xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 85eda12d093714bfc9f266d50254e82888c9e8c3)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/Frontend/CodeGenOptions.h"
45 #include "clang/Sema/SemaDiagnostic.h"
46 #include "llvm/ADT/APSInt.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
91       Types(*this), VTables(*this), ObjCRuntime(nullptr),
92       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
93       DebugInfo(nullptr), ObjCData(nullptr),
94       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
95       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
96       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
97       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
98       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
99       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
100       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)),
101       WholeProgramVTablesBlacklist(CGO.WholeProgramVTablesBlacklistFiles,
102                                    C.getSourceManager()) {
103 
104   // Initialize the type cache.
105   llvm::LLVMContext &LLVMContext = M.getContext();
106   VoidTy = llvm::Type::getVoidTy(LLVMContext);
107   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
108   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
109   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
110   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
111   FloatTy = llvm::Type::getFloatTy(LLVMContext);
112   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
113   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
114   PointerAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
120   Int8PtrTy = Int8Ty->getPointerTo(0);
121   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
122 
123   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
124   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
125 
126   if (LangOpts.ObjC1)
127     createObjCRuntime();
128   if (LangOpts.OpenCL)
129     createOpenCLRuntime();
130   if (LangOpts.OpenMP)
131     createOpenMPRuntime();
132   if (LangOpts.CUDA)
133     createCUDARuntime();
134 
135   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
136   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
137       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
138     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
139                            getCXXABI().getMangleContext());
140 
141   // If debug info or coverage generation is enabled, create the CGDebugInfo
142   // object.
143   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
144       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
145     DebugInfo = new CGDebugInfo(*this);
146 
147   Block.GlobalUniqueCount = 0;
148 
149   if (C.getLangOpts().ObjC1)
150     ObjCData = new ObjCEntrypoints();
151 
152   if (CodeGenOpts.hasProfileClangUse()) {
153     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
154         CodeGenOpts.ProfileInstrumentUsePath);
155     if (std::error_code EC = ReaderOrErr.getError()) {
156       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
157                                               "Could not read profile %0: %1");
158       getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
159                                 << EC.message();
160     } else
161       PGOReader = std::move(ReaderOrErr.get());
162   }
163 
164   // If coverage mapping generation is enabled, create the
165   // CoverageMappingModuleGen object.
166   if (CodeGenOpts.CoverageMapping)
167     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
168 }
169 
170 CodeGenModule::~CodeGenModule() {
171   delete ObjCRuntime;
172   delete OpenCLRuntime;
173   delete OpenMPRuntime;
174   delete CUDARuntime;
175   delete TheTargetCodeGenInfo;
176   delete TBAA;
177   delete DebugInfo;
178   delete ObjCData;
179 }
180 
181 void CodeGenModule::createObjCRuntime() {
182   // This is just isGNUFamily(), but we want to force implementors of
183   // new ABIs to decide how best to do this.
184   switch (LangOpts.ObjCRuntime.getKind()) {
185   case ObjCRuntime::GNUstep:
186   case ObjCRuntime::GCC:
187   case ObjCRuntime::ObjFW:
188     ObjCRuntime = CreateGNUObjCRuntime(*this);
189     return;
190 
191   case ObjCRuntime::FragileMacOSX:
192   case ObjCRuntime::MacOSX:
193   case ObjCRuntime::iOS:
194   case ObjCRuntime::WatchOS:
195     ObjCRuntime = CreateMacObjCRuntime(*this);
196     return;
197   }
198   llvm_unreachable("bad runtime kind");
199 }
200 
201 void CodeGenModule::createOpenCLRuntime() {
202   OpenCLRuntime = new CGOpenCLRuntime(*this);
203 }
204 
205 void CodeGenModule::createOpenMPRuntime() {
206   // Select a specialized code generation class based on the target, if any.
207   // If it does not exist use the default implementation.
208   switch (getTarget().getTriple().getArch()) {
209 
210   case llvm::Triple::nvptx:
211   case llvm::Triple::nvptx64:
212     assert(getLangOpts().OpenMPIsDevice &&
213            "OpenMP NVPTX is only prepared to deal with device code.");
214     OpenMPRuntime = new CGOpenMPRuntimeNVPTX(*this);
215     break;
216   default:
217     OpenMPRuntime = new CGOpenMPRuntime(*this);
218     break;
219   }
220 }
221 
222 void CodeGenModule::createCUDARuntime() {
223   CUDARuntime = CreateNVCUDARuntime(*this);
224 }
225 
226 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
227   Replacements[Name] = C;
228 }
229 
230 void CodeGenModule::applyReplacements() {
231   for (auto &I : Replacements) {
232     StringRef MangledName = I.first();
233     llvm::Constant *Replacement = I.second;
234     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
235     if (!Entry)
236       continue;
237     auto *OldF = cast<llvm::Function>(Entry);
238     auto *NewF = dyn_cast<llvm::Function>(Replacement);
239     if (!NewF) {
240       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
241         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
242       } else {
243         auto *CE = cast<llvm::ConstantExpr>(Replacement);
244         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
245                CE->getOpcode() == llvm::Instruction::GetElementPtr);
246         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
247       }
248     }
249 
250     // Replace old with new, but keep the old order.
251     OldF->replaceAllUsesWith(Replacement);
252     if (NewF) {
253       NewF->removeFromParent();
254       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
255                                                        NewF);
256     }
257     OldF->eraseFromParent();
258   }
259 }
260 
261 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
262   GlobalValReplacements.push_back(std::make_pair(GV, C));
263 }
264 
265 void CodeGenModule::applyGlobalValReplacements() {
266   for (auto &I : GlobalValReplacements) {
267     llvm::GlobalValue *GV = I.first;
268     llvm::Constant *C = I.second;
269 
270     GV->replaceAllUsesWith(C);
271     GV->eraseFromParent();
272   }
273 }
274 
275 // This is only used in aliases that we created and we know they have a
276 // linear structure.
277 static const llvm::GlobalObject *getAliasedGlobal(
278     const llvm::GlobalIndirectSymbol &GIS) {
279   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
280   const llvm::Constant *C = &GIS;
281   for (;;) {
282     C = C->stripPointerCasts();
283     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
284       return GO;
285     // stripPointerCasts will not walk over weak aliases.
286     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
287     if (!GIS2)
288       return nullptr;
289     if (!Visited.insert(GIS2).second)
290       return nullptr;
291     C = GIS2->getIndirectSymbol();
292   }
293 }
294 
295 void CodeGenModule::checkAliases() {
296   // Check if the constructed aliases are well formed. It is really unfortunate
297   // that we have to do this in CodeGen, but we only construct mangled names
298   // and aliases during codegen.
299   bool Error = false;
300   DiagnosticsEngine &Diags = getDiags();
301   for (const GlobalDecl &GD : Aliases) {
302     const auto *D = cast<ValueDecl>(GD.getDecl());
303     SourceLocation Location;
304     bool IsIFunc = D->hasAttr<IFuncAttr>();
305     if (const Attr *A = D->getDefiningAttr())
306       Location = A->getLocation();
307     else
308       llvm_unreachable("Not an alias or ifunc?");
309     StringRef MangledName = getMangledName(GD);
310     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
311     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
312     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
313     if (!GV) {
314       Error = true;
315       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
316     } else if (GV->isDeclaration()) {
317       Error = true;
318       Diags.Report(Location, diag::err_alias_to_undefined)
319           << IsIFunc << IsIFunc;
320     } else if (IsIFunc) {
321       // Check resolver function type.
322       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
323           GV->getType()->getPointerElementType());
324       assert(FTy);
325       if (!FTy->getReturnType()->isPointerTy())
326         Diags.Report(Location, diag::err_ifunc_resolver_return);
327       if (FTy->getNumParams())
328         Diags.Report(Location, diag::err_ifunc_resolver_params);
329     }
330 
331     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
332     llvm::GlobalValue *AliaseeGV;
333     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
334       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
335     else
336       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
337 
338     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
339       StringRef AliasSection = SA->getName();
340       if (AliasSection != AliaseeGV->getSection())
341         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
342             << AliasSection << IsIFunc << IsIFunc;
343     }
344 
345     // We have to handle alias to weak aliases in here. LLVM itself disallows
346     // this since the object semantics would not match the IL one. For
347     // compatibility with gcc we implement it by just pointing the alias
348     // to its aliasee's aliasee. We also warn, since the user is probably
349     // expecting the link to be weak.
350     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
351       if (GA->isInterposable()) {
352         Diags.Report(Location, diag::warn_alias_to_weak_alias)
353             << GV->getName() << GA->getName() << IsIFunc;
354         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
355             GA->getIndirectSymbol(), Alias->getType());
356         Alias->setIndirectSymbol(Aliasee);
357       }
358     }
359   }
360   if (!Error)
361     return;
362 
363   for (const GlobalDecl &GD : Aliases) {
364     StringRef MangledName = getMangledName(GD);
365     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
366     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
367     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
368     Alias->eraseFromParent();
369   }
370 }
371 
372 void CodeGenModule::clear() {
373   DeferredDeclsToEmit.clear();
374   if (OpenMPRuntime)
375     OpenMPRuntime->clear();
376 }
377 
378 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
379                                        StringRef MainFile) {
380   if (!hasDiagnostics())
381     return;
382   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
383     if (MainFile.empty())
384       MainFile = "<stdin>";
385     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
386   } else
387     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
388                                                       << Mismatched;
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   applyGlobalValReplacements();
394   applyReplacements();
395   checkAliases();
396   EmitCXXGlobalInitFunc();
397   EmitCXXGlobalDtorFunc();
398   EmitCXXThreadLocalInitFunc();
399   if (ObjCRuntime)
400     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
401       AddGlobalCtor(ObjCInitFunction);
402   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
403       CUDARuntime) {
404     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
405       AddGlobalCtor(CudaCtorFunction);
406     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
407       AddGlobalDtor(CudaDtorFunction);
408   }
409   if (OpenMPRuntime)
410     if (llvm::Function *OpenMPRegistrationFunction =
411             OpenMPRuntime->emitRegistrationFunction())
412       AddGlobalCtor(OpenMPRegistrationFunction, 0);
413   if (PGOReader) {
414     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
415     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
416     if (PGOStats.hasDiagnostics())
417       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
418   }
419   EmitCtorList(GlobalCtors, "llvm.global_ctors");
420   EmitCtorList(GlobalDtors, "llvm.global_dtors");
421   EmitGlobalAnnotations();
422   EmitStaticExternCAliases();
423   EmitDeferredUnusedCoverageMappings();
424   if (CoverageMapping)
425     CoverageMapping->emit();
426   if (CodeGenOpts.SanitizeCfiCrossDso)
427     CodeGenFunction(*this).EmitCfiCheckFail();
428   emitLLVMUsed();
429   if (SanStats)
430     SanStats->finish();
431 
432   if (CodeGenOpts.Autolink &&
433       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
434     EmitModuleLinkOptions();
435   }
436   if (CodeGenOpts.DwarfVersion) {
437     // We actually want the latest version when there are conflicts.
438     // We can change from Warning to Latest if such mode is supported.
439     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
440                               CodeGenOpts.DwarfVersion);
441   }
442   if (CodeGenOpts.EmitCodeView) {
443     // Indicate that we want CodeView in the metadata.
444     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
445   }
446   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
447     // We don't support LTO with 2 with different StrictVTablePointers
448     // FIXME: we could support it by stripping all the information introduced
449     // by StrictVTablePointers.
450 
451     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
452 
453     llvm::Metadata *Ops[2] = {
454               llvm::MDString::get(VMContext, "StrictVTablePointers"),
455               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
456                   llvm::Type::getInt32Ty(VMContext), 1))};
457 
458     getModule().addModuleFlag(llvm::Module::Require,
459                               "StrictVTablePointersRequirement",
460                               llvm::MDNode::get(VMContext, Ops));
461   }
462   if (DebugInfo)
463     // We support a single version in the linked module. The LLVM
464     // parser will drop debug info with a different version number
465     // (and warn about it, too).
466     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
467                               llvm::DEBUG_METADATA_VERSION);
468 
469   // We need to record the widths of enums and wchar_t, so that we can generate
470   // the correct build attributes in the ARM backend.
471   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
472   if (   Arch == llvm::Triple::arm
473       || Arch == llvm::Triple::armeb
474       || Arch == llvm::Triple::thumb
475       || Arch == llvm::Triple::thumbeb) {
476     // Width of wchar_t in bytes
477     uint64_t WCharWidth =
478         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
479     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
480 
481     // The minimum width of an enum in bytes
482     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
483     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
484   }
485 
486   if (CodeGenOpts.SanitizeCfiCrossDso) {
487     // Indicate that we want cross-DSO control flow integrity checks.
488     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
489   }
490 
491   if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
492     // Indicate whether __nvvm_reflect should be configured to flush denormal
493     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
494     // property.)
495     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
496                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
497   }
498 
499   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
500     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
501     switch (PLevel) {
502     case 0: break;
503     case 1: PL = llvm::PICLevel::Small; break;
504     case 2: PL = llvm::PICLevel::Large; break;
505     default: llvm_unreachable("Invalid PIC Level");
506     }
507 
508     getModule().setPICLevel(PL);
509   }
510 
511   SimplifyPersonality();
512 
513   if (getCodeGenOpts().EmitDeclMetadata)
514     EmitDeclMetadata();
515 
516   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
517     EmitCoverageFile();
518 
519   if (DebugInfo)
520     DebugInfo->finalize();
521 
522   EmitVersionIdentMetadata();
523 
524   EmitTargetMetadata();
525 }
526 
527 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
528   // Make sure that this type is translated.
529   Types.UpdateCompletedType(TD);
530 }
531 
532 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
533   // Make sure that this type is translated.
534   Types.RefreshTypeCacheForClass(RD);
535 }
536 
537 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
538   if (!TBAA)
539     return nullptr;
540   return TBAA->getTBAAInfo(QTy);
541 }
542 
543 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
544   if (!TBAA)
545     return nullptr;
546   return TBAA->getTBAAInfoForVTablePtr();
547 }
548 
549 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
550   if (!TBAA)
551     return nullptr;
552   return TBAA->getTBAAStructInfo(QTy);
553 }
554 
555 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
556                                                   llvm::MDNode *AccessN,
557                                                   uint64_t O) {
558   if (!TBAA)
559     return nullptr;
560   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
561 }
562 
563 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
564 /// and struct-path aware TBAA, the tag has the same format:
565 /// base type, access type and offset.
566 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
567 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
568                                                 llvm::MDNode *TBAAInfo,
569                                                 bool ConvertTypeToTag) {
570   if (ConvertTypeToTag && TBAA)
571     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
572                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
573   else
574     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
575 }
576 
577 void CodeGenModule::DecorateInstructionWithInvariantGroup(
578     llvm::Instruction *I, const CXXRecordDecl *RD) {
579   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
580   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
581   // Check if we have to wrap MDString in MDNode.
582   if (!MetaDataNode)
583     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
584   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
585 }
586 
587 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
588   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
589   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
590 }
591 
592 /// ErrorUnsupported - Print out an error that codegen doesn't support the
593 /// specified stmt yet.
594 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
595   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
596                                                "cannot compile this %0 yet");
597   std::string Msg = Type;
598   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
599     << Msg << S->getSourceRange();
600 }
601 
602 /// ErrorUnsupported - Print out an error that codegen doesn't support the
603 /// specified decl yet.
604 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
605   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
606                                                "cannot compile this %0 yet");
607   std::string Msg = Type;
608   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
609 }
610 
611 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
612   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
613 }
614 
615 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
616                                         const NamedDecl *D) const {
617   // Internal definitions always have default visibility.
618   if (GV->hasLocalLinkage()) {
619     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
620     return;
621   }
622 
623   // Set visibility for definitions.
624   LinkageInfo LV = D->getLinkageAndVisibility();
625   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
626     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
627 }
628 
629 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
630   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
631       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
632       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
633       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
634       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
635 }
636 
637 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
638     CodeGenOptions::TLSModel M) {
639   switch (M) {
640   case CodeGenOptions::GeneralDynamicTLSModel:
641     return llvm::GlobalVariable::GeneralDynamicTLSModel;
642   case CodeGenOptions::LocalDynamicTLSModel:
643     return llvm::GlobalVariable::LocalDynamicTLSModel;
644   case CodeGenOptions::InitialExecTLSModel:
645     return llvm::GlobalVariable::InitialExecTLSModel;
646   case CodeGenOptions::LocalExecTLSModel:
647     return llvm::GlobalVariable::LocalExecTLSModel;
648   }
649   llvm_unreachable("Invalid TLS model!");
650 }
651 
652 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
653   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
654 
655   llvm::GlobalValue::ThreadLocalMode TLM;
656   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
657 
658   // Override the TLS model if it is explicitly specified.
659   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
660     TLM = GetLLVMTLSModel(Attr->getModel());
661   }
662 
663   GV->setThreadLocalMode(TLM);
664 }
665 
666 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
667   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
668 
669   // Some ABIs don't have constructor variants.  Make sure that base and
670   // complete constructors get mangled the same.
671   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
672     if (!getTarget().getCXXABI().hasConstructorVariants()) {
673       CXXCtorType OrigCtorType = GD.getCtorType();
674       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
675       if (OrigCtorType == Ctor_Base)
676         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
677     }
678   }
679 
680   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
681   if (!FoundStr.empty())
682     return FoundStr;
683 
684   const auto *ND = cast<NamedDecl>(GD.getDecl());
685   SmallString<256> Buffer;
686   StringRef Str;
687   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
688     llvm::raw_svector_ostream Out(Buffer);
689     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
690       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
691     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
692       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
693     else
694       getCXXABI().getMangleContext().mangleName(ND, Out);
695     Str = Out.str();
696   } else {
697     IdentifierInfo *II = ND->getIdentifier();
698     assert(II && "Attempt to mangle unnamed decl.");
699     Str = II->getName();
700   }
701 
702   // Keep the first result in the case of a mangling collision.
703   auto Result = Manglings.insert(std::make_pair(Str, GD));
704   return FoundStr = Result.first->first();
705 }
706 
707 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
708                                              const BlockDecl *BD) {
709   MangleContext &MangleCtx = getCXXABI().getMangleContext();
710   const Decl *D = GD.getDecl();
711 
712   SmallString<256> Buffer;
713   llvm::raw_svector_ostream Out(Buffer);
714   if (!D)
715     MangleCtx.mangleGlobalBlock(BD,
716       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
717   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
718     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
719   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
720     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
721   else
722     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
723 
724   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
725   return Result.first->first();
726 }
727 
728 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
729   return getModule().getNamedValue(Name);
730 }
731 
732 /// AddGlobalCtor - Add a function to the list that will be called before
733 /// main() runs.
734 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
735                                   llvm::Constant *AssociatedData) {
736   // FIXME: Type coercion of void()* types.
737   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
738 }
739 
740 /// AddGlobalDtor - Add a function to the list that will be called
741 /// when the module is unloaded.
742 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
743   // FIXME: Type coercion of void()* types.
744   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
745 }
746 
747 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
748   // Ctor function type is void()*.
749   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
750   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
751 
752   // Get the type of a ctor entry, { i32, void ()*, i8* }.
753   llvm::StructType *CtorStructTy = llvm::StructType::get(
754       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
755 
756   // Construct the constructor and destructor arrays.
757   SmallVector<llvm::Constant *, 8> Ctors;
758   for (const auto &I : Fns) {
759     llvm::Constant *S[] = {
760         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
761         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
762         (I.AssociatedData
763              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
764              : llvm::Constant::getNullValue(VoidPtrTy))};
765     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
766   }
767 
768   if (!Ctors.empty()) {
769     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
770     new llvm::GlobalVariable(TheModule, AT, false,
771                              llvm::GlobalValue::AppendingLinkage,
772                              llvm::ConstantArray::get(AT, Ctors),
773                              GlobalName);
774   }
775 }
776 
777 llvm::GlobalValue::LinkageTypes
778 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
779   const auto *D = cast<FunctionDecl>(GD.getDecl());
780 
781   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
782 
783   if (isa<CXXDestructorDecl>(D) &&
784       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
785                                          GD.getDtorType())) {
786     // Destructor variants in the Microsoft C++ ABI are always internal or
787     // linkonce_odr thunks emitted on an as-needed basis.
788     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
789                                    : llvm::GlobalValue::LinkOnceODRLinkage;
790   }
791 
792   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
793 }
794 
795 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
796   const auto *FD = cast<FunctionDecl>(GD.getDecl());
797 
798   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
799     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
800       // Don't dllexport/import destructor thunks.
801       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
802       return;
803     }
804   }
805 
806   if (FD->hasAttr<DLLImportAttr>())
807     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
808   else if (FD->hasAttr<DLLExportAttr>())
809     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
810   else
811     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
812 }
813 
814 llvm::ConstantInt *
815 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
816   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
817   if (!MDS) return nullptr;
818 
819   llvm::MD5 md5;
820   llvm::MD5::MD5Result result;
821   md5.update(MDS->getString());
822   md5.final(result);
823   uint64_t id = 0;
824   for (int i = 0; i < 8; ++i)
825     id |= static_cast<uint64_t>(result[i]) << (i * 8);
826   return llvm::ConstantInt::get(Int64Ty, id);
827 }
828 
829 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
830                                                     llvm::Function *F) {
831   setNonAliasAttributes(D, F);
832 }
833 
834 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
835                                               const CGFunctionInfo &Info,
836                                               llvm::Function *F) {
837   unsigned CallingConv;
838   AttributeListType AttributeList;
839   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
840                          false);
841   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
842   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
843 }
844 
845 /// Determines whether the language options require us to model
846 /// unwind exceptions.  We treat -fexceptions as mandating this
847 /// except under the fragile ObjC ABI with only ObjC exceptions
848 /// enabled.  This means, for example, that C with -fexceptions
849 /// enables this.
850 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
851   // If exceptions are completely disabled, obviously this is false.
852   if (!LangOpts.Exceptions) return false;
853 
854   // If C++ exceptions are enabled, this is true.
855   if (LangOpts.CXXExceptions) return true;
856 
857   // If ObjC exceptions are enabled, this depends on the ABI.
858   if (LangOpts.ObjCExceptions) {
859     return LangOpts.ObjCRuntime.hasUnwindExceptions();
860   }
861 
862   return true;
863 }
864 
865 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
866                                                            llvm::Function *F) {
867   llvm::AttrBuilder B;
868 
869   if (CodeGenOpts.UnwindTables)
870     B.addAttribute(llvm::Attribute::UWTable);
871 
872   if (!hasUnwindExceptions(LangOpts))
873     B.addAttribute(llvm::Attribute::NoUnwind);
874 
875   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
876     B.addAttribute(llvm::Attribute::StackProtect);
877   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
878     B.addAttribute(llvm::Attribute::StackProtectStrong);
879   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
880     B.addAttribute(llvm::Attribute::StackProtectReq);
881 
882   if (!D) {
883     F->addAttributes(llvm::AttributeSet::FunctionIndex,
884                      llvm::AttributeSet::get(
885                          F->getContext(),
886                          llvm::AttributeSet::FunctionIndex, B));
887     return;
888   }
889 
890   if (D->hasAttr<NakedAttr>()) {
891     // Naked implies noinline: we should not be inlining such functions.
892     B.addAttribute(llvm::Attribute::Naked);
893     B.addAttribute(llvm::Attribute::NoInline);
894   } else if (D->hasAttr<NoDuplicateAttr>()) {
895     B.addAttribute(llvm::Attribute::NoDuplicate);
896   } else if (D->hasAttr<NoInlineAttr>()) {
897     B.addAttribute(llvm::Attribute::NoInline);
898   } else if (D->hasAttr<AlwaysInlineAttr>() &&
899              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
900                                               llvm::Attribute::NoInline)) {
901     // (noinline wins over always_inline, and we can't specify both in IR)
902     B.addAttribute(llvm::Attribute::AlwaysInline);
903   }
904 
905   if (D->hasAttr<ColdAttr>()) {
906     if (!D->hasAttr<OptimizeNoneAttr>())
907       B.addAttribute(llvm::Attribute::OptimizeForSize);
908     B.addAttribute(llvm::Attribute::Cold);
909   }
910 
911   if (D->hasAttr<MinSizeAttr>())
912     B.addAttribute(llvm::Attribute::MinSize);
913 
914   F->addAttributes(llvm::AttributeSet::FunctionIndex,
915                    llvm::AttributeSet::get(
916                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
917 
918   if (D->hasAttr<OptimizeNoneAttr>()) {
919     // OptimizeNone implies noinline; we should not be inlining such functions.
920     F->addFnAttr(llvm::Attribute::OptimizeNone);
921     F->addFnAttr(llvm::Attribute::NoInline);
922 
923     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
924     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
925     F->removeFnAttr(llvm::Attribute::MinSize);
926     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
927            "OptimizeNone and AlwaysInline on same function!");
928 
929     // Attribute 'inlinehint' has no effect on 'optnone' functions.
930     // Explicitly remove it from the set of function attributes.
931     F->removeFnAttr(llvm::Attribute::InlineHint);
932   }
933 
934   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
935   if (alignment)
936     F->setAlignment(alignment);
937 
938   // Some C++ ABIs require 2-byte alignment for member functions, in order to
939   // reserve a bit for differentiating between virtual and non-virtual member
940   // functions. If the current target's C++ ABI requires this and this is a
941   // member function, set its alignment accordingly.
942   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
943     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
944       F->setAlignment(2);
945   }
946 }
947 
948 void CodeGenModule::SetCommonAttributes(const Decl *D,
949                                         llvm::GlobalValue *GV) {
950   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
951     setGlobalVisibility(GV, ND);
952   else
953     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
954 
955   if (D && D->hasAttr<UsedAttr>())
956     addUsedGlobal(GV);
957 }
958 
959 void CodeGenModule::setAliasAttributes(const Decl *D,
960                                        llvm::GlobalValue *GV) {
961   SetCommonAttributes(D, GV);
962 
963   // Process the dllexport attribute based on whether the original definition
964   // (not necessarily the aliasee) was exported.
965   if (D->hasAttr<DLLExportAttr>())
966     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
967 }
968 
969 void CodeGenModule::setNonAliasAttributes(const Decl *D,
970                                           llvm::GlobalObject *GO) {
971   SetCommonAttributes(D, GO);
972 
973   if (D)
974     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
975       GO->setSection(SA->getName());
976 
977   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
978 }
979 
980 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
981                                                   llvm::Function *F,
982                                                   const CGFunctionInfo &FI) {
983   SetLLVMFunctionAttributes(D, FI, F);
984   SetLLVMFunctionAttributesForDefinition(D, F);
985 
986   F->setLinkage(llvm::Function::InternalLinkage);
987 
988   setNonAliasAttributes(D, F);
989 }
990 
991 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
992                                          const NamedDecl *ND) {
993   // Set linkage and visibility in case we never see a definition.
994   LinkageInfo LV = ND->getLinkageAndVisibility();
995   if (LV.getLinkage() != ExternalLinkage) {
996     // Don't set internal linkage on declarations.
997   } else {
998     if (ND->hasAttr<DLLImportAttr>()) {
999       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1000       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1001     } else if (ND->hasAttr<DLLExportAttr>()) {
1002       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1003       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1004     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1005       // "extern_weak" is overloaded in LLVM; we probably should have
1006       // separate linkage types for this.
1007       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1008     }
1009 
1010     // Set visibility on a declaration only if it's explicit.
1011     if (LV.isVisibilityExplicit())
1012       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1013   }
1014 }
1015 
1016 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
1017                                               llvm::Function *F) {
1018   // Only if we are checking indirect calls.
1019   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1020     return;
1021 
1022   // Non-static class methods are handled via vtable pointer checks elsewhere.
1023   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1024     return;
1025 
1026   // Additionally, if building with cross-DSO support...
1027   if (CodeGenOpts.SanitizeCfiCrossDso) {
1028     // Don't emit entries for function declarations. In cross-DSO mode these are
1029     // handled with better precision at run time.
1030     if (!FD->hasBody())
1031       return;
1032     // Skip available_externally functions. They won't be codegen'ed in the
1033     // current module anyway.
1034     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1035       return;
1036   }
1037 
1038   llvm::NamedMDNode *BitsetsMD =
1039       getModule().getOrInsertNamedMetadata("llvm.bitsets");
1040 
1041   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1042   llvm::Metadata *BitsetOps[] = {
1043       MD, llvm::ConstantAsMetadata::get(F),
1044       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1045   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1046 
1047   // Emit a hash-based bit set entry for cross-DSO calls.
1048   if (CodeGenOpts.SanitizeCfiCrossDso) {
1049     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1050       llvm::Metadata *BitsetOps2[] = {
1051           llvm::ConstantAsMetadata::get(TypeId),
1052           llvm::ConstantAsMetadata::get(F),
1053           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1054       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1055     }
1056   }
1057 }
1058 
1059 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1060                                           bool IsIncompleteFunction,
1061                                           bool IsThunk) {
1062   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1063     // If this is an intrinsic function, set the function's attributes
1064     // to the intrinsic's attributes.
1065     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1066     return;
1067   }
1068 
1069   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1070 
1071   if (!IsIncompleteFunction)
1072     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1073 
1074   // Add the Returned attribute for "this", except for iOS 5 and earlier
1075   // where substantial code, including the libstdc++ dylib, was compiled with
1076   // GCC and does not actually return "this".
1077   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1078       !(getTarget().getTriple().isiOS() &&
1079         getTarget().getTriple().isOSVersionLT(6))) {
1080     assert(!F->arg_empty() &&
1081            F->arg_begin()->getType()
1082              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1083            "unexpected this return");
1084     F->addAttribute(1, llvm::Attribute::Returned);
1085   }
1086 
1087   // Only a few attributes are set on declarations; these may later be
1088   // overridden by a definition.
1089 
1090   setLinkageAndVisibilityForGV(F, FD);
1091 
1092   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1093     F->setSection(SA->getName());
1094 
1095   if (FD->isReplaceableGlobalAllocationFunction()) {
1096     // A replaceable global allocation function does not act like a builtin by
1097     // default, only if it is invoked by a new-expression or delete-expression.
1098     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1099                     llvm::Attribute::NoBuiltin);
1100 
1101     // A sane operator new returns a non-aliasing pointer.
1102     // FIXME: Also add NonNull attribute to the return value
1103     // for the non-nothrow forms?
1104     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1105     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1106         (Kind == OO_New || Kind == OO_Array_New))
1107       F->addAttribute(llvm::AttributeSet::ReturnIndex,
1108                       llvm::Attribute::NoAlias);
1109   }
1110 
1111   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1112     F->setUnnamedAddr(true);
1113   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1114     if (MD->isVirtual())
1115       F->setUnnamedAddr(true);
1116 
1117   CreateFunctionBitSetEntry(FD, F);
1118 }
1119 
1120 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1121   assert(!GV->isDeclaration() &&
1122          "Only globals with definition can force usage.");
1123   LLVMUsed.emplace_back(GV);
1124 }
1125 
1126 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1127   assert(!GV->isDeclaration() &&
1128          "Only globals with definition can force usage.");
1129   LLVMCompilerUsed.emplace_back(GV);
1130 }
1131 
1132 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1133                      std::vector<llvm::WeakVH> &List) {
1134   // Don't create llvm.used if there is no need.
1135   if (List.empty())
1136     return;
1137 
1138   // Convert List to what ConstantArray needs.
1139   SmallVector<llvm::Constant*, 8> UsedArray;
1140   UsedArray.resize(List.size());
1141   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1142     UsedArray[i] =
1143         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1144             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1145   }
1146 
1147   if (UsedArray.empty())
1148     return;
1149   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1150 
1151   auto *GV = new llvm::GlobalVariable(
1152       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1153       llvm::ConstantArray::get(ATy, UsedArray), Name);
1154 
1155   GV->setSection("llvm.metadata");
1156 }
1157 
1158 void CodeGenModule::emitLLVMUsed() {
1159   emitUsed(*this, "llvm.used", LLVMUsed);
1160   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1161 }
1162 
1163 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1164   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1165   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1166 }
1167 
1168 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1169   llvm::SmallString<32> Opt;
1170   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1171   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1172   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1173 }
1174 
1175 void CodeGenModule::AddDependentLib(StringRef Lib) {
1176   llvm::SmallString<24> Opt;
1177   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1178   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1179   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1180 }
1181 
1182 /// \brief Add link options implied by the given module, including modules
1183 /// it depends on, using a postorder walk.
1184 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1185                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1186                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1187   // Import this module's parent.
1188   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1189     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1190   }
1191 
1192   // Import this module's dependencies.
1193   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1194     if (Visited.insert(Mod->Imports[I - 1]).second)
1195       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1196   }
1197 
1198   // Add linker options to link against the libraries/frameworks
1199   // described by this module.
1200   llvm::LLVMContext &Context = CGM.getLLVMContext();
1201   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1202     // Link against a framework.  Frameworks are currently Darwin only, so we
1203     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1204     if (Mod->LinkLibraries[I-1].IsFramework) {
1205       llvm::Metadata *Args[2] = {
1206           llvm::MDString::get(Context, "-framework"),
1207           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1208 
1209       Metadata.push_back(llvm::MDNode::get(Context, Args));
1210       continue;
1211     }
1212 
1213     // Link against a library.
1214     llvm::SmallString<24> Opt;
1215     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1216       Mod->LinkLibraries[I-1].Library, Opt);
1217     auto *OptString = llvm::MDString::get(Context, Opt);
1218     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1219   }
1220 }
1221 
1222 void CodeGenModule::EmitModuleLinkOptions() {
1223   // Collect the set of all of the modules we want to visit to emit link
1224   // options, which is essentially the imported modules and all of their
1225   // non-explicit child modules.
1226   llvm::SetVector<clang::Module *> LinkModules;
1227   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1228   SmallVector<clang::Module *, 16> Stack;
1229 
1230   // Seed the stack with imported modules.
1231   for (Module *M : ImportedModules)
1232     if (Visited.insert(M).second)
1233       Stack.push_back(M);
1234 
1235   // Find all of the modules to import, making a little effort to prune
1236   // non-leaf modules.
1237   while (!Stack.empty()) {
1238     clang::Module *Mod = Stack.pop_back_val();
1239 
1240     bool AnyChildren = false;
1241 
1242     // Visit the submodules of this module.
1243     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1244                                         SubEnd = Mod->submodule_end();
1245          Sub != SubEnd; ++Sub) {
1246       // Skip explicit children; they need to be explicitly imported to be
1247       // linked against.
1248       if ((*Sub)->IsExplicit)
1249         continue;
1250 
1251       if (Visited.insert(*Sub).second) {
1252         Stack.push_back(*Sub);
1253         AnyChildren = true;
1254       }
1255     }
1256 
1257     // We didn't find any children, so add this module to the list of
1258     // modules to link against.
1259     if (!AnyChildren) {
1260       LinkModules.insert(Mod);
1261     }
1262   }
1263 
1264   // Add link options for all of the imported modules in reverse topological
1265   // order.  We don't do anything to try to order import link flags with respect
1266   // to linker options inserted by things like #pragma comment().
1267   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1268   Visited.clear();
1269   for (Module *M : LinkModules)
1270     if (Visited.insert(M).second)
1271       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1272   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1273   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1274 
1275   // Add the linker options metadata flag.
1276   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1277                             llvm::MDNode::get(getLLVMContext(),
1278                                               LinkerOptionsMetadata));
1279 }
1280 
1281 void CodeGenModule::EmitDeferred() {
1282   // Emit code for any potentially referenced deferred decls.  Since a
1283   // previously unused static decl may become used during the generation of code
1284   // for a static function, iterate until no changes are made.
1285 
1286   if (!DeferredVTables.empty()) {
1287     EmitDeferredVTables();
1288 
1289     // Emitting a vtable doesn't directly cause more vtables to
1290     // become deferred, although it can cause functions to be
1291     // emitted that then need those vtables.
1292     assert(DeferredVTables.empty());
1293   }
1294 
1295   // Stop if we're out of both deferred vtables and deferred declarations.
1296   if (DeferredDeclsToEmit.empty())
1297     return;
1298 
1299   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1300   // work, it will not interfere with this.
1301   std::vector<DeferredGlobal> CurDeclsToEmit;
1302   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1303 
1304   for (DeferredGlobal &G : CurDeclsToEmit) {
1305     GlobalDecl D = G.GD;
1306     G.GV = nullptr;
1307 
1308     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1309     // to get GlobalValue with exactly the type we need, not something that
1310     // might had been created for another decl with the same mangled name but
1311     // different type.
1312     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1313         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1314 
1315     // In case of different address spaces, we may still get a cast, even with
1316     // IsForDefinition equal to true. Query mangled names table to get
1317     // GlobalValue.
1318     if (!GV)
1319       GV = GetGlobalValue(getMangledName(D));
1320 
1321     // Make sure GetGlobalValue returned non-null.
1322     assert(GV);
1323 
1324     // Check to see if we've already emitted this.  This is necessary
1325     // for a couple of reasons: first, decls can end up in the
1326     // deferred-decls queue multiple times, and second, decls can end
1327     // up with definitions in unusual ways (e.g. by an extern inline
1328     // function acquiring a strong function redefinition).  Just
1329     // ignore these cases.
1330     if (!GV->isDeclaration())
1331       continue;
1332 
1333     // Otherwise, emit the definition and move on to the next one.
1334     EmitGlobalDefinition(D, GV);
1335 
1336     // If we found out that we need to emit more decls, do that recursively.
1337     // This has the advantage that the decls are emitted in a DFS and related
1338     // ones are close together, which is convenient for testing.
1339     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1340       EmitDeferred();
1341       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1342     }
1343   }
1344 }
1345 
1346 void CodeGenModule::EmitGlobalAnnotations() {
1347   if (Annotations.empty())
1348     return;
1349 
1350   // Create a new global variable for the ConstantStruct in the Module.
1351   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1352     Annotations[0]->getType(), Annotations.size()), Annotations);
1353   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1354                                       llvm::GlobalValue::AppendingLinkage,
1355                                       Array, "llvm.global.annotations");
1356   gv->setSection(AnnotationSection);
1357 }
1358 
1359 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1360   llvm::Constant *&AStr = AnnotationStrings[Str];
1361   if (AStr)
1362     return AStr;
1363 
1364   // Not found yet, create a new global.
1365   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1366   auto *gv =
1367       new llvm::GlobalVariable(getModule(), s->getType(), true,
1368                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1369   gv->setSection(AnnotationSection);
1370   gv->setUnnamedAddr(true);
1371   AStr = gv;
1372   return gv;
1373 }
1374 
1375 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1376   SourceManager &SM = getContext().getSourceManager();
1377   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1378   if (PLoc.isValid())
1379     return EmitAnnotationString(PLoc.getFilename());
1380   return EmitAnnotationString(SM.getBufferName(Loc));
1381 }
1382 
1383 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1384   SourceManager &SM = getContext().getSourceManager();
1385   PresumedLoc PLoc = SM.getPresumedLoc(L);
1386   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1387     SM.getExpansionLineNumber(L);
1388   return llvm::ConstantInt::get(Int32Ty, LineNo);
1389 }
1390 
1391 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1392                                                 const AnnotateAttr *AA,
1393                                                 SourceLocation L) {
1394   // Get the globals for file name, annotation, and the line number.
1395   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1396                  *UnitGV = EmitAnnotationUnit(L),
1397                  *LineNoCst = EmitAnnotationLineNo(L);
1398 
1399   // Create the ConstantStruct for the global annotation.
1400   llvm::Constant *Fields[4] = {
1401     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1402     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1403     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1404     LineNoCst
1405   };
1406   return llvm::ConstantStruct::getAnon(Fields);
1407 }
1408 
1409 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1410                                          llvm::GlobalValue *GV) {
1411   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1412   // Get the struct elements for these annotations.
1413   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1414     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1415 }
1416 
1417 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1418                                            SourceLocation Loc) const {
1419   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1420   // Blacklist by function name.
1421   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1422     return true;
1423   // Blacklist by location.
1424   if (Loc.isValid())
1425     return SanitizerBL.isBlacklistedLocation(Loc);
1426   // If location is unknown, this may be a compiler-generated function. Assume
1427   // it's located in the main file.
1428   auto &SM = Context.getSourceManager();
1429   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1430     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1431   }
1432   return false;
1433 }
1434 
1435 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1436                                            SourceLocation Loc, QualType Ty,
1437                                            StringRef Category) const {
1438   // For now globals can be blacklisted only in ASan and KASan.
1439   if (!LangOpts.Sanitize.hasOneOf(
1440           SanitizerKind::Address | SanitizerKind::KernelAddress))
1441     return false;
1442   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1443   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1444     return true;
1445   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1446     return true;
1447   // Check global type.
1448   if (!Ty.isNull()) {
1449     // Drill down the array types: if global variable of a fixed type is
1450     // blacklisted, we also don't instrument arrays of them.
1451     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1452       Ty = AT->getElementType();
1453     Ty = Ty.getCanonicalType().getUnqualifiedType();
1454     // We allow to blacklist only record types (classes, structs etc.)
1455     if (Ty->isRecordType()) {
1456       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1457       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1458         return true;
1459     }
1460   }
1461   return false;
1462 }
1463 
1464 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1465   // Never defer when EmitAllDecls is specified.
1466   if (LangOpts.EmitAllDecls)
1467     return true;
1468 
1469   return getContext().DeclMustBeEmitted(Global);
1470 }
1471 
1472 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1473   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1474     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1475       // Implicit template instantiations may change linkage if they are later
1476       // explicitly instantiated, so they should not be emitted eagerly.
1477       return false;
1478   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1479   // codegen for global variables, because they may be marked as threadprivate.
1480   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1481       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1482     return false;
1483 
1484   return true;
1485 }
1486 
1487 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1488     const CXXUuidofExpr* E) {
1489   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1490   // well-formed.
1491   StringRef Uuid = E->getUuidStr();
1492   std::string Name = "_GUID_" + Uuid.lower();
1493   std::replace(Name.begin(), Name.end(), '-', '_');
1494 
1495   // The UUID descriptor should be pointer aligned.
1496   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1497 
1498   // Look for an existing global.
1499   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1500     return ConstantAddress(GV, Alignment);
1501 
1502   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1503   assert(Init && "failed to initialize as constant");
1504 
1505   auto *GV = new llvm::GlobalVariable(
1506       getModule(), Init->getType(),
1507       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1508   if (supportsCOMDAT())
1509     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1510   return ConstantAddress(GV, Alignment);
1511 }
1512 
1513 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1514   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1515   assert(AA && "No alias?");
1516 
1517   CharUnits Alignment = getContext().getDeclAlign(VD);
1518   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1519 
1520   // See if there is already something with the target's name in the module.
1521   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1522   if (Entry) {
1523     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1524     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1525     return ConstantAddress(Ptr, Alignment);
1526   }
1527 
1528   llvm::Constant *Aliasee;
1529   if (isa<llvm::FunctionType>(DeclTy))
1530     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1531                                       GlobalDecl(cast<FunctionDecl>(VD)),
1532                                       /*ForVTable=*/false);
1533   else
1534     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1535                                     llvm::PointerType::getUnqual(DeclTy),
1536                                     nullptr);
1537 
1538   auto *F = cast<llvm::GlobalValue>(Aliasee);
1539   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1540   WeakRefReferences.insert(F);
1541 
1542   return ConstantAddress(Aliasee, Alignment);
1543 }
1544 
1545 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1546   const auto *Global = cast<ValueDecl>(GD.getDecl());
1547 
1548   // Weak references don't produce any output by themselves.
1549   if (Global->hasAttr<WeakRefAttr>())
1550     return;
1551 
1552   // If this is an alias definition (which otherwise looks like a declaration)
1553   // emit it now.
1554   if (Global->hasAttr<AliasAttr>())
1555     return EmitAliasDefinition(GD);
1556 
1557   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1558   if (Global->hasAttr<IFuncAttr>())
1559     return emitIFuncDefinition(GD);
1560 
1561   // If this is CUDA, be selective about which declarations we emit.
1562   if (LangOpts.CUDA) {
1563     if (LangOpts.CUDAIsDevice) {
1564       if (!Global->hasAttr<CUDADeviceAttr>() &&
1565           !Global->hasAttr<CUDAGlobalAttr>() &&
1566           !Global->hasAttr<CUDAConstantAttr>() &&
1567           !Global->hasAttr<CUDASharedAttr>())
1568         return;
1569     } else {
1570       // We need to emit host-side 'shadows' for all global
1571       // device-side variables because the CUDA runtime needs their
1572       // size and host-side address in order to provide access to
1573       // their device-side incarnations.
1574 
1575       // So device-only functions are the only things we skip.
1576       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1577           Global->hasAttr<CUDADeviceAttr>())
1578         return;
1579 
1580       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1581              "Expected Variable or Function");
1582     }
1583   }
1584 
1585   if (LangOpts.OpenMP) {
1586     // If this is OpenMP device, check if it is legal to emit this global
1587     // normally.
1588     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1589       return;
1590     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1591       if (MustBeEmitted(Global))
1592         EmitOMPDeclareReduction(DRD);
1593       return;
1594     }
1595   }
1596 
1597   // Ignore declarations, they will be emitted on their first use.
1598   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1599     // Forward declarations are emitted lazily on first use.
1600     if (!FD->doesThisDeclarationHaveABody()) {
1601       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1602         return;
1603 
1604       StringRef MangledName = getMangledName(GD);
1605 
1606       // Compute the function info and LLVM type.
1607       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1608       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1609 
1610       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1611                               /*DontDefer=*/false);
1612       return;
1613     }
1614   } else {
1615     const auto *VD = cast<VarDecl>(Global);
1616     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1617     // We need to emit device-side global CUDA variables even if a
1618     // variable does not have a definition -- we still need to define
1619     // host-side shadow for it.
1620     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1621                            !VD->hasDefinition() &&
1622                            (VD->hasAttr<CUDAConstantAttr>() ||
1623                             VD->hasAttr<CUDADeviceAttr>());
1624     if (!MustEmitForCuda &&
1625         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1626         !Context.isMSStaticDataMemberInlineDefinition(VD))
1627       return;
1628   }
1629 
1630   // Defer code generation to first use when possible, e.g. if this is an inline
1631   // function. If the global must always be emitted, do it eagerly if possible
1632   // to benefit from cache locality.
1633   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1634     // Emit the definition if it can't be deferred.
1635     EmitGlobalDefinition(GD);
1636     return;
1637   }
1638 
1639   // If we're deferring emission of a C++ variable with an
1640   // initializer, remember the order in which it appeared in the file.
1641   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1642       cast<VarDecl>(Global)->hasInit()) {
1643     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1644     CXXGlobalInits.push_back(nullptr);
1645   }
1646 
1647   StringRef MangledName = getMangledName(GD);
1648   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1649     // The value has already been used and should therefore be emitted.
1650     addDeferredDeclToEmit(GV, GD);
1651   } else if (MustBeEmitted(Global)) {
1652     // The value must be emitted, but cannot be emitted eagerly.
1653     assert(!MayBeEmittedEagerly(Global));
1654     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1655   } else {
1656     // Otherwise, remember that we saw a deferred decl with this name.  The
1657     // first use of the mangled name will cause it to move into
1658     // DeferredDeclsToEmit.
1659     DeferredDecls[MangledName] = GD;
1660   }
1661 }
1662 
1663 namespace {
1664   struct FunctionIsDirectlyRecursive :
1665     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1666     const StringRef Name;
1667     const Builtin::Context &BI;
1668     bool Result;
1669     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1670       Name(N), BI(C), Result(false) {
1671     }
1672     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1673 
1674     bool TraverseCallExpr(CallExpr *E) {
1675       const FunctionDecl *FD = E->getDirectCallee();
1676       if (!FD)
1677         return true;
1678       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1679       if (Attr && Name == Attr->getLabel()) {
1680         Result = true;
1681         return false;
1682       }
1683       unsigned BuiltinID = FD->getBuiltinID();
1684       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1685         return true;
1686       StringRef BuiltinName = BI.getName(BuiltinID);
1687       if (BuiltinName.startswith("__builtin_") &&
1688           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1689         Result = true;
1690         return false;
1691       }
1692       return true;
1693     }
1694   };
1695 
1696   struct DLLImportFunctionVisitor
1697       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1698     bool SafeToInline = true;
1699 
1700     bool VisitVarDecl(VarDecl *VD) {
1701       // A thread-local variable cannot be imported.
1702       SafeToInline = !VD->getTLSKind();
1703       return SafeToInline;
1704     }
1705 
1706     // Make sure we're not referencing non-imported vars or functions.
1707     bool VisitDeclRefExpr(DeclRefExpr *E) {
1708       ValueDecl *VD = E->getDecl();
1709       if (isa<FunctionDecl>(VD))
1710         SafeToInline = VD->hasAttr<DLLImportAttr>();
1711       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1712         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1713       return SafeToInline;
1714     }
1715     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1716       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1717       return SafeToInline;
1718     }
1719     bool VisitCXXNewExpr(CXXNewExpr *E) {
1720       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1721       return SafeToInline;
1722     }
1723   };
1724 }
1725 
1726 // isTriviallyRecursive - Check if this function calls another
1727 // decl that, because of the asm attribute or the other decl being a builtin,
1728 // ends up pointing to itself.
1729 bool
1730 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1731   StringRef Name;
1732   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1733     // asm labels are a special kind of mangling we have to support.
1734     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1735     if (!Attr)
1736       return false;
1737     Name = Attr->getLabel();
1738   } else {
1739     Name = FD->getName();
1740   }
1741 
1742   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1743   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1744   return Walker.Result;
1745 }
1746 
1747 bool
1748 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1749   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1750     return true;
1751   const auto *F = cast<FunctionDecl>(GD.getDecl());
1752   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1753     return false;
1754 
1755   if (F->hasAttr<DLLImportAttr>()) {
1756     // Check whether it would be safe to inline this dllimport function.
1757     DLLImportFunctionVisitor Visitor;
1758     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1759     if (!Visitor.SafeToInline)
1760       return false;
1761   }
1762 
1763   // PR9614. Avoid cases where the source code is lying to us. An available
1764   // externally function should have an equivalent function somewhere else,
1765   // but a function that calls itself is clearly not equivalent to the real
1766   // implementation.
1767   // This happens in glibc's btowc and in some configure checks.
1768   return !isTriviallyRecursive(F);
1769 }
1770 
1771 /// If the type for the method's class was generated by
1772 /// CGDebugInfo::createContextChain(), the cache contains only a
1773 /// limited DIType without any declarations. Since EmitFunctionStart()
1774 /// needs to find the canonical declaration for each method, we need
1775 /// to construct the complete type prior to emitting the method.
1776 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1777   if (!D->isInstance())
1778     return;
1779 
1780   if (CGDebugInfo *DI = getModuleDebugInfo())
1781     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
1782       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1783       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1784     }
1785 }
1786 
1787 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1788   const auto *D = cast<ValueDecl>(GD.getDecl());
1789 
1790   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1791                                  Context.getSourceManager(),
1792                                  "Generating code for declaration");
1793 
1794   if (isa<FunctionDecl>(D)) {
1795     // At -O0, don't generate IR for functions with available_externally
1796     // linkage.
1797     if (!shouldEmitFunction(GD))
1798       return;
1799 
1800     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1801       CompleteDIClassType(Method);
1802       // Make sure to emit the definition(s) before we emit the thunks.
1803       // This is necessary for the generation of certain thunks.
1804       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1805         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1806       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1807         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1808       else
1809         EmitGlobalFunctionDefinition(GD, GV);
1810 
1811       if (Method->isVirtual())
1812         getVTables().EmitThunks(GD);
1813 
1814       return;
1815     }
1816 
1817     return EmitGlobalFunctionDefinition(GD, GV);
1818   }
1819 
1820   if (const auto *VD = dyn_cast<VarDecl>(D))
1821     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1822 
1823   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1824 }
1825 
1826 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1827                                                       llvm::Function *NewFn);
1828 
1829 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1830 /// module, create and return an llvm Function with the specified type. If there
1831 /// is something in the module with the specified name, return it potentially
1832 /// bitcasted to the right type.
1833 ///
1834 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1835 /// to set the attributes on the function when it is first created.
1836 llvm::Constant *
1837 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1838                                        llvm::Type *Ty,
1839                                        GlobalDecl GD, bool ForVTable,
1840                                        bool DontDefer, bool IsThunk,
1841                                        llvm::AttributeSet ExtraAttrs,
1842                                        bool IsForDefinition) {
1843   const Decl *D = GD.getDecl();
1844 
1845   // Lookup the entry, lazily creating it if necessary.
1846   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1847   if (Entry) {
1848     if (WeakRefReferences.erase(Entry)) {
1849       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1850       if (FD && !FD->hasAttr<WeakAttr>())
1851         Entry->setLinkage(llvm::Function::ExternalLinkage);
1852     }
1853 
1854     // Handle dropped DLL attributes.
1855     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1856       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1857 
1858     // If there are two attempts to define the same mangled name, issue an
1859     // error.
1860     if (IsForDefinition && !Entry->isDeclaration()) {
1861       GlobalDecl OtherGD;
1862       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1863       // to make sure that we issue an error only once.
1864       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1865           (GD.getCanonicalDecl().getDecl() !=
1866            OtherGD.getCanonicalDecl().getDecl()) &&
1867           DiagnosedConflictingDefinitions.insert(GD).second) {
1868         getDiags().Report(D->getLocation(),
1869                           diag::err_duplicate_mangled_name);
1870         getDiags().Report(OtherGD.getDecl()->getLocation(),
1871                           diag::note_previous_definition);
1872       }
1873     }
1874 
1875     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1876         (Entry->getType()->getElementType() == Ty)) {
1877       return Entry;
1878     }
1879 
1880     // Make sure the result is of the correct type.
1881     // (If function is requested for a definition, we always need to create a new
1882     // function, not just return a bitcast.)
1883     if (!IsForDefinition)
1884       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1885   }
1886 
1887   // This function doesn't have a complete type (for example, the return
1888   // type is an incomplete struct). Use a fake type instead, and make
1889   // sure not to try to set attributes.
1890   bool IsIncompleteFunction = false;
1891 
1892   llvm::FunctionType *FTy;
1893   if (isa<llvm::FunctionType>(Ty)) {
1894     FTy = cast<llvm::FunctionType>(Ty);
1895   } else {
1896     FTy = llvm::FunctionType::get(VoidTy, false);
1897     IsIncompleteFunction = true;
1898   }
1899 
1900   llvm::Function *F =
1901       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1902                              Entry ? StringRef() : MangledName, &getModule());
1903 
1904   // If we already created a function with the same mangled name (but different
1905   // type) before, take its name and add it to the list of functions to be
1906   // replaced with F at the end of CodeGen.
1907   //
1908   // This happens if there is a prototype for a function (e.g. "int f()") and
1909   // then a definition of a different type (e.g. "int f(int x)").
1910   if (Entry) {
1911     F->takeName(Entry);
1912 
1913     // This might be an implementation of a function without a prototype, in
1914     // which case, try to do special replacement of calls which match the new
1915     // prototype.  The really key thing here is that we also potentially drop
1916     // arguments from the call site so as to make a direct call, which makes the
1917     // inliner happier and suppresses a number of optimizer warnings (!) about
1918     // dropping arguments.
1919     if (!Entry->use_empty()) {
1920       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1921       Entry->removeDeadConstantUsers();
1922     }
1923 
1924     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1925         F, Entry->getType()->getElementType()->getPointerTo());
1926     addGlobalValReplacement(Entry, BC);
1927   }
1928 
1929   assert(F->getName() == MangledName && "name was uniqued!");
1930   if (D)
1931     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1932   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1933     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1934     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1935                      llvm::AttributeSet::get(VMContext,
1936                                              llvm::AttributeSet::FunctionIndex,
1937                                              B));
1938   }
1939 
1940   if (!DontDefer) {
1941     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1942     // each other bottoming out with the base dtor.  Therefore we emit non-base
1943     // dtors on usage, even if there is no dtor definition in the TU.
1944     if (D && isa<CXXDestructorDecl>(D) &&
1945         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1946                                            GD.getDtorType()))
1947       addDeferredDeclToEmit(F, GD);
1948 
1949     // This is the first use or definition of a mangled name.  If there is a
1950     // deferred decl with this name, remember that we need to emit it at the end
1951     // of the file.
1952     auto DDI = DeferredDecls.find(MangledName);
1953     if (DDI != DeferredDecls.end()) {
1954       // Move the potentially referenced deferred decl to the
1955       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1956       // don't need it anymore).
1957       addDeferredDeclToEmit(F, DDI->second);
1958       DeferredDecls.erase(DDI);
1959 
1960       // Otherwise, there are cases we have to worry about where we're
1961       // using a declaration for which we must emit a definition but where
1962       // we might not find a top-level definition:
1963       //   - member functions defined inline in their classes
1964       //   - friend functions defined inline in some class
1965       //   - special member functions with implicit definitions
1966       // If we ever change our AST traversal to walk into class methods,
1967       // this will be unnecessary.
1968       //
1969       // We also don't emit a definition for a function if it's going to be an
1970       // entry in a vtable, unless it's already marked as used.
1971     } else if (getLangOpts().CPlusPlus && D) {
1972       // Look for a declaration that's lexically in a record.
1973       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1974            FD = FD->getPreviousDecl()) {
1975         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1976           if (FD->doesThisDeclarationHaveABody()) {
1977             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1978             break;
1979           }
1980         }
1981       }
1982     }
1983   }
1984 
1985   // Make sure the result is of the requested type.
1986   if (!IsIncompleteFunction) {
1987     assert(F->getType()->getElementType() == Ty);
1988     return F;
1989   }
1990 
1991   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1992   return llvm::ConstantExpr::getBitCast(F, PTy);
1993 }
1994 
1995 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1996 /// non-null, then this function will use the specified type if it has to
1997 /// create it (this occurs when we see a definition of the function).
1998 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1999                                                  llvm::Type *Ty,
2000                                                  bool ForVTable,
2001                                                  bool DontDefer,
2002                                                  bool IsForDefinition) {
2003   // If there was no specific requested type, just convert it now.
2004   if (!Ty) {
2005     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2006     auto CanonTy = Context.getCanonicalType(FD->getType());
2007     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2008   }
2009 
2010   StringRef MangledName = getMangledName(GD);
2011   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2012                                  /*IsThunk=*/false, llvm::AttributeSet(),
2013                                  IsForDefinition);
2014 }
2015 
2016 /// CreateRuntimeFunction - Create a new runtime function with the specified
2017 /// type and name.
2018 llvm::Constant *
2019 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
2020                                      StringRef Name,
2021                                      llvm::AttributeSet ExtraAttrs) {
2022   llvm::Constant *C =
2023       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2024                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2025   if (auto *F = dyn_cast<llvm::Function>(C))
2026     if (F->empty())
2027       F->setCallingConv(getRuntimeCC());
2028   return C;
2029 }
2030 
2031 /// CreateBuiltinFunction - Create a new builtin function with the specified
2032 /// type and name.
2033 llvm::Constant *
2034 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
2035                                      StringRef Name,
2036                                      llvm::AttributeSet ExtraAttrs) {
2037   llvm::Constant *C =
2038       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2039                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2040   if (auto *F = dyn_cast<llvm::Function>(C))
2041     if (F->empty())
2042       F->setCallingConv(getBuiltinCC());
2043   return C;
2044 }
2045 
2046 /// isTypeConstant - Determine whether an object of this type can be emitted
2047 /// as a constant.
2048 ///
2049 /// If ExcludeCtor is true, the duration when the object's constructor runs
2050 /// will not be considered. The caller will need to verify that the object is
2051 /// not written to during its construction.
2052 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2053   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2054     return false;
2055 
2056   if (Context.getLangOpts().CPlusPlus) {
2057     if (const CXXRecordDecl *Record
2058           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2059       return ExcludeCtor && !Record->hasMutableFields() &&
2060              Record->hasTrivialDestructor();
2061   }
2062 
2063   return true;
2064 }
2065 
2066 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2067 /// create and return an llvm GlobalVariable with the specified type.  If there
2068 /// is something in the module with the specified name, return it potentially
2069 /// bitcasted to the right type.
2070 ///
2071 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2072 /// to set the attributes on the global when it is first created.
2073 ///
2074 /// If IsForDefinition is true, it is guranteed that an actual global with
2075 /// type Ty will be returned, not conversion of a variable with the same
2076 /// mangled name but some other type.
2077 llvm::Constant *
2078 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2079                                      llvm::PointerType *Ty,
2080                                      const VarDecl *D,
2081                                      bool IsForDefinition) {
2082   // Lookup the entry, lazily creating it if necessary.
2083   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2084   if (Entry) {
2085     if (WeakRefReferences.erase(Entry)) {
2086       if (D && !D->hasAttr<WeakAttr>())
2087         Entry->setLinkage(llvm::Function::ExternalLinkage);
2088     }
2089 
2090     // Handle dropped DLL attributes.
2091     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2092       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2093 
2094     if (Entry->getType() == Ty)
2095       return Entry;
2096 
2097     // If there are two attempts to define the same mangled name, issue an
2098     // error.
2099     if (IsForDefinition && !Entry->isDeclaration()) {
2100       GlobalDecl OtherGD;
2101       const VarDecl *OtherD;
2102 
2103       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2104       // to make sure that we issue an error only once.
2105       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2106           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2107           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2108           OtherD->hasInit() &&
2109           DiagnosedConflictingDefinitions.insert(D).second) {
2110         getDiags().Report(D->getLocation(),
2111                           diag::err_duplicate_mangled_name);
2112         getDiags().Report(OtherGD.getDecl()->getLocation(),
2113                           diag::note_previous_definition);
2114       }
2115     }
2116 
2117     // Make sure the result is of the correct type.
2118     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2119       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2120 
2121     // (If global is requested for a definition, we always need to create a new
2122     // global, not just return a bitcast.)
2123     if (!IsForDefinition)
2124       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2125   }
2126 
2127   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2128   auto *GV = new llvm::GlobalVariable(
2129       getModule(), Ty->getElementType(), false,
2130       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2131       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2132 
2133   // If we already created a global with the same mangled name (but different
2134   // type) before, take its name and remove it from its parent.
2135   if (Entry) {
2136     GV->takeName(Entry);
2137 
2138     if (!Entry->use_empty()) {
2139       llvm::Constant *NewPtrForOldDecl =
2140           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2141       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2142     }
2143 
2144     Entry->eraseFromParent();
2145   }
2146 
2147   // This is the first use or definition of a mangled name.  If there is a
2148   // deferred decl with this name, remember that we need to emit it at the end
2149   // of the file.
2150   auto DDI = DeferredDecls.find(MangledName);
2151   if (DDI != DeferredDecls.end()) {
2152     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2153     // list, and remove it from DeferredDecls (since we don't need it anymore).
2154     addDeferredDeclToEmit(GV, DDI->second);
2155     DeferredDecls.erase(DDI);
2156   }
2157 
2158   // Handle things which are present even on external declarations.
2159   if (D) {
2160     // FIXME: This code is overly simple and should be merged with other global
2161     // handling.
2162     GV->setConstant(isTypeConstant(D->getType(), false));
2163 
2164     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2165 
2166     setLinkageAndVisibilityForGV(GV, D);
2167 
2168     if (D->getTLSKind()) {
2169       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2170         CXXThreadLocals.push_back(D);
2171       setTLSMode(GV, *D);
2172     }
2173 
2174     // If required by the ABI, treat declarations of static data members with
2175     // inline initializers as definitions.
2176     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2177       EmitGlobalVarDefinition(D);
2178     }
2179 
2180     // Handle XCore specific ABI requirements.
2181     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2182         D->getLanguageLinkage() == CLanguageLinkage &&
2183         D->getType().isConstant(Context) &&
2184         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2185       GV->setSection(".cp.rodata");
2186   }
2187 
2188   if (AddrSpace != Ty->getAddressSpace())
2189     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2190 
2191   return GV;
2192 }
2193 
2194 llvm::Constant *
2195 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2196                                bool IsForDefinition) {
2197   if (isa<CXXConstructorDecl>(GD.getDecl()))
2198     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2199                                 getFromCtorType(GD.getCtorType()),
2200                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2201                                 /*DontDefer=*/false, IsForDefinition);
2202   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2203     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2204                                 getFromDtorType(GD.getDtorType()),
2205                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2206                                 /*DontDefer=*/false, IsForDefinition);
2207   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2208     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2209         cast<CXXMethodDecl>(GD.getDecl()));
2210     auto Ty = getTypes().GetFunctionType(*FInfo);
2211     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2212                              IsForDefinition);
2213   } else if (isa<FunctionDecl>(GD.getDecl())) {
2214     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2215     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2216     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2217                              IsForDefinition);
2218   } else
2219     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2220                               IsForDefinition);
2221 }
2222 
2223 llvm::GlobalVariable *
2224 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2225                                       llvm::Type *Ty,
2226                                       llvm::GlobalValue::LinkageTypes Linkage) {
2227   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2228   llvm::GlobalVariable *OldGV = nullptr;
2229 
2230   if (GV) {
2231     // Check if the variable has the right type.
2232     if (GV->getType()->getElementType() == Ty)
2233       return GV;
2234 
2235     // Because C++ name mangling, the only way we can end up with an already
2236     // existing global with the same name is if it has been declared extern "C".
2237     assert(GV->isDeclaration() && "Declaration has wrong type!");
2238     OldGV = GV;
2239   }
2240 
2241   // Create a new variable.
2242   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2243                                 Linkage, nullptr, Name);
2244 
2245   if (OldGV) {
2246     // Replace occurrences of the old variable if needed.
2247     GV->takeName(OldGV);
2248 
2249     if (!OldGV->use_empty()) {
2250       llvm::Constant *NewPtrForOldDecl =
2251       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2252       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2253     }
2254 
2255     OldGV->eraseFromParent();
2256   }
2257 
2258   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2259       !GV->hasAvailableExternallyLinkage())
2260     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2261 
2262   return GV;
2263 }
2264 
2265 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2266 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2267 /// then it will be created with the specified type instead of whatever the
2268 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2269 /// that an actual global with type Ty will be returned, not conversion of a
2270 /// variable with the same mangled name but some other type.
2271 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2272                                                   llvm::Type *Ty,
2273                                                   bool IsForDefinition) {
2274   assert(D->hasGlobalStorage() && "Not a global variable");
2275   QualType ASTTy = D->getType();
2276   if (!Ty)
2277     Ty = getTypes().ConvertTypeForMem(ASTTy);
2278 
2279   llvm::PointerType *PTy =
2280     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2281 
2282   StringRef MangledName = getMangledName(D);
2283   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2284 }
2285 
2286 /// CreateRuntimeVariable - Create a new runtime global variable with the
2287 /// specified type and name.
2288 llvm::Constant *
2289 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2290                                      StringRef Name) {
2291   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2292 }
2293 
2294 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2295   assert(!D->getInit() && "Cannot emit definite definitions here!");
2296 
2297   StringRef MangledName = getMangledName(D);
2298   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2299 
2300   // We already have a definition, not declaration, with the same mangled name.
2301   // Emitting of declaration is not required (and actually overwrites emitted
2302   // definition).
2303   if (GV && !GV->isDeclaration())
2304     return;
2305 
2306   // If we have not seen a reference to this variable yet, place it into the
2307   // deferred declarations table to be emitted if needed later.
2308   if (!MustBeEmitted(D) && !GV) {
2309       DeferredDecls[MangledName] = D;
2310       return;
2311   }
2312 
2313   // The tentative definition is the only definition.
2314   EmitGlobalVarDefinition(D);
2315 }
2316 
2317 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2318   return Context.toCharUnitsFromBits(
2319       getDataLayout().getTypeStoreSizeInBits(Ty));
2320 }
2321 
2322 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2323                                                  unsigned AddrSpace) {
2324   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2325     if (D->hasAttr<CUDAConstantAttr>())
2326       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2327     else if (D->hasAttr<CUDASharedAttr>())
2328       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2329     else
2330       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2331   }
2332 
2333   return AddrSpace;
2334 }
2335 
2336 template<typename SomeDecl>
2337 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2338                                                llvm::GlobalValue *GV) {
2339   if (!getLangOpts().CPlusPlus)
2340     return;
2341 
2342   // Must have 'used' attribute, or else inline assembly can't rely on
2343   // the name existing.
2344   if (!D->template hasAttr<UsedAttr>())
2345     return;
2346 
2347   // Must have internal linkage and an ordinary name.
2348   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2349     return;
2350 
2351   // Must be in an extern "C" context. Entities declared directly within
2352   // a record are not extern "C" even if the record is in such a context.
2353   const SomeDecl *First = D->getFirstDecl();
2354   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2355     return;
2356 
2357   // OK, this is an internal linkage entity inside an extern "C" linkage
2358   // specification. Make a note of that so we can give it the "expected"
2359   // mangled name if nothing else is using that name.
2360   std::pair<StaticExternCMap::iterator, bool> R =
2361       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2362 
2363   // If we have multiple internal linkage entities with the same name
2364   // in extern "C" regions, none of them gets that name.
2365   if (!R.second)
2366     R.first->second = nullptr;
2367 }
2368 
2369 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2370   if (!CGM.supportsCOMDAT())
2371     return false;
2372 
2373   if (D.hasAttr<SelectAnyAttr>())
2374     return true;
2375 
2376   GVALinkage Linkage;
2377   if (auto *VD = dyn_cast<VarDecl>(&D))
2378     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2379   else
2380     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2381 
2382   switch (Linkage) {
2383   case GVA_Internal:
2384   case GVA_AvailableExternally:
2385   case GVA_StrongExternal:
2386     return false;
2387   case GVA_DiscardableODR:
2388   case GVA_StrongODR:
2389     return true;
2390   }
2391   llvm_unreachable("No such linkage");
2392 }
2393 
2394 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2395                                           llvm::GlobalObject &GO) {
2396   if (!shouldBeInCOMDAT(*this, D))
2397     return;
2398   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2399 }
2400 
2401 /// Pass IsTentative as true if you want to create a tentative definition.
2402 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2403                                             bool IsTentative) {
2404   llvm::Constant *Init = nullptr;
2405   QualType ASTTy = D->getType();
2406   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2407   bool NeedsGlobalCtor = false;
2408   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2409 
2410   const VarDecl *InitDecl;
2411   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2412 
2413   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2414   // as part of their declaration."  Sema has already checked for
2415   // error cases, so we just need to set Init to UndefValue.
2416   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2417       D->hasAttr<CUDASharedAttr>())
2418     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2419   else if (!InitExpr) {
2420     // This is a tentative definition; tentative definitions are
2421     // implicitly initialized with { 0 }.
2422     //
2423     // Note that tentative definitions are only emitted at the end of
2424     // a translation unit, so they should never have incomplete
2425     // type. In addition, EmitTentativeDefinition makes sure that we
2426     // never attempt to emit a tentative definition if a real one
2427     // exists. A use may still exists, however, so we still may need
2428     // to do a RAUW.
2429     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2430     Init = EmitNullConstant(D->getType());
2431   } else {
2432     initializedGlobalDecl = GlobalDecl(D);
2433     Init = EmitConstantInit(*InitDecl);
2434 
2435     if (!Init) {
2436       QualType T = InitExpr->getType();
2437       if (D->getType()->isReferenceType())
2438         T = D->getType();
2439 
2440       if (getLangOpts().CPlusPlus) {
2441         Init = EmitNullConstant(T);
2442         NeedsGlobalCtor = true;
2443       } else {
2444         ErrorUnsupported(D, "static initializer");
2445         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2446       }
2447     } else {
2448       // We don't need an initializer, so remove the entry for the delayed
2449       // initializer position (just in case this entry was delayed) if we
2450       // also don't need to register a destructor.
2451       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2452         DelayedCXXInitPosition.erase(D);
2453     }
2454   }
2455 
2456   llvm::Type* InitType = Init->getType();
2457   llvm::Constant *Entry =
2458       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2459 
2460   // Strip off a bitcast if we got one back.
2461   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2462     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2463            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2464            // All zero index gep.
2465            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2466     Entry = CE->getOperand(0);
2467   }
2468 
2469   // Entry is now either a Function or GlobalVariable.
2470   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2471 
2472   // We have a definition after a declaration with the wrong type.
2473   // We must make a new GlobalVariable* and update everything that used OldGV
2474   // (a declaration or tentative definition) with the new GlobalVariable*
2475   // (which will be a definition).
2476   //
2477   // This happens if there is a prototype for a global (e.g.
2478   // "extern int x[];") and then a definition of a different type (e.g.
2479   // "int x[10];"). This also happens when an initializer has a different type
2480   // from the type of the global (this happens with unions).
2481   if (!GV ||
2482       GV->getType()->getElementType() != InitType ||
2483       GV->getType()->getAddressSpace() !=
2484        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2485 
2486     // Move the old entry aside so that we'll create a new one.
2487     Entry->setName(StringRef());
2488 
2489     // Make a new global with the correct type, this is now guaranteed to work.
2490     GV = cast<llvm::GlobalVariable>(
2491         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2492 
2493     // Replace all uses of the old global with the new global
2494     llvm::Constant *NewPtrForOldDecl =
2495         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2496     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2497 
2498     // Erase the old global, since it is no longer used.
2499     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2500   }
2501 
2502   MaybeHandleStaticInExternC(D, GV);
2503 
2504   if (D->hasAttr<AnnotateAttr>())
2505     AddGlobalAnnotations(D, GV);
2506 
2507   // Set the llvm linkage type as appropriate.
2508   llvm::GlobalValue::LinkageTypes Linkage =
2509       getLLVMLinkageVarDefinition(D, GV->isConstant());
2510 
2511   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2512   // the device. [...]"
2513   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2514   // __device__, declares a variable that: [...]
2515   // Is accessible from all the threads within the grid and from the host
2516   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2517   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2518   if (GV && LangOpts.CUDA) {
2519     if (LangOpts.CUDAIsDevice) {
2520       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2521         GV->setExternallyInitialized(true);
2522     } else {
2523       // Host-side shadows of external declarations of device-side
2524       // global variables become internal definitions. These have to
2525       // be internal in order to prevent name conflicts with global
2526       // host variables with the same name in a different TUs.
2527       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2528         Linkage = llvm::GlobalValue::InternalLinkage;
2529 
2530         // Shadow variables and their properties must be registered
2531         // with CUDA runtime.
2532         unsigned Flags = 0;
2533         if (!D->hasDefinition())
2534           Flags |= CGCUDARuntime::ExternDeviceVar;
2535         if (D->hasAttr<CUDAConstantAttr>())
2536           Flags |= CGCUDARuntime::ConstantDeviceVar;
2537         getCUDARuntime().registerDeviceVar(*GV, Flags);
2538       } else if (D->hasAttr<CUDASharedAttr>())
2539         // __shared__ variables are odd. Shadows do get created, but
2540         // they are not registered with the CUDA runtime, so they
2541         // can't really be used to access their device-side
2542         // counterparts. It's not clear yet whether it's nvcc's bug or
2543         // a feature, but we've got to do the same for compatibility.
2544         Linkage = llvm::GlobalValue::InternalLinkage;
2545     }
2546   }
2547   GV->setInitializer(Init);
2548 
2549   // If it is safe to mark the global 'constant', do so now.
2550   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2551                   isTypeConstant(D->getType(), true));
2552 
2553   // If it is in a read-only section, mark it 'constant'.
2554   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2555     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2556     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2557       GV->setConstant(true);
2558   }
2559 
2560   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2561 
2562 
2563   // On Darwin, if the normal linkage of a C++ thread_local variable is
2564   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2565   // copies within a linkage unit; otherwise, the backing variable has
2566   // internal linkage and all accesses should just be calls to the
2567   // Itanium-specified entry point, which has the normal linkage of the
2568   // variable. This is to preserve the ability to change the implementation
2569   // behind the scenes.
2570   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2571       Context.getTargetInfo().getTriple().isOSDarwin() &&
2572       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2573       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2574     Linkage = llvm::GlobalValue::InternalLinkage;
2575 
2576   GV->setLinkage(Linkage);
2577   if (D->hasAttr<DLLImportAttr>())
2578     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2579   else if (D->hasAttr<DLLExportAttr>())
2580     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2581   else
2582     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2583 
2584   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2585     // common vars aren't constant even if declared const.
2586     GV->setConstant(false);
2587 
2588   setNonAliasAttributes(D, GV);
2589 
2590   if (D->getTLSKind() && !GV->isThreadLocal()) {
2591     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2592       CXXThreadLocals.push_back(D);
2593     setTLSMode(GV, *D);
2594   }
2595 
2596   maybeSetTrivialComdat(*D, *GV);
2597 
2598   // Emit the initializer function if necessary.
2599   if (NeedsGlobalCtor || NeedsGlobalDtor)
2600     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2601 
2602   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2603 
2604   // Emit global variable debug information.
2605   if (CGDebugInfo *DI = getModuleDebugInfo())
2606     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2607       DI->EmitGlobalVariable(GV, D);
2608 }
2609 
2610 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2611                                       CodeGenModule &CGM, const VarDecl *D,
2612                                       bool NoCommon) {
2613   // Don't give variables common linkage if -fno-common was specified unless it
2614   // was overridden by a NoCommon attribute.
2615   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2616     return true;
2617 
2618   // C11 6.9.2/2:
2619   //   A declaration of an identifier for an object that has file scope without
2620   //   an initializer, and without a storage-class specifier or with the
2621   //   storage-class specifier static, constitutes a tentative definition.
2622   if (D->getInit() || D->hasExternalStorage())
2623     return true;
2624 
2625   // A variable cannot be both common and exist in a section.
2626   if (D->hasAttr<SectionAttr>())
2627     return true;
2628 
2629   // Thread local vars aren't considered common linkage.
2630   if (D->getTLSKind())
2631     return true;
2632 
2633   // Tentative definitions marked with WeakImportAttr are true definitions.
2634   if (D->hasAttr<WeakImportAttr>())
2635     return true;
2636 
2637   // A variable cannot be both common and exist in a comdat.
2638   if (shouldBeInCOMDAT(CGM, *D))
2639     return true;
2640 
2641   // Declarations with a required alignment do not have common linakge in MSVC
2642   // mode.
2643   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2644     if (D->hasAttr<AlignedAttr>())
2645       return true;
2646     QualType VarType = D->getType();
2647     if (Context.isAlignmentRequired(VarType))
2648       return true;
2649 
2650     if (const auto *RT = VarType->getAs<RecordType>()) {
2651       const RecordDecl *RD = RT->getDecl();
2652       for (const FieldDecl *FD : RD->fields()) {
2653         if (FD->isBitField())
2654           continue;
2655         if (FD->hasAttr<AlignedAttr>())
2656           return true;
2657         if (Context.isAlignmentRequired(FD->getType()))
2658           return true;
2659       }
2660     }
2661   }
2662 
2663   return false;
2664 }
2665 
2666 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2667     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2668   if (Linkage == GVA_Internal)
2669     return llvm::Function::InternalLinkage;
2670 
2671   if (D->hasAttr<WeakAttr>()) {
2672     if (IsConstantVariable)
2673       return llvm::GlobalVariable::WeakODRLinkage;
2674     else
2675       return llvm::GlobalVariable::WeakAnyLinkage;
2676   }
2677 
2678   // We are guaranteed to have a strong definition somewhere else,
2679   // so we can use available_externally linkage.
2680   if (Linkage == GVA_AvailableExternally)
2681     return llvm::Function::AvailableExternallyLinkage;
2682 
2683   // Note that Apple's kernel linker doesn't support symbol
2684   // coalescing, so we need to avoid linkonce and weak linkages there.
2685   // Normally, this means we just map to internal, but for explicit
2686   // instantiations we'll map to external.
2687 
2688   // In C++, the compiler has to emit a definition in every translation unit
2689   // that references the function.  We should use linkonce_odr because
2690   // a) if all references in this translation unit are optimized away, we
2691   // don't need to codegen it.  b) if the function persists, it needs to be
2692   // merged with other definitions. c) C++ has the ODR, so we know the
2693   // definition is dependable.
2694   if (Linkage == GVA_DiscardableODR)
2695     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2696                                             : llvm::Function::InternalLinkage;
2697 
2698   // An explicit instantiation of a template has weak linkage, since
2699   // explicit instantiations can occur in multiple translation units
2700   // and must all be equivalent. However, we are not allowed to
2701   // throw away these explicit instantiations.
2702   if (Linkage == GVA_StrongODR)
2703     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2704                                             : llvm::Function::ExternalLinkage;
2705 
2706   // C++ doesn't have tentative definitions and thus cannot have common
2707   // linkage.
2708   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2709       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2710                                  CodeGenOpts.NoCommon))
2711     return llvm::GlobalVariable::CommonLinkage;
2712 
2713   // selectany symbols are externally visible, so use weak instead of
2714   // linkonce.  MSVC optimizes away references to const selectany globals, so
2715   // all definitions should be the same and ODR linkage should be used.
2716   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2717   if (D->hasAttr<SelectAnyAttr>())
2718     return llvm::GlobalVariable::WeakODRLinkage;
2719 
2720   // Otherwise, we have strong external linkage.
2721   assert(Linkage == GVA_StrongExternal);
2722   return llvm::GlobalVariable::ExternalLinkage;
2723 }
2724 
2725 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2726     const VarDecl *VD, bool IsConstant) {
2727   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2728   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2729 }
2730 
2731 /// Replace the uses of a function that was declared with a non-proto type.
2732 /// We want to silently drop extra arguments from call sites
2733 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2734                                           llvm::Function *newFn) {
2735   // Fast path.
2736   if (old->use_empty()) return;
2737 
2738   llvm::Type *newRetTy = newFn->getReturnType();
2739   SmallVector<llvm::Value*, 4> newArgs;
2740   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2741 
2742   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2743          ui != ue; ) {
2744     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2745     llvm::User *user = use->getUser();
2746 
2747     // Recognize and replace uses of bitcasts.  Most calls to
2748     // unprototyped functions will use bitcasts.
2749     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2750       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2751         replaceUsesOfNonProtoConstant(bitcast, newFn);
2752       continue;
2753     }
2754 
2755     // Recognize calls to the function.
2756     llvm::CallSite callSite(user);
2757     if (!callSite) continue;
2758     if (!callSite.isCallee(&*use)) continue;
2759 
2760     // If the return types don't match exactly, then we can't
2761     // transform this call unless it's dead.
2762     if (callSite->getType() != newRetTy && !callSite->use_empty())
2763       continue;
2764 
2765     // Get the call site's attribute list.
2766     SmallVector<llvm::AttributeSet, 8> newAttrs;
2767     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2768 
2769     // Collect any return attributes from the call.
2770     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2771       newAttrs.push_back(
2772         llvm::AttributeSet::get(newFn->getContext(),
2773                                 oldAttrs.getRetAttributes()));
2774 
2775     // If the function was passed too few arguments, don't transform.
2776     unsigned newNumArgs = newFn->arg_size();
2777     if (callSite.arg_size() < newNumArgs) continue;
2778 
2779     // If extra arguments were passed, we silently drop them.
2780     // If any of the types mismatch, we don't transform.
2781     unsigned argNo = 0;
2782     bool dontTransform = false;
2783     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2784            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2785       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2786         dontTransform = true;
2787         break;
2788       }
2789 
2790       // Add any parameter attributes.
2791       if (oldAttrs.hasAttributes(argNo + 1))
2792         newAttrs.
2793           push_back(llvm::
2794                     AttributeSet::get(newFn->getContext(),
2795                                       oldAttrs.getParamAttributes(argNo + 1)));
2796     }
2797     if (dontTransform)
2798       continue;
2799 
2800     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2801       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2802                                                  oldAttrs.getFnAttributes()));
2803 
2804     // Okay, we can transform this.  Create the new call instruction and copy
2805     // over the required information.
2806     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2807 
2808     // Copy over any operand bundles.
2809     callSite.getOperandBundlesAsDefs(newBundles);
2810 
2811     llvm::CallSite newCall;
2812     if (callSite.isCall()) {
2813       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2814                                        callSite.getInstruction());
2815     } else {
2816       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2817       newCall = llvm::InvokeInst::Create(newFn,
2818                                          oldInvoke->getNormalDest(),
2819                                          oldInvoke->getUnwindDest(),
2820                                          newArgs, newBundles, "",
2821                                          callSite.getInstruction());
2822     }
2823     newArgs.clear(); // for the next iteration
2824 
2825     if (!newCall->getType()->isVoidTy())
2826       newCall->takeName(callSite.getInstruction());
2827     newCall.setAttributes(
2828                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2829     newCall.setCallingConv(callSite.getCallingConv());
2830 
2831     // Finally, remove the old call, replacing any uses with the new one.
2832     if (!callSite->use_empty())
2833       callSite->replaceAllUsesWith(newCall.getInstruction());
2834 
2835     // Copy debug location attached to CI.
2836     if (callSite->getDebugLoc())
2837       newCall->setDebugLoc(callSite->getDebugLoc());
2838 
2839     callSite->eraseFromParent();
2840   }
2841 }
2842 
2843 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2844 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2845 /// existing call uses of the old function in the module, this adjusts them to
2846 /// call the new function directly.
2847 ///
2848 /// This is not just a cleanup: the always_inline pass requires direct calls to
2849 /// functions to be able to inline them.  If there is a bitcast in the way, it
2850 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2851 /// run at -O0.
2852 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2853                                                       llvm::Function *NewFn) {
2854   // If we're redefining a global as a function, don't transform it.
2855   if (!isa<llvm::Function>(Old)) return;
2856 
2857   replaceUsesOfNonProtoConstant(Old, NewFn);
2858 }
2859 
2860 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2861   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2862   // If we have a definition, this might be a deferred decl. If the
2863   // instantiation is explicit, make sure we emit it at the end.
2864   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2865     GetAddrOfGlobalVar(VD);
2866 
2867   EmitTopLevelDecl(VD);
2868 }
2869 
2870 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2871                                                  llvm::GlobalValue *GV) {
2872   const auto *D = cast<FunctionDecl>(GD.getDecl());
2873 
2874   // Compute the function info and LLVM type.
2875   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2876   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2877 
2878   // Get or create the prototype for the function.
2879   if (!GV || (GV->getType()->getElementType() != Ty))
2880     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2881                                                    /*DontDefer=*/true,
2882                                                    /*IsForDefinition=*/true));
2883 
2884   // Already emitted.
2885   if (!GV->isDeclaration())
2886     return;
2887 
2888   // We need to set linkage and visibility on the function before
2889   // generating code for it because various parts of IR generation
2890   // want to propagate this information down (e.g. to local static
2891   // declarations).
2892   auto *Fn = cast<llvm::Function>(GV);
2893   setFunctionLinkage(GD, Fn);
2894   setFunctionDLLStorageClass(GD, Fn);
2895 
2896   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2897   setGlobalVisibility(Fn, D);
2898 
2899   MaybeHandleStaticInExternC(D, Fn);
2900 
2901   maybeSetTrivialComdat(*D, *Fn);
2902 
2903   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2904 
2905   setFunctionDefinitionAttributes(D, Fn);
2906   SetLLVMFunctionAttributesForDefinition(D, Fn);
2907 
2908   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2909     AddGlobalCtor(Fn, CA->getPriority());
2910   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2911     AddGlobalDtor(Fn, DA->getPriority());
2912   if (D->hasAttr<AnnotateAttr>())
2913     AddGlobalAnnotations(D, Fn);
2914 }
2915 
2916 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2917   const auto *D = cast<ValueDecl>(GD.getDecl());
2918   const AliasAttr *AA = D->getAttr<AliasAttr>();
2919   assert(AA && "Not an alias?");
2920 
2921   StringRef MangledName = getMangledName(GD);
2922 
2923   if (AA->getAliasee() == MangledName) {
2924     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2925     return;
2926   }
2927 
2928   // If there is a definition in the module, then it wins over the alias.
2929   // This is dubious, but allow it to be safe.  Just ignore the alias.
2930   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2931   if (Entry && !Entry->isDeclaration())
2932     return;
2933 
2934   Aliases.push_back(GD);
2935 
2936   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2937 
2938   // Create a reference to the named value.  This ensures that it is emitted
2939   // if a deferred decl.
2940   llvm::Constant *Aliasee;
2941   if (isa<llvm::FunctionType>(DeclTy))
2942     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2943                                       /*ForVTable=*/false);
2944   else
2945     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2946                                     llvm::PointerType::getUnqual(DeclTy),
2947                                     /*D=*/nullptr);
2948 
2949   // Create the new alias itself, but don't set a name yet.
2950   auto *GA = llvm::GlobalAlias::create(
2951       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2952 
2953   if (Entry) {
2954     if (GA->getAliasee() == Entry) {
2955       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
2956       return;
2957     }
2958 
2959     assert(Entry->isDeclaration());
2960 
2961     // If there is a declaration in the module, then we had an extern followed
2962     // by the alias, as in:
2963     //   extern int test6();
2964     //   ...
2965     //   int test6() __attribute__((alias("test7")));
2966     //
2967     // Remove it and replace uses of it with the alias.
2968     GA->takeName(Entry);
2969 
2970     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2971                                                           Entry->getType()));
2972     Entry->eraseFromParent();
2973   } else {
2974     GA->setName(MangledName);
2975   }
2976 
2977   // Set attributes which are particular to an alias; this is a
2978   // specialization of the attributes which may be set on a global
2979   // variable/function.
2980   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2981       D->isWeakImported()) {
2982     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2983   }
2984 
2985   if (const auto *VD = dyn_cast<VarDecl>(D))
2986     if (VD->getTLSKind())
2987       setTLSMode(GA, *VD);
2988 
2989   setAliasAttributes(D, GA);
2990 }
2991 
2992 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
2993   const auto *D = cast<ValueDecl>(GD.getDecl());
2994   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
2995   assert(IFA && "Not an ifunc?");
2996 
2997   StringRef MangledName = getMangledName(GD);
2998 
2999   if (IFA->getResolver() == MangledName) {
3000     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3001     return;
3002   }
3003 
3004   // Report an error if some definition overrides ifunc.
3005   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3006   if (Entry && !Entry->isDeclaration()) {
3007     GlobalDecl OtherGD;
3008     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3009         DiagnosedConflictingDefinitions.insert(GD).second) {
3010       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3011       Diags.Report(OtherGD.getDecl()->getLocation(),
3012                    diag::note_previous_definition);
3013     }
3014     return;
3015   }
3016 
3017   Aliases.push_back(GD);
3018 
3019   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3020   llvm::Constant *Resolver =
3021       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3022                               /*ForVTable=*/false);
3023   llvm::GlobalIFunc *GIF =
3024       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3025                                 "", Resolver, &getModule());
3026   if (Entry) {
3027     if (GIF->getResolver() == Entry) {
3028       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3029       return;
3030     }
3031     assert(Entry->isDeclaration());
3032 
3033     // If there is a declaration in the module, then we had an extern followed
3034     // by the ifunc, as in:
3035     //   extern int test();
3036     //   ...
3037     //   int test() __attribute__((ifunc("resolver")));
3038     //
3039     // Remove it and replace uses of it with the ifunc.
3040     GIF->takeName(Entry);
3041 
3042     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3043                                                           Entry->getType()));
3044     Entry->eraseFromParent();
3045   } else
3046     GIF->setName(MangledName);
3047 
3048   SetCommonAttributes(D, GIF);
3049 }
3050 
3051 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3052                                             ArrayRef<llvm::Type*> Tys) {
3053   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3054                                          Tys);
3055 }
3056 
3057 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3058 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3059                          const StringLiteral *Literal, bool TargetIsLSB,
3060                          bool &IsUTF16, unsigned &StringLength) {
3061   StringRef String = Literal->getString();
3062   unsigned NumBytes = String.size();
3063 
3064   // Check for simple case.
3065   if (!Literal->containsNonAsciiOrNull()) {
3066     StringLength = NumBytes;
3067     return *Map.insert(std::make_pair(String, nullptr)).first;
3068   }
3069 
3070   // Otherwise, convert the UTF8 literals into a string of shorts.
3071   IsUTF16 = true;
3072 
3073   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3074   const UTF8 *FromPtr = (const UTF8 *)String.data();
3075   UTF16 *ToPtr = &ToBuf[0];
3076 
3077   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
3078                            &ToPtr, ToPtr + NumBytes,
3079                            strictConversion);
3080 
3081   // ConvertUTF8toUTF16 returns the length in ToPtr.
3082   StringLength = ToPtr - &ToBuf[0];
3083 
3084   // Add an explicit null.
3085   *ToPtr = 0;
3086   return *Map.insert(std::make_pair(
3087                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3088                                    (StringLength + 1) * 2),
3089                          nullptr)).first;
3090 }
3091 
3092 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3093 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3094                        const StringLiteral *Literal, unsigned &StringLength) {
3095   StringRef String = Literal->getString();
3096   StringLength = String.size();
3097   return *Map.insert(std::make_pair(String, nullptr)).first;
3098 }
3099 
3100 ConstantAddress
3101 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3102   unsigned StringLength = 0;
3103   bool isUTF16 = false;
3104   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3105       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3106                                getDataLayout().isLittleEndian(), isUTF16,
3107                                StringLength);
3108 
3109   if (auto *C = Entry.second)
3110     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3111 
3112   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3113   llvm::Constant *Zeros[] = { Zero, Zero };
3114   llvm::Value *V;
3115 
3116   // If we don't already have it, get __CFConstantStringClassReference.
3117   if (!CFConstantStringClassRef) {
3118     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3119     Ty = llvm::ArrayType::get(Ty, 0);
3120     llvm::Constant *GV = CreateRuntimeVariable(Ty,
3121                                            "__CFConstantStringClassReference");
3122     // Decay array -> ptr
3123     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3124     CFConstantStringClassRef = V;
3125   }
3126   else
3127     V = CFConstantStringClassRef;
3128 
3129   QualType CFTy = getContext().getCFConstantStringType();
3130 
3131   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3132 
3133   llvm::Constant *Fields[4];
3134 
3135   // Class pointer.
3136   Fields[0] = cast<llvm::ConstantExpr>(V);
3137 
3138   // Flags.
3139   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3140   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
3141     llvm::ConstantInt::get(Ty, 0x07C8);
3142 
3143   // String pointer.
3144   llvm::Constant *C = nullptr;
3145   if (isUTF16) {
3146     auto Arr = llvm::makeArrayRef(
3147         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3148         Entry.first().size() / 2);
3149     C = llvm::ConstantDataArray::get(VMContext, Arr);
3150   } else {
3151     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3152   }
3153 
3154   // Note: -fwritable-strings doesn't make the backing store strings of
3155   // CFStrings writable. (See <rdar://problem/10657500>)
3156   auto *GV =
3157       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3158                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3159   GV->setUnnamedAddr(true);
3160   // Don't enforce the target's minimum global alignment, since the only use
3161   // of the string is via this class initializer.
3162   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
3163   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3164   // that changes the section it ends in, which surprises ld64.
3165   if (isUTF16) {
3166     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3167     GV->setAlignment(Align.getQuantity());
3168     GV->setSection("__TEXT,__ustring");
3169   } else {
3170     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3171     GV->setAlignment(Align.getQuantity());
3172     GV->setSection("__TEXT,__cstring,cstring_literals");
3173   }
3174 
3175   // String.
3176   Fields[2] =
3177       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3178 
3179   if (isUTF16)
3180     // Cast the UTF16 string to the correct type.
3181     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3182 
3183   // String length.
3184   Ty = getTypes().ConvertType(getContext().LongTy);
3185   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3186 
3187   CharUnits Alignment = getPointerAlign();
3188 
3189   // The struct.
3190   C = llvm::ConstantStruct::get(STy, Fields);
3191   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3192                                 llvm::GlobalVariable::PrivateLinkage, C,
3193                                 "_unnamed_cfstring_");
3194   GV->setSection("__DATA,__cfstring");
3195   GV->setAlignment(Alignment.getQuantity());
3196   Entry.second = GV;
3197 
3198   return ConstantAddress(GV, Alignment);
3199 }
3200 
3201 ConstantAddress
3202 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3203   unsigned StringLength = 0;
3204   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3205       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3206 
3207   if (auto *C = Entry.second)
3208     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3209 
3210   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3211   llvm::Constant *Zeros[] = { Zero, Zero };
3212   llvm::Value *V;
3213   // If we don't already have it, get _NSConstantStringClassReference.
3214   if (!ConstantStringClassRef) {
3215     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3216     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3217     llvm::Constant *GV;
3218     if (LangOpts.ObjCRuntime.isNonFragile()) {
3219       std::string str =
3220         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3221                             : "OBJC_CLASS_$_" + StringClass;
3222       GV = getObjCRuntime().GetClassGlobal(str);
3223       // Make sure the result is of the correct type.
3224       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3225       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3226       ConstantStringClassRef = V;
3227     } else {
3228       std::string str =
3229         StringClass.empty() ? "_NSConstantStringClassReference"
3230                             : "_" + StringClass + "ClassReference";
3231       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3232       GV = CreateRuntimeVariable(PTy, str);
3233       // Decay array -> ptr
3234       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3235       ConstantStringClassRef = V;
3236     }
3237   } else
3238     V = ConstantStringClassRef;
3239 
3240   if (!NSConstantStringType) {
3241     // Construct the type for a constant NSString.
3242     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3243     D->startDefinition();
3244 
3245     QualType FieldTypes[3];
3246 
3247     // const int *isa;
3248     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3249     // const char *str;
3250     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3251     // unsigned int length;
3252     FieldTypes[2] = Context.UnsignedIntTy;
3253 
3254     // Create fields
3255     for (unsigned i = 0; i < 3; ++i) {
3256       FieldDecl *Field = FieldDecl::Create(Context, D,
3257                                            SourceLocation(),
3258                                            SourceLocation(), nullptr,
3259                                            FieldTypes[i], /*TInfo=*/nullptr,
3260                                            /*BitWidth=*/nullptr,
3261                                            /*Mutable=*/false,
3262                                            ICIS_NoInit);
3263       Field->setAccess(AS_public);
3264       D->addDecl(Field);
3265     }
3266 
3267     D->completeDefinition();
3268     QualType NSTy = Context.getTagDeclType(D);
3269     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3270   }
3271 
3272   llvm::Constant *Fields[3];
3273 
3274   // Class pointer.
3275   Fields[0] = cast<llvm::ConstantExpr>(V);
3276 
3277   // String pointer.
3278   llvm::Constant *C =
3279       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3280 
3281   llvm::GlobalValue::LinkageTypes Linkage;
3282   bool isConstant;
3283   Linkage = llvm::GlobalValue::PrivateLinkage;
3284   isConstant = !LangOpts.WritableStrings;
3285 
3286   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3287                                       Linkage, C, ".str");
3288   GV->setUnnamedAddr(true);
3289   // Don't enforce the target's minimum global alignment, since the only use
3290   // of the string is via this class initializer.
3291   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3292   GV->setAlignment(Align.getQuantity());
3293   Fields[1] =
3294       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3295 
3296   // String length.
3297   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3298   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3299 
3300   // The struct.
3301   CharUnits Alignment = getPointerAlign();
3302   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3303   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3304                                 llvm::GlobalVariable::PrivateLinkage, C,
3305                                 "_unnamed_nsstring_");
3306   GV->setAlignment(Alignment.getQuantity());
3307   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3308   const char *NSStringNonFragileABISection =
3309       "__DATA,__objc_stringobj,regular,no_dead_strip";
3310   // FIXME. Fix section.
3311   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3312                      ? NSStringNonFragileABISection
3313                      : NSStringSection);
3314   Entry.second = GV;
3315 
3316   return ConstantAddress(GV, Alignment);
3317 }
3318 
3319 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3320   if (ObjCFastEnumerationStateType.isNull()) {
3321     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3322     D->startDefinition();
3323 
3324     QualType FieldTypes[] = {
3325       Context.UnsignedLongTy,
3326       Context.getPointerType(Context.getObjCIdType()),
3327       Context.getPointerType(Context.UnsignedLongTy),
3328       Context.getConstantArrayType(Context.UnsignedLongTy,
3329                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3330     };
3331 
3332     for (size_t i = 0; i < 4; ++i) {
3333       FieldDecl *Field = FieldDecl::Create(Context,
3334                                            D,
3335                                            SourceLocation(),
3336                                            SourceLocation(), nullptr,
3337                                            FieldTypes[i], /*TInfo=*/nullptr,
3338                                            /*BitWidth=*/nullptr,
3339                                            /*Mutable=*/false,
3340                                            ICIS_NoInit);
3341       Field->setAccess(AS_public);
3342       D->addDecl(Field);
3343     }
3344 
3345     D->completeDefinition();
3346     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3347   }
3348 
3349   return ObjCFastEnumerationStateType;
3350 }
3351 
3352 llvm::Constant *
3353 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3354   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3355 
3356   // Don't emit it as the address of the string, emit the string data itself
3357   // as an inline array.
3358   if (E->getCharByteWidth() == 1) {
3359     SmallString<64> Str(E->getString());
3360 
3361     // Resize the string to the right size, which is indicated by its type.
3362     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3363     Str.resize(CAT->getSize().getZExtValue());
3364     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3365   }
3366 
3367   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3368   llvm::Type *ElemTy = AType->getElementType();
3369   unsigned NumElements = AType->getNumElements();
3370 
3371   // Wide strings have either 2-byte or 4-byte elements.
3372   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3373     SmallVector<uint16_t, 32> Elements;
3374     Elements.reserve(NumElements);
3375 
3376     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3377       Elements.push_back(E->getCodeUnit(i));
3378     Elements.resize(NumElements);
3379     return llvm::ConstantDataArray::get(VMContext, Elements);
3380   }
3381 
3382   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3383   SmallVector<uint32_t, 32> Elements;
3384   Elements.reserve(NumElements);
3385 
3386   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3387     Elements.push_back(E->getCodeUnit(i));
3388   Elements.resize(NumElements);
3389   return llvm::ConstantDataArray::get(VMContext, Elements);
3390 }
3391 
3392 static llvm::GlobalVariable *
3393 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3394                       CodeGenModule &CGM, StringRef GlobalName,
3395                       CharUnits Alignment) {
3396   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3397   unsigned AddrSpace = 0;
3398   if (CGM.getLangOpts().OpenCL)
3399     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3400 
3401   llvm::Module &M = CGM.getModule();
3402   // Create a global variable for this string
3403   auto *GV = new llvm::GlobalVariable(
3404       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3405       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3406   GV->setAlignment(Alignment.getQuantity());
3407   GV->setUnnamedAddr(true);
3408   if (GV->isWeakForLinker()) {
3409     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3410     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3411   }
3412 
3413   return GV;
3414 }
3415 
3416 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3417 /// constant array for the given string literal.
3418 ConstantAddress
3419 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3420                                                   StringRef Name) {
3421   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3422 
3423   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3424   llvm::GlobalVariable **Entry = nullptr;
3425   if (!LangOpts.WritableStrings) {
3426     Entry = &ConstantStringMap[C];
3427     if (auto GV = *Entry) {
3428       if (Alignment.getQuantity() > GV->getAlignment())
3429         GV->setAlignment(Alignment.getQuantity());
3430       return ConstantAddress(GV, Alignment);
3431     }
3432   }
3433 
3434   SmallString<256> MangledNameBuffer;
3435   StringRef GlobalVariableName;
3436   llvm::GlobalValue::LinkageTypes LT;
3437 
3438   // Mangle the string literal if the ABI allows for it.  However, we cannot
3439   // do this if  we are compiling with ASan or -fwritable-strings because they
3440   // rely on strings having normal linkage.
3441   if (!LangOpts.WritableStrings &&
3442       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3443       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3444     llvm::raw_svector_ostream Out(MangledNameBuffer);
3445     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3446 
3447     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3448     GlobalVariableName = MangledNameBuffer;
3449   } else {
3450     LT = llvm::GlobalValue::PrivateLinkage;
3451     GlobalVariableName = Name;
3452   }
3453 
3454   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3455   if (Entry)
3456     *Entry = GV;
3457 
3458   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3459                                   QualType());
3460   return ConstantAddress(GV, Alignment);
3461 }
3462 
3463 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3464 /// array for the given ObjCEncodeExpr node.
3465 ConstantAddress
3466 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3467   std::string Str;
3468   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3469 
3470   return GetAddrOfConstantCString(Str);
3471 }
3472 
3473 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3474 /// the literal and a terminating '\0' character.
3475 /// The result has pointer to array type.
3476 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3477     const std::string &Str, const char *GlobalName) {
3478   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3479   CharUnits Alignment =
3480     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3481 
3482   llvm::Constant *C =
3483       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3484 
3485   // Don't share any string literals if strings aren't constant.
3486   llvm::GlobalVariable **Entry = nullptr;
3487   if (!LangOpts.WritableStrings) {
3488     Entry = &ConstantStringMap[C];
3489     if (auto GV = *Entry) {
3490       if (Alignment.getQuantity() > GV->getAlignment())
3491         GV->setAlignment(Alignment.getQuantity());
3492       return ConstantAddress(GV, Alignment);
3493     }
3494   }
3495 
3496   // Get the default prefix if a name wasn't specified.
3497   if (!GlobalName)
3498     GlobalName = ".str";
3499   // Create a global variable for this.
3500   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3501                                   GlobalName, Alignment);
3502   if (Entry)
3503     *Entry = GV;
3504   return ConstantAddress(GV, Alignment);
3505 }
3506 
3507 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3508     const MaterializeTemporaryExpr *E, const Expr *Init) {
3509   assert((E->getStorageDuration() == SD_Static ||
3510           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3511   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3512 
3513   // If we're not materializing a subobject of the temporary, keep the
3514   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3515   QualType MaterializedType = Init->getType();
3516   if (Init == E->GetTemporaryExpr())
3517     MaterializedType = E->getType();
3518 
3519   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3520 
3521   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3522     return ConstantAddress(Slot, Align);
3523 
3524   // FIXME: If an externally-visible declaration extends multiple temporaries,
3525   // we need to give each temporary the same name in every translation unit (and
3526   // we also need to make the temporaries externally-visible).
3527   SmallString<256> Name;
3528   llvm::raw_svector_ostream Out(Name);
3529   getCXXABI().getMangleContext().mangleReferenceTemporary(
3530       VD, E->getManglingNumber(), Out);
3531 
3532   APValue *Value = nullptr;
3533   if (E->getStorageDuration() == SD_Static) {
3534     // We might have a cached constant initializer for this temporary. Note
3535     // that this might have a different value from the value computed by
3536     // evaluating the initializer if the surrounding constant expression
3537     // modifies the temporary.
3538     Value = getContext().getMaterializedTemporaryValue(E, false);
3539     if (Value && Value->isUninit())
3540       Value = nullptr;
3541   }
3542 
3543   // Try evaluating it now, it might have a constant initializer.
3544   Expr::EvalResult EvalResult;
3545   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3546       !EvalResult.hasSideEffects())
3547     Value = &EvalResult.Val;
3548 
3549   llvm::Constant *InitialValue = nullptr;
3550   bool Constant = false;
3551   llvm::Type *Type;
3552   if (Value) {
3553     // The temporary has a constant initializer, use it.
3554     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3555     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3556     Type = InitialValue->getType();
3557   } else {
3558     // No initializer, the initialization will be provided when we
3559     // initialize the declaration which performed lifetime extension.
3560     Type = getTypes().ConvertTypeForMem(MaterializedType);
3561   }
3562 
3563   // Create a global variable for this lifetime-extended temporary.
3564   llvm::GlobalValue::LinkageTypes Linkage =
3565       getLLVMLinkageVarDefinition(VD, Constant);
3566   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3567     const VarDecl *InitVD;
3568     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3569         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3570       // Temporaries defined inside a class get linkonce_odr linkage because the
3571       // class can be defined in multipe translation units.
3572       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3573     } else {
3574       // There is no need for this temporary to have external linkage if the
3575       // VarDecl has external linkage.
3576       Linkage = llvm::GlobalVariable::InternalLinkage;
3577     }
3578   }
3579   unsigned AddrSpace = GetGlobalVarAddressSpace(
3580       VD, getContext().getTargetAddressSpace(MaterializedType));
3581   auto *GV = new llvm::GlobalVariable(
3582       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3583       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3584       AddrSpace);
3585   setGlobalVisibility(GV, VD);
3586   GV->setAlignment(Align.getQuantity());
3587   if (supportsCOMDAT() && GV->isWeakForLinker())
3588     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3589   if (VD->getTLSKind())
3590     setTLSMode(GV, *VD);
3591   MaterializedGlobalTemporaryMap[E] = GV;
3592   return ConstantAddress(GV, Align);
3593 }
3594 
3595 /// EmitObjCPropertyImplementations - Emit information for synthesized
3596 /// properties for an implementation.
3597 void CodeGenModule::EmitObjCPropertyImplementations(const
3598                                                     ObjCImplementationDecl *D) {
3599   for (const auto *PID : D->property_impls()) {
3600     // Dynamic is just for type-checking.
3601     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3602       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3603 
3604       // Determine which methods need to be implemented, some may have
3605       // been overridden. Note that ::isPropertyAccessor is not the method
3606       // we want, that just indicates if the decl came from a
3607       // property. What we want to know is if the method is defined in
3608       // this implementation.
3609       if (!D->getInstanceMethod(PD->getGetterName()))
3610         CodeGenFunction(*this).GenerateObjCGetter(
3611                                  const_cast<ObjCImplementationDecl *>(D), PID);
3612       if (!PD->isReadOnly() &&
3613           !D->getInstanceMethod(PD->getSetterName()))
3614         CodeGenFunction(*this).GenerateObjCSetter(
3615                                  const_cast<ObjCImplementationDecl *>(D), PID);
3616     }
3617   }
3618 }
3619 
3620 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3621   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3622   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3623        ivar; ivar = ivar->getNextIvar())
3624     if (ivar->getType().isDestructedType())
3625       return true;
3626 
3627   return false;
3628 }
3629 
3630 static bool AllTrivialInitializers(CodeGenModule &CGM,
3631                                    ObjCImplementationDecl *D) {
3632   CodeGenFunction CGF(CGM);
3633   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3634        E = D->init_end(); B != E; ++B) {
3635     CXXCtorInitializer *CtorInitExp = *B;
3636     Expr *Init = CtorInitExp->getInit();
3637     if (!CGF.isTrivialInitializer(Init))
3638       return false;
3639   }
3640   return true;
3641 }
3642 
3643 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3644 /// for an implementation.
3645 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3646   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3647   if (needsDestructMethod(D)) {
3648     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3649     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3650     ObjCMethodDecl *DTORMethod =
3651       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3652                              cxxSelector, getContext().VoidTy, nullptr, D,
3653                              /*isInstance=*/true, /*isVariadic=*/false,
3654                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3655                              /*isDefined=*/false, ObjCMethodDecl::Required);
3656     D->addInstanceMethod(DTORMethod);
3657     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3658     D->setHasDestructors(true);
3659   }
3660 
3661   // If the implementation doesn't have any ivar initializers, we don't need
3662   // a .cxx_construct.
3663   if (D->getNumIvarInitializers() == 0 ||
3664       AllTrivialInitializers(*this, D))
3665     return;
3666 
3667   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3668   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3669   // The constructor returns 'self'.
3670   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3671                                                 D->getLocation(),
3672                                                 D->getLocation(),
3673                                                 cxxSelector,
3674                                                 getContext().getObjCIdType(),
3675                                                 nullptr, D, /*isInstance=*/true,
3676                                                 /*isVariadic=*/false,
3677                                                 /*isPropertyAccessor=*/true,
3678                                                 /*isImplicitlyDeclared=*/true,
3679                                                 /*isDefined=*/false,
3680                                                 ObjCMethodDecl::Required);
3681   D->addInstanceMethod(CTORMethod);
3682   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3683   D->setHasNonZeroConstructors(true);
3684 }
3685 
3686 /// EmitNamespace - Emit all declarations in a namespace.
3687 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3688   for (auto *I : ND->decls()) {
3689     if (const auto *VD = dyn_cast<VarDecl>(I))
3690       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3691           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3692         continue;
3693     EmitTopLevelDecl(I);
3694   }
3695 }
3696 
3697 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3698 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3699   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3700       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3701     ErrorUnsupported(LSD, "linkage spec");
3702     return;
3703   }
3704 
3705   for (auto *I : LSD->decls()) {
3706     // Meta-data for ObjC class includes references to implemented methods.
3707     // Generate class's method definitions first.
3708     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3709       for (auto *M : OID->methods())
3710         EmitTopLevelDecl(M);
3711     }
3712     EmitTopLevelDecl(I);
3713   }
3714 }
3715 
3716 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3717 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3718   // Ignore dependent declarations.
3719   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3720     return;
3721 
3722   switch (D->getKind()) {
3723   case Decl::CXXConversion:
3724   case Decl::CXXMethod:
3725   case Decl::Function:
3726     // Skip function templates
3727     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3728         cast<FunctionDecl>(D)->isLateTemplateParsed())
3729       return;
3730 
3731     EmitGlobal(cast<FunctionDecl>(D));
3732     // Always provide some coverage mapping
3733     // even for the functions that aren't emitted.
3734     AddDeferredUnusedCoverageMapping(D);
3735     break;
3736 
3737   case Decl::Var:
3738     // Skip variable templates
3739     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3740       return;
3741   case Decl::VarTemplateSpecialization:
3742     EmitGlobal(cast<VarDecl>(D));
3743     break;
3744 
3745   // Indirect fields from global anonymous structs and unions can be
3746   // ignored; only the actual variable requires IR gen support.
3747   case Decl::IndirectField:
3748     break;
3749 
3750   // C++ Decls
3751   case Decl::Namespace:
3752     EmitNamespace(cast<NamespaceDecl>(D));
3753     break;
3754     // No code generation needed.
3755   case Decl::UsingShadow:
3756   case Decl::ClassTemplate:
3757   case Decl::VarTemplate:
3758   case Decl::VarTemplatePartialSpecialization:
3759   case Decl::FunctionTemplate:
3760   case Decl::TypeAliasTemplate:
3761   case Decl::Block:
3762   case Decl::Empty:
3763     break;
3764   case Decl::Using:          // using X; [C++]
3765     if (CGDebugInfo *DI = getModuleDebugInfo())
3766         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3767     return;
3768   case Decl::NamespaceAlias:
3769     if (CGDebugInfo *DI = getModuleDebugInfo())
3770         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3771     return;
3772   case Decl::UsingDirective: // using namespace X; [C++]
3773     if (CGDebugInfo *DI = getModuleDebugInfo())
3774       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3775     return;
3776   case Decl::CXXConstructor:
3777     // Skip function templates
3778     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3779         cast<FunctionDecl>(D)->isLateTemplateParsed())
3780       return;
3781 
3782     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3783     break;
3784   case Decl::CXXDestructor:
3785     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3786       return;
3787     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3788     break;
3789 
3790   case Decl::StaticAssert:
3791     // Nothing to do.
3792     break;
3793 
3794   // Objective-C Decls
3795 
3796   // Forward declarations, no (immediate) code generation.
3797   case Decl::ObjCInterface:
3798   case Decl::ObjCCategory:
3799     break;
3800 
3801   case Decl::ObjCProtocol: {
3802     auto *Proto = cast<ObjCProtocolDecl>(D);
3803     if (Proto->isThisDeclarationADefinition())
3804       ObjCRuntime->GenerateProtocol(Proto);
3805     break;
3806   }
3807 
3808   case Decl::ObjCCategoryImpl:
3809     // Categories have properties but don't support synthesize so we
3810     // can ignore them here.
3811     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3812     break;
3813 
3814   case Decl::ObjCImplementation: {
3815     auto *OMD = cast<ObjCImplementationDecl>(D);
3816     EmitObjCPropertyImplementations(OMD);
3817     EmitObjCIvarInitializations(OMD);
3818     ObjCRuntime->GenerateClass(OMD);
3819     // Emit global variable debug information.
3820     if (CGDebugInfo *DI = getModuleDebugInfo())
3821       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3822         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3823             OMD->getClassInterface()), OMD->getLocation());
3824     break;
3825   }
3826   case Decl::ObjCMethod: {
3827     auto *OMD = cast<ObjCMethodDecl>(D);
3828     // If this is not a prototype, emit the body.
3829     if (OMD->getBody())
3830       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3831     break;
3832   }
3833   case Decl::ObjCCompatibleAlias:
3834     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3835     break;
3836 
3837   case Decl::PragmaComment: {
3838     const auto *PCD = cast<PragmaCommentDecl>(D);
3839     switch (PCD->getCommentKind()) {
3840     case PCK_Unknown:
3841       llvm_unreachable("unexpected pragma comment kind");
3842     case PCK_Linker:
3843       AppendLinkerOptions(PCD->getArg());
3844       break;
3845     case PCK_Lib:
3846       AddDependentLib(PCD->getArg());
3847       break;
3848     case PCK_Compiler:
3849     case PCK_ExeStr:
3850     case PCK_User:
3851       break; // We ignore all of these.
3852     }
3853     break;
3854   }
3855 
3856   case Decl::PragmaDetectMismatch: {
3857     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3858     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3859     break;
3860   }
3861 
3862   case Decl::LinkageSpec:
3863     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3864     break;
3865 
3866   case Decl::FileScopeAsm: {
3867     // File-scope asm is ignored during device-side CUDA compilation.
3868     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3869       break;
3870     // File-scope asm is ignored during device-side OpenMP compilation.
3871     if (LangOpts.OpenMPIsDevice)
3872       break;
3873     auto *AD = cast<FileScopeAsmDecl>(D);
3874     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3875     break;
3876   }
3877 
3878   case Decl::Import: {
3879     auto *Import = cast<ImportDecl>(D);
3880 
3881     // Ignore import declarations that come from imported modules.
3882     if (Import->getImportedOwningModule())
3883       break;
3884     if (CGDebugInfo *DI = getModuleDebugInfo())
3885       DI->EmitImportDecl(*Import);
3886 
3887     ImportedModules.insert(Import->getImportedModule());
3888     break;
3889   }
3890 
3891   case Decl::OMPThreadPrivate:
3892     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3893     break;
3894 
3895   case Decl::ClassTemplateSpecialization: {
3896     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3897     if (DebugInfo &&
3898         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3899         Spec->hasDefinition())
3900       DebugInfo->completeTemplateDefinition(*Spec);
3901     break;
3902   }
3903 
3904   case Decl::OMPDeclareReduction:
3905     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3906     break;
3907 
3908   default:
3909     // Make sure we handled everything we should, every other kind is a
3910     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3911     // function. Need to recode Decl::Kind to do that easily.
3912     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3913     break;
3914   }
3915 }
3916 
3917 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3918   // Do we need to generate coverage mapping?
3919   if (!CodeGenOpts.CoverageMapping)
3920     return;
3921   switch (D->getKind()) {
3922   case Decl::CXXConversion:
3923   case Decl::CXXMethod:
3924   case Decl::Function:
3925   case Decl::ObjCMethod:
3926   case Decl::CXXConstructor:
3927   case Decl::CXXDestructor: {
3928     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3929       return;
3930     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3931     if (I == DeferredEmptyCoverageMappingDecls.end())
3932       DeferredEmptyCoverageMappingDecls[D] = true;
3933     break;
3934   }
3935   default:
3936     break;
3937   };
3938 }
3939 
3940 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3941   // Do we need to generate coverage mapping?
3942   if (!CodeGenOpts.CoverageMapping)
3943     return;
3944   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3945     if (Fn->isTemplateInstantiation())
3946       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3947   }
3948   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3949   if (I == DeferredEmptyCoverageMappingDecls.end())
3950     DeferredEmptyCoverageMappingDecls[D] = false;
3951   else
3952     I->second = false;
3953 }
3954 
3955 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3956   std::vector<const Decl *> DeferredDecls;
3957   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3958     if (!I.second)
3959       continue;
3960     DeferredDecls.push_back(I.first);
3961   }
3962   // Sort the declarations by their location to make sure that the tests get a
3963   // predictable order for the coverage mapping for the unused declarations.
3964   if (CodeGenOpts.DumpCoverageMapping)
3965     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3966               [] (const Decl *LHS, const Decl *RHS) {
3967       return LHS->getLocStart() < RHS->getLocStart();
3968     });
3969   for (const auto *D : DeferredDecls) {
3970     switch (D->getKind()) {
3971     case Decl::CXXConversion:
3972     case Decl::CXXMethod:
3973     case Decl::Function:
3974     case Decl::ObjCMethod: {
3975       CodeGenPGO PGO(*this);
3976       GlobalDecl GD(cast<FunctionDecl>(D));
3977       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3978                                   getFunctionLinkage(GD));
3979       break;
3980     }
3981     case Decl::CXXConstructor: {
3982       CodeGenPGO PGO(*this);
3983       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3984       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3985                                   getFunctionLinkage(GD));
3986       break;
3987     }
3988     case Decl::CXXDestructor: {
3989       CodeGenPGO PGO(*this);
3990       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3991       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3992                                   getFunctionLinkage(GD));
3993       break;
3994     }
3995     default:
3996       break;
3997     };
3998   }
3999 }
4000 
4001 /// Turns the given pointer into a constant.
4002 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4003                                           const void *Ptr) {
4004   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4005   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4006   return llvm::ConstantInt::get(i64, PtrInt);
4007 }
4008 
4009 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4010                                    llvm::NamedMDNode *&GlobalMetadata,
4011                                    GlobalDecl D,
4012                                    llvm::GlobalValue *Addr) {
4013   if (!GlobalMetadata)
4014     GlobalMetadata =
4015       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4016 
4017   // TODO: should we report variant information for ctors/dtors?
4018   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4019                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4020                                CGM.getLLVMContext(), D.getDecl()))};
4021   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4022 }
4023 
4024 /// For each function which is declared within an extern "C" region and marked
4025 /// as 'used', but has internal linkage, create an alias from the unmangled
4026 /// name to the mangled name if possible. People expect to be able to refer
4027 /// to such functions with an unmangled name from inline assembly within the
4028 /// same translation unit.
4029 void CodeGenModule::EmitStaticExternCAliases() {
4030   // Don't do anything if we're generating CUDA device code -- the NVPTX
4031   // assembly target doesn't support aliases.
4032   if (Context.getTargetInfo().getTriple().isNVPTX())
4033     return;
4034   for (auto &I : StaticExternCValues) {
4035     IdentifierInfo *Name = I.first;
4036     llvm::GlobalValue *Val = I.second;
4037     if (Val && !getModule().getNamedValue(Name->getName()))
4038       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4039   }
4040 }
4041 
4042 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4043                                              GlobalDecl &Result) const {
4044   auto Res = Manglings.find(MangledName);
4045   if (Res == Manglings.end())
4046     return false;
4047   Result = Res->getValue();
4048   return true;
4049 }
4050 
4051 /// Emits metadata nodes associating all the global values in the
4052 /// current module with the Decls they came from.  This is useful for
4053 /// projects using IR gen as a subroutine.
4054 ///
4055 /// Since there's currently no way to associate an MDNode directly
4056 /// with an llvm::GlobalValue, we create a global named metadata
4057 /// with the name 'clang.global.decl.ptrs'.
4058 void CodeGenModule::EmitDeclMetadata() {
4059   llvm::NamedMDNode *GlobalMetadata = nullptr;
4060 
4061   for (auto &I : MangledDeclNames) {
4062     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4063     // Some mangled names don't necessarily have an associated GlobalValue
4064     // in this module, e.g. if we mangled it for DebugInfo.
4065     if (Addr)
4066       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4067   }
4068 }
4069 
4070 /// Emits metadata nodes for all the local variables in the current
4071 /// function.
4072 void CodeGenFunction::EmitDeclMetadata() {
4073   if (LocalDeclMap.empty()) return;
4074 
4075   llvm::LLVMContext &Context = getLLVMContext();
4076 
4077   // Find the unique metadata ID for this name.
4078   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4079 
4080   llvm::NamedMDNode *GlobalMetadata = nullptr;
4081 
4082   for (auto &I : LocalDeclMap) {
4083     const Decl *D = I.first;
4084     llvm::Value *Addr = I.second.getPointer();
4085     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4086       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4087       Alloca->setMetadata(
4088           DeclPtrKind, llvm::MDNode::get(
4089                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4090     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4091       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4092       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4093     }
4094   }
4095 }
4096 
4097 void CodeGenModule::EmitVersionIdentMetadata() {
4098   llvm::NamedMDNode *IdentMetadata =
4099     TheModule.getOrInsertNamedMetadata("llvm.ident");
4100   std::string Version = getClangFullVersion();
4101   llvm::LLVMContext &Ctx = TheModule.getContext();
4102 
4103   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4104   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4105 }
4106 
4107 void CodeGenModule::EmitTargetMetadata() {
4108   // Warning, new MangledDeclNames may be appended within this loop.
4109   // We rely on MapVector insertions adding new elements to the end
4110   // of the container.
4111   // FIXME: Move this loop into the one target that needs it, and only
4112   // loop over those declarations for which we couldn't emit the target
4113   // metadata when we emitted the declaration.
4114   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4115     auto Val = *(MangledDeclNames.begin() + I);
4116     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4117     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4118     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4119   }
4120 }
4121 
4122 void CodeGenModule::EmitCoverageFile() {
4123   if (!getCodeGenOpts().CoverageFile.empty()) {
4124     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
4125       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4126       llvm::LLVMContext &Ctx = TheModule.getContext();
4127       llvm::MDString *CoverageFile =
4128           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
4129       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4130         llvm::MDNode *CU = CUNode->getOperand(i);
4131         llvm::Metadata *Elts[] = {CoverageFile, CU};
4132         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4133       }
4134     }
4135   }
4136 }
4137 
4138 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4139   // Sema has checked that all uuid strings are of the form
4140   // "12345678-1234-1234-1234-1234567890ab".
4141   assert(Uuid.size() == 36);
4142   for (unsigned i = 0; i < 36; ++i) {
4143     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4144     else                                         assert(isHexDigit(Uuid[i]));
4145   }
4146 
4147   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4148   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4149 
4150   llvm::Constant *Field3[8];
4151   for (unsigned Idx = 0; Idx < 8; ++Idx)
4152     Field3[Idx] = llvm::ConstantInt::get(
4153         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4154 
4155   llvm::Constant *Fields[4] = {
4156     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4157     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4158     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4159     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4160   };
4161 
4162   return llvm::ConstantStruct::getAnon(Fields);
4163 }
4164 
4165 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4166                                                        bool ForEH) {
4167   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4168   // FIXME: should we even be calling this method if RTTI is disabled
4169   // and it's not for EH?
4170   if (!ForEH && !getLangOpts().RTTI)
4171     return llvm::Constant::getNullValue(Int8PtrTy);
4172 
4173   if (ForEH && Ty->isObjCObjectPointerType() &&
4174       LangOpts.ObjCRuntime.isGNUFamily())
4175     return ObjCRuntime->GetEHType(Ty);
4176 
4177   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4178 }
4179 
4180 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4181   for (auto RefExpr : D->varlists()) {
4182     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4183     bool PerformInit =
4184         VD->getAnyInitializer() &&
4185         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4186                                                         /*ForRef=*/false);
4187 
4188     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4189     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4190             VD, Addr, RefExpr->getLocStart(), PerformInit))
4191       CXXGlobalInits.push_back(InitFunction);
4192   }
4193 }
4194 
4195 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4196   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4197   if (InternalId)
4198     return InternalId;
4199 
4200   if (isExternallyVisible(T->getLinkage())) {
4201     std::string OutName;
4202     llvm::raw_string_ostream Out(OutName);
4203     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4204 
4205     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4206   } else {
4207     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4208                                            llvm::ArrayRef<llvm::Metadata *>());
4209   }
4210 
4211   return InternalId;
4212 }
4213 
4214 /// Returns whether this module needs the "all-vtables" bitset.
4215 bool CodeGenModule::NeedAllVtablesBitSet() const {
4216   // Returns true if at least one of vtable-based CFI checkers is enabled and
4217   // is not in the trapping mode.
4218   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4219            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4220           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4221            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4222           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4223            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4224           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4225            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4226 }
4227 
4228 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4229                                             llvm::GlobalVariable *VTable,
4230                                             CharUnits Offset,
4231                                             const CXXRecordDecl *RD) {
4232   llvm::Metadata *MD =
4233       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4234   llvm::Metadata *BitsetOps[] = {
4235       MD, llvm::ConstantAsMetadata::get(VTable),
4236       llvm::ConstantAsMetadata::get(
4237           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4238   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4239 
4240   if (CodeGenOpts.SanitizeCfiCrossDso) {
4241     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4242       llvm::Metadata *BitsetOps2[] = {
4243           llvm::ConstantAsMetadata::get(TypeId),
4244           llvm::ConstantAsMetadata::get(VTable),
4245           llvm::ConstantAsMetadata::get(
4246               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4247       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4248     }
4249   }
4250 
4251   if (NeedAllVtablesBitSet()) {
4252     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4253     llvm::Metadata *BitsetOps[] = {
4254         MD, llvm::ConstantAsMetadata::get(VTable),
4255         llvm::ConstantAsMetadata::get(
4256             llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4257     // Avoid adding a node to BitsetsMD twice.
4258     if (!llvm::MDTuple::getIfExists(getLLVMContext(), BitsetOps))
4259       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4260   }
4261 }
4262 
4263 // Fills in the supplied string map with the set of target features for the
4264 // passed in function.
4265 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4266                                           const FunctionDecl *FD) {
4267   StringRef TargetCPU = Target.getTargetOpts().CPU;
4268   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4269     // If we have a TargetAttr build up the feature map based on that.
4270     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4271 
4272     // Make a copy of the features as passed on the command line into the
4273     // beginning of the additional features from the function to override.
4274     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4275                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4276                             Target.getTargetOpts().FeaturesAsWritten.end());
4277 
4278     if (ParsedAttr.second != "")
4279       TargetCPU = ParsedAttr.second;
4280 
4281     // Now populate the feature map, first with the TargetCPU which is either
4282     // the default or a new one from the target attribute string. Then we'll use
4283     // the passed in features (FeaturesAsWritten) along with the new ones from
4284     // the attribute.
4285     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4286   } else {
4287     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4288                           Target.getTargetOpts().Features);
4289   }
4290 }
4291 
4292 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4293   if (!SanStats)
4294     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4295 
4296   return *SanStats;
4297 }
4298