157       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
158     DebugInfo.reset(new CGDebugInfo(*this));
159 
160   Block.GlobalUniqueCount = 0;
161 
162   if (C.getLangOpts().ObjC)
163     ObjCData.reset(new ObjCEntrypoints());
164 
165   if (CodeGenOpts.hasProfileClangUse()) {
166     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
167         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
168     if (auto E = ReaderOrErr.takeError()) {
169       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
170                                               "Could not read profile %0: %1");
171       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
172         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
173                                   << EI.message();
174       });
175     } else
176       PGOReader = std::move(ReaderOrErr.get());
177   }
178 
179   // If coverage mapping generation is enabled, create the
180   // CoverageMappingModuleGen object.
181   if (CodeGenOpts.CoverageMapping)
182     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
183 
184   // Generate the module name hash here if needed.
185   if (CodeGenOpts.UniqueInternalLinkageNames &&
186       !getModule().getSourceFileName().empty()) {
187     std::string Path = getModule().getSourceFileName();
188     // Check if a path substitution is needed from the MacroPrefixMap.
189     for (const auto &Entry : PPO.MacroPrefixMap)
190       if (Path.rfind(Entry.first, 0) != std::string::npos) {
191         Path = Entry.second + Path.substr(Entry.first.size());
192         break;
193       }
194     llvm::MD5 Md5;
195     Md5.update(Path);
196     llvm::MD5::MD5Result R;
197     Md5.final(R);
198     SmallString<32> Str;
199     llvm::MD5::stringifyResult(R, Str);
200     // Convert MD5hash to Decimal. Demangler suffixes can either contain
201     // numbers or characters but not both.
202     llvm::APInt IntHash(128, Str.str(), 16);
203     // Prepend "__uniq" before the hash for tools like profilers to understand
204     // that this symbol is of internal linkage type.  The "__uniq" is the
205     // pre-determined prefix that is used to tell tools that this symbol was
206     // created with -funique-internal-linakge-symbols and the tools can strip or
207     // keep the prefix as needed.
208     ModuleNameHash = (Twine(".__uniq.") +
209         Twine(IntHash.toString(/* Radix = */ 10, /* Signed = */false))).str();
210   }
211 }
212 
213 CodeGenModule::~CodeGenModule() {}
214 
215 void CodeGenModule::createObjCRuntime() {
216   // This is just isGNUFamily(), but we want to force implementors of
217   // new ABIs to decide how best to do this.
218   switch (LangOpts.ObjCRuntime.getKind()) {
219   case ObjCRuntime::GNUstep:
220   case ObjCRuntime::GCC:
221   case ObjCRuntime::ObjFW:
222     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
223     return;
224 
225   case ObjCRuntime::FragileMacOSX:
226   case ObjCRuntime::MacOSX:
227   case ObjCRuntime::iOS:
228   case ObjCRuntime::WatchOS:
229     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
230     return;
231   }
232   llvm_unreachable("bad runtime kind");
233 }
234 
235 void CodeGenModule::createOpenCLRuntime() {
236   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
237 }
238 
239 void CodeGenModule::createOpenMPRuntime() {
240   // Select a specialized code generation class based on the target, if any.
241   // If it does not exist use the default implementation.
242   switch (getTriple().getArch()) {
243   case llvm::Triple::nvptx:
244   case llvm::Triple::nvptx64:
245     assert(getLangOpts().OpenMPIsDevice &&
246            "OpenMP NVPTX is only prepared to deal with device code.");
247     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
248     break;
249   case llvm::Triple::amdgcn:
250     assert(getLangOpts().OpenMPIsDevice &&
251            "OpenMP AMDGCN is only prepared to deal with device code.");
252     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
253     break;
254   default:
255     if (LangOpts.OpenMPSimd)
256       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
257     else
258       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
259     break;
260   }
261 }
262 
263 void CodeGenModule::createCUDARuntime() {
264   CUDARuntime.reset(CreateNVCUDARuntime(*this));
265 }
266 
267 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
268   Replacements[Name] = C;
269 }
270 
271 void CodeGenModule::applyReplacements() {
272   for (auto &I : Replacements) {
273     StringRef MangledName = I.first();
274     llvm::Constant *Replacement = I.second;
275     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
276     if (!Entry)
277       continue;
278     auto *OldF = cast<llvm::Function>(Entry);
279     auto *NewF = dyn_cast<llvm::Function>(Replacement);
280     if (!NewF) {
281       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
282         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
283       } else {
284         auto *CE = cast<llvm::ConstantExpr>(Replacement);
285         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
286                CE->getOpcode() == llvm::Instruction::GetElementPtr);
287         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
288       }
289     }
290 
291     // Replace old with new, but keep the old order.
292     OldF->replaceAllUsesWith(Replacement);
293     if (NewF) {
294       NewF->removeFromParent();
295       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
296                                                        NewF);
297     }
298     OldF->eraseFromParent();
299   }
300 }
301 
302 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
303   GlobalValReplacements.push_back(std::make_pair(GV, C));
304 }
305 
306 void CodeGenModule::applyGlobalValReplacements() {
307   for (auto &I : GlobalValReplacements) {
308     llvm::GlobalValue *GV = I.first;
309     llvm::Constant *C = I.second;
310 
311     GV->replaceAllUsesWith(C);
312     GV->eraseFromParent();
313   }
314 }
315 
316 // This is only used in aliases that we created and we know they have a
317 // linear structure.
318 static const llvm::GlobalObject *getAliasedGlobal(
319     const llvm::GlobalIndirectSymbol &GIS) {
320   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
321   const llvm::Constant *C = &GIS;
322   for (;;) {
323     C = C->stripPointerCasts();
324     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
325       return GO;
326     // stripPointerCasts will not walk over weak aliases.
327     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
328     if (!GIS2)
329       return nullptr;
330     if (!Visited.insert(GIS2).second)
331       return nullptr;
332     C = GIS2->getIndirectSymbol();
333   }
334 }
335 
336 void CodeGenModule::checkAliases() {
337   // Check if the constructed aliases are well formed. It is really unfortunate
338   // that we have to do this in CodeGen, but we only construct mangled names
339   // and aliases during codegen.
340   bool Error = false;
341   DiagnosticsEngine &Diags = getDiags();
342   for (const GlobalDecl &GD : Aliases) {
343     const auto *D = cast<ValueDecl>(GD.getDecl());
344     SourceLocation Location;
345     bool IsIFunc = D->hasAttr<IFuncAttr>();
346     if (const Attr *A = D->getDefiningAttr())
347       Location = A->getLocation();
348     else
349       llvm_unreachable("Not an alias or ifunc?");
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
353     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
354     if (!GV) {
355       Error = true;
356       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
357     } else if (GV->isDeclaration()) {
358       Error = true;
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361     } else if (IsIFunc) {
362       // Check resolver function type.
363       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
364           GV->getType()->getPointerElementType());
365       assert(FTy);
366       if (!FTy->getReturnType()->isPointerTy())
367         Diags.Report(Location, diag::err_ifunc_resolver_return);
368     }
369 
370     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
371     llvm::GlobalValue *AliaseeGV;
372     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
373       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
374     else
375       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
376 
377     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
378       StringRef AliasSection = SA->getName();
379       if (AliasSection != AliaseeGV->getSection())
380         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
381             << AliasSection << IsIFunc << IsIFunc;
382     }
383 
384     // We have to handle alias to weak aliases in here. LLVM itself disallows
385     // this since the object semantics would not match the IL one. For
386     // compatibility with gcc we implement it by just pointing the alias
387     // to its aliasee's aliasee. We also warn, since the user is probably
388     // expecting the link to be weak.
389     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
390       if (GA->isInterposable()) {
391         Diags.Report(Location, diag::warn_alias_to_weak_alias)
392             << GV->getName() << GA->getName() << IsIFunc;
393         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
394             GA->getIndirectSymbol(), Alias->getType());
395         Alias->setIndirectSymbol(Aliasee);
396       }
397     }
398   }
399   if (!Error)
400     return;
401 
402   for (const GlobalDecl &GD : Aliases) {
403     StringRef MangledName = getMangledName(GD);
404     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
405     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
406     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
407     Alias->eraseFromParent();
408   }
409 }
410 
411 void CodeGenModule::clear() {
412   DeferredDeclsToEmit.clear();
413   if (OpenMPRuntime)
414     OpenMPRuntime->clear();
415 }
416 
417 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
418                                        StringRef MainFile) {
419   if (!hasDiagnostics())
420     return;
421   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
422     if (MainFile.empty())
423       MainFile = "<stdin>";
424     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
425   } else {
426     if (Mismatched > 0)
427       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
428 
429     if (Missing > 0)
430       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
431   }
432 }
433 
434 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
435                                              llvm::Module &M) {
436   if (!LO.VisibilityFromDLLStorageClass)
437     return;
438 
439   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
440       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
441   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
442       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
443   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
444       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
445   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
446       CodeGenModule::GetLLVMVisibility(
447           LO.getExternDeclNoDLLStorageClassVisibility());
448 
449   for (llvm::GlobalValue &GV : M.global_values()) {
450     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
451       continue;
452 
453     // Reset DSO locality before setting the visibility. This removes
454     // any effects that visibility options and annotations may have
455     // had on the DSO locality. Setting the visibility will implicitly set
456     // appropriate globals to DSO Local; however, this will be pessimistic
457     // w.r.t. to the normal compiler IRGen.
458     GV.setDSOLocal(false);
459 
460     if (GV.isDeclarationForLinker()) {
461       GV.setVisibility(GV.getDLLStorageClass() ==
462                                llvm::GlobalValue::DLLImportStorageClass
463                            ? ExternDeclDLLImportVisibility
464                            : ExternDeclNoDLLStorageClassVisibility);
465     } else {
466       GV.setVisibility(GV.getDLLStorageClass() ==
467                                llvm::GlobalValue::DLLExportStorageClass
468                            ? DLLExportVisibility
469                            : NoDLLStorageClassVisibility);
470     }
471 
472     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
473   }
474 }
475 
476 void CodeGenModule::Release() {
477   EmitDeferred();
478   EmitVTablesOpportunistically();
479   applyGlobalValReplacements();
480   applyReplacements();
481   checkAliases();
482   emitMultiVersionFunctions();
483   EmitCXXGlobalInitFunc();
484   EmitCXXGlobalCleanUpFunc();
485   registerGlobalDtorsWithAtExit();
486   EmitCXXThreadLocalInitFunc();
487   if (ObjCRuntime)
488     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
489       AddGlobalCtor(ObjCInitFunction);
490   if (Context.getLangOpts().CUDA && CUDARuntime) {
491     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
492       AddGlobalCtor(CudaCtorFunction);
493   }
494   if (OpenMPRuntime) {
495     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
496             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
497       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
498     }
499     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
500     OpenMPRuntime->clear();
501   }
502   if (PGOReader) {
503     getModule().setProfileSummary(
504         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
505         llvm::ProfileSummary::PSK_Instr);
506     if (PGOStats.hasDiagnostics())
507       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
508   }
509   EmitCtorList(GlobalCtors, "llvm.global_ctors");
510   EmitCtorList(GlobalDtors, "llvm.global_dtors");
511   EmitGlobalAnnotations();
512   EmitStaticExternCAliases();
513   EmitDeferredUnusedCoverageMappings();
514   CodeGenPGO(*this).setValueProfilingFlag(getModule());
515   if (CoverageMapping)
516     CoverageMapping->emit();
517   if (CodeGenOpts.SanitizeCfiCrossDso) {
518     CodeGenFunction(*this).EmitCfiCheckFail();
519     CodeGenFunction(*this).EmitCfiCheckStub();
520   }
521   emitAtAvailableLinkGuard();
522   if (Context.getTargetInfo().getTriple().isWasm() &&
523       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
524     EmitMainVoidAlias();
525   }
526   emitLLVMUsed();
527   if (SanStats)
528     SanStats->finish();
529 
530   if (CodeGenOpts.Autolink &&
531       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
532     EmitModuleLinkOptions();
533   }
534 
535   // On ELF we pass the dependent library specifiers directly to the linker
536   // without manipulating them. This is in contrast to other platforms where
537   // they are mapped to a specific linker option by the compiler. This
538   // difference is a result of the greater variety of ELF linkers and the fact
539   // that ELF linkers tend to handle libraries in a more complicated fashion
540   // than on other platforms. This forces us to defer handling the dependent
541   // libs to the linker.
542   //
543   // CUDA/HIP device and host libraries are different. Currently there is no
544   // way to differentiate dependent libraries for host or device. Existing
545   // usage of #pragma comment(lib, *) is intended for host libraries on
546   // Windows. Therefore emit llvm.dependent-libraries only for host.
547   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
548     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
549     for (auto *MD : ELFDependentLibraries)
550       NMD->addOperand(MD);
551   }
552 
553   // Record mregparm value now so it is visible through rest of codegen.
554   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
555     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
556                               CodeGenOpts.NumRegisterParameters);
557 
558   if (CodeGenOpts.DwarfVersion) {
559     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
560                               CodeGenOpts.DwarfVersion);
561   }
562 
563   if (CodeGenOpts.Dwarf64)
564     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
565 
566   if (Context.getLangOpts().SemanticInterposition)
567     // Require various optimization to respect semantic interposition.
568     getModule().setSemanticInterposition(1);
569 
570   if (CodeGenOpts.EmitCodeView) {
571     // Indicate that we want CodeView in the metadata.
572     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
573   }
574   if (CodeGenOpts.CodeViewGHash) {
575     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
576   }
577   if (CodeGenOpts.ControlFlowGuard) {
578     // Function ID tables and checks for Control Flow Guard (cfguard=2).
579     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
580   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
581     // Function ID tables for Control Flow Guard (cfguard=1).
582     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
583   }
584   if (CodeGenOpts.EHContGuard) {
585     // Function ID tables for EH Continuation Guard.
586     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
587   }
588   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
589     // We don't support LTO with 2 with different StrictVTablePointers
590     // FIXME: we could support it by stripping all the information introduced
591     // by StrictVTablePointers.
592 
593     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
594 
595     llvm::Metadata *Ops[2] = {
596               llvm::MDString::get(VMContext, "StrictVTablePointers"),
597               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598                   llvm::Type::getInt32Ty(VMContext), 1))};
599 
600     getModule().addModuleFlag(llvm::Module::Require,
601                               "StrictVTablePointersRequirement",
602                               llvm::MDNode::get(VMContext, Ops));
603   }
604   if (getModuleDebugInfo())
605     // We support a single version in the linked module. The LLVM
606     // parser will drop debug info with a different version number
607     // (and warn about it, too).
608     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
609                               llvm::DEBUG_METADATA_VERSION);
610 
611   // We need to record the widths of enums and wchar_t, so that we can generate
612   // the correct build attributes in the ARM backend. wchar_size is also used by
613   // TargetLibraryInfo.
614   uint64_t WCharWidth =
615       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
616   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
617 
618   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
619   if (   Arch == llvm::Triple::arm
620       || Arch == llvm::Triple::armeb
621       || Arch == llvm::Triple::thumb
622       || Arch == llvm::Triple::thumbeb) {
623     // The minimum width of an enum in bytes
624     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
625     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
626   }
627 
628   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
629     StringRef ABIStr = Target.getABI();
630     llvm::LLVMContext &Ctx = TheModule.getContext();
631     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
632                               llvm::MDString::get(Ctx, ABIStr));
633   }
634 
635   if (CodeGenOpts.SanitizeCfiCrossDso) {
636     // Indicate that we want cross-DSO control flow integrity checks.
637     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
638   }
639 
640   if (CodeGenOpts.WholeProgramVTables) {
641     // Indicate whether VFE was enabled for this module, so that the
642     // vcall_visibility metadata added under whole program vtables is handled
643     // appropriately in the optimizer.
644     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
645                               CodeGenOpts.VirtualFunctionElimination);
646   }
647 
648   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
649     getModule().addModuleFlag(llvm::Module::Override,
650                               "CFI Canonical Jump Tables",
651                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
652   }
653 
654   if (CodeGenOpts.CFProtectionReturn &&
655       Target.checkCFProtectionReturnSupported(getDiags())) {
656     // Indicate that we want to instrument return control flow protection.
657     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
658                               1);
659   }
660 
661   if (CodeGenOpts.CFProtectionBranch &&
662       Target.checkCFProtectionBranchSupported(getDiags())) {
663     // Indicate that we want to instrument branch control flow protection.
664     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
665                               1);
666   }
667 
668   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
669       Arch == llvm::Triple::aarch64_be) {
670     getModule().addModuleFlag(llvm::Module::Error,
671                               "branch-target-enforcement",
672                               LangOpts.BranchTargetEnforcement);
673 
674     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
675                               LangOpts.hasSignReturnAddress());
676 
677     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
678                               LangOpts.isSignReturnAddressScopeAll());
679 
680     getModule().addModuleFlag(llvm::Module::Error,
681                               "sign-return-address-with-bkey",
682                               !LangOpts.isSignReturnAddressWithAKey());
683   }
684 
685   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
686     llvm::LLVMContext &Ctx = TheModule.getContext();
687     getModule().addModuleFlag(
688         llvm::Module::Error, "MemProfProfileFilename",
689         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
690   }
691 
692   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
693     // Indicate whether __nvvm_reflect should be configured to flush denormal
694     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
695     // property.)
696     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
697                               CodeGenOpts.FP32DenormalMode.Output !=
698                                   llvm::DenormalMode::IEEE);
699   }
700 
701   if (LangOpts.EHAsynch)
702     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
703 
704   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
705   if (LangOpts.OpenCL) {
706     EmitOpenCLMetadata();
707     // Emit SPIR version.
708     if (getTriple().isSPIR()) {
709       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
710       // opencl.spir.version named metadata.
711       // C++ is backwards compatible with OpenCL v2.0.
712       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
713       llvm::Metadata *SPIRVerElts[] = {
714           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
715               Int32Ty, Version / 100)),
716           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
717               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
718       llvm::NamedMDNode *SPIRVerMD =
719           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
720       llvm::LLVMContext &Ctx = TheModule.getContext();
721       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
722     }
723   }
724 
725   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
726     assert(PLevel < 3 && "Invalid PIC Level");
727     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
728     if (Context.getLangOpts().PIE)
729       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
730   }
731 
732   if (getCodeGenOpts().CodeModel.size() > 0) {
733     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
734                   .Case("tiny", llvm::CodeModel::Tiny)
735                   .Case("small", llvm::CodeModel::Small)
736                   .Case("kernel", llvm::CodeModel::Kernel)
737                   .Case("medium", llvm::CodeModel::Medium)
738                   .Case("large", llvm::CodeModel::Large)
739                   .Default(~0u);
740     if (CM != ~0u) {
741       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
742       getModule().setCodeModel(codeModel);
743     }
744   }
745 
746   if (CodeGenOpts.NoPLT)
747     getModule().setRtLibUseGOT();
748   if (CodeGenOpts.UnwindTables)
749     getModule().setUwtable();
750 
751   switch (CodeGenOpts.getFramePointer()) {
752   case CodeGenOptions::FramePointerKind::None:
753     // 0 ("none") is the default.
754     break;
755   case CodeGenOptions::FramePointerKind::NonLeaf:
756     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
757     break;
758   case CodeGenOptions::FramePointerKind::All:
759     getModule().setFramePointer(llvm::FramePointerKind::All);
760     break;
761   }
762 
763   SimplifyPersonality();
764 
765   if (getCodeGenOpts().EmitDeclMetadata)
766     EmitDeclMetadata();
767 
768   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
769     EmitCoverageFile();
770 
771   if (CGDebugInfo *DI = getModuleDebugInfo())
772     DI->finalize();
773 
774   if (getCodeGenOpts().EmitVersionIdentMetadata)
775     EmitVersionIdentMetadata();
776 
777   if (!getCodeGenOpts().RecordCommandLine.empty())
778     EmitCommandLineMetadata();
779 
780   if (!getCodeGenOpts().StackProtectorGuard.empty())
781     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
782   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
783     getModule().setStackProtectorGuardReg(
784         getCodeGenOpts().StackProtectorGuardReg);
785   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
786     getModule().setStackProtectorGuardOffset(
787         getCodeGenOpts().StackProtectorGuardOffset);
788 
789   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
790 
791   EmitBackendOptionsMetadata(getCodeGenOpts());
792 
793   // Set visibility from DLL storage class
794   // We do this at the end of LLVM IR generation; after any operation
795   // that might affect the DLL storage class or the visibility, and
796   // before anything that might act on these.
797   setVisibilityFromDLLStorageClass(LangOpts, getModule());
798 }
799 
800 void CodeGenModule::EmitOpenCLMetadata() {
801   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
802   // opencl.ocl.version named metadata node.
803   // C++ is backwards compatible with OpenCL v2.0.
804   // FIXME: We might need to add CXX version at some point too?
805   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
806   llvm::Metadata *OCLVerElts[] = {
807       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
808           Int32Ty, Version / 100)),
809       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
810           Int32Ty, (Version % 100) / 10))};
811   llvm::NamedMDNode *OCLVerMD =
812       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
813   llvm::LLVMContext &Ctx = TheModule.getContext();
814   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
815 }
816 
817 void CodeGenModule::EmitBackendOptionsMetadata(
818     const CodeGenOptions CodeGenOpts) {
819   switch (getTriple().getArch()) {
820   default:
821     break;
822   case llvm::Triple::riscv32:
823   case llvm::Triple::riscv64:
824     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
825                               CodeGenOpts.SmallDataLimit);
826     break;
827   }
828 }
829 
830 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
831   // Make sure that this type is translated.
832   Types.UpdateCompletedType(TD);
833 }
834 
835 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
836   // Make sure that this type is translated.
837   Types.RefreshTypeCacheForClass(RD);
838 }
839 
840 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
841   if (!TBAA)
842     return nullptr;
843   return TBAA->getTypeInfo(QTy);
844 }
845 
846 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
847   if (!TBAA)
848     return TBAAAccessInfo();
849   if (getLangOpts().CUDAIsDevice) {
850     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
851     // access info.
852     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
853       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
854           nullptr)
855         return TBAAAccessInfo();
856     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
857       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
858           nullptr)
859         return TBAAAccessInfo();
860     }
861   }
862   return TBAA->getAccessInfo(AccessType);
863 }
864 
865 TBAAAccessInfo
866 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
867   if (!TBAA)
868     return TBAAAccessInfo();
869   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
870 }
871 
872 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
873   if (!TBAA)
874     return nullptr;
875   return TBAA->getTBAAStructInfo(QTy);
876 }
877 
878 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
879   if (!TBAA)
880     return nullptr;
881   return TBAA->getBaseTypeInfo(QTy);
882 }
883 
884 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
885   if (!TBAA)
886     return nullptr;
887   return TBAA->getAccessTagInfo(Info);
888 }
889 
890 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
891                                                    TBAAAccessInfo TargetInfo) {
892   if (!TBAA)
893     return TBAAAccessInfo();
894   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
895 }
896 
897 TBAAAccessInfo
898 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
899                                                    TBAAAccessInfo InfoB) {
900   if (!TBAA)
901     return TBAAAccessInfo();
902   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
903 }
904 
905 TBAAAccessInfo
906 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
907                                               TBAAAccessInfo SrcInfo) {
908   if (!TBAA)
909     return TBAAAccessInfo();
910   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
911 }
912 
913 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
914                                                 TBAAAccessInfo TBAAInfo) {
915   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
916     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
917 }
918 
919 void CodeGenModule::DecorateInstructionWithInvariantGroup(
920     llvm::Instruction *I, const CXXRecordDecl *RD) {
921   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
922                  llvm::MDNode::get(getLLVMContext(), {}));
923 }
924 
925 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
926   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
927   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
928 }
929 
930 /// ErrorUnsupported - Print out an error that codegen doesn't support the
931 /// specified stmt yet.
932 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
933   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
934                                                "cannot compile this %0 yet");
935   std::string Msg = Type;
936   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
937       << Msg << S->getSourceRange();
938 }
939 
940 /// ErrorUnsupported - Print out an error that codegen doesn't support the
941 /// specified decl yet.
942 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
943   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
944                                                "cannot compile this %0 yet");
945   std::string Msg = Type;
946   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
947 }
948 
949 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
950   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
951 }
952 
953 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
954                                         const NamedDecl *D) const {
955   if (GV->hasDLLImportStorageClass())
956     return;
957   // Internal definitions always have default visibility.
958   if (GV->hasLocalLinkage()) {
959     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
960     return;
961   }
962   if (!D)
963     return;
964   // Set visibility for definitions, and for declarations if requested globally
965   // or set explicitly.
966   LinkageInfo LV = D->getLinkageAndVisibility();
967   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
968       !GV->isDeclarationForLinker())
969     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
970 }
971 
972 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
973                                  llvm::GlobalValue *GV) {
974   if (GV->hasLocalLinkage())
975     return true;
976 
977   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
978     return true;
979 
980   // DLLImport explicitly marks the GV as external.
981   if (GV->hasDLLImportStorageClass())
982     return false;
983 
984   const llvm::Triple &TT = CGM.getTriple();
985   if (TT.isWindowsGNUEnvironment()) {
986     // In MinGW, variables without DLLImport can still be automatically
987     // imported from a DLL by the linker; don't mark variables that
988     // potentially could come from another DLL as DSO local.
989 
990     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
991     // (and this actually happens in the public interface of libstdc++), so
992     // such variables can't be marked as DSO local. (Native TLS variables
993     // can't be dllimported at all, though.)
994     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
995         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
996       return false;
997   }
998 
999   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1000   // remain unresolved in the link, they can be resolved to zero, which is
1001   // outside the current DSO.
1002   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1003     return false;
1004 
1005   // Every other GV is local on COFF.
1006   // Make an exception for windows OS in the triple: Some firmware builds use
1007   // *-win32-macho triples. This (accidentally?) produced windows relocations
1008   // without GOT tables in older clang versions; Keep this behaviour.
1009   // FIXME: even thread local variables?
1010   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1011     return true;
1012 
1013   // Only handle COFF and ELF for now.
1014   if (!TT.isOSBinFormatELF())
1015     return false;
1016 
1017   // If this is not an executable, don't assume anything is local.
1018   const auto &CGOpts = CGM.getCodeGenOpts();
1019   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1020   const auto &LOpts = CGM.getLangOpts();
1021   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1022     // On ELF, if -fno-semantic-interposition is specified and the target
1023     // supports local aliases, there will be neither CC1
1024     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1025     // dso_local on the function if using a local alias is preferable (can avoid
1026     // PLT indirection).
1027     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1028       return false;
1029     return !(CGM.getLangOpts().SemanticInterposition ||
1030              CGM.getLangOpts().HalfNoSemanticInterposition);
1031   }
1032 
1033   // A definition cannot be preempted from an executable.
1034   if (!GV->isDeclarationForLinker())
1035     return true;
1036 
1037   // Most PIC code sequences that assume that a symbol is local cannot produce a
1038   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1039   // depended, it seems worth it to handle it here.
1040   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1041     return false;
1042 
1043   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1044   if (TT.isPPC64())
1045     return false;
1046 
1047   if (CGOpts.DirectAccessExternalData) {
1048     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1049     // for non-thread-local variables. If the symbol is not defined in the
1050     // executable, a copy relocation will be needed at link time. dso_local is
1051     // excluded for thread-local variables because they generally don't support
1052     // copy relocations.
1053     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1054       if (!Var->isThreadLocal())
1055         return true;
1056 
1057     // -fno-pic sets dso_local on a function declaration to allow direct
1058     // accesses when taking its address (similar to a data symbol). If the
1059     // function is not defined in the executable, a canonical PLT entry will be
1060     // needed at link time. -fno-direct-access-external-data can avoid the
1061     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1062     // it could just cause trouble without providing perceptible benefits.
1063     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1064       return true;
1065   }
1066 
1067   // If we can use copy relocations we can assume it is local.
1068 
1069   // Otherwise don't assume it is local.
1070   return false;
1071 }
1072 
1073 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1074   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1075 }
1076 
1077 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1078                                           GlobalDecl GD) const {
1079   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1080   // C++ destructors have a few C++ ABI specific special cases.
1081   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1082     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1083     return;
1084   }
1085   setDLLImportDLLExport(GV, D);
1086 }
1087 
1088 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1089                                           const NamedDecl *D) const {
1090   if (D && D->isExternallyVisible()) {
1091     if (D->hasAttr<DLLImportAttr>())
1092       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1093     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1094       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1095   }
1096 }
1097 
1098 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1099                                     GlobalDecl GD) const {
1100   setDLLImportDLLExport(GV, GD);
1101   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1102 }
1103 
1104 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1105                                     const NamedDecl *D) const {
1106   setDLLImportDLLExport(GV, D);
1107   setGVPropertiesAux(GV, D);
1108 }
1109 
1110 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1111                                        const NamedDecl *D) const {
1112   setGlobalVisibility(GV, D);
1113   setDSOLocal(GV);
1114   GV->setPartition(CodeGenOpts.SymbolPartition);
1115 }
1116 
1117 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1118   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1119       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1120       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1121       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1122       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1123 }
1124 
1125 llvm::GlobalVariable::ThreadLocalMode
1126 CodeGenModule::GetDefaultLLVMTLSModel() const {
1127   switch (CodeGenOpts.getDefaultTLSModel()) {
1128   case CodeGenOptions::GeneralDynamicTLSModel:
1129     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1130   case CodeGenOptions::LocalDynamicTLSModel:
1131     return llvm::GlobalVariable::LocalDynamicTLSModel;
1132   case CodeGenOptions::InitialExecTLSModel:
1133     return llvm::GlobalVariable::InitialExecTLSModel;
1134   case CodeGenOptions::LocalExecTLSModel:
1135     return llvm::GlobalVariable::LocalExecTLSModel;
1136   }
1137   llvm_unreachable("Invalid TLS model!");
1138 }
1139 
1140 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1141   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1142 
1143   llvm::GlobalValue::ThreadLocalMode TLM;
1144   TLM = GetDefaultLLVMTLSModel();
1145 
1146   // Override the TLS model if it is explicitly specified.
1147   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1148     TLM = GetLLVMTLSModel(Attr->getModel());
1149   }
1150 
1151   GV->setThreadLocalMode(TLM);
1152 }
1153 
1154 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1155                                           StringRef Name) {
1156   const TargetInfo &Target = CGM.getTarget();
1157   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1158 }
1159 
1160 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1161                                                  const CPUSpecificAttr *Attr,
1162                                                  unsigned CPUIndex,
1163                                                  raw_ostream &Out) {
1164   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1165   // supported.
1166   if (Attr)
1167     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1168   else if (CGM.getTarget().supportsIFunc())
1169     Out << ".resolver";
1170 }
1171 
1172 static void AppendTargetMangling(const CodeGenModule &CGM,
1173                                  const TargetAttr *Attr, raw_ostream &Out) {
1174   if (Attr->isDefaultVersion())
1175     return;
1176 
1177   Out << '.';
1178   const TargetInfo &Target = CGM.getTarget();
1179   ParsedTargetAttr Info =
1180       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1181         // Multiversioning doesn't allow "no-${feature}", so we can
1182         // only have "+" prefixes here.
1183         assert(LHS.startswith("+") && RHS.startswith("+") &&
1184                "Features should always have a prefix.");
1185         return Target.multiVersionSortPriority(LHS.substr(1)) >
1186                Target.multiVersionSortPriority(RHS.substr(1));
1187       });
1188 
1189   bool IsFirst = true;
1190 
1191   if (!Info.Architecture.empty()) {
1192     IsFirst = false;
1193     Out << "arch_" << Info.Architecture;
1194   }
1195 
1196   for (StringRef Feat : Info.Features) {
1197     if (!IsFirst)
1198       Out << '_';
1199     IsFirst = false;
1200     Out << Feat.substr(1);
1201   }
1202 }
1203 
1204 // Returns true if GD is a function decl with internal linkage and
1205 // needs a unique suffix after the mangled name.
1206 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1207                                         CodeGenModule &CGM) {
1208   const Decl *D = GD.getDecl();
1209   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1210          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1211 }
1212 
1213 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1214                                       const NamedDecl *ND,
1215                                       bool OmitMultiVersionMangling = false) {
1216   SmallString<256> Buffer;
1217   llvm::raw_svector_ostream Out(Buffer);
1218   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1219   if (!CGM.getModuleNameHash().empty())
1220     MC.needsUniqueInternalLinkageNames();
1221   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1222   if (ShouldMangle)
1223     MC.mangleName(GD.getWithDecl(ND), Out);
1224   else {
1225     IdentifierInfo *II = ND->getIdentifier();
1226     assert(II && "Attempt to mangle unnamed decl.");
1227     const auto *FD = dyn_cast<FunctionDecl>(ND);
1228 
1229     if (FD &&
1230         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1231       Out << "__regcall3__" << II->getName();
1232     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1233                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1234       Out << "__device_stub__" << II->getName();
1235     } else {
1236       Out << II->getName();
1237     }
1238   }
1239 
1240   // Check if the module name hash should be appended for internal linkage
1241   // symbols.   This should come before multi-version target suffixes are
1242   // appended. This is to keep the name and module hash suffix of the
1243   // internal linkage function together.  The unique suffix should only be
1244   // added when name mangling is done to make sure that the final name can
1245   // be properly demangled.  For example, for C functions without prototypes,
1246   // name mangling is not done and the unique suffix should not be appeneded
1247   // then.
1248   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1249     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1250            "Hash computed when not explicitly requested");
1251     Out << CGM.getModuleNameHash();
1252   }
1253 
1254   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1255     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1256       switch (FD->getMultiVersionKind()) {
1257       case MultiVersionKind::CPUDispatch:
1258       case MultiVersionKind::CPUSpecific:
1259         AppendCPUSpecificCPUDispatchMangling(CGM,
1260                                              FD->getAttr<CPUSpecificAttr>(),
1261                                              GD.getMultiVersionIndex(), Out);
1262         break;
1263       case MultiVersionKind::Target:
1264         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1265         break;
1266       case MultiVersionKind::None:
1267         llvm_unreachable("None multiversion type isn't valid here");
1268       }
1269     }
1270 
1271   // Make unique name for device side static file-scope variable for HIP.
1272   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1273       CGM.getLangOpts().GPURelocatableDeviceCode &&
1274       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1275     CGM.printPostfixForExternalizedStaticVar(Out);
1276   return std::string(Out.str());
1277 }
1278 
1279 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1280                                             const FunctionDecl *FD) {
1281   if (!FD->isMultiVersion())
1282     return;
1283 
1284   // Get the name of what this would be without the 'target' attribute.  This
1285   // allows us to lookup the version that was emitted when this wasn't a
1286   // multiversion function.
1287   std::string NonTargetName =
1288       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1289   GlobalDecl OtherGD;
1290   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1291     assert(OtherGD.getCanonicalDecl()
1292                .getDecl()
1293                ->getAsFunction()
1294                ->isMultiVersion() &&
1295            "Other GD should now be a multiversioned function");
1296     // OtherFD is the version of this function that was mangled BEFORE
1297     // becoming a MultiVersion function.  It potentially needs to be updated.
1298     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1299                                       .getDecl()
1300                                       ->getAsFunction()
1301                                       ->getMostRecentDecl();
1302     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1303     // This is so that if the initial version was already the 'default'
1304     // version, we don't try to update it.
1305     if (OtherName != NonTargetName) {
1306       // Remove instead of erase, since others may have stored the StringRef
1307       // to this.
1308       const auto ExistingRecord = Manglings.find(NonTargetName);
1309       if (ExistingRecord != std::end(Manglings))
1310         Manglings.remove(&(*ExistingRecord));
1311       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1312       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1313       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1314         Entry->setName(OtherName);
1315     }
1316   }
1317 }
1318 
1319 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1320   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1321 
1322   // Some ABIs don't have constructor variants.  Make sure that base and
1323   // complete constructors get mangled the same.
1324   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1325     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1326       CXXCtorType OrigCtorType = GD.getCtorType();
1327       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1328       if (OrigCtorType == Ctor_Base)
1329         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1330     }
1331   }
1332 
1333   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1334   // static device variable depends on whether the variable is referenced by
1335   // a host or device host function. Therefore the mangled name cannot be
1336   // cached.
1337   if (!LangOpts.CUDAIsDevice ||
1338       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1339     auto FoundName = MangledDeclNames.find(CanonicalGD);
1340     if (FoundName != MangledDeclNames.end())
1341       return FoundName->second;
1342   }
1343 
1344   // Keep the first result in the case of a mangling collision.
1345   const auto *ND = cast<NamedDecl>(GD.getDecl());
1346   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1347 
1348   // Ensure either we have different ABIs between host and device compilations,
1349   // says host compilation following MSVC ABI but device compilation follows
1350   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1351   // mangling should be the same after name stubbing. The later checking is
1352   // very important as the device kernel name being mangled in host-compilation
1353   // is used to resolve the device binaries to be executed. Inconsistent naming
1354   // result in undefined behavior. Even though we cannot check that naming
1355   // directly between host- and device-compilations, the host- and
1356   // device-mangling in host compilation could help catching certain ones.
1357   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1358          getLangOpts().CUDAIsDevice ||
1359          (getContext().getAuxTargetInfo() &&
1360           (getContext().getAuxTargetInfo()->getCXXABI() !=
1361            getContext().getTargetInfo().getCXXABI())) ||
1362          getCUDARuntime().getDeviceSideName(ND) ==
1363              getMangledNameImpl(
1364                  *this,
1365                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1366                  ND));
1367 
1368   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1369   return MangledDeclNames[CanonicalGD] = Result.first->first();
1370 }
1371 
1372 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1373                                              const BlockDecl *BD) {
1374   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1375   const Decl *D = GD.getDecl();
1376 
1377   SmallString<256> Buffer;
1378   llvm::raw_svector_ostream Out(Buffer);
1379   if (!D)
1380     MangleCtx.mangleGlobalBlock(BD,
1381       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1382   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1383     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1384   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1385     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1386   else
1387     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1388 
1389   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1390   return Result.first->first();
1391 }
1392 
1393 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1394   return getModule().getNamedValue(Name);
1395 }
1396 
1397 /// AddGlobalCtor - Add a function to the list that will be called before
1398 /// main() runs.
1399 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1400                                   llvm::Constant *AssociatedData) {
1401   // FIXME: Type coercion of void()* types.
1402   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1403 }
1404 
1405 /// AddGlobalDtor - Add a function to the list that will be called
1406 /// when the module is unloaded.
1407 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1408                                   bool IsDtorAttrFunc) {
1409   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1410       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1411     DtorsUsingAtExit[Priority].push_back(Dtor);
1412     return;
1413   }
1414 
1415   // FIXME: Type coercion of void()* types.
1416   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1417 }
1418 
1419 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1420   if (Fns.empty()) return;
1421 
1422   // Ctor function type is void()*.
1423   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1424   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1425       TheModule.getDataLayout().getProgramAddressSpace());
1426 
1427   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1428   llvm::StructType *CtorStructTy = llvm::StructType::get(
1429       Int32Ty, CtorPFTy, VoidPtrTy);
1430 
1431   // Construct the constructor and destructor arrays.
1432   ConstantInitBuilder builder(*this);
1433   auto ctors = builder.beginArray(CtorStructTy);
1434   for (const auto &I : Fns) {
1435     auto ctor = ctors.beginStruct(CtorStructTy);
1436     ctor.addInt(Int32Ty, I.Priority);
1437     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1438     if (I.AssociatedData)
1439       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1440     else
1441       ctor.addNullPointer(VoidPtrTy);
1442     ctor.finishAndAddTo(ctors);
1443   }
1444 
1445   auto list =
1446     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1447                                 /*constant*/ false,
1448                                 llvm::GlobalValue::AppendingLinkage);
1449 
1450   // The LTO linker doesn't seem to like it when we set an alignment
1451   // on appending variables.  Take it off as a workaround.
1452   list->setAlignment(llvm::None);
1453 
1454   Fns.clear();
1455 }
1456 
1457 llvm::GlobalValue::LinkageTypes
1458 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1459   const auto *D = cast<FunctionDecl>(GD.getDecl());
1460 
1461   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1462 
1463   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1464     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1465 
1466   if (isa<CXXConstructorDecl>(D) &&
1467       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1468       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1469     // Our approach to inheriting constructors is fundamentally different from
1470     // that used by the MS ABI, so keep our inheriting constructor thunks
1471     // internal rather than trying to pick an unambiguous mangling for them.
1472     return llvm::GlobalValue::InternalLinkage;
1473   }
1474 
1475   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1476 }
1477 
1478 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1479   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1480   if (!MDS) return nullptr;
1481 
1482   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1483 }
1484 
1485 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1486                                               const CGFunctionInfo &Info,
1487                                               llvm::Function *F, bool IsThunk) {
1488   unsigned CallingConv;
1489   llvm::AttributeList PAL;
1490   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1491                          /*AttrOnCallSite=*/false, IsThunk);
1492   F->setAttributes(PAL);
1493   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1494 }
1495 
1496 static void removeImageAccessQualifier(std::string& TyName) {
1497   std::string ReadOnlyQual("__read_only");
1498   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1499   if (ReadOnlyPos != std::string::npos)
1500     // "+ 1" for the space after access qualifier.
1501     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1502   else {
1503     std::string WriteOnlyQual("__write_only");
1504     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1505     if (WriteOnlyPos != std::string::npos)
1506       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1507     else {
1508       std::string ReadWriteQual("__read_write");
1509       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1510       if (ReadWritePos != std::string::npos)
1511         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1512     }
1513   }
1514 }
1515 
1516 // Returns the address space id that should be produced to the
1517 // kernel_arg_addr_space metadata. This is always fixed to the ids
1518 // as specified in the SPIR 2.0 specification in order to differentiate
1519 // for example in clGetKernelArgInfo() implementation between the address
1520 // spaces with targets without unique mapping to the OpenCL address spaces
1521 // (basically all single AS CPUs).
1522 static unsigned ArgInfoAddressSpace(LangAS AS) {
1523   switch (AS) {
1524   case LangAS::opencl_global:
1525     return 1;
1526   case LangAS::opencl_constant:
1527     return 2;
1528   case LangAS::opencl_local:
1529     return 3;
1530   case LangAS::opencl_generic:
1531     return 4; // Not in SPIR 2.0 specs.
1532   case LangAS::opencl_global_device:
1533     return 5;
1534   case LangAS::opencl_global_host:
1535     return 6;
1536   default:
1537     return 0; // Assume private.
1538   }
1539 }
1540 
1541 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1542                                          const FunctionDecl *FD,
1543                                          CodeGenFunction *CGF) {
1544   assert(((FD && CGF) || (!FD && !CGF)) &&
1545          "Incorrect use - FD and CGF should either be both null or not!");
1546   // Create MDNodes that represent the kernel arg metadata.
1547   // Each MDNode is a list in the form of "key", N number of values which is
1548   // the same number of values as their are kernel arguments.
1549 
1550   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1551 
1552   // MDNode for the kernel argument address space qualifiers.
1553   SmallVector<llvm::Metadata *, 8> addressQuals;
1554 
1555   // MDNode for the kernel argument access qualifiers (images only).
1556   SmallVector<llvm::Metadata *, 8> accessQuals;
1557 
1558   // MDNode for the kernel argument type names.
1559   SmallVector<llvm::Metadata *, 8> argTypeNames;
1560 
1561   // MDNode for the kernel argument base type names.
1562   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1563 
1564   // MDNode for the kernel argument type qualifiers.
1565   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1566 
1567   // MDNode for the kernel argument names.
1568   SmallVector<llvm::Metadata *, 8> argNames;
1569 
1570   if (FD && CGF)
1571     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1572       const ParmVarDecl *parm = FD->getParamDecl(i);
1573       QualType ty = parm->getType();
1574       std::string typeQuals;
1575 
1576       // Get image and pipe access qualifier:
1577       if (ty->isImageType() || ty->isPipeType()) {
1578         const Decl *PDecl = parm;
1579         if (auto *TD = dyn_cast<TypedefType>(ty))
1580           PDecl = TD->getDecl();
1581         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1582         if (A && A->isWriteOnly())
1583           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1584         else if (A && A->isReadWrite())
1585           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1586         else
1587           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1588       } else
1589         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1590 
1591       // Get argument name.
1592       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1593 
1594       auto getTypeSpelling = [&](QualType Ty) {
1595         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1596 
1597         if (Ty.isCanonical()) {
1598           StringRef typeNameRef = typeName;
1599           // Turn "unsigned type" to "utype"
1600           if (typeNameRef.consume_front("unsigned "))
1601             return std::string("u") + typeNameRef.str();
1602           if (typeNameRef.consume_front("signed "))
1603             return typeNameRef.str();
1604         }
1605 
1606         return typeName;
1607       };
1608 
1609       if (ty->isPointerType()) {
1610         QualType pointeeTy = ty->getPointeeType();
1611 
1612         // Get address qualifier.
1613         addressQuals.push_back(
1614             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1615                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1616 
1617         // Get argument type name.
1618         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1619         std::string baseTypeName =
1620             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1621         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1622         argBaseTypeNames.push_back(
1623             llvm::MDString::get(VMContext, baseTypeName));
1624 
1625         // Get argument type qualifiers:
1626         if (ty.isRestrictQualified())
1627           typeQuals = "restrict";
1628         if (pointeeTy.isConstQualified() ||
1629             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1630           typeQuals += typeQuals.empty() ? "const" : " const";
1631         if (pointeeTy.isVolatileQualified())
1632           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1633       } else {
1634         uint32_t AddrSpc = 0;
1635         bool isPipe = ty->isPipeType();
1636         if (ty->isImageType() || isPipe)
1637           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1638 
1639         addressQuals.push_back(
1640             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1641 
1642         // Get argument type name.
1643         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1644         std::string typeName = getTypeSpelling(ty);
1645         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1646 
1647         // Remove access qualifiers on images
1648         // (as they are inseparable from type in clang implementation,
1649         // but OpenCL spec provides a special query to get access qualifier
1650         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1651         if (ty->isImageType()) {
1652           removeImageAccessQualifier(typeName);
1653           removeImageAccessQualifier(baseTypeName);
1654         }
1655 
1656         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1657         argBaseTypeNames.push_back(
1658             llvm::MDString::get(VMContext, baseTypeName));
1659 
1660         if (isPipe)
1661           typeQuals = "pipe";
1662       }
1663       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1664     }
1665 
1666   Fn->setMetadata("kernel_arg_addr_space",
1667                   llvm::MDNode::get(VMContext, addressQuals));
1668   Fn->setMetadata("kernel_arg_access_qual",
1669                   llvm::MDNode::get(VMContext, accessQuals));
1670   Fn->setMetadata("kernel_arg_type",
1671                   llvm::MDNode::get(VMContext, argTypeNames));
1672   Fn->setMetadata("kernel_arg_base_type",
1673                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1674   Fn->setMetadata("kernel_arg_type_qual",
1675                   llvm::MDNode::get(VMContext, argTypeQuals));
1676   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1677     Fn->setMetadata("kernel_arg_name",
1678                     llvm::MDNode::get(VMContext, argNames));
1679 }
1680 
1681 /// Determines whether the language options require us to model
1682 /// unwind exceptions.  We treat -fexceptions as mandating this
1683 /// except under the fragile ObjC ABI with only ObjC exceptions
1684 /// enabled.  This means, for example, that C with -fexceptions
1685 /// enables this.
1686 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1687   // If exceptions are completely disabled, obviously this is false.
1688   if (!LangOpts.Exceptions) return false;
1689 
1690   // If C++ exceptions are enabled, this is true.
1691   if (LangOpts.CXXExceptions) return true;
1692 
1693   // If ObjC exceptions are enabled, this depends on the ABI.
1694   if (LangOpts.ObjCExceptions) {
1695     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1696   }
1697 
1698   return true;
1699 }
1700 
1701 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1702                                                       const CXXMethodDecl *MD) {
1703   // Check that the type metadata can ever actually be used by a call.
1704   if (!CGM.getCodeGenOpts().LTOUnit ||
1705       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1706     return false;
1707 
1708   // Only functions whose address can be taken with a member function pointer
1709   // need this sort of type metadata.
1710   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1711          !isa<CXXDestructorDecl>(MD);
1712 }
1713 
1714 std::vector<const CXXRecordDecl *>
1715 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1716   llvm::SetVector<const CXXRecordDecl *> MostBases;
1717 
1718   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1719   CollectMostBases = [&](const CXXRecordDecl *RD) {
1720     if (RD->getNumBases() == 0)
1721       MostBases.insert(RD);
1722     for (const CXXBaseSpecifier &B : RD->bases())
1723       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1724   };
1725   CollectMostBases(RD);
1726   return MostBases.takeVector();
1727 }
1728 
1729 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1730                                                            llvm::Function *F) {
1731   llvm::AttrBuilder B;
1732 
1733   if (CodeGenOpts.UnwindTables)
1734     B.addAttribute(llvm::Attribute::UWTable);
1735 
1736   if (CodeGenOpts.StackClashProtector)
1737     B.addAttribute("probe-stack", "inline-asm");
1738 
1739   if (!hasUnwindExceptions(LangOpts))
1740     B.addAttribute(llvm::Attribute::NoUnwind);
1741 
1742   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1743     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1744       B.addAttribute(llvm::Attribute::StackProtect);
1745     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1746       B.addAttribute(llvm::Attribute::StackProtectStrong);
1747     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1748       B.addAttribute(llvm::Attribute::StackProtectReq);
1749   }
1750 
1751   if (!D) {
1752     // If we don't have a declaration to control inlining, the function isn't
1753     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1754     // disabled, mark the function as noinline.
1755     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1756         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1757       B.addAttribute(llvm::Attribute::NoInline);
1758 
1759     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1760     return;
1761   }
1762 
1763   // Track whether we need to add the optnone LLVM attribute,
1764   // starting with the default for this optimization level.
1765   bool ShouldAddOptNone =
1766       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1767   // We can't add optnone in the following cases, it won't pass the verifier.
1768   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1769   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1770 
1771   // Add optnone, but do so only if the function isn't always_inline.
1772   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1773       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1774     B.addAttribute(llvm::Attribute::OptimizeNone);
1775 
1776     // OptimizeNone implies noinline; we should not be inlining such functions.
1777     B.addAttribute(llvm::Attribute::NoInline);
1778 
1779     // We still need to handle naked functions even though optnone subsumes
1780     // much of their semantics.
1781     if (D->hasAttr<NakedAttr>())
1782       B.addAttribute(llvm::Attribute::Naked);
1783 
1784     // OptimizeNone wins over OptimizeForSize and MinSize.
1785     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1786     F->removeFnAttr(llvm::Attribute::MinSize);
1787   } else if (D->hasAttr<NakedAttr>()) {
1788     // Naked implies noinline: we should not be inlining such functions.
1789     B.addAttribute(llvm::Attribute::Naked);
1790     B.addAttribute(llvm::Attribute::NoInline);
1791   } else if (D->hasAttr<NoDuplicateAttr>()) {
1792     B.addAttribute(llvm::Attribute::NoDuplicate);
1793   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1794     // Add noinline if the function isn't always_inline.
1795     B.addAttribute(llvm::Attribute::NoInline);
1796   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1797              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1798     // (noinline wins over always_inline, and we can't specify both in IR)
1799     B.addAttribute(llvm::Attribute::AlwaysInline);
1800   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1801     // If we're not inlining, then force everything that isn't always_inline to
1802     // carry an explicit noinline attribute.
1803     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1804       B.addAttribute(llvm::Attribute::NoInline);
1805   } else {
1806     // Otherwise, propagate the inline hint attribute and potentially use its
1807     // absence to mark things as noinline.
1808     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1809       // Search function and template pattern redeclarations for inline.
1810       auto CheckForInline = [](const FunctionDecl *FD) {
1811         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1812           return Redecl->isInlineSpecified();
1813         };
1814         if (any_of(FD->redecls(), CheckRedeclForInline))
1815           return true;
1816         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1817         if (!Pattern)
1818           return false;
1819         return any_of(Pattern->redecls(), CheckRedeclForInline);
1820       };
1821       if (CheckForInline(FD)) {
1822         B.addAttribute(llvm::Attribute::InlineHint);
1823       } else if (CodeGenOpts.getInlining() ==
1824                      CodeGenOptions::OnlyHintInlining &&
1825                  !FD->isInlined() &&
1826                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1827         B.addAttribute(llvm::Attribute::NoInline);
1828       }
1829     }
1830   }
1831 
1832   // Add other optimization related attributes if we are optimizing this
1833   // function.
1834   if (!D->hasAttr<OptimizeNoneAttr>()) {
1835     if (D->hasAttr<ColdAttr>()) {
1836       if (!ShouldAddOptNone)
1837         B.addAttribute(llvm::Attribute::OptimizeForSize);
1838       B.addAttribute(llvm::Attribute::Cold);
1839     }
1840     if (D->hasAttr<HotAttr>())
1841       B.addAttribute(llvm::Attribute::Hot);
1842     if (D->hasAttr<MinSizeAttr>())
1843       B.addAttribute(llvm::Attribute::MinSize);
1844   }
1845 
1846   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1847 
1848   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1849   if (alignment)
1850     F->setAlignment(llvm::Align(alignment));
1851 
1852   if (!D->hasAttr<AlignedAttr>())
1853     if (LangOpts.FunctionAlignment)
1854       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1855 
1856   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1857   // reserve a bit for differentiating between virtual and non-virtual member
1858   // functions. If the current target's C++ ABI requires this and this is a
1859   // member function, set its alignment accordingly.
1860   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1861     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1862       F->setAlignment(llvm::Align(2));
1863   }
1864 
1865   // In the cross-dso CFI mode with canonical jump tables, we want !type
1866   // attributes on definitions only.
1867   if (CodeGenOpts.SanitizeCfiCrossDso &&
1868       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1869     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1870       // Skip available_externally functions. They won't be codegen'ed in the
1871       // current module anyway.
1872       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1873         CreateFunctionTypeMetadataForIcall(FD, F);
1874     }
1875   }
1876 
1877   // Emit type metadata on member functions for member function pointer checks.
1878   // These are only ever necessary on definitions; we're guaranteed that the
1879   // definition will be present in the LTO unit as a result of LTO visibility.
1880   auto *MD = dyn_cast<CXXMethodDecl>(D);
1881   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1882     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1883       llvm::Metadata *Id =
1884           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1885               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1886       F->addTypeMetadata(0, Id);
1887     }
1888   }
1889 }
1890 
1891 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1892                                                   llvm::Function *F) {
1893   if (D->hasAttr<StrictFPAttr>()) {
1894     llvm::AttrBuilder FuncAttrs;
1895     FuncAttrs.addAttribute("strictfp");
1896     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1897   }
1898 }
1899 
1900 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1901   const Decl *D = GD.getDecl();
1902   if (dyn_cast_or_null<NamedDecl>(D))
1903     setGVProperties(GV, GD);
1904   else
1905     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1906 
1907   if (D && D->hasAttr<UsedAttr>())
1908     addUsedOrCompilerUsedGlobal(GV);
1909 
1910   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1911     const auto *VD = cast<VarDecl>(D);
1912     if (VD->getType().isConstQualified() &&
1913         VD->getStorageDuration() == SD_Static)
1914       addUsedOrCompilerUsedGlobal(GV);
1915   }
1916 }
1917 
1918 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1919                                                 llvm::AttrBuilder &Attrs) {
1920   // Add target-cpu and target-features attributes to functions. If
1921   // we have a decl for the function and it has a target attribute then
1922   // parse that and add it to the feature set.
1923   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1924   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1925   std::vector<std::string> Features;
1926   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1927   FD = FD ? FD->getMostRecentDecl() : FD;
1928   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1929   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1930   bool AddedAttr = false;
1931   if (TD || SD) {
1932     llvm::StringMap<bool> FeatureMap;
1933     getContext().getFunctionFeatureMap(FeatureMap, GD);
1934 
1935     // Produce the canonical string for this set of features.
1936     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1937       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1938 
1939     // Now add the target-cpu and target-features to the function.
1940     // While we populated the feature map above, we still need to
1941     // get and parse the target attribute so we can get the cpu for
1942     // the function.
1943     if (TD) {
1944       ParsedTargetAttr ParsedAttr = TD->parse();
1945       if (!ParsedAttr.Architecture.empty() &&
1946           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1947         TargetCPU = ParsedAttr.Architecture;
1948         TuneCPU = ""; // Clear the tune CPU.
1949       }
1950       if (!ParsedAttr.Tune.empty() &&
1951           getTarget().isValidCPUName(ParsedAttr.Tune))
1952         TuneCPU = ParsedAttr.Tune;
1953     }
1954   } else {
1955     // Otherwise just add the existing target cpu and target features to the
1956     // function.
1957     Features = getTarget().getTargetOpts().Features;
1958   }
1959 
1960   if (!TargetCPU.empty()) {
1961     Attrs.addAttribute("target-cpu", TargetCPU);
1962     AddedAttr = true;
1963   }
1964   if (!TuneCPU.empty()) {
1965     Attrs.addAttribute("tune-cpu", TuneCPU);
1966     AddedAttr = true;
1967   }
1968   if (!Features.empty()) {
1969     llvm::sort(Features);
1970     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1971     AddedAttr = true;
1972   }
1973 
1974   return AddedAttr;
1975 }
1976 
1977 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1978                                           llvm::GlobalObject *GO) {
1979   const Decl *D = GD.getDecl();
1980   SetCommonAttributes(GD, GO);
1981 
1982   if (D) {
1983     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1984       if (D->hasAttr<RetainAttr>())
1985         addUsedGlobal(GV);
1986       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1987         GV->addAttribute("bss-section", SA->getName());
1988       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1989         GV->addAttribute("data-section", SA->getName());
1990       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1991         GV->addAttribute("rodata-section", SA->getName());
1992       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1993         GV->addAttribute("relro-section", SA->getName());
1994     }
1995 
1996     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1997       if (D->hasAttr<RetainAttr>())
1998         addUsedGlobal(F);
1999       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2000         if (!D->getAttr<SectionAttr>())
2001           F->addFnAttr("implicit-section-name", SA->getName());
2002 
2003       llvm::AttrBuilder Attrs;
2004       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2005         // We know that GetCPUAndFeaturesAttributes will always have the
2006         // newest set, since it has the newest possible FunctionDecl, so the
2007         // new ones should replace the old.
2008         llvm::AttrBuilder RemoveAttrs;
2009         RemoveAttrs.addAttribute("target-cpu");
2010         RemoveAttrs.addAttribute("target-features");
2011         RemoveAttrs.addAttribute("tune-cpu");
2012         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
2013         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
2014       }
2015     }
2016 
2017     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2018       GO->setSection(CSA->getName());
2019     else if (const auto *SA = D->getAttr<SectionAttr>())
2020       GO->setSection(SA->getName());
2021   }
2022 
2023   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2024 }
2025 
2026 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2027                                                   llvm::Function *F,
2028                                                   const CGFunctionInfo &FI) {
2029   const Decl *D = GD.getDecl();
2030   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2031   SetLLVMFunctionAttributesForDefinition(D, F);
2032 
2033   F->setLinkage(llvm::Function::InternalLinkage);
2034 
2035   setNonAliasAttributes(GD, F);
2036 }
2037 
2038 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2039   // Set linkage and visibility in case we never see a definition.
2040   LinkageInfo LV = ND->getLinkageAndVisibility();
2041   // Don't set internal linkage on declarations.
2042   // "extern_weak" is overloaded in LLVM; we probably should have
2043   // separate linkage types for this.
2044   if (isExternallyVisible(LV.getLinkage()) &&
2045       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2046     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2047 }
2048 
2049 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2050                                                        llvm::Function *F) {
2051   // Only if we are checking indirect calls.
2052   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2053     return;
2054 
2055   // Non-static class methods are handled via vtable or member function pointer
2056   // checks elsewhere.
2057   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2058     return;
2059 
2060   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2061   F->addTypeMetadata(0, MD);
2062   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2063 
2064   // Emit a hash-based bit set entry for cross-DSO calls.
2065   if (CodeGenOpts.SanitizeCfiCrossDso)
2066     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2067       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2068 }
2069 
2070 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2071                                           bool IsIncompleteFunction,
2072                                           bool IsThunk) {
2073 
2074   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2075     // If this is an intrinsic function, set the function's attributes
2076     // to the intrinsic's attributes.
2077     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2078     return;
2079   }
2080 
2081   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2082 
2083   if (!IsIncompleteFunction)
2084     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2085                               IsThunk);
2086 
2087   // Add the Returned attribute for "this", except for iOS 5 and earlier
2088   // where substantial code, including the libstdc++ dylib, was compiled with
2089   // GCC and does not actually return "this".
2090   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2091       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2092     assert(!F->arg_empty() &&
2093            F->arg_begin()->getType()
2094              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2095            "unexpected this return");
2096     F->addAttribute(1, llvm::Attribute::Returned);
2097   }
2098 
2099   // Only a few attributes are set on declarations; these may later be
2100   // overridden by a definition.
2101 
2102   setLinkageForGV(F, FD);
2103   setGVProperties(F, FD);
2104 
2105   // Setup target-specific attributes.
2106   if (!IsIncompleteFunction && F->isDeclaration())
2107     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2108 
2109   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2110     F->setSection(CSA->getName());
2111   else if (const auto *SA = FD->getAttr<SectionAttr>())
2112      F->setSection(SA->getName());
2113 
2114   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2115   if (FD->isInlineBuiltinDeclaration()) {
2116     const FunctionDecl *FDBody;
2117     bool HasBody = FD->hasBody(FDBody);
2118     (void)HasBody;
2119     assert(HasBody && "Inline builtin declarations should always have an "
2120                       "available body!");
2121     if (shouldEmitFunction(FDBody))
2122       F->addAttribute(llvm::AttributeList::FunctionIndex,
2123                       llvm::Attribute::NoBuiltin);
2124   }
2125 
2126   if (FD->isReplaceableGlobalAllocationFunction()) {
2127     // A replaceable global allocation function does not act like a builtin by
2128     // default, only if it is invoked by a new-expression or delete-expression.
2129     F->addAttribute(llvm::AttributeList::FunctionIndex,
2130                     llvm::Attribute::NoBuiltin);
2131   }
2132 
2133   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2134     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2135   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2136     if (MD->isVirtual())
2137       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2138 
2139   // Don't emit entries for function declarations in the cross-DSO mode. This
2140   // is handled with better precision by the receiving DSO. But if jump tables
2141   // are non-canonical then we need type metadata in order to produce the local
2142   // jump table.
2143   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2144       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2145     CreateFunctionTypeMetadataForIcall(FD, F);
2146 
2147   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2148     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2149 
2150   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2151     // Annotate the callback behavior as metadata:
2152     //  - The callback callee (as argument number).
2153     //  - The callback payloads (as argument numbers).
2154     llvm::LLVMContext &Ctx = F->getContext();
2155     llvm::MDBuilder MDB(Ctx);
2156 
2157     // The payload indices are all but the first one in the encoding. The first
2158     // identifies the callback callee.
2159     int CalleeIdx = *CB->encoding_begin();
2160     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2161     F->addMetadata(llvm::LLVMContext::MD_callback,
2162                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2163                                                CalleeIdx, PayloadIndices,
2164                                                /* VarArgsArePassed */ false)}));
2165   }
2166 }
2167 
2168 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2169   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2170          "Only globals with definition can force usage.");
2171   LLVMUsed.emplace_back(GV);
2172 }
2173 
2174 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2175   assert(!GV->isDeclaration() &&
2176          "Only globals with definition can force usage.");
2177   LLVMCompilerUsed.emplace_back(GV);
2178 }
2179 
2180 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2181   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2182          "Only globals with definition can force usage.");
2183   if (getTriple().isOSBinFormatELF())
2184     LLVMCompilerUsed.emplace_back(GV);
2185   else
2186     LLVMUsed.emplace_back(GV);
2187 }
2188 
2189 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2190                      std::vector<llvm::WeakTrackingVH> &List) {
2191   // Don't create llvm.used if there is no need.
2192   if (List.empty())
2193     return;
2194 
2195   // Convert List to what ConstantArray needs.
2196   SmallVector<llvm::Constant*, 8> UsedArray;
2197   UsedArray.resize(List.size());
2198   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2199     UsedArray[i] =
2200         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2201             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2202   }
2203 
2204   if (UsedArray.empty())
2205     return;
2206   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2207 
2208   auto *GV = new llvm::GlobalVariable(
2209       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2210       llvm::ConstantArray::get(ATy, UsedArray), Name);
2211 
2212   GV->setSection("llvm.metadata");
2213 }
2214 
2215 void CodeGenModule::emitLLVMUsed() {
2216   emitUsed(*this, "llvm.used", LLVMUsed);
2217   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2218 }
2219 
2220 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2221   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2222   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2223 }
2224 
2225 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2226   llvm::SmallString<32> Opt;
2227   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2228   if (Opt.empty())
2229     return;
2230   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2231   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2232 }
2233 
2234 void CodeGenModule::AddDependentLib(StringRef Lib) {
2235   auto &C = getLLVMContext();
2236   if (getTarget().getTriple().isOSBinFormatELF()) {
2237       ELFDependentLibraries.push_back(
2238         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2239     return;
2240   }
2241 
2242   llvm::SmallString<24> Opt;
2243   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2244   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2245   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2246 }
2247 
2248 /// Add link options implied by the given module, including modules
2249 /// it depends on, using a postorder walk.
2250 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2251                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2252                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2253   // Import this module's parent.
2254   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2255     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2256   }
2257 
2258   // Import this module's dependencies.
2259   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2260     if (Visited.insert(Mod->Imports[I - 1]).second)
2261       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2262   }
2263 
2264   // Add linker options to link against the libraries/frameworks
2265   // described by this module.
2266   llvm::LLVMContext &Context = CGM.getLLVMContext();
2267   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2268 
2269   // For modules that use export_as for linking, use that module
2270   // name instead.
2271   if (Mod->UseExportAsModuleLinkName)
2272     return;
2273 
2274   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2275     // Link against a framework.  Frameworks are currently Darwin only, so we
2276     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2277     if (Mod->LinkLibraries[I-1].IsFramework) {
2278       llvm::Metadata *Args[2] = {
2279           llvm::MDString::get(Context, "-framework"),
2280           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2281 
2282       Metadata.push_back(llvm::MDNode::get(Context, Args));
2283       continue;
2284     }
2285 
2286     // Link against a library.
2287     if (IsELF) {
2288       llvm::Metadata *Args[2] = {
2289           llvm::MDString::get(Context, "lib"),
2290           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2291       };
2292       Metadata.push_back(llvm::MDNode::get(Context, Args));
2293     } else {
2294       llvm::SmallString<24> Opt;
2295       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2296           Mod->LinkLibraries[I - 1].Library, Opt);
2297       auto *OptString = llvm::MDString::get(Context, Opt);
2298       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2299     }
2300   }
2301 }
2302 
2303 void CodeGenModule::EmitModuleLinkOptions() {
2304   // Collect the set of all of the modules we want to visit to emit link
2305   // options, which is essentially the imported modules and all of their
2306   // non-explicit child modules.
2307   llvm::SetVector<clang::Module *> LinkModules;
2308   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2309   SmallVector<clang::Module *, 16> Stack;
2310 
2311   // Seed the stack with imported modules.
2312   for (Module *M : ImportedModules) {
2313     // Do not add any link flags when an implementation TU of a module imports
2314     // a header of that same module.
2315     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2316         !getLangOpts().isCompilingModule())
2317       continue;
2318     if (Visited.insert(M).second)
2319       Stack.push_back(M);
2320   }
2321 
2322   // Find all of the modules to import, making a little effort to prune
2323   // non-leaf modules.
2324   while (!Stack.empty()) {
2325     clang::Module *Mod = Stack.pop_back_val();
2326 
2327     bool AnyChildren = false;
2328 
2329     // Visit the submodules of this module.
2330     for (const auto &SM : Mod->submodules()) {
2331       // Skip explicit children; they need to be explicitly imported to be
2332       // linked against.
2333       if (SM->IsExplicit)
2334         continue;
2335 
2336       if (Visited.insert(SM).second) {
2337         Stack.push_back(SM);
2338         AnyChildren = true;
2339       }
2340     }
2341 
2342     // We didn't find any children, so add this module to the list of
2343     // modules to link against.
2344     if (!AnyChildren) {
2345       LinkModules.insert(Mod);
2346     }
2347   }
2348 
2349   // Add link options for all of the imported modules in reverse topological
2350   // order.  We don't do anything to try to order import link flags with respect
2351   // to linker options inserted by things like #pragma comment().
2352   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2353   Visited.clear();
2354   for (Module *M : LinkModules)
2355     if (Visited.insert(M).second)
2356       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2357   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2358   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2359 
2360   // Add the linker options metadata flag.
2361   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2362   for (auto *MD : LinkerOptionsMetadata)
2363     NMD->addOperand(MD);
2364 }
2365 
2366 void CodeGenModule::EmitDeferred() {
2367   // Emit deferred declare target declarations.
2368   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2369     getOpenMPRuntime().emitDeferredTargetDecls();
2370 
2371   // Emit code for any potentially referenced deferred decls.  Since a
2372   // previously unused static decl may become used during the generation of code
2373   // for a static function, iterate until no changes are made.
2374 
2375   if (!DeferredVTables.empty()) {
2376     EmitDeferredVTables();
2377 
2378     // Emitting a vtable doesn't directly cause more vtables to
2379     // become deferred, although it can cause functions to be
2380     // emitted that then need those vtables.
2381     assert(DeferredVTables.empty());
2382   }
2383 
2384   // Emit CUDA/HIP static device variables referenced by host code only.
2385   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2386   // needed for further handling.
2387   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2388     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2389       DeferredDeclsToEmit.push_back(V);
2390 
2391   // Stop if we're out of both deferred vtables and deferred declarations.
2392   if (DeferredDeclsToEmit.empty())
2393     return;
2394 
2395   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2396   // work, it will not interfere with this.
2397   std::vector<GlobalDecl> CurDeclsToEmit;
2398   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2399 
2400   for (GlobalDecl &D : CurDeclsToEmit) {
2401     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2402     // to get GlobalValue with exactly the type we need, not something that
2403     // might had been created for another decl with the same mangled name but
2404     // different type.
2405     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2406         GetAddrOfGlobal(D, ForDefinition));
2407 
2408     // In case of different address spaces, we may still get a cast, even with
2409     // IsForDefinition equal to true. Query mangled names table to get
2410     // GlobalValue.
2411     if (!GV)
2412       GV = GetGlobalValue(getMangledName(D));
2413 
2414     // Make sure GetGlobalValue returned non-null.
2415     assert(GV);
2416 
2417     // Check to see if we've already emitted this.  This is necessary
2418     // for a couple of reasons: first, decls can end up in the
2419     // deferred-decls queue multiple times, and second, decls can end
2420     // up with definitions in unusual ways (e.g. by an extern inline
2421     // function acquiring a strong function redefinition).  Just
2422     // ignore these cases.
2423     if (!GV->isDeclaration())
2424       continue;
2425 
2426     // If this is OpenMP, check if it is legal to emit this global normally.
2427     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2428       continue;
2429 
2430     // Otherwise, emit the definition and move on to the next one.
2431     EmitGlobalDefinition(D, GV);
2432 
2433     // If we found out that we need to emit more decls, do that recursively.
2434     // This has the advantage that the decls are emitted in a DFS and related
2435     // ones are close together, which is convenient for testing.
2436     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2437       EmitDeferred();
2438       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2439     }
2440   }
2441 }
2442 
2443 void CodeGenModule::EmitVTablesOpportunistically() {
2444   // Try to emit external vtables as available_externally if they have emitted
2445   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2446   // is not allowed to create new references to things that need to be emitted
2447   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2448 
2449   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2450          && "Only emit opportunistic vtables with optimizations");
2451 
2452   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2453     assert(getVTables().isVTableExternal(RD) &&
2454            "This queue should only contain external vtables");
2455     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2456       VTables.GenerateClassData(RD);
2457   }
2458   OpportunisticVTables.clear();
2459 }
2460 
2461 void CodeGenModule::EmitGlobalAnnotations() {
2462   if (Annotations.empty())
2463     return;
2464 
2465   // Create a new global variable for the ConstantStruct in the Module.
2466   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2467     Annotations[0]->getType(), Annotations.size()), Annotations);
2468   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2469                                       llvm::GlobalValue::AppendingLinkage,
2470                                       Array, "llvm.global.annotations");
2471   gv->setSection(AnnotationSection);
2472 }
2473 
2474 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2475   llvm::Constant *&AStr = AnnotationStrings[Str];
2476   if (AStr)
2477     return AStr;
2478 
2479   // Not found yet, create a new global.
2480   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2481   auto *gv =
2482       new llvm::GlobalVariable(getModule(), s->getType(), true,
2483                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2484   gv->setSection(AnnotationSection);
2485   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2486   AStr = gv;
2487   return gv;
2488 }
2489 
2490 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2491   SourceManager &SM = getContext().getSourceManager();
2492   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2493   if (PLoc.isValid())
2494     return EmitAnnotationString(PLoc.getFilename());
2495   return EmitAnnotationString(SM.getBufferName(Loc));
2496 }
2497 
2498 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2499   SourceManager &SM = getContext().getSourceManager();
2500   PresumedLoc PLoc = SM.getPresumedLoc(L);
2501   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2502     SM.getExpansionLineNumber(L);
2503   return llvm::ConstantInt::get(Int32Ty, LineNo);
2504 }
2505 
2506 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2507   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2508   if (Exprs.empty())
2509     return llvm::ConstantPointerNull::get(Int8PtrTy);
2510 
2511   llvm::FoldingSetNodeID ID;
2512   for (Expr *E : Exprs) {
2513     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2514   }
2515   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2516   if (Lookup)
2517     return Lookup;
2518 
2519   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2520   LLVMArgs.reserve(Exprs.size());
2521   ConstantEmitter ConstEmiter(*this);
2522   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2523     const auto *CE = cast<clang::ConstantExpr>(E);
2524     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2525                                     CE->getType());
2526   });
2527   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2528   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2529                                       llvm::GlobalValue::PrivateLinkage, Struct,
2530                                       ".args");
2531   GV->setSection(AnnotationSection);
2532   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2533   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2534 
2535   Lookup = Bitcasted;
2536   return Bitcasted;
2537 }
2538 
2539 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2540                                                 const AnnotateAttr *AA,
2541                                                 SourceLocation L) {
2542   // Get the globals for file name, annotation, and the line number.
2543   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2544                  *UnitGV = EmitAnnotationUnit(L),
2545                  *LineNoCst = EmitAnnotationLineNo(L),
2546                  *Args = EmitAnnotationArgs(AA);
2547 
2548   llvm::Constant *ASZeroGV = GV;
2549   if (GV->getAddressSpace() != 0) {
2550     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2551                    GV, GV->getValueType()->getPointerTo(0));
2552   }
2553 
2554   // Create the ConstantStruct for the global annotation.
2555   llvm::Constant *Fields[] = {
2556       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2557       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2558       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2559       LineNoCst,
2560       Args,
2561   };
2562   return llvm::ConstantStruct::getAnon(Fields);
2563 }
2564 
2565 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2566                                          llvm::GlobalValue *GV) {
2567   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2568   // Get the struct elements for these annotations.
2569   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2570     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2571 }
2572 
2573 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2574                                        SourceLocation Loc) const {
2575   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2576   // NoSanitize by function name.
2577   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2578     return true;
2579   // NoSanitize by location.
2580   if (Loc.isValid())
2581     return NoSanitizeL.containsLocation(Kind, Loc);
2582   // If location is unknown, this may be a compiler-generated function. Assume
2583   // it's located in the main file.
2584   auto &SM = Context.getSourceManager();
2585   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2586     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2587   }
2588   return false;
2589 }
2590 
2591 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2592                                        SourceLocation Loc, QualType Ty,
2593                                        StringRef Category) const {
2594   // For now globals can be ignored only in ASan and KASan.
2595   const SanitizerMask EnabledAsanMask =
2596       LangOpts.Sanitize.Mask &
2597       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2598        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2599        SanitizerKind::MemTag);
2600   if (!EnabledAsanMask)
2601     return false;
2602   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2603   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2604     return true;
2605   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2606     return true;
2607   // Check global type.
2608   if (!Ty.isNull()) {
2609     // Drill down the array types: if global variable of a fixed type is
2610     // not sanitized, we also don't instrument arrays of them.
2611     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2612       Ty = AT->getElementType();
2613     Ty = Ty.getCanonicalType().getUnqualifiedType();
2614     // Only record types (classes, structs etc.) are ignored.
2615     if (Ty->isRecordType()) {
2616       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2617       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2618         return true;
2619     }
2620   }
2621   return false;
2622 }
2623 
2624 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2625                                    StringRef Category) const {
2626   const auto &XRayFilter = getContext().getXRayFilter();
2627   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2628   auto Attr = ImbueAttr::NONE;
2629   if (Loc.isValid())
2630     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2631   if (Attr == ImbueAttr::NONE)
2632     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2633   switch (Attr) {
2634   case ImbueAttr::NONE:
2635     return false;
2636   case ImbueAttr::ALWAYS:
2637     Fn->addFnAttr("function-instrument", "xray-always");
2638     break;
2639   case ImbueAttr::ALWAYS_ARG1:
2640     Fn->addFnAttr("function-instrument", "xray-always");
2641     Fn->addFnAttr("xray-log-args", "1");
2642     break;
2643   case ImbueAttr::NEVER:
2644     Fn->addFnAttr("function-instrument", "xray-never");
2645     break;
2646   }
2647   return true;
2648 }
2649 
2650 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2651                                            SourceLocation Loc) const {
2652   const auto &ProfileList = getContext().getProfileList();
2653   // If the profile list is empty, then instrument everything.
2654   if (ProfileList.isEmpty())
2655     return false;
2656   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2657   // First, check the function name.
2658   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2659   if (V.hasValue())
2660     return *V;
2661   // Next, check the source location.
2662   if (Loc.isValid()) {
2663     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2664     if (V.hasValue())
2665       return *V;
2666   }
2667   // If location is unknown, this may be a compiler-generated function. Assume
2668   // it's located in the main file.
2669   auto &SM = Context.getSourceManager();
2670   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2671     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2672     if (V.hasValue())
2673       return *V;
2674   }
2675   return ProfileList.getDefault();
2676 }
2677 
2678 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2679   // Never defer when EmitAllDecls is specified.
2680   if (LangOpts.EmitAllDecls)
2681     return true;
2682 
2683   if (CodeGenOpts.KeepStaticConsts) {
2684     const auto *VD = dyn_cast<VarDecl>(Global);
2685     if (VD && VD->getType().isConstQualified() &&
2686         VD->getStorageDuration() == SD_Static)
2687       return true;
2688   }
2689 
2690   return getContext().DeclMustBeEmitted(Global);
2691 }
2692 
2693 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2694   // In OpenMP 5.0 variables and function may be marked as
2695   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2696   // that they must be emitted on the host/device. To be sure we need to have
2697   // seen a declare target with an explicit mentioning of the function, we know
2698   // we have if the level of the declare target attribute is -1. Note that we
2699   // check somewhere else if we should emit this at all.
2700   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2701     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2702         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2703     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2704       return false;
2705   }
2706 
2707   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2708     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2709       // Implicit template instantiations may change linkage if they are later
2710       // explicitly instantiated, so they should not be emitted eagerly.
2711       return false;
2712   }
2713   if (const auto *VD = dyn_cast<VarDecl>(Global))
2714     if (Context.getInlineVariableDefinitionKind(VD) ==
2715         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2716       // A definition of an inline constexpr static data member may change
2717       // linkage later if it's redeclared outside the class.
2718       return false;
2719   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2720   // codegen for global variables, because they may be marked as threadprivate.
2721   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2722       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2723       !isTypeConstant(Global->getType(), false) &&
2724       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2725     return false;
2726 
2727   return true;
2728 }
2729 
2730 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2731   StringRef Name = getMangledName(GD);
2732 
2733   // The UUID descriptor should be pointer aligned.
2734   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2735 
2736   // Look for an existing global.
2737   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2738     return ConstantAddress(GV, Alignment);
2739 
2740   ConstantEmitter Emitter(*this);
2741   llvm::Constant *Init;
2742 
2743   APValue &V = GD->getAsAPValue();
2744   if (!V.isAbsent()) {
2745     // If possible, emit the APValue version of the initializer. In particular,
2746     // this gets the type of the constant right.
2747     Init = Emitter.emitForInitializer(
2748         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2749   } else {
2750     // As a fallback, directly construct the constant.
2751     // FIXME: This may get padding wrong under esoteric struct layout rules.
2752     // MSVC appears to create a complete type 'struct __s_GUID' that it
2753     // presumably uses to represent these constants.
2754     MSGuidDecl::Parts Parts = GD->getParts();
2755     llvm::Constant *Fields[4] = {
2756         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2757         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2758         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2759         llvm::ConstantDataArray::getRaw(
2760             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2761             Int8Ty)};
2762     Init = llvm::ConstantStruct::getAnon(Fields);
2763   }
2764 
2765   auto *GV = new llvm::GlobalVariable(
2766       getModule(), Init->getType(),
2767       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2768   if (supportsCOMDAT())
2769     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2770   setDSOLocal(GV);
2771 
2772   llvm::Constant *Addr = GV;
2773   if (!V.isAbsent()) {
2774     Emitter.finalize(GV);
2775   } else {
2776     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2777     Addr = llvm::ConstantExpr::getBitCast(
2778         GV, Ty->getPointerTo(GV->getAddressSpace()));
2779   }
2780   return ConstantAddress(Addr, Alignment);
2781 }
2782 
2783 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2784     const TemplateParamObjectDecl *TPO) {
2785   StringRef Name = getMangledName(TPO);
2786   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2787 
2788   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2789     return ConstantAddress(GV, Alignment);
2790 
2791   ConstantEmitter Emitter(*this);
2792   llvm::Constant *Init = Emitter.emitForInitializer(
2793         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2794 
2795   if (!Init) {
2796     ErrorUnsupported(TPO, "template parameter object");
2797     return ConstantAddress::invalid();
2798   }
2799 
2800   auto *GV = new llvm::GlobalVariable(
2801       getModule(), Init->getType(),
2802       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2803   if (supportsCOMDAT())
2804     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2805   Emitter.finalize(GV);
2806 
2807   return ConstantAddress(GV, Alignment);
2808 }
2809 
2810 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2811   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2812   assert(AA && "No alias?");
2813 
2814   CharUnits Alignment = getContext().getDeclAlign(VD);
2815   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2816 
2817   // See if there is already something with the target's name in the module.
2818   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2819   if (Entry) {
2820     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2821     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2822     return ConstantAddress(Ptr, Alignment);
2823   }
2824 
2825   llvm::Constant *Aliasee;
2826   if (isa<llvm::FunctionType>(DeclTy))
2827     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2828                                       GlobalDecl(cast<FunctionDecl>(VD)),
2829                                       /*ForVTable=*/false);
2830   else
2831     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0, nullptr);
2832 
2833   auto *F = cast<llvm::GlobalValue>(Aliasee);
2834   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2835   WeakRefReferences.insert(F);
2836 
2837   return ConstantAddress(Aliasee, Alignment);
2838 }
2839 
2840 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2841   const auto *Global = cast<ValueDecl>(GD.getDecl());
2842 
2843   // Weak references don't produce any output by themselves.
2844   if (Global->hasAttr<WeakRefAttr>())
2845     return;
2846 
2847   // If this is an alias definition (which otherwise looks like a declaration)
2848   // emit it now.
2849   if (Global->hasAttr<AliasAttr>())
2850     return EmitAliasDefinition(GD);
2851 
2852   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2853   if (Global->hasAttr<IFuncAttr>())
2854     return emitIFuncDefinition(GD);
2855 
2856   // If this is a cpu_dispatch multiversion function, emit the resolver.
2857   if (Global->hasAttr<CPUDispatchAttr>())
2858     return emitCPUDispatchDefinition(GD);
2859 
2860   // If this is CUDA, be selective about which declarations we emit.
2861   if (LangOpts.CUDA) {
2862     if (LangOpts.CUDAIsDevice) {
2863       if (!Global->hasAttr<CUDADeviceAttr>() &&
2864           !Global->hasAttr<CUDAGlobalAttr>() &&
2865           !Global->hasAttr<CUDAConstantAttr>() &&
2866           !Global->hasAttr<CUDASharedAttr>() &&
2867           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2868           !Global->getType()->isCUDADeviceBuiltinTextureType())
2869         return;
2870     } else {
2871       // We need to emit host-side 'shadows' for all global
2872       // device-side variables because the CUDA runtime needs their
2873       // size and host-side address in order to provide access to
2874       // their device-side incarnations.
2875 
2876       // So device-only functions are the only things we skip.
2877       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2878           Global->hasAttr<CUDADeviceAttr>())
2879         return;
2880 
2881       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2882              "Expected Variable or Function");
2883     }
2884   }
2885 
2886   if (LangOpts.OpenMP) {
2887     // If this is OpenMP, check if it is legal to emit this global normally.
2888     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2889       return;
2890     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2891       if (MustBeEmitted(Global))
2892         EmitOMPDeclareReduction(DRD);
2893       return;
2894     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2895       if (MustBeEmitted(Global))
2896         EmitOMPDeclareMapper(DMD);
2897       return;
2898     }
2899   }
2900 
2901   // Ignore declarations, they will be emitted on their first use.
2902   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2903     // Forward declarations are emitted lazily on first use.
2904     if (!FD->doesThisDeclarationHaveABody()) {
2905       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2906         return;
2907 
2908       StringRef MangledName = getMangledName(GD);
2909 
2910       // Compute the function info and LLVM type.
2911       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2912       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2913 
2914       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2915                               /*DontDefer=*/false);
2916       return;
2917     }
2918   } else {
2919     const auto *VD = cast<VarDecl>(Global);
2920     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2921     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2922         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2923       if (LangOpts.OpenMP) {
2924         // Emit declaration of the must-be-emitted declare target variable.
2925         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2926                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2927           bool UnifiedMemoryEnabled =
2928               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2929           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2930               !UnifiedMemoryEnabled) {
2931             (void)GetAddrOfGlobalVar(VD);
2932           } else {
2933             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2934                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2935                      UnifiedMemoryEnabled)) &&
2936                    "Link clause or to clause with unified memory expected.");
2937             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2938           }
2939 
2940           return;
2941         }
2942       }
2943       // If this declaration may have caused an inline variable definition to
2944       // change linkage, make sure that it's emitted.
2945       if (Context.getInlineVariableDefinitionKind(VD) ==
2946           ASTContext::InlineVariableDefinitionKind::Strong)
2947         GetAddrOfGlobalVar(VD);
2948       return;
2949     }
2950   }
2951 
2952   // Defer code generation to first use when possible, e.g. if this is an inline
2953   // function. If the global must always be emitted, do it eagerly if possible
2954   // to benefit from cache locality.
2955   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2956     // Emit the definition if it can't be deferred.
2957     EmitGlobalDefinition(GD);
2958     return;
2959   }
2960 
2961   // If we're deferring emission of a C++ variable with an
2962   // initializer, remember the order in which it appeared in the file.
2963   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2964       cast<VarDecl>(Global)->hasInit()) {
2965     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2966     CXXGlobalInits.push_back(nullptr);
2967   }
2968 
2969   StringRef MangledName = getMangledName(GD);
2970   if (GetGlobalValue(MangledName) != nullptr) {
2971     // The value has already been used and should therefore be emitted.
2972     addDeferredDeclToEmit(GD);
2973   } else if (MustBeEmitted(Global)) {
2974     // The value must be emitted, but cannot be emitted eagerly.
2975     assert(!MayBeEmittedEagerly(Global));
2976     addDeferredDeclToEmit(GD);
2977   } else {
2978     // Otherwise, remember that we saw a deferred decl with this name.  The
2979     // first use of the mangled name will cause it to move into
2980     // DeferredDeclsToEmit.
2981     DeferredDecls[MangledName] = GD;
2982   }
2983 }
2984 
2985 // Check if T is a class type with a destructor that's not dllimport.
2986 static bool HasNonDllImportDtor(QualType T) {
2987   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2988     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2989       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2990         return true;
2991 
2992   return false;
2993 }
2994 
2995 namespace {
2996   struct FunctionIsDirectlyRecursive
2997       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2998     const StringRef Name;
2999     const Builtin::Context &BI;
3000     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3001         : Name(N), BI(C) {}
3002 
3003     bool VisitCallExpr(const CallExpr *E) {
3004       const FunctionDecl *FD = E->getDirectCallee();
3005       if (!FD)
3006         return false;
3007       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3008       if (Attr && Name == Attr->getLabel())
3009         return true;
3010       unsigned BuiltinID = FD->getBuiltinID();
3011       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3012         return false;
3013       StringRef BuiltinName = BI.getName(BuiltinID);
3014       if (BuiltinName.startswith("__builtin_") &&
3015           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3016         return true;
3017       }
3018       return false;
3019     }
3020 
3021     bool VisitStmt(const Stmt *S) {
3022       for (const Stmt *Child : S->children())
3023         if (Child && this->Visit(Child))
3024           return true;
3025       return false;
3026     }
3027   };
3028 
3029   // Make sure we're not referencing non-imported vars or functions.
3030   struct DLLImportFunctionVisitor
3031       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3032     bool SafeToInline = true;
3033 
3034     bool shouldVisitImplicitCode() const { return true; }
3035 
3036     bool VisitVarDecl(VarDecl *VD) {
3037       if (VD->getTLSKind()) {
3038         // A thread-local variable cannot be imported.
3039         SafeToInline = false;
3040         return SafeToInline;
3041       }
3042 
3043       // A variable definition might imply a destructor call.
3044       if (VD->isThisDeclarationADefinition())
3045         SafeToInline = !HasNonDllImportDtor(VD->getType());
3046 
3047       return SafeToInline;
3048     }
3049 
3050     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3051       if (const auto *D = E->getTemporary()->getDestructor())
3052         SafeToInline = D->hasAttr<DLLImportAttr>();
3053       return SafeToInline;
3054     }
3055 
3056     bool VisitDeclRefExpr(DeclRefExpr *E) {
3057       ValueDecl *VD = E->getDecl();
3058       if (isa<FunctionDecl>(VD))
3059         SafeToInline = VD->hasAttr<DLLImportAttr>();
3060       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3061         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3062       return SafeToInline;
3063     }
3064 
3065     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3066       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3067       return SafeToInline;
3068     }
3069 
3070     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3071       CXXMethodDecl *M = E->getMethodDecl();
3072       if (!M) {
3073         // Call through a pointer to member function. This is safe to inline.
3074         SafeToInline = true;
3075       } else {
3076         SafeToInline = M->hasAttr<DLLImportAttr>();
3077       }
3078       return SafeToInline;
3079     }
3080 
3081     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3082       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3083       return SafeToInline;
3084     }
3085 
3086     bool VisitCXXNewExpr(CXXNewExpr *E) {
3087       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3088       return SafeToInline;
3089     }
3090   };
3091 }
3092 
3093 // isTriviallyRecursive - Check if this function calls another
3094 // decl that, because of the asm attribute or the other decl being a builtin,
3095 // ends up pointing to itself.
3096 bool
3097 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3098   StringRef Name;
3099   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3100     // asm labels are a special kind of mangling we have to support.
3101     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3102     if (!Attr)
3103       return false;
3104     Name = Attr->getLabel();
3105   } else {
3106     Name = FD->getName();
3107   }
3108 
3109   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3110   const Stmt *Body = FD->getBody();
3111   return Body ? Walker.Visit(Body) : false;
3112 }
3113 
3114 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3115   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3116     return true;
3117   const auto *F = cast<FunctionDecl>(GD.getDecl());
3118   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3119     return false;
3120 
3121   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3122     // Check whether it would be safe to inline this dllimport function.
3123     DLLImportFunctionVisitor Visitor;
3124     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3125     if (!Visitor.SafeToInline)
3126       return false;
3127 
3128     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3129       // Implicit destructor invocations aren't captured in the AST, so the
3130       // check above can't see them. Check for them manually here.
3131       for (const Decl *Member : Dtor->getParent()->decls())
3132         if (isa<FieldDecl>(Member))
3133           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3134             return false;
3135       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3136         if (HasNonDllImportDtor(B.getType()))
3137           return false;
3138     }
3139   }
3140 
3141   // PR9614. Avoid cases where the source code is lying to us. An available
3142   // externally function should have an equivalent function somewhere else,
3143   // but a function that calls itself through asm label/`__builtin_` trickery is
3144   // clearly not equivalent to the real implementation.
3145   // This happens in glibc's btowc and in some configure checks.
3146   return !isTriviallyRecursive(F);
3147 }
3148 
3149 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3150   return CodeGenOpts.OptimizationLevel > 0;
3151 }
3152 
3153 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3154                                                        llvm::GlobalValue *GV) {
3155   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3156 
3157   if (FD->isCPUSpecificMultiVersion()) {
3158     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3159     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3160       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3161     // Requires multiple emits.
3162   } else
3163     EmitGlobalFunctionDefinition(GD, GV);
3164 }
3165 
3166 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3167   const auto *D = cast<ValueDecl>(GD.getDecl());
3168 
3169   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3170                                  Context.getSourceManager(),
3171                                  "Generating code for declaration");
3172 
3173   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3174     // At -O0, don't generate IR for functions with available_externally
3175     // linkage.
3176     if (!shouldEmitFunction(GD))
3177       return;
3178 
3179     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3180       std::string Name;
3181       llvm::raw_string_ostream OS(Name);
3182       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3183                                /*Qualified=*/true);
3184       return Name;
3185     });
3186 
3187     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3188       // Make sure to emit the definition(s) before we emit the thunks.
3189       // This is necessary for the generation of certain thunks.
3190       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3191         ABI->emitCXXStructor(GD);
3192       else if (FD->isMultiVersion())
3193         EmitMultiVersionFunctionDefinition(GD, GV);
3194       else
3195         EmitGlobalFunctionDefinition(GD, GV);
3196 
3197       if (Method->isVirtual())
3198         getVTables().EmitThunks(GD);
3199 
3200       return;
3201     }
3202 
3203     if (FD->isMultiVersion())
3204       return EmitMultiVersionFunctionDefinition(GD, GV);
3205     return EmitGlobalFunctionDefinition(GD, GV);
3206   }
3207 
3208   if (const auto *VD = dyn_cast<VarDecl>(D))
3209     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3210 
3211   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3212 }
3213 
3214 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3215                                                       llvm::Function *NewFn);
3216 
3217 static unsigned
3218 TargetMVPriority(const TargetInfo &TI,
3219                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3220   unsigned Priority = 0;
3221   for (StringRef Feat : RO.Conditions.Features)
3222     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3223 
3224   if (!RO.Conditions.Architecture.empty())
3225     Priority = std::max(
3226         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3227   return Priority;
3228 }
3229 
3230 void CodeGenModule::emitMultiVersionFunctions() {
3231   std::vector<GlobalDecl> MVFuncsToEmit;
3232   MultiVersionFuncs.swap(MVFuncsToEmit);
3233   for (GlobalDecl GD : MVFuncsToEmit) {
3234     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3235     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3236     getContext().forEachMultiversionedFunctionVersion(
3237         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3238           GlobalDecl CurGD{
3239               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3240           StringRef MangledName = getMangledName(CurGD);
3241           llvm::Constant *Func = GetGlobalValue(MangledName);
3242           if (!Func) {
3243             if (CurFD->isDefined()) {
3244               EmitGlobalFunctionDefinition(CurGD, nullptr);
3245               Func = GetGlobalValue(MangledName);
3246             } else {
3247               const CGFunctionInfo &FI =
3248                   getTypes().arrangeGlobalDeclaration(GD);
3249               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3250               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3251                                        /*DontDefer=*/false, ForDefinition);
3252             }
3253             assert(Func && "This should have just been created");
3254           }
3255 
3256           const auto *TA = CurFD->getAttr<TargetAttr>();
3257           llvm::SmallVector<StringRef, 8> Feats;
3258           TA->getAddedFeatures(Feats);
3259 
3260           Options.emplace_back(cast<llvm::Function>(Func),
3261                                TA->getArchitecture(), Feats);
3262         });
3263 
3264     llvm::Function *ResolverFunc;
3265     const TargetInfo &TI = getTarget();
3266 
3267     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3268       ResolverFunc = cast<llvm::Function>(
3269           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3270       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3271     } else {
3272       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3273     }
3274 
3275     if (supportsCOMDAT())
3276       ResolverFunc->setComdat(
3277           getModule().getOrInsertComdat(ResolverFunc->getName()));
3278 
3279     llvm::stable_sort(
3280         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3281                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3282           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3283         });
3284     CodeGenFunction CGF(*this);
3285     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3286   }
3287 
3288   // Ensure that any additions to the deferred decls list caused by emitting a
3289   // variant are emitted.  This can happen when the variant itself is inline and
3290   // calls a function without linkage.
3291   if (!MVFuncsToEmit.empty())
3292     EmitDeferred();
3293 
3294   // Ensure that any additions to the multiversion funcs list from either the
3295   // deferred decls or the multiversion functions themselves are emitted.
3296   if (!MultiVersionFuncs.empty())
3297     emitMultiVersionFunctions();
3298 }
3299 
3300 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3301   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3302   assert(FD && "Not a FunctionDecl?");
3303   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3304   assert(DD && "Not a cpu_dispatch Function?");
3305   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3306 
3307   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3308     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3309     DeclTy = getTypes().GetFunctionType(FInfo);
3310   }
3311 
3312   StringRef ResolverName = getMangledName(GD);
3313 
3314   llvm::Type *ResolverType;
3315   GlobalDecl ResolverGD;
3316   if (getTarget().supportsIFunc())
3317     ResolverType = llvm::FunctionType::get(
3318         llvm::PointerType::get(DeclTy,
3319                                Context.getTargetAddressSpace(FD->getType())),
3320         false);
3321   else {
3322     ResolverType = DeclTy;
3323     ResolverGD = GD;
3324   }
3325 
3326   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3327       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3328   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3329   if (supportsCOMDAT())
3330     ResolverFunc->setComdat(
3331         getModule().getOrInsertComdat(ResolverFunc->getName()));
3332 
3333   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3334   const TargetInfo &Target = getTarget();
3335   unsigned Index = 0;
3336   for (const IdentifierInfo *II : DD->cpus()) {
3337     // Get the name of the target function so we can look it up/create it.
3338     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3339                               getCPUSpecificMangling(*this, II->getName());
3340 
3341     llvm::Constant *Func = GetGlobalValue(MangledName);
3342 
3343     if (!Func) {
3344       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3345       if (ExistingDecl.getDecl() &&
3346           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3347         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3348         Func = GetGlobalValue(MangledName);
3349       } else {
3350         if (!ExistingDecl.getDecl())
3351           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3352 
3353       Func = GetOrCreateLLVMFunction(
3354           MangledName, DeclTy, ExistingDecl,
3355           /*ForVTable=*/false, /*DontDefer=*/true,
3356           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3357       }
3358     }
3359 
3360     llvm::SmallVector<StringRef, 32> Features;
3361     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3362     llvm::transform(Features, Features.begin(),
3363                     [](StringRef Str) { return Str.substr(1); });
3364     Features.erase(std::remove_if(
3365         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3366           return !Target.validateCpuSupports(Feat);
3367         }), Features.end());
3368     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3369     ++Index;
3370   }
3371 
3372   llvm::stable_sort(
3373       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3374                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3375         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3376                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3377       });
3378 
3379   // If the list contains multiple 'default' versions, such as when it contains
3380   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3381   // always run on at least a 'pentium'). We do this by deleting the 'least
3382   // advanced' (read, lowest mangling letter).
3383   while (Options.size() > 1 &&
3384          CodeGenFunction::GetX86CpuSupportsMask(
3385              (Options.end() - 2)->Conditions.Features) == 0) {
3386     StringRef LHSName = (Options.end() - 2)->Function->getName();
3387     StringRef RHSName = (Options.end() - 1)->Function->getName();
3388     if (LHSName.compare(RHSName) < 0)
3389       Options.erase(Options.end() - 2);
3390     else
3391       Options.erase(Options.end() - 1);
3392   }
3393 
3394   CodeGenFunction CGF(*this);
3395   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3396 
3397   if (getTarget().supportsIFunc()) {
3398     std::string AliasName = getMangledNameImpl(
3399         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3400     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3401     if (!AliasFunc) {
3402       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3403           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3404           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3405       auto *GA = llvm::GlobalAlias::create(
3406          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3407       GA->setLinkage(llvm::Function::WeakODRLinkage);
3408       SetCommonAttributes(GD, GA);
3409     }
3410   }
3411 }
3412 
3413 /// If a dispatcher for the specified mangled name is not in the module, create
3414 /// and return an llvm Function with the specified type.
3415 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3416     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3417   std::string MangledName =
3418       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3419 
3420   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3421   // a separate resolver).
3422   std::string ResolverName = MangledName;
3423   if (getTarget().supportsIFunc())
3424     ResolverName += ".ifunc";
3425   else if (FD->isTargetMultiVersion())
3426     ResolverName += ".resolver";
3427 
3428   // If this already exists, just return that one.
3429   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3430     return ResolverGV;
3431 
3432   // Since this is the first time we've created this IFunc, make sure
3433   // that we put this multiversioned function into the list to be
3434   // replaced later if necessary (target multiversioning only).
3435   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3436     MultiVersionFuncs.push_back(GD);
3437 
3438   if (getTarget().supportsIFunc()) {
3439     llvm::Type *ResolverType = llvm::FunctionType::get(
3440         llvm::PointerType::get(
3441             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3442         false);
3443     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3444         MangledName + ".resolver", ResolverType, GlobalDecl{},
3445         /*ForVTable=*/false);
3446     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3447         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3448     GIF->setName(ResolverName);
3449     SetCommonAttributes(FD, GIF);
3450 
3451     return GIF;
3452   }
3453 
3454   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3455       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3456   assert(isa<llvm::GlobalValue>(Resolver) &&
3457          "Resolver should be created for the first time");
3458   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3459   return Resolver;
3460 }
3461 
3462 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3463 /// module, create and return an llvm Function with the specified type. If there
3464 /// is something in the module with the specified name, return it potentially
3465 /// bitcasted to the right type.
3466 ///
3467 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3468 /// to set the attributes on the function when it is first created.
3469 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3470     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3471     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3472     ForDefinition_t IsForDefinition) {
3473   const Decl *D = GD.getDecl();
3474 
3475   // Any attempts to use a MultiVersion function should result in retrieving
3476   // the iFunc instead. Name Mangling will handle the rest of the changes.
3477   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3478     // For the device mark the function as one that should be emitted.
3479     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3480         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3481         !DontDefer && !IsForDefinition) {
3482       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3483         GlobalDecl GDDef;
3484         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3485           GDDef = GlobalDecl(CD, GD.getCtorType());
3486         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3487           GDDef = GlobalDecl(DD, GD.getDtorType());
3488         else
3489           GDDef = GlobalDecl(FDDef);
3490         EmitGlobal(GDDef);
3491       }
3492     }
3493 
3494     if (FD->isMultiVersion()) {
3495       if (FD->hasAttr<TargetAttr>())
3496         UpdateMultiVersionNames(GD, FD);
3497       if (!IsForDefinition)
3498         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3499     }
3500   }
3501 
3502   // Lookup the entry, lazily creating it if necessary.
3503   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3504   if (Entry) {
3505     if (WeakRefReferences.erase(Entry)) {
3506       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3507       if (FD && !FD->hasAttr<WeakAttr>())
3508         Entry->setLinkage(llvm::Function::ExternalLinkage);
3509     }
3510 
3511     // Handle dropped DLL attributes.
3512     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3513       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3514       setDSOLocal(Entry);
3515     }
3516 
3517     // If there are two attempts to define the same mangled name, issue an
3518     // error.
3519     if (IsForDefinition && !Entry->isDeclaration()) {
3520       GlobalDecl OtherGD;
3521       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3522       // to make sure that we issue an error only once.
3523       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3524           (GD.getCanonicalDecl().getDecl() !=
3525            OtherGD.getCanonicalDecl().getDecl()) &&
3526           DiagnosedConflictingDefinitions.insert(GD).second) {
3527         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3528             << MangledName;
3529         getDiags().Report(OtherGD.getDecl()->getLocation(),
3530                           diag::note_previous_definition);
3531       }
3532     }
3533 
3534     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3535         (Entry->getValueType() == Ty)) {
3536       return Entry;
3537     }
3538 
3539     // Make sure the result is of the correct type.
3540     // (If function is requested for a definition, we always need to create a new
3541     // function, not just return a bitcast.)
3542     if (!IsForDefinition)
3543       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3544   }
3545 
3546   // This function doesn't have a complete type (for example, the return
3547   // type is an incomplete struct). Use a fake type instead, and make
3548   // sure not to try to set attributes.
3549   bool IsIncompleteFunction = false;
3550 
3551   llvm::FunctionType *FTy;
3552   if (isa<llvm::FunctionType>(Ty)) {
3553     FTy = cast<llvm::FunctionType>(Ty);
3554   } else {
3555     FTy = llvm::FunctionType::get(VoidTy, false);
3556     IsIncompleteFunction = true;
3557   }
3558 
3559   llvm::Function *F =
3560       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3561                              Entry ? StringRef() : MangledName, &getModule());
3562 
3563   // If we already created a function with the same mangled name (but different
3564   // type) before, take its name and add it to the list of functions to be
3565   // replaced with F at the end of CodeGen.
3566   //
3567   // This happens if there is a prototype for a function (e.g. "int f()") and
3568   // then a definition of a different type (e.g. "int f(int x)").
3569   if (Entry) {
3570     F->takeName(Entry);
3571 
3572     // This might be an implementation of a function without a prototype, in
3573     // which case, try to do special replacement of calls which match the new
3574     // prototype.  The really key thing here is that we also potentially drop
3575     // arguments from the call site so as to make a direct call, which makes the
3576     // inliner happier and suppresses a number of optimizer warnings (!) about
3577     // dropping arguments.
3578     if (!Entry->use_empty()) {
3579       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3580       Entry->removeDeadConstantUsers();
3581     }
3582 
3583     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3584         F, Entry->getValueType()->getPointerTo());
3585     addGlobalValReplacement(Entry, BC);
3586   }
3587 
3588   assert(F->getName() == MangledName && "name was uniqued!");
3589   if (D)
3590     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3591   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3592     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3593     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3594   }
3595 
3596   if (!DontDefer) {
3597     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3598     // each other bottoming out with the base dtor.  Therefore we emit non-base
3599     // dtors on usage, even if there is no dtor definition in the TU.
3600     if (D && isa<CXXDestructorDecl>(D) &&
3601         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3602                                            GD.getDtorType()))
3603       addDeferredDeclToEmit(GD);
3604 
3605     // This is the first use or definition of a mangled name.  If there is a
3606     // deferred decl with this name, remember that we need to emit it at the end
3607     // of the file.
3608     auto DDI = DeferredDecls.find(MangledName);
3609     if (DDI != DeferredDecls.end()) {
3610       // Move the potentially referenced deferred decl to the
3611       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3612       // don't need it anymore).
3613       addDeferredDeclToEmit(DDI->second);
3614       DeferredDecls.erase(DDI);
3615 
3616       // Otherwise, there are cases we have to worry about where we're
3617       // using a declaration for which we must emit a definition but where
3618       // we might not find a top-level definition:
3619       //   - member functions defined inline in their classes
3620       //   - friend functions defined inline in some class
3621       //   - special member functions with implicit definitions
3622       // If we ever change our AST traversal to walk into class methods,
3623       // this will be unnecessary.
3624       //
3625       // We also don't emit a definition for a function if it's going to be an
3626       // entry in a vtable, unless it's already marked as used.
3627     } else if (getLangOpts().CPlusPlus && D) {
3628       // Look for a declaration that's lexically in a record.
3629       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3630            FD = FD->getPreviousDecl()) {
3631         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3632           if (FD->doesThisDeclarationHaveABody()) {
3633             addDeferredDeclToEmit(GD.getWithDecl(FD));
3634             break;
3635           }
3636         }
3637       }
3638     }
3639   }
3640 
3641   // Make sure the result is of the requested type.
3642   if (!IsIncompleteFunction) {
3643     assert(F->getFunctionType() == Ty);
3644     return F;
3645   }
3646 
3647   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3648   return llvm::ConstantExpr::getBitCast(F, PTy);
3649 }
3650 
3651 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3652 /// non-null, then this function will use the specified type if it has to
3653 /// create it (this occurs when we see a definition of the function).
3654 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3655                                                  llvm::Type *Ty,
3656                                                  bool ForVTable,
3657                                                  bool DontDefer,
3658                                               ForDefinition_t IsForDefinition) {
3659   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3660          "consteval function should never be emitted");
3661   // If there was no specific requested type, just convert it now.
3662   if (!Ty) {
3663     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3664     Ty = getTypes().ConvertType(FD->getType());
3665   }
3666 
3667   // Devirtualized destructor calls may come through here instead of via
3668   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3669   // of the complete destructor when necessary.
3670   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3671     if (getTarget().getCXXABI().isMicrosoft() &&
3672         GD.getDtorType() == Dtor_Complete &&
3673         DD->getParent()->getNumVBases() == 0)
3674       GD = GlobalDecl(DD, Dtor_Base);
3675   }
3676 
3677   StringRef MangledName = getMangledName(GD);
3678   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3679                                     /*IsThunk=*/false, llvm::AttributeList(),
3680                                     IsForDefinition);
3681   // Returns kernel handle for HIP kernel stub function.
3682   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3683       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3684     auto *Handle = getCUDARuntime().getKernelHandle(
3685         cast<llvm::Function>(F->stripPointerCasts()), GD);
3686     if (IsForDefinition)
3687       return F;
3688     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3689   }
3690   return F;
3691 }
3692 
3693 static const FunctionDecl *
3694 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3695   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3696   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3697 
3698   IdentifierInfo &CII = C.Idents.get(Name);
3699   for (const auto *Result : DC->lookup(&CII))
3700     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3701       return FD;
3702 
3703   if (!C.getLangOpts().CPlusPlus)
3704     return nullptr;
3705 
3706   // Demangle the premangled name from getTerminateFn()
3707   IdentifierInfo &CXXII =
3708       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3709           ? C.Idents.get("terminate")
3710           : C.Idents.get(Name);
3711 
3712   for (const auto &N : {"__cxxabiv1", "std"}) {
3713     IdentifierInfo &NS = C.Idents.get(N);
3714     for (const auto *Result : DC->lookup(&NS)) {
3715       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3716       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3717         for (const auto *Result : LSD->lookup(&NS))
3718           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3719             break;
3720 
3721       if (ND)
3722         for (const auto *Result : ND->lookup(&CXXII))
3723           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3724             return FD;
3725     }
3726   }
3727 
3728   return nullptr;
3729 }
3730 
3731 /// CreateRuntimeFunction - Create a new runtime function with the specified
3732 /// type and name.
3733 llvm::FunctionCallee
3734 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3735                                      llvm::AttributeList ExtraAttrs, bool Local,
3736                                      bool AssumeConvergent) {
3737   if (AssumeConvergent) {
3738     ExtraAttrs =
3739         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3740                                 llvm::Attribute::Convergent);
3741   }
3742 
3743   llvm::Constant *C =
3744       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3745                               /*DontDefer=*/false, /*IsThunk=*/false,
3746                               ExtraAttrs);
3747 
3748   if (auto *F = dyn_cast<llvm::Function>(C)) {
3749     if (F->empty()) {
3750       F->setCallingConv(getRuntimeCC());
3751 
3752       // In Windows Itanium environments, try to mark runtime functions
3753       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3754       // will link their standard library statically or dynamically. Marking
3755       // functions imported when they are not imported can cause linker errors
3756       // and warnings.
3757       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3758           !getCodeGenOpts().LTOVisibilityPublicStd) {
3759         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3760         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3761           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3762           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3763         }
3764       }
3765       setDSOLocal(F);
3766     }
3767   }
3768 
3769   return {FTy, C};
3770 }
3771 
3772 /// isTypeConstant - Determine whether an object of this type can be emitted
3773 /// as a constant.
3774 ///
3775 /// If ExcludeCtor is true, the duration when the object's constructor runs
3776 /// will not be considered. The caller will need to verify that the object is
3777 /// not written to during its construction.
3778 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3779   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3780     return false;
3781 
3782   if (Context.getLangOpts().CPlusPlus) {
3783     if (const CXXRecordDecl *Record
3784           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3785       return ExcludeCtor && !Record->hasMutableFields() &&
3786              Record->hasTrivialDestructor();
3787   }
3788 
3789   return true;
3790 }
3791 
3792 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3793 /// create and return an llvm GlobalVariable with the specified type and address
3794 /// space. If there is something in the module with the specified name, return
3795 /// it potentially bitcasted to the right type.
3796 ///
3797 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3798 /// to set the attributes on the global when it is first created.
3799 ///
3800 /// If IsForDefinition is true, it is guaranteed that an actual global with
3801 /// type Ty will be returned, not conversion of a variable with the same
3802 /// mangled name but some other type.
3803 llvm::Constant *
3804 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
3805                                      unsigned AddrSpace, const VarDecl *D,
3806                                      ForDefinition_t IsForDefinition) {
3807   // Lookup the entry, lazily creating it if necessary.
3808   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3809   if (Entry) {
3810     if (WeakRefReferences.erase(Entry)) {
3811       if (D && !D->hasAttr<WeakAttr>())
3812         Entry->setLinkage(llvm::Function::ExternalLinkage);
3813     }
3814 
3815     // Handle dropped DLL attributes.
3816     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3817       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3818 
3819     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3820       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3821 
3822     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == AddrSpace)
3823       return Entry;
3824 
3825     // If there are two attempts to define the same mangled name, issue an
3826     // error.
3827     if (IsForDefinition && !Entry->isDeclaration()) {
3828       GlobalDecl OtherGD;
3829       const VarDecl *OtherD;
3830 
3831       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3832       // to make sure that we issue an error only once.
3833       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3834           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3835           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3836           OtherD->hasInit() &&
3837           DiagnosedConflictingDefinitions.insert(D).second) {
3838         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3839             << MangledName;
3840         getDiags().Report(OtherGD.getDecl()->getLocation(),
3841                           diag::note_previous_definition);
3842       }
3843     }
3844 
3845     // Make sure the result is of the correct type.
3846     if (Entry->getType()->getAddressSpace() != AddrSpace) {
3847       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
3848                                                   Ty->getPointerTo(AddrSpace));
3849     }
3850 
3851     // (If global is requested for a definition, we always need to create a new
3852     // global, not just return a bitcast.)
3853     if (!IsForDefinition)
3854       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(AddrSpace));
3855   }
3856 
3857   auto DAddrSpace = GetGlobalVarAddressSpace(D);
3858   auto TargetAddrSpace = getContext().getTargetAddressSpace(DAddrSpace);
3859 
3860   auto *GV = new llvm::GlobalVariable(
3861       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
3862       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
3863       TargetAddrSpace);
3864 
3865   // If we already created a global with the same mangled name (but different
3866   // type) before, take its name and remove it from its parent.
3867   if (Entry) {
3868     GV->takeName(Entry);
3869 
3870     if (!Entry->use_empty()) {
3871       llvm::Constant *NewPtrForOldDecl =
3872           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3873       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3874     }
3875 
3876     Entry->eraseFromParent();
3877   }
3878 
3879   // This is the first use or definition of a mangled name.  If there is a
3880   // deferred decl with this name, remember that we need to emit it at the end
3881   // of the file.
3882   auto DDI = DeferredDecls.find(MangledName);
3883   if (DDI != DeferredDecls.end()) {
3884     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3885     // list, and remove it from DeferredDecls (since we don't need it anymore).
3886     addDeferredDeclToEmit(DDI->second);
3887     DeferredDecls.erase(DDI);
3888   }
3889 
3890   // Handle things which are present even on external declarations.
3891   if (D) {
3892     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3893       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3894 
3895     // FIXME: This code is overly simple and should be merged with other global
3896     // handling.
3897     GV->setConstant(isTypeConstant(D->getType(), false));
3898 
3899     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3900 
3901     setLinkageForGV(GV, D);
3902 
3903     if (D->getTLSKind()) {
3904       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3905         CXXThreadLocals.push_back(D);
3906       setTLSMode(GV, *D);
3907     }
3908 
3909     setGVProperties(GV, D);
3910 
3911     // If required by the ABI, treat declarations of static data members with
3912     // inline initializers as definitions.
3913     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3914       EmitGlobalVarDefinition(D);
3915     }
3916 
3917     // Emit section information for extern variables.
3918     if (D->hasExternalStorage()) {
3919       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3920         GV->setSection(SA->getName());
3921     }
3922 
3923     // Handle XCore specific ABI requirements.
3924     if (getTriple().getArch() == llvm::Triple::xcore &&
3925         D->getLanguageLinkage() == CLanguageLinkage &&
3926         D->getType().isConstant(Context) &&
3927         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3928       GV->setSection(".cp.rodata");
3929 
3930     // Check if we a have a const declaration with an initializer, we may be
3931     // able to emit it as available_externally to expose it's value to the
3932     // optimizer.
3933     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3934         D->getType().isConstQualified() && !GV->hasInitializer() &&
3935         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3936       const auto *Record =
3937           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3938       bool HasMutableFields = Record && Record->hasMutableFields();
3939       if (!HasMutableFields) {
3940         const VarDecl *InitDecl;
3941         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3942         if (InitExpr) {
3943           ConstantEmitter emitter(*this);
3944           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3945           if (Init) {
3946             auto *InitType = Init->getType();
3947             if (GV->getValueType() != InitType) {
3948               // The type of the initializer does not match the definition.
3949               // This happens when an initializer has a different type from
3950               // the type of the global (because of padding at the end of a
3951               // structure for instance).
3952               GV->setName(StringRef());
3953               // Make a new global with the correct type, this is now guaranteed
3954               // to work.
3955               auto *NewGV = cast<llvm::GlobalVariable>(
3956                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3957                       ->stripPointerCasts());
3958 
3959               // Erase the old global, since it is no longer used.
3960               GV->eraseFromParent();
3961               GV = NewGV;
3962             } else {
3963               GV->setInitializer(Init);
3964               GV->setConstant(true);
3965               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3966             }
3967             emitter.finalize(GV);
3968           }
3969         }
3970       }
3971     }
3972   }
3973 
3974   if (GV->isDeclaration()) {
3975     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3976     // External HIP managed variables needed to be recorded for transformation
3977     // in both device and host compilations.
3978     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
3979         D->hasExternalStorage())
3980       getCUDARuntime().handleVarRegistration(D, *GV);
3981   }
3982 
3983   LangAS ExpectedAS =
3984       D ? D->getType().getAddressSpace()
3985         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3986   assert(getContext().getTargetAddressSpace(ExpectedAS) == AddrSpace);
3987   if (DAddrSpace != ExpectedAS) {
3988     return getTargetCodeGenInfo().performAddrSpaceCast(
3989         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(AddrSpace));
3990   }
3991 
3992   return GV;
3993 }
3994 
3995 llvm::Constant *
3996 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3997   const Decl *D = GD.getDecl();
3998 
3999   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4000     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4001                                 /*DontDefer=*/false, IsForDefinition);
4002 
4003   if (isa<CXXMethodDecl>(D)) {
4004     auto FInfo =
4005         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4006     auto Ty = getTypes().GetFunctionType(*FInfo);
4007     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4008                              IsForDefinition);
4009   }
4010 
4011   if (isa<FunctionDecl>(D)) {
4012     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4013     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4014     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4015                              IsForDefinition);
4016   }
4017 
4018   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4019 }
4020 
4021 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4022     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4023     unsigned Alignment) {
4024   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4025   llvm::GlobalVariable *OldGV = nullptr;
4026 
4027   if (GV) {
4028     // Check if the variable has the right type.
4029     if (GV->getValueType() == Ty)
4030       return GV;
4031 
4032     // Because C++ name mangling, the only way we can end up with an already
4033     // existing global with the same name is if it has been declared extern "C".
4034     assert(GV->isDeclaration() && "Declaration has wrong type!");
4035     OldGV = GV;
4036   }
4037 
4038   // Create a new variable.
4039   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4040                                 Linkage, nullptr, Name);
4041 
4042   if (OldGV) {
4043     // Replace occurrences of the old variable if needed.
4044     GV->takeName(OldGV);
4045 
4046     if (!OldGV->use_empty()) {
4047       llvm::Constant *NewPtrForOldDecl =
4048       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4049       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4050     }
4051 
4052     OldGV->eraseFromParent();
4053   }
4054 
4055   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4056       !GV->hasAvailableExternallyLinkage())
4057     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4058 
4059   GV->setAlignment(llvm::MaybeAlign(Alignment));
4060 
4061   return GV;
4062 }
4063 
4064 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4065 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4066 /// then it will be created with the specified type instead of whatever the
4067 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4068 /// that an actual global with type Ty will be returned, not conversion of a
4069 /// variable with the same mangled name but some other type.
4070 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4071                                                   llvm::Type *Ty,
4072                                            ForDefinition_t IsForDefinition) {
4073   assert(D->hasGlobalStorage() && "Not a global variable");
4074   QualType ASTTy = D->getType();
4075   if (!Ty)
4076     Ty = getTypes().ConvertTypeForMem(ASTTy);
4077 
4078   StringRef MangledName = getMangledName(D);
4079   return GetOrCreateLLVMGlobal(MangledName, Ty,
4080                                getContext().getTargetAddressSpace(ASTTy), D,
4081                                IsForDefinition);
4082 }
4083 
4084 /// CreateRuntimeVariable - Create a new runtime global variable with the
4085 /// specified type and name.
4086 llvm::Constant *
4087 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4088                                      StringRef Name) {
4089   auto AddrSpace =
4090       getContext().getLangOpts().OpenCL
4091           ? getContext().getTargetAddressSpace(LangAS::opencl_global)
4092           : 0;
4093   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4094   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4095   return Ret;
4096 }
4097 
4098 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4099   assert(!D->getInit() && "Cannot emit definite definitions here!");
4100 
4101   StringRef MangledName = getMangledName(D);
4102   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4103 
4104   // We already have a definition, not declaration, with the same mangled name.
4105   // Emitting of declaration is not required (and actually overwrites emitted
4106   // definition).
4107   if (GV && !GV->isDeclaration())
4108     return;
4109 
4110   // If we have not seen a reference to this variable yet, place it into the
4111   // deferred declarations table to be emitted if needed later.
4112   if (!MustBeEmitted(D) && !GV) {
4113       DeferredDecls[MangledName] = D;
4114       return;
4115   }
4116 
4117   // The tentative definition is the only definition.
4118   EmitGlobalVarDefinition(D);
4119 }
4120 
4121 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4122   EmitExternalVarDeclaration(D);
4123 }
4124 
4125 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4126   return Context.toCharUnitsFromBits(
4127       getDataLayout().getTypeStoreSizeInBits(Ty));
4128 }
4129 
4130 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4131   LangAS AddrSpace = LangAS::Default;
4132   if (LangOpts.OpenCL) {
4133     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4134     assert(AddrSpace == LangAS::opencl_global ||
4135            AddrSpace == LangAS::opencl_global_device ||
4136            AddrSpace == LangAS::opencl_global_host ||
4137            AddrSpace == LangAS::opencl_constant ||
4138            AddrSpace == LangAS::opencl_local ||
4139            AddrSpace >= LangAS::FirstTargetAddressSpace);
4140     return AddrSpace;
4141   }
4142 
4143   if (LangOpts.SYCLIsDevice &&
4144       (!D || D->getType().getAddressSpace() == LangAS::Default))
4145     return LangAS::sycl_global;
4146 
4147   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4148     if (D && D->hasAttr<CUDAConstantAttr>())
4149       return LangAS::cuda_constant;
4150     else if (D && D->hasAttr<CUDASharedAttr>())
4151       return LangAS::cuda_shared;
4152     else if (D && D->hasAttr<CUDADeviceAttr>())
4153       return LangAS::cuda_device;
4154     else if (D && D->getType().isConstQualified())
4155       return LangAS::cuda_constant;
4156     else
4157       return LangAS::cuda_device;
4158   }
4159 
4160   if (LangOpts.OpenMP) {
4161     LangAS AS;
4162     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4163       return AS;
4164   }
4165   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4166 }
4167 
4168 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4169   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4170   if (LangOpts.OpenCL)
4171     return LangAS::opencl_constant;
4172   if (LangOpts.SYCLIsDevice)
4173     return LangAS::sycl_global;
4174   if (auto AS = getTarget().getConstantAddressSpace())
4175     return AS.getValue();
4176   return LangAS::Default;
4177 }
4178 
4179 // In address space agnostic languages, string literals are in default address
4180 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4181 // emitted in constant address space in LLVM IR. To be consistent with other
4182 // parts of AST, string literal global variables in constant address space
4183 // need to be casted to default address space before being put into address
4184 // map and referenced by other part of CodeGen.
4185 // In OpenCL, string literals are in constant address space in AST, therefore
4186 // they should not be casted to default address space.
4187 static llvm::Constant *
4188 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4189                                        llvm::GlobalVariable *GV) {
4190   llvm::Constant *Cast = GV;
4191   if (!CGM.getLangOpts().OpenCL) {
4192     auto AS = CGM.GetGlobalConstantAddressSpace();
4193     if (AS != LangAS::Default)
4194       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4195           CGM, GV, AS, LangAS::Default,
4196           GV->getValueType()->getPointerTo(
4197               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4198   }
4199   return Cast;
4200 }
4201 
4202 template<typename SomeDecl>
4203 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4204                                                llvm::GlobalValue *GV) {
4205   if (!getLangOpts().CPlusPlus)
4206     return;
4207 
4208   // Must have 'used' attribute, or else inline assembly can't rely on
4209   // the name existing.
4210   if (!D->template hasAttr<UsedAttr>())
4211     return;
4212 
4213   // Must have internal linkage and an ordinary name.
4214   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4215     return;
4216 
4217   // Must be in an extern "C" context. Entities declared directly within
4218   // a record are not extern "C" even if the record is in such a context.
4219   const SomeDecl *First = D->getFirstDecl();
4220   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4221     return;
4222 
4223   // OK, this is an internal linkage entity inside an extern "C" linkage
4224   // specification. Make a note of that so we can give it the "expected"
4225   // mangled name if nothing else is using that name.
4226   std::pair<StaticExternCMap::iterator, bool> R =
4227       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4228 
4229   // If we have multiple internal linkage entities with the same name
4230   // in extern "C" regions, none of them gets that name.
4231   if (!R.second)
4232     R.first->second = nullptr;
4233 }
4234 
4235 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4236   if (!CGM.supportsCOMDAT())
4237     return false;
4238 
4239   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4240   // them being "merged" by the COMDAT Folding linker optimization.
4241   if (D.hasAttr<CUDAGlobalAttr>())
4242     return false;
4243 
4244   if (D.hasAttr<SelectAnyAttr>())
4245     return true;
4246 
4247   GVALinkage Linkage;
4248   if (auto *VD = dyn_cast<VarDecl>(&D))
4249     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4250   else
4251     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4252 
4253   switch (Linkage) {
4254   case GVA_Internal:
4255   case GVA_AvailableExternally:
4256   case GVA_StrongExternal:
4257     return false;
4258   case GVA_DiscardableODR:
4259   case GVA_StrongODR:
4260     return true;
4261   }
4262   llvm_unreachable("No such linkage");
4263 }
4264 
4265 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4266                                           llvm::GlobalObject &GO) {
4267   if (!shouldBeInCOMDAT(*this, D))
4268     return;
4269   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4270 }
4271 
4272 /// Pass IsTentative as true if you want to create a tentative definition.
4273 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4274                                             bool IsTentative) {
4275   // OpenCL global variables of sampler type are translated to function calls,
4276   // therefore no need to be translated.
4277   QualType ASTTy = D->getType();
4278   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4279     return;
4280 
4281   // If this is OpenMP device, check if it is legal to emit this global
4282   // normally.
4283   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4284       OpenMPRuntime->emitTargetGlobalVariable(D))
4285     return;
4286 
4287   llvm::TrackingVH<llvm::Constant> Init;
4288   bool NeedsGlobalCtor = false;
4289   bool NeedsGlobalDtor =
4290       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4291 
4292   const VarDecl *InitDecl;
4293   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4294 
4295   Optional<ConstantEmitter> emitter;
4296 
4297   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4298   // as part of their declaration."  Sema has already checked for
4299   // error cases, so we just need to set Init to UndefValue.
4300   bool IsCUDASharedVar =
4301       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4302   // Shadows of initialized device-side global variables are also left
4303   // undefined.
4304   // Managed Variables should be initialized on both host side and device side.
4305   bool IsCUDAShadowVar =
4306       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4307       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4308        D->hasAttr<CUDASharedAttr>());
4309   bool IsCUDADeviceShadowVar =
4310       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4311       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4312        D->getType()->isCUDADeviceBuiltinTextureType());
4313   if (getLangOpts().CUDA &&
4314       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4315     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4316   else if (D->hasAttr<LoaderUninitializedAttr>())
4317     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4318   else if (!InitExpr) {
4319     // This is a tentative definition; tentative definitions are
4320     // implicitly initialized with { 0 }.
4321     //
4322     // Note that tentative definitions are only emitted at the end of
4323     // a translation unit, so they should never have incomplete
4324     // type. In addition, EmitTentativeDefinition makes sure that we
4325     // never attempt to emit a tentative definition if a real one
4326     // exists. A use may still exists, however, so we still may need
4327     // to do a RAUW.
4328     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4329     Init = EmitNullConstant(D->getType());
4330   } else {
4331     initializedGlobalDecl = GlobalDecl(D);
4332     emitter.emplace(*this);
4333     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4334     if (!Initializer) {
4335       QualType T = InitExpr->getType();
4336       if (D->getType()->isReferenceType())
4337         T = D->getType();
4338 
4339       if (getLangOpts().CPlusPlus) {
4340         Init = EmitNullConstant(T);
4341         NeedsGlobalCtor = true;
4342       } else {
4343         ErrorUnsupported(D, "static initializer");
4344         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4345       }
4346     } else {
4347       Init = Initializer;
4348       // We don't need an initializer, so remove the entry for the delayed
4349       // initializer position (just in case this entry was delayed) if we
4350       // also don't need to register a destructor.
4351       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4352         DelayedCXXInitPosition.erase(D);
4353     }
4354   }
4355 
4356   llvm::Type* InitType = Init->getType();
4357   llvm::Constant *Entry =
4358       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4359 
4360   // Strip off pointer casts if we got them.
4361   Entry = Entry->stripPointerCasts();
4362 
4363   // Entry is now either a Function or GlobalVariable.
4364   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4365 
4366   // We have a definition after a declaration with the wrong type.
4367   // We must make a new GlobalVariable* and update everything that used OldGV
4368   // (a declaration or tentative definition) with the new GlobalVariable*
4369   // (which will be a definition).
4370   //
4371   // This happens if there is a prototype for a global (e.g.
4372   // "extern int x[];") and then a definition of a different type (e.g.
4373   // "int x[10];"). This also happens when an initializer has a different type
4374   // from the type of the global (this happens with unions).
4375   if (!GV || GV->getValueType() != InitType ||
4376       GV->getType()->getAddressSpace() !=
4377           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4378 
4379     // Move the old entry aside so that we'll create a new one.
4380     Entry->setName(StringRef());
4381 
4382     // Make a new global with the correct type, this is now guaranteed to work.
4383     GV = cast<llvm::GlobalVariable>(
4384         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4385             ->stripPointerCasts());
4386 
4387     // Replace all uses of the old global with the new global
4388     llvm::Constant *NewPtrForOldDecl =
4389         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4390                                                              Entry->getType());
4391     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4392 
4393     // Erase the old global, since it is no longer used.
4394     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4395   }
4396 
4397   MaybeHandleStaticInExternC(D, GV);
4398 
4399   if (D->hasAttr<AnnotateAttr>())
4400     AddGlobalAnnotations(D, GV);
4401 
4402   // Set the llvm linkage type as appropriate.
4403   llvm::GlobalValue::LinkageTypes Linkage =
4404       getLLVMLinkageVarDefinition(D, GV->isConstant());
4405 
4406   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4407   // the device. [...]"
4408   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4409   // __device__, declares a variable that: [...]
4410   // Is accessible from all the threads within the grid and from the host
4411   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4412   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4413   if (GV && LangOpts.CUDA) {
4414     if (LangOpts.CUDAIsDevice) {
4415       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4416           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4417         GV->setExternallyInitialized(true);
4418     } else {
4419       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4420     }
4421     getCUDARuntime().handleVarRegistration(D, *GV);
4422   }
4423 
4424   GV->setInitializer(Init);
4425   if (emitter)
4426     emitter->finalize(GV);
4427 
4428   // If it is safe to mark the global 'constant', do so now.
4429   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4430                   isTypeConstant(D->getType(), true));
4431 
4432   // If it is in a read-only section, mark it 'constant'.
4433   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4434     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4435     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4436       GV->setConstant(true);
4437   }
4438 
4439   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4440 
4441   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4442   // function is only defined alongside the variable, not also alongside
4443   // callers. Normally, all accesses to a thread_local go through the
4444   // thread-wrapper in order to ensure initialization has occurred, underlying
4445   // variable will never be used other than the thread-wrapper, so it can be
4446   // converted to internal linkage.
4447   //
4448   // However, if the variable has the 'constinit' attribute, it _can_ be
4449   // referenced directly, without calling the thread-wrapper, so the linkage
4450   // must not be changed.
4451   //
4452   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4453   // weak or linkonce, the de-duplication semantics are important to preserve,
4454   // so we don't change the linkage.
4455   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4456       Linkage == llvm::GlobalValue::ExternalLinkage &&
4457       Context.getTargetInfo().getTriple().isOSDarwin() &&
4458       !D->hasAttr<ConstInitAttr>())
4459     Linkage = llvm::GlobalValue::InternalLinkage;
4460 
4461   GV->setLinkage(Linkage);
4462   if (D->hasAttr<DLLImportAttr>())
4463     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4464   else if (D->hasAttr<DLLExportAttr>())
4465     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4466   else
4467     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4468 
4469   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4470     // common vars aren't constant even if declared const.
4471     GV->setConstant(false);
4472     // Tentative definition of global variables may be initialized with
4473     // non-zero null pointers. In this case they should have weak linkage
4474     // since common linkage must have zero initializer and must not have
4475     // explicit section therefore cannot have non-zero initial value.
4476     if (!GV->getInitializer()->isNullValue())
4477       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4478   }
4479 
4480   setNonAliasAttributes(D, GV);
4481 
4482   if (D->getTLSKind() && !GV->isThreadLocal()) {
4483     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4484       CXXThreadLocals.push_back(D);
4485     setTLSMode(GV, *D);
4486   }
4487 
4488   maybeSetTrivialComdat(*D, *GV);
4489 
4490   // Emit the initializer function if necessary.
4491   if (NeedsGlobalCtor || NeedsGlobalDtor)
4492     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4493 
4494   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4495 
4496   // Emit global variable debug information.
4497   if (CGDebugInfo *DI = getModuleDebugInfo())
4498     if (getCodeGenOpts().hasReducedDebugInfo())
4499       DI->EmitGlobalVariable(GV, D);
4500 }
4501 
4502 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4503   if (CGDebugInfo *DI = getModuleDebugInfo())
4504     if (getCodeGenOpts().hasReducedDebugInfo()) {
4505       QualType ASTTy = D->getType();
4506       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4507       llvm::Constant *GV = GetOrCreateLLVMGlobal(
4508           D->getName(), Ty, getContext().getTargetAddressSpace(ASTTy), D);
4509       DI->EmitExternalVariable(
4510           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4511     }
4512 }
4513 
4514 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4515                                       CodeGenModule &CGM, const VarDecl *D,
4516                                       bool NoCommon) {
4517   // Don't give variables common linkage if -fno-common was specified unless it
4518   // was overridden by a NoCommon attribute.
4519   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4520     return true;
4521 
4522   // C11 6.9.2/2:
4523   //   A declaration of an identifier for an object that has file scope without
4524   //   an initializer, and without a storage-class specifier or with the
4525   //   storage-class specifier static, constitutes a tentative definition.
4526   if (D->getInit() || D->hasExternalStorage())
4527     return true;
4528 
4529   // A variable cannot be both common and exist in a section.
4530   if (D->hasAttr<SectionAttr>())
4531     return true;
4532 
4533   // A variable cannot be both common and exist in a section.
4534   // We don't try to determine which is the right section in the front-end.
4535   // If no specialized section name is applicable, it will resort to default.
4536   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4537       D->hasAttr<PragmaClangDataSectionAttr>() ||
4538       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4539       D->hasAttr<PragmaClangRodataSectionAttr>())
4540     return true;
4541 
4542   // Thread local vars aren't considered common linkage.
4543   if (D->getTLSKind())
4544     return true;
4545 
4546   // Tentative definitions marked with WeakImportAttr are true definitions.
4547   if (D->hasAttr<WeakImportAttr>())
4548     return true;
4549 
4550   // A variable cannot be both common and exist in a comdat.
4551   if (shouldBeInCOMDAT(CGM, *D))
4552     return true;
4553 
4554   // Declarations with a required alignment do not have common linkage in MSVC
4555   // mode.
4556   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4557     if (D->hasAttr<AlignedAttr>())
4558       return true;
4559     QualType VarType = D->getType();
4560     if (Context.isAlignmentRequired(VarType))
4561       return true;
4562 
4563     if (const auto *RT = VarType->getAs<RecordType>()) {
4564       const RecordDecl *RD = RT->getDecl();
4565       for (const FieldDecl *FD : RD->fields()) {
4566         if (FD->isBitField())
4567           continue;
4568         if (FD->hasAttr<AlignedAttr>())
4569           return true;
4570         if (Context.isAlignmentRequired(FD->getType()))
4571           return true;
4572       }
4573     }
4574   }
4575 
4576   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4577   // common symbols, so symbols with greater alignment requirements cannot be
4578   // common.
4579   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4580   // alignments for common symbols via the aligncomm directive, so this
4581   // restriction only applies to MSVC environments.
4582   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4583       Context.getTypeAlignIfKnown(D->getType()) >
4584           Context.toBits(CharUnits::fromQuantity(32)))
4585     return true;
4586 
4587   return false;
4588 }
4589 
4590 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4591     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4592   if (Linkage == GVA_Internal)
4593     return llvm::Function::InternalLinkage;
4594 
4595   if (D->hasAttr<WeakAttr>()) {
4596     if (IsConstantVariable)
4597       return llvm::GlobalVariable::WeakODRLinkage;
4598     else
4599       return llvm::GlobalVariable::WeakAnyLinkage;
4600   }
4601 
4602   if (const auto *FD = D->getAsFunction())
4603     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4604       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4605 
4606   // We are guaranteed to have a strong definition somewhere else,
4607   // so we can use available_externally linkage.
4608   if (Linkage == GVA_AvailableExternally)
4609     return llvm::GlobalValue::AvailableExternallyLinkage;
4610 
4611   // Note that Apple's kernel linker doesn't support symbol
4612   // coalescing, so we need to avoid linkonce and weak linkages there.
4613   // Normally, this means we just map to internal, but for explicit
4614   // instantiations we'll map to external.
4615 
4616   // In C++, the compiler has to emit a definition in every translation unit
4617   // that references the function.  We should use linkonce_odr because
4618   // a) if all references in this translation unit are optimized away, we
4619   // don't need to codegen it.  b) if the function persists, it needs to be
4620   // merged with other definitions. c) C++ has the ODR, so we know the
4621   // definition is dependable.
4622   if (Linkage == GVA_DiscardableODR)
4623     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4624                                             : llvm::Function::InternalLinkage;
4625 
4626   // An explicit instantiation of a template has weak linkage, since
4627   // explicit instantiations can occur in multiple translation units
4628   // and must all be equivalent. However, we are not allowed to
4629   // throw away these explicit instantiations.
4630   //
4631   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4632   // so say that CUDA templates are either external (for kernels) or internal.
4633   // This lets llvm perform aggressive inter-procedural optimizations. For
4634   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4635   // therefore we need to follow the normal linkage paradigm.
4636   if (Linkage == GVA_StrongODR) {
4637     if (getLangOpts().AppleKext)
4638       return llvm::Function::ExternalLinkage;
4639     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4640         !getLangOpts().GPURelocatableDeviceCode)
4641       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4642                                           : llvm::Function::InternalLinkage;
4643     return llvm::Function::WeakODRLinkage;
4644   }
4645 
4646   // C++ doesn't have tentative definitions and thus cannot have common
4647   // linkage.
4648   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4649       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4650                                  CodeGenOpts.NoCommon))
4651     return llvm::GlobalVariable::CommonLinkage;
4652 
4653   // selectany symbols are externally visible, so use weak instead of
4654   // linkonce.  MSVC optimizes away references to const selectany globals, so
4655   // all definitions should be the same and ODR linkage should be used.
4656   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4657   if (D->hasAttr<SelectAnyAttr>())
4658     return llvm::GlobalVariable::WeakODRLinkage;
4659 
4660   // Otherwise, we have strong external linkage.
4661   assert(Linkage == GVA_StrongExternal);
4662   return llvm::GlobalVariable::ExternalLinkage;
4663 }
4664 
4665 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4666     const VarDecl *VD, bool IsConstant) {
4667   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4668   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4669 }
4670 
4671 /// Replace the uses of a function that was declared with a non-proto type.
4672 /// We want to silently drop extra arguments from call sites
4673 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4674                                           llvm::Function *newFn) {
4675   // Fast path.
4676   if (old->use_empty()) return;
4677 
4678   llvm::Type *newRetTy = newFn->getReturnType();
4679   SmallVector<llvm::Value*, 4> newArgs;
4680 
4681   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4682          ui != ue; ) {
4683     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4684     llvm::User *user = use->getUser();
4685 
4686     // Recognize and replace uses of bitcasts.  Most calls to
4687     // unprototyped functions will use bitcasts.
4688     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4689       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4690         replaceUsesOfNonProtoConstant(bitcast, newFn);
4691       continue;
4692     }
4693 
4694     // Recognize calls to the function.
4695     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4696     if (!callSite) continue;
4697     if (!callSite->isCallee(&*use))
4698       continue;
4699 
4700     // If the return types don't match exactly, then we can't
4701     // transform this call unless it's dead.
4702     if (callSite->getType() != newRetTy && !callSite->use_empty())
4703       continue;
4704 
4705     // Get the call site's attribute list.
4706     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4707     llvm::AttributeList oldAttrs = callSite->getAttributes();
4708 
4709     // If the function was passed too few arguments, don't transform.
4710     unsigned newNumArgs = newFn->arg_size();
4711     if (callSite->arg_size() < newNumArgs)
4712       continue;
4713 
4714     // If extra arguments were passed, we silently drop them.
4715     // If any of the types mismatch, we don't transform.
4716     unsigned argNo = 0;
4717     bool dontTransform = false;
4718     for (llvm::Argument &A : newFn->args()) {
4719       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4720         dontTransform = true;
4721         break;
4722       }
4723 
4724       // Add any parameter attributes.
4725       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4726       argNo++;
4727     }
4728     if (dontTransform)
4729       continue;
4730 
4731     // Okay, we can transform this.  Create the new call instruction and copy
4732     // over the required information.
4733     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4734 
4735     // Copy over any operand bundles.
4736     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4737     callSite->getOperandBundlesAsDefs(newBundles);
4738 
4739     llvm::CallBase *newCall;
4740     if (dyn_cast<llvm::CallInst>(callSite)) {
4741       newCall =
4742           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4743     } else {
4744       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4745       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4746                                          oldInvoke->getUnwindDest(), newArgs,
4747                                          newBundles, "", callSite);
4748     }
4749     newArgs.clear(); // for the next iteration
4750 
4751     if (!newCall->getType()->isVoidTy())
4752       newCall->takeName(callSite);
4753     newCall->setAttributes(llvm::AttributeList::get(
4754         newFn->getContext(), oldAttrs.getFnAttributes(),
4755         oldAttrs.getRetAttributes(), newArgAttrs));
4756     newCall->setCallingConv(callSite->getCallingConv());
4757 
4758     // Finally, remove the old call, replacing any uses with the new one.
4759     if (!callSite->use_empty())
4760       callSite->replaceAllUsesWith(newCall);
4761 
4762     // Copy debug location attached to CI.
4763     if (callSite->getDebugLoc())
4764       newCall->setDebugLoc(callSite->getDebugLoc());
4765 
4766     callSite->eraseFromParent();
4767   }
4768 }
4769 
4770 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4771 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4772 /// existing call uses of the old function in the module, this adjusts them to
4773 /// call the new function directly.
4774 ///
4775 /// This is not just a cleanup: the always_inline pass requires direct calls to
4776 /// functions to be able to inline them.  If there is a bitcast in the way, it
4777 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4778 /// run at -O0.
4779 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4780                                                       llvm::Function *NewFn) {
4781   // If we're redefining a global as a function, don't transform it.
4782   if (!isa<llvm::Function>(Old)) return;
4783 
4784   replaceUsesOfNonProtoConstant(Old, NewFn);
4785 }
4786 
4787 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4788   auto DK = VD->isThisDeclarationADefinition();
4789   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4790     return;
4791 
4792   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4793   // If we have a definition, this might be a deferred decl. If the
4794   // instantiation is explicit, make sure we emit it at the end.
4795   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4796     GetAddrOfGlobalVar(VD);
4797 
4798   EmitTopLevelDecl(VD);
4799 }
4800 
4801 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4802                                                  llvm::GlobalValue *GV) {
4803   const auto *D = cast<FunctionDecl>(GD.getDecl());
4804 
4805   // Compute the function info and LLVM type.
4806   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4807   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4808 
4809   // Get or create the prototype for the function.
4810   if (!GV || (GV->getValueType() != Ty))
4811     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4812                                                    /*DontDefer=*/true,
4813                                                    ForDefinition));
4814 
4815   // Already emitted.
4816   if (!GV->isDeclaration())
4817     return;
4818 
4819   // We need to set linkage and visibility on the function before
4820   // generating code for it because various parts of IR generation
4821   // want to propagate this information down (e.g. to local static
4822   // declarations).
4823   auto *Fn = cast<llvm::Function>(GV);
4824   setFunctionLinkage(GD, Fn);
4825 
4826   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4827   setGVProperties(Fn, GD);
4828 
4829   MaybeHandleStaticInExternC(D, Fn);
4830 
4831   maybeSetTrivialComdat(*D, *Fn);
4832 
4833   // Set CodeGen attributes that represent floating point environment.
4834   setLLVMFunctionFEnvAttributes(D, Fn);
4835 
4836   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4837 
4838   setNonAliasAttributes(GD, Fn);
4839   SetLLVMFunctionAttributesForDefinition(D, Fn);
4840 
4841   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4842     AddGlobalCtor(Fn, CA->getPriority());
4843   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4844     AddGlobalDtor(Fn, DA->getPriority(), true);
4845   if (D->hasAttr<AnnotateAttr>())
4846     AddGlobalAnnotations(D, Fn);
4847 }
4848 
4849 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4850   const auto *D = cast<ValueDecl>(GD.getDecl());
4851   const AliasAttr *AA = D->getAttr<AliasAttr>();
4852   assert(AA && "Not an alias?");
4853 
4854   StringRef MangledName = getMangledName(GD);
4855 
4856   if (AA->getAliasee() == MangledName) {
4857     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4858     return;
4859   }
4860 
4861   // If there is a definition in the module, then it wins over the alias.
4862   // This is dubious, but allow it to be safe.  Just ignore the alias.
4863   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4864   if (Entry && !Entry->isDeclaration())
4865     return;
4866 
4867   Aliases.push_back(GD);
4868 
4869   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4870 
4871   // Create a reference to the named value.  This ensures that it is emitted
4872   // if a deferred decl.
4873   llvm::Constant *Aliasee;
4874   llvm::GlobalValue::LinkageTypes LT;
4875   if (isa<llvm::FunctionType>(DeclTy)) {
4876     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4877                                       /*ForVTable=*/false);
4878     LT = getFunctionLinkage(GD);
4879   } else {
4880     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, 0,
4881                                     /*D=*/nullptr);
4882     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4883       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4884     else
4885       LT = getFunctionLinkage(GD);
4886   }
4887 
4888   // Create the new alias itself, but don't set a name yet.
4889   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4890   auto *GA =
4891       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4892 
4893   if (Entry) {
4894     if (GA->getAliasee() == Entry) {
4895       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4896       return;
4897     }
4898 
4899     assert(Entry->isDeclaration());
4900 
4901     // If there is a declaration in the module, then we had an extern followed
4902     // by the alias, as in:
4903     //   extern int test6();
4904     //   ...
4905     //   int test6() __attribute__((alias("test7")));
4906     //
4907     // Remove it and replace uses of it with the alias.
4908     GA->takeName(Entry);
4909 
4910     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4911                                                           Entry->getType()));
4912     Entry->eraseFromParent();
4913   } else {
4914     GA->setName(MangledName);
4915   }
4916 
4917   // Set attributes which are particular to an alias; this is a
4918   // specialization of the attributes which may be set on a global
4919   // variable/function.
4920   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4921       D->isWeakImported()) {
4922     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4923   }
4924 
4925   if (const auto *VD = dyn_cast<VarDecl>(D))
4926     if (VD->getTLSKind())
4927       setTLSMode(GA, *VD);
4928 
4929   SetCommonAttributes(GD, GA);
4930 }
4931 
4932 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4933   const auto *D = cast<ValueDecl>(GD.getDecl());
4934   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4935   assert(IFA && "Not an ifunc?");
4936 
4937   StringRef MangledName = getMangledName(GD);
4938 
4939   if (IFA->getResolver() == MangledName) {
4940     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4941     return;
4942   }
4943 
4944   // Report an error if some definition overrides ifunc.
4945   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4946   if (Entry && !Entry->isDeclaration()) {
4947     GlobalDecl OtherGD;
4948     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4949         DiagnosedConflictingDefinitions.insert(GD).second) {
4950       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4951           << MangledName;
4952       Diags.Report(OtherGD.getDecl()->getLocation(),
4953                    diag::note_previous_definition);
4954     }
4955     return;
4956   }
4957 
4958   Aliases.push_back(GD);
4959 
4960   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4961   llvm::Constant *Resolver =
4962       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4963                               /*ForVTable=*/false);
4964   llvm::GlobalIFunc *GIF =
4965       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4966                                 "", Resolver, &getModule());
4967   if (Entry) {
4968     if (GIF->getResolver() == Entry) {
4969       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4970       return;
4971     }
4972     assert(Entry->isDeclaration());
4973 
4974     // If there is a declaration in the module, then we had an extern followed
4975     // by the ifunc, as in:
4976     //   extern int test();
4977     //   ...
4978     //   int test() __attribute__((ifunc("resolver")));
4979     //
4980     // Remove it and replace uses of it with the ifunc.
4981     GIF->takeName(Entry);
4982 
4983     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4984                                                           Entry->getType()));
4985     Entry->eraseFromParent();
4986   } else
4987     GIF->setName(MangledName);
4988 
4989   SetCommonAttributes(GD, GIF);
4990 }
4991 
4992 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4993                                             ArrayRef<llvm::Type*> Tys) {
4994   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4995                                          Tys);
4996 }
4997 
4998 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4999 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5000                          const StringLiteral *Literal, bool TargetIsLSB,
5001                          bool &IsUTF16, unsigned &StringLength) {
5002   StringRef String = Literal->getString();
5003   unsigned NumBytes = String.size();
5004 
5005   // Check for simple case.
5006   if (!Literal->containsNonAsciiOrNull()) {
5007     StringLength = NumBytes;
5008     return *Map.insert(std::make_pair(String, nullptr)).first;
5009   }
5010 
5011   // Otherwise, convert the UTF8 literals into a string of shorts.
5012   IsUTF16 = true;
5013 
5014   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5015   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5016   llvm::UTF16 *ToPtr = &ToBuf[0];
5017 
5018   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5019                                  ToPtr + NumBytes, llvm::strictConversion);
5020 
5021   // ConvertUTF8toUTF16 returns the length in ToPtr.
5022   StringLength = ToPtr - &ToBuf[0];
5023 
5024   // Add an explicit null.
5025   *ToPtr = 0;
5026   return *Map.insert(std::make_pair(
5027                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5028                                    (StringLength + 1) * 2),
5029                          nullptr)).first;
5030 }
5031 
5032 ConstantAddress
5033 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5034   unsigned StringLength = 0;
5035   bool isUTF16 = false;
5036   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5037       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5038                                getDataLayout().isLittleEndian(), isUTF16,
5039                                StringLength);
5040 
5041   if (auto *C = Entry.second)
5042     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
5043 
5044   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5045   llvm::Constant *Zeros[] = { Zero, Zero };
5046 
5047   const ASTContext &Context = getContext();
5048   const llvm::Triple &Triple = getTriple();
5049 
5050   const auto CFRuntime = getLangOpts().CFRuntime;
5051   const bool IsSwiftABI =
5052       static_cast<unsigned>(CFRuntime) >=
5053       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5054   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5055 
5056   // If we don't already have it, get __CFConstantStringClassReference.
5057   if (!CFConstantStringClassRef) {
5058     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5059     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5060     Ty = llvm::ArrayType::get(Ty, 0);
5061 
5062     switch (CFRuntime) {
5063     default: break;
5064     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5065     case LangOptions::CoreFoundationABI::Swift5_0:
5066       CFConstantStringClassName =
5067           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5068                               : "$s10Foundation19_NSCFConstantStringCN";
5069       Ty = IntPtrTy;
5070       break;
5071     case LangOptions::CoreFoundationABI::Swift4_2:
5072       CFConstantStringClassName =
5073           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5074                               : "$S10Foundation19_NSCFConstantStringCN";
5075       Ty = IntPtrTy;
5076       break;
5077     case LangOptions::CoreFoundationABI::Swift4_1:
5078       CFConstantStringClassName =
5079           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5080                               : "__T010Foundation19_NSCFConstantStringCN";
5081       Ty = IntPtrTy;
5082       break;
5083     }
5084 
5085     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5086 
5087     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5088       llvm::GlobalValue *GV = nullptr;
5089 
5090       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5091         IdentifierInfo &II = Context.Idents.get(GV->getName());
5092         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5093         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5094 
5095         const VarDecl *VD = nullptr;
5096         for (const auto *Result : DC->lookup(&II))
5097           if ((VD = dyn_cast<VarDecl>(Result)))
5098             break;
5099 
5100         if (Triple.isOSBinFormatELF()) {
5101           if (!VD)
5102             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5103         } else {
5104           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5105           if (!VD || !VD->hasAttr<DLLExportAttr>())
5106             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5107           else
5108             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5109         }
5110 
5111         setDSOLocal(GV);
5112       }
5113     }
5114 
5115     // Decay array -> ptr
5116     CFConstantStringClassRef =
5117         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5118                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5119   }
5120 
5121   QualType CFTy = Context.getCFConstantStringType();
5122 
5123   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5124 
5125   ConstantInitBuilder Builder(*this);
5126   auto Fields = Builder.beginStruct(STy);
5127 
5128   // Class pointer.
5129   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5130 
5131   // Flags.
5132   if (IsSwiftABI) {
5133     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5134     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5135   } else {
5136     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5137   }
5138 
5139   // String pointer.
5140   llvm::Constant *C = nullptr;
5141   if (isUTF16) {
5142     auto Arr = llvm::makeArrayRef(
5143         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5144         Entry.first().size() / 2);
5145     C = llvm::ConstantDataArray::get(VMContext, Arr);
5146   } else {
5147     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5148   }
5149 
5150   // Note: -fwritable-strings doesn't make the backing store strings of
5151   // CFStrings writable. (See <rdar://problem/10657500>)
5152   auto *GV =
5153       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5154                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5155   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5156   // Don't enforce the target's minimum global alignment, since the only use
5157   // of the string is via this class initializer.
5158   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5159                             : Context.getTypeAlignInChars(Context.CharTy);
5160   GV->setAlignment(Align.getAsAlign());
5161 
5162   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5163   // Without it LLVM can merge the string with a non unnamed_addr one during
5164   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5165   if (Triple.isOSBinFormatMachO())
5166     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5167                            : "__TEXT,__cstring,cstring_literals");
5168   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5169   // the static linker to adjust permissions to read-only later on.
5170   else if (Triple.isOSBinFormatELF())
5171     GV->setSection(".rodata");
5172 
5173   // String.
5174   llvm::Constant *Str =
5175       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5176 
5177   if (isUTF16)
5178     // Cast the UTF16 string to the correct type.
5179     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5180   Fields.add(Str);
5181 
5182   // String length.
5183   llvm::IntegerType *LengthTy =
5184       llvm::IntegerType::get(getModule().getContext(),
5185                              Context.getTargetInfo().getLongWidth());
5186   if (IsSwiftABI) {
5187     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5188         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5189       LengthTy = Int32Ty;
5190     else
5191       LengthTy = IntPtrTy;
5192   }
5193   Fields.addInt(LengthTy, StringLength);
5194 
5195   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5196   // properly aligned on 32-bit platforms.
5197   CharUnits Alignment =
5198       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5199 
5200   // The struct.
5201   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5202                                     /*isConstant=*/false,
5203                                     llvm::GlobalVariable::PrivateLinkage);
5204   GV->addAttribute("objc_arc_inert");
5205   switch (Triple.getObjectFormat()) {
5206   case llvm::Triple::UnknownObjectFormat:
5207     llvm_unreachable("unknown file format");
5208   case llvm::Triple::GOFF:
5209     llvm_unreachable("GOFF is not yet implemented");
5210   case llvm::Triple::XCOFF:
5211     llvm_unreachable("XCOFF is not yet implemented");
5212   case llvm::Triple::COFF:
5213   case llvm::Triple::ELF:
5214   case llvm::Triple::Wasm:
5215     GV->setSection("cfstring");
5216     break;
5217   case llvm::Triple::MachO:
5218     GV->setSection("__DATA,__cfstring");
5219     break;
5220   }
5221   Entry.second = GV;
5222 
5223   return ConstantAddress(GV, Alignment);
5224 }
5225 
5226 bool CodeGenModule::getExpressionLocationsEnabled() const {
5227   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5228 }
5229 
5230 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5231   if (ObjCFastEnumerationStateType.isNull()) {
5232     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5233     D->startDefinition();
5234 
5235     QualType FieldTypes[] = {
5236       Context.UnsignedLongTy,
5237       Context.getPointerType(Context.getObjCIdType()),
5238       Context.getPointerType(Context.UnsignedLongTy),
5239       Context.getConstantArrayType(Context.UnsignedLongTy,
5240                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5241     };
5242 
5243     for (size_t i = 0; i < 4; ++i) {
5244       FieldDecl *Field = FieldDecl::Create(Context,
5245                                            D,
5246                                            SourceLocation(),
5247                                            SourceLocation(), nullptr,
5248                                            FieldTypes[i], /*TInfo=*/nullptr,
5249                                            /*BitWidth=*/nullptr,
5250                                            /*Mutable=*/false,
5251                                            ICIS_NoInit);
5252       Field->setAccess(AS_public);
5253       D->addDecl(Field);
5254     }
5255 
5256     D->completeDefinition();
5257     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5258   }
5259 
5260   return ObjCFastEnumerationStateType;
5261 }
5262 
5263 llvm::Constant *
5264 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5265   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5266 
5267   // Don't emit it as the address of the string, emit the string data itself
5268   // as an inline array.
5269   if (E->getCharByteWidth() == 1) {
5270     SmallString<64> Str(E->getString());
5271 
5272     // Resize the string to the right size, which is indicated by its type.
5273     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5274     Str.resize(CAT->getSize().getZExtValue());
5275     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5276   }
5277 
5278   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5279   llvm::Type *ElemTy = AType->getElementType();
5280   unsigned NumElements = AType->getNumElements();
5281 
5282   // Wide strings have either 2-byte or 4-byte elements.
5283   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5284     SmallVector<uint16_t, 32> Elements;
5285     Elements.reserve(NumElements);
5286 
5287     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5288       Elements.push_back(E->getCodeUnit(i));
5289     Elements.resize(NumElements);
5290     return llvm::ConstantDataArray::get(VMContext, Elements);
5291   }
5292 
5293   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5294   SmallVector<uint32_t, 32> Elements;
5295   Elements.reserve(NumElements);
5296 
5297   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5298     Elements.push_back(E->getCodeUnit(i));
5299   Elements.resize(NumElements);
5300   return llvm::ConstantDataArray::get(VMContext, Elements);
5301 }
5302 
5303 static llvm::GlobalVariable *
5304 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5305                       CodeGenModule &CGM, StringRef GlobalName,
5306                       CharUnits Alignment) {
5307   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5308       CGM.GetGlobalConstantAddressSpace());
5309 
5310   llvm::Module &M = CGM.getModule();
5311   // Create a global variable for this string
5312   auto *GV = new llvm::GlobalVariable(
5313       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5314       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5315   GV->setAlignment(Alignment.getAsAlign());
5316   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5317   if (GV->isWeakForLinker()) {
5318     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5319     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5320   }
5321   CGM.setDSOLocal(GV);
5322 
5323   return GV;
5324 }
5325 
5326 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5327 /// constant array for the given string literal.
5328 ConstantAddress
5329 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5330                                                   StringRef Name) {
5331   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5332 
5333   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5334   llvm::GlobalVariable **Entry = nullptr;
5335   if (!LangOpts.WritableStrings) {
5336     Entry = &ConstantStringMap[C];
5337     if (auto GV = *Entry) {
5338       if (Alignment.getQuantity() > GV->getAlignment())
5339         GV->setAlignment(Alignment.getAsAlign());
5340       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5341                              Alignment);
5342     }
5343   }
5344 
5345   SmallString<256> MangledNameBuffer;
5346   StringRef GlobalVariableName;
5347   llvm::GlobalValue::LinkageTypes LT;
5348 
5349   // Mangle the string literal if that's how the ABI merges duplicate strings.
5350   // Don't do it if they are writable, since we don't want writes in one TU to
5351   // affect strings in another.
5352   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5353       !LangOpts.WritableStrings) {
5354     llvm::raw_svector_ostream Out(MangledNameBuffer);
5355     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5356     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5357     GlobalVariableName = MangledNameBuffer;
5358   } else {
5359     LT = llvm::GlobalValue::PrivateLinkage;
5360     GlobalVariableName = Name;
5361   }
5362 
5363   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5364   if (Entry)
5365     *Entry = GV;
5366 
5367   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5368                                   QualType());
5369 
5370   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5371                          Alignment);
5372 }
5373 
5374 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5375 /// array for the given ObjCEncodeExpr node.
5376 ConstantAddress
5377 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5378   std::string Str;
5379   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5380 
5381   return GetAddrOfConstantCString(Str);
5382 }
5383 
5384 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5385 /// the literal and a terminating '\0' character.
5386 /// The result has pointer to array type.
5387 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5388     const std::string &Str, const char *GlobalName) {
5389   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5390   CharUnits Alignment =
5391     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5392 
5393   llvm::Constant *C =
5394       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5395 
5396   // Don't share any string literals if strings aren't constant.
5397   llvm::GlobalVariable **Entry = nullptr;
5398   if (!LangOpts.WritableStrings) {
5399     Entry = &ConstantStringMap[C];
5400     if (auto GV = *Entry) {
5401       if (Alignment.getQuantity() > GV->getAlignment())
5402         GV->setAlignment(Alignment.getAsAlign());
5403       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5404                              Alignment);
5405     }
5406   }
5407 
5408   // Get the default prefix if a name wasn't specified.
5409   if (!GlobalName)
5410     GlobalName = ".str";
5411   // Create a global variable for this.
5412   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5413                                   GlobalName, Alignment);
5414   if (Entry)
5415     *Entry = GV;
5416 
5417   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5418                          Alignment);
5419 }
5420 
5421 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5422     const MaterializeTemporaryExpr *E, const Expr *Init) {
5423   assert((E->getStorageDuration() == SD_Static ||
5424           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5425   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5426 
5427   // If we're not materializing a subobject of the temporary, keep the
5428   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5429   QualType MaterializedType = Init->getType();
5430   if (Init == E->getSubExpr())
5431     MaterializedType = E->getType();
5432 
5433   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5434 
5435   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5436   if (!InsertResult.second) {
5437     // We've seen this before: either we already created it or we're in the
5438     // process of doing so.
5439     if (!InsertResult.first->second) {
5440       // We recursively re-entered this function, probably during emission of
5441       // the initializer. Create a placeholder. We'll clean this up in the
5442       // outer call, at the end of this function.
5443       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5444       InsertResult.first->second = new llvm::GlobalVariable(
5445           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5446           nullptr);
5447     }
5448     return ConstantAddress(InsertResult.first->second, Align);
5449   }
5450 
5451   // FIXME: If an externally-visible declaration extends multiple temporaries,
5452   // we need to give each temporary the same name in every translation unit (and
5453   // we also need to make the temporaries externally-visible).
5454   SmallString<256> Name;
5455   llvm::raw_svector_ostream Out(Name);
5456   getCXXABI().getMangleContext().mangleReferenceTemporary(
5457       VD, E->getManglingNumber(), Out);
5458 
5459   APValue *Value = nullptr;
5460   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5461     // If the initializer of the extending declaration is a constant
5462     // initializer, we should have a cached constant initializer for this
5463     // temporary. Note that this might have a different value from the value
5464     // computed by evaluating the initializer if the surrounding constant
5465     // expression modifies the temporary.
5466     Value = E->getOrCreateValue(false);
5467   }
5468 
5469   // Try evaluating it now, it might have a constant initializer.
5470   Expr::EvalResult EvalResult;
5471   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5472       !EvalResult.hasSideEffects())
5473     Value = &EvalResult.Val;
5474 
5475   LangAS AddrSpace =
5476       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5477 
5478   Optional<ConstantEmitter> emitter;
5479   llvm::Constant *InitialValue = nullptr;
5480   bool Constant = false;
5481   llvm::Type *Type;
5482   if (Value) {
5483     // The temporary has a constant initializer, use it.
5484     emitter.emplace(*this);
5485     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5486                                                MaterializedType);
5487     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5488     Type = InitialValue->getType();
5489   } else {
5490     // No initializer, the initialization will be provided when we
5491     // initialize the declaration which performed lifetime extension.
5492     Type = getTypes().ConvertTypeForMem(MaterializedType);
5493   }
5494 
5495   // Create a global variable for this lifetime-extended temporary.
5496   llvm::GlobalValue::LinkageTypes Linkage =
5497       getLLVMLinkageVarDefinition(VD, Constant);
5498   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5499     const VarDecl *InitVD;
5500     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5501         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5502       // Temporaries defined inside a class get linkonce_odr linkage because the
5503       // class can be defined in multiple translation units.
5504       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5505     } else {
5506       // There is no need for this temporary to have external linkage if the
5507       // VarDecl has external linkage.
5508       Linkage = llvm::GlobalVariable::InternalLinkage;
5509     }
5510   }
5511   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5512   auto *GV = new llvm::GlobalVariable(
5513       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5514       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5515   if (emitter) emitter->finalize(GV);
5516   setGVProperties(GV, VD);
5517   GV->setAlignment(Align.getAsAlign());
5518   if (supportsCOMDAT() && GV->isWeakForLinker())
5519     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5520   if (VD->getTLSKind())
5521     setTLSMode(GV, *VD);
5522   llvm::Constant *CV = GV;
5523   if (AddrSpace != LangAS::Default)
5524     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5525         *this, GV, AddrSpace, LangAS::Default,
5526         Type->getPointerTo(
5527             getContext().getTargetAddressSpace(LangAS::Default)));
5528 
5529   // Update the map with the new temporary. If we created a placeholder above,
5530   // replace it with the new global now.
5531   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5532   if (Entry) {
5533     Entry->replaceAllUsesWith(
5534         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5535     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5536   }
5537   Entry = CV;
5538 
5539   return ConstantAddress(CV, Align);
5540 }
5541 
5542 /// EmitObjCPropertyImplementations - Emit information for synthesized
5543 /// properties for an implementation.
5544 void CodeGenModule::EmitObjCPropertyImplementations(const
5545                                                     ObjCImplementationDecl *D) {
5546   for (const auto *PID : D->property_impls()) {
5547     // Dynamic is just for type-checking.
5548     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5549       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5550 
5551       // Determine which methods need to be implemented, some may have
5552       // been overridden. Note that ::isPropertyAccessor is not the method
5553       // we want, that just indicates if the decl came from a
5554       // property. What we want to know is if the method is defined in
5555       // this implementation.
5556       auto *Getter = PID->getGetterMethodDecl();
5557       if (!Getter || Getter->isSynthesizedAccessorStub())
5558         CodeGenFunction(*this).GenerateObjCGetter(
5559             const_cast<ObjCImplementationDecl *>(D), PID);
5560       auto *Setter = PID->getSetterMethodDecl();
5561       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5562         CodeGenFunction(*this).GenerateObjCSetter(
5563                                  const_cast<ObjCImplementationDecl *>(D), PID);
5564     }
5565   }
5566 }
5567 
5568 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5569   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5570   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5571        ivar; ivar = ivar->getNextIvar())
5572     if (ivar->getType().isDestructedType())
5573       return true;
5574 
5575   return false;
5576 }
5577 
5578 static bool AllTrivialInitializers(CodeGenModule &CGM,
5579                                    ObjCImplementationDecl *D) {
5580   CodeGenFunction CGF(CGM);
5581   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5582        E = D->init_end(); B != E; ++B) {
5583     CXXCtorInitializer *CtorInitExp = *B;
5584     Expr *Init = CtorInitExp->getInit();
5585     if (!CGF.isTrivialInitializer(Init))
5586       return false;
5587   }
5588   return true;
5589 }
5590 
5591 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5592 /// for an implementation.
5593 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5594   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5595   if (needsDestructMethod(D)) {
5596     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5597     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5598     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5599         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5600         getContext().VoidTy, nullptr, D,
5601         /*isInstance=*/true, /*isVariadic=*/false,
5602         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5603         /*isImplicitlyDeclared=*/true,
5604         /*isDefined=*/false, ObjCMethodDecl::Required);
5605     D->addInstanceMethod(DTORMethod);
5606     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5607     D->setHasDestructors(true);
5608   }
5609 
5610   // If the implementation doesn't have any ivar initializers, we don't need
5611   // a .cxx_construct.
5612   if (D->getNumIvarInitializers() == 0 ||
5613       AllTrivialInitializers(*this, D))
5614     return;
5615 
5616   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5617   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5618   // The constructor returns 'self'.
5619   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5620       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5621       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5622       /*isVariadic=*/false,
5623       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5624       /*isImplicitlyDeclared=*/true,
5625       /*isDefined=*/false, ObjCMethodDecl::Required);
5626   D->addInstanceMethod(CTORMethod);
5627   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5628   D->setHasNonZeroConstructors(true);
5629 }
5630 
5631 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5632 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5633   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5634       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5635     ErrorUnsupported(LSD, "linkage spec");
5636     return;
5637   }
5638 
5639   EmitDeclContext(LSD);
5640 }
5641 
5642 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5643   for (auto *I : DC->decls()) {
5644     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5645     // are themselves considered "top-level", so EmitTopLevelDecl on an
5646     // ObjCImplDecl does not recursively visit them. We need to do that in
5647     // case they're nested inside another construct (LinkageSpecDecl /
5648     // ExportDecl) that does stop them from being considered "top-level".
5649     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5650       for (auto *M : OID->methods())
5651         EmitTopLevelDecl(M);
5652     }
5653 
5654     EmitTopLevelDecl(I);
5655   }
5656 }
5657 
5658 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5659 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5660   // Ignore dependent declarations.
5661   if (D->isTemplated())
5662     return;
5663 
5664   // Consteval function shouldn't be emitted.
5665   if (auto *FD = dyn_cast<FunctionDecl>(D))
5666     if (FD->isConsteval())
5667       return;
5668 
5669   switch (D->getKind()) {
5670   case Decl::CXXConversion:
5671   case Decl::CXXMethod:
5672   case Decl::Function:
5673     EmitGlobal(cast<FunctionDecl>(D));
5674     // Always provide some coverage mapping
5675     // even for the functions that aren't emitted.
5676     AddDeferredUnusedCoverageMapping(D);
5677     break;
5678 
5679   case Decl::CXXDeductionGuide:
5680     // Function-like, but does not result in code emission.
5681     break;
5682 
5683   case Decl::Var:
5684   case Decl::Decomposition:
5685   case Decl::VarTemplateSpecialization:
5686     EmitGlobal(cast<VarDecl>(D));
5687     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5688       for (auto *B : DD->bindings())
5689         if (auto *HD = B->getHoldingVar())
5690           EmitGlobal(HD);
5691     break;
5692 
5693   // Indirect fields from global anonymous structs and unions can be
5694   // ignored; only the actual variable requires IR gen support.
5695   case Decl::IndirectField:
5696     break;
5697 
5698   // C++ Decls
5699   case Decl::Namespace:
5700     EmitDeclContext(cast<NamespaceDecl>(D));
5701     break;
5702   case Decl::ClassTemplateSpecialization: {
5703     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5704     if (CGDebugInfo *DI = getModuleDebugInfo())
5705       if (Spec->getSpecializationKind() ==
5706               TSK_ExplicitInstantiationDefinition &&
5707           Spec->hasDefinition())
5708         DI->completeTemplateDefinition(*Spec);
5709   } LLVM_FALLTHROUGH;
5710   case Decl::CXXRecord: {
5711     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5712     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5713       if (CRD->hasDefinition())
5714         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5715       if (auto *ES = D->getASTContext().getExternalSource())
5716         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5717           DI->completeUnusedClass(*CRD);
5718     }
5719     // Emit any static data members, they may be definitions.
5720     for (auto *I : CRD->decls())
5721       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5722         EmitTopLevelDecl(I);
5723     break;
5724   }
5725     // No code generation needed.
5726   case Decl::UsingShadow:
5727   case Decl::ClassTemplate:
5728   case Decl::VarTemplate:
5729   case Decl::Concept:
5730   case Decl::VarTemplatePartialSpecialization:
5731   case Decl::FunctionTemplate:
5732   case Decl::TypeAliasTemplate:
5733   case Decl::Block:
5734   case Decl::Empty:
5735   case Decl::Binding:
5736     break;
5737   case Decl::Using:          // using X; [C++]
5738     if (CGDebugInfo *DI = getModuleDebugInfo())
5739         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5740     break;
5741   case Decl::NamespaceAlias:
5742     if (CGDebugInfo *DI = getModuleDebugInfo())
5743         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5744     break;
5745   case Decl::UsingDirective: // using namespace X; [C++]
5746     if (CGDebugInfo *DI = getModuleDebugInfo())
5747       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5748     break;
5749   case Decl::CXXConstructor:
5750     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5751     break;
5752   case Decl::CXXDestructor:
5753     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5754     break;
5755 
5756   case Decl::StaticAssert:
5757     // Nothing to do.
5758     break;
5759 
5760   // Objective-C Decls
5761 
5762   // Forward declarations, no (immediate) code generation.
5763   case Decl::ObjCInterface:
5764   case Decl::ObjCCategory:
5765     break;
5766 
5767   case Decl::ObjCProtocol: {
5768     auto *Proto = cast<ObjCProtocolDecl>(D);
5769     if (Proto->isThisDeclarationADefinition())
5770       ObjCRuntime->GenerateProtocol(Proto);
5771     break;
5772   }
5773 
5774   case Decl::ObjCCategoryImpl:
5775     // Categories have properties but don't support synthesize so we
5776     // can ignore them here.
5777     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5778     break;
5779 
5780   case Decl::ObjCImplementation: {
5781     auto *OMD = cast<ObjCImplementationDecl>(D);
5782     EmitObjCPropertyImplementations(OMD);
5783     EmitObjCIvarInitializations(OMD);
5784     ObjCRuntime->GenerateClass(OMD);
5785     // Emit global variable debug information.
5786     if (CGDebugInfo *DI = getModuleDebugInfo())
5787       if (getCodeGenOpts().hasReducedDebugInfo())
5788         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5789             OMD->getClassInterface()), OMD->getLocation());
5790     break;
5791   }
5792   case Decl::ObjCMethod: {
5793     auto *OMD = cast<ObjCMethodDecl>(D);
5794     // If this is not a prototype, emit the body.
5795     if (OMD->getBody())
5796       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5797     break;
5798   }
5799   case Decl::ObjCCompatibleAlias:
5800     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5801     break;
5802 
5803   case Decl::PragmaComment: {
5804     const auto *PCD = cast<PragmaCommentDecl>(D);
5805     switch (PCD->getCommentKind()) {
5806     case PCK_Unknown:
5807       llvm_unreachable("unexpected pragma comment kind");
5808     case PCK_Linker:
5809       AppendLinkerOptions(PCD->getArg());
5810       break;
5811     case PCK_Lib:
5812         AddDependentLib(PCD->getArg());
5813       break;
5814     case PCK_Compiler:
5815     case PCK_ExeStr:
5816     case PCK_User:
5817       break; // We ignore all of these.
5818     }
5819     break;
5820   }
5821 
5822   case Decl::PragmaDetectMismatch: {
5823     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5824     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5825     break;
5826   }
5827 
5828   case Decl::LinkageSpec:
5829     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5830     break;
5831 
5832   case Decl::FileScopeAsm: {
5833     // File-scope asm is ignored during device-side CUDA compilation.
5834     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5835       break;
5836     // File-scope asm is ignored during device-side OpenMP compilation.
5837     if (LangOpts.OpenMPIsDevice)
5838       break;
5839     // File-scope asm is ignored during device-side SYCL compilation.
5840     if (LangOpts.SYCLIsDevice)
5841       break;
5842     auto *AD = cast<FileScopeAsmDecl>(D);
5843     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5844     break;
5845   }
5846 
5847   case Decl::Import: {
5848     auto *Import = cast<ImportDecl>(D);
5849 
5850     // If we've already imported this module, we're done.
5851     if (!ImportedModules.insert(Import->getImportedModule()))
5852       break;
5853 
5854     // Emit debug information for direct imports.
5855     if (!Import->getImportedOwningModule()) {
5856       if (CGDebugInfo *DI = getModuleDebugInfo())
5857         DI->EmitImportDecl(*Import);
5858     }
5859 
5860     // Find all of the submodules and emit the module initializers.
5861     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5862     SmallVector<clang::Module *, 16> Stack;
5863     Visited.insert(Import->getImportedModule());
5864     Stack.push_back(Import->getImportedModule());
5865 
5866     while (!Stack.empty()) {
5867       clang::Module *Mod = Stack.pop_back_val();
5868       if (!EmittedModuleInitializers.insert(Mod).second)
5869         continue;
5870 
5871       for (auto *D : Context.getModuleInitializers(Mod))
5872         EmitTopLevelDecl(D);
5873 
5874       // Visit the submodules of this module.
5875       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5876                                              SubEnd = Mod->submodule_end();
5877            Sub != SubEnd; ++Sub) {
5878         // Skip explicit children; they need to be explicitly imported to emit
5879         // the initializers.
5880         if ((*Sub)->IsExplicit)
5881           continue;
5882 
5883         if (Visited.insert(*Sub).second)
5884           Stack.push_back(*Sub);
5885       }
5886     }
5887     break;
5888   }
5889 
5890   case Decl::Export:
5891     EmitDeclContext(cast<ExportDecl>(D));
5892     break;
5893 
5894   case Decl::OMPThreadPrivate:
5895     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5896     break;
5897 
5898   case Decl::OMPAllocate:
5899     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
5900     break;
5901 
5902   case Decl::OMPDeclareReduction:
5903     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5904     break;
5905 
5906   case Decl::OMPDeclareMapper:
5907     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5908     break;
5909 
5910   case Decl::OMPRequires:
5911     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5912     break;
5913 
5914   case Decl::Typedef:
5915   case Decl::TypeAlias: // using foo = bar; [C++11]
5916     if (CGDebugInfo *DI = getModuleDebugInfo())
5917       DI->EmitAndRetainType(
5918           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5919     break;
5920 
5921   case Decl::Record:
5922     if (CGDebugInfo *DI = getModuleDebugInfo())
5923       if (cast<RecordDecl>(D)->getDefinition())
5924         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5925     break;
5926 
5927   case Decl::Enum:
5928     if (CGDebugInfo *DI = getModuleDebugInfo())
5929       if (cast<EnumDecl>(D)->getDefinition())
5930         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5931     break;
5932 
5933   default:
5934     // Make sure we handled everything we should, every other kind is a
5935     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5936     // function. Need to recode Decl::Kind to do that easily.
5937     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5938     break;
5939   }
5940 }
5941 
5942 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5943   // Do we need to generate coverage mapping?
5944   if (!CodeGenOpts.CoverageMapping)
5945     return;
5946   switch (D->getKind()) {
5947   case Decl::CXXConversion:
5948   case Decl::CXXMethod:
5949   case Decl::Function:
5950   case Decl::ObjCMethod:
5951   case Decl::CXXConstructor:
5952   case Decl::CXXDestructor: {
5953     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5954       break;
5955     SourceManager &SM = getContext().getSourceManager();
5956     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5957       break;
5958     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5959     if (I == DeferredEmptyCoverageMappingDecls.end())
5960       DeferredEmptyCoverageMappingDecls[D] = true;
5961     break;
5962   }
5963   default:
5964     break;
5965   };
5966 }
5967 
5968 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5969   // Do we need to generate coverage mapping?
5970   if (!CodeGenOpts.CoverageMapping)
5971     return;
5972   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5973     if (Fn->isTemplateInstantiation())
5974       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5975   }
5976   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5977   if (I == DeferredEmptyCoverageMappingDecls.end())
5978     DeferredEmptyCoverageMappingDecls[D] = false;
5979   else
5980     I->second = false;
5981 }
5982 
5983 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5984   // We call takeVector() here to avoid use-after-free.
5985   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5986   // we deserialize function bodies to emit coverage info for them, and that
5987   // deserializes more declarations. How should we handle that case?
5988   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5989     if (!Entry.second)
5990       continue;
5991     const Decl *D = Entry.first;
5992     switch (D->getKind()) {
5993     case Decl::CXXConversion:
5994     case Decl::CXXMethod:
5995     case Decl::Function:
5996     case Decl::ObjCMethod: {
5997       CodeGenPGO PGO(*this);
5998       GlobalDecl GD(cast<FunctionDecl>(D));
5999       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6000                                   getFunctionLinkage(GD));
6001       break;
6002     }
6003     case Decl::CXXConstructor: {
6004       CodeGenPGO PGO(*this);
6005       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6006       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6007                                   getFunctionLinkage(GD));
6008       break;
6009     }
6010     case Decl::CXXDestructor: {
6011       CodeGenPGO PGO(*this);
6012       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6013       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6014                                   getFunctionLinkage(GD));
6015       break;
6016     }
6017     default:
6018       break;
6019     };
6020   }
6021 }
6022 
6023 void CodeGenModule::EmitMainVoidAlias() {
6024   // In order to transition away from "__original_main" gracefully, emit an
6025   // alias for "main" in the no-argument case so that libc can detect when
6026   // new-style no-argument main is in used.
6027   if (llvm::Function *F = getModule().getFunction("main")) {
6028     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6029         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6030       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6031   }
6032 }
6033 
6034 /// Turns the given pointer into a constant.
6035 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6036                                           const void *Ptr) {
6037   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6038   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6039   return llvm::ConstantInt::get(i64, PtrInt);
6040 }
6041 
6042 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6043                                    llvm::NamedMDNode *&GlobalMetadata,
6044                                    GlobalDecl D,
6045                                    llvm::GlobalValue *Addr) {
6046   if (!GlobalMetadata)
6047     GlobalMetadata =
6048       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6049 
6050   // TODO: should we report variant information for ctors/dtors?
6051   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6052                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6053                                CGM.getLLVMContext(), D.getDecl()))};
6054   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6055 }
6056 
6057 /// For each function which is declared within an extern "C" region and marked
6058 /// as 'used', but has internal linkage, create an alias from the unmangled
6059 /// name to the mangled name if possible. People expect to be able to refer
6060 /// to such functions with an unmangled name from inline assembly within the
6061 /// same translation unit.
6062 void CodeGenModule::EmitStaticExternCAliases() {
6063   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6064     return;
6065   for (auto &I : StaticExternCValues) {
6066     IdentifierInfo *Name = I.first;
6067     llvm::GlobalValue *Val = I.second;
6068     if (Val && !getModule().getNamedValue(Name->getName()))
6069       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6070   }
6071 }
6072 
6073 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6074                                              GlobalDecl &Result) const {
6075   auto Res = Manglings.find(MangledName);
6076   if (Res == Manglings.end())
6077     return false;
6078   Result = Res->getValue();
6079   return true;
6080 }
6081 
6082 /// Emits metadata nodes associating all the global values in the
6083 /// current module with the Decls they came from.  This is useful for
6084 /// projects using IR gen as a subroutine.
6085 ///
6086 /// Since there's currently no way to associate an MDNode directly
6087 /// with an llvm::GlobalValue, we create a global named metadata
6088 /// with the name 'clang.global.decl.ptrs'.
6089 void CodeGenModule::EmitDeclMetadata() {
6090   llvm::NamedMDNode *GlobalMetadata = nullptr;
6091 
6092   for (auto &I : MangledDeclNames) {
6093     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6094     // Some mangled names don't necessarily have an associated GlobalValue
6095     // in this module, e.g. if we mangled it for DebugInfo.
6096     if (Addr)
6097       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6098   }
6099 }
6100 
6101 /// Emits metadata nodes for all the local variables in the current
6102 /// function.
6103 void CodeGenFunction::EmitDeclMetadata() {
6104   if (LocalDeclMap.empty()) return;
6105 
6106   llvm::LLVMContext &Context = getLLVMContext();
6107 
6108   // Find the unique metadata ID for this name.
6109   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6110 
6111   llvm::NamedMDNode *GlobalMetadata = nullptr;
6112 
6113   for (auto &I : LocalDeclMap) {
6114     const Decl *D = I.first;
6115     llvm::Value *Addr = I.second.getPointer();
6116     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6117       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6118       Alloca->setMetadata(
6119           DeclPtrKind, llvm::MDNode::get(
6120                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6121     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6122       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6123       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6124     }
6125   }
6126 }
6127 
6128 void CodeGenModule::EmitVersionIdentMetadata() {
6129   llvm::NamedMDNode *IdentMetadata =
6130     TheModule.getOrInsertNamedMetadata("llvm.ident");
6131   std::string Version = getClangFullVersion();
6132   llvm::LLVMContext &Ctx = TheModule.getContext();
6133 
6134   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6135   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6136 }
6137 
6138 void CodeGenModule::EmitCommandLineMetadata() {
6139   llvm::NamedMDNode *CommandLineMetadata =
6140     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6141   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6142   llvm::LLVMContext &Ctx = TheModule.getContext();
6143 
6144   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6145   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6146 }
6147 
6148 void CodeGenModule::EmitCoverageFile() {
6149   if (getCodeGenOpts().CoverageDataFile.empty() &&
6150       getCodeGenOpts().CoverageNotesFile.empty())
6151     return;
6152 
6153   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6154   if (!CUNode)
6155     return;
6156 
6157   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6158   llvm::LLVMContext &Ctx = TheModule.getContext();
6159   auto *CoverageDataFile =
6160       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6161   auto *CoverageNotesFile =
6162       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6163   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6164     llvm::MDNode *CU = CUNode->getOperand(i);
6165     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6166     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6167   }
6168 }
6169 
6170 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6171                                                        bool ForEH) {
6172   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6173   // FIXME: should we even be calling this method if RTTI is disabled
6174   // and it's not for EH?
6175   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6176       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6177        getTriple().isNVPTX()))
6178     return llvm::Constant::getNullValue(Int8PtrTy);
6179 
6180   if (ForEH && Ty->isObjCObjectPointerType() &&
6181       LangOpts.ObjCRuntime.isGNUFamily())
6182     return ObjCRuntime->GetEHType(Ty);
6183 
6184   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6185 }
6186 
6187 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6188   // Do not emit threadprivates in simd-only mode.
6189   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6190     return;
6191   for (auto RefExpr : D->varlists()) {
6192     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6193     bool PerformInit =
6194         VD->getAnyInitializer() &&
6195         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6196                                                         /*ForRef=*/false);
6197 
6198     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6199     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6200             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6201       CXXGlobalInits.push_back(InitFunction);
6202   }
6203 }
6204 
6205 llvm::Metadata *
6206 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6207                                             StringRef Suffix) {
6208   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6209   if (InternalId)
6210     return InternalId;
6211 
6212   if (isExternallyVisible(T->getLinkage())) {
6213     std::string OutName;
6214     llvm::raw_string_ostream Out(OutName);
6215     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6216     Out << Suffix;
6217 
6218     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6219   } else {
6220     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6221                                            llvm::ArrayRef<llvm::Metadata *>());
6222   }
6223 
6224   return InternalId;
6225 }
6226 
6227 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6228   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6229 }
6230 
6231 llvm::Metadata *
6232 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6233   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6234 }
6235 
6236 // Generalize pointer types to a void pointer with the qualifiers of the
6237 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6238 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6239 // 'void *'.
6240 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6241   if (!Ty->isPointerType())
6242     return Ty;
6243 
6244   return Ctx.getPointerType(
6245       QualType(Ctx.VoidTy).withCVRQualifiers(
6246           Ty->getPointeeType().getCVRQualifiers()));
6247 }
6248 
6249 // Apply type generalization to a FunctionType's return and argument types
6250 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6251   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6252     SmallVector<QualType, 8> GeneralizedParams;
6253     for (auto &Param : FnType->param_types())
6254       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6255 
6256     return Ctx.getFunctionType(
6257         GeneralizeType(Ctx, FnType->getReturnType()),
6258         GeneralizedParams, FnType->getExtProtoInfo());
6259   }
6260 
6261   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6262     return Ctx.getFunctionNoProtoType(
6263         GeneralizeType(Ctx, FnType->getReturnType()));
6264 
6265   llvm_unreachable("Encountered unknown FunctionType");
6266 }
6267 
6268 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6269   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6270                                       GeneralizedMetadataIdMap, ".generalized");
6271 }
6272 
6273 /// Returns whether this module needs the "all-vtables" type identifier.
6274 bool CodeGenModule::NeedAllVtablesTypeId() const {
6275   // Returns true if at least one of vtable-based CFI checkers is enabled and
6276   // is not in the trapping mode.
6277   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6278            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6279           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6280            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6281           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6282            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6283           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6284            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6285 }
6286 
6287 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6288                                           CharUnits Offset,
6289                                           const CXXRecordDecl *RD) {
6290   llvm::Metadata *MD =
6291       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6292   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6293 
6294   if (CodeGenOpts.SanitizeCfiCrossDso)
6295     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6296       VTable->addTypeMetadata(Offset.getQuantity(),
6297                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6298 
6299   if (NeedAllVtablesTypeId()) {
6300     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6301     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6302   }
6303 }
6304 
6305 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6306   if (!SanStats)
6307     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6308 
6309   return *SanStats;
6310 }
6311 
6312 llvm::Value *
6313 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6314                                                   CodeGenFunction &CGF) {
6315   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6316   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6317   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6318   auto *Call = CGF.EmitRuntimeCall(
6319       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6320   return Call;
6321 }
6322 
6323 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6324     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6325   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6326                                  /* forPointeeType= */ true);
6327 }
6328 
6329 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6330                                                  LValueBaseInfo *BaseInfo,
6331                                                  TBAAAccessInfo *TBAAInfo,
6332                                                  bool forPointeeType) {
6333   if (TBAAInfo)
6334     *TBAAInfo = getTBAAAccessInfo(T);
6335 
6336   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6337   // that doesn't return the information we need to compute BaseInfo.
6338 
6339   // Honor alignment typedef attributes even on incomplete types.
6340   // We also honor them straight for C++ class types, even as pointees;
6341   // there's an expressivity gap here.
6342   if (auto TT = T->getAs<TypedefType>()) {
6343     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6344       if (BaseInfo)
6345         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6346       return getContext().toCharUnitsFromBits(Align);
6347     }
6348   }
6349 
6350   bool AlignForArray = T->isArrayType();
6351 
6352   // Analyze the base element type, so we don't get confused by incomplete
6353   // array types.
6354   T = getContext().getBaseElementType(T);
6355 
6356   if (T->isIncompleteType()) {
6357     // We could try to replicate the logic from
6358     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6359     // type is incomplete, so it's impossible to test. We could try to reuse
6360     // getTypeAlignIfKnown, but that doesn't return the information we need
6361     // to set BaseInfo.  So just ignore the possibility that the alignment is
6362     // greater than one.
6363     if (BaseInfo)
6364       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6365     return CharUnits::One();
6366   }
6367 
6368   if (BaseInfo)
6369     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6370 
6371   CharUnits Alignment;
6372   const CXXRecordDecl *RD;
6373   if (T.getQualifiers().hasUnaligned()) {
6374     Alignment = CharUnits::One();
6375   } else if (forPointeeType && !AlignForArray &&
6376              (RD = T->getAsCXXRecordDecl())) {
6377     // For C++ class pointees, we don't know whether we're pointing at a
6378     // base or a complete object, so we generally need to use the
6379     // non-virtual alignment.
6380     Alignment = getClassPointerAlignment(RD);
6381   } else {
6382     Alignment = getContext().getTypeAlignInChars(T);
6383   }
6384 
6385   // Cap to the global maximum type alignment unless the alignment
6386   // was somehow explicit on the type.
6387   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6388     if (Alignment.getQuantity() > MaxAlign &&
6389         !getContext().isAlignmentRequired(T))
6390       Alignment = CharUnits::fromQuantity(MaxAlign);
6391   }
6392   return Alignment;
6393 }
6394 
6395 bool CodeGenModule::stopAutoInit() {
6396   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6397   if (StopAfter) {
6398     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6399     // used
6400     if (NumAutoVarInit >= StopAfter) {
6401       return true;
6402     }
6403     if (!NumAutoVarInit) {
6404       unsigned DiagID = getDiags().getCustomDiagID(
6405           DiagnosticsEngine::Warning,
6406           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6407           "number of times ftrivial-auto-var-init=%1 gets applied.");
6408       getDiags().Report(DiagID)
6409           << StopAfter
6410           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6411                       LangOptions::TrivialAutoVarInitKind::Zero
6412                   ? "zero"
6413                   : "pattern");
6414     }
6415     ++NumAutoVarInit;
6416   }
6417   return false;
6418 }
6419 
6420 void CodeGenModule::printPostfixForExternalizedStaticVar(
6421     llvm::raw_ostream &OS) const {
6422   OS << ".static." << getContext().getCUIDHash();
6423 }
6424