xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 94cfc603d1896f0f76e7ede712280f526bc88602)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
91       Types(*this), VTables(*this), ObjCRuntime(nullptr),
92       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
93       DebugInfo(nullptr), ObjCData(nullptr),
94       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
95       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
96       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
97       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
98       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
99       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
100       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)),
101       WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles,
102                                    C.getSourceManager()) {
103 
104   // Initialize the type cache.
105   llvm::LLVMContext &LLVMContext = M.getContext();
106   VoidTy = llvm::Type::getVoidTy(LLVMContext);
107   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
108   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
109   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
110   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
111   FloatTy = llvm::Type::getFloatTy(LLVMContext);
112   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
113   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
114   PointerAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
120   Int8PtrTy = Int8Ty->getPointerTo(0);
121   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
122 
123   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
124   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
125 
126   if (LangOpts.ObjC1)
127     createObjCRuntime();
128   if (LangOpts.OpenCL)
129     createOpenCLRuntime();
130   if (LangOpts.OpenMP)
131     createOpenMPRuntime();
132   if (LangOpts.CUDA)
133     createCUDARuntime();
134 
135   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
136   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
137       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
138     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
139                            getCXXABI().getMangleContext());
140 
141   // If debug info or coverage generation is enabled, create the CGDebugInfo
142   // object.
143   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
144       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
145     DebugInfo = new CGDebugInfo(*this);
146 
147   Block.GlobalUniqueCount = 0;
148 
149   if (C.getLangOpts().ObjC1)
150     ObjCData = new ObjCEntrypoints();
151 
152   if (CodeGenOpts.hasProfileClangUse()) {
153     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
154         CodeGenOpts.ProfileInstrumentUsePath);
155     if (std::error_code EC = ReaderOrErr.getError()) {
156       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
157                                               "Could not read profile %0: %1");
158       getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
159                                 << EC.message();
160     } else
161       PGOReader = std::move(ReaderOrErr.get());
162   }
163 
164   // If coverage mapping generation is enabled, create the
165   // CoverageMappingModuleGen object.
166   if (CodeGenOpts.CoverageMapping)
167     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
168 }
169 
170 CodeGenModule::~CodeGenModule() {
171   delete ObjCRuntime;
172   delete OpenCLRuntime;
173   delete OpenMPRuntime;
174   delete CUDARuntime;
175   delete TheTargetCodeGenInfo;
176   delete TBAA;
177   delete DebugInfo;
178   delete ObjCData;
179 }
180 
181 void CodeGenModule::createObjCRuntime() {
182   // This is just isGNUFamily(), but we want to force implementors of
183   // new ABIs to decide how best to do this.
184   switch (LangOpts.ObjCRuntime.getKind()) {
185   case ObjCRuntime::GNUstep:
186   case ObjCRuntime::GCC:
187   case ObjCRuntime::ObjFW:
188     ObjCRuntime = CreateGNUObjCRuntime(*this);
189     return;
190 
191   case ObjCRuntime::FragileMacOSX:
192   case ObjCRuntime::MacOSX:
193   case ObjCRuntime::iOS:
194   case ObjCRuntime::WatchOS:
195     ObjCRuntime = CreateMacObjCRuntime(*this);
196     return;
197   }
198   llvm_unreachable("bad runtime kind");
199 }
200 
201 void CodeGenModule::createOpenCLRuntime() {
202   OpenCLRuntime = new CGOpenCLRuntime(*this);
203 }
204 
205 void CodeGenModule::createOpenMPRuntime() {
206   // Select a specialized code generation class based on the target, if any.
207   // If it does not exist use the default implementation.
208   switch (getTarget().getTriple().getArch()) {
209 
210   case llvm::Triple::nvptx:
211   case llvm::Triple::nvptx64:
212     assert(getLangOpts().OpenMPIsDevice &&
213            "OpenMP NVPTX is only prepared to deal with device code.");
214     OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this);
215     break;
216   default:
217     OpenMPRuntime = new CGOpenMPRuntime(*this);
218     break;
219   }
220 }
221 
222 void CodeGenModule::createCUDARuntime() {
223   CUDARuntime = CreateNVCUDARuntime(*this);
224 }
225 
226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
227   Replacements[Name] = C;
228 }
229 
230 void CodeGenModule::applyReplacements() {
231   for (auto &I : Replacements) {
232     StringRef MangledName = I.first();
233     llvm::Constant *Replacement = I.second;
234     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
235     if (!Entry)
236       continue;
237     auto *OldF = cast<llvm::Function>(Entry);
238     auto *NewF = dyn_cast<llvm::Function>(Replacement);
239     if (!NewF) {
240       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
241         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
242       } else {
243         auto *CE = cast<llvm::ConstantExpr>(Replacement);
244         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
245                CE->getOpcode() == llvm::Instruction::GetElementPtr);
246         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
247       }
248     }
249 
250     // Replace old with new, but keep the old order.
251     OldF->replaceAllUsesWith(Replacement);
252     if (NewF) {
253       NewF->removeFromParent();
254       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
255                                                        NewF);
256     }
257     OldF->eraseFromParent();
258   }
259 }
260 
261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
262   GlobalValReplacements.push_back(std::make_pair(GV, C));
263 }
264 
265 void CodeGenModule::applyGlobalValReplacements() {
266   for (auto &I : GlobalValReplacements) {
267     llvm::GlobalValue *GV = I.first;
268     llvm::Constant *C = I.second;
269 
270     GV->replaceAllUsesWith(C);
271     GV->eraseFromParent();
272   }
273 }
274 
275 // This is only used in aliases that we created and we know they have a
276 // linear structure.
277 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
278   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
279   const llvm::Constant *C = &GA;
280   for (;;) {
281     C = C->stripPointerCasts();
282     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
283       return GO;
284     // stripPointerCasts will not walk over weak aliases.
285     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
286     if (!GA2)
287       return nullptr;
288     if (!Visited.insert(GA2).second)
289       return nullptr;
290     C = GA2->getAliasee();
291   }
292 }
293 
294 void CodeGenModule::checkAliases() {
295   // Check if the constructed aliases are well formed. It is really unfortunate
296   // that we have to do this in CodeGen, but we only construct mangled names
297   // and aliases during codegen.
298   bool Error = false;
299   DiagnosticsEngine &Diags = getDiags();
300   for (const GlobalDecl &GD : Aliases) {
301     const auto *D = cast<ValueDecl>(GD.getDecl());
302     const AliasAttr *AA = D->getAttr<AliasAttr>();
303     StringRef MangledName = getMangledName(GD);
304     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
305     auto *Alias = cast<llvm::GlobalAlias>(Entry);
306     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
307     if (!GV) {
308       Error = true;
309       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
310     } else if (GV->isDeclaration()) {
311       Error = true;
312       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
313     }
314 
315     llvm::Constant *Aliasee = Alias->getAliasee();
316     llvm::GlobalValue *AliaseeGV;
317     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
318       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
319     else
320       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
321 
322     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
323       StringRef AliasSection = SA->getName();
324       if (AliasSection != AliaseeGV->getSection())
325         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
326             << AliasSection;
327     }
328 
329     // We have to handle alias to weak aliases in here. LLVM itself disallows
330     // this since the object semantics would not match the IL one. For
331     // compatibility with gcc we implement it by just pointing the alias
332     // to its aliasee's aliasee. We also warn, since the user is probably
333     // expecting the link to be weak.
334     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
335       if (GA->mayBeOverridden()) {
336         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
337             << GV->getName() << GA->getName();
338         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
339             GA->getAliasee(), Alias->getType());
340         Alias->setAliasee(Aliasee);
341       }
342     }
343   }
344   if (!Error)
345     return;
346 
347   for (const GlobalDecl &GD : Aliases) {
348     StringRef MangledName = getMangledName(GD);
349     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
350     auto *Alias = cast<llvm::GlobalAlias>(Entry);
351     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
352     Alias->eraseFromParent();
353   }
354 }
355 
356 void CodeGenModule::clear() {
357   DeferredDeclsToEmit.clear();
358   if (OpenMPRuntime)
359     OpenMPRuntime->clear();
360 }
361 
362 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
363                                        StringRef MainFile) {
364   if (!hasDiagnostics())
365     return;
366   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
367     if (MainFile.empty())
368       MainFile = "<stdin>";
369     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
370   } else
371     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
372                                                       << Mismatched;
373 }
374 
375 void CodeGenModule::Release() {
376   EmitDeferred();
377   applyGlobalValReplacements();
378   applyReplacements();
379   checkAliases();
380   EmitCXXGlobalInitFunc();
381   EmitCXXGlobalDtorFunc();
382   EmitCXXThreadLocalInitFunc();
383   if (ObjCRuntime)
384     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
385       AddGlobalCtor(ObjCInitFunction);
386   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
387       CUDARuntime) {
388     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
389       AddGlobalCtor(CudaCtorFunction);
390     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
391       AddGlobalDtor(CudaDtorFunction);
392   }
393   if (OpenMPRuntime)
394     if (llvm::Function *OpenMPRegistrationFunction =
395             OpenMPRuntime->emitRegistrationFunction())
396       AddGlobalCtor(OpenMPRegistrationFunction, 0);
397   if (PGOReader) {
398     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
399     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
400     if (PGOStats.hasDiagnostics())
401       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
402   }
403   EmitCtorList(GlobalCtors, "llvm.global_ctors");
404   EmitCtorList(GlobalDtors, "llvm.global_dtors");
405   EmitGlobalAnnotations();
406   EmitStaticExternCAliases();
407   EmitDeferredUnusedCoverageMappings();
408   if (CoverageMapping)
409     CoverageMapping->emit();
410   if (CodeGenOpts.SanitizeCfiCrossDso)
411     CodeGenFunction(*this).EmitCfiCheckFail();
412   emitLLVMUsed();
413   if (SanStats)
414     SanStats->finish();
415 
416   if (CodeGenOpts.Autolink &&
417       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
418     EmitModuleLinkOptions();
419   }
420   if (CodeGenOpts.DwarfVersion) {
421     // We actually want the latest version when there are conflicts.
422     // We can change from Warning to Latest if such mode is supported.
423     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
424                               CodeGenOpts.DwarfVersion);
425   }
426   if (CodeGenOpts.EmitCodeView) {
427     // Indicate that we want CodeView in the metadata.
428     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
429   }
430   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
431     // We don't support LTO with 2 with different StrictVTablePointers
432     // FIXME: we could support it by stripping all the information introduced
433     // by StrictVTablePointers.
434 
435     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
436 
437     llvm::Metadata *Ops[2] = {
438               llvm::MDString::get(VMContext, "StrictVTablePointers"),
439               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
440                   llvm::Type::getInt32Ty(VMContext), 1))};
441 
442     getModule().addModuleFlag(llvm::Module::Require,
443                               "StrictVTablePointersRequirement",
444                               llvm::MDNode::get(VMContext, Ops));
445   }
446   if (DebugInfo)
447     // We support a single version in the linked module. The LLVM
448     // parser will drop debug info with a different version number
449     // (and warn about it, too).
450     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
451                               llvm::DEBUG_METADATA_VERSION);
452 
453   // We need to record the widths of enums and wchar_t, so that we can generate
454   // the correct build attributes in the ARM backend.
455   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
456   if (   Arch == llvm::Triple::arm
457       || Arch == llvm::Triple::armeb
458       || Arch == llvm::Triple::thumb
459       || Arch == llvm::Triple::thumbeb) {
460     // Width of wchar_t in bytes
461     uint64_t WCharWidth =
462         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
463     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
464 
465     // The minimum width of an enum in bytes
466     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
467     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
468   }
469 
470   if (CodeGenOpts.SanitizeCfiCrossDso) {
471     // Indicate that we want cross-DSO control flow integrity checks.
472     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
473   }
474 
475   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
476     // Indicate whether __nvvm_reflect should be configured to flush denormal
477     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
478     // property.)
479     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
480                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
481   }
482 
483   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
484     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
485     switch (PLevel) {
486     case 0: break;
487     case 1: PL = llvm::PICLevel::Small; break;
488     case 2: PL = llvm::PICLevel::Large; break;
489     default: llvm_unreachable("Invalid PIC Level");
490     }
491 
492     getModule().setPICLevel(PL);
493   }
494 
495   SimplifyPersonality();
496 
497   if (getCodeGenOpts().EmitDeclMetadata)
498     EmitDeclMetadata();
499 
500   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
501     EmitCoverageFile();
502 
503   if (DebugInfo)
504     DebugInfo->finalize();
505 
506   EmitVersionIdentMetadata();
507 
508   EmitTargetMetadata();
509 }
510 
511 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
512   // Make sure that this type is translated.
513   Types.UpdateCompletedType(TD);
514 }
515 
516 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
517   // Make sure that this type is translated.
518   Types.RefreshTypeCacheForClass(RD);
519 }
520 
521 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
522   if (!TBAA)
523     return nullptr;
524   return TBAA->getTBAAInfo(QTy);
525 }
526 
527 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
528   if (!TBAA)
529     return nullptr;
530   return TBAA->getTBAAInfoForVTablePtr();
531 }
532 
533 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
534   if (!TBAA)
535     return nullptr;
536   return TBAA->getTBAAStructInfo(QTy);
537 }
538 
539 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
540                                                   llvm::MDNode *AccessN,
541                                                   uint64_t O) {
542   if (!TBAA)
543     return nullptr;
544   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
545 }
546 
547 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
548 /// and struct-path aware TBAA, the tag has the same format:
549 /// base type, access type and offset.
550 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
551 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
552                                                 llvm::MDNode *TBAAInfo,
553                                                 bool ConvertTypeToTag) {
554   if (ConvertTypeToTag && TBAA)
555     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
556                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
557   else
558     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
559 }
560 
561 void CodeGenModule::DecorateInstructionWithInvariantGroup(
562     llvm::Instruction *I, const CXXRecordDecl *RD) {
563   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
564   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
565   // Check if we have to wrap MDString in MDNode.
566   if (!MetaDataNode)
567     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
568   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
569 }
570 
571 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
572   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
573   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
574 }
575 
576 /// ErrorUnsupported - Print out an error that codegen doesn't support the
577 /// specified stmt yet.
578 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
579   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
580                                                "cannot compile this %0 yet");
581   std::string Msg = Type;
582   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
583     << Msg << S->getSourceRange();
584 }
585 
586 /// ErrorUnsupported - Print out an error that codegen doesn't support the
587 /// specified decl yet.
588 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
589   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
590                                                "cannot compile this %0 yet");
591   std::string Msg = Type;
592   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
593 }
594 
595 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
596   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
597 }
598 
599 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
600                                         const NamedDecl *D) const {
601   // Internal definitions always have default visibility.
602   if (GV->hasLocalLinkage()) {
603     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
604     return;
605   }
606 
607   // Set visibility for definitions.
608   LinkageInfo LV = D->getLinkageAndVisibility();
609   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
610     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
611 }
612 
613 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
614   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
615       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
616       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
617       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
618       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
619 }
620 
621 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
622     CodeGenOptions::TLSModel M) {
623   switch (M) {
624   case CodeGenOptions::GeneralDynamicTLSModel:
625     return llvm::GlobalVariable::GeneralDynamicTLSModel;
626   case CodeGenOptions::LocalDynamicTLSModel:
627     return llvm::GlobalVariable::LocalDynamicTLSModel;
628   case CodeGenOptions::InitialExecTLSModel:
629     return llvm::GlobalVariable::InitialExecTLSModel;
630   case CodeGenOptions::LocalExecTLSModel:
631     return llvm::GlobalVariable::LocalExecTLSModel;
632   }
633   llvm_unreachable("Invalid TLS model!");
634 }
635 
636 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
637   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
638 
639   llvm::GlobalValue::ThreadLocalMode TLM;
640   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
641 
642   // Override the TLS model if it is explicitly specified.
643   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
644     TLM = GetLLVMTLSModel(Attr->getModel());
645   }
646 
647   GV->setThreadLocalMode(TLM);
648 }
649 
650 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
651   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
652 
653   // Some ABIs don't have constructor variants.  Make sure that base and
654   // complete constructors get mangled the same.
655   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
656     if (!getTarget().getCXXABI().hasConstructorVariants()) {
657       CXXCtorType OrigCtorType = GD.getCtorType();
658       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
659       if (OrigCtorType == Ctor_Base)
660         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
661     }
662   }
663 
664   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
665   if (!FoundStr.empty())
666     return FoundStr;
667 
668   const auto *ND = cast<NamedDecl>(GD.getDecl());
669   SmallString<256> Buffer;
670   StringRef Str;
671   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
672     llvm::raw_svector_ostream Out(Buffer);
673     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
674       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
675     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
676       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
677     else
678       getCXXABI().getMangleContext().mangleName(ND, Out);
679     Str = Out.str();
680   } else {
681     IdentifierInfo *II = ND->getIdentifier();
682     assert(II && "Attempt to mangle unnamed decl.");
683     Str = II->getName();
684   }
685 
686   // Keep the first result in the case of a mangling collision.
687   auto Result = Manglings.insert(std::make_pair(Str, GD));
688   return FoundStr = Result.first->first();
689 }
690 
691 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
692                                              const BlockDecl *BD) {
693   MangleContext &MangleCtx = getCXXABI().getMangleContext();
694   const Decl *D = GD.getDecl();
695 
696   SmallString<256> Buffer;
697   llvm::raw_svector_ostream Out(Buffer);
698   if (!D)
699     MangleCtx.mangleGlobalBlock(BD,
700       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
701   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
702     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
703   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
704     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
705   else
706     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
707 
708   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
709   return Result.first->first();
710 }
711 
712 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
713   return getModule().getNamedValue(Name);
714 }
715 
716 /// AddGlobalCtor - Add a function to the list that will be called before
717 /// main() runs.
718 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
719                                   llvm::Constant *AssociatedData) {
720   // FIXME: Type coercion of void()* types.
721   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
722 }
723 
724 /// AddGlobalDtor - Add a function to the list that will be called
725 /// when the module is unloaded.
726 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
727   // FIXME: Type coercion of void()* types.
728   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
729 }
730 
731 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
732   // Ctor function type is void()*.
733   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
734   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
735 
736   // Get the type of a ctor entry, { i32, void ()*, i8* }.
737   llvm::StructType *CtorStructTy = llvm::StructType::get(
738       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
739 
740   // Construct the constructor and destructor arrays.
741   SmallVector<llvm::Constant *, 8> Ctors;
742   for (const auto &I : Fns) {
743     llvm::Constant *S[] = {
744         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
745         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
746         (I.AssociatedData
747              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
748              : llvm::Constant::getNullValue(VoidPtrTy))};
749     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
750   }
751 
752   if (!Ctors.empty()) {
753     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
754     new llvm::GlobalVariable(TheModule, AT, false,
755                              llvm::GlobalValue::AppendingLinkage,
756                              llvm::ConstantArray::get(AT, Ctors),
757                              GlobalName);
758   }
759 }
760 
761 llvm::GlobalValue::LinkageTypes
762 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
763   const auto *D = cast<FunctionDecl>(GD.getDecl());
764 
765   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
766 
767   if (isa<CXXDestructorDecl>(D) &&
768       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
769                                          GD.getDtorType())) {
770     // Destructor variants in the Microsoft C++ ABI are always internal or
771     // linkonce_odr thunks emitted on an as-needed basis.
772     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
773                                    : llvm::GlobalValue::LinkOnceODRLinkage;
774   }
775 
776   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
777 }
778 
779 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
780   const auto *FD = cast<FunctionDecl>(GD.getDecl());
781 
782   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
783     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
784       // Don't dllexport/import destructor thunks.
785       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
786       return;
787     }
788   }
789 
790   if (FD->hasAttr<DLLImportAttr>())
791     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
792   else if (FD->hasAttr<DLLExportAttr>())
793     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
794   else
795     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
796 }
797 
798 llvm::ConstantInt *
799 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
800   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
801   if (!MDS) return nullptr;
802 
803   llvm::MD5 md5;
804   llvm::MD5::MD5Result result;
805   md5.update(MDS->getString());
806   md5.final(result);
807   uint64_t id = 0;
808   for (int i = 0; i < 8; ++i)
809     id |= static_cast<uint64_t>(result[i]) << (i * 8);
810   return llvm::ConstantInt::get(Int64Ty, id);
811 }
812 
813 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
814                                                     llvm::Function *F) {
815   setNonAliasAttributes(D, F);
816 }
817 
818 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
819                                               const CGFunctionInfo &Info,
820                                               llvm::Function *F) {
821   unsigned CallingConv;
822   AttributeListType AttributeList;
823   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
824                          false);
825   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
826   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
827 }
828 
829 /// Determines whether the language options require us to model
830 /// unwind exceptions.  We treat -fexceptions as mandating this
831 /// except under the fragile ObjC ABI with only ObjC exceptions
832 /// enabled.  This means, for example, that C with -fexceptions
833 /// enables this.
834 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
835   // If exceptions are completely disabled, obviously this is false.
836   if (!LangOpts.Exceptions) return false;
837 
838   // If C++ exceptions are enabled, this is true.
839   if (LangOpts.CXXExceptions) return true;
840 
841   // If ObjC exceptions are enabled, this depends on the ABI.
842   if (LangOpts.ObjCExceptions) {
843     return LangOpts.ObjCRuntime.hasUnwindExceptions();
844   }
845 
846   return true;
847 }
848 
849 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
850                                                            llvm::Function *F) {
851   llvm::AttrBuilder B;
852 
853   if (CodeGenOpts.UnwindTables)
854     B.addAttribute(llvm::Attribute::UWTable);
855 
856   if (!hasUnwindExceptions(LangOpts))
857     B.addAttribute(llvm::Attribute::NoUnwind);
858 
859   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
860     B.addAttribute(llvm::Attribute::StackProtect);
861   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
862     B.addAttribute(llvm::Attribute::StackProtectStrong);
863   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
864     B.addAttribute(llvm::Attribute::StackProtectReq);
865 
866   if (!D) {
867     F->addAttributes(llvm::AttributeSet::FunctionIndex,
868                      llvm::AttributeSet::get(
869                          F->getContext(),
870                          llvm::AttributeSet::FunctionIndex, B));
871     return;
872   }
873 
874   if (D->hasAttr<NakedAttr>()) {
875     // Naked implies noinline: we should not be inlining such functions.
876     B.addAttribute(llvm::Attribute::Naked);
877     B.addAttribute(llvm::Attribute::NoInline);
878   } else if (D->hasAttr<NoDuplicateAttr>()) {
879     B.addAttribute(llvm::Attribute::NoDuplicate);
880   } else if (D->hasAttr<NoInlineAttr>()) {
881     B.addAttribute(llvm::Attribute::NoInline);
882   } else if (D->hasAttr<AlwaysInlineAttr>() &&
883              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
884                                               llvm::Attribute::NoInline)) {
885     // (noinline wins over always_inline, and we can't specify both in IR)
886     B.addAttribute(llvm::Attribute::AlwaysInline);
887   }
888 
889   if (D->hasAttr<ColdAttr>()) {
890     if (!D->hasAttr<OptimizeNoneAttr>())
891       B.addAttribute(llvm::Attribute::OptimizeForSize);
892     B.addAttribute(llvm::Attribute::Cold);
893   }
894 
895   if (D->hasAttr<MinSizeAttr>())
896     B.addAttribute(llvm::Attribute::MinSize);
897 
898   F->addAttributes(llvm::AttributeSet::FunctionIndex,
899                    llvm::AttributeSet::get(
900                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
901 
902   if (D->hasAttr<OptimizeNoneAttr>()) {
903     // OptimizeNone implies noinline; we should not be inlining such functions.
904     F->addFnAttr(llvm::Attribute::OptimizeNone);
905     F->addFnAttr(llvm::Attribute::NoInline);
906 
907     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
908     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
909     F->removeFnAttr(llvm::Attribute::MinSize);
910     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
911            "OptimizeNone and AlwaysInline on same function!");
912 
913     // Attribute 'inlinehint' has no effect on 'optnone' functions.
914     // Explicitly remove it from the set of function attributes.
915     F->removeFnAttr(llvm::Attribute::InlineHint);
916   }
917 
918   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
919   if (alignment)
920     F->setAlignment(alignment);
921 
922   // Some C++ ABIs require 2-byte alignment for member functions, in order to
923   // reserve a bit for differentiating between virtual and non-virtual member
924   // functions. If the current target's C++ ABI requires this and this is a
925   // member function, set its alignment accordingly.
926   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
927     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
928       F->setAlignment(2);
929   }
930 }
931 
932 void CodeGenModule::SetCommonAttributes(const Decl *D,
933                                         llvm::GlobalValue *GV) {
934   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
935     setGlobalVisibility(GV, ND);
936   else
937     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
938 
939   if (D && D->hasAttr<UsedAttr>())
940     addUsedGlobal(GV);
941 }
942 
943 void CodeGenModule::setAliasAttributes(const Decl *D,
944                                        llvm::GlobalValue *GV) {
945   SetCommonAttributes(D, GV);
946 
947   // Process the dllexport attribute based on whether the original definition
948   // (not necessarily the aliasee) was exported.
949   if (D->hasAttr<DLLExportAttr>())
950     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
951 }
952 
953 void CodeGenModule::setNonAliasAttributes(const Decl *D,
954                                           llvm::GlobalObject *GO) {
955   SetCommonAttributes(D, GO);
956 
957   if (D)
958     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
959       GO->setSection(SA->getName());
960 
961   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
962 }
963 
964 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
965                                                   llvm::Function *F,
966                                                   const CGFunctionInfo &FI) {
967   SetLLVMFunctionAttributes(D, FI, F);
968   SetLLVMFunctionAttributesForDefinition(D, F);
969 
970   F->setLinkage(llvm::Function::InternalLinkage);
971 
972   setNonAliasAttributes(D, F);
973 }
974 
975 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
976                                          const NamedDecl *ND) {
977   // Set linkage and visibility in case we never see a definition.
978   LinkageInfo LV = ND->getLinkageAndVisibility();
979   if (LV.getLinkage() != ExternalLinkage) {
980     // Don't set internal linkage on declarations.
981   } else {
982     if (ND->hasAttr<DLLImportAttr>()) {
983       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
984       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
985     } else if (ND->hasAttr<DLLExportAttr>()) {
986       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
987       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
988     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
989       // "extern_weak" is overloaded in LLVM; we probably should have
990       // separate linkage types for this.
991       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
992     }
993 
994     // Set visibility on a declaration only if it's explicit.
995     if (LV.isVisibilityExplicit())
996       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
997   }
998 }
999 
1000 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
1001                                               llvm::Function *F) {
1002   // Only if we are checking indirect calls.
1003   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1004     return;
1005 
1006   // Non-static class methods are handled via vtable pointer checks elsewhere.
1007   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1008     return;
1009 
1010   // Additionally, if building with cross-DSO support...
1011   if (CodeGenOpts.SanitizeCfiCrossDso) {
1012     // Don't emit entries for function declarations. In cross-DSO mode these are
1013     // handled with better precision at run time.
1014     if (!FD->hasBody())
1015       return;
1016     // Skip available_externally functions. They won't be codegen'ed in the
1017     // current module anyway.
1018     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1019       return;
1020   }
1021 
1022   llvm::NamedMDNode *BitsetsMD =
1023       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1024 
1025   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1026   llvm::Metadata *BitsetOps[] = {
1027       MD, llvm::ConstantAsMetadata::get(F),
1028       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1029   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1030 
1031   // Emit a hash-based bit set entry for cross-DSO calls.
1032   if (CodeGenOpts.SanitizeCfiCrossDso) {
1033     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1034       llvm::Metadata *BitsetOps2[] = {
1035           llvm::ConstantAsMetadata::get(TypeId),
1036           llvm::ConstantAsMetadata::get(F),
1037           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1038       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1039     }
1040   }
1041 }
1042 
1043 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1044                                           bool IsIncompleteFunction,
1045                                           bool IsThunk) {
1046   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1047     // If this is an intrinsic function, set the function's attributes
1048     // to the intrinsic's attributes.
1049     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1050     return;
1051   }
1052 
1053   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1054 
1055   if (!IsIncompleteFunction)
1056     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1057 
1058   // Add the Returned attribute for "this", except for iOS 5 and earlier
1059   // where substantial code, including the libstdc++ dylib, was compiled with
1060   // GCC and does not actually return "this".
1061   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1062       !(getTarget().getTriple().isiOS() &&
1063         getTarget().getTriple().isOSVersionLT(6))) {
1064     assert(!F->arg_empty() &&
1065            F->arg_begin()->getType()
1066              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1067            "unexpected this return");
1068     F->addAttribute(1, llvm::Attribute::Returned);
1069   }
1070 
1071   // Only a few attributes are set on declarations; these may later be
1072   // overridden by a definition.
1073 
1074   setLinkageAndVisibilityForGV(F, FD);
1075 
1076   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1077     F->setSection(SA->getName());
1078 
1079   // A replaceable global allocation function does not act like a builtin by
1080   // default, only if it is invoked by a new-expression or delete-expression.
1081   if (FD->isReplaceableGlobalAllocationFunction())
1082     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1083                     llvm::Attribute::NoBuiltin);
1084 
1085   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1086     F->setUnnamedAddr(true);
1087   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1088     if (MD->isVirtual())
1089       F->setUnnamedAddr(true);
1090 
1091   CreateFunctionBitSetEntry(FD, F);
1092 }
1093 
1094 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1095   assert(!GV->isDeclaration() &&
1096          "Only globals with definition can force usage.");
1097   LLVMUsed.emplace_back(GV);
1098 }
1099 
1100 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1101   assert(!GV->isDeclaration() &&
1102          "Only globals with definition can force usage.");
1103   LLVMCompilerUsed.emplace_back(GV);
1104 }
1105 
1106 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1107                      std::vector<llvm::WeakVH> &List) {
1108   // Don't create llvm.used if there is no need.
1109   if (List.empty())
1110     return;
1111 
1112   // Convert List to what ConstantArray needs.
1113   SmallVector<llvm::Constant*, 8> UsedArray;
1114   UsedArray.resize(List.size());
1115   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1116     UsedArray[i] =
1117         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1118             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1119   }
1120 
1121   if (UsedArray.empty())
1122     return;
1123   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1124 
1125   auto *GV = new llvm::GlobalVariable(
1126       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1127       llvm::ConstantArray::get(ATy, UsedArray), Name);
1128 
1129   GV->setSection("llvm.metadata");
1130 }
1131 
1132 void CodeGenModule::emitLLVMUsed() {
1133   emitUsed(*this, "llvm.used", LLVMUsed);
1134   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1135 }
1136 
1137 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1138   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1139   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1140 }
1141 
1142 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1143   llvm::SmallString<32> Opt;
1144   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1145   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1146   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1147 }
1148 
1149 void CodeGenModule::AddDependentLib(StringRef Lib) {
1150   llvm::SmallString<24> Opt;
1151   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1152   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1153   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1154 }
1155 
1156 /// \brief Add link options implied by the given module, including modules
1157 /// it depends on, using a postorder walk.
1158 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1159                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1160                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1161   // Import this module's parent.
1162   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1163     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1164   }
1165 
1166   // Import this module's dependencies.
1167   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1168     if (Visited.insert(Mod->Imports[I - 1]).second)
1169       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1170   }
1171 
1172   // Add linker options to link against the libraries/frameworks
1173   // described by this module.
1174   llvm::LLVMContext &Context = CGM.getLLVMContext();
1175   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1176     // Link against a framework.  Frameworks are currently Darwin only, so we
1177     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1178     if (Mod->LinkLibraries[I-1].IsFramework) {
1179       llvm::Metadata *Args[2] = {
1180           llvm::MDString::get(Context, "-framework"),
1181           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1182 
1183       Metadata.push_back(llvm::MDNode::get(Context, Args));
1184       continue;
1185     }
1186 
1187     // Link against a library.
1188     llvm::SmallString<24> Opt;
1189     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1190       Mod->LinkLibraries[I-1].Library, Opt);
1191     auto *OptString = llvm::MDString::get(Context, Opt);
1192     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1193   }
1194 }
1195 
1196 void CodeGenModule::EmitModuleLinkOptions() {
1197   // Collect the set of all of the modules we want to visit to emit link
1198   // options, which is essentially the imported modules and all of their
1199   // non-explicit child modules.
1200   llvm::SetVector<clang::Module *> LinkModules;
1201   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1202   SmallVector<clang::Module *, 16> Stack;
1203 
1204   // Seed the stack with imported modules.
1205   for (Module *M : ImportedModules)
1206     if (Visited.insert(M).second)
1207       Stack.push_back(M);
1208 
1209   // Find all of the modules to import, making a little effort to prune
1210   // non-leaf modules.
1211   while (!Stack.empty()) {
1212     clang::Module *Mod = Stack.pop_back_val();
1213 
1214     bool AnyChildren = false;
1215 
1216     // Visit the submodules of this module.
1217     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1218                                         SubEnd = Mod->submodule_end();
1219          Sub != SubEnd; ++Sub) {
1220       // Skip explicit children; they need to be explicitly imported to be
1221       // linked against.
1222       if ((*Sub)->IsExplicit)
1223         continue;
1224 
1225       if (Visited.insert(*Sub).second) {
1226         Stack.push_back(*Sub);
1227         AnyChildren = true;
1228       }
1229     }
1230 
1231     // We didn't find any children, so add this module to the list of
1232     // modules to link against.
1233     if (!AnyChildren) {
1234       LinkModules.insert(Mod);
1235     }
1236   }
1237 
1238   // Add link options for all of the imported modules in reverse topological
1239   // order.  We don't do anything to try to order import link flags with respect
1240   // to linker options inserted by things like #pragma comment().
1241   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1242   Visited.clear();
1243   for (Module *M : LinkModules)
1244     if (Visited.insert(M).second)
1245       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1246   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1247   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1248 
1249   // Add the linker options metadata flag.
1250   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1251                             llvm::MDNode::get(getLLVMContext(),
1252                                               LinkerOptionsMetadata));
1253 }
1254 
1255 void CodeGenModule::EmitDeferred() {
1256   // Emit code for any potentially referenced deferred decls.  Since a
1257   // previously unused static decl may become used during the generation of code
1258   // for a static function, iterate until no changes are made.
1259 
1260   if (!DeferredVTables.empty()) {
1261     EmitDeferredVTables();
1262 
1263     // Emitting a vtable doesn't directly cause more vtables to
1264     // become deferred, although it can cause functions to be
1265     // emitted that then need those vtables.
1266     assert(DeferredVTables.empty());
1267   }
1268 
1269   // Stop if we're out of both deferred vtables and deferred declarations.
1270   if (DeferredDeclsToEmit.empty())
1271     return;
1272 
1273   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1274   // work, it will not interfere with this.
1275   std::vector<DeferredGlobal> CurDeclsToEmit;
1276   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1277 
1278   for (DeferredGlobal &G : CurDeclsToEmit) {
1279     GlobalDecl D = G.GD;
1280     G.GV = nullptr;
1281 
1282     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1283     // to get GlobalValue with exactly the type we need, not something that
1284     // might had been created for another decl with the same mangled name but
1285     // different type.
1286     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1287         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1288 
1289     // In case of different address spaces, we may still get a cast, even with
1290     // IsForDefinition equal to true. Query mangled names table to get
1291     // GlobalValue.
1292     if (!GV)
1293       GV = GetGlobalValue(getMangledName(D));
1294 
1295     // Make sure GetGlobalValue returned non-null.
1296     assert(GV);
1297 
1298     // Check to see if we've already emitted this.  This is necessary
1299     // for a couple of reasons: first, decls can end up in the
1300     // deferred-decls queue multiple times, and second, decls can end
1301     // up with definitions in unusual ways (e.g. by an extern inline
1302     // function acquiring a strong function redefinition).  Just
1303     // ignore these cases.
1304     if (!GV->isDeclaration())
1305       continue;
1306 
1307     // Otherwise, emit the definition and move on to the next one.
1308     EmitGlobalDefinition(D, GV);
1309 
1310     // If we found out that we need to emit more decls, do that recursively.
1311     // This has the advantage that the decls are emitted in a DFS and related
1312     // ones are close together, which is convenient for testing.
1313     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1314       EmitDeferred();
1315       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1316     }
1317   }
1318 }
1319 
1320 void CodeGenModule::EmitGlobalAnnotations() {
1321   if (Annotations.empty())
1322     return;
1323 
1324   // Create a new global variable for the ConstantStruct in the Module.
1325   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1326     Annotations[0]->getType(), Annotations.size()), Annotations);
1327   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1328                                       llvm::GlobalValue::AppendingLinkage,
1329                                       Array, "llvm.global.annotations");
1330   gv->setSection(AnnotationSection);
1331 }
1332 
1333 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1334   llvm::Constant *&AStr = AnnotationStrings[Str];
1335   if (AStr)
1336     return AStr;
1337 
1338   // Not found yet, create a new global.
1339   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1340   auto *gv =
1341       new llvm::GlobalVariable(getModule(), s->getType(), true,
1342                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1343   gv->setSection(AnnotationSection);
1344   gv->setUnnamedAddr(true);
1345   AStr = gv;
1346   return gv;
1347 }
1348 
1349 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1350   SourceManager &SM = getContext().getSourceManager();
1351   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1352   if (PLoc.isValid())
1353     return EmitAnnotationString(PLoc.getFilename());
1354   return EmitAnnotationString(SM.getBufferName(Loc));
1355 }
1356 
1357 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1358   SourceManager &SM = getContext().getSourceManager();
1359   PresumedLoc PLoc = SM.getPresumedLoc(L);
1360   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1361     SM.getExpansionLineNumber(L);
1362   return llvm::ConstantInt::get(Int32Ty, LineNo);
1363 }
1364 
1365 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1366                                                 const AnnotateAttr *AA,
1367                                                 SourceLocation L) {
1368   // Get the globals for file name, annotation, and the line number.
1369   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1370                  *UnitGV = EmitAnnotationUnit(L),
1371                  *LineNoCst = EmitAnnotationLineNo(L);
1372 
1373   // Create the ConstantStruct for the global annotation.
1374   llvm::Constant *Fields[4] = {
1375     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1376     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1377     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1378     LineNoCst
1379   };
1380   return llvm::ConstantStruct::getAnon(Fields);
1381 }
1382 
1383 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1384                                          llvm::GlobalValue *GV) {
1385   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1386   // Get the struct elements for these annotations.
1387   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1388     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1389 }
1390 
1391 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1392                                            SourceLocation Loc) const {
1393   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1394   // Blacklist by function name.
1395   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1396     return true;
1397   // Blacklist by location.
1398   if (Loc.isValid())
1399     return SanitizerBL.isBlacklistedLocation(Loc);
1400   // If location is unknown, this may be a compiler-generated function. Assume
1401   // it's located in the main file.
1402   auto &SM = Context.getSourceManager();
1403   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1404     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1405   }
1406   return false;
1407 }
1408 
1409 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1410                                            SourceLocation Loc, QualType Ty,
1411                                            StringRef Category) const {
1412   // For now globals can be blacklisted only in ASan and KASan.
1413   if (!LangOpts.Sanitize.hasOneOf(
1414           SanitizerKind::Address | SanitizerKind::KernelAddress))
1415     return false;
1416   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1417   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1418     return true;
1419   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1420     return true;
1421   // Check global type.
1422   if (!Ty.isNull()) {
1423     // Drill down the array types: if global variable of a fixed type is
1424     // blacklisted, we also don't instrument arrays of them.
1425     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1426       Ty = AT->getElementType();
1427     Ty = Ty.getCanonicalType().getUnqualifiedType();
1428     // We allow to blacklist only record types (classes, structs etc.)
1429     if (Ty->isRecordType()) {
1430       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1431       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1432         return true;
1433     }
1434   }
1435   return false;
1436 }
1437 
1438 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1439   // Never defer when EmitAllDecls is specified.
1440   if (LangOpts.EmitAllDecls)
1441     return true;
1442 
1443   return getContext().DeclMustBeEmitted(Global);
1444 }
1445 
1446 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1447   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1448     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1449       // Implicit template instantiations may change linkage if they are later
1450       // explicitly instantiated, so they should not be emitted eagerly.
1451       return false;
1452   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1453   // codegen for global variables, because they may be marked as threadprivate.
1454   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1455       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1456     return false;
1457 
1458   return true;
1459 }
1460 
1461 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1462     const CXXUuidofExpr* E) {
1463   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1464   // well-formed.
1465   StringRef Uuid = E->getUuidStr();
1466   std::string Name = "_GUID_" + Uuid.lower();
1467   std::replace(Name.begin(), Name.end(), '-', '_');
1468 
1469   // The UUID descriptor should be pointer aligned.
1470   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1471 
1472   // Look for an existing global.
1473   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1474     return ConstantAddress(GV, Alignment);
1475 
1476   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1477   assert(Init && "failed to initialize as constant");
1478 
1479   auto *GV = new llvm::GlobalVariable(
1480       getModule(), Init->getType(),
1481       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1482   if (supportsCOMDAT())
1483     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1484   return ConstantAddress(GV, Alignment);
1485 }
1486 
1487 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1488   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1489   assert(AA && "No alias?");
1490 
1491   CharUnits Alignment = getContext().getDeclAlign(VD);
1492   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1493 
1494   // See if there is already something with the target's name in the module.
1495   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1496   if (Entry) {
1497     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1498     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1499     return ConstantAddress(Ptr, Alignment);
1500   }
1501 
1502   llvm::Constant *Aliasee;
1503   if (isa<llvm::FunctionType>(DeclTy))
1504     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1505                                       GlobalDecl(cast<FunctionDecl>(VD)),
1506                                       /*ForVTable=*/false);
1507   else
1508     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1509                                     llvm::PointerType::getUnqual(DeclTy),
1510                                     nullptr);
1511 
1512   auto *F = cast<llvm::GlobalValue>(Aliasee);
1513   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1514   WeakRefReferences.insert(F);
1515 
1516   return ConstantAddress(Aliasee, Alignment);
1517 }
1518 
1519 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1520   const auto *Global = cast<ValueDecl>(GD.getDecl());
1521 
1522   // Weak references don't produce any output by themselves.
1523   if (Global->hasAttr<WeakRefAttr>())
1524     return;
1525 
1526   // If this is an alias definition (which otherwise looks like a declaration)
1527   // emit it now.
1528   if (Global->hasAttr<AliasAttr>())
1529     return EmitAliasDefinition(GD);
1530 
1531   // If this is CUDA, be selective about which declarations we emit.
1532   if (LangOpts.CUDA) {
1533     if (LangOpts.CUDAIsDevice) {
1534       if (!Global->hasAttr<CUDADeviceAttr>() &&
1535           !Global->hasAttr<CUDAGlobalAttr>() &&
1536           !Global->hasAttr<CUDAConstantAttr>() &&
1537           !Global->hasAttr<CUDASharedAttr>())
1538         return;
1539     } else {
1540       // We need to emit host-side 'shadows' for all global
1541       // device-side variables because the CUDA runtime needs their
1542       // size and host-side address in order to provide access to
1543       // their device-side incarnations.
1544 
1545       // So device-only functions are the only things we skip.
1546       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1547           Global->hasAttr<CUDADeviceAttr>())
1548         return;
1549 
1550       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1551              "Expected Variable or Function");
1552     }
1553   }
1554 
1555   if (LangOpts.OpenMP) {
1556     // If this is OpenMP device, check if it is legal to emit this global
1557     // normally.
1558     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1559       return;
1560     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1561       if (MustBeEmitted(Global))
1562         EmitOMPDeclareReduction(DRD);
1563       return;
1564     }
1565   }
1566 
1567   // Ignore declarations, they will be emitted on their first use.
1568   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1569     // Forward declarations are emitted lazily on first use.
1570     if (!FD->doesThisDeclarationHaveABody()) {
1571       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1572         return;
1573 
1574       StringRef MangledName = getMangledName(GD);
1575 
1576       // Compute the function info and LLVM type.
1577       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1578       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1579 
1580       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1581                               /*DontDefer=*/false);
1582       return;
1583     }
1584   } else {
1585     const auto *VD = cast<VarDecl>(Global);
1586     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1587     // We need to emit device-side global CUDA variables even if a
1588     // variable does not have a definition -- we still need to define
1589     // host-side shadow for it.
1590     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1591                            !VD->hasDefinition() &&
1592                            (VD->hasAttr<CUDAConstantAttr>() ||
1593                             VD->hasAttr<CUDADeviceAttr>());
1594     if (!MustEmitForCuda &&
1595         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1596         !Context.isMSStaticDataMemberInlineDefinition(VD))
1597       return;
1598   }
1599 
1600   // Defer code generation to first use when possible, e.g. if this is an inline
1601   // function. If the global must always be emitted, do it eagerly if possible
1602   // to benefit from cache locality.
1603   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1604     // Emit the definition if it can't be deferred.
1605     EmitGlobalDefinition(GD);
1606     return;
1607   }
1608 
1609   // If we're deferring emission of a C++ variable with an
1610   // initializer, remember the order in which it appeared in the file.
1611   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1612       cast<VarDecl>(Global)->hasInit()) {
1613     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1614     CXXGlobalInits.push_back(nullptr);
1615   }
1616 
1617   StringRef MangledName = getMangledName(GD);
1618   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1619     // The value has already been used and should therefore be emitted.
1620     addDeferredDeclToEmit(GV, GD);
1621   } else if (MustBeEmitted(Global)) {
1622     // The value must be emitted, but cannot be emitted eagerly.
1623     assert(!MayBeEmittedEagerly(Global));
1624     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1625   } else {
1626     // Otherwise, remember that we saw a deferred decl with this name.  The
1627     // first use of the mangled name will cause it to move into
1628     // DeferredDeclsToEmit.
1629     DeferredDecls[MangledName] = GD;
1630   }
1631 }
1632 
1633 namespace {
1634   struct FunctionIsDirectlyRecursive :
1635     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1636     const StringRef Name;
1637     const Builtin::Context &BI;
1638     bool Result;
1639     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1640       Name(N), BI(C), Result(false) {
1641     }
1642     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1643 
1644     bool TraverseCallExpr(CallExpr *E) {
1645       const FunctionDecl *FD = E->getDirectCallee();
1646       if (!FD)
1647         return true;
1648       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1649       if (Attr && Name == Attr->getLabel()) {
1650         Result = true;
1651         return false;
1652       }
1653       unsigned BuiltinID = FD->getBuiltinID();
1654       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1655         return true;
1656       StringRef BuiltinName = BI.getName(BuiltinID);
1657       if (BuiltinName.startswith("__builtin_") &&
1658           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1659         Result = true;
1660         return false;
1661       }
1662       return true;
1663     }
1664   };
1665 
1666   struct DLLImportFunctionVisitor
1667       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1668     bool SafeToInline = true;
1669 
1670     bool VisitVarDecl(VarDecl *VD) {
1671       // A thread-local variable cannot be imported.
1672       SafeToInline = !VD->getTLSKind();
1673       return SafeToInline;
1674     }
1675 
1676     // Make sure we're not referencing non-imported vars or functions.
1677     bool VisitDeclRefExpr(DeclRefExpr *E) {
1678       ValueDecl *VD = E->getDecl();
1679       if (isa<FunctionDecl>(VD))
1680         SafeToInline = VD->hasAttr<DLLImportAttr>();
1681       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1682         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1683       return SafeToInline;
1684     }
1685     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1686       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1687       return SafeToInline;
1688     }
1689     bool VisitCXXNewExpr(CXXNewExpr *E) {
1690       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1691       return SafeToInline;
1692     }
1693   };
1694 }
1695 
1696 // isTriviallyRecursive - Check if this function calls another
1697 // decl that, because of the asm attribute or the other decl being a builtin,
1698 // ends up pointing to itself.
1699 bool
1700 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1701   StringRef Name;
1702   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1703     // asm labels are a special kind of mangling we have to support.
1704     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1705     if (!Attr)
1706       return false;
1707     Name = Attr->getLabel();
1708   } else {
1709     Name = FD->getName();
1710   }
1711 
1712   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1713   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1714   return Walker.Result;
1715 }
1716 
1717 bool
1718 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1719   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1720     return true;
1721   const auto *F = cast<FunctionDecl>(GD.getDecl());
1722   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1723     return false;
1724 
1725   if (F->hasAttr<DLLImportAttr>()) {
1726     // Check whether it would be safe to inline this dllimport function.
1727     DLLImportFunctionVisitor Visitor;
1728     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1729     if (!Visitor.SafeToInline)
1730       return false;
1731   }
1732 
1733   // PR9614. Avoid cases where the source code is lying to us. An available
1734   // externally function should have an equivalent function somewhere else,
1735   // but a function that calls itself is clearly not equivalent to the real
1736   // implementation.
1737   // This happens in glibc's btowc and in some configure checks.
1738   return !isTriviallyRecursive(F);
1739 }
1740 
1741 /// If the type for the method's class was generated by
1742 /// CGDebugInfo::createContextChain(), the cache contains only a
1743 /// limited DIType without any declarations. Since EmitFunctionStart()
1744 /// needs to find the canonical declaration for each method, we need
1745 /// to construct the complete type prior to emitting the method.
1746 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1747   if (!D->isInstance())
1748     return;
1749 
1750   if (CGDebugInfo *DI = getModuleDebugInfo())
1751     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1752       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1753       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1754     }
1755 }
1756 
1757 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1758   const auto *D = cast<ValueDecl>(GD.getDecl());
1759 
1760   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1761                                  Context.getSourceManager(),
1762                                  "Generating code for declaration");
1763 
1764   if (isa<FunctionDecl>(D)) {
1765     // At -O0, don't generate IR for functions with available_externally
1766     // linkage.
1767     if (!shouldEmitFunction(GD))
1768       return;
1769 
1770     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1771       CompleteDIClassType(Method);
1772       // Make sure to emit the definition(s) before we emit the thunks.
1773       // This is necessary for the generation of certain thunks.
1774       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1775         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1776       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1777         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1778       else
1779         EmitGlobalFunctionDefinition(GD, GV);
1780 
1781       if (Method->isVirtual())
1782         getVTables().EmitThunks(GD);
1783 
1784       return;
1785     }
1786 
1787     return EmitGlobalFunctionDefinition(GD, GV);
1788   }
1789 
1790   if (const auto *VD = dyn_cast<VarDecl>(D))
1791     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1792 
1793   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1794 }
1795 
1796 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1797                                                       llvm::Function *NewFn);
1798 
1799 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1800 /// module, create and return an llvm Function with the specified type. If there
1801 /// is something in the module with the specified name, return it potentially
1802 /// bitcasted to the right type.
1803 ///
1804 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1805 /// to set the attributes on the function when it is first created.
1806 llvm::Constant *
1807 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1808                                        llvm::Type *Ty,
1809                                        GlobalDecl GD, bool ForVTable,
1810                                        bool DontDefer, bool IsThunk,
1811                                        llvm::AttributeSet ExtraAttrs,
1812                                        bool IsForDefinition) {
1813   const Decl *D = GD.getDecl();
1814 
1815   // Lookup the entry, lazily creating it if necessary.
1816   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1817   if (Entry) {
1818     if (WeakRefReferences.erase(Entry)) {
1819       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1820       if (FD && !FD->hasAttr<WeakAttr>())
1821         Entry->setLinkage(llvm::Function::ExternalLinkage);
1822     }
1823 
1824     // Handle dropped DLL attributes.
1825     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1826       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1827 
1828     // If there are two attempts to define the same mangled name, issue an
1829     // error.
1830     if (IsForDefinition && !Entry->isDeclaration()) {
1831       GlobalDecl OtherGD;
1832       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1833       // to make sure that we issue an error only once.
1834       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1835           (GD.getCanonicalDecl().getDecl() !=
1836            OtherGD.getCanonicalDecl().getDecl()) &&
1837           DiagnosedConflictingDefinitions.insert(GD).second) {
1838         getDiags().Report(D->getLocation(),
1839                           diag::err_duplicate_mangled_name);
1840         getDiags().Report(OtherGD.getDecl()->getLocation(),
1841                           diag::note_previous_definition);
1842       }
1843     }
1844 
1845     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1846         (Entry->getType()->getElementType() == Ty)) {
1847       return Entry;
1848     }
1849 
1850     // Make sure the result is of the correct type.
1851     // (If function is requested for a definition, we always need to create a new
1852     // function, not just return a bitcast.)
1853     if (!IsForDefinition)
1854       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1855   }
1856 
1857   // This function doesn't have a complete type (for example, the return
1858   // type is an incomplete struct). Use a fake type instead, and make
1859   // sure not to try to set attributes.
1860   bool IsIncompleteFunction = false;
1861 
1862   llvm::FunctionType *FTy;
1863   if (isa<llvm::FunctionType>(Ty)) {
1864     FTy = cast<llvm::FunctionType>(Ty);
1865   } else {
1866     FTy = llvm::FunctionType::get(VoidTy, false);
1867     IsIncompleteFunction = true;
1868   }
1869 
1870   llvm::Function *F =
1871       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1872                              Entry ? StringRef() : MangledName, &getModule());
1873 
1874   // If we already created a function with the same mangled name (but different
1875   // type) before, take its name and add it to the list of functions to be
1876   // replaced with F at the end of CodeGen.
1877   //
1878   // This happens if there is a prototype for a function (e.g. "int f()") and
1879   // then a definition of a different type (e.g. "int f(int x)").
1880   if (Entry) {
1881     F->takeName(Entry);
1882 
1883     // This might be an implementation of a function without a prototype, in
1884     // which case, try to do special replacement of calls which match the new
1885     // prototype.  The really key thing here is that we also potentially drop
1886     // arguments from the call site so as to make a direct call, which makes the
1887     // inliner happier and suppresses a number of optimizer warnings (!) about
1888     // dropping arguments.
1889     if (!Entry->use_empty()) {
1890       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1891       Entry->removeDeadConstantUsers();
1892     }
1893 
1894     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1895         F, Entry->getType()->getElementType()->getPointerTo());
1896     addGlobalValReplacement(Entry, BC);
1897   }
1898 
1899   assert(F->getName() == MangledName && "name was uniqued!");
1900   if (D)
1901     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1902   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1903     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1904     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1905                      llvm::AttributeSet::get(VMContext,
1906                                              llvm::AttributeSet::FunctionIndex,
1907                                              B));
1908   }
1909 
1910   if (!DontDefer) {
1911     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1912     // each other bottoming out with the base dtor.  Therefore we emit non-base
1913     // dtors on usage, even if there is no dtor definition in the TU.
1914     if (D && isa<CXXDestructorDecl>(D) &&
1915         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1916                                            GD.getDtorType()))
1917       addDeferredDeclToEmit(F, GD);
1918 
1919     // This is the first use or definition of a mangled name.  If there is a
1920     // deferred decl with this name, remember that we need to emit it at the end
1921     // of the file.
1922     auto DDI = DeferredDecls.find(MangledName);
1923     if (DDI != DeferredDecls.end()) {
1924       // Move the potentially referenced deferred decl to the
1925       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1926       // don't need it anymore).
1927       addDeferredDeclToEmit(F, DDI->second);
1928       DeferredDecls.erase(DDI);
1929 
1930       // Otherwise, there are cases we have to worry about where we're
1931       // using a declaration for which we must emit a definition but where
1932       // we might not find a top-level definition:
1933       //   - member functions defined inline in their classes
1934       //   - friend functions defined inline in some class
1935       //   - special member functions with implicit definitions
1936       // If we ever change our AST traversal to walk into class methods,
1937       // this will be unnecessary.
1938       //
1939       // We also don't emit a definition for a function if it's going to be an
1940       // entry in a vtable, unless it's already marked as used.
1941     } else if (getLangOpts().CPlusPlus && D) {
1942       // Look for a declaration that's lexically in a record.
1943       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1944            FD = FD->getPreviousDecl()) {
1945         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1946           if (FD->doesThisDeclarationHaveABody()) {
1947             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1948             break;
1949           }
1950         }
1951       }
1952     }
1953   }
1954 
1955   // Make sure the result is of the requested type.
1956   if (!IsIncompleteFunction) {
1957     assert(F->getType()->getElementType() == Ty);
1958     return F;
1959   }
1960 
1961   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1962   return llvm::ConstantExpr::getBitCast(F, PTy);
1963 }
1964 
1965 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1966 /// non-null, then this function will use the specified type if it has to
1967 /// create it (this occurs when we see a definition of the function).
1968 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1969                                                  llvm::Type *Ty,
1970                                                  bool ForVTable,
1971                                                  bool DontDefer,
1972                                                  bool IsForDefinition) {
1973   // If there was no specific requested type, just convert it now.
1974   if (!Ty) {
1975     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1976     auto CanonTy = Context.getCanonicalType(FD->getType());
1977     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1978   }
1979 
1980   StringRef MangledName = getMangledName(GD);
1981   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1982                                  /*IsThunk=*/false, llvm::AttributeSet(),
1983                                  IsForDefinition);
1984 }
1985 
1986 /// CreateRuntimeFunction - Create a new runtime function with the specified
1987 /// type and name.
1988 llvm::Constant *
1989 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1990                                      StringRef Name,
1991                                      llvm::AttributeSet ExtraAttrs) {
1992   llvm::Constant *C =
1993       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1994                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1995   if (auto *F = dyn_cast<llvm::Function>(C))
1996     if (F->empty())
1997       F->setCallingConv(getRuntimeCC());
1998   return C;
1999 }
2000 
2001 /// CreateBuiltinFunction - Create a new builtin function with the specified
2002 /// type and name.
2003 llvm::Constant *
2004 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2005                                      StringRef Name,
2006                                      llvm::AttributeSet ExtraAttrs) {
2007   llvm::Constant *C =
2008       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2009                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2010   if (auto *F = dyn_cast<llvm::Function>(C))
2011     if (F->empty())
2012       F->setCallingConv(getBuiltinCC());
2013   return C;
2014 }
2015 
2016 /// isTypeConstant - Determine whether an object of this type can be emitted
2017 /// as a constant.
2018 ///
2019 /// If ExcludeCtor is true, the duration when the object's constructor runs
2020 /// will not be considered. The caller will need to verify that the object is
2021 /// not written to during its construction.
2022 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2023   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2024     return false;
2025 
2026   if (Context.getLangOpts().CPlusPlus) {
2027     if (const CXXRecordDecl *Record
2028           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2029       return ExcludeCtor && !Record->hasMutableFields() &&
2030              Record->hasTrivialDestructor();
2031   }
2032 
2033   return true;
2034 }
2035 
2036 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2037 /// create and return an llvm GlobalVariable with the specified type.  If there
2038 /// is something in the module with the specified name, return it potentially
2039 /// bitcasted to the right type.
2040 ///
2041 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2042 /// to set the attributes on the global when it is first created.
2043 ///
2044 /// If IsForDefinition is true, it is guranteed that an actual global with
2045 /// type Ty will be returned, not conversion of a variable with the same
2046 /// mangled name but some other type.
2047 llvm::Constant *
2048 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2049                                      llvm::PointerType *Ty,
2050                                      const VarDecl *D,
2051                                      bool IsForDefinition) {
2052   // Lookup the entry, lazily creating it if necessary.
2053   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2054   if (Entry) {
2055     if (WeakRefReferences.erase(Entry)) {
2056       if (D && !D->hasAttr<WeakAttr>())
2057         Entry->setLinkage(llvm::Function::ExternalLinkage);
2058     }
2059 
2060     // Handle dropped DLL attributes.
2061     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2062       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2063 
2064     if (Entry->getType() == Ty)
2065       return Entry;
2066 
2067     // If there are two attempts to define the same mangled name, issue an
2068     // error.
2069     if (IsForDefinition && !Entry->isDeclaration()) {
2070       GlobalDecl OtherGD;
2071       const VarDecl *OtherD;
2072 
2073       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2074       // to make sure that we issue an error only once.
2075       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2076           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2077           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2078           OtherD->hasInit() &&
2079           DiagnosedConflictingDefinitions.insert(D).second) {
2080         getDiags().Report(D->getLocation(),
2081                           diag::err_duplicate_mangled_name);
2082         getDiags().Report(OtherGD.getDecl()->getLocation(),
2083                           diag::note_previous_definition);
2084       }
2085     }
2086 
2087     // Make sure the result is of the correct type.
2088     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2089       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2090 
2091     // (If global is requested for a definition, we always need to create a new
2092     // global, not just return a bitcast.)
2093     if (!IsForDefinition)
2094       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2095   }
2096 
2097   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2098   auto *GV = new llvm::GlobalVariable(
2099       getModule(), Ty->getElementType(), false,
2100       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2101       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2102 
2103   // If we already created a global with the same mangled name (but different
2104   // type) before, take its name and remove it from its parent.
2105   if (Entry) {
2106     GV->takeName(Entry);
2107 
2108     if (!Entry->use_empty()) {
2109       llvm::Constant *NewPtrForOldDecl =
2110           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2111       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2112     }
2113 
2114     Entry->eraseFromParent();
2115   }
2116 
2117   // This is the first use or definition of a mangled name.  If there is a
2118   // deferred decl with this name, remember that we need to emit it at the end
2119   // of the file.
2120   auto DDI = DeferredDecls.find(MangledName);
2121   if (DDI != DeferredDecls.end()) {
2122     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2123     // list, and remove it from DeferredDecls (since we don't need it anymore).
2124     addDeferredDeclToEmit(GV, DDI->second);
2125     DeferredDecls.erase(DDI);
2126   }
2127 
2128   // Handle things which are present even on external declarations.
2129   if (D) {
2130     // FIXME: This code is overly simple and should be merged with other global
2131     // handling.
2132     GV->setConstant(isTypeConstant(D->getType(), false));
2133 
2134     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2135 
2136     setLinkageAndVisibilityForGV(GV, D);
2137 
2138     if (D->getTLSKind()) {
2139       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2140         CXXThreadLocals.push_back(D);
2141       setTLSMode(GV, *D);
2142     }
2143 
2144     // If required by the ABI, treat declarations of static data members with
2145     // inline initializers as definitions.
2146     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2147       EmitGlobalVarDefinition(D);
2148     }
2149 
2150     // Handle XCore specific ABI requirements.
2151     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2152         D->getLanguageLinkage() == CLanguageLinkage &&
2153         D->getType().isConstant(Context) &&
2154         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2155       GV->setSection(".cp.rodata");
2156   }
2157 
2158   if (AddrSpace != Ty->getAddressSpace())
2159     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2160 
2161   return GV;
2162 }
2163 
2164 llvm::Constant *
2165 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2166                                bool IsForDefinition) {
2167   if (isa<CXXConstructorDecl>(GD.getDecl()))
2168     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2169                                 getFromCtorType(GD.getCtorType()),
2170                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2171                                 /*DontDefer=*/false, IsForDefinition);
2172   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2173     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2174                                 getFromDtorType(GD.getDtorType()),
2175                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2176                                 /*DontDefer=*/false, IsForDefinition);
2177   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2178     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2179         cast<CXXMethodDecl>(GD.getDecl()));
2180     auto Ty = getTypes().GetFunctionType(*FInfo);
2181     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2182                              IsForDefinition);
2183   } else if (isa<FunctionDecl>(GD.getDecl())) {
2184     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2185     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2186     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2187                              IsForDefinition);
2188   } else
2189     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2190                               IsForDefinition);
2191 }
2192 
2193 llvm::GlobalVariable *
2194 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2195                                       llvm::Type *Ty,
2196                                       llvm::GlobalValue::LinkageTypes Linkage) {
2197   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2198   llvm::GlobalVariable *OldGV = nullptr;
2199 
2200   if (GV) {
2201     // Check if the variable has the right type.
2202     if (GV->getType()->getElementType() == Ty)
2203       return GV;
2204 
2205     // Because C++ name mangling, the only way we can end up with an already
2206     // existing global with the same name is if it has been declared extern "C".
2207     assert(GV->isDeclaration() && "Declaration has wrong type!");
2208     OldGV = GV;
2209   }
2210 
2211   // Create a new variable.
2212   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2213                                 Linkage, nullptr, Name);
2214 
2215   if (OldGV) {
2216     // Replace occurrences of the old variable if needed.
2217     GV->takeName(OldGV);
2218 
2219     if (!OldGV->use_empty()) {
2220       llvm::Constant *NewPtrForOldDecl =
2221       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2222       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2223     }
2224 
2225     OldGV->eraseFromParent();
2226   }
2227 
2228   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2229       !GV->hasAvailableExternallyLinkage())
2230     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2231 
2232   return GV;
2233 }
2234 
2235 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2236 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2237 /// then it will be created with the specified type instead of whatever the
2238 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2239 /// that an actual global with type Ty will be returned, not conversion of a
2240 /// variable with the same mangled name but some other type.
2241 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2242                                                   llvm::Type *Ty,
2243                                                   bool IsForDefinition) {
2244   assert(D->hasGlobalStorage() && "Not a global variable");
2245   QualType ASTTy = D->getType();
2246   if (!Ty)
2247     Ty = getTypes().ConvertTypeForMem(ASTTy);
2248 
2249   llvm::PointerType *PTy =
2250     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2251 
2252   StringRef MangledName = getMangledName(D);
2253   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2254 }
2255 
2256 /// CreateRuntimeVariable - Create a new runtime global variable with the
2257 /// specified type and name.
2258 llvm::Constant *
2259 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2260                                      StringRef Name) {
2261   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2262 }
2263 
2264 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2265   assert(!D->getInit() && "Cannot emit definite definitions here!");
2266 
2267   StringRef MangledName = getMangledName(D);
2268   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2269 
2270   // We already have a definition, not declaration, with the same mangled name.
2271   // Emitting of declaration is not required (and actually overwrites emitted
2272   // definition).
2273   if (GV && !GV->isDeclaration())
2274     return;
2275 
2276   // If we have not seen a reference to this variable yet, place it into the
2277   // deferred declarations table to be emitted if needed later.
2278   if (!MustBeEmitted(D) && !GV) {
2279       DeferredDecls[MangledName] = D;
2280       return;
2281   }
2282 
2283   // The tentative definition is the only definition.
2284   EmitGlobalVarDefinition(D);
2285 }
2286 
2287 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2288   return Context.toCharUnitsFromBits(
2289       getDataLayout().getTypeStoreSizeInBits(Ty));
2290 }
2291 
2292 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2293                                                  unsigned AddrSpace) {
2294   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2295     if (D->hasAttr<CUDAConstantAttr>())
2296       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2297     else if (D->hasAttr<CUDASharedAttr>())
2298       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2299     else
2300       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2301   }
2302 
2303   return AddrSpace;
2304 }
2305 
2306 template<typename SomeDecl>
2307 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2308                                                llvm::GlobalValue *GV) {
2309   if (!getLangOpts().CPlusPlus)
2310     return;
2311 
2312   // Must have 'used' attribute, or else inline assembly can't rely on
2313   // the name existing.
2314   if (!D->template hasAttr<UsedAttr>())
2315     return;
2316 
2317   // Must have internal linkage and an ordinary name.
2318   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2319     return;
2320 
2321   // Must be in an extern "C" context. Entities declared directly within
2322   // a record are not extern "C" even if the record is in such a context.
2323   const SomeDecl *First = D->getFirstDecl();
2324   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2325     return;
2326 
2327   // OK, this is an internal linkage entity inside an extern "C" linkage
2328   // specification. Make a note of that so we can give it the "expected"
2329   // mangled name if nothing else is using that name.
2330   std::pair<StaticExternCMap::iterator, bool> R =
2331       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2332 
2333   // If we have multiple internal linkage entities with the same name
2334   // in extern "C" regions, none of them gets that name.
2335   if (!R.second)
2336     R.first->second = nullptr;
2337 }
2338 
2339 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2340   if (!CGM.supportsCOMDAT())
2341     return false;
2342 
2343   if (D.hasAttr<SelectAnyAttr>())
2344     return true;
2345 
2346   GVALinkage Linkage;
2347   if (auto *VD = dyn_cast<VarDecl>(&D))
2348     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2349   else
2350     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2351 
2352   switch (Linkage) {
2353   case GVA_Internal:
2354   case GVA_AvailableExternally:
2355   case GVA_StrongExternal:
2356     return false;
2357   case GVA_DiscardableODR:
2358   case GVA_StrongODR:
2359     return true;
2360   }
2361   llvm_unreachable("No such linkage");
2362 }
2363 
2364 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2365                                           llvm::GlobalObject &GO) {
2366   if (!shouldBeInCOMDAT(*this, D))
2367     return;
2368   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2369 }
2370 
2371 /// Pass IsTentative as true if you want to create a tentative definition.
2372 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2373                                             bool IsTentative) {
2374   llvm::Constant *Init = nullptr;
2375   QualType ASTTy = D->getType();
2376   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2377   bool NeedsGlobalCtor = false;
2378   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2379 
2380   const VarDecl *InitDecl;
2381   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2382 
2383   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2384   // as part of their declaration."  Sema has already checked for
2385   // error cases, so we just need to set Init to UndefValue.
2386   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2387       D->hasAttr<CUDASharedAttr>())
2388     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2389   else if (!InitExpr) {
2390     // This is a tentative definition; tentative definitions are
2391     // implicitly initialized with { 0 }.
2392     //
2393     // Note that tentative definitions are only emitted at the end of
2394     // a translation unit, so they should never have incomplete
2395     // type. In addition, EmitTentativeDefinition makes sure that we
2396     // never attempt to emit a tentative definition if a real one
2397     // exists. A use may still exists, however, so we still may need
2398     // to do a RAUW.
2399     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2400     Init = EmitNullConstant(D->getType());
2401   } else {
2402     initializedGlobalDecl = GlobalDecl(D);
2403     Init = EmitConstantInit(*InitDecl);
2404 
2405     if (!Init) {
2406       QualType T = InitExpr->getType();
2407       if (D->getType()->isReferenceType())
2408         T = D->getType();
2409 
2410       if (getLangOpts().CPlusPlus) {
2411         Init = EmitNullConstant(T);
2412         NeedsGlobalCtor = true;
2413       } else {
2414         ErrorUnsupported(D, "static initializer");
2415         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2416       }
2417     } else {
2418       // We don't need an initializer, so remove the entry for the delayed
2419       // initializer position (just in case this entry was delayed) if we
2420       // also don't need to register a destructor.
2421       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2422         DelayedCXXInitPosition.erase(D);
2423     }
2424   }
2425 
2426   llvm::Type* InitType = Init->getType();
2427   llvm::Constant *Entry =
2428       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2429 
2430   // Strip off a bitcast if we got one back.
2431   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2432     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2433            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2434            // All zero index gep.
2435            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2436     Entry = CE->getOperand(0);
2437   }
2438 
2439   // Entry is now either a Function or GlobalVariable.
2440   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2441 
2442   // We have a definition after a declaration with the wrong type.
2443   // We must make a new GlobalVariable* and update everything that used OldGV
2444   // (a declaration or tentative definition) with the new GlobalVariable*
2445   // (which will be a definition).
2446   //
2447   // This happens if there is a prototype for a global (e.g.
2448   // "extern int x[];") and then a definition of a different type (e.g.
2449   // "int x[10];"). This also happens when an initializer has a different type
2450   // from the type of the global (this happens with unions).
2451   if (!GV ||
2452       GV->getType()->getElementType() != InitType ||
2453       GV->getType()->getAddressSpace() !=
2454        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2455 
2456     // Move the old entry aside so that we'll create a new one.
2457     Entry->setName(StringRef());
2458 
2459     // Make a new global with the correct type, this is now guaranteed to work.
2460     GV = cast<llvm::GlobalVariable>(
2461         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2462 
2463     // Replace all uses of the old global with the new global
2464     llvm::Constant *NewPtrForOldDecl =
2465         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2466     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2467 
2468     // Erase the old global, since it is no longer used.
2469     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2470   }
2471 
2472   MaybeHandleStaticInExternC(D, GV);
2473 
2474   if (D->hasAttr<AnnotateAttr>())
2475     AddGlobalAnnotations(D, GV);
2476 
2477   // Set the llvm linkage type as appropriate.
2478   llvm::GlobalValue::LinkageTypes Linkage =
2479       getLLVMLinkageVarDefinition(D, GV->isConstant());
2480 
2481   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2482   // the device. [...]"
2483   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2484   // __device__, declares a variable that: [...]
2485   // Is accessible from all the threads within the grid and from the host
2486   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2487   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2488   if (GV && LangOpts.CUDA) {
2489     if (LangOpts.CUDAIsDevice) {
2490       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2491         GV->setExternallyInitialized(true);
2492     } else {
2493       // Host-side shadows of external declarations of device-side
2494       // global variables become internal definitions. These have to
2495       // be internal in order to prevent name conflicts with global
2496       // host variables with the same name in a different TUs.
2497       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2498         Linkage = llvm::GlobalValue::InternalLinkage;
2499 
2500         // Shadow variables and their properties must be registered
2501         // with CUDA runtime.
2502         unsigned Flags = 0;
2503         if (!D->hasDefinition())
2504           Flags |= CGCUDARuntime::ExternDeviceVar;
2505         if (D->hasAttr<CUDAConstantAttr>())
2506           Flags |= CGCUDARuntime::ConstantDeviceVar;
2507         getCUDARuntime().registerDeviceVar(*GV, Flags);
2508       } else if (D->hasAttr<CUDASharedAttr>())
2509         // __shared__ variables are odd. Shadows do get created, but
2510         // they are not registered with the CUDA runtime, so they
2511         // can't really be used to access their device-side
2512         // counterparts. It's not clear yet whether it's nvcc's bug or
2513         // a feature, but we've got to do the same for compatibility.
2514         Linkage = llvm::GlobalValue::InternalLinkage;
2515     }
2516   }
2517   GV->setInitializer(Init);
2518 
2519   // If it is safe to mark the global 'constant', do so now.
2520   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2521                   isTypeConstant(D->getType(), true));
2522 
2523   // If it is in a read-only section, mark it 'constant'.
2524   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2525     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2526     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2527       GV->setConstant(true);
2528   }
2529 
2530   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2531 
2532 
2533   // On Darwin, if the normal linkage of a C++ thread_local variable is
2534   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2535   // copies within a linkage unit; otherwise, the backing variable has
2536   // internal linkage and all accesses should just be calls to the
2537   // Itanium-specified entry point, which has the normal linkage of the
2538   // variable. This is to preserve the ability to change the implementation
2539   // behind the scenes.
2540   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2541       Context.getTargetInfo().getTriple().isOSDarwin() &&
2542       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2543       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2544     Linkage = llvm::GlobalValue::InternalLinkage;
2545 
2546   GV->setLinkage(Linkage);
2547   if (D->hasAttr<DLLImportAttr>())
2548     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2549   else if (D->hasAttr<DLLExportAttr>())
2550     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2551   else
2552     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2553 
2554   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2555     // common vars aren't constant even if declared const.
2556     GV->setConstant(false);
2557 
2558   setNonAliasAttributes(D, GV);
2559 
2560   if (D->getTLSKind() && !GV->isThreadLocal()) {
2561     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2562       CXXThreadLocals.push_back(D);
2563     setTLSMode(GV, *D);
2564   }
2565 
2566   maybeSetTrivialComdat(*D, *GV);
2567 
2568   // Emit the initializer function if necessary.
2569   if (NeedsGlobalCtor || NeedsGlobalDtor)
2570     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2571 
2572   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2573 
2574   // Emit global variable debug information.
2575   if (CGDebugInfo *DI = getModuleDebugInfo())
2576     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2577       DI->EmitGlobalVariable(GV, D);
2578 }
2579 
2580 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2581                                       CodeGenModule &CGM, const VarDecl *D,
2582                                       bool NoCommon) {
2583   // Don't give variables common linkage if -fno-common was specified unless it
2584   // was overridden by a NoCommon attribute.
2585   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2586     return true;
2587 
2588   // C11 6.9.2/2:
2589   //   A declaration of an identifier for an object that has file scope without
2590   //   an initializer, and without a storage-class specifier or with the
2591   //   storage-class specifier static, constitutes a tentative definition.
2592   if (D->getInit() || D->hasExternalStorage())
2593     return true;
2594 
2595   // A variable cannot be both common and exist in a section.
2596   if (D->hasAttr<SectionAttr>())
2597     return true;
2598 
2599   // Thread local vars aren't considered common linkage.
2600   if (D->getTLSKind())
2601     return true;
2602 
2603   // Tentative definitions marked with WeakImportAttr are true definitions.
2604   if (D->hasAttr<WeakImportAttr>())
2605     return true;
2606 
2607   // A variable cannot be both common and exist in a comdat.
2608   if (shouldBeInCOMDAT(CGM, *D))
2609     return true;
2610 
2611   // Declarations with a required alignment do not have common linakge in MSVC
2612   // mode.
2613   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2614     if (D->hasAttr<AlignedAttr>())
2615       return true;
2616     QualType VarType = D->getType();
2617     if (Context.isAlignmentRequired(VarType))
2618       return true;
2619 
2620     if (const auto *RT = VarType->getAs<RecordType>()) {
2621       const RecordDecl *RD = RT->getDecl();
2622       for (const FieldDecl *FD : RD->fields()) {
2623         if (FD->isBitField())
2624           continue;
2625         if (FD->hasAttr<AlignedAttr>())
2626           return true;
2627         if (Context.isAlignmentRequired(FD->getType()))
2628           return true;
2629       }
2630     }
2631   }
2632 
2633   return false;
2634 }
2635 
2636 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2637     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2638   if (Linkage == GVA_Internal)
2639     return llvm::Function::InternalLinkage;
2640 
2641   if (D->hasAttr<WeakAttr>()) {
2642     if (IsConstantVariable)
2643       return llvm::GlobalVariable::WeakODRLinkage;
2644     else
2645       return llvm::GlobalVariable::WeakAnyLinkage;
2646   }
2647 
2648   // We are guaranteed to have a strong definition somewhere else,
2649   // so we can use available_externally linkage.
2650   if (Linkage == GVA_AvailableExternally)
2651     return llvm::Function::AvailableExternallyLinkage;
2652 
2653   // Note that Apple's kernel linker doesn't support symbol
2654   // coalescing, so we need to avoid linkonce and weak linkages there.
2655   // Normally, this means we just map to internal, but for explicit
2656   // instantiations we'll map to external.
2657 
2658   // In C++, the compiler has to emit a definition in every translation unit
2659   // that references the function.  We should use linkonce_odr because
2660   // a) if all references in this translation unit are optimized away, we
2661   // don't need to codegen it.  b) if the function persists, it needs to be
2662   // merged with other definitions. c) C++ has the ODR, so we know the
2663   // definition is dependable.
2664   if (Linkage == GVA_DiscardableODR)
2665     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2666                                             : llvm::Function::InternalLinkage;
2667 
2668   // An explicit instantiation of a template has weak linkage, since
2669   // explicit instantiations can occur in multiple translation units
2670   // and must all be equivalent. However, we are not allowed to
2671   // throw away these explicit instantiations.
2672   if (Linkage == GVA_StrongODR)
2673     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2674                                             : llvm::Function::ExternalLinkage;
2675 
2676   // C++ doesn't have tentative definitions and thus cannot have common
2677   // linkage.
2678   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2679       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2680                                  CodeGenOpts.NoCommon))
2681     return llvm::GlobalVariable::CommonLinkage;
2682 
2683   // selectany symbols are externally visible, so use weak instead of
2684   // linkonce.  MSVC optimizes away references to const selectany globals, so
2685   // all definitions should be the same and ODR linkage should be used.
2686   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2687   if (D->hasAttr<SelectAnyAttr>())
2688     return llvm::GlobalVariable::WeakODRLinkage;
2689 
2690   // Otherwise, we have strong external linkage.
2691   assert(Linkage == GVA_StrongExternal);
2692   return llvm::GlobalVariable::ExternalLinkage;
2693 }
2694 
2695 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2696     const VarDecl *VD, bool IsConstant) {
2697   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2698   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2699 }
2700 
2701 /// Replace the uses of a function that was declared with a non-proto type.
2702 /// We want to silently drop extra arguments from call sites
2703 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2704                                           llvm::Function *newFn) {
2705   // Fast path.
2706   if (old->use_empty()) return;
2707 
2708   llvm::Type *newRetTy = newFn->getReturnType();
2709   SmallVector<llvm::Value*, 4> newArgs;
2710   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2711 
2712   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2713          ui != ue; ) {
2714     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2715     llvm::User *user = use->getUser();
2716 
2717     // Recognize and replace uses of bitcasts.  Most calls to
2718     // unprototyped functions will use bitcasts.
2719     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2720       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2721         replaceUsesOfNonProtoConstant(bitcast, newFn);
2722       continue;
2723     }
2724 
2725     // Recognize calls to the function.
2726     llvm::CallSite callSite(user);
2727     if (!callSite) continue;
2728     if (!callSite.isCallee(&*use)) continue;
2729 
2730     // If the return types don't match exactly, then we can't
2731     // transform this call unless it's dead.
2732     if (callSite->getType() != newRetTy && !callSite->use_empty())
2733       continue;
2734 
2735     // Get the call site's attribute list.
2736     SmallVector<llvm::AttributeSet, 8> newAttrs;
2737     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2738 
2739     // Collect any return attributes from the call.
2740     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2741       newAttrs.push_back(
2742         llvm::AttributeSet::get(newFn->getContext(),
2743                                 oldAttrs.getRetAttributes()));
2744 
2745     // If the function was passed too few arguments, don't transform.
2746     unsigned newNumArgs = newFn->arg_size();
2747     if (callSite.arg_size() < newNumArgs) continue;
2748 
2749     // If extra arguments were passed, we silently drop them.
2750     // If any of the types mismatch, we don't transform.
2751     unsigned argNo = 0;
2752     bool dontTransform = false;
2753     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2754            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2755       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2756         dontTransform = true;
2757         break;
2758       }
2759 
2760       // Add any parameter attributes.
2761       if (oldAttrs.hasAttributes(argNo + 1))
2762         newAttrs.
2763           push_back(llvm::
2764                     AttributeSet::get(newFn->getContext(),
2765                                       oldAttrs.getParamAttributes(argNo + 1)));
2766     }
2767     if (dontTransform)
2768       continue;
2769 
2770     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2771       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2772                                                  oldAttrs.getFnAttributes()));
2773 
2774     // Okay, we can transform this.  Create the new call instruction and copy
2775     // over the required information.
2776     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2777 
2778     // Copy over any operand bundles.
2779     callSite.getOperandBundlesAsDefs(newBundles);
2780 
2781     llvm::CallSite newCall;
2782     if (callSite.isCall()) {
2783       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2784                                        callSite.getInstruction());
2785     } else {
2786       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2787       newCall = llvm::InvokeInst::Create(newFn,
2788                                          oldInvoke->getNormalDest(),
2789                                          oldInvoke->getUnwindDest(),
2790                                          newArgs, newBundles, "",
2791                                          callSite.getInstruction());
2792     }
2793     newArgs.clear(); // for the next iteration
2794 
2795     if (!newCall->getType()->isVoidTy())
2796       newCall->takeName(callSite.getInstruction());
2797     newCall.setAttributes(
2798                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2799     newCall.setCallingConv(callSite.getCallingConv());
2800 
2801     // Finally, remove the old call, replacing any uses with the new one.
2802     if (!callSite->use_empty())
2803       callSite->replaceAllUsesWith(newCall.getInstruction());
2804 
2805     // Copy debug location attached to CI.
2806     if (callSite->getDebugLoc())
2807       newCall->setDebugLoc(callSite->getDebugLoc());
2808 
2809     callSite->eraseFromParent();
2810   }
2811 }
2812 
2813 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2814 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2815 /// existing call uses of the old function in the module, this adjusts them to
2816 /// call the new function directly.
2817 ///
2818 /// This is not just a cleanup: the always_inline pass requires direct calls to
2819 /// functions to be able to inline them.  If there is a bitcast in the way, it
2820 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2821 /// run at -O0.
2822 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2823                                                       llvm::Function *NewFn) {
2824   // If we're redefining a global as a function, don't transform it.
2825   if (!isa<llvm::Function>(Old)) return;
2826 
2827   replaceUsesOfNonProtoConstant(Old, NewFn);
2828 }
2829 
2830 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2831   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2832   // If we have a definition, this might be a deferred decl. If the
2833   // instantiation is explicit, make sure we emit it at the end.
2834   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2835     GetAddrOfGlobalVar(VD);
2836 
2837   EmitTopLevelDecl(VD);
2838 }
2839 
2840 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2841                                                  llvm::GlobalValue *GV) {
2842   const auto *D = cast<FunctionDecl>(GD.getDecl());
2843 
2844   // Compute the function info and LLVM type.
2845   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2846   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2847 
2848   // Get or create the prototype for the function.
2849   if (!GV || (GV->getType()->getElementType() != Ty))
2850     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2851                                                    /*DontDefer=*/true,
2852                                                    /*IsForDefinition=*/true));
2853 
2854   // Already emitted.
2855   if (!GV->isDeclaration())
2856     return;
2857 
2858   // We need to set linkage and visibility on the function before
2859   // generating code for it because various parts of IR generation
2860   // want to propagate this information down (e.g. to local static
2861   // declarations).
2862   auto *Fn = cast<llvm::Function>(GV);
2863   setFunctionLinkage(GD, Fn);
2864   setFunctionDLLStorageClass(GD, Fn);
2865 
2866   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2867   setGlobalVisibility(Fn, D);
2868 
2869   MaybeHandleStaticInExternC(D, Fn);
2870 
2871   maybeSetTrivialComdat(*D, *Fn);
2872 
2873   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2874 
2875   setFunctionDefinitionAttributes(D, Fn);
2876   SetLLVMFunctionAttributesForDefinition(D, Fn);
2877 
2878   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2879     AddGlobalCtor(Fn, CA->getPriority());
2880   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2881     AddGlobalDtor(Fn, DA->getPriority());
2882   if (D->hasAttr<AnnotateAttr>())
2883     AddGlobalAnnotations(D, Fn);
2884 }
2885 
2886 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2887   const auto *D = cast<ValueDecl>(GD.getDecl());
2888   const AliasAttr *AA = D->getAttr<AliasAttr>();
2889   assert(AA && "Not an alias?");
2890 
2891   StringRef MangledName = getMangledName(GD);
2892 
2893   if (AA->getAliasee() == MangledName) {
2894     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2895     return;
2896   }
2897 
2898   // If there is a definition in the module, then it wins over the alias.
2899   // This is dubious, but allow it to be safe.  Just ignore the alias.
2900   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2901   if (Entry && !Entry->isDeclaration())
2902     return;
2903 
2904   Aliases.push_back(GD);
2905 
2906   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2907 
2908   // Create a reference to the named value.  This ensures that it is emitted
2909   // if a deferred decl.
2910   llvm::Constant *Aliasee;
2911   if (isa<llvm::FunctionType>(DeclTy))
2912     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2913                                       /*ForVTable=*/false);
2914   else
2915     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2916                                     llvm::PointerType::getUnqual(DeclTy),
2917                                     /*D=*/nullptr);
2918 
2919   // Create the new alias itself, but don't set a name yet.
2920   auto *GA = llvm::GlobalAlias::create(
2921       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2922 
2923   if (Entry) {
2924     if (GA->getAliasee() == Entry) {
2925       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2926       return;
2927     }
2928 
2929     assert(Entry->isDeclaration());
2930 
2931     // If there is a declaration in the module, then we had an extern followed
2932     // by the alias, as in:
2933     //   extern int test6();
2934     //   ...
2935     //   int test6() __attribute__((alias("test7")));
2936     //
2937     // Remove it and replace uses of it with the alias.
2938     GA->takeName(Entry);
2939 
2940     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2941                                                           Entry->getType()));
2942     Entry->eraseFromParent();
2943   } else {
2944     GA->setName(MangledName);
2945   }
2946 
2947   // Set attributes which are particular to an alias; this is a
2948   // specialization of the attributes which may be set on a global
2949   // variable/function.
2950   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2951       D->isWeakImported()) {
2952     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2953   }
2954 
2955   if (const auto *VD = dyn_cast<VarDecl>(D))
2956     if (VD->getTLSKind())
2957       setTLSMode(GA, *VD);
2958 
2959   setAliasAttributes(D, GA);
2960 }
2961 
2962 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2963                                             ArrayRef<llvm::Type*> Tys) {
2964   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2965                                          Tys);
2966 }
2967 
2968 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2969 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2970                          const StringLiteral *Literal, bool TargetIsLSB,
2971                          bool &IsUTF16, unsigned &StringLength) {
2972   StringRef String = Literal->getString();
2973   unsigned NumBytes = String.size();
2974 
2975   // Check for simple case.
2976   if (!Literal->containsNonAsciiOrNull()) {
2977     StringLength = NumBytes;
2978     return *Map.insert(std::make_pair(String, nullptr)).first;
2979   }
2980 
2981   // Otherwise, convert the UTF8 literals into a string of shorts.
2982   IsUTF16 = true;
2983 
2984   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2985   const UTF8 *FromPtr = (const UTF8 *)String.data();
2986   UTF16 *ToPtr = &ToBuf[0];
2987 
2988   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2989                            &ToPtr, ToPtr + NumBytes,
2990                            strictConversion);
2991 
2992   // ConvertUTF8toUTF16 returns the length in ToPtr.
2993   StringLength = ToPtr - &ToBuf[0];
2994 
2995   // Add an explicit null.
2996   *ToPtr = 0;
2997   return *Map.insert(std::make_pair(
2998                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2999                                    (StringLength + 1) * 2),
3000                          nullptr)).first;
3001 }
3002 
3003 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3004 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3005                        const StringLiteral *Literal, unsigned &StringLength) {
3006   StringRef String = Literal->getString();
3007   StringLength = String.size();
3008   return *Map.insert(std::make_pair(String, nullptr)).first;
3009 }
3010 
3011 ConstantAddress
3012 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3013   unsigned StringLength = 0;
3014   bool isUTF16 = false;
3015   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3016       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3017                                getDataLayout().isLittleEndian(), isUTF16,
3018                                StringLength);
3019 
3020   if (auto *C = Entry.second)
3021     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3022 
3023   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3024   llvm::Constant *Zeros[] = { Zero, Zero };
3025   llvm::Value *V;
3026 
3027   // If we don't already have it, get __CFConstantStringClassReference.
3028   if (!CFConstantStringClassRef) {
3029     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3030     Ty = llvm::ArrayType::get(Ty, 0);
3031     llvm::Constant *GV = CreateRuntimeVariable(Ty,
3032                                            "__CFConstantStringClassReference");
3033     // Decay array -> ptr
3034     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3035     CFConstantStringClassRef = V;
3036   }
3037   else
3038     V = CFConstantStringClassRef;
3039 
3040   QualType CFTy = getContext().getCFConstantStringType();
3041 
3042   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3043 
3044   llvm::Constant *Fields[4];
3045 
3046   // Class pointer.
3047   Fields[0] = cast<llvm::ConstantExpr>(V);
3048 
3049   // Flags.
3050   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3051   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
3052     llvm::ConstantInt::get(Ty, 0x07C8);
3053 
3054   // String pointer.
3055   llvm::Constant *C = nullptr;
3056   if (isUTF16) {
3057     auto Arr = llvm::makeArrayRef(
3058         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3059         Entry.first().size() / 2);
3060     C = llvm::ConstantDataArray::get(VMContext, Arr);
3061   } else {
3062     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3063   }
3064 
3065   // Note: -fwritable-strings doesn't make the backing store strings of
3066   // CFStrings writable. (See <rdar://problem/10657500>)
3067   auto *GV =
3068       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3069                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3070   GV->setUnnamedAddr(true);
3071   // Don't enforce the target's minimum global alignment, since the only use
3072   // of the string is via this class initializer.
3073   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
3074   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3075   // that changes the section it ends in, which surprises ld64.
3076   if (isUTF16) {
3077     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3078     GV->setAlignment(Align.getQuantity());
3079     GV->setSection("__TEXT,__ustring");
3080   } else {
3081     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3082     GV->setAlignment(Align.getQuantity());
3083     GV->setSection("__TEXT,__cstring,cstring_literals");
3084   }
3085 
3086   // String.
3087   Fields[2] =
3088       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3089 
3090   if (isUTF16)
3091     // Cast the UTF16 string to the correct type.
3092     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3093 
3094   // String length.
3095   Ty = getTypes().ConvertType(getContext().LongTy);
3096   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3097 
3098   CharUnits Alignment = getPointerAlign();
3099 
3100   // The struct.
3101   C = llvm::ConstantStruct::get(STy, Fields);
3102   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3103                                 llvm::GlobalVariable::PrivateLinkage, C,
3104                                 "_unnamed_cfstring_");
3105   GV->setSection("__DATA,__cfstring");
3106   GV->setAlignment(Alignment.getQuantity());
3107   Entry.second = GV;
3108 
3109   return ConstantAddress(GV, Alignment);
3110 }
3111 
3112 ConstantAddress
3113 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3114   unsigned StringLength = 0;
3115   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3116       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3117 
3118   if (auto *C = Entry.second)
3119     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3120 
3121   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3122   llvm::Constant *Zeros[] = { Zero, Zero };
3123   llvm::Value *V;
3124   // If we don't already have it, get _NSConstantStringClassReference.
3125   if (!ConstantStringClassRef) {
3126     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3127     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3128     llvm::Constant *GV;
3129     if (LangOpts.ObjCRuntime.isNonFragile()) {
3130       std::string str =
3131         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3132                             : "OBJC_CLASS_$_" + StringClass;
3133       GV = getObjCRuntime().GetClassGlobal(str);
3134       // Make sure the result is of the correct type.
3135       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3136       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3137       ConstantStringClassRef = V;
3138     } else {
3139       std::string str =
3140         StringClass.empty() ? "_NSConstantStringClassReference"
3141                             : "_" + StringClass + "ClassReference";
3142       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3143       GV = CreateRuntimeVariable(PTy, str);
3144       // Decay array -> ptr
3145       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3146       ConstantStringClassRef = V;
3147     }
3148   } else
3149     V = ConstantStringClassRef;
3150 
3151   if (!NSConstantStringType) {
3152     // Construct the type for a constant NSString.
3153     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3154     D->startDefinition();
3155 
3156     QualType FieldTypes[3];
3157 
3158     // const int *isa;
3159     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3160     // const char *str;
3161     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3162     // unsigned int length;
3163     FieldTypes[2] = Context.UnsignedIntTy;
3164 
3165     // Create fields
3166     for (unsigned i = 0; i < 3; ++i) {
3167       FieldDecl *Field = FieldDecl::Create(Context, D,
3168                                            SourceLocation(),
3169                                            SourceLocation(), nullptr,
3170                                            FieldTypes[i], /*TInfo=*/nullptr,
3171                                            /*BitWidth=*/nullptr,
3172                                            /*Mutable=*/false,
3173                                            ICIS_NoInit);
3174       Field->setAccess(AS_public);
3175       D->addDecl(Field);
3176     }
3177 
3178     D->completeDefinition();
3179     QualType NSTy = Context.getTagDeclType(D);
3180     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3181   }
3182 
3183   llvm::Constant *Fields[3];
3184 
3185   // Class pointer.
3186   Fields[0] = cast<llvm::ConstantExpr>(V);
3187 
3188   // String pointer.
3189   llvm::Constant *C =
3190       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3191 
3192   llvm::GlobalValue::LinkageTypes Linkage;
3193   bool isConstant;
3194   Linkage = llvm::GlobalValue::PrivateLinkage;
3195   isConstant = !LangOpts.WritableStrings;
3196 
3197   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3198                                       Linkage, C, ".str");
3199   GV->setUnnamedAddr(true);
3200   // Don't enforce the target's minimum global alignment, since the only use
3201   // of the string is via this class initializer.
3202   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3203   GV->setAlignment(Align.getQuantity());
3204   Fields[1] =
3205       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3206 
3207   // String length.
3208   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3209   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3210 
3211   // The struct.
3212   CharUnits Alignment = getPointerAlign();
3213   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3214   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3215                                 llvm::GlobalVariable::PrivateLinkage, C,
3216                                 "_unnamed_nsstring_");
3217   GV->setAlignment(Alignment.getQuantity());
3218   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3219   const char *NSStringNonFragileABISection =
3220       "__DATA,__objc_stringobj,regular,no_dead_strip";
3221   // FIXME. Fix section.
3222   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3223                      ? NSStringNonFragileABISection
3224                      : NSStringSection);
3225   Entry.second = GV;
3226 
3227   return ConstantAddress(GV, Alignment);
3228 }
3229 
3230 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3231   if (ObjCFastEnumerationStateType.isNull()) {
3232     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3233     D->startDefinition();
3234 
3235     QualType FieldTypes[] = {
3236       Context.UnsignedLongTy,
3237       Context.getPointerType(Context.getObjCIdType()),
3238       Context.getPointerType(Context.UnsignedLongTy),
3239       Context.getConstantArrayType(Context.UnsignedLongTy,
3240                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3241     };
3242 
3243     for (size_t i = 0; i < 4; ++i) {
3244       FieldDecl *Field = FieldDecl::Create(Context,
3245                                            D,
3246                                            SourceLocation(),
3247                                            SourceLocation(), nullptr,
3248                                            FieldTypes[i], /*TInfo=*/nullptr,
3249                                            /*BitWidth=*/nullptr,
3250                                            /*Mutable=*/false,
3251                                            ICIS_NoInit);
3252       Field->setAccess(AS_public);
3253       D->addDecl(Field);
3254     }
3255 
3256     D->completeDefinition();
3257     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3258   }
3259 
3260   return ObjCFastEnumerationStateType;
3261 }
3262 
3263 llvm::Constant *
3264 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3265   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3266 
3267   // Don't emit it as the address of the string, emit the string data itself
3268   // as an inline array.
3269   if (E->getCharByteWidth() == 1) {
3270     SmallString<64> Str(E->getString());
3271 
3272     // Resize the string to the right size, which is indicated by its type.
3273     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3274     Str.resize(CAT->getSize().getZExtValue());
3275     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3276   }
3277 
3278   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3279   llvm::Type *ElemTy = AType->getElementType();
3280   unsigned NumElements = AType->getNumElements();
3281 
3282   // Wide strings have either 2-byte or 4-byte elements.
3283   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3284     SmallVector<uint16_t, 32> Elements;
3285     Elements.reserve(NumElements);
3286 
3287     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3288       Elements.push_back(E->getCodeUnit(i));
3289     Elements.resize(NumElements);
3290     return llvm::ConstantDataArray::get(VMContext, Elements);
3291   }
3292 
3293   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3294   SmallVector<uint32_t, 32> Elements;
3295   Elements.reserve(NumElements);
3296 
3297   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3298     Elements.push_back(E->getCodeUnit(i));
3299   Elements.resize(NumElements);
3300   return llvm::ConstantDataArray::get(VMContext, Elements);
3301 }
3302 
3303 static llvm::GlobalVariable *
3304 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3305                       CodeGenModule &CGM, StringRef GlobalName,
3306                       CharUnits Alignment) {
3307   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3308   unsigned AddrSpace = 0;
3309   if (CGM.getLangOpts().OpenCL)
3310     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3311 
3312   llvm::Module &M = CGM.getModule();
3313   // Create a global variable for this string
3314   auto *GV = new llvm::GlobalVariable(
3315       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3316       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3317   GV->setAlignment(Alignment.getQuantity());
3318   GV->setUnnamedAddr(true);
3319   if (GV->isWeakForLinker()) {
3320     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3321     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3322   }
3323 
3324   return GV;
3325 }
3326 
3327 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3328 /// constant array for the given string literal.
3329 ConstantAddress
3330 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3331                                                   StringRef Name) {
3332   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3333 
3334   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3335   llvm::GlobalVariable **Entry = nullptr;
3336   if (!LangOpts.WritableStrings) {
3337     Entry = &ConstantStringMap[C];
3338     if (auto GV = *Entry) {
3339       if (Alignment.getQuantity() > GV->getAlignment())
3340         GV->setAlignment(Alignment.getQuantity());
3341       return ConstantAddress(GV, Alignment);
3342     }
3343   }
3344 
3345   SmallString<256> MangledNameBuffer;
3346   StringRef GlobalVariableName;
3347   llvm::GlobalValue::LinkageTypes LT;
3348 
3349   // Mangle the string literal if the ABI allows for it.  However, we cannot
3350   // do this if  we are compiling with ASan or -fwritable-strings because they
3351   // rely on strings having normal linkage.
3352   if (!LangOpts.WritableStrings &&
3353       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3354       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3355     llvm::raw_svector_ostream Out(MangledNameBuffer);
3356     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3357 
3358     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3359     GlobalVariableName = MangledNameBuffer;
3360   } else {
3361     LT = llvm::GlobalValue::PrivateLinkage;
3362     GlobalVariableName = Name;
3363   }
3364 
3365   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3366   if (Entry)
3367     *Entry = GV;
3368 
3369   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3370                                   QualType());
3371   return ConstantAddress(GV, Alignment);
3372 }
3373 
3374 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3375 /// array for the given ObjCEncodeExpr node.
3376 ConstantAddress
3377 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3378   std::string Str;
3379   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3380 
3381   return GetAddrOfConstantCString(Str);
3382 }
3383 
3384 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3385 /// the literal and a terminating '\0' character.
3386 /// The result has pointer to array type.
3387 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3388     const std::string &Str, const char *GlobalName) {
3389   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3390   CharUnits Alignment =
3391     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3392 
3393   llvm::Constant *C =
3394       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3395 
3396   // Don't share any string literals if strings aren't constant.
3397   llvm::GlobalVariable **Entry = nullptr;
3398   if (!LangOpts.WritableStrings) {
3399     Entry = &ConstantStringMap[C];
3400     if (auto GV = *Entry) {
3401       if (Alignment.getQuantity() > GV->getAlignment())
3402         GV->setAlignment(Alignment.getQuantity());
3403       return ConstantAddress(GV, Alignment);
3404     }
3405   }
3406 
3407   // Get the default prefix if a name wasn't specified.
3408   if (!GlobalName)
3409     GlobalName = ".str";
3410   // Create a global variable for this.
3411   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3412                                   GlobalName, Alignment);
3413   if (Entry)
3414     *Entry = GV;
3415   return ConstantAddress(GV, Alignment);
3416 }
3417 
3418 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3419     const MaterializeTemporaryExpr *E, const Expr *Init) {
3420   assert((E->getStorageDuration() == SD_Static ||
3421           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3422   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3423 
3424   // If we're not materializing a subobject of the temporary, keep the
3425   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3426   QualType MaterializedType = Init->getType();
3427   if (Init == E->GetTemporaryExpr())
3428     MaterializedType = E->getType();
3429 
3430   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3431 
3432   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3433     return ConstantAddress(Slot, Align);
3434 
3435   // FIXME: If an externally-visible declaration extends multiple temporaries,
3436   // we need to give each temporary the same name in every translation unit (and
3437   // we also need to make the temporaries externally-visible).
3438   SmallString<256> Name;
3439   llvm::raw_svector_ostream Out(Name);
3440   getCXXABI().getMangleContext().mangleReferenceTemporary(
3441       VD, E->getManglingNumber(), Out);
3442 
3443   APValue *Value = nullptr;
3444   if (E->getStorageDuration() == SD_Static) {
3445     // We might have a cached constant initializer for this temporary. Note
3446     // that this might have a different value from the value computed by
3447     // evaluating the initializer if the surrounding constant expression
3448     // modifies the temporary.
3449     Value = getContext().getMaterializedTemporaryValue(E, false);
3450     if (Value && Value->isUninit())
3451       Value = nullptr;
3452   }
3453 
3454   // Try evaluating it now, it might have a constant initializer.
3455   Expr::EvalResult EvalResult;
3456   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3457       !EvalResult.hasSideEffects())
3458     Value = &EvalResult.Val;
3459 
3460   llvm::Constant *InitialValue = nullptr;
3461   bool Constant = false;
3462   llvm::Type *Type;
3463   if (Value) {
3464     // The temporary has a constant initializer, use it.
3465     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3466     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3467     Type = InitialValue->getType();
3468   } else {
3469     // No initializer, the initialization will be provided when we
3470     // initialize the declaration which performed lifetime extension.
3471     Type = getTypes().ConvertTypeForMem(MaterializedType);
3472   }
3473 
3474   // Create a global variable for this lifetime-extended temporary.
3475   llvm::GlobalValue::LinkageTypes Linkage =
3476       getLLVMLinkageVarDefinition(VD, Constant);
3477   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3478     const VarDecl *InitVD;
3479     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3480         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3481       // Temporaries defined inside a class get linkonce_odr linkage because the
3482       // class can be defined in multipe translation units.
3483       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3484     } else {
3485       // There is no need for this temporary to have external linkage if the
3486       // VarDecl has external linkage.
3487       Linkage = llvm::GlobalVariable::InternalLinkage;
3488     }
3489   }
3490   unsigned AddrSpace = GetGlobalVarAddressSpace(
3491       VD, getContext().getTargetAddressSpace(MaterializedType));
3492   auto *GV = new llvm::GlobalVariable(
3493       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3494       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3495       AddrSpace);
3496   setGlobalVisibility(GV, VD);
3497   GV->setAlignment(Align.getQuantity());
3498   if (supportsCOMDAT() && GV->isWeakForLinker())
3499     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3500   if (VD->getTLSKind())
3501     setTLSMode(GV, *VD);
3502   MaterializedGlobalTemporaryMap[E] = GV;
3503   return ConstantAddress(GV, Align);
3504 }
3505 
3506 /// EmitObjCPropertyImplementations - Emit information for synthesized
3507 /// properties for an implementation.
3508 void CodeGenModule::EmitObjCPropertyImplementations(const
3509                                                     ObjCImplementationDecl *D) {
3510   for (const auto *PID : D->property_impls()) {
3511     // Dynamic is just for type-checking.
3512     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3513       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3514 
3515       // Determine which methods need to be implemented, some may have
3516       // been overridden. Note that ::isPropertyAccessor is not the method
3517       // we want, that just indicates if the decl came from a
3518       // property. What we want to know is if the method is defined in
3519       // this implementation.
3520       if (!D->getInstanceMethod(PD->getGetterName()))
3521         CodeGenFunction(*this).GenerateObjCGetter(
3522                                  const_cast<ObjCImplementationDecl *>(D), PID);
3523       if (!PD->isReadOnly() &&
3524           !D->getInstanceMethod(PD->getSetterName()))
3525         CodeGenFunction(*this).GenerateObjCSetter(
3526                                  const_cast<ObjCImplementationDecl *>(D), PID);
3527     }
3528   }
3529 }
3530 
3531 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3532   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3533   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3534        ivar; ivar = ivar->getNextIvar())
3535     if (ivar->getType().isDestructedType())
3536       return true;
3537 
3538   return false;
3539 }
3540 
3541 static bool AllTrivialInitializers(CodeGenModule &CGM,
3542                                    ObjCImplementationDecl *D) {
3543   CodeGenFunction CGF(CGM);
3544   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3545        E = D->init_end(); B != E; ++B) {
3546     CXXCtorInitializer *CtorInitExp = *B;
3547     Expr *Init = CtorInitExp->getInit();
3548     if (!CGF.isTrivialInitializer(Init))
3549       return false;
3550   }
3551   return true;
3552 }
3553 
3554 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3555 /// for an implementation.
3556 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3557   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3558   if (needsDestructMethod(D)) {
3559     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3560     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3561     ObjCMethodDecl *DTORMethod =
3562       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3563                              cxxSelector, getContext().VoidTy, nullptr, D,
3564                              /*isInstance=*/true, /*isVariadic=*/false,
3565                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3566                              /*isDefined=*/false, ObjCMethodDecl::Required);
3567     D->addInstanceMethod(DTORMethod);
3568     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3569     D->setHasDestructors(true);
3570   }
3571 
3572   // If the implementation doesn't have any ivar initializers, we don't need
3573   // a .cxx_construct.
3574   if (D->getNumIvarInitializers() == 0 ||
3575       AllTrivialInitializers(*this, D))
3576     return;
3577 
3578   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3579   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3580   // The constructor returns 'self'.
3581   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3582                                                 D->getLocation(),
3583                                                 D->getLocation(),
3584                                                 cxxSelector,
3585                                                 getContext().getObjCIdType(),
3586                                                 nullptr, D, /*isInstance=*/true,
3587                                                 /*isVariadic=*/false,
3588                                                 /*isPropertyAccessor=*/true,
3589                                                 /*isImplicitlyDeclared=*/true,
3590                                                 /*isDefined=*/false,
3591                                                 ObjCMethodDecl::Required);
3592   D->addInstanceMethod(CTORMethod);
3593   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3594   D->setHasNonZeroConstructors(true);
3595 }
3596 
3597 /// EmitNamespace - Emit all declarations in a namespace.
3598 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3599   for (auto *I : ND->decls()) {
3600     if (const auto *VD = dyn_cast<VarDecl>(I))
3601       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3602           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3603         continue;
3604     EmitTopLevelDecl(I);
3605   }
3606 }
3607 
3608 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3609 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3610   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3611       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3612     ErrorUnsupported(LSD, "linkage spec");
3613     return;
3614   }
3615 
3616   for (auto *I : LSD->decls()) {
3617     // Meta-data for ObjC class includes references to implemented methods.
3618     // Generate class's method definitions first.
3619     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3620       for (auto *M : OID->methods())
3621         EmitTopLevelDecl(M);
3622     }
3623     EmitTopLevelDecl(I);
3624   }
3625 }
3626 
3627 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3628 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3629   // Ignore dependent declarations.
3630   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3631     return;
3632 
3633   switch (D->getKind()) {
3634   case Decl::CXXConversion:
3635   case Decl::CXXMethod:
3636   case Decl::Function:
3637     // Skip function templates
3638     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3639         cast<FunctionDecl>(D)->isLateTemplateParsed())
3640       return;
3641 
3642     EmitGlobal(cast<FunctionDecl>(D));
3643     // Always provide some coverage mapping
3644     // even for the functions that aren't emitted.
3645     AddDeferredUnusedCoverageMapping(D);
3646     break;
3647 
3648   case Decl::Var:
3649     // Skip variable templates
3650     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3651       return;
3652   case Decl::VarTemplateSpecialization:
3653     EmitGlobal(cast<VarDecl>(D));
3654     break;
3655 
3656   // Indirect fields from global anonymous structs and unions can be
3657   // ignored; only the actual variable requires IR gen support.
3658   case Decl::IndirectField:
3659     break;
3660 
3661   // C++ Decls
3662   case Decl::Namespace:
3663     EmitNamespace(cast<NamespaceDecl>(D));
3664     break;
3665     // No code generation needed.
3666   case Decl::UsingShadow:
3667   case Decl::ClassTemplate:
3668   case Decl::VarTemplate:
3669   case Decl::VarTemplatePartialSpecialization:
3670   case Decl::FunctionTemplate:
3671   case Decl::TypeAliasTemplate:
3672   case Decl::Block:
3673   case Decl::Empty:
3674     break;
3675   case Decl::Using:          // using X; [C++]
3676     if (CGDebugInfo *DI = getModuleDebugInfo())
3677         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3678     return;
3679   case Decl::NamespaceAlias:
3680     if (CGDebugInfo *DI = getModuleDebugInfo())
3681         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3682     return;
3683   case Decl::UsingDirective: // using namespace X; [C++]
3684     if (CGDebugInfo *DI = getModuleDebugInfo())
3685       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3686     return;
3687   case Decl::CXXConstructor:
3688     // Skip function templates
3689     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3690         cast<FunctionDecl>(D)->isLateTemplateParsed())
3691       return;
3692 
3693     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3694     break;
3695   case Decl::CXXDestructor:
3696     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3697       return;
3698     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3699     break;
3700 
3701   case Decl::StaticAssert:
3702     // Nothing to do.
3703     break;
3704 
3705   // Objective-C Decls
3706 
3707   // Forward declarations, no (immediate) code generation.
3708   case Decl::ObjCInterface:
3709   case Decl::ObjCCategory:
3710     break;
3711 
3712   case Decl::ObjCProtocol: {
3713     auto *Proto = cast<ObjCProtocolDecl>(D);
3714     if (Proto->isThisDeclarationADefinition())
3715       ObjCRuntime->GenerateProtocol(Proto);
3716     break;
3717   }
3718 
3719   case Decl::ObjCCategoryImpl:
3720     // Categories have properties but don't support synthesize so we
3721     // can ignore them here.
3722     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3723     break;
3724 
3725   case Decl::ObjCImplementation: {
3726     auto *OMD = cast<ObjCImplementationDecl>(D);
3727     EmitObjCPropertyImplementations(OMD);
3728     EmitObjCIvarInitializations(OMD);
3729     ObjCRuntime->GenerateClass(OMD);
3730     // Emit global variable debug information.
3731     if (CGDebugInfo *DI = getModuleDebugInfo())
3732       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3733         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3734             OMD->getClassInterface()), OMD->getLocation());
3735     break;
3736   }
3737   case Decl::ObjCMethod: {
3738     auto *OMD = cast<ObjCMethodDecl>(D);
3739     // If this is not a prototype, emit the body.
3740     if (OMD->getBody())
3741       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3742     break;
3743   }
3744   case Decl::ObjCCompatibleAlias:
3745     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3746     break;
3747 
3748   case Decl::PragmaComment: {
3749     const auto *PCD = cast<PragmaCommentDecl>(D);
3750     switch (PCD->getCommentKind()) {
3751     case PCK_Unknown:
3752       llvm_unreachable("unexpected pragma comment kind");
3753     case PCK_Linker:
3754       AppendLinkerOptions(PCD->getArg());
3755       break;
3756     case PCK_Lib:
3757       AddDependentLib(PCD->getArg());
3758       break;
3759     case PCK_Compiler:
3760     case PCK_ExeStr:
3761     case PCK_User:
3762       break; // We ignore all of these.
3763     }
3764     break;
3765   }
3766 
3767   case Decl::PragmaDetectMismatch: {
3768     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3769     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3770     break;
3771   }
3772 
3773   case Decl::LinkageSpec:
3774     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3775     break;
3776 
3777   case Decl::FileScopeAsm: {
3778     // File-scope asm is ignored during device-side CUDA compilation.
3779     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3780       break;
3781     // File-scope asm is ignored during device-side OpenMP compilation.
3782     if (LangOpts.OpenMPIsDevice)
3783       break;
3784     auto *AD = cast<FileScopeAsmDecl>(D);
3785     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3786     break;
3787   }
3788 
3789   case Decl::Import: {
3790     auto *Import = cast<ImportDecl>(D);
3791 
3792     // Ignore import declarations that come from imported modules.
3793     if (Import->getImportedOwningModule())
3794       break;
3795     if (CGDebugInfo *DI = getModuleDebugInfo())
3796       DI->EmitImportDecl(*Import);
3797 
3798     ImportedModules.insert(Import->getImportedModule());
3799     break;
3800   }
3801 
3802   case Decl::OMPThreadPrivate:
3803     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3804     break;
3805 
3806   case Decl::ClassTemplateSpecialization: {
3807     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3808     if (DebugInfo &&
3809         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3810         Spec->hasDefinition())
3811       DebugInfo->completeTemplateDefinition(*Spec);
3812     break;
3813   }
3814 
3815   case Decl::OMPDeclareReduction:
3816     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3817     break;
3818 
3819   default:
3820     // Make sure we handled everything we should, every other kind is a
3821     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3822     // function. Need to recode Decl::Kind to do that easily.
3823     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3824     break;
3825   }
3826 }
3827 
3828 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3829   // Do we need to generate coverage mapping?
3830   if (!CodeGenOpts.CoverageMapping)
3831     return;
3832   switch (D->getKind()) {
3833   case Decl::CXXConversion:
3834   case Decl::CXXMethod:
3835   case Decl::Function:
3836   case Decl::ObjCMethod:
3837   case Decl::CXXConstructor:
3838   case Decl::CXXDestructor: {
3839     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3840       return;
3841     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3842     if (I == DeferredEmptyCoverageMappingDecls.end())
3843       DeferredEmptyCoverageMappingDecls[D] = true;
3844     break;
3845   }
3846   default:
3847     break;
3848   };
3849 }
3850 
3851 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3852   // Do we need to generate coverage mapping?
3853   if (!CodeGenOpts.CoverageMapping)
3854     return;
3855   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3856     if (Fn->isTemplateInstantiation())
3857       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3858   }
3859   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3860   if (I == DeferredEmptyCoverageMappingDecls.end())
3861     DeferredEmptyCoverageMappingDecls[D] = false;
3862   else
3863     I->second = false;
3864 }
3865 
3866 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3867   std::vector<const Decl *> DeferredDecls;
3868   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3869     if (!I.second)
3870       continue;
3871     DeferredDecls.push_back(I.first);
3872   }
3873   // Sort the declarations by their location to make sure that the tests get a
3874   // predictable order for the coverage mapping for the unused declarations.
3875   if (CodeGenOpts.DumpCoverageMapping)
3876     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3877               [] (const Decl *LHS, const Decl *RHS) {
3878       return LHS->getLocStart() < RHS->getLocStart();
3879     });
3880   for (const auto *D : DeferredDecls) {
3881     switch (D->getKind()) {
3882     case Decl::CXXConversion:
3883     case Decl::CXXMethod:
3884     case Decl::Function:
3885     case Decl::ObjCMethod: {
3886       CodeGenPGO PGO(*this);
3887       GlobalDecl GD(cast<FunctionDecl>(D));
3888       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3889                                   getFunctionLinkage(GD));
3890       break;
3891     }
3892     case Decl::CXXConstructor: {
3893       CodeGenPGO PGO(*this);
3894       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3895       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3896                                   getFunctionLinkage(GD));
3897       break;
3898     }
3899     case Decl::CXXDestructor: {
3900       CodeGenPGO PGO(*this);
3901       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3902       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3903                                   getFunctionLinkage(GD));
3904       break;
3905     }
3906     default:
3907       break;
3908     };
3909   }
3910 }
3911 
3912 /// Turns the given pointer into a constant.
3913 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3914                                           const void *Ptr) {
3915   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3916   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3917   return llvm::ConstantInt::get(i64, PtrInt);
3918 }
3919 
3920 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3921                                    llvm::NamedMDNode *&GlobalMetadata,
3922                                    GlobalDecl D,
3923                                    llvm::GlobalValue *Addr) {
3924   if (!GlobalMetadata)
3925     GlobalMetadata =
3926       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3927 
3928   // TODO: should we report variant information for ctors/dtors?
3929   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3930                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3931                                CGM.getLLVMContext(), D.getDecl()))};
3932   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3933 }
3934 
3935 /// For each function which is declared within an extern "C" region and marked
3936 /// as 'used', but has internal linkage, create an alias from the unmangled
3937 /// name to the mangled name if possible. People expect to be able to refer
3938 /// to such functions with an unmangled name from inline assembly within the
3939 /// same translation unit.
3940 void CodeGenModule::EmitStaticExternCAliases() {
3941   // Don't do anything if we're generating CUDA device code -- the NVPTX
3942   // assembly target doesn't support aliases.
3943   if (Context.getTargetInfo().getTriple().isNVPTX())
3944     return;
3945   for (auto &I : StaticExternCValues) {
3946     IdentifierInfo *Name = I.first;
3947     llvm::GlobalValue *Val = I.second;
3948     if (Val && !getModule().getNamedValue(Name->getName()))
3949       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3950   }
3951 }
3952 
3953 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3954                                              GlobalDecl &Result) const {
3955   auto Res = Manglings.find(MangledName);
3956   if (Res == Manglings.end())
3957     return false;
3958   Result = Res->getValue();
3959   return true;
3960 }
3961 
3962 /// Emits metadata nodes associating all the global values in the
3963 /// current module with the Decls they came from.  This is useful for
3964 /// projects using IR gen as a subroutine.
3965 ///
3966 /// Since there's currently no way to associate an MDNode directly
3967 /// with an llvm::GlobalValue, we create a global named metadata
3968 /// with the name 'clang.global.decl.ptrs'.
3969 void CodeGenModule::EmitDeclMetadata() {
3970   llvm::NamedMDNode *GlobalMetadata = nullptr;
3971 
3972   for (auto &I : MangledDeclNames) {
3973     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3974     // Some mangled names don't necessarily have an associated GlobalValue
3975     // in this module, e.g. if we mangled it for DebugInfo.
3976     if (Addr)
3977       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3978   }
3979 }
3980 
3981 /// Emits metadata nodes for all the local variables in the current
3982 /// function.
3983 void CodeGenFunction::EmitDeclMetadata() {
3984   if (LocalDeclMap.empty()) return;
3985 
3986   llvm::LLVMContext &Context = getLLVMContext();
3987 
3988   // Find the unique metadata ID for this name.
3989   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3990 
3991   llvm::NamedMDNode *GlobalMetadata = nullptr;
3992 
3993   for (auto &I : LocalDeclMap) {
3994     const Decl *D = I.first;
3995     llvm::Value *Addr = I.second.getPointer();
3996     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3997       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3998       Alloca->setMetadata(
3999           DeclPtrKind, llvm::MDNode::get(
4000                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4001     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4002       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4003       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4004     }
4005   }
4006 }
4007 
4008 void CodeGenModule::EmitVersionIdentMetadata() {
4009   llvm::NamedMDNode *IdentMetadata =
4010     TheModule.getOrInsertNamedMetadata("llvm.ident");
4011   std::string Version = getClangFullVersion();
4012   llvm::LLVMContext &Ctx = TheModule.getContext();
4013 
4014   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4015   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4016 }
4017 
4018 void CodeGenModule::EmitTargetMetadata() {
4019   // Warning, new MangledDeclNames may be appended within this loop.
4020   // We rely on MapVector insertions adding new elements to the end
4021   // of the container.
4022   // FIXME: Move this loop into the one target that needs it, and only
4023   // loop over those declarations for which we couldn't emit the target
4024   // metadata when we emitted the declaration.
4025   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4026     auto Val = *(MangledDeclNames.begin() + I);
4027     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4028     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4029     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4030   }
4031 }
4032 
4033 void CodeGenModule::EmitCoverageFile() {
4034   if (!getCodeGenOpts().CoverageFile.empty()) {
4035     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4036       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4037       llvm::LLVMContext &Ctx = TheModule.getContext();
4038       llvm::MDString *CoverageFile =
4039           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4040       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4041         llvm::MDNode *CU = CUNode->getOperand(i);
4042         llvm::Metadata *Elts[] = {CoverageFile, CU};
4043         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4044       }
4045     }
4046   }
4047 }
4048 
4049 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4050   // Sema has checked that all uuid strings are of the form
4051   // "12345678-1234-1234-1234-1234567890ab".
4052   assert(Uuid.size() == 36);
4053   for (unsigned i = 0; i < 36; ++i) {
4054     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4055     else                                         assert(isHexDigit(Uuid[i]));
4056   }
4057 
4058   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4059   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4060 
4061   llvm::Constant *Field3[8];
4062   for (unsigned Idx = 0; Idx < 8; ++Idx)
4063     Field3[Idx] = llvm::ConstantInt::get(
4064         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4065 
4066   llvm::Constant *Fields[4] = {
4067     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4068     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4069     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4070     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4071   };
4072 
4073   return llvm::ConstantStruct::getAnon(Fields);
4074 }
4075 
4076 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4077                                                        bool ForEH) {
4078   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4079   // FIXME: should we even be calling this method if RTTI is disabled
4080   // and it's not for EH?
4081   if (!ForEH && !getLangOpts().RTTI)
4082     return llvm::Constant::getNullValue(Int8PtrTy);
4083 
4084   if (ForEH && Ty->isObjCObjectPointerType() &&
4085       LangOpts.ObjCRuntime.isGNUFamily())
4086     return ObjCRuntime->GetEHType(Ty);
4087 
4088   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4089 }
4090 
4091 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4092   for (auto RefExpr : D->varlists()) {
4093     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4094     bool PerformInit =
4095         VD->getAnyInitializer() &&
4096         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4097                                                         /*ForRef=*/false);
4098 
4099     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4100     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4101             VD, Addr, RefExpr->getLocStart(), PerformInit))
4102       CXXGlobalInits.push_back(InitFunction);
4103   }
4104 }
4105 
4106 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4107   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4108   if (InternalId)
4109     return InternalId;
4110 
4111   if (isExternallyVisible(T->getLinkage())) {
4112     std::string OutName;
4113     llvm::raw_string_ostream Out(OutName);
4114     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4115 
4116     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4117   } else {
4118     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4119                                            llvm::ArrayRef<llvm::Metadata *>());
4120   }
4121 
4122   return InternalId;
4123 }
4124 
4125 /// Returns whether this module needs the "all-vtables" bitset.
4126 bool CodeGenModule::NeedAllVtablesBitSet() const {
4127   // Returns true if at least one of vtable-based CFI checkers is enabled and
4128   // is not in the trapping mode.
4129   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4130            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4131           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4132            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4133           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4134            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4135           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4136            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4137 }
4138 
4139 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4140                                             llvm::GlobalVariable *VTable,
4141                                             CharUnits Offset,
4142                                             const CXXRecordDecl *RD) {
4143   llvm::Metadata *MD =
4144       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4145   llvm::Metadata *BitsetOps[] = {
4146       MD, llvm::ConstantAsMetadata::get(VTable),
4147       llvm::ConstantAsMetadata::get(
4148           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4149   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4150 
4151   if (CodeGenOpts.SanitizeCfiCrossDso) {
4152     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4153       llvm::Metadata *BitsetOps2[] = {
4154           llvm::ConstantAsMetadata::get(TypeId),
4155           llvm::ConstantAsMetadata::get(VTable),
4156           llvm::ConstantAsMetadata::get(
4157               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4158       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4159     }
4160   }
4161 
4162   if (NeedAllVtablesBitSet()) {
4163     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4164     llvm::Metadata *BitsetOps[] = {
4165         MD, llvm::ConstantAsMetadata::get(VTable),
4166         llvm::ConstantAsMetadata::get(
4167             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4168     // Avoid adding a node to BitsetsMD twice.
4169     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4170       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4171   }
4172 }
4173 
4174 // Fills in the supplied string map with the set of target features for the
4175 // passed in function.
4176 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4177                                           const FunctionDecl *FD) {
4178   StringRef TargetCPU = Target.getTargetOpts().CPU;
4179   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4180     // If we have a TargetAttr build up the feature map based on that.
4181     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4182 
4183     // Make a copy of the features as passed on the command line into the
4184     // beginning of the additional features from the function to override.
4185     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4186                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4187                             Target.getTargetOpts().FeaturesAsWritten.end());
4188 
4189     if (ParsedAttr.second != "")
4190       TargetCPU = ParsedAttr.second;
4191 
4192     // Now populate the feature map, first with the TargetCPU which is either
4193     // the default or a new one from the target attribute string. Then we'll use
4194     // the passed in features (FeaturesAsWritten) along with the new ones from
4195     // the attribute.
4196     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4197   } else {
4198     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4199                           Target.getTargetOpts().Features);
4200   }
4201 }
4202 
4203 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4204   if (!SanStats)
4205     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4206 
4207   return *SanStats;
4208 }
4209