xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 9301b24c0a4ed6eb320c9bbd9bc547e11d57622e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   EmitDeferred();
66   if (Runtime)
67     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
68       AddGlobalCtor(ObjCInitFunction);
69   EmitCtorList(GlobalCtors, "llvm.global_ctors");
70   EmitCtorList(GlobalDtors, "llvm.global_dtors");
71   EmitAnnotations();
72   EmitLLVMUsed();
73 }
74 
75 /// ErrorUnsupported - Print out an error that codegen doesn't support the
76 /// specified stmt yet.
77 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
78                                      bool OmitOnError) {
79   if (OmitOnError && getDiags().hasErrorOccurred())
80     return;
81   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
82                                                "cannot compile this %0 yet");
83   std::string Msg = Type;
84   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
85     << Msg << S->getSourceRange();
86 }
87 
88 /// ErrorUnsupported - Print out an error that codegen doesn't support the
89 /// specified decl yet.
90 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
91                                      bool OmitOnError) {
92   if (OmitOnError && getDiags().hasErrorOccurred())
93     return;
94   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
95                                                "cannot compile this %0 yet");
96   std::string Msg = Type;
97   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
98 }
99 
100 LangOptions::VisibilityMode
101 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
102   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
103     if (VD->getStorageClass() == VarDecl::PrivateExtern)
104       return LangOptions::Hidden;
105 
106   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
107     switch (attr->getVisibility()) {
108     default: assert(0 && "Unknown visibility!");
109     case VisibilityAttr::DefaultVisibility:
110       return LangOptions::Default;
111     case VisibilityAttr::HiddenVisibility:
112       return LangOptions::Hidden;
113     case VisibilityAttr::ProtectedVisibility:
114       return LangOptions::Protected;
115     }
116   }
117 
118   return getLangOptions().getVisibilityMode();
119 }
120 
121 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
122                                         const Decl *D) const {
123   // Internal definitions always have default visibility.
124   if (GV->hasLocalLinkage()) {
125     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
126     return;
127   }
128 
129   switch (getDeclVisibilityMode(D)) {
130   default: assert(0 && "Unknown visibility!");
131   case LangOptions::Default:
132     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
133   case LangOptions::Hidden:
134     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
135   case LangOptions::Protected:
136     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
137   }
138 }
139 
140 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
141   const NamedDecl *ND = GD.getDecl();
142 
143   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
144     return getMangledCXXCtorName(D, GD.getCtorType());
145   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
146     return getMangledCXXDtorName(D, GD.getDtorType());
147 
148   return getMangledName(ND);
149 }
150 
151 /// \brief Retrieves the mangled name for the given declaration.
152 ///
153 /// If the given declaration requires a mangled name, returns an
154 /// const char* containing the mangled name.  Otherwise, returns
155 /// the unmangled name.
156 ///
157 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
158   // In C, functions with no attributes never need to be mangled. Fastpath them.
159   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
160     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
161     return ND->getNameAsCString();
162   }
163 
164   llvm::SmallString<256> Name;
165   llvm::raw_svector_ostream Out(Name);
166   if (!mangleName(ND, Context, Out)) {
167     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
168     return ND->getNameAsCString();
169   }
170 
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::VoidTy,
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(
214       llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // The kind of external linkage this function will have, if it is not
248   // inline or static.
249   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
250   if (Context.getLangOptions().CPlusPlus &&
251       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
252       !FD->isExplicitSpecialization())
253     External = CodeGenModule::GVA_TemplateInstantiation;
254 
255   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
256     // C++ member functions defined inside the class are always inline.
257     if (MD->isInline() || !MD->isOutOfLine())
258       return CodeGenModule::GVA_CXXInline;
259 
260     return External;
261   }
262 
263   // "static" functions get internal linkage.
264   if (FD->getStorageClass() == FunctionDecl::Static)
265     return CodeGenModule::GVA_Internal;
266 
267   if (!FD->isInline())
268     return External;
269 
270   // If the inline function explicitly has the GNU inline attribute on it, or if
271   // this is C89 mode, we use to GNU semantics.
272   if (!Features.C99 && !Features.CPlusPlus) {
273     // extern inline in GNU mode is like C99 inline.
274     if (FD->getStorageClass() == FunctionDecl::Extern)
275       return CodeGenModule::GVA_C99Inline;
276     // Normal inline is a strong symbol.
277     return CodeGenModule::GVA_StrongExternal;
278   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
279     // GCC in C99 mode seems to use a different decision-making
280     // process for extern inline, which factors in previous
281     // declarations.
282     if (FD->isExternGNUInline(Context))
283       return CodeGenModule::GVA_C99Inline;
284     // Normal inline is a strong symbol.
285     return External;
286   }
287 
288   // The definition of inline changes based on the language.  Note that we
289   // have already handled "static inline" above, with the GVA_Internal case.
290   if (Features.CPlusPlus)  // inline and extern inline.
291     return CodeGenModule::GVA_CXXInline;
292 
293   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
294   if (FD->isC99InlineDefinition())
295     return CodeGenModule::GVA_C99Inline;
296 
297   return CodeGenModule::GVA_StrongExternal;
298 }
299 
300 /// SetFunctionDefinitionAttributes - Set attributes for a global.
301 ///
302 /// FIXME: This is currently only done for aliases and functions, but not for
303 /// variables (these details are set in EmitGlobalVarDefinition for variables).
304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
305                                                     llvm::GlobalValue *GV) {
306   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
307 
308   if (Linkage == GVA_Internal) {
309     GV->setLinkage(llvm::Function::InternalLinkage);
310   } else if (D->hasAttr<DLLExportAttr>()) {
311     GV->setLinkage(llvm::Function::DLLExportLinkage);
312   } else if (D->hasAttr<WeakAttr>()) {
313     GV->setLinkage(llvm::Function::WeakAnyLinkage);
314   } else if (Linkage == GVA_C99Inline) {
315     // In C99 mode, 'inline' functions are guaranteed to have a strong
316     // definition somewhere else, so we can use available_externally linkage.
317     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
318   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
319     // In C++, the compiler has to emit a definition in every translation unit
320     // that references the function.  We should use linkonce_odr because
321     // a) if all references in this translation unit are optimized away, we
322     // don't need to codegen it.  b) if the function persists, it needs to be
323     // merged with other definitions. c) C++ has the ODR, so we know the
324     // definition is dependable.
325     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
326   } else {
327     assert(Linkage == GVA_StrongExternal);
328     // Otherwise, we have strong external linkage.
329     GV->setLinkage(llvm::Function::ExternalLinkage);
330   }
331 
332   SetCommonAttributes(D, GV);
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
336                                               const CGFunctionInfo &Info,
337                                               llvm::Function *F) {
338   AttributeListType AttributeList;
339   ConstructAttributeList(Info, D, AttributeList);
340 
341   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
342                                         AttributeList.size()));
343 
344   // Set the appropriate calling convention for the Function.
345   if (D->hasAttr<FastCallAttr>())
346     F->setCallingConv(llvm::CallingConv::X86_FastCall);
347 
348   if (D->hasAttr<StdCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_StdCall);
350 }
351 
352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
353                                                            llvm::Function *F) {
354   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
355     F->addFnAttr(llvm::Attribute::NoUnwind);
356 
357   if (D->hasAttr<AlwaysInlineAttr>())
358     F->addFnAttr(llvm::Attribute::AlwaysInline);
359 
360   if (D->hasAttr<NoinlineAttr>())
361     F->addFnAttr(llvm::Attribute::NoInline);
362 }
363 
364 void CodeGenModule::SetCommonAttributes(const Decl *D,
365                                         llvm::GlobalValue *GV) {
366   setGlobalVisibility(GV, D);
367 
368   if (D->hasAttr<UsedAttr>())
369     AddUsedGlobal(GV);
370 
371   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
372     GV->setSection(SA->getName());
373 }
374 
375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
376                                                   llvm::Function *F,
377                                                   const CGFunctionInfo &FI) {
378   SetLLVMFunctionAttributes(D, FI, F);
379   SetLLVMFunctionAttributesForDefinition(D, F);
380 
381   F->setLinkage(llvm::Function::InternalLinkage);
382 
383   SetCommonAttributes(D, F);
384 }
385 
386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
387                                           llvm::Function *F,
388                                           bool IsIncompleteFunction) {
389   if (!IsIncompleteFunction)
390     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
391 
392   // Only a few attributes are set on declarations; these may later be
393   // overridden by a definition.
394 
395   if (FD->hasAttr<DLLImportAttr>()) {
396     F->setLinkage(llvm::Function::DLLImportLinkage);
397   } else if (FD->hasAttr<WeakAttr>() ||
398              FD->hasAttr<WeakImportAttr>()) {
399     // "extern_weak" is overloaded in LLVM; we probably should have
400     // separate linkage types for this.
401     F->setLinkage(llvm::Function::ExternalWeakLinkage);
402   } else {
403     F->setLinkage(llvm::Function::ExternalLinkage);
404   }
405 
406   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
407     F->setSection(SA->getName());
408 }
409 
410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
411   assert(!GV->isDeclaration() &&
412          "Only globals with definition can force usage.");
413   LLVMUsed.push_back(GV);
414 }
415 
416 void CodeGenModule::EmitLLVMUsed() {
417   // Don't create llvm.used if there is no need.
418   if (LLVMUsed.empty())
419     return;
420 
421   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
422 
423   // Convert LLVMUsed to what ConstantArray needs.
424   std::vector<llvm::Constant*> UsedArray;
425   UsedArray.resize(LLVMUsed.size());
426   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
427     UsedArray[i] =
428      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
429                                       i8PTy);
430   }
431 
432   if (UsedArray.empty())
433     return;
434   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
435 
436   llvm::GlobalVariable *GV =
437     new llvm::GlobalVariable(getModule(), ATy, false,
438                              llvm::GlobalValue::AppendingLinkage,
439                              llvm::ConstantArray::get(ATy, UsedArray),
440                              "llvm.used");
441 
442   GV->setSection("llvm.metadata");
443 }
444 
445 void CodeGenModule::EmitDeferred() {
446   // Emit code for any potentially referenced deferred decls.  Since a
447   // previously unused static decl may become used during the generation of code
448   // for a static function, iterate until no  changes are made.
449   while (!DeferredDeclsToEmit.empty()) {
450     GlobalDecl D = DeferredDeclsToEmit.back();
451     DeferredDeclsToEmit.pop_back();
452 
453     // The mangled name for the decl must have been emitted in GlobalDeclMap.
454     // Look it up to see if it was defined with a stronger definition (e.g. an
455     // extern inline function with a strong function redefinition).  If so,
456     // just ignore the deferred decl.
457     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
458     assert(CGRef && "Deferred decl wasn't referenced?");
459 
460     if (!CGRef->isDeclaration())
461       continue;
462 
463     // Otherwise, emit the definition and move on to the next one.
464     EmitGlobalDefinition(D);
465   }
466 }
467 
468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
469 /// annotation information for a given GlobalValue.  The annotation struct is
470 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
471 /// GlobalValue being annotated.  The second field is the constant string
472 /// created from the AnnotateAttr's annotation.  The third field is a constant
473 /// string containing the name of the translation unit.  The fourth field is
474 /// the line number in the file of the annotated value declaration.
475 ///
476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
477 ///        appears to.
478 ///
479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
480                                                 const AnnotateAttr *AA,
481                                                 unsigned LineNo) {
482   llvm::Module *M = &getModule();
483 
484   // get [N x i8] constants for the annotation string, and the filename string
485   // which are the 2nd and 3rd elements of the global annotation structure.
486   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
487   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
488   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   return VD->getStorageClass() == VarDecl::Static;
539 }
540 
541 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
542   const ValueDecl *Global = GD.getDecl();
543 
544   // If this is an alias definition (which otherwise looks like a declaration)
545   // emit it now.
546   if (Global->hasAttr<AliasAttr>())
547     return EmitAliasDefinition(Global);
548 
549   // Ignore declarations, they will be emitted on their first use.
550   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
551     // Forward declarations are emitted lazily on first use.
552     if (!FD->isThisDeclarationADefinition())
553       return;
554   } else {
555     const VarDecl *VD = cast<VarDecl>(Global);
556     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
557 
558     // In C++, if this is marked "extern", defer code generation.
559     if (getLangOptions().CPlusPlus && !VD->getInit() &&
560         (VD->getStorageClass() == VarDecl::Extern ||
561          VD->isExternC(getContext())))
562       return;
563 
564     // In C, if this isn't a definition, defer code generation.
565     if (!getLangOptions().CPlusPlus && !VD->getInit())
566       return;
567   }
568 
569   // Defer code generation when possible if this is a static definition, inline
570   // function etc.  These we only want to emit if they are used.
571   if (MayDeferGeneration(Global)) {
572     // If the value has already been used, add it directly to the
573     // DeferredDeclsToEmit list.
574     const char *MangledName = getMangledName(GD);
575     if (GlobalDeclMap.count(MangledName))
576       DeferredDeclsToEmit.push_back(GD);
577     else {
578       // Otherwise, remember that we saw a deferred decl with this name.  The
579       // first use of the mangled name will cause it to move into
580       // DeferredDeclsToEmit.
581       DeferredDecls[MangledName] = GD;
582     }
583     return;
584   }
585 
586   // Otherwise emit the definition.
587   EmitGlobalDefinition(GD);
588 }
589 
590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
591   const ValueDecl *D = GD.getDecl();
592 
593   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
594     EmitCXXConstructor(CD, GD.getCtorType());
595   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
596     EmitCXXDestructor(DD, GD.getDtorType());
597   else if (isa<FunctionDecl>(D))
598     EmitGlobalFunctionDefinition(GD);
599   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
600     EmitGlobalVarDefinition(VD);
601   else {
602     assert(0 && "Invalid argument to EmitGlobalDefinition()");
603   }
604 }
605 
606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
607 /// module, create and return an llvm Function with the specified type. If there
608 /// is something in the module with the specified name, return it potentially
609 /// bitcasted to the right type.
610 ///
611 /// If D is non-null, it specifies a decl that correspond to this.  This is used
612 /// to set the attributes on the function when it is first created.
613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
614                                                        const llvm::Type *Ty,
615                                                        GlobalDecl D) {
616   // Lookup the entry, lazily creating it if necessary.
617   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
618   if (Entry) {
619     if (Entry->getType()->getElementType() == Ty)
620       return Entry;
621 
622     // Make sure the result is of the correct type.
623     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
624     return llvm::ConstantExpr::getBitCast(Entry, PTy);
625   }
626 
627   // This is the first use or definition of a mangled name.  If there is a
628   // deferred decl with this name, remember that we need to emit it at the end
629   // of the file.
630   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
631     DeferredDecls.find(MangledName);
632   if (DDI != DeferredDecls.end()) {
633     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
634     // list, and remove it from DeferredDecls (since we don't need it anymore).
635     DeferredDeclsToEmit.push_back(DDI->second);
636     DeferredDecls.erase(DDI);
637   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
638     // If this the first reference to a C++ inline function in a class, queue up
639     // the deferred function body for emission.  These are not seen as
640     // top-level declarations.
641     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
642       DeferredDeclsToEmit.push_back(D);
643     // A called constructor which has no definition or declaration need be
644     // synthesized.
645     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
646       const CXXRecordDecl *ClassDecl =
647         cast<CXXRecordDecl>(CD->getDeclContext());
648       if (CD->isCopyConstructor(getContext())) {
649         if (!ClassDecl->hasUserDeclaredCopyConstructor())
650           DeferredDeclsToEmit.push_back(D);
651       }
652       else if (!ClassDecl->hasUserDeclaredConstructor())
653         DeferredDeclsToEmit.push_back(D);
654     }
655   }
656 
657   // This function doesn't have a complete type (for example, the return
658   // type is an incomplete struct). Use a fake type instead, and make
659   // sure not to try to set attributes.
660   bool IsIncompleteFunction = false;
661   if (!isa<llvm::FunctionType>(Ty)) {
662     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
663                                  std::vector<const llvm::Type*>(), false);
664     IsIncompleteFunction = true;
665   }
666   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
667                                              llvm::Function::ExternalLinkage,
668                                              "", &getModule());
669   F->setName(MangledName);
670   if (D.getDecl())
671     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
672                           IsIncompleteFunction);
673   Entry = F;
674   return F;
675 }
676 
677 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
678 /// non-null, then this function will use the specified type if it has to
679 /// create it (this occurs when we see a definition of the function).
680 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
681                                                  const llvm::Type *Ty) {
682   // If there was no specific requested type, just convert it now.
683   if (!Ty)
684     Ty = getTypes().ConvertType(GD.getDecl()->getType());
685   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
686 }
687 
688 /// CreateRuntimeFunction - Create a new runtime function with the specified
689 /// type and name.
690 llvm::Constant *
691 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
692                                      const char *Name) {
693   // Convert Name to be a uniqued string from the IdentifierInfo table.
694   Name = getContext().Idents.get(Name).getName();
695   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
696 }
697 
698 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
699 /// create and return an llvm GlobalVariable with the specified type.  If there
700 /// is something in the module with the specified name, return it potentially
701 /// bitcasted to the right type.
702 ///
703 /// If D is non-null, it specifies a decl that correspond to this.  This is used
704 /// to set the attributes on the global when it is first created.
705 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
706                                                      const llvm::PointerType*Ty,
707                                                      const VarDecl *D) {
708   // Lookup the entry, lazily creating it if necessary.
709   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
710   if (Entry) {
711     if (Entry->getType() == Ty)
712       return Entry;
713 
714     // Make sure the result is of the correct type.
715     return llvm::ConstantExpr::getBitCast(Entry, Ty);
716   }
717 
718   // This is the first use or definition of a mangled name.  If there is a
719   // deferred decl with this name, remember that we need to emit it at the end
720   // of the file.
721   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
722     DeferredDecls.find(MangledName);
723   if (DDI != DeferredDecls.end()) {
724     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
725     // list, and remove it from DeferredDecls (since we don't need it anymore).
726     DeferredDeclsToEmit.push_back(DDI->second);
727     DeferredDecls.erase(DDI);
728   }
729 
730   llvm::GlobalVariable *GV =
731     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
732                              llvm::GlobalValue::ExternalLinkage,
733                              0, "", 0,
734                              false, Ty->getAddressSpace());
735   GV->setName(MangledName);
736 
737   // Handle things which are present even on external declarations.
738   if (D) {
739     // FIXME: This code is overly simple and should be merged with other global
740     // handling.
741     GV->setConstant(D->getType().isConstant(Context));
742 
743     // FIXME: Merge with other attribute handling code.
744     if (D->getStorageClass() == VarDecl::PrivateExtern)
745       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
746 
747     if (D->hasAttr<WeakAttr>() ||
748         D->hasAttr<WeakImportAttr>())
749       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
750 
751     GV->setThreadLocal(D->isThreadSpecified());
752   }
753 
754   return Entry = GV;
755 }
756 
757 
758 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
759 /// given global variable.  If Ty is non-null and if the global doesn't exist,
760 /// then it will be greated with the specified type instead of whatever the
761 /// normal requested type would be.
762 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
763                                                   const llvm::Type *Ty) {
764   assert(D->hasGlobalStorage() && "Not a global variable");
765   QualType ASTTy = D->getType();
766   if (Ty == 0)
767     Ty = getTypes().ConvertTypeForMem(ASTTy);
768 
769   const llvm::PointerType *PTy =
770     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
771   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
772 }
773 
774 /// CreateRuntimeVariable - Create a new runtime global variable with the
775 /// specified type and name.
776 llvm::Constant *
777 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
778                                      const char *Name) {
779   // Convert Name to be a uniqued string from the IdentifierInfo table.
780   Name = getContext().Idents.get(Name).getName();
781   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
782 }
783 
784 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
785   assert(!D->getInit() && "Cannot emit definite definitions here!");
786 
787   if (MayDeferGeneration(D)) {
788     // If we have not seen a reference to this variable yet, place it
789     // into the deferred declarations table to be emitted if needed
790     // later.
791     const char *MangledName = getMangledName(D);
792     if (GlobalDeclMap.count(MangledName) == 0) {
793       DeferredDecls[MangledName] = GlobalDecl(D);
794       return;
795     }
796   }
797 
798   // The tentative definition is the only definition.
799   EmitGlobalVarDefinition(D);
800 }
801 
802 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
803   llvm::Constant *Init = 0;
804   QualType ASTTy = D->getType();
805 
806   if (D->getInit() == 0) {
807     // This is a tentative definition; tentative definitions are
808     // implicitly initialized with { 0 }.
809     //
810     // Note that tentative definitions are only emitted at the end of
811     // a translation unit, so they should never have incomplete
812     // type. In addition, EmitTentativeDefinition makes sure that we
813     // never attempt to emit a tentative definition if a real one
814     // exists. A use may still exists, however, so we still may need
815     // to do a RAUW.
816     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
817     Init = EmitNullConstant(D->getType());
818   } else {
819     Init = EmitConstantExpr(D->getInit(), D->getType());
820     if (!Init) {
821       ErrorUnsupported(D, "static initializer");
822       QualType T = D->getInit()->getType();
823       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
824     }
825   }
826 
827   const llvm::Type* InitType = Init->getType();
828   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
829 
830   // Strip off a bitcast if we got one back.
831   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
832     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
833            // all zero index gep.
834            CE->getOpcode() == llvm::Instruction::GetElementPtr);
835     Entry = CE->getOperand(0);
836   }
837 
838   // Entry is now either a Function or GlobalVariable.
839   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
840 
841   // We have a definition after a declaration with the wrong type.
842   // We must make a new GlobalVariable* and update everything that used OldGV
843   // (a declaration or tentative definition) with the new GlobalVariable*
844   // (which will be a definition).
845   //
846   // This happens if there is a prototype for a global (e.g.
847   // "extern int x[];") and then a definition of a different type (e.g.
848   // "int x[10];"). This also happens when an initializer has a different type
849   // from the type of the global (this happens with unions).
850   if (GV == 0 ||
851       GV->getType()->getElementType() != InitType ||
852       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
853 
854     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
855     GlobalDeclMap.erase(getMangledName(D));
856 
857     // Make a new global with the correct type, this is now guaranteed to work.
858     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
859     GV->takeName(cast<llvm::GlobalValue>(Entry));
860 
861     // Replace all uses of the old global with the new global
862     llvm::Constant *NewPtrForOldDecl =
863         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
864     Entry->replaceAllUsesWith(NewPtrForOldDecl);
865 
866     // Erase the old global, since it is no longer used.
867     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
868   }
869 
870   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
871     SourceManager &SM = Context.getSourceManager();
872     AddAnnotation(EmitAnnotateAttr(GV, AA,
873                               SM.getInstantiationLineNumber(D->getLocation())));
874   }
875 
876   GV->setInitializer(Init);
877 
878   // If it is safe to mark the global 'constant', do so now.
879   GV->setConstant(false);
880   if (D->getType().isConstant(Context)) {
881     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
882     // members, it cannot be declared "LLVM const".
883     GV->setConstant(true);
884   }
885 
886   GV->setAlignment(getContext().getDeclAlignInBytes(D));
887 
888   // Set the llvm linkage type as appropriate.
889   if (D->getStorageClass() == VarDecl::Static)
890     GV->setLinkage(llvm::Function::InternalLinkage);
891   else if (D->hasAttr<DLLImportAttr>())
892     GV->setLinkage(llvm::Function::DLLImportLinkage);
893   else if (D->hasAttr<DLLExportAttr>())
894     GV->setLinkage(llvm::Function::DLLExportLinkage);
895   else if (D->hasAttr<WeakAttr>()) {
896     if (GV->isConstant())
897       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
898     else
899       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
900   } else if (!CompileOpts.NoCommon &&
901            !D->hasExternalStorage() && !D->getInit() &&
902            !D->getAttr<SectionAttr>()) {
903     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
904     // common vars aren't constant even if declared const.
905     GV->setConstant(false);
906   } else
907     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
908 
909   SetCommonAttributes(D, GV);
910 
911   // Emit global variable debug information.
912   if (CGDebugInfo *DI = getDebugInfo()) {
913     DI->setLocation(D->getLocation());
914     DI->EmitGlobalVariable(GV, D);
915   }
916 }
917 
918 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
919 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
920 /// existing call uses of the old function in the module, this adjusts them to
921 /// call the new function directly.
922 ///
923 /// This is not just a cleanup: the always_inline pass requires direct calls to
924 /// functions to be able to inline them.  If there is a bitcast in the way, it
925 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
926 /// run at -O0.
927 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
928                                                       llvm::Function *NewFn) {
929   // If we're redefining a global as a function, don't transform it.
930   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
931   if (OldFn == 0) return;
932 
933   const llvm::Type *NewRetTy = NewFn->getReturnType();
934   llvm::SmallVector<llvm::Value*, 4> ArgList;
935 
936   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
937        UI != E; ) {
938     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
939     unsigned OpNo = UI.getOperandNo();
940     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
941     if (!CI || OpNo != 0) continue;
942 
943     // If the return types don't match exactly, and if the call isn't dead, then
944     // we can't transform this call.
945     if (CI->getType() != NewRetTy && !CI->use_empty())
946       continue;
947 
948     // If the function was passed too few arguments, don't transform.  If extra
949     // arguments were passed, we silently drop them.  If any of the types
950     // mismatch, we don't transform.
951     unsigned ArgNo = 0;
952     bool DontTransform = false;
953     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
954          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
955       if (CI->getNumOperands()-1 == ArgNo ||
956           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
957         DontTransform = true;
958         break;
959       }
960     }
961     if (DontTransform)
962       continue;
963 
964     // Okay, we can transform this.  Create the new call instruction and copy
965     // over the required information.
966     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
967     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
968                                                      ArgList.end(), "", CI);
969     ArgList.clear();
970     if (NewCall->getType() != llvm::Type::VoidTy)
971       NewCall->takeName(CI);
972     NewCall->setCallingConv(CI->getCallingConv());
973     NewCall->setAttributes(CI->getAttributes());
974 
975     // Finally, remove the old call, replacing any uses with the new one.
976     if (!CI->use_empty())
977       CI->replaceAllUsesWith(NewCall);
978     CI->eraseFromParent();
979   }
980 }
981 
982 
983 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
984   const llvm::FunctionType *Ty;
985   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
986 
987   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
988     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
989 
990     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
991   } else {
992     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
993 
994     // As a special case, make sure that definitions of K&R function
995     // "type foo()" aren't declared as varargs (which forces the backend
996     // to do unnecessary work).
997     if (D->getType()->isFunctionNoProtoType()) {
998       assert(Ty->isVarArg() && "Didn't lower type as expected");
999       // Due to stret, the lowered function could have arguments.
1000       // Just create the same type as was lowered by ConvertType
1001       // but strip off the varargs bit.
1002       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1003       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1004     }
1005   }
1006 
1007   // Get or create the prototype for the function.
1008   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1009 
1010   // Strip off a bitcast if we got one back.
1011   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1012     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1013     Entry = CE->getOperand(0);
1014   }
1015 
1016 
1017   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1018     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1019 
1020     // If the types mismatch then we have to rewrite the definition.
1021     assert(OldFn->isDeclaration() &&
1022            "Shouldn't replace non-declaration");
1023 
1024     // F is the Function* for the one with the wrong type, we must make a new
1025     // Function* and update everything that used F (a declaration) with the new
1026     // Function* (which will be a definition).
1027     //
1028     // This happens if there is a prototype for a function
1029     // (e.g. "int f()") and then a definition of a different type
1030     // (e.g. "int f(int x)").  Start by making a new function of the
1031     // correct type, RAUW, then steal the name.
1032     GlobalDeclMap.erase(getMangledName(D));
1033     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1034     NewFn->takeName(OldFn);
1035 
1036     // If this is an implementation of a function without a prototype, try to
1037     // replace any existing uses of the function (which may be calls) with uses
1038     // of the new function
1039     if (D->getType()->isFunctionNoProtoType()) {
1040       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1041       OldFn->removeDeadConstantUsers();
1042     }
1043 
1044     // Replace uses of F with the Function we will endow with a body.
1045     if (!Entry->use_empty()) {
1046       llvm::Constant *NewPtrForOldDecl =
1047         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1048       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1049     }
1050 
1051     // Ok, delete the old function now, which is dead.
1052     OldFn->eraseFromParent();
1053 
1054     Entry = NewFn;
1055   }
1056 
1057   llvm::Function *Fn = cast<llvm::Function>(Entry);
1058 
1059   CodeGenFunction(*this).GenerateCode(D, Fn);
1060 
1061   SetFunctionDefinitionAttributes(D, Fn);
1062   SetLLVMFunctionAttributesForDefinition(D, Fn);
1063 
1064   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1065     AddGlobalCtor(Fn, CA->getPriority());
1066   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1067     AddGlobalDtor(Fn, DA->getPriority());
1068 }
1069 
1070 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1071   const AliasAttr *AA = D->getAttr<AliasAttr>();
1072   assert(AA && "Not an alias?");
1073 
1074   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1075 
1076   // Unique the name through the identifier table.
1077   const char *AliaseeName = AA->getAliasee().c_str();
1078   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1079 
1080   // Create a reference to the named value.  This ensures that it is emitted
1081   // if a deferred decl.
1082   llvm::Constant *Aliasee;
1083   if (isa<llvm::FunctionType>(DeclTy))
1084     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1085   else
1086     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1087                                     llvm::PointerType::getUnqual(DeclTy), 0);
1088 
1089   // Create the new alias itself, but don't set a name yet.
1090   llvm::GlobalValue *GA =
1091     new llvm::GlobalAlias(Aliasee->getType(),
1092                           llvm::Function::ExternalLinkage,
1093                           "", Aliasee, &getModule());
1094 
1095   // See if there is already something with the alias' name in the module.
1096   const char *MangledName = getMangledName(D);
1097   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1098 
1099   if (Entry && !Entry->isDeclaration()) {
1100     // If there is a definition in the module, then it wins over the alias.
1101     // This is dubious, but allow it to be safe.  Just ignore the alias.
1102     GA->eraseFromParent();
1103     return;
1104   }
1105 
1106   if (Entry) {
1107     // If there is a declaration in the module, then we had an extern followed
1108     // by the alias, as in:
1109     //   extern int test6();
1110     //   ...
1111     //   int test6() __attribute__((alias("test7")));
1112     //
1113     // Remove it and replace uses of it with the alias.
1114 
1115     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1116                                                           Entry->getType()));
1117     Entry->eraseFromParent();
1118   }
1119 
1120   // Now we know that there is no conflict, set the name.
1121   Entry = GA;
1122   GA->setName(MangledName);
1123 
1124   // Set attributes which are particular to an alias; this is a
1125   // specialization of the attributes which may be set on a global
1126   // variable/function.
1127   if (D->hasAttr<DLLExportAttr>()) {
1128     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1129       // The dllexport attribute is ignored for undefined symbols.
1130       if (FD->getBody())
1131         GA->setLinkage(llvm::Function::DLLExportLinkage);
1132     } else {
1133       GA->setLinkage(llvm::Function::DLLExportLinkage);
1134     }
1135   } else if (D->hasAttr<WeakAttr>() ||
1136              D->hasAttr<WeakImportAttr>()) {
1137     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1138   }
1139 
1140   SetCommonAttributes(D, GA);
1141 }
1142 
1143 /// getBuiltinLibFunction - Given a builtin id for a function like
1144 /// "__builtin_fabsf", return a Function* for "fabsf".
1145 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1146   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1147           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1148          "isn't a lib fn");
1149 
1150   // Get the name, skip over the __builtin_ prefix (if necessary).
1151   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1152   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1153     Name += 10;
1154 
1155   // Get the type for the builtin.
1156   ASTContext::GetBuiltinTypeError Error;
1157   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1158   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1159 
1160   const llvm::FunctionType *Ty =
1161     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1162 
1163   // Unique the name through the identifier table.
1164   Name = getContext().Idents.get(Name).getName();
1165   // FIXME: param attributes for sext/zext etc.
1166   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1167 }
1168 
1169 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1170                                             unsigned NumTys) {
1171   return llvm::Intrinsic::getDeclaration(&getModule(),
1172                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1173 }
1174 
1175 llvm::Function *CodeGenModule::getMemCpyFn() {
1176   if (MemCpyFn) return MemCpyFn;
1177   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1178   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1179 }
1180 
1181 llvm::Function *CodeGenModule::getMemMoveFn() {
1182   if (MemMoveFn) return MemMoveFn;
1183   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1184   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1185 }
1186 
1187 llvm::Function *CodeGenModule::getMemSetFn() {
1188   if (MemSetFn) return MemSetFn;
1189   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1190   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1191 }
1192 
1193 static void appendFieldAndPadding(CodeGenModule &CGM,
1194                                   std::vector<llvm::Constant*>& Fields,
1195                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1196                                   llvm::Constant* Field,
1197                                   RecordDecl* RD, const llvm::StructType *STy) {
1198   // Append the field.
1199   Fields.push_back(Field);
1200 
1201   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1202 
1203   int NextStructFieldNo;
1204   if (!NextFieldD) {
1205     NextStructFieldNo = STy->getNumElements();
1206   } else {
1207     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1208   }
1209 
1210   // Append padding
1211   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1212     llvm::Constant *C =
1213       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1214 
1215     Fields.push_back(C);
1216   }
1217 }
1218 
1219 static llvm::StringMapEntry<llvm::Constant*> &
1220 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1221                          const StringLiteral *Literal,
1222                          bool TargetIsLSB,
1223                          bool &IsUTF16,
1224                          unsigned &StringLength) {
1225   unsigned NumBytes = Literal->getByteLength();
1226 
1227   // Check for simple case.
1228   if (!Literal->containsNonAsciiOrNull()) {
1229     StringLength = NumBytes;
1230     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1231                                                 StringLength));
1232   }
1233 
1234   // Otherwise, convert the UTF8 literals into a byte string.
1235   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1236   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1237   UTF16 *ToPtr = &ToBuf[0];
1238 
1239   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1240                                                &ToPtr, ToPtr + NumBytes,
1241                                                strictConversion);
1242 
1243   // Check for conversion failure.
1244   if (Result != conversionOK) {
1245     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1246     // this duplicate code.
1247     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1248     StringLength = NumBytes;
1249     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1250                                                 StringLength));
1251   }
1252 
1253   // ConvertUTF8toUTF16 returns the length in ToPtr.
1254   StringLength = ToPtr - &ToBuf[0];
1255 
1256   // Render the UTF-16 string into a byte array and convert to the target byte
1257   // order.
1258   //
1259   // FIXME: This isn't something we should need to do here.
1260   llvm::SmallString<128> AsBytes;
1261   AsBytes.reserve(StringLength * 2);
1262   for (unsigned i = 0; i != StringLength; ++i) {
1263     unsigned short Val = ToBuf[i];
1264     if (TargetIsLSB) {
1265       AsBytes.push_back(Val & 0xFF);
1266       AsBytes.push_back(Val >> 8);
1267     } else {
1268       AsBytes.push_back(Val >> 8);
1269       AsBytes.push_back(Val & 0xFF);
1270     }
1271   }
1272   // Append one extra null character, the second is automatically added by our
1273   // caller.
1274   AsBytes.push_back(0);
1275 
1276   IsUTF16 = true;
1277   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1278 }
1279 
1280 llvm::Constant *
1281 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1282   unsigned StringLength = 0;
1283   bool isUTF16 = false;
1284   llvm::StringMapEntry<llvm::Constant*> &Entry =
1285     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1286                              getTargetData().isLittleEndian(),
1287                              isUTF16, StringLength);
1288 
1289   if (llvm::Constant *C = Entry.getValue())
1290     return C;
1291 
1292   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1293   llvm::Constant *Zeros[] = { Zero, Zero };
1294 
1295   // If we don't already have it, get __CFConstantStringClassReference.
1296   if (!CFConstantStringClassRef) {
1297     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1298     Ty = llvm::ArrayType::get(Ty, 0);
1299     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1300                                            "__CFConstantStringClassReference");
1301     // Decay array -> ptr
1302     CFConstantStringClassRef =
1303       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1304   }
1305 
1306   QualType CFTy = getContext().getCFConstantStringType();
1307   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1308 
1309   const llvm::StructType *STy =
1310     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1311 
1312   std::vector<llvm::Constant*> Fields;
1313   RecordDecl::field_iterator Field = CFRD->field_begin();
1314 
1315   // Class pointer.
1316   FieldDecl *CurField = *Field++;
1317   FieldDecl *NextField = *Field++;
1318   appendFieldAndPadding(*this, Fields, CurField, NextField,
1319                         CFConstantStringClassRef, CFRD, STy);
1320 
1321   // Flags.
1322   CurField = NextField;
1323   NextField = *Field++;
1324   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1325   appendFieldAndPadding(*this, Fields, CurField, NextField,
1326                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1327                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1328                         CFRD, STy);
1329 
1330   // String pointer.
1331   CurField = NextField;
1332   NextField = *Field++;
1333   llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1334 
1335   const char *Sect, *Prefix;
1336   bool isConstant;
1337   llvm::GlobalValue::LinkageTypes Linkage;
1338   if (isUTF16) {
1339     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1340     Sect = getContext().Target.getUnicodeStringSection();
1341     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1342     Linkage = llvm::GlobalValue::InternalLinkage;
1343     // FIXME: Why does GCC not set constant here?
1344     isConstant = false;
1345   } else {
1346     Prefix = ".str";
1347     Sect = getContext().Target.getCFStringDataSection();
1348     Linkage = llvm::GlobalValue::PrivateLinkage;
1349     // FIXME: -fwritable-strings should probably affect this, but we
1350     // are following gcc here.
1351     isConstant = true;
1352   }
1353   llvm::GlobalVariable *GV =
1354     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1355                              Linkage, C, Prefix);
1356   if (Sect)
1357     GV->setSection(Sect);
1358   if (isUTF16) {
1359     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1360     GV->setAlignment(Align);
1361   }
1362   appendFieldAndPadding(*this, Fields, CurField, NextField,
1363                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1364                         CFRD, STy);
1365 
1366   // String length.
1367   CurField = NextField;
1368   NextField = 0;
1369   Ty = getTypes().ConvertType(getContext().LongTy);
1370   appendFieldAndPadding(*this, Fields, CurField, NextField,
1371                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1372 
1373   // The struct.
1374   C = llvm::ConstantStruct::get(STy, Fields);
1375   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1376                                 llvm::GlobalVariable::PrivateLinkage, C,
1377                                 "_unnamed_cfstring_");
1378   if (const char *Sect = getContext().Target.getCFStringSection())
1379     GV->setSection(Sect);
1380   Entry.setValue(GV);
1381 
1382   return GV;
1383 }
1384 
1385 /// GetStringForStringLiteral - Return the appropriate bytes for a
1386 /// string literal, properly padded to match the literal type.
1387 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1388   const char *StrData = E->getStrData();
1389   unsigned Len = E->getByteLength();
1390 
1391   const ConstantArrayType *CAT =
1392     getContext().getAsConstantArrayType(E->getType());
1393   assert(CAT && "String isn't pointer or array!");
1394 
1395   // Resize the string to the right size.
1396   std::string Str(StrData, StrData+Len);
1397   uint64_t RealLen = CAT->getSize().getZExtValue();
1398 
1399   if (E->isWide())
1400     RealLen *= getContext().Target.getWCharWidth()/8;
1401 
1402   Str.resize(RealLen, '\0');
1403 
1404   return Str;
1405 }
1406 
1407 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1408 /// constant array for the given string literal.
1409 llvm::Constant *
1410 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1411   // FIXME: This can be more efficient.
1412   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1413 }
1414 
1415 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1416 /// array for the given ObjCEncodeExpr node.
1417 llvm::Constant *
1418 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1419   std::string Str;
1420   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1421 
1422   return GetAddrOfConstantCString(Str);
1423 }
1424 
1425 
1426 /// GenerateWritableString -- Creates storage for a string literal.
1427 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1428                                              bool constant,
1429                                              CodeGenModule &CGM,
1430                                              const char *GlobalName) {
1431   // Create Constant for this string literal. Don't add a '\0'.
1432   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1433 
1434   // Create a global variable for this string
1435   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1436                                   llvm::GlobalValue::PrivateLinkage,
1437                                   C, GlobalName);
1438 }
1439 
1440 /// GetAddrOfConstantString - Returns a pointer to a character array
1441 /// containing the literal. This contents are exactly that of the
1442 /// given string, i.e. it will not be null terminated automatically;
1443 /// see GetAddrOfConstantCString. Note that whether the result is
1444 /// actually a pointer to an LLVM constant depends on
1445 /// Feature.WriteableStrings.
1446 ///
1447 /// The result has pointer to array type.
1448 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1449                                                        const char *GlobalName) {
1450   bool IsConstant = !Features.WritableStrings;
1451 
1452   // Get the default prefix if a name wasn't specified.
1453   if (!GlobalName)
1454     GlobalName = ".str";
1455 
1456   // Don't share any string literals if strings aren't constant.
1457   if (!IsConstant)
1458     return GenerateStringLiteral(str, false, *this, GlobalName);
1459 
1460   llvm::StringMapEntry<llvm::Constant *> &Entry =
1461     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1462 
1463   if (Entry.getValue())
1464     return Entry.getValue();
1465 
1466   // Create a global variable for this.
1467   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1468   Entry.setValue(C);
1469   return C;
1470 }
1471 
1472 /// GetAddrOfConstantCString - Returns a pointer to a character
1473 /// array containing the literal and a terminating '\-'
1474 /// character. The result has pointer to array type.
1475 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1476                                                         const char *GlobalName){
1477   return GetAddrOfConstantString(str + '\0', GlobalName);
1478 }
1479 
1480 /// EmitObjCPropertyImplementations - Emit information for synthesized
1481 /// properties for an implementation.
1482 void CodeGenModule::EmitObjCPropertyImplementations(const
1483                                                     ObjCImplementationDecl *D) {
1484   for (ObjCImplementationDecl::propimpl_iterator
1485          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1486     ObjCPropertyImplDecl *PID = *i;
1487 
1488     // Dynamic is just for type-checking.
1489     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1490       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1491 
1492       // Determine which methods need to be implemented, some may have
1493       // been overridden. Note that ::isSynthesized is not the method
1494       // we want, that just indicates if the decl came from a
1495       // property. What we want to know is if the method is defined in
1496       // this implementation.
1497       if (!D->getInstanceMethod(PD->getGetterName()))
1498         CodeGenFunction(*this).GenerateObjCGetter(
1499                                  const_cast<ObjCImplementationDecl *>(D), PID);
1500       if (!PD->isReadOnly() &&
1501           !D->getInstanceMethod(PD->getSetterName()))
1502         CodeGenFunction(*this).GenerateObjCSetter(
1503                                  const_cast<ObjCImplementationDecl *>(D), PID);
1504     }
1505   }
1506 }
1507 
1508 /// EmitNamespace - Emit all declarations in a namespace.
1509 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1510   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1511        I != E; ++I)
1512     EmitTopLevelDecl(*I);
1513 }
1514 
1515 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1516 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1517   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1518       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1519     ErrorUnsupported(LSD, "linkage spec");
1520     return;
1521   }
1522 
1523   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1524        I != E; ++I)
1525     EmitTopLevelDecl(*I);
1526 }
1527 
1528 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1529 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1530   // If an error has occurred, stop code generation, but continue
1531   // parsing and semantic analysis (to ensure all warnings and errors
1532   // are emitted).
1533   if (Diags.hasErrorOccurred())
1534     return;
1535 
1536   // Ignore dependent declarations.
1537   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1538     return;
1539 
1540   switch (D->getKind()) {
1541   case Decl::CXXMethod:
1542   case Decl::Function:
1543     // Skip function templates
1544     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1545       return;
1546 
1547     // Fall through
1548 
1549   case Decl::Var:
1550     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1551     break;
1552 
1553   // C++ Decls
1554   case Decl::Namespace:
1555     EmitNamespace(cast<NamespaceDecl>(D));
1556     break;
1557     // No code generation needed.
1558   case Decl::Using:
1559   case Decl::ClassTemplate:
1560   case Decl::FunctionTemplate:
1561     break;
1562   case Decl::CXXConstructor:
1563     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1564     break;
1565   case Decl::CXXDestructor:
1566     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1567     break;
1568 
1569   case Decl::StaticAssert:
1570     // Nothing to do.
1571     break;
1572 
1573   // Objective-C Decls
1574 
1575   // Forward declarations, no (immediate) code generation.
1576   case Decl::ObjCClass:
1577   case Decl::ObjCForwardProtocol:
1578   case Decl::ObjCCategory:
1579   case Decl::ObjCInterface:
1580     break;
1581 
1582   case Decl::ObjCProtocol:
1583     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1584     break;
1585 
1586   case Decl::ObjCCategoryImpl:
1587     // Categories have properties but don't support synthesize so we
1588     // can ignore them here.
1589     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1590     break;
1591 
1592   case Decl::ObjCImplementation: {
1593     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1594     EmitObjCPropertyImplementations(OMD);
1595     Runtime->GenerateClass(OMD);
1596     break;
1597   }
1598   case Decl::ObjCMethod: {
1599     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1600     // If this is not a prototype, emit the body.
1601     if (OMD->getBody())
1602       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1603     break;
1604   }
1605   case Decl::ObjCCompatibleAlias:
1606     // compatibility-alias is a directive and has no code gen.
1607     break;
1608 
1609   case Decl::LinkageSpec:
1610     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1611     break;
1612 
1613   case Decl::FileScopeAsm: {
1614     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1615     std::string AsmString(AD->getAsmString()->getStrData(),
1616                           AD->getAsmString()->getByteLength());
1617 
1618     const std::string &S = getModule().getModuleInlineAsm();
1619     if (S.empty())
1620       getModule().setModuleInlineAsm(AsmString);
1621     else
1622       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1623     break;
1624   }
1625 
1626   default:
1627     // Make sure we handled everything we should, every other kind is a
1628     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1629     // function. Need to recode Decl::Kind to do that easily.
1630     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1631   }
1632 }
1633