xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9f211fb4fac722ef78d173f1611b02ea3726d8c5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56 }
57 
58 CodeGenModule::~CodeGenModule() {
59   delete Runtime;
60   delete DebugInfo;
61 }
62 
63 void CodeGenModule::Release() {
64   EmitDeferred();
65   if (Runtime)
66     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67       AddGlobalCtor(ObjCInitFunction);
68   EmitCtorList(GlobalCtors, "llvm.global_ctors");
69   EmitCtorList(GlobalDtors, "llvm.global_dtors");
70   EmitAnnotations();
71   EmitLLVMUsed();
72 }
73 
74 /// ErrorUnsupported - Print out an error that codegen doesn't support the
75 /// specified stmt yet.
76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                      bool OmitOnError) {
78   if (OmitOnError && getDiags().hasErrorOccurred())
79     return;
80   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                                "cannot compile this %0 yet");
82   std::string Msg = Type;
83   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84     << Msg << S->getSourceRange();
85 }
86 
87 /// ErrorUnsupported - Print out an error that codegen doesn't support the
88 /// specified decl yet.
89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                      bool OmitOnError) {
91   if (OmitOnError && getDiags().hasErrorOccurred())
92     return;
93   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                                "cannot compile this %0 yet");
95   std::string Msg = Type;
96   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97 }
98 
99 LangOptions::VisibilityMode
100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102     if (VD->getStorageClass() == VarDecl::PrivateExtern)
103       return LangOptions::Hidden;
104 
105   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
106     switch (attr->getVisibility()) {
107     default: assert(0 && "Unknown visibility!");
108     case VisibilityAttr::DefaultVisibility:
109       return LangOptions::Default;
110     case VisibilityAttr::HiddenVisibility:
111       return LangOptions::Hidden;
112     case VisibilityAttr::ProtectedVisibility:
113       return LangOptions::Protected;
114     }
115   }
116 
117   return getLangOptions().getVisibilityMode();
118 }
119 
120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                         const Decl *D) const {
122   // Internal definitions always have default visibility.
123   if (GV->hasLocalLinkage()) {
124     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125     return;
126   }
127 
128   switch (getDeclVisibilityMode(D)) {
129   default: assert(0 && "Unknown visibility!");
130   case LangOptions::Default:
131     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132   case LangOptions::Hidden:
133     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134   case LangOptions::Protected:
135     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136   }
137 }
138 
139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140   const NamedDecl *ND = GD.getDecl();
141 
142   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143     return getMangledCXXCtorName(D, GD.getCtorType());
144   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145     return getMangledCXXDtorName(D, GD.getDtorType());
146 
147   return getMangledName(ND);
148 }
149 
150 /// \brief Retrieves the mangled name for the given declaration.
151 ///
152 /// If the given declaration requires a mangled name, returns an
153 /// const char* containing the mangled name.  Otherwise, returns
154 /// the unmangled name.
155 ///
156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157   // In C, functions with no attributes never need to be mangled. Fastpath them.
158   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160     return ND->getNameAsCString();
161   }
162 
163   llvm::SmallString<256> Name;
164   llvm::raw_svector_ostream Out(Name);
165   if (!mangleName(ND, Context, Out)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::VoidTy,
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(llvm::Type::Int32Ty,
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215   }
216 
217   if (!Ctors.empty()) {
218     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219     new llvm::GlobalVariable(TheModule.getContext(), AT, false,
220                              llvm::GlobalValue::AppendingLinkage,
221                              llvm::ConstantArray::get(AT, Ctors),
222                              GlobalName,
223                              &TheModule);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(TheModule.getContext(), Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations", &TheModule);
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   // The kind of external linkage this function will have, if it is not
247   // inline or static.
248   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
249   if (Context.getLangOptions().CPlusPlus &&
250       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
251       !FD->isExplicitSpecialization())
252     External = CodeGenModule::GVA_TemplateInstantiation;
253 
254   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
255     // C++ member functions defined inside the class are always inline.
256     if (MD->isInline() || !MD->isOutOfLine())
257       return CodeGenModule::GVA_CXXInline;
258 
259     return External;
260   }
261 
262   // "static" functions get internal linkage.
263   if (FD->getStorageClass() == FunctionDecl::Static)
264     return CodeGenModule::GVA_Internal;
265 
266   if (!FD->isInline())
267     return External;
268 
269   // If the inline function explicitly has the GNU inline attribute on it, or if
270   // this is C89 mode, we use to GNU semantics.
271   if (!Features.C99 && !Features.CPlusPlus) {
272     // extern inline in GNU mode is like C99 inline.
273     if (FD->getStorageClass() == FunctionDecl::Extern)
274       return CodeGenModule::GVA_C99Inline;
275     // Normal inline is a strong symbol.
276     return CodeGenModule::GVA_StrongExternal;
277   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
278     // GCC in C99 mode seems to use a different decision-making
279     // process for extern inline, which factors in previous
280     // declarations.
281     if (FD->isExternGNUInline(Context))
282       return CodeGenModule::GVA_C99Inline;
283     // Normal inline is a strong symbol.
284     return External;
285   }
286 
287   // The definition of inline changes based on the language.  Note that we
288   // have already handled "static inline" above, with the GVA_Internal case.
289   if (Features.CPlusPlus)  // inline and extern inline.
290     return CodeGenModule::GVA_CXXInline;
291 
292   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
293   if (FD->isC99InlineDefinition())
294     return CodeGenModule::GVA_C99Inline;
295 
296   return CodeGenModule::GVA_StrongExternal;
297 }
298 
299 /// SetFunctionDefinitionAttributes - Set attributes for a global.
300 ///
301 /// FIXME: This is currently only done for aliases and functions, but not for
302 /// variables (these details are set in EmitGlobalVarDefinition for variables).
303 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
304                                                     llvm::GlobalValue *GV) {
305   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
306 
307   if (Linkage == GVA_Internal) {
308     GV->setLinkage(llvm::Function::InternalLinkage);
309   } else if (D->hasAttr<DLLExportAttr>()) {
310     GV->setLinkage(llvm::Function::DLLExportLinkage);
311   } else if (D->hasAttr<WeakAttr>()) {
312     GV->setLinkage(llvm::Function::WeakAnyLinkage);
313   } else if (Linkage == GVA_C99Inline) {
314     // In C99 mode, 'inline' functions are guaranteed to have a strong
315     // definition somewhere else, so we can use available_externally linkage.
316     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
317   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
318     // In C++, the compiler has to emit a definition in every translation unit
319     // that references the function.  We should use linkonce_odr because
320     // a) if all references in this translation unit are optimized away, we
321     // don't need to codegen it.  b) if the function persists, it needs to be
322     // merged with other definitions. c) C++ has the ODR, so we know the
323     // definition is dependable.
324     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
325   } else {
326     assert(Linkage == GVA_StrongExternal);
327     // Otherwise, we have strong external linkage.
328     GV->setLinkage(llvm::Function::ExternalLinkage);
329   }
330 
331   SetCommonAttributes(D, GV);
332 }
333 
334 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
335                                               const CGFunctionInfo &Info,
336                                               llvm::Function *F) {
337   AttributeListType AttributeList;
338   ConstructAttributeList(Info, D, AttributeList);
339 
340   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
341                                         AttributeList.size()));
342 
343   // Set the appropriate calling convention for the Function.
344   if (D->hasAttr<FastCallAttr>())
345     F->setCallingConv(llvm::CallingConv::X86_FastCall);
346 
347   if (D->hasAttr<StdCallAttr>())
348     F->setCallingConv(llvm::CallingConv::X86_StdCall);
349 }
350 
351 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
352                                                            llvm::Function *F) {
353   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
354     F->addFnAttr(llvm::Attribute::NoUnwind);
355 
356   if (D->hasAttr<AlwaysInlineAttr>())
357     F->addFnAttr(llvm::Attribute::AlwaysInline);
358 
359   if (D->hasAttr<NoinlineAttr>())
360     F->addFnAttr(llvm::Attribute::NoInline);
361 }
362 
363 void CodeGenModule::SetCommonAttributes(const Decl *D,
364                                         llvm::GlobalValue *GV) {
365   setGlobalVisibility(GV, D);
366 
367   if (D->hasAttr<UsedAttr>())
368     AddUsedGlobal(GV);
369 
370   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
371     GV->setSection(SA->getName());
372 }
373 
374 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
375                                                   llvm::Function *F,
376                                                   const CGFunctionInfo &FI) {
377   SetLLVMFunctionAttributes(D, FI, F);
378   SetLLVMFunctionAttributesForDefinition(D, F);
379 
380   F->setLinkage(llvm::Function::InternalLinkage);
381 
382   SetCommonAttributes(D, F);
383 }
384 
385 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
386                                           llvm::Function *F,
387                                           bool IsIncompleteFunction) {
388   if (!IsIncompleteFunction)
389     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
390 
391   // Only a few attributes are set on declarations; these may later be
392   // overridden by a definition.
393 
394   if (FD->hasAttr<DLLImportAttr>()) {
395     F->setLinkage(llvm::Function::DLLImportLinkage);
396   } else if (FD->hasAttr<WeakAttr>() ||
397              FD->hasAttr<WeakImportAttr>()) {
398     // "extern_weak" is overloaded in LLVM; we probably should have
399     // separate linkage types for this.
400     F->setLinkage(llvm::Function::ExternalWeakLinkage);
401   } else {
402     F->setLinkage(llvm::Function::ExternalLinkage);
403   }
404 
405   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
406     F->setSection(SA->getName());
407 }
408 
409 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
410   assert(!GV->isDeclaration() &&
411          "Only globals with definition can force usage.");
412   LLVMUsed.push_back(GV);
413 }
414 
415 void CodeGenModule::EmitLLVMUsed() {
416   // Don't create llvm.used if there is no need.
417   // FIXME. Runtime indicates that there might be more 'used' symbols; but not
418   // necessariy. So, this test is not accurate for emptiness.
419   if (LLVMUsed.empty() && !Runtime)
420     return;
421 
422   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
423 
424   // Convert LLVMUsed to what ConstantArray needs.
425   std::vector<llvm::Constant*> UsedArray;
426   UsedArray.resize(LLVMUsed.size());
427   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
428     UsedArray[i] =
429      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
430   }
431 
432   if (Runtime)
433     Runtime->MergeMetadataGlobals(UsedArray);
434   if (UsedArray.empty())
435     return;
436   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
437 
438   llvm::GlobalVariable *GV =
439     new llvm::GlobalVariable(getModule().getContext(), ATy, false,
440                              llvm::GlobalValue::AppendingLinkage,
441                              llvm::ConstantArray::get(ATy, UsedArray),
442                              "llvm.used", &getModule());
443 
444   GV->setSection("llvm.metadata");
445 }
446 
447 void CodeGenModule::EmitDeferred() {
448   // Emit code for any potentially referenced deferred decls.  Since a
449   // previously unused static decl may become used during the generation of code
450   // for a static function, iterate until no  changes are made.
451   while (!DeferredDeclsToEmit.empty()) {
452     GlobalDecl D = DeferredDeclsToEmit.back();
453     DeferredDeclsToEmit.pop_back();
454 
455     // The mangled name for the decl must have been emitted in GlobalDeclMap.
456     // Look it up to see if it was defined with a stronger definition (e.g. an
457     // extern inline function with a strong function redefinition).  If so,
458     // just ignore the deferred decl.
459     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
460     assert(CGRef && "Deferred decl wasn't referenced?");
461 
462     if (!CGRef->isDeclaration())
463       continue;
464 
465     // Otherwise, emit the definition and move on to the next one.
466     EmitGlobalDefinition(D);
467   }
468 }
469 
470 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
471 /// annotation information for a given GlobalValue.  The annotation struct is
472 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
473 /// GlobalValue being annotated.  The second field is the constant string
474 /// created from the AnnotateAttr's annotation.  The third field is a constant
475 /// string containing the name of the translation unit.  The fourth field is
476 /// the line number in the file of the annotated value declaration.
477 ///
478 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
479 ///        appears to.
480 ///
481 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
482                                                 const AnnotateAttr *AA,
483                                                 unsigned LineNo) {
484   llvm::Module *M = &getModule();
485 
486   // get [N x i8] constants for the annotation string, and the filename string
487   // which are the 2nd and 3rd elements of the global annotation structure.
488   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
489   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
490   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
491                                                   true);
492 
493   // Get the two global values corresponding to the ConstantArrays we just
494   // created to hold the bytes of the strings.
495   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
496   llvm::GlobalValue *annoGV =
497   new llvm::GlobalVariable(M->getContext(), anno->getType(), false,
498                            llvm::GlobalValue::InternalLinkage, anno,
499                            GV->getName() + StringPrefix, M);
500   // translation unit name string, emitted into the llvm.metadata section.
501   llvm::GlobalValue *unitGV =
502   new llvm::GlobalVariable(M->getContext(), unit->getType(), false,
503                            llvm::GlobalValue::InternalLinkage, unit,
504                            StringPrefix, M);
505 
506   // Create the ConstantStruct for the global annotation.
507   llvm::Constant *Fields[4] = {
508     llvm::ConstantExpr::getBitCast(GV, SBP),
509     llvm::ConstantExpr::getBitCast(annoGV, SBP),
510     llvm::ConstantExpr::getBitCast(unitGV, SBP),
511     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
512   };
513   return llvm::ConstantStruct::get(Fields, 4, false);
514 }
515 
516 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
517   // Never defer when EmitAllDecls is specified or the decl has
518   // attribute used.
519   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
520     return false;
521 
522   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
523     // Constructors and destructors should never be deferred.
524     if (FD->hasAttr<ConstructorAttr>() ||
525         FD->hasAttr<DestructorAttr>())
526       return false;
527 
528     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
529 
530     // static, static inline, always_inline, and extern inline functions can
531     // always be deferred.  Normal inline functions can be deferred in C99/C++.
532     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
533         Linkage == GVA_CXXInline)
534       return true;
535     return false;
536   }
537 
538   const VarDecl *VD = cast<VarDecl>(Global);
539   assert(VD->isFileVarDecl() && "Invalid decl");
540 
541   return VD->getStorageClass() == VarDecl::Static;
542 }
543 
544 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
545   const ValueDecl *Global = GD.getDecl();
546 
547   // If this is an alias definition (which otherwise looks like a declaration)
548   // emit it now.
549   if (Global->hasAttr<AliasAttr>())
550     return EmitAliasDefinition(Global);
551 
552   // Ignore declarations, they will be emitted on their first use.
553   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
554     // Forward declarations are emitted lazily on first use.
555     if (!FD->isThisDeclarationADefinition())
556       return;
557   } else {
558     const VarDecl *VD = cast<VarDecl>(Global);
559     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
560 
561     // In C++, if this is marked "extern", defer code generation.
562     if (getLangOptions().CPlusPlus && !VD->getInit() &&
563         (VD->getStorageClass() == VarDecl::Extern ||
564          VD->isExternC(getContext())))
565       return;
566 
567     // In C, if this isn't a definition, defer code generation.
568     if (!getLangOptions().CPlusPlus && !VD->getInit())
569       return;
570   }
571 
572   // Defer code generation when possible if this is a static definition, inline
573   // function etc.  These we only want to emit if they are used.
574   if (MayDeferGeneration(Global)) {
575     // If the value has already been used, add it directly to the
576     // DeferredDeclsToEmit list.
577     const char *MangledName = getMangledName(GD);
578     if (GlobalDeclMap.count(MangledName))
579       DeferredDeclsToEmit.push_back(GD);
580     else {
581       // Otherwise, remember that we saw a deferred decl with this name.  The
582       // first use of the mangled name will cause it to move into
583       // DeferredDeclsToEmit.
584       DeferredDecls[MangledName] = GD;
585     }
586     return;
587   }
588 
589   // Otherwise emit the definition.
590   EmitGlobalDefinition(GD);
591 }
592 
593 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
594   const ValueDecl *D = GD.getDecl();
595 
596   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
597     EmitCXXConstructor(CD, GD.getCtorType());
598   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
599     EmitCXXDestructor(DD, GD.getDtorType());
600   else if (isa<FunctionDecl>(D))
601     EmitGlobalFunctionDefinition(GD);
602   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
603     EmitGlobalVarDefinition(VD);
604   else {
605     assert(0 && "Invalid argument to EmitGlobalDefinition()");
606   }
607 }
608 
609 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
610 /// module, create and return an llvm Function with the specified type. If there
611 /// is something in the module with the specified name, return it potentially
612 /// bitcasted to the right type.
613 ///
614 /// If D is non-null, it specifies a decl that correspond to this.  This is used
615 /// to set the attributes on the function when it is first created.
616 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
617                                                        const llvm::Type *Ty,
618                                                        GlobalDecl D) {
619   // Lookup the entry, lazily creating it if necessary.
620   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
621   if (Entry) {
622     if (Entry->getType()->getElementType() == Ty)
623       return Entry;
624 
625     // Make sure the result is of the correct type.
626     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
627     return llvm::ConstantExpr::getBitCast(Entry, PTy);
628   }
629 
630   // This is the first use or definition of a mangled name.  If there is a
631   // deferred decl with this name, remember that we need to emit it at the end
632   // of the file.
633   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
634     DeferredDecls.find(MangledName);
635   if (DDI != DeferredDecls.end()) {
636     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
637     // list, and remove it from DeferredDecls (since we don't need it anymore).
638     DeferredDeclsToEmit.push_back(DDI->second);
639     DeferredDecls.erase(DDI);
640   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
641     // If this the first reference to a C++ inline function in a class, queue up
642     // the deferred function body for emission.  These are not seen as
643     // top-level declarations.
644     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
645       DeferredDeclsToEmit.push_back(D);
646   }
647 
648   // This function doesn't have a complete type (for example, the return
649   // type is an incomplete struct). Use a fake type instead, and make
650   // sure not to try to set attributes.
651   bool IsIncompleteFunction = false;
652   if (!isa<llvm::FunctionType>(Ty)) {
653     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
654                                  std::vector<const llvm::Type*>(), false);
655     IsIncompleteFunction = true;
656   }
657   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
658                                              llvm::Function::ExternalLinkage,
659                                              "", &getModule());
660   F->setName(MangledName);
661   if (D.getDecl())
662     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
663                           IsIncompleteFunction);
664   Entry = F;
665   return F;
666 }
667 
668 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
669 /// non-null, then this function will use the specified type if it has to
670 /// create it (this occurs when we see a definition of the function).
671 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
672                                                  const llvm::Type *Ty) {
673   // If there was no specific requested type, just convert it now.
674   if (!Ty)
675     Ty = getTypes().ConvertType(GD.getDecl()->getType());
676   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
677 }
678 
679 /// CreateRuntimeFunction - Create a new runtime function with the specified
680 /// type and name.
681 llvm::Constant *
682 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
683                                      const char *Name) {
684   // Convert Name to be a uniqued string from the IdentifierInfo table.
685   Name = getContext().Idents.get(Name).getName();
686   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
687 }
688 
689 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
690 /// create and return an llvm GlobalVariable with the specified type.  If there
691 /// is something in the module with the specified name, return it potentially
692 /// bitcasted to the right type.
693 ///
694 /// If D is non-null, it specifies a decl that correspond to this.  This is used
695 /// to set the attributes on the global when it is first created.
696 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
697                                                      const llvm::PointerType*Ty,
698                                                      const VarDecl *D) {
699   // Lookup the entry, lazily creating it if necessary.
700   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
701   if (Entry) {
702     if (Entry->getType() == Ty)
703       return Entry;
704 
705     // Make sure the result is of the correct type.
706     return llvm::ConstantExpr::getBitCast(Entry, Ty);
707   }
708 
709   // This is the first use or definition of a mangled name.  If there is a
710   // deferred decl with this name, remember that we need to emit it at the end
711   // of the file.
712   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
713     DeferredDecls.find(MangledName);
714   if (DDI != DeferredDecls.end()) {
715     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
716     // list, and remove it from DeferredDecls (since we don't need it anymore).
717     DeferredDeclsToEmit.push_back(DDI->second);
718     DeferredDecls.erase(DDI);
719   }
720 
721   llvm::GlobalVariable *GV =
722     new llvm::GlobalVariable(getModule().getContext(),
723                              Ty->getElementType(), false,
724                              llvm::GlobalValue::ExternalLinkage,
725                              0, "", &getModule(),
726                              false, Ty->getAddressSpace());
727   GV->setName(MangledName);
728 
729   // Handle things which are present even on external declarations.
730   if (D) {
731     // FIXME: This code is overly simple and should be merged with other global
732     // handling.
733     GV->setConstant(D->getType().isConstant(Context));
734 
735     // FIXME: Merge with other attribute handling code.
736     if (D->getStorageClass() == VarDecl::PrivateExtern)
737       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
738 
739     if (D->hasAttr<WeakAttr>() ||
740         D->hasAttr<WeakImportAttr>())
741       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
742 
743     GV->setThreadLocal(D->isThreadSpecified());
744   }
745 
746   return Entry = GV;
747 }
748 
749 
750 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
751 /// given global variable.  If Ty is non-null and if the global doesn't exist,
752 /// then it will be greated with the specified type instead of whatever the
753 /// normal requested type would be.
754 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
755                                                   const llvm::Type *Ty) {
756   assert(D->hasGlobalStorage() && "Not a global variable");
757   QualType ASTTy = D->getType();
758   if (Ty == 0)
759     Ty = getTypes().ConvertTypeForMem(ASTTy);
760 
761   const llvm::PointerType *PTy =
762     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
763   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
764 }
765 
766 /// CreateRuntimeVariable - Create a new runtime global variable with the
767 /// specified type and name.
768 llvm::Constant *
769 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
770                                      const char *Name) {
771   // Convert Name to be a uniqued string from the IdentifierInfo table.
772   Name = getContext().Idents.get(Name).getName();
773   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
774 }
775 
776 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
777   assert(!D->getInit() && "Cannot emit definite definitions here!");
778 
779   if (MayDeferGeneration(D)) {
780     // If we have not seen a reference to this variable yet, place it
781     // into the deferred declarations table to be emitted if needed
782     // later.
783     const char *MangledName = getMangledName(D);
784     if (GlobalDeclMap.count(MangledName) == 0) {
785       DeferredDecls[MangledName] = GlobalDecl(D);
786       return;
787     }
788   }
789 
790   // The tentative definition is the only definition.
791   EmitGlobalVarDefinition(D);
792 }
793 
794 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
795   llvm::Constant *Init = 0;
796   QualType ASTTy = D->getType();
797 
798   if (D->getInit() == 0) {
799     // This is a tentative definition; tentative definitions are
800     // implicitly initialized with { 0 }.
801     //
802     // Note that tentative definitions are only emitted at the end of
803     // a translation unit, so they should never have incomplete
804     // type. In addition, EmitTentativeDefinition makes sure that we
805     // never attempt to emit a tentative definition if a real one
806     // exists. A use may still exists, however, so we still may need
807     // to do a RAUW.
808     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
809     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
810   } else {
811     Init = EmitConstantExpr(D->getInit(), D->getType());
812     if (!Init) {
813       ErrorUnsupported(D, "static initializer");
814       QualType T = D->getInit()->getType();
815       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
816     }
817   }
818 
819   const llvm::Type* InitType = Init->getType();
820   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
821 
822   // Strip off a bitcast if we got one back.
823   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
824     assert(CE->getOpcode() == llvm::Instruction::BitCast);
825     Entry = CE->getOperand(0);
826   }
827 
828   // Entry is now either a Function or GlobalVariable.
829   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
830 
831   // We have a definition after a declaration with the wrong type.
832   // We must make a new GlobalVariable* and update everything that used OldGV
833   // (a declaration or tentative definition) with the new GlobalVariable*
834   // (which will be a definition).
835   //
836   // This happens if there is a prototype for a global (e.g.
837   // "extern int x[];") and then a definition of a different type (e.g.
838   // "int x[10];"). This also happens when an initializer has a different type
839   // from the type of the global (this happens with unions).
840   if (GV == 0 ||
841       GV->getType()->getElementType() != InitType ||
842       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
843 
844     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
845     GlobalDeclMap.erase(getMangledName(D));
846 
847     // Make a new global with the correct type, this is now guaranteed to work.
848     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
849     GV->takeName(cast<llvm::GlobalValue>(Entry));
850 
851     // Replace all uses of the old global with the new global
852     llvm::Constant *NewPtrForOldDecl =
853         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
854     Entry->replaceAllUsesWith(NewPtrForOldDecl);
855 
856     // Erase the old global, since it is no longer used.
857     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
858   }
859 
860   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
861     SourceManager &SM = Context.getSourceManager();
862     AddAnnotation(EmitAnnotateAttr(GV, AA,
863                               SM.getInstantiationLineNumber(D->getLocation())));
864   }
865 
866   GV->setInitializer(Init);
867   GV->setConstant(D->getType().isConstant(Context));
868   GV->setAlignment(getContext().getDeclAlignInBytes(D));
869 
870   // Set the llvm linkage type as appropriate.
871   if (D->getStorageClass() == VarDecl::Static)
872     GV->setLinkage(llvm::Function::InternalLinkage);
873   else if (D->hasAttr<DLLImportAttr>())
874     GV->setLinkage(llvm::Function::DLLImportLinkage);
875   else if (D->hasAttr<DLLExportAttr>())
876     GV->setLinkage(llvm::Function::DLLExportLinkage);
877   else if (D->hasAttr<WeakAttr>())
878     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
879   else if (!CompileOpts.NoCommon &&
880            (!D->hasExternalStorage() && !D->getInit()))
881     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
882   else
883     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
884 
885   SetCommonAttributes(D, GV);
886 
887   // Emit global variable debug information.
888   if (CGDebugInfo *DI = getDebugInfo()) {
889     DI->setLocation(D->getLocation());
890     DI->EmitGlobalVariable(GV, D);
891   }
892 }
893 
894 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
895 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
896 /// existing call uses of the old function in the module, this adjusts them to
897 /// call the new function directly.
898 ///
899 /// This is not just a cleanup: the always_inline pass requires direct calls to
900 /// functions to be able to inline them.  If there is a bitcast in the way, it
901 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
902 /// run at -O0.
903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
904                                                       llvm::Function *NewFn) {
905   // If we're redefining a global as a function, don't transform it.
906   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
907   if (OldFn == 0) return;
908 
909   const llvm::Type *NewRetTy = NewFn->getReturnType();
910   llvm::SmallVector<llvm::Value*, 4> ArgList;
911 
912   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
913        UI != E; ) {
914     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
915     unsigned OpNo = UI.getOperandNo();
916     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
917     if (!CI || OpNo != 0) continue;
918 
919     // If the return types don't match exactly, and if the call isn't dead, then
920     // we can't transform this call.
921     if (CI->getType() != NewRetTy && !CI->use_empty())
922       continue;
923 
924     // If the function was passed too few arguments, don't transform.  If extra
925     // arguments were passed, we silently drop them.  If any of the types
926     // mismatch, we don't transform.
927     unsigned ArgNo = 0;
928     bool DontTransform = false;
929     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
930          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
931       if (CI->getNumOperands()-1 == ArgNo ||
932           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
933         DontTransform = true;
934         break;
935       }
936     }
937     if (DontTransform)
938       continue;
939 
940     // Okay, we can transform this.  Create the new call instruction and copy
941     // over the required information.
942     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
943     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
944                                                      ArgList.end(), "", CI);
945     ArgList.clear();
946     if (NewCall->getType() != llvm::Type::VoidTy)
947       NewCall->takeName(CI);
948     NewCall->setCallingConv(CI->getCallingConv());
949     NewCall->setAttributes(CI->getAttributes());
950 
951     // Finally, remove the old call, replacing any uses with the new one.
952     if (!CI->use_empty())
953       CI->replaceAllUsesWith(NewCall);
954     CI->eraseFromParent();
955   }
956 }
957 
958 
959 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
960   const llvm::FunctionType *Ty;
961   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
962 
963   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
964     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
965 
966     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
967   } else {
968     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
969 
970     // As a special case, make sure that definitions of K&R function
971     // "type foo()" aren't declared as varargs (which forces the backend
972     // to do unnecessary work).
973     if (D->getType()->isFunctionNoProtoType()) {
974       assert(Ty->isVarArg() && "Didn't lower type as expected");
975       // Due to stret, the lowered function could have arguments.
976       // Just create the same type as was lowered by ConvertType
977       // but strip off the varargs bit.
978       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
979       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
980     }
981   }
982 
983   // Get or create the prototype for the function.
984   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
985 
986   // Strip off a bitcast if we got one back.
987   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
988     assert(CE->getOpcode() == llvm::Instruction::BitCast);
989     Entry = CE->getOperand(0);
990   }
991 
992 
993   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
994     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
995 
996     // If the types mismatch then we have to rewrite the definition.
997     assert(OldFn->isDeclaration() &&
998            "Shouldn't replace non-declaration");
999 
1000     // F is the Function* for the one with the wrong type, we must make a new
1001     // Function* and update everything that used F (a declaration) with the new
1002     // Function* (which will be a definition).
1003     //
1004     // This happens if there is a prototype for a function
1005     // (e.g. "int f()") and then a definition of a different type
1006     // (e.g. "int f(int x)").  Start by making a new function of the
1007     // correct type, RAUW, then steal the name.
1008     GlobalDeclMap.erase(getMangledName(D));
1009     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1010     NewFn->takeName(OldFn);
1011 
1012     // If this is an implementation of a function without a prototype, try to
1013     // replace any existing uses of the function (which may be calls) with uses
1014     // of the new function
1015     if (D->getType()->isFunctionNoProtoType()) {
1016       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1017       OldFn->removeDeadConstantUsers();
1018     }
1019 
1020     // Replace uses of F with the Function we will endow with a body.
1021     if (!Entry->use_empty()) {
1022       llvm::Constant *NewPtrForOldDecl =
1023         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1024       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1025     }
1026 
1027     // Ok, delete the old function now, which is dead.
1028     OldFn->eraseFromParent();
1029 
1030     Entry = NewFn;
1031   }
1032 
1033   llvm::Function *Fn = cast<llvm::Function>(Entry);
1034 
1035   CodeGenFunction(*this).GenerateCode(D, Fn);
1036 
1037   SetFunctionDefinitionAttributes(D, Fn);
1038   SetLLVMFunctionAttributesForDefinition(D, Fn);
1039 
1040   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1041     AddGlobalCtor(Fn, CA->getPriority());
1042   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1043     AddGlobalDtor(Fn, DA->getPriority());
1044 }
1045 
1046 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1047   const AliasAttr *AA = D->getAttr<AliasAttr>();
1048   assert(AA && "Not an alias?");
1049 
1050   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1051 
1052   // Unique the name through the identifier table.
1053   const char *AliaseeName = AA->getAliasee().c_str();
1054   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1055 
1056   // Create a reference to the named value.  This ensures that it is emitted
1057   // if a deferred decl.
1058   llvm::Constant *Aliasee;
1059   if (isa<llvm::FunctionType>(DeclTy))
1060     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1061   else
1062     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1063                                     llvm::PointerType::getUnqual(DeclTy), 0);
1064 
1065   // Create the new alias itself, but don't set a name yet.
1066   llvm::GlobalValue *GA =
1067     new llvm::GlobalAlias(Aliasee->getType(),
1068                           llvm::Function::ExternalLinkage,
1069                           "", Aliasee, &getModule());
1070 
1071   // See if there is already something with the alias' name in the module.
1072   const char *MangledName = getMangledName(D);
1073   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1074 
1075   if (Entry && !Entry->isDeclaration()) {
1076     // If there is a definition in the module, then it wins over the alias.
1077     // This is dubious, but allow it to be safe.  Just ignore the alias.
1078     GA->eraseFromParent();
1079     return;
1080   }
1081 
1082   if (Entry) {
1083     // If there is a declaration in the module, then we had an extern followed
1084     // by the alias, as in:
1085     //   extern int test6();
1086     //   ...
1087     //   int test6() __attribute__((alias("test7")));
1088     //
1089     // Remove it and replace uses of it with the alias.
1090 
1091     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1092                                                           Entry->getType()));
1093     Entry->eraseFromParent();
1094   }
1095 
1096   // Now we know that there is no conflict, set the name.
1097   Entry = GA;
1098   GA->setName(MangledName);
1099 
1100   // Set attributes which are particular to an alias; this is a
1101   // specialization of the attributes which may be set on a global
1102   // variable/function.
1103   if (D->hasAttr<DLLExportAttr>()) {
1104     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1105       // The dllexport attribute is ignored for undefined symbols.
1106       if (FD->getBody())
1107         GA->setLinkage(llvm::Function::DLLExportLinkage);
1108     } else {
1109       GA->setLinkage(llvm::Function::DLLExportLinkage);
1110     }
1111   } else if (D->hasAttr<WeakAttr>() ||
1112              D->hasAttr<WeakImportAttr>()) {
1113     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1114   }
1115 
1116   SetCommonAttributes(D, GA);
1117 }
1118 
1119 /// getBuiltinLibFunction - Given a builtin id for a function like
1120 /// "__builtin_fabsf", return a Function* for "fabsf".
1121 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1122   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1123           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1124          "isn't a lib fn");
1125 
1126   // Get the name, skip over the __builtin_ prefix (if necessary).
1127   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1128   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1129     Name += 10;
1130 
1131   // Get the type for the builtin.
1132   ASTContext::GetBuiltinTypeError Error;
1133   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1134   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1135 
1136   const llvm::FunctionType *Ty =
1137     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1138 
1139   // Unique the name through the identifier table.
1140   Name = getContext().Idents.get(Name).getName();
1141   // FIXME: param attributes for sext/zext etc.
1142   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1143 }
1144 
1145 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1146                                             unsigned NumTys) {
1147   return llvm::Intrinsic::getDeclaration(&getModule(),
1148                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1149 }
1150 
1151 llvm::Function *CodeGenModule::getMemCpyFn() {
1152   if (MemCpyFn) return MemCpyFn;
1153   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1154   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1155 }
1156 
1157 llvm::Function *CodeGenModule::getMemMoveFn() {
1158   if (MemMoveFn) return MemMoveFn;
1159   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1160   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1161 }
1162 
1163 llvm::Function *CodeGenModule::getMemSetFn() {
1164   if (MemSetFn) return MemSetFn;
1165   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1166   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1167 }
1168 
1169 static void appendFieldAndPadding(CodeGenModule &CGM,
1170                                   std::vector<llvm::Constant*>& Fields,
1171                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1172                                   llvm::Constant* Field,
1173                                   RecordDecl* RD, const llvm::StructType *STy) {
1174   // Append the field.
1175   Fields.push_back(Field);
1176 
1177   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1178 
1179   int NextStructFieldNo;
1180   if (!NextFieldD) {
1181     NextStructFieldNo = STy->getNumElements();
1182   } else {
1183     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1184   }
1185 
1186   // Append padding
1187   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1188     llvm::Constant *C =
1189       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1190 
1191     Fields.push_back(C);
1192   }
1193 }
1194 
1195 llvm::Constant *CodeGenModule::
1196 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1197   std::string str;
1198   unsigned StringLength = 0;
1199 
1200   bool isUTF16 = false;
1201   if (Literal->containsNonAsciiOrNull()) {
1202     // Convert from UTF-8 to UTF-16.
1203     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1204     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1205     UTF16 *ToPtr = &ToBuf[0];
1206 
1207     ConversionResult Result;
1208     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1209                                 &ToPtr, ToPtr+Literal->getByteLength(),
1210                                 strictConversion);
1211     if (Result == conversionOK) {
1212       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1213       // without doing more surgery to this routine. Since we aren't explicitly
1214       // checking for endianness here, it's also a bug (when generating code for
1215       // a target that doesn't match the host endianness). Modeling this as an
1216       // i16 array is likely the cleanest solution.
1217       StringLength = ToPtr-&ToBuf[0];
1218       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1219       isUTF16 = true;
1220     } else if (Result == sourceIllegal) {
1221       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1222       str.assign(Literal->getStrData(), Literal->getByteLength());
1223       StringLength = str.length();
1224     } else
1225       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1226 
1227   } else {
1228     str.assign(Literal->getStrData(), Literal->getByteLength());
1229     StringLength = str.length();
1230   }
1231   llvm::StringMapEntry<llvm::Constant *> &Entry =
1232     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1233 
1234   if (llvm::Constant *C = Entry.getValue())
1235     return C;
1236 
1237   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1238   llvm::Constant *Zeros[] = { Zero, Zero };
1239 
1240   if (!CFConstantStringClassRef) {
1241     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1242     Ty = llvm::ArrayType::get(Ty, 0);
1243 
1244     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1245     // already defined, in that it will get renamed and the user will most
1246     // likely see an opaque error message. This is a general issue with relying
1247     // on particular names.
1248     llvm::GlobalVariable *GV =
1249       new llvm::GlobalVariable(getModule().getContext(), Ty, false,
1250                                llvm::GlobalVariable::ExternalLinkage, 0,
1251                                "__CFConstantStringClassReference",
1252                                &getModule());
1253 
1254     // Decay array -> ptr
1255     CFConstantStringClassRef =
1256       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1257   }
1258 
1259   QualType CFTy = getContext().getCFConstantStringType();
1260   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1261 
1262   const llvm::StructType *STy =
1263     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1264 
1265   std::vector<llvm::Constant*> Fields;
1266   RecordDecl::field_iterator Field = CFRD->field_begin();
1267 
1268   // Class pointer.
1269   FieldDecl *CurField = *Field++;
1270   FieldDecl *NextField = *Field++;
1271   appendFieldAndPadding(*this, Fields, CurField, NextField,
1272                         CFConstantStringClassRef, CFRD, STy);
1273 
1274   // Flags.
1275   CurField = NextField;
1276   NextField = *Field++;
1277   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1278   appendFieldAndPadding(*this, Fields, CurField, NextField,
1279                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1280                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1281                         CFRD, STy);
1282 
1283   // String pointer.
1284   CurField = NextField;
1285   NextField = *Field++;
1286   llvm::Constant *C = llvm::ConstantArray::get(str);
1287 
1288   const char *Sect, *Prefix;
1289   bool isConstant;
1290   if (isUTF16) {
1291     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1292     Sect = getContext().Target.getUnicodeStringSection();
1293     // FIXME: Why does GCC not set constant here?
1294     isConstant = false;
1295   } else {
1296     Prefix = getContext().Target.getStringSymbolPrefix(true);
1297     Sect = getContext().Target.getCFStringDataSection();
1298     // FIXME: -fwritable-strings should probably affect this, but we
1299     // are following gcc here.
1300     isConstant = true;
1301   }
1302   llvm::GlobalVariable *GV =
1303     new llvm::GlobalVariable(getModule().getContext(), C->getType(), isConstant,
1304                              llvm::GlobalValue::InternalLinkage,
1305                              C, Prefix, &getModule());
1306   if (Sect)
1307     GV->setSection(Sect);
1308   if (isUTF16) {
1309     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1310     GV->setAlignment(Align);
1311   }
1312   appendFieldAndPadding(*this, Fields, CurField, NextField,
1313                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1314                         CFRD, STy);
1315 
1316   // String length.
1317   CurField = NextField;
1318   NextField = 0;
1319   Ty = getTypes().ConvertType(getContext().LongTy);
1320   appendFieldAndPadding(*this, Fields, CurField, NextField,
1321                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1322 
1323   // The struct.
1324   C = llvm::ConstantStruct::get(STy, Fields);
1325   GV = new llvm::GlobalVariable(getModule().getContext(), C->getType(), true,
1326                                 llvm::GlobalVariable::InternalLinkage, C,
1327                                 getContext().Target.getCFStringSymbolPrefix(),
1328                                 &getModule());
1329   if (const char *Sect = getContext().Target.getCFStringSection())
1330     GV->setSection(Sect);
1331   Entry.setValue(GV);
1332 
1333   return GV;
1334 }
1335 
1336 /// GetStringForStringLiteral - Return the appropriate bytes for a
1337 /// string literal, properly padded to match the literal type.
1338 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1339   const char *StrData = E->getStrData();
1340   unsigned Len = E->getByteLength();
1341 
1342   const ConstantArrayType *CAT =
1343     getContext().getAsConstantArrayType(E->getType());
1344   assert(CAT && "String isn't pointer or array!");
1345 
1346   // Resize the string to the right size.
1347   std::string Str(StrData, StrData+Len);
1348   uint64_t RealLen = CAT->getSize().getZExtValue();
1349 
1350   if (E->isWide())
1351     RealLen *= getContext().Target.getWCharWidth()/8;
1352 
1353   Str.resize(RealLen, '\0');
1354 
1355   return Str;
1356 }
1357 
1358 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1359 /// constant array for the given string literal.
1360 llvm::Constant *
1361 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1362   // FIXME: This can be more efficient.
1363   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1364 }
1365 
1366 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1367 /// array for the given ObjCEncodeExpr node.
1368 llvm::Constant *
1369 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1370   std::string Str;
1371   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1372 
1373   return GetAddrOfConstantCString(Str);
1374 }
1375 
1376 
1377 /// GenerateWritableString -- Creates storage for a string literal.
1378 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1379                                              bool constant,
1380                                              CodeGenModule &CGM,
1381                                              const char *GlobalName) {
1382   // Create Constant for this string literal. Don't add a '\0'.
1383   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1384 
1385   // Create a global variable for this string
1386   return new llvm::GlobalVariable(CGM.getModule().getContext(),
1387                                   C->getType(), constant,
1388                                   llvm::GlobalValue::InternalLinkage,
1389                                   C, GlobalName, &CGM.getModule());
1390 }
1391 
1392 /// GetAddrOfConstantString - Returns a pointer to a character array
1393 /// containing the literal. This contents are exactly that of the
1394 /// given string, i.e. it will not be null terminated automatically;
1395 /// see GetAddrOfConstantCString. Note that whether the result is
1396 /// actually a pointer to an LLVM constant depends on
1397 /// Feature.WriteableStrings.
1398 ///
1399 /// The result has pointer to array type.
1400 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1401                                                        const char *GlobalName) {
1402   bool IsConstant = !Features.WritableStrings;
1403 
1404   // Get the default prefix if a name wasn't specified.
1405   if (!GlobalName)
1406     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1407 
1408   // Don't share any string literals if strings aren't constant.
1409   if (!IsConstant)
1410     return GenerateStringLiteral(str, false, *this, GlobalName);
1411 
1412   llvm::StringMapEntry<llvm::Constant *> &Entry =
1413   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1414 
1415   if (Entry.getValue())
1416     return Entry.getValue();
1417 
1418   // Create a global variable for this.
1419   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1420   Entry.setValue(C);
1421   return C;
1422 }
1423 
1424 /// GetAddrOfConstantCString - Returns a pointer to a character
1425 /// array containing the literal and a terminating '\-'
1426 /// character. The result has pointer to array type.
1427 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1428                                                         const char *GlobalName){
1429   return GetAddrOfConstantString(str + '\0', GlobalName);
1430 }
1431 
1432 /// EmitObjCPropertyImplementations - Emit information for synthesized
1433 /// properties for an implementation.
1434 void CodeGenModule::EmitObjCPropertyImplementations(const
1435                                                     ObjCImplementationDecl *D) {
1436   for (ObjCImplementationDecl::propimpl_iterator
1437          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1438     ObjCPropertyImplDecl *PID = *i;
1439 
1440     // Dynamic is just for type-checking.
1441     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1442       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1443 
1444       // Determine which methods need to be implemented, some may have
1445       // been overridden. Note that ::isSynthesized is not the method
1446       // we want, that just indicates if the decl came from a
1447       // property. What we want to know is if the method is defined in
1448       // this implementation.
1449       if (!D->getInstanceMethod(PD->getGetterName()))
1450         CodeGenFunction(*this).GenerateObjCGetter(
1451                                  const_cast<ObjCImplementationDecl *>(D), PID);
1452       if (!PD->isReadOnly() &&
1453           !D->getInstanceMethod(PD->getSetterName()))
1454         CodeGenFunction(*this).GenerateObjCSetter(
1455                                  const_cast<ObjCImplementationDecl *>(D), PID);
1456     }
1457   }
1458 }
1459 
1460 /// EmitNamespace - Emit all declarations in a namespace.
1461 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1462   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1463        I != E; ++I)
1464     EmitTopLevelDecl(*I);
1465 }
1466 
1467 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1468 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1469   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1470     ErrorUnsupported(LSD, "linkage spec");
1471     return;
1472   }
1473 
1474   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1475        I != E; ++I)
1476     EmitTopLevelDecl(*I);
1477 }
1478 
1479 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1480 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1481   // If an error has occurred, stop code generation, but continue
1482   // parsing and semantic analysis (to ensure all warnings and errors
1483   // are emitted).
1484   if (Diags.hasErrorOccurred())
1485     return;
1486 
1487   // Ignore dependent declarations.
1488   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1489     return;
1490 
1491   switch (D->getKind()) {
1492   case Decl::CXXMethod:
1493   case Decl::Function:
1494     // Skip function templates
1495     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1496       return;
1497 
1498     // Fall through
1499 
1500   case Decl::Var:
1501     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1502     break;
1503 
1504   // C++ Decls
1505   case Decl::Namespace:
1506     EmitNamespace(cast<NamespaceDecl>(D));
1507     break;
1508     // No code generation needed.
1509   case Decl::Using:
1510   case Decl::ClassTemplate:
1511   case Decl::FunctionTemplate:
1512     break;
1513   case Decl::CXXConstructor:
1514     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1515     break;
1516   case Decl::CXXDestructor:
1517     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1518     break;
1519 
1520   case Decl::StaticAssert:
1521     // Nothing to do.
1522     break;
1523 
1524   // Objective-C Decls
1525 
1526   // Forward declarations, no (immediate) code generation.
1527   case Decl::ObjCClass:
1528   case Decl::ObjCForwardProtocol:
1529   case Decl::ObjCCategory:
1530   case Decl::ObjCInterface:
1531     break;
1532 
1533   case Decl::ObjCProtocol:
1534     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1535     break;
1536 
1537   case Decl::ObjCCategoryImpl:
1538     // Categories have properties but don't support synthesize so we
1539     // can ignore them here.
1540     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1541     break;
1542 
1543   case Decl::ObjCImplementation: {
1544     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1545     EmitObjCPropertyImplementations(OMD);
1546     Runtime->GenerateClass(OMD);
1547     break;
1548   }
1549   case Decl::ObjCMethod: {
1550     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1551     // If this is not a prototype, emit the body.
1552     if (OMD->getBody())
1553       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1554     break;
1555   }
1556   case Decl::ObjCCompatibleAlias:
1557     // compatibility-alias is a directive and has no code gen.
1558     break;
1559 
1560   case Decl::LinkageSpec:
1561     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1562     break;
1563 
1564   case Decl::FileScopeAsm: {
1565     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1566     std::string AsmString(AD->getAsmString()->getStrData(),
1567                           AD->getAsmString()->getByteLength());
1568 
1569     const std::string &S = getModule().getModuleInlineAsm();
1570     if (S.empty())
1571       getModule().setModuleInlineAsm(AsmString);
1572     else
1573       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1574     break;
1575   }
1576 
1577   default:
1578     // Make sure we handled everything we should, every other kind is a
1579     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1580     // function. Need to recode Decl::Kind to do that easily.
1581     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1582   }
1583 }
1584