xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 86353416a7115dc430b9cd47a1aaeb8f19c34f2c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   switch (Context.Target.getCXXABI()) {
94   case CXXABI_ARM:
95     ABI = CreateARMCXXABI(*this);
96     break;
97   case CXXABI_Itanium:
98     ABI = CreateItaniumCXXABI(*this);
99     break;
100   case CXXABI_Microsoft:
101     ABI = CreateMicrosoftCXXABI(*this);
102     break;
103   }
104 }
105 
106 void CodeGenModule::Release() {
107   EmitDeferred();
108   EmitCXXGlobalInitFunc();
109   EmitCXXGlobalDtorFunc();
110   if (Runtime)
111     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
112       AddGlobalCtor(ObjCInitFunction);
113   EmitCtorList(GlobalCtors, "llvm.global_ctors");
114   EmitCtorList(GlobalDtors, "llvm.global_dtors");
115   EmitAnnotations();
116   EmitLLVMUsed();
117 
118   if (getCodeGenOpts().EmitDeclMetadata)
119     EmitDeclMetadata();
120 }
121 
122 bool CodeGenModule::isTargetDarwin() const {
123   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
124 }
125 
126 /// ErrorUnsupported - Print out an error that codegen doesn't support the
127 /// specified stmt yet.
128 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
129                                      bool OmitOnError) {
130   if (OmitOnError && getDiags().hasErrorOccurred())
131     return;
132   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
133                                                "cannot compile this %0 yet");
134   std::string Msg = Type;
135   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
136     << Msg << S->getSourceRange();
137 }
138 
139 /// ErrorUnsupported - Print out an error that codegen doesn't support the
140 /// specified decl yet.
141 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
142                                      bool OmitOnError) {
143   if (OmitOnError && getDiags().hasErrorOccurred())
144     return;
145   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
146                                                "cannot compile this %0 yet");
147   std::string Msg = Type;
148   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
149 }
150 
151 LangOptions::VisibilityMode
152 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
153   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
154     if (VD->getStorageClass() == VarDecl::PrivateExtern)
155       return LangOptions::Hidden;
156 
157   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
158     switch (attr->getVisibility()) {
159     default: assert(0 && "Unknown visibility!");
160     case VisibilityAttr::Default:
161       return LangOptions::Default;
162     case VisibilityAttr::Hidden:
163       return LangOptions::Hidden;
164     case VisibilityAttr::Protected:
165       return LangOptions::Protected;
166     }
167   }
168 
169   if (getLangOptions().CPlusPlus) {
170     // Entities subject to an explicit instantiation declaration get default
171     // visibility.
172     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
173       if (Function->getTemplateSpecializationKind()
174                                         == TSK_ExplicitInstantiationDeclaration)
175         return LangOptions::Default;
176     } else if (const ClassTemplateSpecializationDecl *ClassSpec
177                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
178       if (ClassSpec->getSpecializationKind()
179                                         == TSK_ExplicitInstantiationDeclaration)
180         return LangOptions::Default;
181     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
182       if (Record->getTemplateSpecializationKind()
183                                         == TSK_ExplicitInstantiationDeclaration)
184         return LangOptions::Default;
185     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
186       if (Var->isStaticDataMember() &&
187           (Var->getTemplateSpecializationKind()
188                                       == TSK_ExplicitInstantiationDeclaration))
189         return LangOptions::Default;
190     }
191 
192     // If -fvisibility-inlines-hidden was provided, then inline C++ member
193     // functions get "hidden" visibility by default.
194     if (getLangOptions().InlineVisibilityHidden)
195       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
196         if (Method->isInlined())
197           return LangOptions::Hidden;
198   }
199 
200   // If this decl is contained in a class, it should have the same visibility
201   // as the parent class.
202   if (const DeclContext *DC = D->getDeclContext())
203     if (DC->isRecord())
204       return getDeclVisibilityMode(cast<Decl>(DC));
205 
206   return getLangOptions().getVisibilityMode();
207 }
208 
209 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
210                                         const Decl *D) const {
211   // Internal definitions always have default visibility.
212   if (GV->hasLocalLinkage()) {
213     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214     return;
215   }
216 
217   switch (getDeclVisibilityMode(D)) {
218   default: assert(0 && "Unknown visibility!");
219   case LangOptions::Default:
220     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
221   case LangOptions::Hidden:
222     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
223   case LangOptions::Protected:
224     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
225   }
226 }
227 
228 /// Set the symbol visibility of type information (vtable and RTTI)
229 /// associated with the given type.
230 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
231                                       const CXXRecordDecl *RD,
232                                       bool IsForRTTI) const {
233   setGlobalVisibility(GV, RD);
234 
235   if (!CodeGenOpts.HiddenWeakVTables)
236     return;
237 
238   // We want to drop the visibility to hidden for weak type symbols.
239   // This isn't possible if there might be unresolved references
240   // elsewhere that rely on this symbol being visible.
241 
242   // This should be kept roughly in sync with setThunkVisibility
243   // in CGVTables.cpp.
244 
245   // Preconditions.
246   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
247       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
248     return;
249 
250   // Don't override an explicit visibility attribute.
251   if (RD->hasAttr<VisibilityAttr>())
252     return;
253 
254   switch (RD->getTemplateSpecializationKind()) {
255   // We have to disable the optimization if this is an EI definition
256   // because there might be EI declarations in other shared objects.
257   case TSK_ExplicitInstantiationDefinition:
258   case TSK_ExplicitInstantiationDeclaration:
259     return;
260 
261   // Every use of a non-template class's type information has to emit it.
262   case TSK_Undeclared:
263     break;
264 
265   // In theory, implicit instantiations can ignore the possibility of
266   // an explicit instantiation declaration because there necessarily
267   // must be an EI definition somewhere with default visibility.  In
268   // practice, it's possible to have an explicit instantiation for
269   // an arbitrary template class, and linkers aren't necessarily able
270   // to deal with mixed-visibility symbols.
271   case TSK_ExplicitSpecialization:
272   case TSK_ImplicitInstantiation:
273     if (!CodeGenOpts.HiddenWeakTemplateVTables)
274       return;
275     break;
276   }
277 
278   // If there's a key function, there may be translation units
279   // that don't have the key function's definition.  But ignore
280   // this if we're emitting RTTI under -fno-rtti.
281   if (!IsForRTTI || Features.RTTI)
282     if (Context.getKeyFunction(RD))
283       return;
284 
285   // Otherwise, drop the visibility to hidden.
286   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
287 }
288 
289 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
290   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
291 
292   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
293   if (!Str.empty())
294     return Str;
295 
296   if (!getMangleContext().shouldMangleDeclName(ND)) {
297     IdentifierInfo *II = ND->getIdentifier();
298     assert(II && "Attempt to mangle unnamed decl.");
299 
300     Str = II->getName();
301     return Str;
302   }
303 
304   llvm::SmallString<256> Buffer;
305   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
306     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
307   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
308     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
309   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
310     getMangleContext().mangleBlock(GD, BD, Buffer);
311   else
312     getMangleContext().mangleName(ND, Buffer);
313 
314   // Allocate space for the mangled name.
315   size_t Length = Buffer.size();
316   char *Name = MangledNamesAllocator.Allocate<char>(Length);
317   std::copy(Buffer.begin(), Buffer.end(), Name);
318 
319   Str = llvm::StringRef(Name, Length);
320 
321   return Str;
322 }
323 
324 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
325                                    const BlockDecl *BD) {
326   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
327 }
328 
329 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
330   return getModule().getNamedValue(Name);
331 }
332 
333 /// AddGlobalCtor - Add a function to the list that will be called before
334 /// main() runs.
335 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
336   // FIXME: Type coercion of void()* types.
337   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
338 }
339 
340 /// AddGlobalDtor - Add a function to the list that will be called
341 /// when the module is unloaded.
342 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
343   // FIXME: Type coercion of void()* types.
344   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
345 }
346 
347 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
348   // Ctor function type is void()*.
349   llvm::FunctionType* CtorFTy =
350     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
351                             std::vector<const llvm::Type*>(),
352                             false);
353   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
354 
355   // Get the type of a ctor entry, { i32, void ()* }.
356   llvm::StructType* CtorStructTy =
357     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
358                           llvm::PointerType::getUnqual(CtorFTy), NULL);
359 
360   // Construct the constructor and destructor arrays.
361   std::vector<llvm::Constant*> Ctors;
362   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
363     std::vector<llvm::Constant*> S;
364     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
365                 I->second, false));
366     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
367     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
368   }
369 
370   if (!Ctors.empty()) {
371     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
372     new llvm::GlobalVariable(TheModule, AT, false,
373                              llvm::GlobalValue::AppendingLinkage,
374                              llvm::ConstantArray::get(AT, Ctors),
375                              GlobalName);
376   }
377 }
378 
379 void CodeGenModule::EmitAnnotations() {
380   if (Annotations.empty())
381     return;
382 
383   // Create a new global variable for the ConstantStruct in the Module.
384   llvm::Constant *Array =
385   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
386                                                 Annotations.size()),
387                            Annotations);
388   llvm::GlobalValue *gv =
389   new llvm::GlobalVariable(TheModule, Array->getType(), false,
390                            llvm::GlobalValue::AppendingLinkage, Array,
391                            "llvm.global.annotations");
392   gv->setSection("llvm.metadata");
393 }
394 
395 llvm::GlobalValue::LinkageTypes
396 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
397   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
398 
399   if (Linkage == GVA_Internal)
400     return llvm::Function::InternalLinkage;
401 
402   if (D->hasAttr<DLLExportAttr>())
403     return llvm::Function::DLLExportLinkage;
404 
405   if (D->hasAttr<WeakAttr>())
406     return llvm::Function::WeakAnyLinkage;
407 
408   // In C99 mode, 'inline' functions are guaranteed to have a strong
409   // definition somewhere else, so we can use available_externally linkage.
410   if (Linkage == GVA_C99Inline)
411     return llvm::Function::AvailableExternallyLinkage;
412 
413   // In C++, the compiler has to emit a definition in every translation unit
414   // that references the function.  We should use linkonce_odr because
415   // a) if all references in this translation unit are optimized away, we
416   // don't need to codegen it.  b) if the function persists, it needs to be
417   // merged with other definitions. c) C++ has the ODR, so we know the
418   // definition is dependable.
419   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
420     return llvm::Function::LinkOnceODRLinkage;
421 
422   // An explicit instantiation of a template has weak linkage, since
423   // explicit instantiations can occur in multiple translation units
424   // and must all be equivalent. However, we are not allowed to
425   // throw away these explicit instantiations.
426   if (Linkage == GVA_ExplicitTemplateInstantiation)
427     return llvm::Function::WeakODRLinkage;
428 
429   // Otherwise, we have strong external linkage.
430   assert(Linkage == GVA_StrongExternal);
431   return llvm::Function::ExternalLinkage;
432 }
433 
434 
435 /// SetFunctionDefinitionAttributes - Set attributes for a global.
436 ///
437 /// FIXME: This is currently only done for aliases and functions, but not for
438 /// variables (these details are set in EmitGlobalVarDefinition for variables).
439 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
440                                                     llvm::GlobalValue *GV) {
441   SetCommonAttributes(D, GV);
442 }
443 
444 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
445                                               const CGFunctionInfo &Info,
446                                               llvm::Function *F) {
447   unsigned CallingConv;
448   AttributeListType AttributeList;
449   ConstructAttributeList(Info, D, AttributeList, CallingConv);
450   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
451                                           AttributeList.size()));
452   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
453 }
454 
455 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
456                                                            llvm::Function *F) {
457   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
458     F->addFnAttr(llvm::Attribute::NoUnwind);
459 
460   if (D->hasAttr<AlwaysInlineAttr>())
461     F->addFnAttr(llvm::Attribute::AlwaysInline);
462 
463   if (D->hasAttr<NoInlineAttr>())
464     F->addFnAttr(llvm::Attribute::NoInline);
465 
466   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
467     F->addFnAttr(llvm::Attribute::StackProtect);
468   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
469     F->addFnAttr(llvm::Attribute::StackProtectReq);
470 
471   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
472   if (alignment)
473     F->setAlignment(alignment);
474 
475   // C++ ABI requires 2-byte alignment for member functions.
476   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
477     F->setAlignment(2);
478 }
479 
480 void CodeGenModule::SetCommonAttributes(const Decl *D,
481                                         llvm::GlobalValue *GV) {
482   setGlobalVisibility(GV, D);
483 
484   if (D->hasAttr<UsedAttr>())
485     AddUsedGlobal(GV);
486 
487   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
488     GV->setSection(SA->getName());
489 
490   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
491 }
492 
493 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
494                                                   llvm::Function *F,
495                                                   const CGFunctionInfo &FI) {
496   SetLLVMFunctionAttributes(D, FI, F);
497   SetLLVMFunctionAttributesForDefinition(D, F);
498 
499   F->setLinkage(llvm::Function::InternalLinkage);
500 
501   SetCommonAttributes(D, F);
502 }
503 
504 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
505                                           llvm::Function *F,
506                                           bool IsIncompleteFunction) {
507   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
508 
509   if (!IsIncompleteFunction)
510     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
511 
512   // Only a few attributes are set on declarations; these may later be
513   // overridden by a definition.
514 
515   if (FD->hasAttr<DLLImportAttr>()) {
516     F->setLinkage(llvm::Function::DLLImportLinkage);
517   } else if (FD->hasAttr<WeakAttr>() ||
518              FD->hasAttr<WeakImportAttr>()) {
519     // "extern_weak" is overloaded in LLVM; we probably should have
520     // separate linkage types for this.
521     F->setLinkage(llvm::Function::ExternalWeakLinkage);
522   } else {
523     F->setLinkage(llvm::Function::ExternalLinkage);
524   }
525 
526   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
527     F->setSection(SA->getName());
528 }
529 
530 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
531   assert(!GV->isDeclaration() &&
532          "Only globals with definition can force usage.");
533   LLVMUsed.push_back(GV);
534 }
535 
536 void CodeGenModule::EmitLLVMUsed() {
537   // Don't create llvm.used if there is no need.
538   if (LLVMUsed.empty())
539     return;
540 
541   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
542 
543   // Convert LLVMUsed to what ConstantArray needs.
544   std::vector<llvm::Constant*> UsedArray;
545   UsedArray.resize(LLVMUsed.size());
546   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
547     UsedArray[i] =
548      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
549                                       i8PTy);
550   }
551 
552   if (UsedArray.empty())
553     return;
554   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
555 
556   llvm::GlobalVariable *GV =
557     new llvm::GlobalVariable(getModule(), ATy, false,
558                              llvm::GlobalValue::AppendingLinkage,
559                              llvm::ConstantArray::get(ATy, UsedArray),
560                              "llvm.used");
561 
562   GV->setSection("llvm.metadata");
563 }
564 
565 void CodeGenModule::EmitDeferred() {
566   // Emit code for any potentially referenced deferred decls.  Since a
567   // previously unused static decl may become used during the generation of code
568   // for a static function, iterate until no  changes are made.
569 
570   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
571     if (!DeferredVTables.empty()) {
572       const CXXRecordDecl *RD = DeferredVTables.back();
573       DeferredVTables.pop_back();
574       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
575       continue;
576     }
577 
578     GlobalDecl D = DeferredDeclsToEmit.back();
579     DeferredDeclsToEmit.pop_back();
580 
581     // Check to see if we've already emitted this.  This is necessary
582     // for a couple of reasons: first, decls can end up in the
583     // deferred-decls queue multiple times, and second, decls can end
584     // up with definitions in unusual ways (e.g. by an extern inline
585     // function acquiring a strong function redefinition).  Just
586     // ignore these cases.
587     //
588     // TODO: That said, looking this up multiple times is very wasteful.
589     llvm::StringRef Name = getMangledName(D);
590     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
591     assert(CGRef && "Deferred decl wasn't referenced?");
592 
593     if (!CGRef->isDeclaration())
594       continue;
595 
596     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
597     // purposes an alias counts as a definition.
598     if (isa<llvm::GlobalAlias>(CGRef))
599       continue;
600 
601     // Otherwise, emit the definition and move on to the next one.
602     EmitGlobalDefinition(D);
603   }
604 }
605 
606 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
607 /// annotation information for a given GlobalValue.  The annotation struct is
608 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
609 /// GlobalValue being annotated.  The second field is the constant string
610 /// created from the AnnotateAttr's annotation.  The third field is a constant
611 /// string containing the name of the translation unit.  The fourth field is
612 /// the line number in the file of the annotated value declaration.
613 ///
614 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
615 ///        appears to.
616 ///
617 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
618                                                 const AnnotateAttr *AA,
619                                                 unsigned LineNo) {
620   llvm::Module *M = &getModule();
621 
622   // get [N x i8] constants for the annotation string, and the filename string
623   // which are the 2nd and 3rd elements of the global annotation structure.
624   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
625   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
626                                                   AA->getAnnotation(), true);
627   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
628                                                   M->getModuleIdentifier(),
629                                                   true);
630 
631   // Get the two global values corresponding to the ConstantArrays we just
632   // created to hold the bytes of the strings.
633   llvm::GlobalValue *annoGV =
634     new llvm::GlobalVariable(*M, anno->getType(), false,
635                              llvm::GlobalValue::PrivateLinkage, anno,
636                              GV->getName());
637   // translation unit name string, emitted into the llvm.metadata section.
638   llvm::GlobalValue *unitGV =
639     new llvm::GlobalVariable(*M, unit->getType(), false,
640                              llvm::GlobalValue::PrivateLinkage, unit,
641                              ".str");
642 
643   // Create the ConstantStruct for the global annotation.
644   llvm::Constant *Fields[4] = {
645     llvm::ConstantExpr::getBitCast(GV, SBP),
646     llvm::ConstantExpr::getBitCast(annoGV, SBP),
647     llvm::ConstantExpr::getBitCast(unitGV, SBP),
648     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
649   };
650   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
651 }
652 
653 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
654   // Never defer when EmitAllDecls is specified.
655   if (Features.EmitAllDecls)
656     return false;
657 
658   return !getContext().DeclMustBeEmitted(Global);
659 }
660 
661 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
662   const AliasAttr *AA = VD->getAttr<AliasAttr>();
663   assert(AA && "No alias?");
664 
665   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
666 
667   // See if there is already something with the target's name in the module.
668   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
669 
670   llvm::Constant *Aliasee;
671   if (isa<llvm::FunctionType>(DeclTy))
672     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
673   else
674     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
675                                     llvm::PointerType::getUnqual(DeclTy), 0);
676   if (!Entry) {
677     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
678     F->setLinkage(llvm::Function::ExternalWeakLinkage);
679     WeakRefReferences.insert(F);
680   }
681 
682   return Aliasee;
683 }
684 
685 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
686   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
687 
688   // Weak references don't produce any output by themselves.
689   if (Global->hasAttr<WeakRefAttr>())
690     return;
691 
692   // If this is an alias definition (which otherwise looks like a declaration)
693   // emit it now.
694   if (Global->hasAttr<AliasAttr>())
695     return EmitAliasDefinition(GD);
696 
697   // Ignore declarations, they will be emitted on their first use.
698   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
699     if (FD->getIdentifier()) {
700       llvm::StringRef Name = FD->getName();
701       if (Name == "_Block_object_assign") {
702         BlockObjectAssignDecl = FD;
703       } else if (Name == "_Block_object_dispose") {
704         BlockObjectDisposeDecl = FD;
705       }
706     }
707 
708     // Forward declarations are emitted lazily on first use.
709     if (!FD->isThisDeclarationADefinition())
710       return;
711   } else {
712     const VarDecl *VD = cast<VarDecl>(Global);
713     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
714 
715     if (VD->getIdentifier()) {
716       llvm::StringRef Name = VD->getName();
717       if (Name == "_NSConcreteGlobalBlock") {
718         NSConcreteGlobalBlockDecl = VD;
719       } else if (Name == "_NSConcreteStackBlock") {
720         NSConcreteStackBlockDecl = VD;
721       }
722     }
723 
724 
725     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
726       return;
727   }
728 
729   // Defer code generation when possible if this is a static definition, inline
730   // function etc.  These we only want to emit if they are used.
731   if (!MayDeferGeneration(Global)) {
732     // Emit the definition if it can't be deferred.
733     EmitGlobalDefinition(GD);
734     return;
735   }
736 
737   // If we're deferring emission of a C++ variable with an
738   // initializer, remember the order in which it appeared in the file.
739   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
740       cast<VarDecl>(Global)->hasInit()) {
741     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
742     CXXGlobalInits.push_back(0);
743   }
744 
745   // If the value has already been used, add it directly to the
746   // DeferredDeclsToEmit list.
747   llvm::StringRef MangledName = getMangledName(GD);
748   if (GetGlobalValue(MangledName))
749     DeferredDeclsToEmit.push_back(GD);
750   else {
751     // Otherwise, remember that we saw a deferred decl with this name.  The
752     // first use of the mangled name will cause it to move into
753     // DeferredDeclsToEmit.
754     DeferredDecls[MangledName] = GD;
755   }
756 }
757 
758 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
759   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
760 
761   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
762                                  Context.getSourceManager(),
763                                  "Generating code for declaration");
764 
765   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
766     // At -O0, don't generate IR for functions with available_externally
767     // linkage.
768     if (CodeGenOpts.OptimizationLevel == 0 &&
769         !Function->hasAttr<AlwaysInlineAttr>() &&
770         getFunctionLinkage(Function)
771                                   == llvm::Function::AvailableExternallyLinkage)
772       return;
773 
774     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
775       if (Method->isVirtual())
776         getVTables().EmitThunks(GD);
777 
778       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
779         return EmitCXXConstructor(CD, GD.getCtorType());
780 
781       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
782         return EmitCXXDestructor(DD, GD.getDtorType());
783     }
784 
785     return EmitGlobalFunctionDefinition(GD);
786   }
787 
788   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
789     return EmitGlobalVarDefinition(VD);
790 
791   assert(0 && "Invalid argument to EmitGlobalDefinition()");
792 }
793 
794 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
795 /// module, create and return an llvm Function with the specified type. If there
796 /// is something in the module with the specified name, return it potentially
797 /// bitcasted to the right type.
798 ///
799 /// If D is non-null, it specifies a decl that correspond to this.  This is used
800 /// to set the attributes on the function when it is first created.
801 llvm::Constant *
802 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
803                                        const llvm::Type *Ty,
804                                        GlobalDecl D) {
805   // Lookup the entry, lazily creating it if necessary.
806   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
807   if (Entry) {
808     if (WeakRefReferences.count(Entry)) {
809       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
810       if (FD && !FD->hasAttr<WeakAttr>())
811         Entry->setLinkage(llvm::Function::ExternalLinkage);
812 
813       WeakRefReferences.erase(Entry);
814     }
815 
816     if (Entry->getType()->getElementType() == Ty)
817       return Entry;
818 
819     // Make sure the result is of the correct type.
820     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
821     return llvm::ConstantExpr::getBitCast(Entry, PTy);
822   }
823 
824   // This function doesn't have a complete type (for example, the return
825   // type is an incomplete struct). Use a fake type instead, and make
826   // sure not to try to set attributes.
827   bool IsIncompleteFunction = false;
828 
829   const llvm::FunctionType *FTy;
830   if (isa<llvm::FunctionType>(Ty)) {
831     FTy = cast<llvm::FunctionType>(Ty);
832   } else {
833     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
834                                   std::vector<const llvm::Type*>(), false);
835     IsIncompleteFunction = true;
836   }
837 
838   llvm::Function *F = llvm::Function::Create(FTy,
839                                              llvm::Function::ExternalLinkage,
840                                              MangledName, &getModule());
841   assert(F->getName() == MangledName && "name was uniqued!");
842   if (D.getDecl())
843     SetFunctionAttributes(D, F, IsIncompleteFunction);
844 
845   // This is the first use or definition of a mangled name.  If there is a
846   // deferred decl with this name, remember that we need to emit it at the end
847   // of the file.
848   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
849   if (DDI != DeferredDecls.end()) {
850     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
851     // list, and remove it from DeferredDecls (since we don't need it anymore).
852     DeferredDeclsToEmit.push_back(DDI->second);
853     DeferredDecls.erase(DDI);
854   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
855     // If this the first reference to a C++ inline function in a class, queue up
856     // the deferred function body for emission.  These are not seen as
857     // top-level declarations.
858     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
859       DeferredDeclsToEmit.push_back(D);
860     // A called constructor which has no definition or declaration need be
861     // synthesized.
862     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
863       if (CD->isImplicit()) {
864         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
865         DeferredDeclsToEmit.push_back(D);
866       }
867     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
868       if (DD->isImplicit()) {
869         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
870         DeferredDeclsToEmit.push_back(D);
871       }
872     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
873       if (MD->isCopyAssignment() && MD->isImplicit()) {
874         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
875         DeferredDeclsToEmit.push_back(D);
876       }
877     }
878   }
879 
880   // Make sure the result is of the requested type.
881   if (!IsIncompleteFunction) {
882     assert(F->getType()->getElementType() == Ty);
883     return F;
884   }
885 
886   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
887   return llvm::ConstantExpr::getBitCast(F, PTy);
888 }
889 
890 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
891 /// non-null, then this function will use the specified type if it has to
892 /// create it (this occurs when we see a definition of the function).
893 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
894                                                  const llvm::Type *Ty) {
895   // If there was no specific requested type, just convert it now.
896   if (!Ty)
897     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
898 
899   llvm::StringRef MangledName = getMangledName(GD);
900   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
901 }
902 
903 /// CreateRuntimeFunction - Create a new runtime function with the specified
904 /// type and name.
905 llvm::Constant *
906 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
907                                      llvm::StringRef Name) {
908   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
909 }
910 
911 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
912   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
913     return false;
914   if (Context.getLangOptions().CPlusPlus &&
915       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
916     // FIXME: We should do something fancier here!
917     return false;
918   }
919   return true;
920 }
921 
922 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
923 /// create and return an llvm GlobalVariable with the specified type.  If there
924 /// is something in the module with the specified name, return it potentially
925 /// bitcasted to the right type.
926 ///
927 /// If D is non-null, it specifies a decl that correspond to this.  This is used
928 /// to set the attributes on the global when it is first created.
929 llvm::Constant *
930 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
931                                      const llvm::PointerType *Ty,
932                                      const VarDecl *D) {
933   // Lookup the entry, lazily creating it if necessary.
934   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
935   if (Entry) {
936     if (WeakRefReferences.count(Entry)) {
937       if (D && !D->hasAttr<WeakAttr>())
938         Entry->setLinkage(llvm::Function::ExternalLinkage);
939 
940       WeakRefReferences.erase(Entry);
941     }
942 
943     if (Entry->getType() == Ty)
944       return Entry;
945 
946     // Make sure the result is of the correct type.
947     return llvm::ConstantExpr::getBitCast(Entry, Ty);
948   }
949 
950   // This is the first use or definition of a mangled name.  If there is a
951   // deferred decl with this name, remember that we need to emit it at the end
952   // of the file.
953   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
954   if (DDI != DeferredDecls.end()) {
955     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
956     // list, and remove it from DeferredDecls (since we don't need it anymore).
957     DeferredDeclsToEmit.push_back(DDI->second);
958     DeferredDecls.erase(DDI);
959   }
960 
961   llvm::GlobalVariable *GV =
962     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
963                              llvm::GlobalValue::ExternalLinkage,
964                              0, MangledName, 0,
965                              false, Ty->getAddressSpace());
966 
967   // Handle things which are present even on external declarations.
968   if (D) {
969     // FIXME: This code is overly simple and should be merged with other global
970     // handling.
971     GV->setConstant(DeclIsConstantGlobal(Context, D));
972 
973     // FIXME: Merge with other attribute handling code.
974     if (D->getStorageClass() == VarDecl::PrivateExtern)
975       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
976 
977     if (D->hasAttr<WeakAttr>() ||
978         D->hasAttr<WeakImportAttr>())
979       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
980 
981     GV->setThreadLocal(D->isThreadSpecified());
982   }
983 
984   return GV;
985 }
986 
987 
988 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
989 /// given global variable.  If Ty is non-null and if the global doesn't exist,
990 /// then it will be greated with the specified type instead of whatever the
991 /// normal requested type would be.
992 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
993                                                   const llvm::Type *Ty) {
994   assert(D->hasGlobalStorage() && "Not a global variable");
995   QualType ASTTy = D->getType();
996   if (Ty == 0)
997     Ty = getTypes().ConvertTypeForMem(ASTTy);
998 
999   const llvm::PointerType *PTy =
1000     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1001 
1002   llvm::StringRef MangledName = getMangledName(D);
1003   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1004 }
1005 
1006 /// CreateRuntimeVariable - Create a new runtime global variable with the
1007 /// specified type and name.
1008 llvm::Constant *
1009 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1010                                      llvm::StringRef Name) {
1011   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1012 }
1013 
1014 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1015   assert(!D->getInit() && "Cannot emit definite definitions here!");
1016 
1017   if (MayDeferGeneration(D)) {
1018     // If we have not seen a reference to this variable yet, place it
1019     // into the deferred declarations table to be emitted if needed
1020     // later.
1021     llvm::StringRef MangledName = getMangledName(D);
1022     if (!GetGlobalValue(MangledName)) {
1023       DeferredDecls[MangledName] = D;
1024       return;
1025     }
1026   }
1027 
1028   // The tentative definition is the only definition.
1029   EmitGlobalVarDefinition(D);
1030 }
1031 
1032 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1033   if (DefinitionRequired)
1034     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1035 }
1036 
1037 llvm::GlobalVariable::LinkageTypes
1038 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1039   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1040     return llvm::GlobalVariable::InternalLinkage;
1041 
1042   if (const CXXMethodDecl *KeyFunction
1043                                     = RD->getASTContext().getKeyFunction(RD)) {
1044     // If this class has a key function, use that to determine the linkage of
1045     // the vtable.
1046     const FunctionDecl *Def = 0;
1047     if (KeyFunction->hasBody(Def))
1048       KeyFunction = cast<CXXMethodDecl>(Def);
1049 
1050     switch (KeyFunction->getTemplateSpecializationKind()) {
1051       case TSK_Undeclared:
1052       case TSK_ExplicitSpecialization:
1053         if (KeyFunction->isInlined())
1054           return llvm::GlobalVariable::WeakODRLinkage;
1055 
1056         return llvm::GlobalVariable::ExternalLinkage;
1057 
1058       case TSK_ImplicitInstantiation:
1059       case TSK_ExplicitInstantiationDefinition:
1060         return llvm::GlobalVariable::WeakODRLinkage;
1061 
1062       case TSK_ExplicitInstantiationDeclaration:
1063         // FIXME: Use available_externally linkage. However, this currently
1064         // breaks LLVM's build due to undefined symbols.
1065         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1066         return llvm::GlobalVariable::WeakODRLinkage;
1067     }
1068   }
1069 
1070   switch (RD->getTemplateSpecializationKind()) {
1071   case TSK_Undeclared:
1072   case TSK_ExplicitSpecialization:
1073   case TSK_ImplicitInstantiation:
1074   case TSK_ExplicitInstantiationDefinition:
1075     return llvm::GlobalVariable::WeakODRLinkage;
1076 
1077   case TSK_ExplicitInstantiationDeclaration:
1078     // FIXME: Use available_externally linkage. However, this currently
1079     // breaks LLVM's build due to undefined symbols.
1080     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1081     return llvm::GlobalVariable::WeakODRLinkage;
1082   }
1083 
1084   // Silence GCC warning.
1085   return llvm::GlobalVariable::WeakODRLinkage;
1086 }
1087 
1088 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1089     return CharUnits::fromQuantity(
1090       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1091 }
1092 
1093 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1094   llvm::Constant *Init = 0;
1095   QualType ASTTy = D->getType();
1096   bool NonConstInit = false;
1097 
1098   const Expr *InitExpr = D->getAnyInitializer();
1099 
1100   if (!InitExpr) {
1101     // This is a tentative definition; tentative definitions are
1102     // implicitly initialized with { 0 }.
1103     //
1104     // Note that tentative definitions are only emitted at the end of
1105     // a translation unit, so they should never have incomplete
1106     // type. In addition, EmitTentativeDefinition makes sure that we
1107     // never attempt to emit a tentative definition if a real one
1108     // exists. A use may still exists, however, so we still may need
1109     // to do a RAUW.
1110     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1111     Init = EmitNullConstant(D->getType());
1112   } else {
1113     Init = EmitConstantExpr(InitExpr, D->getType());
1114     if (!Init) {
1115       QualType T = InitExpr->getType();
1116       if (D->getType()->isReferenceType())
1117         T = D->getType();
1118 
1119       if (getLangOptions().CPlusPlus) {
1120         EmitCXXGlobalVarDeclInitFunc(D);
1121         Init = EmitNullConstant(T);
1122         NonConstInit = true;
1123       } else {
1124         ErrorUnsupported(D, "static initializer");
1125         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1126       }
1127     } else {
1128       // We don't need an initializer, so remove the entry for the delayed
1129       // initializer position (just in case this entry was delayed).
1130       if (getLangOptions().CPlusPlus)
1131         DelayedCXXInitPosition.erase(D);
1132     }
1133   }
1134 
1135   const llvm::Type* InitType = Init->getType();
1136   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1137 
1138   // Strip off a bitcast if we got one back.
1139   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1140     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1141            // all zero index gep.
1142            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1143     Entry = CE->getOperand(0);
1144   }
1145 
1146   // Entry is now either a Function or GlobalVariable.
1147   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1148 
1149   // We have a definition after a declaration with the wrong type.
1150   // We must make a new GlobalVariable* and update everything that used OldGV
1151   // (a declaration or tentative definition) with the new GlobalVariable*
1152   // (which will be a definition).
1153   //
1154   // This happens if there is a prototype for a global (e.g.
1155   // "extern int x[];") and then a definition of a different type (e.g.
1156   // "int x[10];"). This also happens when an initializer has a different type
1157   // from the type of the global (this happens with unions).
1158   if (GV == 0 ||
1159       GV->getType()->getElementType() != InitType ||
1160       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1161 
1162     // Move the old entry aside so that we'll create a new one.
1163     Entry->setName(llvm::StringRef());
1164 
1165     // Make a new global with the correct type, this is now guaranteed to work.
1166     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1167 
1168     // Replace all uses of the old global with the new global
1169     llvm::Constant *NewPtrForOldDecl =
1170         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1171     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1172 
1173     // Erase the old global, since it is no longer used.
1174     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1175   }
1176 
1177   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1178     SourceManager &SM = Context.getSourceManager();
1179     AddAnnotation(EmitAnnotateAttr(GV, AA,
1180                               SM.getInstantiationLineNumber(D->getLocation())));
1181   }
1182 
1183   GV->setInitializer(Init);
1184 
1185   // If it is safe to mark the global 'constant', do so now.
1186   GV->setConstant(false);
1187   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1188     GV->setConstant(true);
1189 
1190   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1191 
1192   // Set the llvm linkage type as appropriate.
1193   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1194   if (Linkage == GVA_Internal)
1195     GV->setLinkage(llvm::Function::InternalLinkage);
1196   else if (D->hasAttr<DLLImportAttr>())
1197     GV->setLinkage(llvm::Function::DLLImportLinkage);
1198   else if (D->hasAttr<DLLExportAttr>())
1199     GV->setLinkage(llvm::Function::DLLExportLinkage);
1200   else if (D->hasAttr<WeakAttr>()) {
1201     if (GV->isConstant())
1202       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1203     else
1204       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1205   } else if (Linkage == GVA_TemplateInstantiation ||
1206              Linkage == GVA_ExplicitTemplateInstantiation)
1207     // FIXME: It seems like we can provide more specific linkage here
1208     // (LinkOnceODR, WeakODR).
1209     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1210   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1211            !D->hasExternalStorage() && !D->getInit() &&
1212            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1213     // Thread local vars aren't considered common linkage.
1214     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1215     // common vars aren't constant even if declared const.
1216     GV->setConstant(false);
1217   } else
1218     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1219 
1220   SetCommonAttributes(D, GV);
1221 
1222   // Emit global variable debug information.
1223   if (CGDebugInfo *DI = getDebugInfo()) {
1224     DI->setLocation(D->getLocation());
1225     DI->EmitGlobalVariable(GV, D);
1226   }
1227 }
1228 
1229 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1230 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1231 /// existing call uses of the old function in the module, this adjusts them to
1232 /// call the new function directly.
1233 ///
1234 /// This is not just a cleanup: the always_inline pass requires direct calls to
1235 /// functions to be able to inline them.  If there is a bitcast in the way, it
1236 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1237 /// run at -O0.
1238 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1239                                                       llvm::Function *NewFn) {
1240   // If we're redefining a global as a function, don't transform it.
1241   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1242   if (OldFn == 0) return;
1243 
1244   const llvm::Type *NewRetTy = NewFn->getReturnType();
1245   llvm::SmallVector<llvm::Value*, 4> ArgList;
1246 
1247   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1248        UI != E; ) {
1249     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1250     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1251     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1252     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1253     llvm::CallSite CS(CI);
1254     if (!CI || !CS.isCallee(I)) continue;
1255 
1256     // If the return types don't match exactly, and if the call isn't dead, then
1257     // we can't transform this call.
1258     if (CI->getType() != NewRetTy && !CI->use_empty())
1259       continue;
1260 
1261     // If the function was passed too few arguments, don't transform.  If extra
1262     // arguments were passed, we silently drop them.  If any of the types
1263     // mismatch, we don't transform.
1264     unsigned ArgNo = 0;
1265     bool DontTransform = false;
1266     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1267          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1268       if (CS.arg_size() == ArgNo ||
1269           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1270         DontTransform = true;
1271         break;
1272       }
1273     }
1274     if (DontTransform)
1275       continue;
1276 
1277     // Okay, we can transform this.  Create the new call instruction and copy
1278     // over the required information.
1279     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1280     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1281                                                      ArgList.end(), "", CI);
1282     ArgList.clear();
1283     if (!NewCall->getType()->isVoidTy())
1284       NewCall->takeName(CI);
1285     NewCall->setAttributes(CI->getAttributes());
1286     NewCall->setCallingConv(CI->getCallingConv());
1287 
1288     // Finally, remove the old call, replacing any uses with the new one.
1289     if (!CI->use_empty())
1290       CI->replaceAllUsesWith(NewCall);
1291 
1292     // Copy debug location attached to CI.
1293     if (!CI->getDebugLoc().isUnknown())
1294       NewCall->setDebugLoc(CI->getDebugLoc());
1295     CI->eraseFromParent();
1296   }
1297 }
1298 
1299 
1300 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1301   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1302   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1303   getMangleContext().mangleInitDiscriminator();
1304   // Get or create the prototype for the function.
1305   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1306 
1307   // Strip off a bitcast if we got one back.
1308   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1309     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1310     Entry = CE->getOperand(0);
1311   }
1312 
1313 
1314   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1315     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1316 
1317     // If the types mismatch then we have to rewrite the definition.
1318     assert(OldFn->isDeclaration() &&
1319            "Shouldn't replace non-declaration");
1320 
1321     // F is the Function* for the one with the wrong type, we must make a new
1322     // Function* and update everything that used F (a declaration) with the new
1323     // Function* (which will be a definition).
1324     //
1325     // This happens if there is a prototype for a function
1326     // (e.g. "int f()") and then a definition of a different type
1327     // (e.g. "int f(int x)").  Move the old function aside so that it
1328     // doesn't interfere with GetAddrOfFunction.
1329     OldFn->setName(llvm::StringRef());
1330     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1331 
1332     // If this is an implementation of a function without a prototype, try to
1333     // replace any existing uses of the function (which may be calls) with uses
1334     // of the new function
1335     if (D->getType()->isFunctionNoProtoType()) {
1336       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1337       OldFn->removeDeadConstantUsers();
1338     }
1339 
1340     // Replace uses of F with the Function we will endow with a body.
1341     if (!Entry->use_empty()) {
1342       llvm::Constant *NewPtrForOldDecl =
1343         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1344       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1345     }
1346 
1347     // Ok, delete the old function now, which is dead.
1348     OldFn->eraseFromParent();
1349 
1350     Entry = NewFn;
1351   }
1352 
1353   llvm::Function *Fn = cast<llvm::Function>(Entry);
1354   setFunctionLinkage(D, Fn);
1355 
1356   CodeGenFunction(*this).GenerateCode(D, Fn);
1357 
1358   SetFunctionDefinitionAttributes(D, Fn);
1359   SetLLVMFunctionAttributesForDefinition(D, Fn);
1360 
1361   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1362     AddGlobalCtor(Fn, CA->getPriority());
1363   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1364     AddGlobalDtor(Fn, DA->getPriority());
1365 }
1366 
1367 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1368   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1369   const AliasAttr *AA = D->getAttr<AliasAttr>();
1370   assert(AA && "Not an alias?");
1371 
1372   llvm::StringRef MangledName = getMangledName(GD);
1373 
1374   // If there is a definition in the module, then it wins over the alias.
1375   // This is dubious, but allow it to be safe.  Just ignore the alias.
1376   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1377   if (Entry && !Entry->isDeclaration())
1378     return;
1379 
1380   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1381 
1382   // Create a reference to the named value.  This ensures that it is emitted
1383   // if a deferred decl.
1384   llvm::Constant *Aliasee;
1385   if (isa<llvm::FunctionType>(DeclTy))
1386     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1387   else
1388     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1389                                     llvm::PointerType::getUnqual(DeclTy), 0);
1390 
1391   // Create the new alias itself, but don't set a name yet.
1392   llvm::GlobalValue *GA =
1393     new llvm::GlobalAlias(Aliasee->getType(),
1394                           llvm::Function::ExternalLinkage,
1395                           "", Aliasee, &getModule());
1396 
1397   if (Entry) {
1398     assert(Entry->isDeclaration());
1399 
1400     // If there is a declaration in the module, then we had an extern followed
1401     // by the alias, as in:
1402     //   extern int test6();
1403     //   ...
1404     //   int test6() __attribute__((alias("test7")));
1405     //
1406     // Remove it and replace uses of it with the alias.
1407     GA->takeName(Entry);
1408 
1409     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1410                                                           Entry->getType()));
1411     Entry->eraseFromParent();
1412   } else {
1413     GA->setName(MangledName);
1414   }
1415 
1416   // Set attributes which are particular to an alias; this is a
1417   // specialization of the attributes which may be set on a global
1418   // variable/function.
1419   if (D->hasAttr<DLLExportAttr>()) {
1420     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1421       // The dllexport attribute is ignored for undefined symbols.
1422       if (FD->hasBody())
1423         GA->setLinkage(llvm::Function::DLLExportLinkage);
1424     } else {
1425       GA->setLinkage(llvm::Function::DLLExportLinkage);
1426     }
1427   } else if (D->hasAttr<WeakAttr>() ||
1428              D->hasAttr<WeakRefAttr>() ||
1429              D->hasAttr<WeakImportAttr>()) {
1430     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1431   }
1432 
1433   SetCommonAttributes(D, GA);
1434 }
1435 
1436 /// getBuiltinLibFunction - Given a builtin id for a function like
1437 /// "__builtin_fabsf", return a Function* for "fabsf".
1438 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1439                                                   unsigned BuiltinID) {
1440   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1441           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1442          "isn't a lib fn");
1443 
1444   // Get the name, skip over the __builtin_ prefix (if necessary).
1445   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1446   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1447     Name += 10;
1448 
1449   const llvm::FunctionType *Ty =
1450     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1451 
1452   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1453 }
1454 
1455 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1456                                             unsigned NumTys) {
1457   return llvm::Intrinsic::getDeclaration(&getModule(),
1458                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1459 }
1460 
1461 
1462 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1463                                            const llvm::Type *SrcType,
1464                                            const llvm::Type *SizeType) {
1465   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1466   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1467 }
1468 
1469 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1470                                             const llvm::Type *SrcType,
1471                                             const llvm::Type *SizeType) {
1472   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1473   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1474 }
1475 
1476 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1477                                            const llvm::Type *SizeType) {
1478   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1479   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1480 }
1481 
1482 static llvm::StringMapEntry<llvm::Constant*> &
1483 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1484                          const StringLiteral *Literal,
1485                          bool TargetIsLSB,
1486                          bool &IsUTF16,
1487                          unsigned &StringLength) {
1488   llvm::StringRef String = Literal->getString();
1489   unsigned NumBytes = String.size();
1490 
1491   // Check for simple case.
1492   if (!Literal->containsNonAsciiOrNull()) {
1493     StringLength = NumBytes;
1494     return Map.GetOrCreateValue(String);
1495   }
1496 
1497   // Otherwise, convert the UTF8 literals into a byte string.
1498   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1499   const UTF8 *FromPtr = (UTF8 *)String.data();
1500   UTF16 *ToPtr = &ToBuf[0];
1501 
1502   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1503                                                &ToPtr, ToPtr + NumBytes,
1504                                                strictConversion);
1505 
1506   // Check for conversion failure.
1507   if (Result != conversionOK) {
1508     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1509     // this duplicate code.
1510     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1511     StringLength = NumBytes;
1512     return Map.GetOrCreateValue(String);
1513   }
1514 
1515   // ConvertUTF8toUTF16 returns the length in ToPtr.
1516   StringLength = ToPtr - &ToBuf[0];
1517 
1518   // Render the UTF-16 string into a byte array and convert to the target byte
1519   // order.
1520   //
1521   // FIXME: This isn't something we should need to do here.
1522   llvm::SmallString<128> AsBytes;
1523   AsBytes.reserve(StringLength * 2);
1524   for (unsigned i = 0; i != StringLength; ++i) {
1525     unsigned short Val = ToBuf[i];
1526     if (TargetIsLSB) {
1527       AsBytes.push_back(Val & 0xFF);
1528       AsBytes.push_back(Val >> 8);
1529     } else {
1530       AsBytes.push_back(Val >> 8);
1531       AsBytes.push_back(Val & 0xFF);
1532     }
1533   }
1534   // Append one extra null character, the second is automatically added by our
1535   // caller.
1536   AsBytes.push_back(0);
1537 
1538   IsUTF16 = true;
1539   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1540 }
1541 
1542 llvm::Constant *
1543 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1544   unsigned StringLength = 0;
1545   bool isUTF16 = false;
1546   llvm::StringMapEntry<llvm::Constant*> &Entry =
1547     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1548                              getTargetData().isLittleEndian(),
1549                              isUTF16, StringLength);
1550 
1551   if (llvm::Constant *C = Entry.getValue())
1552     return C;
1553 
1554   llvm::Constant *Zero =
1555       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1556   llvm::Constant *Zeros[] = { Zero, Zero };
1557 
1558   // If we don't already have it, get __CFConstantStringClassReference.
1559   if (!CFConstantStringClassRef) {
1560     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1561     Ty = llvm::ArrayType::get(Ty, 0);
1562     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1563                                            "__CFConstantStringClassReference");
1564     // Decay array -> ptr
1565     CFConstantStringClassRef =
1566       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1567   }
1568 
1569   QualType CFTy = getContext().getCFConstantStringType();
1570 
1571   const llvm::StructType *STy =
1572     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1573 
1574   std::vector<llvm::Constant*> Fields(4);
1575 
1576   // Class pointer.
1577   Fields[0] = CFConstantStringClassRef;
1578 
1579   // Flags.
1580   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1581   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1582     llvm::ConstantInt::get(Ty, 0x07C8);
1583 
1584   // String pointer.
1585   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1586 
1587   llvm::GlobalValue::LinkageTypes Linkage;
1588   bool isConstant;
1589   if (isUTF16) {
1590     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1591     Linkage = llvm::GlobalValue::InternalLinkage;
1592     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1593     // does make plain ascii ones writable.
1594     isConstant = true;
1595   } else {
1596     Linkage = llvm::GlobalValue::PrivateLinkage;
1597     isConstant = !Features.WritableStrings;
1598   }
1599 
1600   llvm::GlobalVariable *GV =
1601     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1602                              ".str");
1603   if (isUTF16) {
1604     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1605     GV->setAlignment(Align.getQuantity());
1606   }
1607   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1608 
1609   // String length.
1610   Ty = getTypes().ConvertType(getContext().LongTy);
1611   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1612 
1613   // The struct.
1614   C = llvm::ConstantStruct::get(STy, Fields);
1615   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1616                                 llvm::GlobalVariable::PrivateLinkage, C,
1617                                 "_unnamed_cfstring_");
1618   if (const char *Sect = getContext().Target.getCFStringSection())
1619     GV->setSection(Sect);
1620   Entry.setValue(GV);
1621 
1622   return GV;
1623 }
1624 
1625 llvm::Constant *
1626 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1627   unsigned StringLength = 0;
1628   bool isUTF16 = false;
1629   llvm::StringMapEntry<llvm::Constant*> &Entry =
1630     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1631                              getTargetData().isLittleEndian(),
1632                              isUTF16, StringLength);
1633 
1634   if (llvm::Constant *C = Entry.getValue())
1635     return C;
1636 
1637   llvm::Constant *Zero =
1638   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1639   llvm::Constant *Zeros[] = { Zero, Zero };
1640 
1641   // If we don't already have it, get _NSConstantStringClassReference.
1642   if (!NSConstantStringClassRef) {
1643     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1644     Ty = llvm::ArrayType::get(Ty, 0);
1645     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1646                                         Features.ObjCNonFragileABI ?
1647                                         "OBJC_CLASS_$_NSConstantString" :
1648                                         "_NSConstantStringClassReference");
1649     // Decay array -> ptr
1650     NSConstantStringClassRef =
1651       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1652   }
1653 
1654   QualType NSTy = getContext().getNSConstantStringType();
1655 
1656   const llvm::StructType *STy =
1657   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1658 
1659   std::vector<llvm::Constant*> Fields(3);
1660 
1661   // Class pointer.
1662   Fields[0] = NSConstantStringClassRef;
1663 
1664   // String pointer.
1665   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1666 
1667   llvm::GlobalValue::LinkageTypes Linkage;
1668   bool isConstant;
1669   if (isUTF16) {
1670     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1671     Linkage = llvm::GlobalValue::InternalLinkage;
1672     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1673     // does make plain ascii ones writable.
1674     isConstant = true;
1675   } else {
1676     Linkage = llvm::GlobalValue::PrivateLinkage;
1677     isConstant = !Features.WritableStrings;
1678   }
1679 
1680   llvm::GlobalVariable *GV =
1681   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1682                            ".str");
1683   if (isUTF16) {
1684     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1685     GV->setAlignment(Align.getQuantity());
1686   }
1687   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1688 
1689   // String length.
1690   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1691   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1692 
1693   // The struct.
1694   C = llvm::ConstantStruct::get(STy, Fields);
1695   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1696                                 llvm::GlobalVariable::PrivateLinkage, C,
1697                                 "_unnamed_nsstring_");
1698   // FIXME. Fix section.
1699   if (const char *Sect =
1700         Features.ObjCNonFragileABI
1701           ? getContext().Target.getNSStringNonFragileABISection()
1702           : getContext().Target.getNSStringSection())
1703     GV->setSection(Sect);
1704   Entry.setValue(GV);
1705 
1706   return GV;
1707 }
1708 
1709 /// GetStringForStringLiteral - Return the appropriate bytes for a
1710 /// string literal, properly padded to match the literal type.
1711 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1712   const ConstantArrayType *CAT =
1713     getContext().getAsConstantArrayType(E->getType());
1714   assert(CAT && "String isn't pointer or array!");
1715 
1716   // Resize the string to the right size.
1717   uint64_t RealLen = CAT->getSize().getZExtValue();
1718 
1719   if (E->isWide())
1720     RealLen *= getContext().Target.getWCharWidth()/8;
1721 
1722   std::string Str = E->getString().str();
1723   Str.resize(RealLen, '\0');
1724 
1725   return Str;
1726 }
1727 
1728 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1729 /// constant array for the given string literal.
1730 llvm::Constant *
1731 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1732   // FIXME: This can be more efficient.
1733   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1734   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1735   if (S->isWide()) {
1736     llvm::Type *DestTy =
1737         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1738     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1739   }
1740   return C;
1741 }
1742 
1743 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1744 /// array for the given ObjCEncodeExpr node.
1745 llvm::Constant *
1746 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1747   std::string Str;
1748   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1749 
1750   return GetAddrOfConstantCString(Str);
1751 }
1752 
1753 
1754 /// GenerateWritableString -- Creates storage for a string literal.
1755 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1756                                              bool constant,
1757                                              CodeGenModule &CGM,
1758                                              const char *GlobalName) {
1759   // Create Constant for this string literal. Don't add a '\0'.
1760   llvm::Constant *C =
1761       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1762 
1763   // Create a global variable for this string
1764   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1765                                   llvm::GlobalValue::PrivateLinkage,
1766                                   C, GlobalName);
1767 }
1768 
1769 /// GetAddrOfConstantString - Returns a pointer to a character array
1770 /// containing the literal. This contents are exactly that of the
1771 /// given string, i.e. it will not be null terminated automatically;
1772 /// see GetAddrOfConstantCString. Note that whether the result is
1773 /// actually a pointer to an LLVM constant depends on
1774 /// Feature.WriteableStrings.
1775 ///
1776 /// The result has pointer to array type.
1777 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1778                                                        const char *GlobalName) {
1779   bool IsConstant = !Features.WritableStrings;
1780 
1781   // Get the default prefix if a name wasn't specified.
1782   if (!GlobalName)
1783     GlobalName = ".str";
1784 
1785   // Don't share any string literals if strings aren't constant.
1786   if (!IsConstant)
1787     return GenerateStringLiteral(str, false, *this, GlobalName);
1788 
1789   llvm::StringMapEntry<llvm::Constant *> &Entry =
1790     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1791 
1792   if (Entry.getValue())
1793     return Entry.getValue();
1794 
1795   // Create a global variable for this.
1796   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1797   Entry.setValue(C);
1798   return C;
1799 }
1800 
1801 /// GetAddrOfConstantCString - Returns a pointer to a character
1802 /// array containing the literal and a terminating '\-'
1803 /// character. The result has pointer to array type.
1804 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1805                                                         const char *GlobalName){
1806   return GetAddrOfConstantString(str + '\0', GlobalName);
1807 }
1808 
1809 /// EmitObjCPropertyImplementations - Emit information for synthesized
1810 /// properties for an implementation.
1811 void CodeGenModule::EmitObjCPropertyImplementations(const
1812                                                     ObjCImplementationDecl *D) {
1813   for (ObjCImplementationDecl::propimpl_iterator
1814          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1815     ObjCPropertyImplDecl *PID = *i;
1816 
1817     // Dynamic is just for type-checking.
1818     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1819       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1820 
1821       // Determine which methods need to be implemented, some may have
1822       // been overridden. Note that ::isSynthesized is not the method
1823       // we want, that just indicates if the decl came from a
1824       // property. What we want to know is if the method is defined in
1825       // this implementation.
1826       if (!D->getInstanceMethod(PD->getGetterName()))
1827         CodeGenFunction(*this).GenerateObjCGetter(
1828                                  const_cast<ObjCImplementationDecl *>(D), PID);
1829       if (!PD->isReadOnly() &&
1830           !D->getInstanceMethod(PD->getSetterName()))
1831         CodeGenFunction(*this).GenerateObjCSetter(
1832                                  const_cast<ObjCImplementationDecl *>(D), PID);
1833     }
1834   }
1835 }
1836 
1837 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1838 /// for an implementation.
1839 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1840   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1841     return;
1842   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1843   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1844   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1845   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1846   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1847                                                   D->getLocation(),
1848                                                   D->getLocation(), cxxSelector,
1849                                                   getContext().VoidTy, 0,
1850                                                   DC, true, false, true, false,
1851                                                   ObjCMethodDecl::Required);
1852   D->addInstanceMethod(DTORMethod);
1853   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1854 
1855   II = &getContext().Idents.get(".cxx_construct");
1856   cxxSelector = getContext().Selectors.getSelector(0, &II);
1857   // The constructor returns 'self'.
1858   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1859                                                 D->getLocation(),
1860                                                 D->getLocation(), cxxSelector,
1861                                                 getContext().getObjCIdType(), 0,
1862                                                 DC, true, false, true, false,
1863                                                 ObjCMethodDecl::Required);
1864   D->addInstanceMethod(CTORMethod);
1865   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1866 
1867 
1868 }
1869 
1870 /// EmitNamespace - Emit all declarations in a namespace.
1871 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1872   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1873        I != E; ++I)
1874     EmitTopLevelDecl(*I);
1875 }
1876 
1877 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1878 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1879   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1880       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1881     ErrorUnsupported(LSD, "linkage spec");
1882     return;
1883   }
1884 
1885   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1886        I != E; ++I)
1887     EmitTopLevelDecl(*I);
1888 }
1889 
1890 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1891 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1892   // If an error has occurred, stop code generation, but continue
1893   // parsing and semantic analysis (to ensure all warnings and errors
1894   // are emitted).
1895   if (Diags.hasErrorOccurred())
1896     return;
1897 
1898   // Ignore dependent declarations.
1899   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1900     return;
1901 
1902   switch (D->getKind()) {
1903   case Decl::CXXConversion:
1904   case Decl::CXXMethod:
1905   case Decl::Function:
1906     // Skip function templates
1907     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1908       return;
1909 
1910     EmitGlobal(cast<FunctionDecl>(D));
1911     break;
1912 
1913   case Decl::Var:
1914     EmitGlobal(cast<VarDecl>(D));
1915     break;
1916 
1917   // C++ Decls
1918   case Decl::Namespace:
1919     EmitNamespace(cast<NamespaceDecl>(D));
1920     break;
1921     // No code generation needed.
1922   case Decl::UsingShadow:
1923   case Decl::Using:
1924   case Decl::UsingDirective:
1925   case Decl::ClassTemplate:
1926   case Decl::FunctionTemplate:
1927   case Decl::NamespaceAlias:
1928     break;
1929   case Decl::CXXConstructor:
1930     // Skip function templates
1931     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1932       return;
1933 
1934     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1935     break;
1936   case Decl::CXXDestructor:
1937     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1938     break;
1939 
1940   case Decl::StaticAssert:
1941     // Nothing to do.
1942     break;
1943 
1944   // Objective-C Decls
1945 
1946   // Forward declarations, no (immediate) code generation.
1947   case Decl::ObjCClass:
1948   case Decl::ObjCForwardProtocol:
1949   case Decl::ObjCCategory:
1950   case Decl::ObjCInterface:
1951     break;
1952 
1953   case Decl::ObjCProtocol:
1954     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1955     break;
1956 
1957   case Decl::ObjCCategoryImpl:
1958     // Categories have properties but don't support synthesize so we
1959     // can ignore them here.
1960     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1961     break;
1962 
1963   case Decl::ObjCImplementation: {
1964     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1965     EmitObjCPropertyImplementations(OMD);
1966     EmitObjCIvarInitializations(OMD);
1967     Runtime->GenerateClass(OMD);
1968     break;
1969   }
1970   case Decl::ObjCMethod: {
1971     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1972     // If this is not a prototype, emit the body.
1973     if (OMD->getBody())
1974       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1975     break;
1976   }
1977   case Decl::ObjCCompatibleAlias:
1978     // compatibility-alias is a directive and has no code gen.
1979     break;
1980 
1981   case Decl::LinkageSpec:
1982     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1983     break;
1984 
1985   case Decl::FileScopeAsm: {
1986     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1987     llvm::StringRef AsmString = AD->getAsmString()->getString();
1988 
1989     const std::string &S = getModule().getModuleInlineAsm();
1990     if (S.empty())
1991       getModule().setModuleInlineAsm(AsmString);
1992     else
1993       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1994     break;
1995   }
1996 
1997   default:
1998     // Make sure we handled everything we should, every other kind is a
1999     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2000     // function. Need to recode Decl::Kind to do that easily.
2001     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2002   }
2003 }
2004 
2005 /// Turns the given pointer into a constant.
2006 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2007                                           const void *Ptr) {
2008   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2009   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2010   return llvm::ConstantInt::get(i64, PtrInt);
2011 }
2012 
2013 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2014                                    llvm::NamedMDNode *&GlobalMetadata,
2015                                    GlobalDecl D,
2016                                    llvm::GlobalValue *Addr) {
2017   if (!GlobalMetadata)
2018     GlobalMetadata =
2019       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2020 
2021   // TODO: should we report variant information for ctors/dtors?
2022   llvm::Value *Ops[] = {
2023     Addr,
2024     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2025   };
2026   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2027 }
2028 
2029 /// Emits metadata nodes associating all the global values in the
2030 /// current module with the Decls they came from.  This is useful for
2031 /// projects using IR gen as a subroutine.
2032 ///
2033 /// Since there's currently no way to associate an MDNode directly
2034 /// with an llvm::GlobalValue, we create a global named metadata
2035 /// with the name 'clang.global.decl.ptrs'.
2036 void CodeGenModule::EmitDeclMetadata() {
2037   llvm::NamedMDNode *GlobalMetadata = 0;
2038 
2039   // StaticLocalDeclMap
2040   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2041          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2042        I != E; ++I) {
2043     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2044     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2045   }
2046 }
2047 
2048 /// Emits metadata nodes for all the local variables in the current
2049 /// function.
2050 void CodeGenFunction::EmitDeclMetadata() {
2051   if (LocalDeclMap.empty()) return;
2052 
2053   llvm::LLVMContext &Context = getLLVMContext();
2054 
2055   // Find the unique metadata ID for this name.
2056   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2057 
2058   llvm::NamedMDNode *GlobalMetadata = 0;
2059 
2060   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2061          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2062     const Decl *D = I->first;
2063     llvm::Value *Addr = I->second;
2064 
2065     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2066       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2067       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2068     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2069       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2070       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2071     }
2072   }
2073 }
2074 
2075 ///@name Custom Runtime Function Interfaces
2076 ///@{
2077 //
2078 // FIXME: These can be eliminated once we can have clients just get the required
2079 // AST nodes from the builtin tables.
2080 
2081 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2082   if (BlockObjectDispose)
2083     return BlockObjectDispose;
2084 
2085   // If we saw an explicit decl, use that.
2086   if (BlockObjectDisposeDecl) {
2087     return BlockObjectDispose = GetAddrOfFunction(
2088       BlockObjectDisposeDecl,
2089       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2090   }
2091 
2092   // Otherwise construct the function by hand.
2093   const llvm::FunctionType *FTy;
2094   std::vector<const llvm::Type*> ArgTys;
2095   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2096   ArgTys.push_back(PtrToInt8Ty);
2097   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2098   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2099   return BlockObjectDispose =
2100     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2101 }
2102 
2103 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2104   if (BlockObjectAssign)
2105     return BlockObjectAssign;
2106 
2107   // If we saw an explicit decl, use that.
2108   if (BlockObjectAssignDecl) {
2109     return BlockObjectAssign = GetAddrOfFunction(
2110       BlockObjectAssignDecl,
2111       getTypes().GetFunctionType(BlockObjectAssignDecl));
2112   }
2113 
2114   // Otherwise construct the function by hand.
2115   const llvm::FunctionType *FTy;
2116   std::vector<const llvm::Type*> ArgTys;
2117   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2118   ArgTys.push_back(PtrToInt8Ty);
2119   ArgTys.push_back(PtrToInt8Ty);
2120   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2121   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2122   return BlockObjectAssign =
2123     CreateRuntimeFunction(FTy, "_Block_object_assign");
2124 }
2125 
2126 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2127   if (NSConcreteGlobalBlock)
2128     return NSConcreteGlobalBlock;
2129 
2130   // If we saw an explicit decl, use that.
2131   if (NSConcreteGlobalBlockDecl) {
2132     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2133       NSConcreteGlobalBlockDecl,
2134       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2135   }
2136 
2137   // Otherwise construct the variable by hand.
2138   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2139     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2140 }
2141 
2142 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2143   if (NSConcreteStackBlock)
2144     return NSConcreteStackBlock;
2145 
2146   // If we saw an explicit decl, use that.
2147   if (NSConcreteStackBlockDecl) {
2148     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2149       NSConcreteStackBlockDecl,
2150       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2151   }
2152 
2153   // Otherwise construct the variable by hand.
2154   return NSConcreteStackBlock = CreateRuntimeVariable(
2155     PtrToInt8Ty, "_NSConcreteStackBlock");
2156 }
2157 
2158 ///@}
2159