xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9dc0db2192500e70f1864053d9b82a00e7a58621)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/Mangler.h"
41 #include "llvm/Target/TargetData.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/ErrorHandling.h"
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48   switch (CGM.getContext().Target.getCXXABI()) {
49   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52   }
53 
54   llvm_unreachable("invalid C++ ABI kind");
55   return *CreateItaniumCXXABI(CGM);
56 }
57 
58 
59 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                              llvm::Module &M, const llvm::TargetData &TD,
61                              Diagnostic &diags)
62   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0), DebugInfo(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0),
74     BlockDescriptorType(0), GenericBlockLiteralType(0) {
75   if (Features.ObjC1)
76      createObjCRuntime();
77 
78   // Enable TBAA unless it's suppressed.
79   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                            ABI.getMangleContext());
82 
83   // If debug info or coverage generation is enabled, create the CGDebugInfo
84   // object.
85   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86       CodeGenOpts.EmitGcovNotes)
87     DebugInfo = new CGDebugInfo(*this);
88 
89   Block.GlobalUniqueCount = 0;
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   PointerWidthInBits = C.Target.getPointerWidth(0);
98   PointerAlignInBytes =
99     C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
100   IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
101   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
102   Int8PtrTy = Int8Ty->getPointerTo(0);
103   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
104 }
105 
106 CodeGenModule::~CodeGenModule() {
107   delete Runtime;
108   delete &ABI;
109   delete TBAA;
110   delete DebugInfo;
111 }
112 
113 void CodeGenModule::createObjCRuntime() {
114   if (!Features.NeXTRuntime)
115     Runtime = CreateGNUObjCRuntime(*this);
116   else
117     Runtime = CreateMacObjCRuntime(*this);
118 }
119 
120 void CodeGenModule::Release() {
121   EmitDeferred();
122   EmitCXXGlobalInitFunc();
123   EmitCXXGlobalDtorFunc();
124   if (Runtime)
125     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
126       AddGlobalCtor(ObjCInitFunction);
127   EmitCtorList(GlobalCtors, "llvm.global_ctors");
128   EmitCtorList(GlobalDtors, "llvm.global_dtors");
129   EmitAnnotations();
130   EmitLLVMUsed();
131 
132   SimplifyPersonality();
133 
134   if (getCodeGenOpts().EmitDeclMetadata)
135     EmitDeclMetadata();
136 
137   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
138     EmitCoverageFile();
139 }
140 
141 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
142   // Make sure that this type is translated.
143   Types.UpdateCompletedType(TD);
144   if (DebugInfo)
145     DebugInfo->UpdateCompletedType(TD);
146 }
147 
148 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
149   if (!TBAA)
150     return 0;
151   return TBAA->getTBAAInfo(QTy);
152 }
153 
154 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
155                                         llvm::MDNode *TBAAInfo) {
156   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
157 }
158 
159 bool CodeGenModule::isTargetDarwin() const {
160   return getContext().Target.getTriple().isOSDarwin();
161 }
162 
163 void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
164   unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
165   getDiags().Report(Context.getFullLoc(loc), diagID);
166 }
167 
168 /// ErrorUnsupported - Print out an error that codegen doesn't support the
169 /// specified stmt yet.
170 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
171                                      bool OmitOnError) {
172   if (OmitOnError && getDiags().hasErrorOccurred())
173     return;
174   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
175                                                "cannot compile this %0 yet");
176   std::string Msg = Type;
177   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
178     << Msg << S->getSourceRange();
179 }
180 
181 /// ErrorUnsupported - Print out an error that codegen doesn't support the
182 /// specified decl yet.
183 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
184                                      bool OmitOnError) {
185   if (OmitOnError && getDiags().hasErrorOccurred())
186     return;
187   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
188                                                "cannot compile this %0 yet");
189   std::string Msg = Type;
190   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
191 }
192 
193 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
194                                         const NamedDecl *D) const {
195   // Internal definitions always have default visibility.
196   if (GV->hasLocalLinkage()) {
197     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
198     return;
199   }
200 
201   // Set visibility for definitions.
202   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
203   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
204     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
205 }
206 
207 /// Set the symbol visibility of type information (vtable and RTTI)
208 /// associated with the given type.
209 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
210                                       const CXXRecordDecl *RD,
211                                       TypeVisibilityKind TVK) const {
212   setGlobalVisibility(GV, RD);
213 
214   if (!CodeGenOpts.HiddenWeakVTables)
215     return;
216 
217   // We never want to drop the visibility for RTTI names.
218   if (TVK == TVK_ForRTTIName)
219     return;
220 
221   // We want to drop the visibility to hidden for weak type symbols.
222   // This isn't possible if there might be unresolved references
223   // elsewhere that rely on this symbol being visible.
224 
225   // This should be kept roughly in sync with setThunkVisibility
226   // in CGVTables.cpp.
227 
228   // Preconditions.
229   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
230       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
231     return;
232 
233   // Don't override an explicit visibility attribute.
234   if (RD->getExplicitVisibility())
235     return;
236 
237   switch (RD->getTemplateSpecializationKind()) {
238   // We have to disable the optimization if this is an EI definition
239   // because there might be EI declarations in other shared objects.
240   case TSK_ExplicitInstantiationDefinition:
241   case TSK_ExplicitInstantiationDeclaration:
242     return;
243 
244   // Every use of a non-template class's type information has to emit it.
245   case TSK_Undeclared:
246     break;
247 
248   // In theory, implicit instantiations can ignore the possibility of
249   // an explicit instantiation declaration because there necessarily
250   // must be an EI definition somewhere with default visibility.  In
251   // practice, it's possible to have an explicit instantiation for
252   // an arbitrary template class, and linkers aren't necessarily able
253   // to deal with mixed-visibility symbols.
254   case TSK_ExplicitSpecialization:
255   case TSK_ImplicitInstantiation:
256     if (!CodeGenOpts.HiddenWeakTemplateVTables)
257       return;
258     break;
259   }
260 
261   // If there's a key function, there may be translation units
262   // that don't have the key function's definition.  But ignore
263   // this if we're emitting RTTI under -fno-rtti.
264   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
265     if (Context.getKeyFunction(RD))
266       return;
267   }
268 
269   // Otherwise, drop the visibility to hidden.
270   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
271   GV->setUnnamedAddr(true);
272 }
273 
274 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
275   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
276 
277   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
278   if (!Str.empty())
279     return Str;
280 
281   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
282     IdentifierInfo *II = ND->getIdentifier();
283     assert(II && "Attempt to mangle unnamed decl.");
284 
285     Str = II->getName();
286     return Str;
287   }
288 
289   llvm::SmallString<256> Buffer;
290   llvm::raw_svector_ostream Out(Buffer);
291   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
292     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
293   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
294     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
295   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
296     getCXXABI().getMangleContext().mangleBlock(BD, Out);
297   else
298     getCXXABI().getMangleContext().mangleName(ND, Out);
299 
300   // Allocate space for the mangled name.
301   Out.flush();
302   size_t Length = Buffer.size();
303   char *Name = MangledNamesAllocator.Allocate<char>(Length);
304   std::copy(Buffer.begin(), Buffer.end(), Name);
305 
306   Str = llvm::StringRef(Name, Length);
307 
308   return Str;
309 }
310 
311 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
312                                         const BlockDecl *BD) {
313   MangleContext &MangleCtx = getCXXABI().getMangleContext();
314   const Decl *D = GD.getDecl();
315   llvm::raw_svector_ostream Out(Buffer.getBuffer());
316   if (D == 0)
317     MangleCtx.mangleGlobalBlock(BD, Out);
318   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
319     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
320   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
321     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
322   else
323     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
324 }
325 
326 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
327   return getModule().getNamedValue(Name);
328 }
329 
330 /// AddGlobalCtor - Add a function to the list that will be called before
331 /// main() runs.
332 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
333   // FIXME: Type coercion of void()* types.
334   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
335 }
336 
337 /// AddGlobalDtor - Add a function to the list that will be called
338 /// when the module is unloaded.
339 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
340   // FIXME: Type coercion of void()* types.
341   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
342 }
343 
344 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
345   // Ctor function type is void()*.
346   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
347   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348 
349   // Get the type of a ctor entry, { i32, void ()* }.
350   llvm::StructType* CtorStructTy =
351     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                           llvm::PointerType::getUnqual(CtorFTy), NULL);
353 
354   // Construct the constructor and destructor arrays.
355   std::vector<llvm::Constant*> Ctors;
356   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357     std::vector<llvm::Constant*> S;
358     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                 I->second, false));
360     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362   }
363 
364   if (!Ctors.empty()) {
365     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366     new llvm::GlobalVariable(TheModule, AT, false,
367                              llvm::GlobalValue::AppendingLinkage,
368                              llvm::ConstantArray::get(AT, Ctors),
369                              GlobalName);
370   }
371 }
372 
373 void CodeGenModule::EmitAnnotations() {
374   if (Annotations.empty())
375     return;
376 
377   // Create a new global variable for the ConstantStruct in the Module.
378   llvm::Constant *Array =
379   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                 Annotations.size()),
381                            Annotations);
382   llvm::GlobalValue *gv =
383   new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                            llvm::GlobalValue::AppendingLinkage, Array,
385                            "llvm.global.annotations");
386   gv->setSection("llvm.metadata");
387 }
388 
389 llvm::GlobalValue::LinkageTypes
390 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392 
393   if (Linkage == GVA_Internal)
394     return llvm::Function::InternalLinkage;
395 
396   if (D->hasAttr<DLLExportAttr>())
397     return llvm::Function::DLLExportLinkage;
398 
399   if (D->hasAttr<WeakAttr>())
400     return llvm::Function::WeakAnyLinkage;
401 
402   // In C99 mode, 'inline' functions are guaranteed to have a strong
403   // definition somewhere else, so we can use available_externally linkage.
404   if (Linkage == GVA_C99Inline)
405     return llvm::Function::AvailableExternallyLinkage;
406 
407   // In C++, the compiler has to emit a definition in every translation unit
408   // that references the function.  We should use linkonce_odr because
409   // a) if all references in this translation unit are optimized away, we
410   // don't need to codegen it.  b) if the function persists, it needs to be
411   // merged with other definitions. c) C++ has the ODR, so we know the
412   // definition is dependable.
413   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414     return !Context.getLangOptions().AppleKext
415              ? llvm::Function::LinkOnceODRLinkage
416              : llvm::Function::InternalLinkage;
417 
418   // An explicit instantiation of a template has weak linkage, since
419   // explicit instantiations can occur in multiple translation units
420   // and must all be equivalent. However, we are not allowed to
421   // throw away these explicit instantiations.
422   if (Linkage == GVA_ExplicitTemplateInstantiation)
423     return !Context.getLangOptions().AppleKext
424              ? llvm::Function::WeakODRLinkage
425              : llvm::Function::InternalLinkage;
426 
427   // Otherwise, we have strong external linkage.
428   assert(Linkage == GVA_StrongExternal);
429   return llvm::Function::ExternalLinkage;
430 }
431 
432 
433 /// SetFunctionDefinitionAttributes - Set attributes for a global.
434 ///
435 /// FIXME: This is currently only done for aliases and functions, but not for
436 /// variables (these details are set in EmitGlobalVarDefinition for variables).
437 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                     llvm::GlobalValue *GV) {
439   SetCommonAttributes(D, GV);
440 }
441 
442 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                               const CGFunctionInfo &Info,
444                                               llvm::Function *F) {
445   unsigned CallingConv;
446   AttributeListType AttributeList;
447   ConstructAttributeList(Info, D, AttributeList, CallingConv);
448   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                           AttributeList.size()));
450   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451 }
452 
453 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                            llvm::Function *F) {
455   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
456     F->addFnAttr(llvm::Attribute::NoUnwind);
457 
458   if (D->hasAttr<AlwaysInlineAttr>())
459     F->addFnAttr(llvm::Attribute::AlwaysInline);
460 
461   if (D->hasAttr<NakedAttr>())
462     F->addFnAttr(llvm::Attribute::Naked);
463 
464   if (D->hasAttr<NoInlineAttr>())
465     F->addFnAttr(llvm::Attribute::NoInline);
466 
467   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
468     F->setUnnamedAddr(true);
469 
470   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
471     F->addFnAttr(llvm::Attribute::StackProtect);
472   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
473     F->addFnAttr(llvm::Attribute::StackProtectReq);
474 
475   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
476   if (alignment)
477     F->setAlignment(alignment);
478 
479   // C++ ABI requires 2-byte alignment for member functions.
480   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
481     F->setAlignment(2);
482 }
483 
484 void CodeGenModule::SetCommonAttributes(const Decl *D,
485                                         llvm::GlobalValue *GV) {
486   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
487     setGlobalVisibility(GV, ND);
488   else
489     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
490 
491   if (D->hasAttr<UsedAttr>())
492     AddUsedGlobal(GV);
493 
494   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
495     GV->setSection(SA->getName());
496 
497   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
498 }
499 
500 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
501                                                   llvm::Function *F,
502                                                   const CGFunctionInfo &FI) {
503   SetLLVMFunctionAttributes(D, FI, F);
504   SetLLVMFunctionAttributesForDefinition(D, F);
505 
506   F->setLinkage(llvm::Function::InternalLinkage);
507 
508   SetCommonAttributes(D, F);
509 }
510 
511 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
512                                           llvm::Function *F,
513                                           bool IsIncompleteFunction) {
514   if (unsigned IID = F->getIntrinsicID()) {
515     // If this is an intrinsic function, set the function's attributes
516     // to the intrinsic's attributes.
517     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
518     return;
519   }
520 
521   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
522 
523   if (!IsIncompleteFunction)
524     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
525 
526   // Only a few attributes are set on declarations; these may later be
527   // overridden by a definition.
528 
529   if (FD->hasAttr<DLLImportAttr>()) {
530     F->setLinkage(llvm::Function::DLLImportLinkage);
531   } else if (FD->hasAttr<WeakAttr>() ||
532              FD->isWeakImported()) {
533     // "extern_weak" is overloaded in LLVM; we probably should have
534     // separate linkage types for this.
535     F->setLinkage(llvm::Function::ExternalWeakLinkage);
536   } else {
537     F->setLinkage(llvm::Function::ExternalLinkage);
538 
539     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
540     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
541       F->setVisibility(GetLLVMVisibility(LV.visibility()));
542     }
543   }
544 
545   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
546     F->setSection(SA->getName());
547 }
548 
549 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
550   assert(!GV->isDeclaration() &&
551          "Only globals with definition can force usage.");
552   LLVMUsed.push_back(GV);
553 }
554 
555 void CodeGenModule::EmitLLVMUsed() {
556   // Don't create llvm.used if there is no need.
557   if (LLVMUsed.empty())
558     return;
559 
560   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
561 
562   // Convert LLVMUsed to what ConstantArray needs.
563   std::vector<llvm::Constant*> UsedArray;
564   UsedArray.resize(LLVMUsed.size());
565   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
566     UsedArray[i] =
567      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
568                                       i8PTy);
569   }
570 
571   if (UsedArray.empty())
572     return;
573   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
574 
575   llvm::GlobalVariable *GV =
576     new llvm::GlobalVariable(getModule(), ATy, false,
577                              llvm::GlobalValue::AppendingLinkage,
578                              llvm::ConstantArray::get(ATy, UsedArray),
579                              "llvm.used");
580 
581   GV->setSection("llvm.metadata");
582 }
583 
584 void CodeGenModule::EmitDeferred() {
585   // Emit code for any potentially referenced deferred decls.  Since a
586   // previously unused static decl may become used during the generation of code
587   // for a static function, iterate until no  changes are made.
588 
589   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
590     if (!DeferredVTables.empty()) {
591       const CXXRecordDecl *RD = DeferredVTables.back();
592       DeferredVTables.pop_back();
593       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
594       continue;
595     }
596 
597     GlobalDecl D = DeferredDeclsToEmit.back();
598     DeferredDeclsToEmit.pop_back();
599 
600     // Check to see if we've already emitted this.  This is necessary
601     // for a couple of reasons: first, decls can end up in the
602     // deferred-decls queue multiple times, and second, decls can end
603     // up with definitions in unusual ways (e.g. by an extern inline
604     // function acquiring a strong function redefinition).  Just
605     // ignore these cases.
606     //
607     // TODO: That said, looking this up multiple times is very wasteful.
608     llvm::StringRef Name = getMangledName(D);
609     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
610     assert(CGRef && "Deferred decl wasn't referenced?");
611 
612     if (!CGRef->isDeclaration())
613       continue;
614 
615     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
616     // purposes an alias counts as a definition.
617     if (isa<llvm::GlobalAlias>(CGRef))
618       continue;
619 
620     // Otherwise, emit the definition and move on to the next one.
621     EmitGlobalDefinition(D);
622   }
623 }
624 
625 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
626 /// annotation information for a given GlobalValue.  The annotation struct is
627 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
628 /// GlobalValue being annotated.  The second field is the constant string
629 /// created from the AnnotateAttr's annotation.  The third field is a constant
630 /// string containing the name of the translation unit.  The fourth field is
631 /// the line number in the file of the annotated value declaration.
632 ///
633 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
634 ///        appears to.
635 ///
636 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
637                                                 const AnnotateAttr *AA,
638                                                 unsigned LineNo) {
639   llvm::Module *M = &getModule();
640 
641   // get [N x i8] constants for the annotation string, and the filename string
642   // which are the 2nd and 3rd elements of the global annotation structure.
643   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
644   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
645                                                   AA->getAnnotation(), true);
646   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
647                                                   M->getModuleIdentifier(),
648                                                   true);
649 
650   // Get the two global values corresponding to the ConstantArrays we just
651   // created to hold the bytes of the strings.
652   llvm::GlobalValue *annoGV =
653     new llvm::GlobalVariable(*M, anno->getType(), false,
654                              llvm::GlobalValue::PrivateLinkage, anno,
655                              GV->getName());
656   // translation unit name string, emitted into the llvm.metadata section.
657   llvm::GlobalValue *unitGV =
658     new llvm::GlobalVariable(*M, unit->getType(), false,
659                              llvm::GlobalValue::PrivateLinkage, unit,
660                              ".str");
661   unitGV->setUnnamedAddr(true);
662 
663   // Create the ConstantStruct for the global annotation.
664   llvm::Constant *Fields[4] = {
665     llvm::ConstantExpr::getBitCast(GV, SBP),
666     llvm::ConstantExpr::getBitCast(annoGV, SBP),
667     llvm::ConstantExpr::getBitCast(unitGV, SBP),
668     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
669   };
670   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
671 }
672 
673 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
674   // Never defer when EmitAllDecls is specified.
675   if (Features.EmitAllDecls)
676     return false;
677 
678   return !getContext().DeclMustBeEmitted(Global);
679 }
680 
681 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
682   const AliasAttr *AA = VD->getAttr<AliasAttr>();
683   assert(AA && "No alias?");
684 
685   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
686 
687   // See if there is already something with the target's name in the module.
688   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
689 
690   llvm::Constant *Aliasee;
691   if (isa<llvm::FunctionType>(DeclTy))
692     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
693                                       /*ForVTable=*/false);
694   else
695     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
696                                     llvm::PointerType::getUnqual(DeclTy), 0);
697   if (!Entry) {
698     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
699     F->setLinkage(llvm::Function::ExternalWeakLinkage);
700     WeakRefReferences.insert(F);
701   }
702 
703   return Aliasee;
704 }
705 
706 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
707   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
708 
709   // Weak references don't produce any output by themselves.
710   if (Global->hasAttr<WeakRefAttr>())
711     return;
712 
713   // If this is an alias definition (which otherwise looks like a declaration)
714   // emit it now.
715   if (Global->hasAttr<AliasAttr>())
716     return EmitAliasDefinition(GD);
717 
718   // Ignore declarations, they will be emitted on their first use.
719   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
720     if (FD->getIdentifier()) {
721       llvm::StringRef Name = FD->getName();
722       if (Name == "_Block_object_assign") {
723         BlockObjectAssignDecl = FD;
724       } else if (Name == "_Block_object_dispose") {
725         BlockObjectDisposeDecl = FD;
726       }
727     }
728 
729     // Forward declarations are emitted lazily on first use.
730     if (!FD->doesThisDeclarationHaveABody())
731       return;
732   } else {
733     const VarDecl *VD = cast<VarDecl>(Global);
734     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
735 
736     if (VD->getIdentifier()) {
737       llvm::StringRef Name = VD->getName();
738       if (Name == "_NSConcreteGlobalBlock") {
739         NSConcreteGlobalBlockDecl = VD;
740       } else if (Name == "_NSConcreteStackBlock") {
741         NSConcreteStackBlockDecl = VD;
742       }
743     }
744 
745 
746     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
747       return;
748   }
749 
750   // Defer code generation when possible if this is a static definition, inline
751   // function etc.  These we only want to emit if they are used.
752   if (!MayDeferGeneration(Global)) {
753     // Emit the definition if it can't be deferred.
754     EmitGlobalDefinition(GD);
755     return;
756   }
757 
758   // If we're deferring emission of a C++ variable with an
759   // initializer, remember the order in which it appeared in the file.
760   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
761       cast<VarDecl>(Global)->hasInit()) {
762     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
763     CXXGlobalInits.push_back(0);
764   }
765 
766   // If the value has already been used, add it directly to the
767   // DeferredDeclsToEmit list.
768   llvm::StringRef MangledName = getMangledName(GD);
769   if (GetGlobalValue(MangledName))
770     DeferredDeclsToEmit.push_back(GD);
771   else {
772     // Otherwise, remember that we saw a deferred decl with this name.  The
773     // first use of the mangled name will cause it to move into
774     // DeferredDeclsToEmit.
775     DeferredDecls[MangledName] = GD;
776   }
777 }
778 
779 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
780   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
781 
782   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
783                                  Context.getSourceManager(),
784                                  "Generating code for declaration");
785 
786   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
787     // At -O0, don't generate IR for functions with available_externally
788     // linkage.
789     if (CodeGenOpts.OptimizationLevel == 0 &&
790         !Function->hasAttr<AlwaysInlineAttr>() &&
791         getFunctionLinkage(Function)
792                                   == llvm::Function::AvailableExternallyLinkage)
793       return;
794 
795     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
796       // Make sure to emit the definition(s) before we emit the thunks.
797       // This is necessary for the generation of certain thunks.
798       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
799         EmitCXXConstructor(CD, GD.getCtorType());
800       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
801         EmitCXXDestructor(DD, GD.getDtorType());
802       else
803         EmitGlobalFunctionDefinition(GD);
804 
805       if (Method->isVirtual())
806         getVTables().EmitThunks(GD);
807 
808       return;
809     }
810 
811     return EmitGlobalFunctionDefinition(GD);
812   }
813 
814   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
815     return EmitGlobalVarDefinition(VD);
816 
817   assert(0 && "Invalid argument to EmitGlobalDefinition()");
818 }
819 
820 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
821 /// module, create and return an llvm Function with the specified type. If there
822 /// is something in the module with the specified name, return it potentially
823 /// bitcasted to the right type.
824 ///
825 /// If D is non-null, it specifies a decl that correspond to this.  This is used
826 /// to set the attributes on the function when it is first created.
827 llvm::Constant *
828 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
829                                        const llvm::Type *Ty,
830                                        GlobalDecl D, bool ForVTable) {
831   // Lookup the entry, lazily creating it if necessary.
832   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
833   if (Entry) {
834     if (WeakRefReferences.count(Entry)) {
835       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
836       if (FD && !FD->hasAttr<WeakAttr>())
837         Entry->setLinkage(llvm::Function::ExternalLinkage);
838 
839       WeakRefReferences.erase(Entry);
840     }
841 
842     if (Entry->getType()->getElementType() == Ty)
843       return Entry;
844 
845     // Make sure the result is of the correct type.
846     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
847     return llvm::ConstantExpr::getBitCast(Entry, PTy);
848   }
849 
850   // This function doesn't have a complete type (for example, the return
851   // type is an incomplete struct). Use a fake type instead, and make
852   // sure not to try to set attributes.
853   bool IsIncompleteFunction = false;
854 
855   const llvm::FunctionType *FTy;
856   if (isa<llvm::FunctionType>(Ty)) {
857     FTy = cast<llvm::FunctionType>(Ty);
858   } else {
859     FTy = llvm::FunctionType::get(VoidTy, false);
860     IsIncompleteFunction = true;
861   }
862 
863   llvm::Function *F = llvm::Function::Create(FTy,
864                                              llvm::Function::ExternalLinkage,
865                                              MangledName, &getModule());
866   assert(F->getName() == MangledName && "name was uniqued!");
867   if (D.getDecl())
868     SetFunctionAttributes(D, F, IsIncompleteFunction);
869 
870   // This is the first use or definition of a mangled name.  If there is a
871   // deferred decl with this name, remember that we need to emit it at the end
872   // of the file.
873   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
874   if (DDI != DeferredDecls.end()) {
875     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
876     // list, and remove it from DeferredDecls (since we don't need it anymore).
877     DeferredDeclsToEmit.push_back(DDI->second);
878     DeferredDecls.erase(DDI);
879 
880   // Otherwise, there are cases we have to worry about where we're
881   // using a declaration for which we must emit a definition but where
882   // we might not find a top-level definition:
883   //   - member functions defined inline in their classes
884   //   - friend functions defined inline in some class
885   //   - special member functions with implicit definitions
886   // If we ever change our AST traversal to walk into class methods,
887   // this will be unnecessary.
888   //
889   // We also don't emit a definition for a function if it's going to be an entry
890   // in a vtable, unless it's already marked as used.
891   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
892     // Look for a declaration that's lexically in a record.
893     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
894     do {
895       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
896         if (FD->isImplicit() && !ForVTable) {
897           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
898           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
899           break;
900         } else if (FD->doesThisDeclarationHaveABody()) {
901           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
902           break;
903         }
904       }
905       FD = FD->getPreviousDeclaration();
906     } while (FD);
907   }
908 
909   // Make sure the result is of the requested type.
910   if (!IsIncompleteFunction) {
911     assert(F->getType()->getElementType() == Ty);
912     return F;
913   }
914 
915   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
916   return llvm::ConstantExpr::getBitCast(F, PTy);
917 }
918 
919 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
920 /// non-null, then this function will use the specified type if it has to
921 /// create it (this occurs when we see a definition of the function).
922 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
923                                                  const llvm::Type *Ty,
924                                                  bool ForVTable) {
925   // If there was no specific requested type, just convert it now.
926   if (!Ty)
927     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
928 
929   llvm::StringRef MangledName = getMangledName(GD);
930   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
931 }
932 
933 /// CreateRuntimeFunction - Create a new runtime function with the specified
934 /// type and name.
935 llvm::Constant *
936 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
937                                      llvm::StringRef Name) {
938   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
939 }
940 
941 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
942                                  bool ConstantInit) {
943   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
944     return false;
945 
946   if (Context.getLangOptions().CPlusPlus) {
947     if (const RecordType *Record
948           = Context.getBaseElementType(D->getType())->getAs<RecordType>())
949       return ConstantInit &&
950              cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
951              !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
952   }
953 
954   return true;
955 }
956 
957 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
958 /// create and return an llvm GlobalVariable with the specified type.  If there
959 /// is something in the module with the specified name, return it potentially
960 /// bitcasted to the right type.
961 ///
962 /// If D is non-null, it specifies a decl that correspond to this.  This is used
963 /// to set the attributes on the global when it is first created.
964 llvm::Constant *
965 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
966                                      const llvm::PointerType *Ty,
967                                      const VarDecl *D,
968                                      bool UnnamedAddr) {
969   // Lookup the entry, lazily creating it if necessary.
970   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
971   if (Entry) {
972     if (WeakRefReferences.count(Entry)) {
973       if (D && !D->hasAttr<WeakAttr>())
974         Entry->setLinkage(llvm::Function::ExternalLinkage);
975 
976       WeakRefReferences.erase(Entry);
977     }
978 
979     if (UnnamedAddr)
980       Entry->setUnnamedAddr(true);
981 
982     if (Entry->getType() == Ty)
983       return Entry;
984 
985     // Make sure the result is of the correct type.
986     return llvm::ConstantExpr::getBitCast(Entry, Ty);
987   }
988 
989   // This is the first use or definition of a mangled name.  If there is a
990   // deferred decl with this name, remember that we need to emit it at the end
991   // of the file.
992   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
993   if (DDI != DeferredDecls.end()) {
994     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
995     // list, and remove it from DeferredDecls (since we don't need it anymore).
996     DeferredDeclsToEmit.push_back(DDI->second);
997     DeferredDecls.erase(DDI);
998   }
999 
1000   llvm::GlobalVariable *GV =
1001     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1002                              llvm::GlobalValue::ExternalLinkage,
1003                              0, MangledName, 0,
1004                              false, Ty->getAddressSpace());
1005 
1006   // Handle things which are present even on external declarations.
1007   if (D) {
1008     // FIXME: This code is overly simple and should be merged with other global
1009     // handling.
1010     GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1011 
1012     // Set linkage and visibility in case we never see a definition.
1013     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1014     if (LV.linkage() != ExternalLinkage) {
1015       // Don't set internal linkage on declarations.
1016     } else {
1017       if (D->hasAttr<DLLImportAttr>())
1018         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1019       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1020         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1021 
1022       // Set visibility on a declaration only if it's explicit.
1023       if (LV.visibilityExplicit())
1024         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1025     }
1026 
1027     GV->setThreadLocal(D->isThreadSpecified());
1028   }
1029 
1030   return GV;
1031 }
1032 
1033 
1034 llvm::GlobalVariable *
1035 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1036                                       const llvm::Type *Ty,
1037                                       llvm::GlobalValue::LinkageTypes Linkage) {
1038   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1039   llvm::GlobalVariable *OldGV = 0;
1040 
1041 
1042   if (GV) {
1043     // Check if the variable has the right type.
1044     if (GV->getType()->getElementType() == Ty)
1045       return GV;
1046 
1047     // Because C++ name mangling, the only way we can end up with an already
1048     // existing global with the same name is if it has been declared extern "C".
1049       assert(GV->isDeclaration() && "Declaration has wrong type!");
1050     OldGV = GV;
1051   }
1052 
1053   // Create a new variable.
1054   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1055                                 Linkage, 0, Name);
1056 
1057   if (OldGV) {
1058     // Replace occurrences of the old variable if needed.
1059     GV->takeName(OldGV);
1060 
1061     if (!OldGV->use_empty()) {
1062       llvm::Constant *NewPtrForOldDecl =
1063       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1064       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1065     }
1066 
1067     OldGV->eraseFromParent();
1068   }
1069 
1070   return GV;
1071 }
1072 
1073 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1074 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1075 /// then it will be greated with the specified type instead of whatever the
1076 /// normal requested type would be.
1077 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1078                                                   const llvm::Type *Ty) {
1079   assert(D->hasGlobalStorage() && "Not a global variable");
1080   QualType ASTTy = D->getType();
1081   if (Ty == 0)
1082     Ty = getTypes().ConvertTypeForMem(ASTTy);
1083 
1084   const llvm::PointerType *PTy =
1085     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1086 
1087   llvm::StringRef MangledName = getMangledName(D);
1088   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1089 }
1090 
1091 /// CreateRuntimeVariable - Create a new runtime global variable with the
1092 /// specified type and name.
1093 llvm::Constant *
1094 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1095                                      llvm::StringRef Name) {
1096   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1097                                true);
1098 }
1099 
1100 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1101   assert(!D->getInit() && "Cannot emit definite definitions here!");
1102 
1103   if (MayDeferGeneration(D)) {
1104     // If we have not seen a reference to this variable yet, place it
1105     // into the deferred declarations table to be emitted if needed
1106     // later.
1107     llvm::StringRef MangledName = getMangledName(D);
1108     if (!GetGlobalValue(MangledName)) {
1109       DeferredDecls[MangledName] = D;
1110       return;
1111     }
1112   }
1113 
1114   // The tentative definition is the only definition.
1115   EmitGlobalVarDefinition(D);
1116 }
1117 
1118 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1119   if (DefinitionRequired)
1120     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1121 }
1122 
1123 llvm::GlobalVariable::LinkageTypes
1124 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1125   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1126     return llvm::GlobalVariable::InternalLinkage;
1127 
1128   if (const CXXMethodDecl *KeyFunction
1129                                     = RD->getASTContext().getKeyFunction(RD)) {
1130     // If this class has a key function, use that to determine the linkage of
1131     // the vtable.
1132     const FunctionDecl *Def = 0;
1133     if (KeyFunction->hasBody(Def))
1134       KeyFunction = cast<CXXMethodDecl>(Def);
1135 
1136     switch (KeyFunction->getTemplateSpecializationKind()) {
1137       case TSK_Undeclared:
1138       case TSK_ExplicitSpecialization:
1139         // When compiling with optimizations turned on, we emit all vtables,
1140         // even if the key function is not defined in the current translation
1141         // unit. If this is the case, use available_externally linkage.
1142         if (!Def && CodeGenOpts.OptimizationLevel)
1143           return llvm::GlobalVariable::AvailableExternallyLinkage;
1144 
1145         if (KeyFunction->isInlined())
1146           return !Context.getLangOptions().AppleKext ?
1147                    llvm::GlobalVariable::LinkOnceODRLinkage :
1148                    llvm::Function::InternalLinkage;
1149 
1150         return llvm::GlobalVariable::ExternalLinkage;
1151 
1152       case TSK_ImplicitInstantiation:
1153         return !Context.getLangOptions().AppleKext ?
1154                  llvm::GlobalVariable::LinkOnceODRLinkage :
1155                  llvm::Function::InternalLinkage;
1156 
1157       case TSK_ExplicitInstantiationDefinition:
1158         return !Context.getLangOptions().AppleKext ?
1159                  llvm::GlobalVariable::WeakODRLinkage :
1160                  llvm::Function::InternalLinkage;
1161 
1162       case TSK_ExplicitInstantiationDeclaration:
1163         // FIXME: Use available_externally linkage. However, this currently
1164         // breaks LLVM's build due to undefined symbols.
1165         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1166         return !Context.getLangOptions().AppleKext ?
1167                  llvm::GlobalVariable::LinkOnceODRLinkage :
1168                  llvm::Function::InternalLinkage;
1169     }
1170   }
1171 
1172   if (Context.getLangOptions().AppleKext)
1173     return llvm::Function::InternalLinkage;
1174 
1175   switch (RD->getTemplateSpecializationKind()) {
1176   case TSK_Undeclared:
1177   case TSK_ExplicitSpecialization:
1178   case TSK_ImplicitInstantiation:
1179     // FIXME: Use available_externally linkage. However, this currently
1180     // breaks LLVM's build due to undefined symbols.
1181     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1182   case TSK_ExplicitInstantiationDeclaration:
1183     return llvm::GlobalVariable::LinkOnceODRLinkage;
1184 
1185   case TSK_ExplicitInstantiationDefinition:
1186       return llvm::GlobalVariable::WeakODRLinkage;
1187   }
1188 
1189   // Silence GCC warning.
1190   return llvm::GlobalVariable::LinkOnceODRLinkage;
1191 }
1192 
1193 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1194     return Context.toCharUnitsFromBits(
1195       TheTargetData.getTypeStoreSizeInBits(Ty));
1196 }
1197 
1198 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1199   llvm::Constant *Init = 0;
1200   QualType ASTTy = D->getType();
1201   bool NonConstInit = false;
1202 
1203   const Expr *InitExpr = D->getAnyInitializer();
1204 
1205   if (!InitExpr) {
1206     // This is a tentative definition; tentative definitions are
1207     // implicitly initialized with { 0 }.
1208     //
1209     // Note that tentative definitions are only emitted at the end of
1210     // a translation unit, so they should never have incomplete
1211     // type. In addition, EmitTentativeDefinition makes sure that we
1212     // never attempt to emit a tentative definition if a real one
1213     // exists. A use may still exists, however, so we still may need
1214     // to do a RAUW.
1215     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1216     Init = EmitNullConstant(D->getType());
1217   } else {
1218     Init = EmitConstantExpr(InitExpr, D->getType());
1219     if (!Init) {
1220       QualType T = InitExpr->getType();
1221       if (D->getType()->isReferenceType())
1222         T = D->getType();
1223 
1224       if (getLangOptions().CPlusPlus) {
1225         Init = EmitNullConstant(T);
1226         NonConstInit = true;
1227       } else {
1228         ErrorUnsupported(D, "static initializer");
1229         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1230       }
1231     } else {
1232       // We don't need an initializer, so remove the entry for the delayed
1233       // initializer position (just in case this entry was delayed).
1234       if (getLangOptions().CPlusPlus)
1235         DelayedCXXInitPosition.erase(D);
1236     }
1237   }
1238 
1239   const llvm::Type* InitType = Init->getType();
1240   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1241 
1242   // Strip off a bitcast if we got one back.
1243   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1244     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1245            // all zero index gep.
1246            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1247     Entry = CE->getOperand(0);
1248   }
1249 
1250   // Entry is now either a Function or GlobalVariable.
1251   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1252 
1253   // We have a definition after a declaration with the wrong type.
1254   // We must make a new GlobalVariable* and update everything that used OldGV
1255   // (a declaration or tentative definition) with the new GlobalVariable*
1256   // (which will be a definition).
1257   //
1258   // This happens if there is a prototype for a global (e.g.
1259   // "extern int x[];") and then a definition of a different type (e.g.
1260   // "int x[10];"). This also happens when an initializer has a different type
1261   // from the type of the global (this happens with unions).
1262   if (GV == 0 ||
1263       GV->getType()->getElementType() != InitType ||
1264       GV->getType()->getAddressSpace() !=
1265         getContext().getTargetAddressSpace(ASTTy)) {
1266 
1267     // Move the old entry aside so that we'll create a new one.
1268     Entry->setName(llvm::StringRef());
1269 
1270     // Make a new global with the correct type, this is now guaranteed to work.
1271     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1272 
1273     // Replace all uses of the old global with the new global
1274     llvm::Constant *NewPtrForOldDecl =
1275         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1276     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1277 
1278     // Erase the old global, since it is no longer used.
1279     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1280   }
1281 
1282   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1283     SourceManager &SM = Context.getSourceManager();
1284     AddAnnotation(EmitAnnotateAttr(GV, AA,
1285                               SM.getInstantiationLineNumber(D->getLocation())));
1286   }
1287 
1288   GV->setInitializer(Init);
1289 
1290   // If it is safe to mark the global 'constant', do so now.
1291   GV->setConstant(false);
1292   if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1293     GV->setConstant(true);
1294 
1295   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1296 
1297   // Set the llvm linkage type as appropriate.
1298   llvm::GlobalValue::LinkageTypes Linkage =
1299     GetLLVMLinkageVarDefinition(D, GV);
1300   GV->setLinkage(Linkage);
1301   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1302     // common vars aren't constant even if declared const.
1303     GV->setConstant(false);
1304 
1305   SetCommonAttributes(D, GV);
1306 
1307   // Emit the initializer function if necessary.
1308   if (NonConstInit)
1309     EmitCXXGlobalVarDeclInitFunc(D, GV);
1310 
1311   // Emit global variable debug information.
1312   if (CGDebugInfo *DI = getModuleDebugInfo()) {
1313     DI->setLocation(D->getLocation());
1314     DI->EmitGlobalVariable(GV, D);
1315   }
1316 }
1317 
1318 llvm::GlobalValue::LinkageTypes
1319 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1320                                            llvm::GlobalVariable *GV) {
1321   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1322   if (Linkage == GVA_Internal)
1323     return llvm::Function::InternalLinkage;
1324   else if (D->hasAttr<DLLImportAttr>())
1325     return llvm::Function::DLLImportLinkage;
1326   else if (D->hasAttr<DLLExportAttr>())
1327     return llvm::Function::DLLExportLinkage;
1328   else if (D->hasAttr<WeakAttr>()) {
1329     if (GV->isConstant())
1330       return llvm::GlobalVariable::WeakODRLinkage;
1331     else
1332       return llvm::GlobalVariable::WeakAnyLinkage;
1333   } else if (Linkage == GVA_TemplateInstantiation ||
1334              Linkage == GVA_ExplicitTemplateInstantiation)
1335     return llvm::GlobalVariable::WeakODRLinkage;
1336   else if (!getLangOptions().CPlusPlus &&
1337            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1338              D->getAttr<CommonAttr>()) &&
1339            !D->hasExternalStorage() && !D->getInit() &&
1340            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1341     // Thread local vars aren't considered common linkage.
1342     return llvm::GlobalVariable::CommonLinkage;
1343   }
1344   return llvm::GlobalVariable::ExternalLinkage;
1345 }
1346 
1347 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1348 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1349 /// existing call uses of the old function in the module, this adjusts them to
1350 /// call the new function directly.
1351 ///
1352 /// This is not just a cleanup: the always_inline pass requires direct calls to
1353 /// functions to be able to inline them.  If there is a bitcast in the way, it
1354 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1355 /// run at -O0.
1356 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1357                                                       llvm::Function *NewFn) {
1358   // If we're redefining a global as a function, don't transform it.
1359   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1360   if (OldFn == 0) return;
1361 
1362   const llvm::Type *NewRetTy = NewFn->getReturnType();
1363   llvm::SmallVector<llvm::Value*, 4> ArgList;
1364 
1365   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1366        UI != E; ) {
1367     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1368     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1369     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1370     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1371     llvm::CallSite CS(CI);
1372     if (!CI || !CS.isCallee(I)) continue;
1373 
1374     // If the return types don't match exactly, and if the call isn't dead, then
1375     // we can't transform this call.
1376     if (CI->getType() != NewRetTy && !CI->use_empty())
1377       continue;
1378 
1379     // If the function was passed too few arguments, don't transform.  If extra
1380     // arguments were passed, we silently drop them.  If any of the types
1381     // mismatch, we don't transform.
1382     unsigned ArgNo = 0;
1383     bool DontTransform = false;
1384     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1385          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1386       if (CS.arg_size() == ArgNo ||
1387           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1388         DontTransform = true;
1389         break;
1390       }
1391     }
1392     if (DontTransform)
1393       continue;
1394 
1395     // Okay, we can transform this.  Create the new call instruction and copy
1396     // over the required information.
1397     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1398     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1399                                                      ArgList.end(), "", CI);
1400     ArgList.clear();
1401     if (!NewCall->getType()->isVoidTy())
1402       NewCall->takeName(CI);
1403     NewCall->setAttributes(CI->getAttributes());
1404     NewCall->setCallingConv(CI->getCallingConv());
1405 
1406     // Finally, remove the old call, replacing any uses with the new one.
1407     if (!CI->use_empty())
1408       CI->replaceAllUsesWith(NewCall);
1409 
1410     // Copy debug location attached to CI.
1411     if (!CI->getDebugLoc().isUnknown())
1412       NewCall->setDebugLoc(CI->getDebugLoc());
1413     CI->eraseFromParent();
1414   }
1415 }
1416 
1417 
1418 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1419   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1420 
1421   // Compute the function info and LLVM type.
1422   const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1423   bool variadic = false;
1424   if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1425     variadic = fpt->isVariadic();
1426   const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1427 
1428   // Get or create the prototype for the function.
1429   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1430 
1431   // Strip off a bitcast if we got one back.
1432   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1433     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1434     Entry = CE->getOperand(0);
1435   }
1436 
1437 
1438   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1439     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1440 
1441     // If the types mismatch then we have to rewrite the definition.
1442     assert(OldFn->isDeclaration() &&
1443            "Shouldn't replace non-declaration");
1444 
1445     // F is the Function* for the one with the wrong type, we must make a new
1446     // Function* and update everything that used F (a declaration) with the new
1447     // Function* (which will be a definition).
1448     //
1449     // This happens if there is a prototype for a function
1450     // (e.g. "int f()") and then a definition of a different type
1451     // (e.g. "int f(int x)").  Move the old function aside so that it
1452     // doesn't interfere with GetAddrOfFunction.
1453     OldFn->setName(llvm::StringRef());
1454     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1455 
1456     // If this is an implementation of a function without a prototype, try to
1457     // replace any existing uses of the function (which may be calls) with uses
1458     // of the new function
1459     if (D->getType()->isFunctionNoProtoType()) {
1460       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1461       OldFn->removeDeadConstantUsers();
1462     }
1463 
1464     // Replace uses of F with the Function we will endow with a body.
1465     if (!Entry->use_empty()) {
1466       llvm::Constant *NewPtrForOldDecl =
1467         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1468       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1469     }
1470 
1471     // Ok, delete the old function now, which is dead.
1472     OldFn->eraseFromParent();
1473 
1474     Entry = NewFn;
1475   }
1476 
1477   // We need to set linkage and visibility on the function before
1478   // generating code for it because various parts of IR generation
1479   // want to propagate this information down (e.g. to local static
1480   // declarations).
1481   llvm::Function *Fn = cast<llvm::Function>(Entry);
1482   setFunctionLinkage(D, Fn);
1483 
1484   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1485   setGlobalVisibility(Fn, D);
1486 
1487   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1488 
1489   SetFunctionDefinitionAttributes(D, Fn);
1490   SetLLVMFunctionAttributesForDefinition(D, Fn);
1491 
1492   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1493     AddGlobalCtor(Fn, CA->getPriority());
1494   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1495     AddGlobalDtor(Fn, DA->getPriority());
1496 }
1497 
1498 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1499   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1500   const AliasAttr *AA = D->getAttr<AliasAttr>();
1501   assert(AA && "Not an alias?");
1502 
1503   llvm::StringRef MangledName = getMangledName(GD);
1504 
1505   // If there is a definition in the module, then it wins over the alias.
1506   // This is dubious, but allow it to be safe.  Just ignore the alias.
1507   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1508   if (Entry && !Entry->isDeclaration())
1509     return;
1510 
1511   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1512 
1513   // Create a reference to the named value.  This ensures that it is emitted
1514   // if a deferred decl.
1515   llvm::Constant *Aliasee;
1516   if (isa<llvm::FunctionType>(DeclTy))
1517     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1518                                       /*ForVTable=*/false);
1519   else
1520     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1521                                     llvm::PointerType::getUnqual(DeclTy), 0);
1522 
1523   // Create the new alias itself, but don't set a name yet.
1524   llvm::GlobalValue *GA =
1525     new llvm::GlobalAlias(Aliasee->getType(),
1526                           llvm::Function::ExternalLinkage,
1527                           "", Aliasee, &getModule());
1528 
1529   if (Entry) {
1530     assert(Entry->isDeclaration());
1531 
1532     // If there is a declaration in the module, then we had an extern followed
1533     // by the alias, as in:
1534     //   extern int test6();
1535     //   ...
1536     //   int test6() __attribute__((alias("test7")));
1537     //
1538     // Remove it and replace uses of it with the alias.
1539     GA->takeName(Entry);
1540 
1541     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1542                                                           Entry->getType()));
1543     Entry->eraseFromParent();
1544   } else {
1545     GA->setName(MangledName);
1546   }
1547 
1548   // Set attributes which are particular to an alias; this is a
1549   // specialization of the attributes which may be set on a global
1550   // variable/function.
1551   if (D->hasAttr<DLLExportAttr>()) {
1552     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1553       // The dllexport attribute is ignored for undefined symbols.
1554       if (FD->hasBody())
1555         GA->setLinkage(llvm::Function::DLLExportLinkage);
1556     } else {
1557       GA->setLinkage(llvm::Function::DLLExportLinkage);
1558     }
1559   } else if (D->hasAttr<WeakAttr>() ||
1560              D->hasAttr<WeakRefAttr>() ||
1561              D->isWeakImported()) {
1562     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1563   }
1564 
1565   SetCommonAttributes(D, GA);
1566 }
1567 
1568 /// getBuiltinLibFunction - Given a builtin id for a function like
1569 /// "__builtin_fabsf", return a Function* for "fabsf".
1570 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1571                                                   unsigned BuiltinID) {
1572   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1573           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1574          "isn't a lib fn");
1575 
1576   // Get the name, skip over the __builtin_ prefix (if necessary).
1577   llvm::StringRef Name;
1578   GlobalDecl D(FD);
1579 
1580   // If the builtin has been declared explicitly with an assembler label,
1581   // use the mangled name. This differs from the plain label on platforms
1582   // that prefix labels.
1583   if (FD->hasAttr<AsmLabelAttr>())
1584     Name = getMangledName(D);
1585   else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1586     Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1587   else
1588     Name = Context.BuiltinInfo.GetName(BuiltinID);
1589 
1590 
1591   const llvm::FunctionType *Ty =
1592     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1593 
1594   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1595 }
1596 
1597 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1598                                             unsigned NumTys) {
1599   return llvm::Intrinsic::getDeclaration(&getModule(),
1600                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1601 }
1602 
1603 static llvm::StringMapEntry<llvm::Constant*> &
1604 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1605                          const StringLiteral *Literal,
1606                          bool TargetIsLSB,
1607                          bool &IsUTF16,
1608                          unsigned &StringLength) {
1609   llvm::StringRef String = Literal->getString();
1610   unsigned NumBytes = String.size();
1611 
1612   // Check for simple case.
1613   if (!Literal->containsNonAsciiOrNull()) {
1614     StringLength = NumBytes;
1615     return Map.GetOrCreateValue(String);
1616   }
1617 
1618   // Otherwise, convert the UTF8 literals into a byte string.
1619   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1620   const UTF8 *FromPtr = (UTF8 *)String.data();
1621   UTF16 *ToPtr = &ToBuf[0];
1622 
1623   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1624                            &ToPtr, ToPtr + NumBytes,
1625                            strictConversion);
1626 
1627   // ConvertUTF8toUTF16 returns the length in ToPtr.
1628   StringLength = ToPtr - &ToBuf[0];
1629 
1630   // Render the UTF-16 string into a byte array and convert to the target byte
1631   // order.
1632   //
1633   // FIXME: This isn't something we should need to do here.
1634   llvm::SmallString<128> AsBytes;
1635   AsBytes.reserve(StringLength * 2);
1636   for (unsigned i = 0; i != StringLength; ++i) {
1637     unsigned short Val = ToBuf[i];
1638     if (TargetIsLSB) {
1639       AsBytes.push_back(Val & 0xFF);
1640       AsBytes.push_back(Val >> 8);
1641     } else {
1642       AsBytes.push_back(Val >> 8);
1643       AsBytes.push_back(Val & 0xFF);
1644     }
1645   }
1646   // Append one extra null character, the second is automatically added by our
1647   // caller.
1648   AsBytes.push_back(0);
1649 
1650   IsUTF16 = true;
1651   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1652 }
1653 
1654 static llvm::StringMapEntry<llvm::Constant*> &
1655 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1656 		       const StringLiteral *Literal,
1657 		       unsigned &StringLength)
1658 {
1659 	llvm::StringRef String = Literal->getString();
1660 	StringLength = String.size();
1661 	return Map.GetOrCreateValue(String);
1662 }
1663 
1664 llvm::Constant *
1665 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1666   unsigned StringLength = 0;
1667   bool isUTF16 = false;
1668   llvm::StringMapEntry<llvm::Constant*> &Entry =
1669     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1670                              getTargetData().isLittleEndian(),
1671                              isUTF16, StringLength);
1672 
1673   if (llvm::Constant *C = Entry.getValue())
1674     return C;
1675 
1676   llvm::Constant *Zero =
1677       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1678   llvm::Constant *Zeros[] = { Zero, Zero };
1679 
1680   // If we don't already have it, get __CFConstantStringClassReference.
1681   if (!CFConstantStringClassRef) {
1682     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1683     Ty = llvm::ArrayType::get(Ty, 0);
1684     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1685                                            "__CFConstantStringClassReference");
1686     // Decay array -> ptr
1687     CFConstantStringClassRef =
1688       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1689   }
1690 
1691   QualType CFTy = getContext().getCFConstantStringType();
1692 
1693   const llvm::StructType *STy =
1694     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1695 
1696   std::vector<llvm::Constant*> Fields(4);
1697 
1698   // Class pointer.
1699   Fields[0] = CFConstantStringClassRef;
1700 
1701   // Flags.
1702   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1703   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1704     llvm::ConstantInt::get(Ty, 0x07C8);
1705 
1706   // String pointer.
1707   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1708 
1709   llvm::GlobalValue::LinkageTypes Linkage;
1710   bool isConstant;
1711   if (isUTF16) {
1712     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1713     Linkage = llvm::GlobalValue::InternalLinkage;
1714     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1715     // does make plain ascii ones writable.
1716     isConstant = true;
1717   } else {
1718     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1719     // when using private linkage. It is not clear if this is a bug in ld
1720     // or a reasonable new restriction.
1721     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1722     isConstant = !Features.WritableStrings;
1723   }
1724 
1725   llvm::GlobalVariable *GV =
1726     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1727                              ".str");
1728   GV->setUnnamedAddr(true);
1729   if (isUTF16) {
1730     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1731     GV->setAlignment(Align.getQuantity());
1732   } else {
1733     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1734     GV->setAlignment(Align.getQuantity());
1735   }
1736   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1737 
1738   // String length.
1739   Ty = getTypes().ConvertType(getContext().LongTy);
1740   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1741 
1742   // The struct.
1743   C = llvm::ConstantStruct::get(STy, Fields);
1744   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1745                                 llvm::GlobalVariable::PrivateLinkage, C,
1746                                 "_unnamed_cfstring_");
1747   if (const char *Sect = getContext().Target.getCFStringSection())
1748     GV->setSection(Sect);
1749   Entry.setValue(GV);
1750 
1751   return GV;
1752 }
1753 
1754 llvm::Constant *
1755 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1756   unsigned StringLength = 0;
1757   llvm::StringMapEntry<llvm::Constant*> &Entry =
1758     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1759 
1760   if (llvm::Constant *C = Entry.getValue())
1761     return C;
1762 
1763   llvm::Constant *Zero =
1764   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1765   llvm::Constant *Zeros[] = { Zero, Zero };
1766 
1767   // If we don't already have it, get _NSConstantStringClassReference.
1768   if (!ConstantStringClassRef) {
1769     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1770     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1771     Ty = llvm::ArrayType::get(Ty, 0);
1772     llvm::Constant *GV;
1773     if (StringClass.empty())
1774       GV = CreateRuntimeVariable(Ty,
1775                                  Features.ObjCNonFragileABI ?
1776                                  "OBJC_CLASS_$_NSConstantString" :
1777                                  "_NSConstantStringClassReference");
1778     else {
1779       std::string str;
1780       if (Features.ObjCNonFragileABI)
1781         str = "OBJC_CLASS_$_" + StringClass;
1782       else
1783         str = "_" + StringClass + "ClassReference";
1784       GV = CreateRuntimeVariable(Ty, str);
1785     }
1786     // Decay array -> ptr
1787     ConstantStringClassRef =
1788     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1789   }
1790 
1791   QualType NSTy = getContext().getNSConstantStringType();
1792 
1793   const llvm::StructType *STy =
1794   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1795 
1796   std::vector<llvm::Constant*> Fields(3);
1797 
1798   // Class pointer.
1799   Fields[0] = ConstantStringClassRef;
1800 
1801   // String pointer.
1802   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1803 
1804   llvm::GlobalValue::LinkageTypes Linkage;
1805   bool isConstant;
1806   Linkage = llvm::GlobalValue::PrivateLinkage;
1807   isConstant = !Features.WritableStrings;
1808 
1809   llvm::GlobalVariable *GV =
1810   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1811                            ".str");
1812   GV->setUnnamedAddr(true);
1813   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1814   GV->setAlignment(Align.getQuantity());
1815   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1816 
1817   // String length.
1818   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1819   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1820 
1821   // The struct.
1822   C = llvm::ConstantStruct::get(STy, Fields);
1823   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1824                                 llvm::GlobalVariable::PrivateLinkage, C,
1825                                 "_unnamed_nsstring_");
1826   // FIXME. Fix section.
1827   if (const char *Sect =
1828         Features.ObjCNonFragileABI
1829           ? getContext().Target.getNSStringNonFragileABISection()
1830           : getContext().Target.getNSStringSection())
1831     GV->setSection(Sect);
1832   Entry.setValue(GV);
1833 
1834   return GV;
1835 }
1836 
1837 /// GetStringForStringLiteral - Return the appropriate bytes for a
1838 /// string literal, properly padded to match the literal type.
1839 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1840   const ASTContext &Context = getContext();
1841   const ConstantArrayType *CAT =
1842     Context.getAsConstantArrayType(E->getType());
1843   assert(CAT && "String isn't pointer or array!");
1844 
1845   // Resize the string to the right size.
1846   uint64_t RealLen = CAT->getSize().getZExtValue();
1847 
1848   if (E->isWide())
1849     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1850 
1851   std::string Str = E->getString().str();
1852   Str.resize(RealLen, '\0');
1853 
1854   return Str;
1855 }
1856 
1857 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1858 /// constant array for the given string literal.
1859 llvm::Constant *
1860 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1861   // FIXME: This can be more efficient.
1862   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1863   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1864   if (S->isWide()) {
1865     llvm::Type *DestTy =
1866         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1867     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1868   }
1869   return C;
1870 }
1871 
1872 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1873 /// array for the given ObjCEncodeExpr node.
1874 llvm::Constant *
1875 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1876   std::string Str;
1877   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1878 
1879   return GetAddrOfConstantCString(Str);
1880 }
1881 
1882 
1883 /// GenerateWritableString -- Creates storage for a string literal.
1884 static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1885                                              bool constant,
1886                                              CodeGenModule &CGM,
1887                                              const char *GlobalName) {
1888   // Create Constant for this string literal. Don't add a '\0'.
1889   llvm::Constant *C =
1890       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1891 
1892   // Create a global variable for this string
1893   llvm::GlobalVariable *GV =
1894     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1895                              llvm::GlobalValue::PrivateLinkage,
1896                              C, GlobalName);
1897   GV->setUnnamedAddr(true);
1898   return GV;
1899 }
1900 
1901 /// GetAddrOfConstantString - Returns a pointer to a character array
1902 /// containing the literal. This contents are exactly that of the
1903 /// given string, i.e. it will not be null terminated automatically;
1904 /// see GetAddrOfConstantCString. Note that whether the result is
1905 /// actually a pointer to an LLVM constant depends on
1906 /// Feature.WriteableStrings.
1907 ///
1908 /// The result has pointer to array type.
1909 llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1910                                                        const char *GlobalName) {
1911   bool IsConstant = !Features.WritableStrings;
1912 
1913   // Get the default prefix if a name wasn't specified.
1914   if (!GlobalName)
1915     GlobalName = ".str";
1916 
1917   // Don't share any string literals if strings aren't constant.
1918   if (!IsConstant)
1919     return GenerateStringLiteral(Str, false, *this, GlobalName);
1920 
1921   llvm::StringMapEntry<llvm::Constant *> &Entry =
1922     ConstantStringMap.GetOrCreateValue(Str);
1923 
1924   if (Entry.getValue())
1925     return Entry.getValue();
1926 
1927   // Create a global variable for this.
1928   llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1929   Entry.setValue(C);
1930   return C;
1931 }
1932 
1933 /// GetAddrOfConstantCString - Returns a pointer to a character
1934 /// array containing the literal and a terminating '\0'
1935 /// character. The result has pointer to array type.
1936 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1937                                                         const char *GlobalName){
1938   llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1939   return GetAddrOfConstantString(StrWithNull, GlobalName);
1940 }
1941 
1942 /// EmitObjCPropertyImplementations - Emit information for synthesized
1943 /// properties for an implementation.
1944 void CodeGenModule::EmitObjCPropertyImplementations(const
1945                                                     ObjCImplementationDecl *D) {
1946   for (ObjCImplementationDecl::propimpl_iterator
1947          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1948     ObjCPropertyImplDecl *PID = *i;
1949 
1950     // Dynamic is just for type-checking.
1951     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1952       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1953 
1954       // Determine which methods need to be implemented, some may have
1955       // been overridden. Note that ::isSynthesized is not the method
1956       // we want, that just indicates if the decl came from a
1957       // property. What we want to know is if the method is defined in
1958       // this implementation.
1959       if (!D->getInstanceMethod(PD->getGetterName()))
1960         CodeGenFunction(*this).GenerateObjCGetter(
1961                                  const_cast<ObjCImplementationDecl *>(D), PID);
1962       if (!PD->isReadOnly() &&
1963           !D->getInstanceMethod(PD->getSetterName()))
1964         CodeGenFunction(*this).GenerateObjCSetter(
1965                                  const_cast<ObjCImplementationDecl *>(D), PID);
1966     }
1967   }
1968 }
1969 
1970 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1971   ObjCInterfaceDecl *iface
1972     = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1973   for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1974        ivar; ivar = ivar->getNextIvar())
1975     if (ivar->getType().isDestructedType())
1976       return true;
1977 
1978   return false;
1979 }
1980 
1981 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1982 /// for an implementation.
1983 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1984   // We might need a .cxx_destruct even if we don't have any ivar initializers.
1985   if (needsDestructMethod(D)) {
1986     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1987     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1988     ObjCMethodDecl *DTORMethod =
1989       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1990                              cxxSelector, getContext().VoidTy, 0, D, true,
1991                              false, true, false, ObjCMethodDecl::Required);
1992     D->addInstanceMethod(DTORMethod);
1993     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1994   }
1995 
1996   // If the implementation doesn't have any ivar initializers, we don't need
1997   // a .cxx_construct.
1998   if (D->getNumIvarInitializers() == 0)
1999     return;
2000 
2001   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2002   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2003   // The constructor returns 'self'.
2004   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2005                                                 D->getLocation(),
2006                                                 D->getLocation(), cxxSelector,
2007                                                 getContext().getObjCIdType(), 0,
2008                                                 D, true, false, true, false,
2009                                                 ObjCMethodDecl::Required);
2010   D->addInstanceMethod(CTORMethod);
2011   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2012 }
2013 
2014 /// EmitNamespace - Emit all declarations in a namespace.
2015 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2016   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2017        I != E; ++I)
2018     EmitTopLevelDecl(*I);
2019 }
2020 
2021 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2022 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2023   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2024       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2025     ErrorUnsupported(LSD, "linkage spec");
2026     return;
2027   }
2028 
2029   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2030        I != E; ++I)
2031     EmitTopLevelDecl(*I);
2032 }
2033 
2034 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2035 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2036   // If an error has occurred, stop code generation, but continue
2037   // parsing and semantic analysis (to ensure all warnings and errors
2038   // are emitted).
2039   if (Diags.hasErrorOccurred())
2040     return;
2041 
2042   // Ignore dependent declarations.
2043   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2044     return;
2045 
2046   switch (D->getKind()) {
2047   case Decl::CXXConversion:
2048   case Decl::CXXMethod:
2049   case Decl::Function:
2050     // Skip function templates
2051     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2052         cast<FunctionDecl>(D)->isLateTemplateParsed())
2053       return;
2054 
2055     EmitGlobal(cast<FunctionDecl>(D));
2056     break;
2057 
2058   case Decl::Var:
2059     EmitGlobal(cast<VarDecl>(D));
2060     break;
2061 
2062   // Indirect fields from global anonymous structs and unions can be
2063   // ignored; only the actual variable requires IR gen support.
2064   case Decl::IndirectField:
2065     break;
2066 
2067   // C++ Decls
2068   case Decl::Namespace:
2069     EmitNamespace(cast<NamespaceDecl>(D));
2070     break;
2071     // No code generation needed.
2072   case Decl::UsingShadow:
2073   case Decl::Using:
2074   case Decl::UsingDirective:
2075   case Decl::ClassTemplate:
2076   case Decl::FunctionTemplate:
2077   case Decl::TypeAliasTemplate:
2078   case Decl::NamespaceAlias:
2079     break;
2080   case Decl::CXXConstructor:
2081     // Skip function templates
2082     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2083         cast<FunctionDecl>(D)->isLateTemplateParsed())
2084       return;
2085 
2086     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2087     break;
2088   case Decl::CXXDestructor:
2089     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2090       return;
2091     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2092     break;
2093 
2094   case Decl::StaticAssert:
2095     // Nothing to do.
2096     break;
2097 
2098   // Objective-C Decls
2099 
2100   // Forward declarations, no (immediate) code generation.
2101   case Decl::ObjCClass:
2102   case Decl::ObjCForwardProtocol:
2103   case Decl::ObjCInterface:
2104     break;
2105 
2106   case Decl::ObjCCategory: {
2107     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2108     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2109       Context.ResetObjCLayout(CD->getClassInterface());
2110     break;
2111   }
2112 
2113   case Decl::ObjCProtocol:
2114     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2115     break;
2116 
2117   case Decl::ObjCCategoryImpl:
2118     // Categories have properties but don't support synthesize so we
2119     // can ignore them here.
2120     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2121     break;
2122 
2123   case Decl::ObjCImplementation: {
2124     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2125     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2126       Context.ResetObjCLayout(OMD->getClassInterface());
2127     EmitObjCPropertyImplementations(OMD);
2128     EmitObjCIvarInitializations(OMD);
2129     Runtime->GenerateClass(OMD);
2130     break;
2131   }
2132   case Decl::ObjCMethod: {
2133     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2134     // If this is not a prototype, emit the body.
2135     if (OMD->getBody())
2136       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2137     break;
2138   }
2139   case Decl::ObjCCompatibleAlias:
2140     // compatibility-alias is a directive and has no code gen.
2141     break;
2142 
2143   case Decl::LinkageSpec:
2144     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2145     break;
2146 
2147   case Decl::FileScopeAsm: {
2148     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2149     llvm::StringRef AsmString = AD->getAsmString()->getString();
2150 
2151     const std::string &S = getModule().getModuleInlineAsm();
2152     if (S.empty())
2153       getModule().setModuleInlineAsm(AsmString);
2154     else
2155       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2156     break;
2157   }
2158 
2159   default:
2160     // Make sure we handled everything we should, every other kind is a
2161     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2162     // function. Need to recode Decl::Kind to do that easily.
2163     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2164   }
2165 }
2166 
2167 /// Turns the given pointer into a constant.
2168 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2169                                           const void *Ptr) {
2170   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2171   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2172   return llvm::ConstantInt::get(i64, PtrInt);
2173 }
2174 
2175 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2176                                    llvm::NamedMDNode *&GlobalMetadata,
2177                                    GlobalDecl D,
2178                                    llvm::GlobalValue *Addr) {
2179   if (!GlobalMetadata)
2180     GlobalMetadata =
2181       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2182 
2183   // TODO: should we report variant information for ctors/dtors?
2184   llvm::Value *Ops[] = {
2185     Addr,
2186     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2187   };
2188   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2189 }
2190 
2191 /// Emits metadata nodes associating all the global values in the
2192 /// current module with the Decls they came from.  This is useful for
2193 /// projects using IR gen as a subroutine.
2194 ///
2195 /// Since there's currently no way to associate an MDNode directly
2196 /// with an llvm::GlobalValue, we create a global named metadata
2197 /// with the name 'clang.global.decl.ptrs'.
2198 void CodeGenModule::EmitDeclMetadata() {
2199   llvm::NamedMDNode *GlobalMetadata = 0;
2200 
2201   // StaticLocalDeclMap
2202   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2203          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2204        I != E; ++I) {
2205     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2206     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2207   }
2208 }
2209 
2210 /// Emits metadata nodes for all the local variables in the current
2211 /// function.
2212 void CodeGenFunction::EmitDeclMetadata() {
2213   if (LocalDeclMap.empty()) return;
2214 
2215   llvm::LLVMContext &Context = getLLVMContext();
2216 
2217   // Find the unique metadata ID for this name.
2218   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2219 
2220   llvm::NamedMDNode *GlobalMetadata = 0;
2221 
2222   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2223          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2224     const Decl *D = I->first;
2225     llvm::Value *Addr = I->second;
2226 
2227     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2228       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2229       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2230     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2231       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2232       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2233     }
2234   }
2235 }
2236 
2237 void CodeGenModule::EmitCoverageFile() {
2238   if (!getCodeGenOpts().CoverageFile.empty()) {
2239     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2240       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2241       llvm::LLVMContext &Ctx = TheModule.getContext();
2242       llvm::MDString *CoverageFile =
2243           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2244       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2245         llvm::MDNode *CU = CUNode->getOperand(i);
2246         llvm::Value *node[] = { CoverageFile, CU };
2247         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2248         GCov->addOperand(N);
2249       }
2250     }
2251   }
2252 }
2253 
2254 ///@name Custom Runtime Function Interfaces
2255 ///@{
2256 //
2257 // FIXME: These can be eliminated once we can have clients just get the required
2258 // AST nodes from the builtin tables.
2259 
2260 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2261   if (BlockObjectDispose)
2262     return BlockObjectDispose;
2263 
2264   // If we saw an explicit decl, use that.
2265   if (BlockObjectDisposeDecl) {
2266     return BlockObjectDispose = GetAddrOfFunction(
2267       BlockObjectDisposeDecl,
2268       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2269   }
2270 
2271   // Otherwise construct the function by hand.
2272   const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2273   const llvm::FunctionType *fty
2274     = llvm::FunctionType::get(VoidTy, args, false);
2275   return BlockObjectDispose =
2276     CreateRuntimeFunction(fty, "_Block_object_dispose");
2277 }
2278 
2279 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2280   if (BlockObjectAssign)
2281     return BlockObjectAssign;
2282 
2283   // If we saw an explicit decl, use that.
2284   if (BlockObjectAssignDecl) {
2285     return BlockObjectAssign = GetAddrOfFunction(
2286       BlockObjectAssignDecl,
2287       getTypes().GetFunctionType(BlockObjectAssignDecl));
2288   }
2289 
2290   // Otherwise construct the function by hand.
2291   const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2292   const llvm::FunctionType *fty
2293     = llvm::FunctionType::get(VoidTy, args, false);
2294   return BlockObjectAssign =
2295     CreateRuntimeFunction(fty, "_Block_object_assign");
2296 }
2297 
2298 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2299   if (NSConcreteGlobalBlock)
2300     return NSConcreteGlobalBlock;
2301 
2302   // If we saw an explicit decl, use that.
2303   if (NSConcreteGlobalBlockDecl) {
2304     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2305       NSConcreteGlobalBlockDecl,
2306       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2307   }
2308 
2309   // Otherwise construct the variable by hand.
2310   return NSConcreteGlobalBlock =
2311     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2312 }
2313 
2314 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2315   if (NSConcreteStackBlock)
2316     return NSConcreteStackBlock;
2317 
2318   // If we saw an explicit decl, use that.
2319   if (NSConcreteStackBlockDecl) {
2320     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2321       NSConcreteStackBlockDecl,
2322       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2323   }
2324 
2325   // Otherwise construct the variable by hand.
2326   return NSConcreteStackBlock =
2327     CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2328 }
2329 
2330 ///@}
2331