1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 44 45 if (!Features.ObjC1) 46 Runtime = 0; 47 else if (!Features.NeXTRuntime) 48 Runtime = CreateGNUObjCRuntime(*this); 49 else if (Features.ObjCNonFragileABI) 50 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 51 else 52 Runtime = CreateMacObjCRuntime(*this); 53 54 // If debug info generation is enabled, create the CGDebugInfo object. 55 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 56 } 57 58 CodeGenModule::~CodeGenModule() { 59 delete Runtime; 60 delete DebugInfo; 61 } 62 63 void CodeGenModule::Release() { 64 EmitDeferred(); 65 if (Runtime) 66 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 67 AddGlobalCtor(ObjCInitFunction); 68 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 69 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 70 EmitAnnotations(); 71 EmitLLVMUsed(); 72 } 73 74 /// ErrorUnsupported - Print out an error that codegen doesn't support the 75 /// specified stmt yet. 76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 77 bool OmitOnError) { 78 if (OmitOnError && getDiags().hasErrorOccurred()) 79 return; 80 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 81 "cannot compile this %0 yet"); 82 std::string Msg = Type; 83 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 84 << Msg << S->getSourceRange(); 85 } 86 87 /// ErrorUnsupported - Print out an error that codegen doesn't support the 88 /// specified decl yet. 89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 90 bool OmitOnError) { 91 if (OmitOnError && getDiags().hasErrorOccurred()) 92 return; 93 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 94 "cannot compile this %0 yet"); 95 std::string Msg = Type; 96 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 97 } 98 99 LangOptions::VisibilityMode 100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 101 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 102 if (VD->getStorageClass() == VarDecl::PrivateExtern) 103 return LangOptions::Hidden; 104 105 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 106 switch (attr->getVisibility()) { 107 default: assert(0 && "Unknown visibility!"); 108 case VisibilityAttr::DefaultVisibility: 109 return LangOptions::Default; 110 case VisibilityAttr::HiddenVisibility: 111 return LangOptions::Hidden; 112 case VisibilityAttr::ProtectedVisibility: 113 return LangOptions::Protected; 114 } 115 } 116 117 return getLangOptions().getVisibilityMode(); 118 } 119 120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 121 const Decl *D) const { 122 // Internal definitions always have default visibility. 123 if (GV->hasLocalLinkage()) { 124 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 125 return; 126 } 127 128 switch (getDeclVisibilityMode(D)) { 129 default: assert(0 && "Unknown visibility!"); 130 case LangOptions::Default: 131 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 case LangOptions::Hidden: 133 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 134 case LangOptions::Protected: 135 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 136 } 137 } 138 139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 140 const NamedDecl *ND = GD.getDecl(); 141 142 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 143 return getMangledCXXCtorName(D, GD.getCtorType()); 144 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 145 return getMangledCXXDtorName(D, GD.getDtorType()); 146 147 return getMangledName(ND); 148 } 149 150 /// \brief Retrieves the mangled name for the given declaration. 151 /// 152 /// If the given declaration requires a mangled name, returns an 153 /// const char* containing the mangled name. Otherwise, returns 154 /// the unmangled name. 155 /// 156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 157 // In C, functions with no attributes never need to be mangled. Fastpath them. 158 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 159 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 160 return ND->getNameAsCString(); 161 } 162 163 llvm::SmallString<256> Name; 164 llvm::raw_svector_ostream Out(Name); 165 if (!mangleName(ND, Context, Out)) { 166 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 167 return ND->getNameAsCString(); 168 } 169 170 Name += '\0'; 171 return UniqueMangledName(Name.begin(), Name.end()); 172 } 173 174 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 175 const char *NameEnd) { 176 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 177 178 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 179 } 180 181 /// AddGlobalCtor - Add a function to the list that will be called before 182 /// main() runs. 183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 184 // FIXME: Type coercion of void()* types. 185 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 186 } 187 188 /// AddGlobalDtor - Add a function to the list that will be called 189 /// when the module is unloaded. 190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 191 // FIXME: Type coercion of void()* types. 192 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 193 } 194 195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 196 // Ctor function type is void()*. 197 llvm::FunctionType* CtorFTy = 198 llvm::FunctionType::get(llvm::Type::VoidTy, 199 std::vector<const llvm::Type*>(), 200 false); 201 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 202 203 // Get the type of a ctor entry, { i32, void ()* }. 204 llvm::StructType* CtorStructTy = 205 llvm::StructType::get(llvm::Type::Int32Ty, 206 llvm::PointerType::getUnqual(CtorFTy), NULL); 207 208 // Construct the constructor and destructor arrays. 209 std::vector<llvm::Constant*> Ctors; 210 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 211 std::vector<llvm::Constant*> S; 212 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 213 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 214 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 215 } 216 217 if (!Ctors.empty()) { 218 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 219 new llvm::GlobalVariable(TheModule.getContext(), AT, false, 220 llvm::GlobalValue::AppendingLinkage, 221 llvm::ConstantArray::get(AT, Ctors), 222 GlobalName, 223 &TheModule); 224 } 225 } 226 227 void CodeGenModule::EmitAnnotations() { 228 if (Annotations.empty()) 229 return; 230 231 // Create a new global variable for the ConstantStruct in the Module. 232 llvm::Constant *Array = 233 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 234 Annotations.size()), 235 Annotations); 236 llvm::GlobalValue *gv = 237 new llvm::GlobalVariable(TheModule.getContext(), Array->getType(), false, 238 llvm::GlobalValue::AppendingLinkage, Array, 239 "llvm.global.annotations", &TheModule); 240 gv->setSection("llvm.metadata"); 241 } 242 243 static CodeGenModule::GVALinkage 244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 245 const LangOptions &Features) { 246 // The kind of external linkage this function will have, if it is not 247 // inline or static. 248 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 249 if (Context.getLangOptions().CPlusPlus && 250 (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && 251 !FD->isExplicitSpecialization()) 252 External = CodeGenModule::GVA_TemplateInstantiation; 253 254 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 255 // C++ member functions defined inside the class are always inline. 256 if (MD->isInline() || !MD->isOutOfLine()) 257 return CodeGenModule::GVA_CXXInline; 258 259 return External; 260 } 261 262 // "static" functions get internal linkage. 263 if (FD->getStorageClass() == FunctionDecl::Static) 264 return CodeGenModule::GVA_Internal; 265 266 if (!FD->isInline()) 267 return External; 268 269 // If the inline function explicitly has the GNU inline attribute on it, or if 270 // this is C89 mode, we use to GNU semantics. 271 if (!Features.C99 && !Features.CPlusPlus) { 272 // extern inline in GNU mode is like C99 inline. 273 if (FD->getStorageClass() == FunctionDecl::Extern) 274 return CodeGenModule::GVA_C99Inline; 275 // Normal inline is a strong symbol. 276 return CodeGenModule::GVA_StrongExternal; 277 } else if (FD->hasActiveGNUInlineAttribute(Context)) { 278 // GCC in C99 mode seems to use a different decision-making 279 // process for extern inline, which factors in previous 280 // declarations. 281 if (FD->isExternGNUInline(Context)) 282 return CodeGenModule::GVA_C99Inline; 283 // Normal inline is a strong symbol. 284 return External; 285 } 286 287 // The definition of inline changes based on the language. Note that we 288 // have already handled "static inline" above, with the GVA_Internal case. 289 if (Features.CPlusPlus) // inline and extern inline. 290 return CodeGenModule::GVA_CXXInline; 291 292 assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); 293 if (FD->isC99InlineDefinition()) 294 return CodeGenModule::GVA_C99Inline; 295 296 return CodeGenModule::GVA_StrongExternal; 297 } 298 299 /// SetFunctionDefinitionAttributes - Set attributes for a global. 300 /// 301 /// FIXME: This is currently only done for aliases and functions, but not for 302 /// variables (these details are set in EmitGlobalVarDefinition for variables). 303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 304 llvm::GlobalValue *GV) { 305 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 306 307 if (Linkage == GVA_Internal) { 308 GV->setLinkage(llvm::Function::InternalLinkage); 309 } else if (D->hasAttr<DLLExportAttr>()) { 310 GV->setLinkage(llvm::Function::DLLExportLinkage); 311 } else if (D->hasAttr<WeakAttr>()) { 312 GV->setLinkage(llvm::Function::WeakAnyLinkage); 313 } else if (Linkage == GVA_C99Inline) { 314 // In C99 mode, 'inline' functions are guaranteed to have a strong 315 // definition somewhere else, so we can use available_externally linkage. 316 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 317 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 318 // In C++, the compiler has to emit a definition in every translation unit 319 // that references the function. We should use linkonce_odr because 320 // a) if all references in this translation unit are optimized away, we 321 // don't need to codegen it. b) if the function persists, it needs to be 322 // merged with other definitions. c) C++ has the ODR, so we know the 323 // definition is dependable. 324 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 325 } else { 326 assert(Linkage == GVA_StrongExternal); 327 // Otherwise, we have strong external linkage. 328 GV->setLinkage(llvm::Function::ExternalLinkage); 329 } 330 331 SetCommonAttributes(D, GV); 332 } 333 334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 335 const CGFunctionInfo &Info, 336 llvm::Function *F) { 337 AttributeListType AttributeList; 338 ConstructAttributeList(Info, D, AttributeList); 339 340 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 341 AttributeList.size())); 342 343 // Set the appropriate calling convention for the Function. 344 if (D->hasAttr<FastCallAttr>()) 345 F->setCallingConv(llvm::CallingConv::X86_FastCall); 346 347 if (D->hasAttr<StdCallAttr>()) 348 F->setCallingConv(llvm::CallingConv::X86_StdCall); 349 } 350 351 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 352 llvm::Function *F) { 353 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 354 F->addFnAttr(llvm::Attribute::NoUnwind); 355 356 if (D->hasAttr<AlwaysInlineAttr>()) 357 F->addFnAttr(llvm::Attribute::AlwaysInline); 358 359 if (D->hasAttr<NoinlineAttr>()) 360 F->addFnAttr(llvm::Attribute::NoInline); 361 } 362 363 void CodeGenModule::SetCommonAttributes(const Decl *D, 364 llvm::GlobalValue *GV) { 365 setGlobalVisibility(GV, D); 366 367 if (D->hasAttr<UsedAttr>()) 368 AddUsedGlobal(GV); 369 370 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 371 GV->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 375 llvm::Function *F, 376 const CGFunctionInfo &FI) { 377 SetLLVMFunctionAttributes(D, FI, F); 378 SetLLVMFunctionAttributesForDefinition(D, F); 379 380 F->setLinkage(llvm::Function::InternalLinkage); 381 382 SetCommonAttributes(D, F); 383 } 384 385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 386 llvm::Function *F, 387 bool IsIncompleteFunction) { 388 if (!IsIncompleteFunction) 389 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 390 391 // Only a few attributes are set on declarations; these may later be 392 // overridden by a definition. 393 394 if (FD->hasAttr<DLLImportAttr>()) { 395 F->setLinkage(llvm::Function::DLLImportLinkage); 396 } else if (FD->hasAttr<WeakAttr>() || 397 FD->hasAttr<WeakImportAttr>()) { 398 // "extern_weak" is overloaded in LLVM; we probably should have 399 // separate linkage types for this. 400 F->setLinkage(llvm::Function::ExternalWeakLinkage); 401 } else { 402 F->setLinkage(llvm::Function::ExternalLinkage); 403 } 404 405 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 406 F->setSection(SA->getName()); 407 } 408 409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 410 assert(!GV->isDeclaration() && 411 "Only globals with definition can force usage."); 412 LLVMUsed.push_back(GV); 413 } 414 415 void CodeGenModule::EmitLLVMUsed() { 416 // Don't create llvm.used if there is no need. 417 // FIXME. Runtime indicates that there might be more 'used' symbols; but not 418 // necessariy. So, this test is not accurate for emptiness. 419 if (LLVMUsed.empty() && !Runtime) 420 return; 421 422 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 423 424 // Convert LLVMUsed to what ConstantArray needs. 425 std::vector<llvm::Constant*> UsedArray; 426 UsedArray.resize(LLVMUsed.size()); 427 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 428 UsedArray[i] = 429 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 430 } 431 432 if (Runtime) 433 Runtime->MergeMetadataGlobals(UsedArray); 434 if (UsedArray.empty()) 435 return; 436 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 437 438 llvm::GlobalVariable *GV = 439 new llvm::GlobalVariable(getModule().getContext(), ATy, false, 440 llvm::GlobalValue::AppendingLinkage, 441 llvm::ConstantArray::get(ATy, UsedArray), 442 "llvm.used", &getModule()); 443 444 GV->setSection("llvm.metadata"); 445 } 446 447 void CodeGenModule::EmitDeferred() { 448 // Emit code for any potentially referenced deferred decls. Since a 449 // previously unused static decl may become used during the generation of code 450 // for a static function, iterate until no changes are made. 451 while (!DeferredDeclsToEmit.empty()) { 452 GlobalDecl D = DeferredDeclsToEmit.back(); 453 DeferredDeclsToEmit.pop_back(); 454 455 // The mangled name for the decl must have been emitted in GlobalDeclMap. 456 // Look it up to see if it was defined with a stronger definition (e.g. an 457 // extern inline function with a strong function redefinition). If so, 458 // just ignore the deferred decl. 459 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 460 assert(CGRef && "Deferred decl wasn't referenced?"); 461 462 if (!CGRef->isDeclaration()) 463 continue; 464 465 // Otherwise, emit the definition and move on to the next one. 466 EmitGlobalDefinition(D); 467 } 468 } 469 470 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 471 /// annotation information for a given GlobalValue. The annotation struct is 472 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 473 /// GlobalValue being annotated. The second field is the constant string 474 /// created from the AnnotateAttr's annotation. The third field is a constant 475 /// string containing the name of the translation unit. The fourth field is 476 /// the line number in the file of the annotated value declaration. 477 /// 478 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 479 /// appears to. 480 /// 481 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 482 const AnnotateAttr *AA, 483 unsigned LineNo) { 484 llvm::Module *M = &getModule(); 485 486 // get [N x i8] constants for the annotation string, and the filename string 487 // which are the 2nd and 3rd elements of the global annotation structure. 488 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 489 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 490 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 491 true); 492 493 // Get the two global values corresponding to the ConstantArrays we just 494 // created to hold the bytes of the strings. 495 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 496 llvm::GlobalValue *annoGV = 497 new llvm::GlobalVariable(M->getContext(), anno->getType(), false, 498 llvm::GlobalValue::InternalLinkage, anno, 499 GV->getName() + StringPrefix, M); 500 // translation unit name string, emitted into the llvm.metadata section. 501 llvm::GlobalValue *unitGV = 502 new llvm::GlobalVariable(M->getContext(), unit->getType(), false, 503 llvm::GlobalValue::InternalLinkage, unit, 504 StringPrefix, M); 505 506 // Create the ConstantStruct for the global annotation. 507 llvm::Constant *Fields[4] = { 508 llvm::ConstantExpr::getBitCast(GV, SBP), 509 llvm::ConstantExpr::getBitCast(annoGV, SBP), 510 llvm::ConstantExpr::getBitCast(unitGV, SBP), 511 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 512 }; 513 return llvm::ConstantStruct::get(Fields, 4, false); 514 } 515 516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 517 // Never defer when EmitAllDecls is specified or the decl has 518 // attribute used. 519 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 520 return false; 521 522 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 523 // Constructors and destructors should never be deferred. 524 if (FD->hasAttr<ConstructorAttr>() || 525 FD->hasAttr<DestructorAttr>()) 526 return false; 527 528 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 529 530 // static, static inline, always_inline, and extern inline functions can 531 // always be deferred. Normal inline functions can be deferred in C99/C++. 532 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 533 Linkage == GVA_CXXInline) 534 return true; 535 return false; 536 } 537 538 const VarDecl *VD = cast<VarDecl>(Global); 539 assert(VD->isFileVarDecl() && "Invalid decl"); 540 541 return VD->getStorageClass() == VarDecl::Static; 542 } 543 544 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 545 const ValueDecl *Global = GD.getDecl(); 546 547 // If this is an alias definition (which otherwise looks like a declaration) 548 // emit it now. 549 if (Global->hasAttr<AliasAttr>()) 550 return EmitAliasDefinition(Global); 551 552 // Ignore declarations, they will be emitted on their first use. 553 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 554 // Forward declarations are emitted lazily on first use. 555 if (!FD->isThisDeclarationADefinition()) 556 return; 557 } else { 558 const VarDecl *VD = cast<VarDecl>(Global); 559 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 560 561 // In C++, if this is marked "extern", defer code generation. 562 if (getLangOptions().CPlusPlus && !VD->getInit() && 563 (VD->getStorageClass() == VarDecl::Extern || 564 VD->isExternC(getContext()))) 565 return; 566 567 // In C, if this isn't a definition, defer code generation. 568 if (!getLangOptions().CPlusPlus && !VD->getInit()) 569 return; 570 } 571 572 // Defer code generation when possible if this is a static definition, inline 573 // function etc. These we only want to emit if they are used. 574 if (MayDeferGeneration(Global)) { 575 // If the value has already been used, add it directly to the 576 // DeferredDeclsToEmit list. 577 const char *MangledName = getMangledName(GD); 578 if (GlobalDeclMap.count(MangledName)) 579 DeferredDeclsToEmit.push_back(GD); 580 else { 581 // Otherwise, remember that we saw a deferred decl with this name. The 582 // first use of the mangled name will cause it to move into 583 // DeferredDeclsToEmit. 584 DeferredDecls[MangledName] = GD; 585 } 586 return; 587 } 588 589 // Otherwise emit the definition. 590 EmitGlobalDefinition(GD); 591 } 592 593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 594 const ValueDecl *D = GD.getDecl(); 595 596 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 597 EmitCXXConstructor(CD, GD.getCtorType()); 598 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 599 EmitCXXDestructor(DD, GD.getDtorType()); 600 else if (isa<FunctionDecl>(D)) 601 EmitGlobalFunctionDefinition(GD); 602 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 603 EmitGlobalVarDefinition(VD); 604 else { 605 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 606 } 607 } 608 609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 610 /// module, create and return an llvm Function with the specified type. If there 611 /// is something in the module with the specified name, return it potentially 612 /// bitcasted to the right type. 613 /// 614 /// If D is non-null, it specifies a decl that correspond to this. This is used 615 /// to set the attributes on the function when it is first created. 616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 617 const llvm::Type *Ty, 618 GlobalDecl D) { 619 // Lookup the entry, lazily creating it if necessary. 620 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 621 if (Entry) { 622 if (Entry->getType()->getElementType() == Ty) 623 return Entry; 624 625 // Make sure the result is of the correct type. 626 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 627 return llvm::ConstantExpr::getBitCast(Entry, PTy); 628 } 629 630 // This is the first use or definition of a mangled name. If there is a 631 // deferred decl with this name, remember that we need to emit it at the end 632 // of the file. 633 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 634 DeferredDecls.find(MangledName); 635 if (DDI != DeferredDecls.end()) { 636 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 637 // list, and remove it from DeferredDecls (since we don't need it anymore). 638 DeferredDeclsToEmit.push_back(DDI->second); 639 DeferredDecls.erase(DDI); 640 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 641 // If this the first reference to a C++ inline function in a class, queue up 642 // the deferred function body for emission. These are not seen as 643 // top-level declarations. 644 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 645 DeferredDeclsToEmit.push_back(D); 646 } 647 648 // This function doesn't have a complete type (for example, the return 649 // type is an incomplete struct). Use a fake type instead, and make 650 // sure not to try to set attributes. 651 bool IsIncompleteFunction = false; 652 if (!isa<llvm::FunctionType>(Ty)) { 653 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 654 std::vector<const llvm::Type*>(), false); 655 IsIncompleteFunction = true; 656 } 657 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 658 llvm::Function::ExternalLinkage, 659 "", &getModule()); 660 F->setName(MangledName); 661 if (D.getDecl()) 662 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 663 IsIncompleteFunction); 664 Entry = F; 665 return F; 666 } 667 668 /// GetAddrOfFunction - Return the address of the given function. If Ty is 669 /// non-null, then this function will use the specified type if it has to 670 /// create it (this occurs when we see a definition of the function). 671 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 672 const llvm::Type *Ty) { 673 // If there was no specific requested type, just convert it now. 674 if (!Ty) 675 Ty = getTypes().ConvertType(GD.getDecl()->getType()); 676 return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); 677 } 678 679 /// CreateRuntimeFunction - Create a new runtime function with the specified 680 /// type and name. 681 llvm::Constant * 682 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 683 const char *Name) { 684 // Convert Name to be a uniqued string from the IdentifierInfo table. 685 Name = getContext().Idents.get(Name).getName(); 686 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 687 } 688 689 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 690 /// create and return an llvm GlobalVariable with the specified type. If there 691 /// is something in the module with the specified name, return it potentially 692 /// bitcasted to the right type. 693 /// 694 /// If D is non-null, it specifies a decl that correspond to this. This is used 695 /// to set the attributes on the global when it is first created. 696 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 697 const llvm::PointerType*Ty, 698 const VarDecl *D) { 699 // Lookup the entry, lazily creating it if necessary. 700 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 701 if (Entry) { 702 if (Entry->getType() == Ty) 703 return Entry; 704 705 // Make sure the result is of the correct type. 706 return llvm::ConstantExpr::getBitCast(Entry, Ty); 707 } 708 709 // This is the first use or definition of a mangled name. If there is a 710 // deferred decl with this name, remember that we need to emit it at the end 711 // of the file. 712 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 713 DeferredDecls.find(MangledName); 714 if (DDI != DeferredDecls.end()) { 715 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 716 // list, and remove it from DeferredDecls (since we don't need it anymore). 717 DeferredDeclsToEmit.push_back(DDI->second); 718 DeferredDecls.erase(DDI); 719 } 720 721 llvm::GlobalVariable *GV = 722 new llvm::GlobalVariable(getModule().getContext(), 723 Ty->getElementType(), false, 724 llvm::GlobalValue::ExternalLinkage, 725 0, "", &getModule(), 726 false, Ty->getAddressSpace()); 727 GV->setName(MangledName); 728 729 // Handle things which are present even on external declarations. 730 if (D) { 731 // FIXME: This code is overly simple and should be merged with other global 732 // handling. 733 GV->setConstant(D->getType().isConstant(Context)); 734 735 // FIXME: Merge with other attribute handling code. 736 if (D->getStorageClass() == VarDecl::PrivateExtern) 737 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 738 739 if (D->hasAttr<WeakAttr>() || 740 D->hasAttr<WeakImportAttr>()) 741 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 742 743 GV->setThreadLocal(D->isThreadSpecified()); 744 } 745 746 return Entry = GV; 747 } 748 749 750 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 751 /// given global variable. If Ty is non-null and if the global doesn't exist, 752 /// then it will be greated with the specified type instead of whatever the 753 /// normal requested type would be. 754 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 755 const llvm::Type *Ty) { 756 assert(D->hasGlobalStorage() && "Not a global variable"); 757 QualType ASTTy = D->getType(); 758 if (Ty == 0) 759 Ty = getTypes().ConvertTypeForMem(ASTTy); 760 761 const llvm::PointerType *PTy = 762 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 763 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 764 } 765 766 /// CreateRuntimeVariable - Create a new runtime global variable with the 767 /// specified type and name. 768 llvm::Constant * 769 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 770 const char *Name) { 771 // Convert Name to be a uniqued string from the IdentifierInfo table. 772 Name = getContext().Idents.get(Name).getName(); 773 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 774 } 775 776 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 777 assert(!D->getInit() && "Cannot emit definite definitions here!"); 778 779 if (MayDeferGeneration(D)) { 780 // If we have not seen a reference to this variable yet, place it 781 // into the deferred declarations table to be emitted if needed 782 // later. 783 const char *MangledName = getMangledName(D); 784 if (GlobalDeclMap.count(MangledName) == 0) { 785 DeferredDecls[MangledName] = GlobalDecl(D); 786 return; 787 } 788 } 789 790 // The tentative definition is the only definition. 791 EmitGlobalVarDefinition(D); 792 } 793 794 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 795 llvm::Constant *Init = 0; 796 QualType ASTTy = D->getType(); 797 798 if (D->getInit() == 0) { 799 // This is a tentative definition; tentative definitions are 800 // implicitly initialized with { 0 }. 801 // 802 // Note that tentative definitions are only emitted at the end of 803 // a translation unit, so they should never have incomplete 804 // type. In addition, EmitTentativeDefinition makes sure that we 805 // never attempt to emit a tentative definition if a real one 806 // exists. A use may still exists, however, so we still may need 807 // to do a RAUW. 808 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 809 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 810 } else { 811 Init = EmitConstantExpr(D->getInit(), D->getType()); 812 if (!Init) { 813 ErrorUnsupported(D, "static initializer"); 814 QualType T = D->getInit()->getType(); 815 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 816 } 817 } 818 819 const llvm::Type* InitType = Init->getType(); 820 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 821 822 // Strip off a bitcast if we got one back. 823 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 824 assert(CE->getOpcode() == llvm::Instruction::BitCast); 825 Entry = CE->getOperand(0); 826 } 827 828 // Entry is now either a Function or GlobalVariable. 829 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 830 831 // We have a definition after a declaration with the wrong type. 832 // We must make a new GlobalVariable* and update everything that used OldGV 833 // (a declaration or tentative definition) with the new GlobalVariable* 834 // (which will be a definition). 835 // 836 // This happens if there is a prototype for a global (e.g. 837 // "extern int x[];") and then a definition of a different type (e.g. 838 // "int x[10];"). This also happens when an initializer has a different type 839 // from the type of the global (this happens with unions). 840 if (GV == 0 || 841 GV->getType()->getElementType() != InitType || 842 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 843 844 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 845 GlobalDeclMap.erase(getMangledName(D)); 846 847 // Make a new global with the correct type, this is now guaranteed to work. 848 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 849 GV->takeName(cast<llvm::GlobalValue>(Entry)); 850 851 // Replace all uses of the old global with the new global 852 llvm::Constant *NewPtrForOldDecl = 853 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 854 Entry->replaceAllUsesWith(NewPtrForOldDecl); 855 856 // Erase the old global, since it is no longer used. 857 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 858 } 859 860 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 861 SourceManager &SM = Context.getSourceManager(); 862 AddAnnotation(EmitAnnotateAttr(GV, AA, 863 SM.getInstantiationLineNumber(D->getLocation()))); 864 } 865 866 GV->setInitializer(Init); 867 GV->setConstant(D->getType().isConstant(Context)); 868 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 869 870 // Set the llvm linkage type as appropriate. 871 if (D->getStorageClass() == VarDecl::Static) 872 GV->setLinkage(llvm::Function::InternalLinkage); 873 else if (D->hasAttr<DLLImportAttr>()) 874 GV->setLinkage(llvm::Function::DLLImportLinkage); 875 else if (D->hasAttr<DLLExportAttr>()) 876 GV->setLinkage(llvm::Function::DLLExportLinkage); 877 else if (D->hasAttr<WeakAttr>()) 878 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 879 else if (!CompileOpts.NoCommon && 880 (!D->hasExternalStorage() && !D->getInit())) 881 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 882 else 883 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 884 885 SetCommonAttributes(D, GV); 886 887 // Emit global variable debug information. 888 if (CGDebugInfo *DI = getDebugInfo()) { 889 DI->setLocation(D->getLocation()); 890 DI->EmitGlobalVariable(GV, D); 891 } 892 } 893 894 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 895 /// implement a function with no prototype, e.g. "int foo() {}". If there are 896 /// existing call uses of the old function in the module, this adjusts them to 897 /// call the new function directly. 898 /// 899 /// This is not just a cleanup: the always_inline pass requires direct calls to 900 /// functions to be able to inline them. If there is a bitcast in the way, it 901 /// won't inline them. Instcombine normally deletes these calls, but it isn't 902 /// run at -O0. 903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 904 llvm::Function *NewFn) { 905 // If we're redefining a global as a function, don't transform it. 906 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 907 if (OldFn == 0) return; 908 909 const llvm::Type *NewRetTy = NewFn->getReturnType(); 910 llvm::SmallVector<llvm::Value*, 4> ArgList; 911 912 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 913 UI != E; ) { 914 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 915 unsigned OpNo = UI.getOperandNo(); 916 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 917 if (!CI || OpNo != 0) continue; 918 919 // If the return types don't match exactly, and if the call isn't dead, then 920 // we can't transform this call. 921 if (CI->getType() != NewRetTy && !CI->use_empty()) 922 continue; 923 924 // If the function was passed too few arguments, don't transform. If extra 925 // arguments were passed, we silently drop them. If any of the types 926 // mismatch, we don't transform. 927 unsigned ArgNo = 0; 928 bool DontTransform = false; 929 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 930 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 931 if (CI->getNumOperands()-1 == ArgNo || 932 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 933 DontTransform = true; 934 break; 935 } 936 } 937 if (DontTransform) 938 continue; 939 940 // Okay, we can transform this. Create the new call instruction and copy 941 // over the required information. 942 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 943 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 944 ArgList.end(), "", CI); 945 ArgList.clear(); 946 if (NewCall->getType() != llvm::Type::VoidTy) 947 NewCall->takeName(CI); 948 NewCall->setCallingConv(CI->getCallingConv()); 949 NewCall->setAttributes(CI->getAttributes()); 950 951 // Finally, remove the old call, replacing any uses with the new one. 952 if (!CI->use_empty()) 953 CI->replaceAllUsesWith(NewCall); 954 CI->eraseFromParent(); 955 } 956 } 957 958 959 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 960 const llvm::FunctionType *Ty; 961 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 962 963 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 964 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 965 966 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 967 } else { 968 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 969 970 // As a special case, make sure that definitions of K&R function 971 // "type foo()" aren't declared as varargs (which forces the backend 972 // to do unnecessary work). 973 if (D->getType()->isFunctionNoProtoType()) { 974 assert(Ty->isVarArg() && "Didn't lower type as expected"); 975 // Due to stret, the lowered function could have arguments. 976 // Just create the same type as was lowered by ConvertType 977 // but strip off the varargs bit. 978 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 979 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 980 } 981 } 982 983 // Get or create the prototype for the function. 984 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 985 986 // Strip off a bitcast if we got one back. 987 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 988 assert(CE->getOpcode() == llvm::Instruction::BitCast); 989 Entry = CE->getOperand(0); 990 } 991 992 993 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 994 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 995 996 // If the types mismatch then we have to rewrite the definition. 997 assert(OldFn->isDeclaration() && 998 "Shouldn't replace non-declaration"); 999 1000 // F is the Function* for the one with the wrong type, we must make a new 1001 // Function* and update everything that used F (a declaration) with the new 1002 // Function* (which will be a definition). 1003 // 1004 // This happens if there is a prototype for a function 1005 // (e.g. "int f()") and then a definition of a different type 1006 // (e.g. "int f(int x)"). Start by making a new function of the 1007 // correct type, RAUW, then steal the name. 1008 GlobalDeclMap.erase(getMangledName(D)); 1009 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1010 NewFn->takeName(OldFn); 1011 1012 // If this is an implementation of a function without a prototype, try to 1013 // replace any existing uses of the function (which may be calls) with uses 1014 // of the new function 1015 if (D->getType()->isFunctionNoProtoType()) { 1016 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1017 OldFn->removeDeadConstantUsers(); 1018 } 1019 1020 // Replace uses of F with the Function we will endow with a body. 1021 if (!Entry->use_empty()) { 1022 llvm::Constant *NewPtrForOldDecl = 1023 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1024 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1025 } 1026 1027 // Ok, delete the old function now, which is dead. 1028 OldFn->eraseFromParent(); 1029 1030 Entry = NewFn; 1031 } 1032 1033 llvm::Function *Fn = cast<llvm::Function>(Entry); 1034 1035 CodeGenFunction(*this).GenerateCode(D, Fn); 1036 1037 SetFunctionDefinitionAttributes(D, Fn); 1038 SetLLVMFunctionAttributesForDefinition(D, Fn); 1039 1040 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1041 AddGlobalCtor(Fn, CA->getPriority()); 1042 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1043 AddGlobalDtor(Fn, DA->getPriority()); 1044 } 1045 1046 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1047 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1048 assert(AA && "Not an alias?"); 1049 1050 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1051 1052 // Unique the name through the identifier table. 1053 const char *AliaseeName = AA->getAliasee().c_str(); 1054 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1055 1056 // Create a reference to the named value. This ensures that it is emitted 1057 // if a deferred decl. 1058 llvm::Constant *Aliasee; 1059 if (isa<llvm::FunctionType>(DeclTy)) 1060 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1061 else 1062 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1063 llvm::PointerType::getUnqual(DeclTy), 0); 1064 1065 // Create the new alias itself, but don't set a name yet. 1066 llvm::GlobalValue *GA = 1067 new llvm::GlobalAlias(Aliasee->getType(), 1068 llvm::Function::ExternalLinkage, 1069 "", Aliasee, &getModule()); 1070 1071 // See if there is already something with the alias' name in the module. 1072 const char *MangledName = getMangledName(D); 1073 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1074 1075 if (Entry && !Entry->isDeclaration()) { 1076 // If there is a definition in the module, then it wins over the alias. 1077 // This is dubious, but allow it to be safe. Just ignore the alias. 1078 GA->eraseFromParent(); 1079 return; 1080 } 1081 1082 if (Entry) { 1083 // If there is a declaration in the module, then we had an extern followed 1084 // by the alias, as in: 1085 // extern int test6(); 1086 // ... 1087 // int test6() __attribute__((alias("test7"))); 1088 // 1089 // Remove it and replace uses of it with the alias. 1090 1091 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1092 Entry->getType())); 1093 Entry->eraseFromParent(); 1094 } 1095 1096 // Now we know that there is no conflict, set the name. 1097 Entry = GA; 1098 GA->setName(MangledName); 1099 1100 // Set attributes which are particular to an alias; this is a 1101 // specialization of the attributes which may be set on a global 1102 // variable/function. 1103 if (D->hasAttr<DLLExportAttr>()) { 1104 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1105 // The dllexport attribute is ignored for undefined symbols. 1106 if (FD->getBody()) 1107 GA->setLinkage(llvm::Function::DLLExportLinkage); 1108 } else { 1109 GA->setLinkage(llvm::Function::DLLExportLinkage); 1110 } 1111 } else if (D->hasAttr<WeakAttr>() || 1112 D->hasAttr<WeakImportAttr>()) { 1113 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1114 } 1115 1116 SetCommonAttributes(D, GA); 1117 } 1118 1119 /// getBuiltinLibFunction - Given a builtin id for a function like 1120 /// "__builtin_fabsf", return a Function* for "fabsf". 1121 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 1122 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1123 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1124 "isn't a lib fn"); 1125 1126 // Get the name, skip over the __builtin_ prefix (if necessary). 1127 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1128 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1129 Name += 10; 1130 1131 // Get the type for the builtin. 1132 ASTContext::GetBuiltinTypeError Error; 1133 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1134 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1135 1136 const llvm::FunctionType *Ty = 1137 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1138 1139 // Unique the name through the identifier table. 1140 Name = getContext().Idents.get(Name).getName(); 1141 // FIXME: param attributes for sext/zext etc. 1142 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); 1143 } 1144 1145 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1146 unsigned NumTys) { 1147 return llvm::Intrinsic::getDeclaration(&getModule(), 1148 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1149 } 1150 1151 llvm::Function *CodeGenModule::getMemCpyFn() { 1152 if (MemCpyFn) return MemCpyFn; 1153 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1154 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1155 } 1156 1157 llvm::Function *CodeGenModule::getMemMoveFn() { 1158 if (MemMoveFn) return MemMoveFn; 1159 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1160 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1161 } 1162 1163 llvm::Function *CodeGenModule::getMemSetFn() { 1164 if (MemSetFn) return MemSetFn; 1165 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1166 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1167 } 1168 1169 static void appendFieldAndPadding(CodeGenModule &CGM, 1170 std::vector<llvm::Constant*>& Fields, 1171 FieldDecl *FieldD, FieldDecl *NextFieldD, 1172 llvm::Constant* Field, 1173 RecordDecl* RD, const llvm::StructType *STy) { 1174 // Append the field. 1175 Fields.push_back(Field); 1176 1177 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1178 1179 int NextStructFieldNo; 1180 if (!NextFieldD) { 1181 NextStructFieldNo = STy->getNumElements(); 1182 } else { 1183 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1184 } 1185 1186 // Append padding 1187 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1188 llvm::Constant *C = 1189 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1190 1191 Fields.push_back(C); 1192 } 1193 } 1194 1195 llvm::Constant *CodeGenModule:: 1196 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1197 std::string str; 1198 unsigned StringLength = 0; 1199 1200 bool isUTF16 = false; 1201 if (Literal->containsNonAsciiOrNull()) { 1202 // Convert from UTF-8 to UTF-16. 1203 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1204 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1205 UTF16 *ToPtr = &ToBuf[0]; 1206 1207 ConversionResult Result; 1208 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1209 &ToPtr, ToPtr+Literal->getByteLength(), 1210 strictConversion); 1211 if (Result == conversionOK) { 1212 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1213 // without doing more surgery to this routine. Since we aren't explicitly 1214 // checking for endianness here, it's also a bug (when generating code for 1215 // a target that doesn't match the host endianness). Modeling this as an 1216 // i16 array is likely the cleanest solution. 1217 StringLength = ToPtr-&ToBuf[0]; 1218 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1219 isUTF16 = true; 1220 } else if (Result == sourceIllegal) { 1221 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1222 str.assign(Literal->getStrData(), Literal->getByteLength()); 1223 StringLength = str.length(); 1224 } else 1225 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1226 1227 } else { 1228 str.assign(Literal->getStrData(), Literal->getByteLength()); 1229 StringLength = str.length(); 1230 } 1231 llvm::StringMapEntry<llvm::Constant *> &Entry = 1232 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1233 1234 if (llvm::Constant *C = Entry.getValue()) 1235 return C; 1236 1237 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1238 llvm::Constant *Zeros[] = { Zero, Zero }; 1239 1240 if (!CFConstantStringClassRef) { 1241 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1242 Ty = llvm::ArrayType::get(Ty, 0); 1243 1244 // FIXME: This is fairly broken if __CFConstantStringClassReference is 1245 // already defined, in that it will get renamed and the user will most 1246 // likely see an opaque error message. This is a general issue with relying 1247 // on particular names. 1248 llvm::GlobalVariable *GV = 1249 new llvm::GlobalVariable(getModule().getContext(), Ty, false, 1250 llvm::GlobalVariable::ExternalLinkage, 0, 1251 "__CFConstantStringClassReference", 1252 &getModule()); 1253 1254 // Decay array -> ptr 1255 CFConstantStringClassRef = 1256 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1257 } 1258 1259 QualType CFTy = getContext().getCFConstantStringType(); 1260 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1261 1262 const llvm::StructType *STy = 1263 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1264 1265 std::vector<llvm::Constant*> Fields; 1266 RecordDecl::field_iterator Field = CFRD->field_begin(); 1267 1268 // Class pointer. 1269 FieldDecl *CurField = *Field++; 1270 FieldDecl *NextField = *Field++; 1271 appendFieldAndPadding(*this, Fields, CurField, NextField, 1272 CFConstantStringClassRef, CFRD, STy); 1273 1274 // Flags. 1275 CurField = NextField; 1276 NextField = *Field++; 1277 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1278 appendFieldAndPadding(*this, Fields, CurField, NextField, 1279 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1280 : llvm::ConstantInt::get(Ty, 0x07C8), 1281 CFRD, STy); 1282 1283 // String pointer. 1284 CurField = NextField; 1285 NextField = *Field++; 1286 llvm::Constant *C = llvm::ConstantArray::get(str); 1287 1288 const char *Sect, *Prefix; 1289 bool isConstant; 1290 if (isUTF16) { 1291 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1292 Sect = getContext().Target.getUnicodeStringSection(); 1293 // FIXME: Why does GCC not set constant here? 1294 isConstant = false; 1295 } else { 1296 Prefix = getContext().Target.getStringSymbolPrefix(true); 1297 Sect = getContext().Target.getCFStringDataSection(); 1298 // FIXME: -fwritable-strings should probably affect this, but we 1299 // are following gcc here. 1300 isConstant = true; 1301 } 1302 llvm::GlobalVariable *GV = 1303 new llvm::GlobalVariable(getModule().getContext(), C->getType(), isConstant, 1304 llvm::GlobalValue::InternalLinkage, 1305 C, Prefix, &getModule()); 1306 if (Sect) 1307 GV->setSection(Sect); 1308 if (isUTF16) { 1309 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1310 GV->setAlignment(Align); 1311 } 1312 appendFieldAndPadding(*this, Fields, CurField, NextField, 1313 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1314 CFRD, STy); 1315 1316 // String length. 1317 CurField = NextField; 1318 NextField = 0; 1319 Ty = getTypes().ConvertType(getContext().LongTy); 1320 appendFieldAndPadding(*this, Fields, CurField, NextField, 1321 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1322 1323 // The struct. 1324 C = llvm::ConstantStruct::get(STy, Fields); 1325 GV = new llvm::GlobalVariable(getModule().getContext(), C->getType(), true, 1326 llvm::GlobalVariable::InternalLinkage, C, 1327 getContext().Target.getCFStringSymbolPrefix(), 1328 &getModule()); 1329 if (const char *Sect = getContext().Target.getCFStringSection()) 1330 GV->setSection(Sect); 1331 Entry.setValue(GV); 1332 1333 return GV; 1334 } 1335 1336 /// GetStringForStringLiteral - Return the appropriate bytes for a 1337 /// string literal, properly padded to match the literal type. 1338 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1339 const char *StrData = E->getStrData(); 1340 unsigned Len = E->getByteLength(); 1341 1342 const ConstantArrayType *CAT = 1343 getContext().getAsConstantArrayType(E->getType()); 1344 assert(CAT && "String isn't pointer or array!"); 1345 1346 // Resize the string to the right size. 1347 std::string Str(StrData, StrData+Len); 1348 uint64_t RealLen = CAT->getSize().getZExtValue(); 1349 1350 if (E->isWide()) 1351 RealLen *= getContext().Target.getWCharWidth()/8; 1352 1353 Str.resize(RealLen, '\0'); 1354 1355 return Str; 1356 } 1357 1358 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1359 /// constant array for the given string literal. 1360 llvm::Constant * 1361 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1362 // FIXME: This can be more efficient. 1363 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1364 } 1365 1366 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1367 /// array for the given ObjCEncodeExpr node. 1368 llvm::Constant * 1369 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1370 std::string Str; 1371 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1372 1373 return GetAddrOfConstantCString(Str); 1374 } 1375 1376 1377 /// GenerateWritableString -- Creates storage for a string literal. 1378 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1379 bool constant, 1380 CodeGenModule &CGM, 1381 const char *GlobalName) { 1382 // Create Constant for this string literal. Don't add a '\0'. 1383 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1384 1385 // Create a global variable for this string 1386 return new llvm::GlobalVariable(CGM.getModule().getContext(), 1387 C->getType(), constant, 1388 llvm::GlobalValue::InternalLinkage, 1389 C, GlobalName, &CGM.getModule()); 1390 } 1391 1392 /// GetAddrOfConstantString - Returns a pointer to a character array 1393 /// containing the literal. This contents are exactly that of the 1394 /// given string, i.e. it will not be null terminated automatically; 1395 /// see GetAddrOfConstantCString. Note that whether the result is 1396 /// actually a pointer to an LLVM constant depends on 1397 /// Feature.WriteableStrings. 1398 /// 1399 /// The result has pointer to array type. 1400 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1401 const char *GlobalName) { 1402 bool IsConstant = !Features.WritableStrings; 1403 1404 // Get the default prefix if a name wasn't specified. 1405 if (!GlobalName) 1406 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1407 1408 // Don't share any string literals if strings aren't constant. 1409 if (!IsConstant) 1410 return GenerateStringLiteral(str, false, *this, GlobalName); 1411 1412 llvm::StringMapEntry<llvm::Constant *> &Entry = 1413 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1414 1415 if (Entry.getValue()) 1416 return Entry.getValue(); 1417 1418 // Create a global variable for this. 1419 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1420 Entry.setValue(C); 1421 return C; 1422 } 1423 1424 /// GetAddrOfConstantCString - Returns a pointer to a character 1425 /// array containing the literal and a terminating '\-' 1426 /// character. The result has pointer to array type. 1427 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1428 const char *GlobalName){ 1429 return GetAddrOfConstantString(str + '\0', GlobalName); 1430 } 1431 1432 /// EmitObjCPropertyImplementations - Emit information for synthesized 1433 /// properties for an implementation. 1434 void CodeGenModule::EmitObjCPropertyImplementations(const 1435 ObjCImplementationDecl *D) { 1436 for (ObjCImplementationDecl::propimpl_iterator 1437 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1438 ObjCPropertyImplDecl *PID = *i; 1439 1440 // Dynamic is just for type-checking. 1441 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1442 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1443 1444 // Determine which methods need to be implemented, some may have 1445 // been overridden. Note that ::isSynthesized is not the method 1446 // we want, that just indicates if the decl came from a 1447 // property. What we want to know is if the method is defined in 1448 // this implementation. 1449 if (!D->getInstanceMethod(PD->getGetterName())) 1450 CodeGenFunction(*this).GenerateObjCGetter( 1451 const_cast<ObjCImplementationDecl *>(D), PID); 1452 if (!PD->isReadOnly() && 1453 !D->getInstanceMethod(PD->getSetterName())) 1454 CodeGenFunction(*this).GenerateObjCSetter( 1455 const_cast<ObjCImplementationDecl *>(D), PID); 1456 } 1457 } 1458 } 1459 1460 /// EmitNamespace - Emit all declarations in a namespace. 1461 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1462 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1463 I != E; ++I) 1464 EmitTopLevelDecl(*I); 1465 } 1466 1467 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1468 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1469 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1470 ErrorUnsupported(LSD, "linkage spec"); 1471 return; 1472 } 1473 1474 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1475 I != E; ++I) 1476 EmitTopLevelDecl(*I); 1477 } 1478 1479 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1480 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1481 // If an error has occurred, stop code generation, but continue 1482 // parsing and semantic analysis (to ensure all warnings and errors 1483 // are emitted). 1484 if (Diags.hasErrorOccurred()) 1485 return; 1486 1487 // Ignore dependent declarations. 1488 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1489 return; 1490 1491 switch (D->getKind()) { 1492 case Decl::CXXMethod: 1493 case Decl::Function: 1494 // Skip function templates 1495 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1496 return; 1497 1498 // Fall through 1499 1500 case Decl::Var: 1501 EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); 1502 break; 1503 1504 // C++ Decls 1505 case Decl::Namespace: 1506 EmitNamespace(cast<NamespaceDecl>(D)); 1507 break; 1508 // No code generation needed. 1509 case Decl::Using: 1510 case Decl::ClassTemplate: 1511 case Decl::FunctionTemplate: 1512 break; 1513 case Decl::CXXConstructor: 1514 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1515 break; 1516 case Decl::CXXDestructor: 1517 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1518 break; 1519 1520 case Decl::StaticAssert: 1521 // Nothing to do. 1522 break; 1523 1524 // Objective-C Decls 1525 1526 // Forward declarations, no (immediate) code generation. 1527 case Decl::ObjCClass: 1528 case Decl::ObjCForwardProtocol: 1529 case Decl::ObjCCategory: 1530 case Decl::ObjCInterface: 1531 break; 1532 1533 case Decl::ObjCProtocol: 1534 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1535 break; 1536 1537 case Decl::ObjCCategoryImpl: 1538 // Categories have properties but don't support synthesize so we 1539 // can ignore them here. 1540 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1541 break; 1542 1543 case Decl::ObjCImplementation: { 1544 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1545 EmitObjCPropertyImplementations(OMD); 1546 Runtime->GenerateClass(OMD); 1547 break; 1548 } 1549 case Decl::ObjCMethod: { 1550 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1551 // If this is not a prototype, emit the body. 1552 if (OMD->getBody()) 1553 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1554 break; 1555 } 1556 case Decl::ObjCCompatibleAlias: 1557 // compatibility-alias is a directive and has no code gen. 1558 break; 1559 1560 case Decl::LinkageSpec: 1561 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1562 break; 1563 1564 case Decl::FileScopeAsm: { 1565 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1566 std::string AsmString(AD->getAsmString()->getStrData(), 1567 AD->getAsmString()->getByteLength()); 1568 1569 const std::string &S = getModule().getModuleInlineAsm(); 1570 if (S.empty()) 1571 getModule().setModuleInlineAsm(AsmString); 1572 else 1573 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1574 break; 1575 } 1576 1577 default: 1578 // Make sure we handled everything we should, every other kind is a 1579 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1580 // function. Need to recode Decl::Kind to do that easily. 1581 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1582 } 1583 } 1584