xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9f73552852510ea9c427797dba25689c451e40a7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43     VtableInfo(*this), Runtime(0),
44     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45     VMContext(M.getContext()) {
46 
47   if (!Features.ObjC1)
48     Runtime = 0;
49   else if (!Features.NeXTRuntime)
50     Runtime = CreateGNUObjCRuntime(*this);
51   else if (Features.ObjCNonFragileABI)
52     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53   else
54     Runtime = CreateMacObjCRuntime(*this);
55 
56   // If debug info generation is enabled, create the CGDebugInfo object.
57   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   // We need to call this first because it can add deferred declarations.
67   EmitCXXGlobalInitFunc();
68 
69   EmitDeferred();
70   if (Runtime)
71     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72       AddGlobalCtor(ObjCInitFunction);
73   EmitCtorList(GlobalCtors, "llvm.global_ctors");
74   EmitCtorList(GlobalDtors, "llvm.global_dtors");
75   EmitAnnotations();
76   EmitLLVMUsed();
77 }
78 
79 /// ErrorUnsupported - Print out an error that codegen doesn't support the
80 /// specified stmt yet.
81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                      bool OmitOnError) {
83   if (OmitOnError && getDiags().hasErrorOccurred())
84     return;
85   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                                "cannot compile this %0 yet");
87   std::string Msg = Type;
88   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89     << Msg << S->getSourceRange();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified decl yet.
94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102 }
103 
104 LangOptions::VisibilityMode
105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107     if (VD->getStorageClass() == VarDecl::PrivateExtern)
108       return LangOptions::Hidden;
109 
110   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111     switch (attr->getVisibility()) {
112     default: assert(0 && "Unknown visibility!");
113     case VisibilityAttr::DefaultVisibility:
114       return LangOptions::Default;
115     case VisibilityAttr::HiddenVisibility:
116       return LangOptions::Hidden;
117     case VisibilityAttr::ProtectedVisibility:
118       return LangOptions::Protected;
119     }
120   }
121 
122   return getLangOptions().getVisibilityMode();
123 }
124 
125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                         const Decl *D) const {
127   // Internal definitions always have default visibility.
128   if (GV->hasLocalLinkage()) {
129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130     return;
131   }
132 
133   switch (getDeclVisibilityMode(D)) {
134   default: assert(0 && "Unknown visibility!");
135   case LangOptions::Default:
136     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137   case LangOptions::Hidden:
138     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139   case LangOptions::Protected:
140     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141   }
142 }
143 
144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146 
147   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148     return getMangledCXXCtorName(D, GD.getCtorType());
149   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150     return getMangledCXXDtorName(D, GD.getDtorType());
151 
152   return getMangledName(ND);
153 }
154 
155 /// \brief Retrieves the mangled name for the given declaration.
156 ///
157 /// If the given declaration requires a mangled name, returns an
158 /// const char* containing the mangled name.  Otherwise, returns
159 /// the unmangled name.
160 ///
161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162   // In C, functions with no attributes never need to be mangled. Fastpath them.
163   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   llvm::raw_svector_ostream Out(Name);
170   if (!mangleName(getMangleContext(), ND, Out)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
264     // C++ member functions defined inside the class are always inline.
265     if (MD->isInline() || !MD->isOutOfLine())
266       return CodeGenModule::GVA_CXXInline;
267 
268     return External;
269   }
270 
271   // "static" functions get internal linkage.
272   if (FD->getStorageClass() == FunctionDecl::Static)
273     return CodeGenModule::GVA_Internal;
274 
275   if (!FD->isInline())
276     return External;
277 
278   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
279     // GNU or C99 inline semantics. Determine whether this symbol should be
280     // externally visible.
281     if (FD->isInlineDefinitionExternallyVisible())
282       return External;
283 
284     // C99 inline semantics, where the symbol is not externally visible.
285     return CodeGenModule::GVA_C99Inline;
286   }
287 
288   // C++ inline semantics
289   assert(Features.CPlusPlus && "Must be in C++ mode");
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351     F->setAlignment(AA->getAlignment()/8);
352   // C++ ABI requires 2-byte alignment for member functions.
353   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354     F->setAlignment(2);
355 }
356 
357 void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                         llvm::GlobalValue *GV) {
359   setGlobalVisibility(GV, D);
360 
361   if (D->hasAttr<UsedAttr>())
362     AddUsedGlobal(GV);
363 
364   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365     GV->setSection(SA->getName());
366 }
367 
368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                   llvm::Function *F,
370                                                   const CGFunctionInfo &FI) {
371   SetLLVMFunctionAttributes(D, FI, F);
372   SetLLVMFunctionAttributesForDefinition(D, F);
373 
374   F->setLinkage(llvm::Function::InternalLinkage);
375 
376   SetCommonAttributes(D, F);
377 }
378 
379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                           llvm::Function *F,
381                                           bool IsIncompleteFunction) {
382   if (!IsIncompleteFunction)
383     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384 
385   // Only a few attributes are set on declarations; these may later be
386   // overridden by a definition.
387 
388   if (FD->hasAttr<DLLImportAttr>()) {
389     F->setLinkage(llvm::Function::DLLImportLinkage);
390   } else if (FD->hasAttr<WeakAttr>() ||
391              FD->hasAttr<WeakImportAttr>()) {
392     // "extern_weak" is overloaded in LLVM; we probably should have
393     // separate linkage types for this.
394     F->setLinkage(llvm::Function::ExternalWeakLinkage);
395   } else {
396     F->setLinkage(llvm::Function::ExternalLinkage);
397   }
398 
399   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400     F->setSection(SA->getName());
401 }
402 
403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404   assert(!GV->isDeclaration() &&
405          "Only globals with definition can force usage.");
406   LLVMUsed.push_back(GV);
407 }
408 
409 void CodeGenModule::EmitLLVMUsed() {
410   // Don't create llvm.used if there is no need.
411   if (LLVMUsed.empty())
412     return;
413 
414   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
480   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
481                                                   AA->getAnnotation(), true);
482   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
483                                                   M->getModuleIdentifier(),
484                                                   true);
485 
486   // Get the two global values corresponding to the ConstantArrays we just
487   // created to hold the bytes of the strings.
488   llvm::GlobalValue *annoGV =
489     new llvm::GlobalVariable(*M, anno->getType(), false,
490                              llvm::GlobalValue::PrivateLinkage, anno,
491                              GV->getName());
492   // translation unit name string, emitted into the llvm.metadata section.
493   llvm::GlobalValue *unitGV =
494     new llvm::GlobalVariable(*M, unit->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, unit,
496                              ".str");
497 
498   // Create the ConstantStruct for the global annotation.
499   llvm::Constant *Fields[4] = {
500     llvm::ConstantExpr::getBitCast(GV, SBP),
501     llvm::ConstantExpr::getBitCast(annoGV, SBP),
502     llvm::ConstantExpr::getBitCast(unitGV, SBP),
503     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
504   };
505   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
506 }
507 
508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509   // Never defer when EmitAllDecls is specified or the decl has
510   // attribute used.
511   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
512     return false;
513 
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515     // Constructors and destructors should never be deferred.
516     if (FD->hasAttr<ConstructorAttr>() ||
517         FD->hasAttr<DestructorAttr>())
518       return false;
519 
520     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521 
522     // static, static inline, always_inline, and extern inline functions can
523     // always be deferred.  Normal inline functions can be deferred in C99/C++.
524     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525         Linkage == GVA_CXXInline)
526       return true;
527     return false;
528   }
529 
530   const VarDecl *VD = cast<VarDecl>(Global);
531   assert(VD->isFileVarDecl() && "Invalid decl");
532 
533   // We never want to defer structs that have non-trivial constructors or
534   // destructors.
535 
536   // FIXME: Handle references.
537   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
538     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
539       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
540         return false;
541     }
542   }
543 
544   return VD->getStorageClass() == VarDecl::Static;
545 }
546 
547 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
548   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
549 
550   // If this is an alias definition (which otherwise looks like a declaration)
551   // emit it now.
552   if (Global->hasAttr<AliasAttr>())
553     return EmitAliasDefinition(Global);
554 
555   // Ignore declarations, they will be emitted on their first use.
556   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
557     // Forward declarations are emitted lazily on first use.
558     if (!FD->isThisDeclarationADefinition())
559       return;
560   } else {
561     const VarDecl *VD = cast<VarDecl>(Global);
562     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
563 
564     // In C++, if this is marked "extern", defer code generation.
565     if (getLangOptions().CPlusPlus && !VD->getInit() &&
566         (VD->getStorageClass() == VarDecl::Extern ||
567          VD->isExternC()))
568       return;
569 
570     // In C, if this isn't a definition, defer code generation.
571     if (!getLangOptions().CPlusPlus && !VD->getInit())
572       return;
573   }
574 
575   // Defer code generation when possible if this is a static definition, inline
576   // function etc.  These we only want to emit if they are used.
577   if (MayDeferGeneration(Global)) {
578     // If the value has already been used, add it directly to the
579     // DeferredDeclsToEmit list.
580     const char *MangledName = getMangledName(GD);
581     if (GlobalDeclMap.count(MangledName))
582       DeferredDeclsToEmit.push_back(GD);
583     else {
584       // Otherwise, remember that we saw a deferred decl with this name.  The
585       // first use of the mangled name will cause it to move into
586       // DeferredDeclsToEmit.
587       DeferredDecls[MangledName] = GD;
588     }
589     return;
590   }
591 
592   // Otherwise emit the definition.
593   EmitGlobalDefinition(GD);
594 }
595 
596 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
597   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
598 
599   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
600     EmitCXXConstructor(CD, GD.getCtorType());
601   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
602     EmitCXXDestructor(DD, GD.getDtorType());
603   else if (isa<FunctionDecl>(D))
604     EmitGlobalFunctionDefinition(GD);
605   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
606     EmitGlobalVarDefinition(VD);
607   else {
608     assert(0 && "Invalid argument to EmitGlobalDefinition()");
609   }
610 }
611 
612 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
613 /// module, create and return an llvm Function with the specified type. If there
614 /// is something in the module with the specified name, return it potentially
615 /// bitcasted to the right type.
616 ///
617 /// If D is non-null, it specifies a decl that correspond to this.  This is used
618 /// to set the attributes on the function when it is first created.
619 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
620                                                        const llvm::Type *Ty,
621                                                        GlobalDecl D) {
622   // Lookup the entry, lazily creating it if necessary.
623   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
624   if (Entry) {
625     if (Entry->getType()->getElementType() == Ty)
626       return Entry;
627 
628     // Make sure the result is of the correct type.
629     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
630     return llvm::ConstantExpr::getBitCast(Entry, PTy);
631   }
632 
633   // This is the first use or definition of a mangled name.  If there is a
634   // deferred decl with this name, remember that we need to emit it at the end
635   // of the file.
636   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
637     DeferredDecls.find(MangledName);
638   if (DDI != DeferredDecls.end()) {
639     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
640     // list, and remove it from DeferredDecls (since we don't need it anymore).
641     DeferredDeclsToEmit.push_back(DDI->second);
642     DeferredDecls.erase(DDI);
643   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
644     // If this the first reference to a C++ inline function in a class, queue up
645     // the deferred function body for emission.  These are not seen as
646     // top-level declarations.
647     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
648       DeferredDeclsToEmit.push_back(D);
649     // A called constructor which has no definition or declaration need be
650     // synthesized.
651     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
652       const CXXRecordDecl *ClassDecl =
653         cast<CXXRecordDecl>(CD->getDeclContext());
654       if (CD->isCopyConstructor(getContext()))
655         DeferredCopyConstructorToEmit(D);
656       else if (!ClassDecl->hasUserDeclaredConstructor())
657         DeferredDeclsToEmit.push_back(D);
658     }
659     else if (isa<CXXDestructorDecl>(FD))
660        DeferredDestructorToEmit(D);
661     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
662            if (MD->isCopyAssignment())
663              DeferredCopyAssignmentToEmit(D);
664   }
665 
666   // This function doesn't have a complete type (for example, the return
667   // type is an incomplete struct). Use a fake type instead, and make
668   // sure not to try to set attributes.
669   bool IsIncompleteFunction = false;
670   if (!isa<llvm::FunctionType>(Ty)) {
671     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
672                                  std::vector<const llvm::Type*>(), false);
673     IsIncompleteFunction = true;
674   }
675   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
676                                              llvm::Function::ExternalLinkage,
677                                              "", &getModule());
678   F->setName(MangledName);
679   if (D.getDecl())
680     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
681                           IsIncompleteFunction);
682   Entry = F;
683   return F;
684 }
685 
686 /// Defer definition of copy constructor(s) which need be implicitly defined.
687 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
688   const CXXConstructorDecl *CD =
689     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
690   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
691   if (ClassDecl->hasTrivialCopyConstructor() ||
692       ClassDecl->hasUserDeclaredCopyConstructor())
693     return;
694 
695   // First make sure all direct base classes and virtual bases and non-static
696   // data mebers which need to have their copy constructors implicitly defined
697   // are defined. 12.8.p7
698   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
699        Base != ClassDecl->bases_end(); ++Base) {
700     CXXRecordDecl *BaseClassDecl
701       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
702     if (CXXConstructorDecl *BaseCopyCtor =
703         BaseClassDecl->getCopyConstructor(Context, 0))
704       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
705   }
706 
707   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
708        FieldEnd = ClassDecl->field_end();
709        Field != FieldEnd; ++Field) {
710     QualType FieldType = Context.getCanonicalType((*Field)->getType());
711     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
712       FieldType = Array->getElementType();
713     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
714       if ((*Field)->isAnonymousStructOrUnion())
715         continue;
716       CXXRecordDecl *FieldClassDecl
717         = cast<CXXRecordDecl>(FieldClassType->getDecl());
718       if (CXXConstructorDecl *FieldCopyCtor =
719           FieldClassDecl->getCopyConstructor(Context, 0))
720         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
721     }
722   }
723   DeferredDeclsToEmit.push_back(CopyCtorDecl);
724 }
725 
726 /// Defer definition of copy assignments which need be implicitly defined.
727 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
728   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
729   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
730 
731   if (ClassDecl->hasTrivialCopyAssignment() ||
732       ClassDecl->hasUserDeclaredCopyAssignment())
733     return;
734 
735   // First make sure all direct base classes and virtual bases and non-static
736   // data mebers which need to have their copy assignments implicitly defined
737   // are defined. 12.8.p12
738   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
739        Base != ClassDecl->bases_end(); ++Base) {
740     CXXRecordDecl *BaseClassDecl
741       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
742     const CXXMethodDecl *MD = 0;
743     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
744         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
745         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
746       GetAddrOfFunction(MD, 0);
747   }
748 
749   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
750        FieldEnd = ClassDecl->field_end();
751        Field != FieldEnd; ++Field) {
752     QualType FieldType = Context.getCanonicalType((*Field)->getType());
753     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
754       FieldType = Array->getElementType();
755     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
756       if ((*Field)->isAnonymousStructOrUnion())
757         continue;
758       CXXRecordDecl *FieldClassDecl
759         = cast<CXXRecordDecl>(FieldClassType->getDecl());
760       const CXXMethodDecl *MD = 0;
761       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
762           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
763           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
764           GetAddrOfFunction(MD, 0);
765     }
766   }
767   DeferredDeclsToEmit.push_back(CopyAssignDecl);
768 }
769 
770 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
771   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
772   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
773   if (ClassDecl->hasTrivialDestructor() ||
774       ClassDecl->hasUserDeclaredDestructor())
775     return;
776 
777   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
778        Base != ClassDecl->bases_end(); ++Base) {
779     CXXRecordDecl *BaseClassDecl
780       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
781     if (const CXXDestructorDecl *BaseDtor =
782           BaseClassDecl->getDestructor(Context))
783       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
784   }
785 
786   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
787        FieldEnd = ClassDecl->field_end();
788        Field != FieldEnd; ++Field) {
789     QualType FieldType = Context.getCanonicalType((*Field)->getType());
790     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
791       FieldType = Array->getElementType();
792     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
793       if ((*Field)->isAnonymousStructOrUnion())
794         continue;
795       CXXRecordDecl *FieldClassDecl
796         = cast<CXXRecordDecl>(FieldClassType->getDecl());
797       if (const CXXDestructorDecl *FieldDtor =
798             FieldClassDecl->getDestructor(Context))
799         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
800     }
801   }
802   DeferredDeclsToEmit.push_back(DtorDecl);
803 }
804 
805 
806 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
807 /// non-null, then this function will use the specified type if it has to
808 /// create it (this occurs when we see a definition of the function).
809 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
810                                                  const llvm::Type *Ty) {
811   // If there was no specific requested type, just convert it now.
812   if (!Ty)
813     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
814   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
815 }
816 
817 /// CreateRuntimeFunction - Create a new runtime function with the specified
818 /// type and name.
819 llvm::Constant *
820 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
821                                      const char *Name) {
822   // Convert Name to be a uniqued string from the IdentifierInfo table.
823   Name = getContext().Idents.get(Name).getName();
824   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
825 }
826 
827 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
828 /// create and return an llvm GlobalVariable with the specified type.  If there
829 /// is something in the module with the specified name, return it potentially
830 /// bitcasted to the right type.
831 ///
832 /// If D is non-null, it specifies a decl that correspond to this.  This is used
833 /// to set the attributes on the global when it is first created.
834 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
835                                                      const llvm::PointerType*Ty,
836                                                      const VarDecl *D) {
837   // Lookup the entry, lazily creating it if necessary.
838   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
839   if (Entry) {
840     if (Entry->getType() == Ty)
841       return Entry;
842 
843     // Make sure the result is of the correct type.
844     return llvm::ConstantExpr::getBitCast(Entry, Ty);
845   }
846 
847   // This is the first use or definition of a mangled name.  If there is a
848   // deferred decl with this name, remember that we need to emit it at the end
849   // of the file.
850   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
851     DeferredDecls.find(MangledName);
852   if (DDI != DeferredDecls.end()) {
853     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854     // list, and remove it from DeferredDecls (since we don't need it anymore).
855     DeferredDeclsToEmit.push_back(DDI->second);
856     DeferredDecls.erase(DDI);
857   }
858 
859   llvm::GlobalVariable *GV =
860     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
861                              llvm::GlobalValue::ExternalLinkage,
862                              0, "", 0,
863                              false, Ty->getAddressSpace());
864   GV->setName(MangledName);
865 
866   // Handle things which are present even on external declarations.
867   if (D) {
868     // FIXME: This code is overly simple and should be merged with other global
869     // handling.
870     GV->setConstant(D->getType().isConstant(Context));
871 
872     // FIXME: Merge with other attribute handling code.
873     if (D->getStorageClass() == VarDecl::PrivateExtern)
874       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
875 
876     if (D->hasAttr<WeakAttr>() ||
877         D->hasAttr<WeakImportAttr>())
878       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
879 
880     GV->setThreadLocal(D->isThreadSpecified());
881   }
882 
883   return Entry = GV;
884 }
885 
886 
887 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
888 /// given global variable.  If Ty is non-null and if the global doesn't exist,
889 /// then it will be greated with the specified type instead of whatever the
890 /// normal requested type would be.
891 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
892                                                   const llvm::Type *Ty) {
893   assert(D->hasGlobalStorage() && "Not a global variable");
894   QualType ASTTy = D->getType();
895   if (Ty == 0)
896     Ty = getTypes().ConvertTypeForMem(ASTTy);
897 
898   const llvm::PointerType *PTy =
899     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
900   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
901 }
902 
903 /// CreateRuntimeVariable - Create a new runtime global variable with the
904 /// specified type and name.
905 llvm::Constant *
906 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
907                                      const char *Name) {
908   // Convert Name to be a uniqued string from the IdentifierInfo table.
909   Name = getContext().Idents.get(Name).getName();
910   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
911 }
912 
913 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
914   assert(!D->getInit() && "Cannot emit definite definitions here!");
915 
916   if (MayDeferGeneration(D)) {
917     // If we have not seen a reference to this variable yet, place it
918     // into the deferred declarations table to be emitted if needed
919     // later.
920     const char *MangledName = getMangledName(D);
921     if (GlobalDeclMap.count(MangledName) == 0) {
922       DeferredDecls[MangledName] = D;
923       return;
924     }
925   }
926 
927   // The tentative definition is the only definition.
928   EmitGlobalVarDefinition(D);
929 }
930 
931 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
932   llvm::Constant *Init = 0;
933   QualType ASTTy = D->getType();
934 
935   if (D->getInit() == 0) {
936     // This is a tentative definition; tentative definitions are
937     // implicitly initialized with { 0 }.
938     //
939     // Note that tentative definitions are only emitted at the end of
940     // a translation unit, so they should never have incomplete
941     // type. In addition, EmitTentativeDefinition makes sure that we
942     // never attempt to emit a tentative definition if a real one
943     // exists. A use may still exists, however, so we still may need
944     // to do a RAUW.
945     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
946     Init = EmitNullConstant(D->getType());
947   } else {
948     Init = EmitConstantExpr(D->getInit(), D->getType());
949 
950     if (!Init) {
951       QualType T = D->getInit()->getType();
952       if (getLangOptions().CPlusPlus) {
953         CXXGlobalInits.push_back(D);
954         Init = EmitNullConstant(T);
955       } else {
956         ErrorUnsupported(D, "static initializer");
957         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
958       }
959     }
960   }
961 
962   const llvm::Type* InitType = Init->getType();
963   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
964 
965   // Strip off a bitcast if we got one back.
966   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
968            // all zero index gep.
969            CE->getOpcode() == llvm::Instruction::GetElementPtr);
970     Entry = CE->getOperand(0);
971   }
972 
973   // Entry is now either a Function or GlobalVariable.
974   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
975 
976   // We have a definition after a declaration with the wrong type.
977   // We must make a new GlobalVariable* and update everything that used OldGV
978   // (a declaration or tentative definition) with the new GlobalVariable*
979   // (which will be a definition).
980   //
981   // This happens if there is a prototype for a global (e.g.
982   // "extern int x[];") and then a definition of a different type (e.g.
983   // "int x[10];"). This also happens when an initializer has a different type
984   // from the type of the global (this happens with unions).
985   if (GV == 0 ||
986       GV->getType()->getElementType() != InitType ||
987       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
988 
989     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
990     GlobalDeclMap.erase(getMangledName(D));
991 
992     // Make a new global with the correct type, this is now guaranteed to work.
993     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
994     GV->takeName(cast<llvm::GlobalValue>(Entry));
995 
996     // Replace all uses of the old global with the new global
997     llvm::Constant *NewPtrForOldDecl =
998         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
999     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1000 
1001     // Erase the old global, since it is no longer used.
1002     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1003   }
1004 
1005   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1006     SourceManager &SM = Context.getSourceManager();
1007     AddAnnotation(EmitAnnotateAttr(GV, AA,
1008                               SM.getInstantiationLineNumber(D->getLocation())));
1009   }
1010 
1011   GV->setInitializer(Init);
1012 
1013   // If it is safe to mark the global 'constant', do so now.
1014   GV->setConstant(false);
1015   if (D->getType().isConstant(Context)) {
1016     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1017     // members, it cannot be declared "LLVM const".
1018     GV->setConstant(true);
1019   }
1020 
1021   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1022 
1023   // Set the llvm linkage type as appropriate.
1024   if (D->isInAnonymousNamespace())
1025     GV->setLinkage(llvm::Function::InternalLinkage);
1026   else if (D->getStorageClass() == VarDecl::Static)
1027     GV->setLinkage(llvm::Function::InternalLinkage);
1028   else if (D->hasAttr<DLLImportAttr>())
1029     GV->setLinkage(llvm::Function::DLLImportLinkage);
1030   else if (D->hasAttr<DLLExportAttr>())
1031     GV->setLinkage(llvm::Function::DLLExportLinkage);
1032   else if (D->hasAttr<WeakAttr>()) {
1033     if (GV->isConstant())
1034       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1035     else
1036       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1037   } else if (!CompileOpts.NoCommon &&
1038            !D->hasExternalStorage() && !D->getInit() &&
1039            !D->getAttr<SectionAttr>()) {
1040     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1041     // common vars aren't constant even if declared const.
1042     GV->setConstant(false);
1043   } else
1044     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1045 
1046   SetCommonAttributes(D, GV);
1047 
1048   // Emit global variable debug information.
1049   if (CGDebugInfo *DI = getDebugInfo()) {
1050     DI->setLocation(D->getLocation());
1051     DI->EmitGlobalVariable(GV, D);
1052   }
1053 }
1054 
1055 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1056 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1057 /// existing call uses of the old function in the module, this adjusts them to
1058 /// call the new function directly.
1059 ///
1060 /// This is not just a cleanup: the always_inline pass requires direct calls to
1061 /// functions to be able to inline them.  If there is a bitcast in the way, it
1062 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1063 /// run at -O0.
1064 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1065                                                       llvm::Function *NewFn) {
1066   // If we're redefining a global as a function, don't transform it.
1067   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1068   if (OldFn == 0) return;
1069 
1070   const llvm::Type *NewRetTy = NewFn->getReturnType();
1071   llvm::SmallVector<llvm::Value*, 4> ArgList;
1072 
1073   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1074        UI != E; ) {
1075     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1076     unsigned OpNo = UI.getOperandNo();
1077     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1078     if (!CI || OpNo != 0) continue;
1079 
1080     // If the return types don't match exactly, and if the call isn't dead, then
1081     // we can't transform this call.
1082     if (CI->getType() != NewRetTy && !CI->use_empty())
1083       continue;
1084 
1085     // If the function was passed too few arguments, don't transform.  If extra
1086     // arguments were passed, we silently drop them.  If any of the types
1087     // mismatch, we don't transform.
1088     unsigned ArgNo = 0;
1089     bool DontTransform = false;
1090     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1091          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1092       if (CI->getNumOperands()-1 == ArgNo ||
1093           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1094         DontTransform = true;
1095         break;
1096       }
1097     }
1098     if (DontTransform)
1099       continue;
1100 
1101     // Okay, we can transform this.  Create the new call instruction and copy
1102     // over the required information.
1103     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1104     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1105                                                      ArgList.end(), "", CI);
1106     ArgList.clear();
1107     if (!NewCall->getType()->isVoidTy())
1108       NewCall->takeName(CI);
1109     NewCall->setAttributes(CI->getAttributes());
1110     NewCall->setCallingConv(CI->getCallingConv());
1111 
1112     // Finally, remove the old call, replacing any uses with the new one.
1113     CI->replaceAllUsesWith(NewCall);
1114 
1115     CI->eraseFromParent();
1116   }
1117 }
1118 
1119 
1120 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1121   const llvm::FunctionType *Ty;
1122   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1123 
1124   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1125     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1126 
1127     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1128   } else {
1129     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1130 
1131     // As a special case, make sure that definitions of K&R function
1132     // "type foo()" aren't declared as varargs (which forces the backend
1133     // to do unnecessary work).
1134     if (D->getType()->isFunctionNoProtoType()) {
1135       assert(Ty->isVarArg() && "Didn't lower type as expected");
1136       // Due to stret, the lowered function could have arguments.
1137       // Just create the same type as was lowered by ConvertType
1138       // but strip off the varargs bit.
1139       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1140       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1141     }
1142   }
1143 
1144   // Get or create the prototype for the function.
1145   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1146 
1147   // Strip off a bitcast if we got one back.
1148   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1149     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1150     Entry = CE->getOperand(0);
1151   }
1152 
1153 
1154   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1155     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1156 
1157     // If the types mismatch then we have to rewrite the definition.
1158     assert(OldFn->isDeclaration() &&
1159            "Shouldn't replace non-declaration");
1160 
1161     // F is the Function* for the one with the wrong type, we must make a new
1162     // Function* and update everything that used F (a declaration) with the new
1163     // Function* (which will be a definition).
1164     //
1165     // This happens if there is a prototype for a function
1166     // (e.g. "int f()") and then a definition of a different type
1167     // (e.g. "int f(int x)").  Start by making a new function of the
1168     // correct type, RAUW, then steal the name.
1169     GlobalDeclMap.erase(getMangledName(D));
1170     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1171     NewFn->takeName(OldFn);
1172 
1173     // If this is an implementation of a function without a prototype, try to
1174     // replace any existing uses of the function (which may be calls) with uses
1175     // of the new function
1176     if (D->getType()->isFunctionNoProtoType()) {
1177       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1178       OldFn->removeDeadConstantUsers();
1179     }
1180 
1181     // Replace uses of F with the Function we will endow with a body.
1182     if (!Entry->use_empty()) {
1183       llvm::Constant *NewPtrForOldDecl =
1184         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1185       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1186     }
1187 
1188     // Ok, delete the old function now, which is dead.
1189     OldFn->eraseFromParent();
1190 
1191     Entry = NewFn;
1192   }
1193 
1194   llvm::Function *Fn = cast<llvm::Function>(Entry);
1195 
1196   CodeGenFunction(*this).GenerateCode(D, Fn);
1197 
1198   SetFunctionDefinitionAttributes(D, Fn);
1199   SetLLVMFunctionAttributesForDefinition(D, Fn);
1200 
1201   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1202     AddGlobalCtor(Fn, CA->getPriority());
1203   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1204     AddGlobalDtor(Fn, DA->getPriority());
1205 }
1206 
1207 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1208   const AliasAttr *AA = D->getAttr<AliasAttr>();
1209   assert(AA && "Not an alias?");
1210 
1211   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1212 
1213   // Unique the name through the identifier table.
1214   const char *AliaseeName = AA->getAliasee().c_str();
1215   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1216 
1217   // Create a reference to the named value.  This ensures that it is emitted
1218   // if a deferred decl.
1219   llvm::Constant *Aliasee;
1220   if (isa<llvm::FunctionType>(DeclTy))
1221     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1222   else
1223     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1224                                     llvm::PointerType::getUnqual(DeclTy), 0);
1225 
1226   // Create the new alias itself, but don't set a name yet.
1227   llvm::GlobalValue *GA =
1228     new llvm::GlobalAlias(Aliasee->getType(),
1229                           llvm::Function::ExternalLinkage,
1230                           "", Aliasee, &getModule());
1231 
1232   // See if there is already something with the alias' name in the module.
1233   const char *MangledName = getMangledName(D);
1234   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1235 
1236   if (Entry && !Entry->isDeclaration()) {
1237     // If there is a definition in the module, then it wins over the alias.
1238     // This is dubious, but allow it to be safe.  Just ignore the alias.
1239     GA->eraseFromParent();
1240     return;
1241   }
1242 
1243   if (Entry) {
1244     // If there is a declaration in the module, then we had an extern followed
1245     // by the alias, as in:
1246     //   extern int test6();
1247     //   ...
1248     //   int test6() __attribute__((alias("test7")));
1249     //
1250     // Remove it and replace uses of it with the alias.
1251 
1252     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1253                                                           Entry->getType()));
1254     Entry->eraseFromParent();
1255   }
1256 
1257   // Now we know that there is no conflict, set the name.
1258   Entry = GA;
1259   GA->setName(MangledName);
1260 
1261   // Set attributes which are particular to an alias; this is a
1262   // specialization of the attributes which may be set on a global
1263   // variable/function.
1264   if (D->hasAttr<DLLExportAttr>()) {
1265     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1266       // The dllexport attribute is ignored for undefined symbols.
1267       if (FD->getBody())
1268         GA->setLinkage(llvm::Function::DLLExportLinkage);
1269     } else {
1270       GA->setLinkage(llvm::Function::DLLExportLinkage);
1271     }
1272   } else if (D->hasAttr<WeakAttr>() ||
1273              D->hasAttr<WeakImportAttr>()) {
1274     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1275   }
1276 
1277   SetCommonAttributes(D, GA);
1278 }
1279 
1280 /// getBuiltinLibFunction - Given a builtin id for a function like
1281 /// "__builtin_fabsf", return a Function* for "fabsf".
1282 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1283                                                   unsigned BuiltinID) {
1284   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1285           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1286          "isn't a lib fn");
1287 
1288   // Get the name, skip over the __builtin_ prefix (if necessary).
1289   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1290   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1291     Name += 10;
1292 
1293   // Get the type for the builtin.
1294   ASTContext::GetBuiltinTypeError Error;
1295   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1296   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1297 
1298   const llvm::FunctionType *Ty =
1299     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1300 
1301   // Unique the name through the identifier table.
1302   Name = getContext().Idents.get(Name).getName();
1303   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1304 }
1305 
1306 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1307                                             unsigned NumTys) {
1308   return llvm::Intrinsic::getDeclaration(&getModule(),
1309                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1310 }
1311 
1312 llvm::Function *CodeGenModule::getMemCpyFn() {
1313   if (MemCpyFn) return MemCpyFn;
1314   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1315   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1316 }
1317 
1318 llvm::Function *CodeGenModule::getMemMoveFn() {
1319   if (MemMoveFn) return MemMoveFn;
1320   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1321   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1322 }
1323 
1324 llvm::Function *CodeGenModule::getMemSetFn() {
1325   if (MemSetFn) return MemSetFn;
1326   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1327   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1328 }
1329 
1330 static llvm::StringMapEntry<llvm::Constant*> &
1331 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1332                          const StringLiteral *Literal,
1333                          bool TargetIsLSB,
1334                          bool &IsUTF16,
1335                          unsigned &StringLength) {
1336   unsigned NumBytes = Literal->getByteLength();
1337 
1338   // Check for simple case.
1339   if (!Literal->containsNonAsciiOrNull()) {
1340     StringLength = NumBytes;
1341     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1342                                                 StringLength));
1343   }
1344 
1345   // Otherwise, convert the UTF8 literals into a byte string.
1346   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1347   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1348   UTF16 *ToPtr = &ToBuf[0];
1349 
1350   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1351                                                &ToPtr, ToPtr + NumBytes,
1352                                                strictConversion);
1353 
1354   // Check for conversion failure.
1355   if (Result != conversionOK) {
1356     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1357     // this duplicate code.
1358     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1359     StringLength = NumBytes;
1360     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1361                                                 StringLength));
1362   }
1363 
1364   // ConvertUTF8toUTF16 returns the length in ToPtr.
1365   StringLength = ToPtr - &ToBuf[0];
1366 
1367   // Render the UTF-16 string into a byte array and convert to the target byte
1368   // order.
1369   //
1370   // FIXME: This isn't something we should need to do here.
1371   llvm::SmallString<128> AsBytes;
1372   AsBytes.reserve(StringLength * 2);
1373   for (unsigned i = 0; i != StringLength; ++i) {
1374     unsigned short Val = ToBuf[i];
1375     if (TargetIsLSB) {
1376       AsBytes.push_back(Val & 0xFF);
1377       AsBytes.push_back(Val >> 8);
1378     } else {
1379       AsBytes.push_back(Val >> 8);
1380       AsBytes.push_back(Val & 0xFF);
1381     }
1382   }
1383   // Append one extra null character, the second is automatically added by our
1384   // caller.
1385   AsBytes.push_back(0);
1386 
1387   IsUTF16 = true;
1388   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1389 }
1390 
1391 llvm::Constant *
1392 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1393   unsigned StringLength = 0;
1394   bool isUTF16 = false;
1395   llvm::StringMapEntry<llvm::Constant*> &Entry =
1396     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1397                              getTargetData().isLittleEndian(),
1398                              isUTF16, StringLength);
1399 
1400   if (llvm::Constant *C = Entry.getValue())
1401     return C;
1402 
1403   llvm::Constant *Zero =
1404       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1405   llvm::Constant *Zeros[] = { Zero, Zero };
1406 
1407   // If we don't already have it, get __CFConstantStringClassReference.
1408   if (!CFConstantStringClassRef) {
1409     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1410     Ty = llvm::ArrayType::get(Ty, 0);
1411     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1412                                            "__CFConstantStringClassReference");
1413     // Decay array -> ptr
1414     CFConstantStringClassRef =
1415       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1416   }
1417 
1418   QualType CFTy = getContext().getCFConstantStringType();
1419 
1420   const llvm::StructType *STy =
1421     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1422 
1423   std::vector<llvm::Constant*> Fields(4);
1424 
1425   // Class pointer.
1426   Fields[0] = CFConstantStringClassRef;
1427 
1428   // Flags.
1429   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1430   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1431     llvm::ConstantInt::get(Ty, 0x07C8);
1432 
1433   // String pointer.
1434   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1435 
1436   const char *Sect, *Prefix;
1437   bool isConstant;
1438   llvm::GlobalValue::LinkageTypes Linkage;
1439   if (isUTF16) {
1440     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1441     Sect = getContext().Target.getUnicodeStringSection();
1442     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1443     Linkage = llvm::GlobalValue::InternalLinkage;
1444     // FIXME: Why does GCC not set constant here?
1445     isConstant = false;
1446   } else {
1447     Prefix = ".str";
1448     Sect = getContext().Target.getCFStringDataSection();
1449     Linkage = llvm::GlobalValue::PrivateLinkage;
1450     // FIXME: -fwritable-strings should probably affect this, but we
1451     // are following gcc here.
1452     isConstant = true;
1453   }
1454   llvm::GlobalVariable *GV =
1455     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1456                              Linkage, C, Prefix);
1457   if (Sect)
1458     GV->setSection(Sect);
1459   if (isUTF16) {
1460     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1461     GV->setAlignment(Align);
1462   }
1463   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1464 
1465   // String length.
1466   Ty = getTypes().ConvertType(getContext().LongTy);
1467   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1468 
1469   // The struct.
1470   C = llvm::ConstantStruct::get(STy, Fields);
1471   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1472                                 llvm::GlobalVariable::PrivateLinkage, C,
1473                                 "_unnamed_cfstring_");
1474   if (const char *Sect = getContext().Target.getCFStringSection())
1475     GV->setSection(Sect);
1476   Entry.setValue(GV);
1477 
1478   return GV;
1479 }
1480 
1481 /// GetStringForStringLiteral - Return the appropriate bytes for a
1482 /// string literal, properly padded to match the literal type.
1483 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1484   const char *StrData = E->getStrData();
1485   unsigned Len = E->getByteLength();
1486 
1487   const ConstantArrayType *CAT =
1488     getContext().getAsConstantArrayType(E->getType());
1489   assert(CAT && "String isn't pointer or array!");
1490 
1491   // Resize the string to the right size.
1492   std::string Str(StrData, StrData+Len);
1493   uint64_t RealLen = CAT->getSize().getZExtValue();
1494 
1495   if (E->isWide())
1496     RealLen *= getContext().Target.getWCharWidth()/8;
1497 
1498   Str.resize(RealLen, '\0');
1499 
1500   return Str;
1501 }
1502 
1503 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1504 /// constant array for the given string literal.
1505 llvm::Constant *
1506 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1507   // FIXME: This can be more efficient.
1508   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1509 }
1510 
1511 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1512 /// array for the given ObjCEncodeExpr node.
1513 llvm::Constant *
1514 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1515   std::string Str;
1516   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1517 
1518   return GetAddrOfConstantCString(Str);
1519 }
1520 
1521 
1522 /// GenerateWritableString -- Creates storage for a string literal.
1523 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1524                                              bool constant,
1525                                              CodeGenModule &CGM,
1526                                              const char *GlobalName) {
1527   // Create Constant for this string literal. Don't add a '\0'.
1528   llvm::Constant *C =
1529       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1530 
1531   // Create a global variable for this string
1532   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1533                                   llvm::GlobalValue::PrivateLinkage,
1534                                   C, GlobalName);
1535 }
1536 
1537 /// GetAddrOfConstantString - Returns a pointer to a character array
1538 /// containing the literal. This contents are exactly that of the
1539 /// given string, i.e. it will not be null terminated automatically;
1540 /// see GetAddrOfConstantCString. Note that whether the result is
1541 /// actually a pointer to an LLVM constant depends on
1542 /// Feature.WriteableStrings.
1543 ///
1544 /// The result has pointer to array type.
1545 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1546                                                        const char *GlobalName) {
1547   bool IsConstant = !Features.WritableStrings;
1548 
1549   // Get the default prefix if a name wasn't specified.
1550   if (!GlobalName)
1551     GlobalName = ".str";
1552 
1553   // Don't share any string literals if strings aren't constant.
1554   if (!IsConstant)
1555     return GenerateStringLiteral(str, false, *this, GlobalName);
1556 
1557   llvm::StringMapEntry<llvm::Constant *> &Entry =
1558     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1559 
1560   if (Entry.getValue())
1561     return Entry.getValue();
1562 
1563   // Create a global variable for this.
1564   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1565   Entry.setValue(C);
1566   return C;
1567 }
1568 
1569 /// GetAddrOfConstantCString - Returns a pointer to a character
1570 /// array containing the literal and a terminating '\-'
1571 /// character. The result has pointer to array type.
1572 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1573                                                         const char *GlobalName){
1574   return GetAddrOfConstantString(str + '\0', GlobalName);
1575 }
1576 
1577 /// EmitObjCPropertyImplementations - Emit information for synthesized
1578 /// properties for an implementation.
1579 void CodeGenModule::EmitObjCPropertyImplementations(const
1580                                                     ObjCImplementationDecl *D) {
1581   for (ObjCImplementationDecl::propimpl_iterator
1582          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1583     ObjCPropertyImplDecl *PID = *i;
1584 
1585     // Dynamic is just for type-checking.
1586     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1587       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1588 
1589       // Determine which methods need to be implemented, some may have
1590       // been overridden. Note that ::isSynthesized is not the method
1591       // we want, that just indicates if the decl came from a
1592       // property. What we want to know is if the method is defined in
1593       // this implementation.
1594       if (!D->getInstanceMethod(PD->getGetterName()))
1595         CodeGenFunction(*this).GenerateObjCGetter(
1596                                  const_cast<ObjCImplementationDecl *>(D), PID);
1597       if (!PD->isReadOnly() &&
1598           !D->getInstanceMethod(PD->getSetterName()))
1599         CodeGenFunction(*this).GenerateObjCSetter(
1600                                  const_cast<ObjCImplementationDecl *>(D), PID);
1601     }
1602   }
1603 }
1604 
1605 /// EmitNamespace - Emit all declarations in a namespace.
1606 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1607   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1608        I != E; ++I)
1609     EmitTopLevelDecl(*I);
1610 }
1611 
1612 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1613 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1614   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1615       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1616     ErrorUnsupported(LSD, "linkage spec");
1617     return;
1618   }
1619 
1620   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1621        I != E; ++I)
1622     EmitTopLevelDecl(*I);
1623 }
1624 
1625 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1626 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1627   // If an error has occurred, stop code generation, but continue
1628   // parsing and semantic analysis (to ensure all warnings and errors
1629   // are emitted).
1630   if (Diags.hasErrorOccurred())
1631     return;
1632 
1633   // Ignore dependent declarations.
1634   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1635     return;
1636 
1637   switch (D->getKind()) {
1638   case Decl::CXXConversion:
1639   case Decl::CXXMethod:
1640   case Decl::Function:
1641     // Skip function templates
1642     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1643       return;
1644 
1645     EmitGlobal(cast<FunctionDecl>(D));
1646     break;
1647 
1648   case Decl::Var:
1649     EmitGlobal(cast<VarDecl>(D));
1650     break;
1651 
1652   // C++ Decls
1653   case Decl::Namespace:
1654     EmitNamespace(cast<NamespaceDecl>(D));
1655     break;
1656     // No code generation needed.
1657   case Decl::Using:
1658   case Decl::UsingDirective:
1659   case Decl::ClassTemplate:
1660   case Decl::FunctionTemplate:
1661   case Decl::NamespaceAlias:
1662     break;
1663   case Decl::CXXConstructor:
1664     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1665     break;
1666   case Decl::CXXDestructor:
1667     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1668     break;
1669 
1670   case Decl::StaticAssert:
1671     // Nothing to do.
1672     break;
1673 
1674   // Objective-C Decls
1675 
1676   // Forward declarations, no (immediate) code generation.
1677   case Decl::ObjCClass:
1678   case Decl::ObjCForwardProtocol:
1679   case Decl::ObjCCategory:
1680   case Decl::ObjCInterface:
1681     break;
1682 
1683   case Decl::ObjCProtocol:
1684     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1685     break;
1686 
1687   case Decl::ObjCCategoryImpl:
1688     // Categories have properties but don't support synthesize so we
1689     // can ignore them here.
1690     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1691     break;
1692 
1693   case Decl::ObjCImplementation: {
1694     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1695     EmitObjCPropertyImplementations(OMD);
1696     Runtime->GenerateClass(OMD);
1697     break;
1698   }
1699   case Decl::ObjCMethod: {
1700     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1701     // If this is not a prototype, emit the body.
1702     if (OMD->getBody())
1703       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1704     break;
1705   }
1706   case Decl::ObjCCompatibleAlias:
1707     // compatibility-alias is a directive and has no code gen.
1708     break;
1709 
1710   case Decl::LinkageSpec:
1711     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1712     break;
1713 
1714   case Decl::FileScopeAsm: {
1715     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1716     std::string AsmString(AD->getAsmString()->getStrData(),
1717                           AD->getAsmString()->getByteLength());
1718 
1719     const std::string &S = getModule().getModuleInlineAsm();
1720     if (S.empty())
1721       getModule().setModuleInlineAsm(AsmString);
1722     else
1723       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1724     break;
1725   }
1726 
1727   default:
1728     // Make sure we handled everything we should, every other kind is a
1729     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1730     // function. Need to recode Decl::Kind to do that easily.
1731     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1732   }
1733 }
1734