xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 819c3ddda8c2957299578ae16c6db325ad0b0c80)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C),
43     VtableInfo(*this), Runtime(0),
44     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
45     VMContext(M.getContext()) {
46 
47   if (!Features.ObjC1)
48     Runtime = 0;
49   else if (!Features.NeXTRuntime)
50     Runtime = CreateGNUObjCRuntime(*this);
51   else if (Features.ObjCNonFragileABI)
52     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
53   else
54     Runtime = CreateMacObjCRuntime(*this);
55 
56   // If debug info generation is enabled, create the CGDebugInfo object.
57   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
58 }
59 
60 CodeGenModule::~CodeGenModule() {
61   delete Runtime;
62   delete DebugInfo;
63 }
64 
65 void CodeGenModule::Release() {
66   // We need to call this first because it can add deferred declarations.
67   EmitCXXGlobalInitFunc();
68 
69   EmitDeferred();
70   if (Runtime)
71     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
72       AddGlobalCtor(ObjCInitFunction);
73   EmitCtorList(GlobalCtors, "llvm.global_ctors");
74   EmitCtorList(GlobalDtors, "llvm.global_dtors");
75   EmitAnnotations();
76   EmitLLVMUsed();
77 }
78 
79 /// ErrorUnsupported - Print out an error that codegen doesn't support the
80 /// specified stmt yet.
81 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
82                                      bool OmitOnError) {
83   if (OmitOnError && getDiags().hasErrorOccurred())
84     return;
85   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
86                                                "cannot compile this %0 yet");
87   std::string Msg = Type;
88   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
89     << Msg << S->getSourceRange();
90 }
91 
92 /// ErrorUnsupported - Print out an error that codegen doesn't support the
93 /// specified decl yet.
94 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
95                                      bool OmitOnError) {
96   if (OmitOnError && getDiags().hasErrorOccurred())
97     return;
98   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                                "cannot compile this %0 yet");
100   std::string Msg = Type;
101   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
102 }
103 
104 LangOptions::VisibilityMode
105 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
106   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
107     if (VD->getStorageClass() == VarDecl::PrivateExtern)
108       return LangOptions::Hidden;
109 
110   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
111     switch (attr->getVisibility()) {
112     default: assert(0 && "Unknown visibility!");
113     case VisibilityAttr::DefaultVisibility:
114       return LangOptions::Default;
115     case VisibilityAttr::HiddenVisibility:
116       return LangOptions::Hidden;
117     case VisibilityAttr::ProtectedVisibility:
118       return LangOptions::Protected;
119     }
120   }
121 
122   return getLangOptions().getVisibilityMode();
123 }
124 
125 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
126                                         const Decl *D) const {
127   // Internal definitions always have default visibility.
128   if (GV->hasLocalLinkage()) {
129     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
130     return;
131   }
132 
133   switch (getDeclVisibilityMode(D)) {
134   default: assert(0 && "Unknown visibility!");
135   case LangOptions::Default:
136     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
137   case LangOptions::Hidden:
138     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
139   case LangOptions::Protected:
140     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
141   }
142 }
143 
144 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
145   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
146 
147   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
148     return getMangledCXXCtorName(D, GD.getCtorType());
149   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
150     return getMangledCXXDtorName(D, GD.getDtorType());
151 
152   return getMangledName(ND);
153 }
154 
155 /// \brief Retrieves the mangled name for the given declaration.
156 ///
157 /// If the given declaration requires a mangled name, returns an
158 /// const char* containing the mangled name.  Otherwise, returns
159 /// the unmangled name.
160 ///
161 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
162   // In C, functions with no attributes never need to be mangled. Fastpath them.
163   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
164     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
165     return ND->getNameAsCString();
166   }
167 
168   llvm::SmallString<256> Name;
169   llvm::raw_svector_ostream Out(Name);
170   if (!mangleName(getMangleContext(), ND, Out)) {
171     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
172     return ND->getNameAsCString();
173   }
174 
175   Name += '\0';
176   return UniqueMangledName(Name.begin(), Name.end());
177 }
178 
179 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
180                                              const char *NameEnd) {
181   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
182 
183   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
184 }
185 
186 /// AddGlobalCtor - Add a function to the list that will be called before
187 /// main() runs.
188 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
189   // FIXME: Type coercion of void()* types.
190   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
191 }
192 
193 /// AddGlobalDtor - Add a function to the list that will be called
194 /// when the module is unloaded.
195 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
196   // FIXME: Type coercion of void()* types.
197   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
198 }
199 
200 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
201   // Ctor function type is void()*.
202   llvm::FunctionType* CtorFTy =
203     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
204                             std::vector<const llvm::Type*>(),
205                             false);
206   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
207 
208   // Get the type of a ctor entry, { i32, void ()* }.
209   llvm::StructType* CtorStructTy =
210     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
211                           llvm::PointerType::getUnqual(CtorFTy), NULL);
212 
213   // Construct the constructor and destructor arrays.
214   std::vector<llvm::Constant*> Ctors;
215   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
216     std::vector<llvm::Constant*> S;
217     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
218                 I->second, false));
219     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
220     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
221   }
222 
223   if (!Ctors.empty()) {
224     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
225     new llvm::GlobalVariable(TheModule, AT, false,
226                              llvm::GlobalValue::AppendingLinkage,
227                              llvm::ConstantArray::get(AT, Ctors),
228                              GlobalName);
229   }
230 }
231 
232 void CodeGenModule::EmitAnnotations() {
233   if (Annotations.empty())
234     return;
235 
236   // Create a new global variable for the ConstantStruct in the Module.
237   llvm::Constant *Array =
238   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
239                                                 Annotations.size()),
240                            Annotations);
241   llvm::GlobalValue *gv =
242   new llvm::GlobalVariable(TheModule, Array->getType(), false,
243                            llvm::GlobalValue::AppendingLinkage, Array,
244                            "llvm.global.annotations");
245   gv->setSection("llvm.metadata");
246 }
247 
248 static CodeGenModule::GVALinkage
249 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
250                       const LangOptions &Features) {
251   // Everything located semantically within an anonymous namespace is
252   // always internal.
253   if (FD->isInAnonymousNamespace())
254     return CodeGenModule::GVA_Internal;
255 
256   // The kind of external linkage this function will have, if it is not
257   // inline or static.
258   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259   if (Context.getLangOptions().CPlusPlus &&
260       FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
261     External = CodeGenModule::GVA_TemplateInstantiation;
262 
263   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
264     // C++ member functions defined inside the class are always inline.
265     if (MD->isInline() || !MD->isOutOfLine())
266       return CodeGenModule::GVA_CXXInline;
267 
268     return External;
269   }
270 
271   // "static" functions get internal linkage.
272   if (FD->getStorageClass() == FunctionDecl::Static)
273     return CodeGenModule::GVA_Internal;
274 
275   if (!FD->isInline())
276     return External;
277 
278   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
279     // GNU or C99 inline semantics. Determine whether this symbol should be
280     // externally visible.
281     if (FD->isInlineDefinitionExternallyVisible())
282       return External;
283 
284     // C99 inline semantics, where the symbol is not externally visible.
285     return CodeGenModule::GVA_C99Inline;
286   }
287 
288   // C++ inline semantics
289   assert(Features.CPlusPlus && "Must be in C++ mode");
290   return CodeGenModule::GVA_CXXInline;
291 }
292 
293 /// SetFunctionDefinitionAttributes - Set attributes for a global.
294 ///
295 /// FIXME: This is currently only done for aliases and functions, but not for
296 /// variables (these details are set in EmitGlobalVarDefinition for variables).
297 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
298                                                     llvm::GlobalValue *GV) {
299   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
300 
301   if (Linkage == GVA_Internal) {
302     GV->setLinkage(llvm::Function::InternalLinkage);
303   } else if (D->hasAttr<DLLExportAttr>()) {
304     GV->setLinkage(llvm::Function::DLLExportLinkage);
305   } else if (D->hasAttr<WeakAttr>()) {
306     GV->setLinkage(llvm::Function::WeakAnyLinkage);
307   } else if (Linkage == GVA_C99Inline) {
308     // In C99 mode, 'inline' functions are guaranteed to have a strong
309     // definition somewhere else, so we can use available_externally linkage.
310     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
311   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
312     // In C++, the compiler has to emit a definition in every translation unit
313     // that references the function.  We should use linkonce_odr because
314     // a) if all references in this translation unit are optimized away, we
315     // don't need to codegen it.  b) if the function persists, it needs to be
316     // merged with other definitions. c) C++ has the ODR, so we know the
317     // definition is dependable.
318     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
319   } else {
320     assert(Linkage == GVA_StrongExternal);
321     // Otherwise, we have strong external linkage.
322     GV->setLinkage(llvm::Function::ExternalLinkage);
323   }
324 
325   SetCommonAttributes(D, GV);
326 }
327 
328 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
329                                               const CGFunctionInfo &Info,
330                                               llvm::Function *F) {
331   unsigned CallingConv;
332   AttributeListType AttributeList;
333   ConstructAttributeList(Info, D, AttributeList, CallingConv);
334   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
335                                           AttributeList.size()));
336   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
337 }
338 
339 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
340                                                            llvm::Function *F) {
341   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
342     F->addFnAttr(llvm::Attribute::NoUnwind);
343 
344   if (D->hasAttr<AlwaysInlineAttr>())
345     F->addFnAttr(llvm::Attribute::AlwaysInline);
346 
347   if (D->hasAttr<NoInlineAttr>())
348     F->addFnAttr(llvm::Attribute::NoInline);
349 
350   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>())
351     F->setAlignment(AA->getAlignment()/8);
352   // C++ ABI requires 2-byte alignment for member functions.
353   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
354     F->setAlignment(2);
355 }
356 
357 void CodeGenModule::SetCommonAttributes(const Decl *D,
358                                         llvm::GlobalValue *GV) {
359   setGlobalVisibility(GV, D);
360 
361   if (D->hasAttr<UsedAttr>())
362     AddUsedGlobal(GV);
363 
364   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
365     GV->setSection(SA->getName());
366 }
367 
368 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
369                                                   llvm::Function *F,
370                                                   const CGFunctionInfo &FI) {
371   SetLLVMFunctionAttributes(D, FI, F);
372   SetLLVMFunctionAttributesForDefinition(D, F);
373 
374   F->setLinkage(llvm::Function::InternalLinkage);
375 
376   SetCommonAttributes(D, F);
377 }
378 
379 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
380                                           llvm::Function *F,
381                                           bool IsIncompleteFunction) {
382   if (!IsIncompleteFunction)
383     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
384 
385   // Only a few attributes are set on declarations; these may later be
386   // overridden by a definition.
387 
388   if (FD->hasAttr<DLLImportAttr>()) {
389     F->setLinkage(llvm::Function::DLLImportLinkage);
390   } else if (FD->hasAttr<WeakAttr>() ||
391              FD->hasAttr<WeakImportAttr>()) {
392     // "extern_weak" is overloaded in LLVM; we probably should have
393     // separate linkage types for this.
394     F->setLinkage(llvm::Function::ExternalWeakLinkage);
395   } else {
396     F->setLinkage(llvm::Function::ExternalLinkage);
397   }
398 
399   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
400     F->setSection(SA->getName());
401 }
402 
403 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
404   assert(!GV->isDeclaration() &&
405          "Only globals with definition can force usage.");
406   LLVMUsed.push_back(GV);
407 }
408 
409 void CodeGenModule::EmitLLVMUsed() {
410   // Don't create llvm.used if there is no need.
411   if (LLVMUsed.empty())
412     return;
413 
414   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
415 
416   // Convert LLVMUsed to what ConstantArray needs.
417   std::vector<llvm::Constant*> UsedArray;
418   UsedArray.resize(LLVMUsed.size());
419   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
420     UsedArray[i] =
421      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
422                                       i8PTy);
423   }
424 
425   if (UsedArray.empty())
426     return;
427   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
428 
429   llvm::GlobalVariable *GV =
430     new llvm::GlobalVariable(getModule(), ATy, false,
431                              llvm::GlobalValue::AppendingLinkage,
432                              llvm::ConstantArray::get(ATy, UsedArray),
433                              "llvm.used");
434 
435   GV->setSection("llvm.metadata");
436 }
437 
438 void CodeGenModule::EmitDeferred() {
439   // Emit code for any potentially referenced deferred decls.  Since a
440   // previously unused static decl may become used during the generation of code
441   // for a static function, iterate until no  changes are made.
442   while (!DeferredDeclsToEmit.empty()) {
443     GlobalDecl D = DeferredDeclsToEmit.back();
444     DeferredDeclsToEmit.pop_back();
445 
446     // The mangled name for the decl must have been emitted in GlobalDeclMap.
447     // Look it up to see if it was defined with a stronger definition (e.g. an
448     // extern inline function with a strong function redefinition).  If so,
449     // just ignore the deferred decl.
450     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
451     assert(CGRef && "Deferred decl wasn't referenced?");
452 
453     if (!CGRef->isDeclaration())
454       continue;
455 
456     // Otherwise, emit the definition and move on to the next one.
457     EmitGlobalDefinition(D);
458   }
459 }
460 
461 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
462 /// annotation information for a given GlobalValue.  The annotation struct is
463 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
464 /// GlobalValue being annotated.  The second field is the constant string
465 /// created from the AnnotateAttr's annotation.  The third field is a constant
466 /// string containing the name of the translation unit.  The fourth field is
467 /// the line number in the file of the annotated value declaration.
468 ///
469 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
470 ///        appears to.
471 ///
472 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
473                                                 const AnnotateAttr *AA,
474                                                 unsigned LineNo) {
475   llvm::Module *M = &getModule();
476 
477   // get [N x i8] constants for the annotation string, and the filename string
478   // which are the 2nd and 3rd elements of the global annotation structure.
479   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
480   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
481                                                   AA->getAnnotation(), true);
482   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
483                                                   M->getModuleIdentifier(),
484                                                   true);
485 
486   // Get the two global values corresponding to the ConstantArrays we just
487   // created to hold the bytes of the strings.
488   llvm::GlobalValue *annoGV =
489     new llvm::GlobalVariable(*M, anno->getType(), false,
490                              llvm::GlobalValue::PrivateLinkage, anno,
491                              GV->getName());
492   // translation unit name string, emitted into the llvm.metadata section.
493   llvm::GlobalValue *unitGV =
494     new llvm::GlobalVariable(*M, unit->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, unit,
496                              ".str");
497 
498   // Create the ConstantStruct for the global annotation.
499   llvm::Constant *Fields[4] = {
500     llvm::ConstantExpr::getBitCast(GV, SBP),
501     llvm::ConstantExpr::getBitCast(annoGV, SBP),
502     llvm::ConstantExpr::getBitCast(unitGV, SBP),
503     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
504   };
505   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
506 }
507 
508 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
509   // Never defer when EmitAllDecls is specified or the decl has
510   // attribute used.
511   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
512     return false;
513 
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
515     // Constructors and destructors should never be deferred.
516     if (FD->hasAttr<ConstructorAttr>() ||
517         FD->hasAttr<DestructorAttr>())
518       return false;
519 
520     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
521 
522     // static, static inline, always_inline, and extern inline functions can
523     // always be deferred.  Normal inline functions can be deferred in C99/C++.
524     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
525         Linkage == GVA_CXXInline)
526       return true;
527     return false;
528   }
529 
530   const VarDecl *VD = cast<VarDecl>(Global);
531   assert(VD->isFileVarDecl() && "Invalid decl");
532 
533   // We never want to defer structs that have non-trivial constructors or
534   // destructors.
535 
536   // FIXME: Handle references.
537   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
538     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
539       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
540         return false;
541     }
542   }
543 
544   // Static data may be deferred, but out-of-line static data members
545   // cannot be.
546   // FIXME: What if the initializer has side effects?
547   return VD->isInAnonymousNamespace() ||
548          (VD->getStorageClass() == VarDecl::Static &&
549           !(VD->isStaticDataMember() && VD->isOutOfLine()));
550 }
551 
552 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
553   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
554 
555   // If this is an alias definition (which otherwise looks like a declaration)
556   // emit it now.
557   if (Global->hasAttr<AliasAttr>())
558     return EmitAliasDefinition(Global);
559 
560   // Ignore declarations, they will be emitted on their first use.
561   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
562     // Forward declarations are emitted lazily on first use.
563     if (!FD->isThisDeclarationADefinition())
564       return;
565   } else {
566     const VarDecl *VD = cast<VarDecl>(Global);
567     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
568 
569     // In C++, if this is marked "extern", defer code generation.
570     if (getLangOptions().CPlusPlus && !VD->getInit() &&
571         (VD->getStorageClass() == VarDecl::Extern ||
572          VD->isExternC()))
573       return;
574 
575     // In C, if this isn't a definition, defer code generation.
576     if (!getLangOptions().CPlusPlus && !VD->getInit())
577       return;
578   }
579 
580   // Defer code generation when possible if this is a static definition, inline
581   // function etc.  These we only want to emit if they are used.
582   if (MayDeferGeneration(Global)) {
583     // If the value has already been used, add it directly to the
584     // DeferredDeclsToEmit list.
585     const char *MangledName = getMangledName(GD);
586     if (GlobalDeclMap.count(MangledName))
587       DeferredDeclsToEmit.push_back(GD);
588     else {
589       // Otherwise, remember that we saw a deferred decl with this name.  The
590       // first use of the mangled name will cause it to move into
591       // DeferredDeclsToEmit.
592       DeferredDecls[MangledName] = GD;
593     }
594     return;
595   }
596 
597   // Otherwise emit the definition.
598   EmitGlobalDefinition(GD);
599 }
600 
601 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
602   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
603 
604   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
605     EmitCXXConstructor(CD, GD.getCtorType());
606   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
607     EmitCXXDestructor(DD, GD.getDtorType());
608   else if (isa<FunctionDecl>(D))
609     EmitGlobalFunctionDefinition(GD);
610   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
611     EmitGlobalVarDefinition(VD);
612   else {
613     assert(0 && "Invalid argument to EmitGlobalDefinition()");
614   }
615 }
616 
617 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
618 /// module, create and return an llvm Function with the specified type. If there
619 /// is something in the module with the specified name, return it potentially
620 /// bitcasted to the right type.
621 ///
622 /// If D is non-null, it specifies a decl that correspond to this.  This is used
623 /// to set the attributes on the function when it is first created.
624 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
625                                                        const llvm::Type *Ty,
626                                                        GlobalDecl D) {
627   // Lookup the entry, lazily creating it if necessary.
628   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
629   if (Entry) {
630     if (Entry->getType()->getElementType() == Ty)
631       return Entry;
632 
633     // Make sure the result is of the correct type.
634     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
635     return llvm::ConstantExpr::getBitCast(Entry, PTy);
636   }
637 
638   // This is the first use or definition of a mangled name.  If there is a
639   // deferred decl with this name, remember that we need to emit it at the end
640   // of the file.
641   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
642     DeferredDecls.find(MangledName);
643   if (DDI != DeferredDecls.end()) {
644     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
645     // list, and remove it from DeferredDecls (since we don't need it anymore).
646     DeferredDeclsToEmit.push_back(DDI->second);
647     DeferredDecls.erase(DDI);
648   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
649     // If this the first reference to a C++ inline function in a class, queue up
650     // the deferred function body for emission.  These are not seen as
651     // top-level declarations.
652     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
653       DeferredDeclsToEmit.push_back(D);
654     // A called constructor which has no definition or declaration need be
655     // synthesized.
656     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
657       const CXXRecordDecl *ClassDecl =
658         cast<CXXRecordDecl>(CD->getDeclContext());
659       if (CD->isCopyConstructor(getContext()))
660         DeferredCopyConstructorToEmit(D);
661       else if (!ClassDecl->hasUserDeclaredConstructor())
662         DeferredDeclsToEmit.push_back(D);
663     }
664     else if (isa<CXXDestructorDecl>(FD))
665        DeferredDestructorToEmit(D);
666     else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
667            if (MD->isCopyAssignment())
668              DeferredCopyAssignmentToEmit(D);
669   }
670 
671   // This function doesn't have a complete type (for example, the return
672   // type is an incomplete struct). Use a fake type instead, and make
673   // sure not to try to set attributes.
674   bool IsIncompleteFunction = false;
675   if (!isa<llvm::FunctionType>(Ty)) {
676     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
677                                  std::vector<const llvm::Type*>(), false);
678     IsIncompleteFunction = true;
679   }
680   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
681                                              llvm::Function::ExternalLinkage,
682                                              "", &getModule());
683   F->setName(MangledName);
684   if (D.getDecl())
685     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
686                           IsIncompleteFunction);
687   Entry = F;
688   return F;
689 }
690 
691 /// Defer definition of copy constructor(s) which need be implicitly defined.
692 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
693   const CXXConstructorDecl *CD =
694     cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
695   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
696   if (ClassDecl->hasTrivialCopyConstructor() ||
697       ClassDecl->hasUserDeclaredCopyConstructor())
698     return;
699 
700   // First make sure all direct base classes and virtual bases and non-static
701   // data mebers which need to have their copy constructors implicitly defined
702   // are defined. 12.8.p7
703   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
704        Base != ClassDecl->bases_end(); ++Base) {
705     CXXRecordDecl *BaseClassDecl
706       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
707     if (CXXConstructorDecl *BaseCopyCtor =
708         BaseClassDecl->getCopyConstructor(Context, 0))
709       GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
710   }
711 
712   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
713        FieldEnd = ClassDecl->field_end();
714        Field != FieldEnd; ++Field) {
715     QualType FieldType = Context.getCanonicalType((*Field)->getType());
716     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
717       FieldType = Array->getElementType();
718     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
719       if ((*Field)->isAnonymousStructOrUnion())
720         continue;
721       CXXRecordDecl *FieldClassDecl
722         = cast<CXXRecordDecl>(FieldClassType->getDecl());
723       if (CXXConstructorDecl *FieldCopyCtor =
724           FieldClassDecl->getCopyConstructor(Context, 0))
725         GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
726     }
727   }
728   DeferredDeclsToEmit.push_back(CopyCtorDecl);
729 }
730 
731 /// Defer definition of copy assignments which need be implicitly defined.
732 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
733   const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
734   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
735 
736   if (ClassDecl->hasTrivialCopyAssignment() ||
737       ClassDecl->hasUserDeclaredCopyAssignment())
738     return;
739 
740   // First make sure all direct base classes and virtual bases and non-static
741   // data mebers which need to have their copy assignments implicitly defined
742   // are defined. 12.8.p12
743   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
744        Base != ClassDecl->bases_end(); ++Base) {
745     CXXRecordDecl *BaseClassDecl
746       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
747     const CXXMethodDecl *MD = 0;
748     if (!BaseClassDecl->hasTrivialCopyAssignment() &&
749         !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
750         BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
751       GetAddrOfFunction(MD, 0);
752   }
753 
754   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
755        FieldEnd = ClassDecl->field_end();
756        Field != FieldEnd; ++Field) {
757     QualType FieldType = Context.getCanonicalType((*Field)->getType());
758     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
759       FieldType = Array->getElementType();
760     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
761       if ((*Field)->isAnonymousStructOrUnion())
762         continue;
763       CXXRecordDecl *FieldClassDecl
764         = cast<CXXRecordDecl>(FieldClassType->getDecl());
765       const CXXMethodDecl *MD = 0;
766       if (!FieldClassDecl->hasTrivialCopyAssignment() &&
767           !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
768           FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
769           GetAddrOfFunction(MD, 0);
770     }
771   }
772   DeferredDeclsToEmit.push_back(CopyAssignDecl);
773 }
774 
775 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
776   const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
777   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
778   if (ClassDecl->hasTrivialDestructor() ||
779       ClassDecl->hasUserDeclaredDestructor())
780     return;
781 
782   for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
783        Base != ClassDecl->bases_end(); ++Base) {
784     CXXRecordDecl *BaseClassDecl
785       = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
786     if (const CXXDestructorDecl *BaseDtor =
787           BaseClassDecl->getDestructor(Context))
788       GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
789   }
790 
791   for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
792        FieldEnd = ClassDecl->field_end();
793        Field != FieldEnd; ++Field) {
794     QualType FieldType = Context.getCanonicalType((*Field)->getType());
795     if (const ArrayType *Array = Context.getAsArrayType(FieldType))
796       FieldType = Array->getElementType();
797     if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
798       if ((*Field)->isAnonymousStructOrUnion())
799         continue;
800       CXXRecordDecl *FieldClassDecl
801         = cast<CXXRecordDecl>(FieldClassType->getDecl());
802       if (const CXXDestructorDecl *FieldDtor =
803             FieldClassDecl->getDestructor(Context))
804         GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
805     }
806   }
807   DeferredDeclsToEmit.push_back(DtorDecl);
808 }
809 
810 
811 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
812 /// non-null, then this function will use the specified type if it has to
813 /// create it (this occurs when we see a definition of the function).
814 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
815                                                  const llvm::Type *Ty) {
816   // If there was no specific requested type, just convert it now.
817   if (!Ty)
818     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
819   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
820 }
821 
822 /// CreateRuntimeFunction - Create a new runtime function with the specified
823 /// type and name.
824 llvm::Constant *
825 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
826                                      const char *Name) {
827   // Convert Name to be a uniqued string from the IdentifierInfo table.
828   Name = getContext().Idents.get(Name).getName();
829   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
830 }
831 
832 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
833 /// create and return an llvm GlobalVariable with the specified type.  If there
834 /// is something in the module with the specified name, return it potentially
835 /// bitcasted to the right type.
836 ///
837 /// If D is non-null, it specifies a decl that correspond to this.  This is used
838 /// to set the attributes on the global when it is first created.
839 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
840                                                      const llvm::PointerType*Ty,
841                                                      const VarDecl *D) {
842   // Lookup the entry, lazily creating it if necessary.
843   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
844   if (Entry) {
845     if (Entry->getType() == Ty)
846       return Entry;
847 
848     // Make sure the result is of the correct type.
849     return llvm::ConstantExpr::getBitCast(Entry, Ty);
850   }
851 
852   // This is the first use or definition of a mangled name.  If there is a
853   // deferred decl with this name, remember that we need to emit it at the end
854   // of the file.
855   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
856     DeferredDecls.find(MangledName);
857   if (DDI != DeferredDecls.end()) {
858     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
859     // list, and remove it from DeferredDecls (since we don't need it anymore).
860     DeferredDeclsToEmit.push_back(DDI->second);
861     DeferredDecls.erase(DDI);
862   }
863 
864   llvm::GlobalVariable *GV =
865     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
866                              llvm::GlobalValue::ExternalLinkage,
867                              0, "", 0,
868                              false, Ty->getAddressSpace());
869   GV->setName(MangledName);
870 
871   // Handle things which are present even on external declarations.
872   if (D) {
873     // FIXME: This code is overly simple and should be merged with other global
874     // handling.
875     GV->setConstant(D->getType().isConstant(Context));
876 
877     // FIXME: Merge with other attribute handling code.
878     if (D->getStorageClass() == VarDecl::PrivateExtern)
879       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
880 
881     if (D->hasAttr<WeakAttr>() ||
882         D->hasAttr<WeakImportAttr>())
883       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
884 
885     GV->setThreadLocal(D->isThreadSpecified());
886   }
887 
888   return Entry = GV;
889 }
890 
891 
892 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
893 /// given global variable.  If Ty is non-null and if the global doesn't exist,
894 /// then it will be greated with the specified type instead of whatever the
895 /// normal requested type would be.
896 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
897                                                   const llvm::Type *Ty) {
898   assert(D->hasGlobalStorage() && "Not a global variable");
899   QualType ASTTy = D->getType();
900   if (Ty == 0)
901     Ty = getTypes().ConvertTypeForMem(ASTTy);
902 
903   const llvm::PointerType *PTy =
904     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
905   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
906 }
907 
908 /// CreateRuntimeVariable - Create a new runtime global variable with the
909 /// specified type and name.
910 llvm::Constant *
911 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
912                                      const char *Name) {
913   // Convert Name to be a uniqued string from the IdentifierInfo table.
914   Name = getContext().Idents.get(Name).getName();
915   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
916 }
917 
918 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
919   assert(!D->getInit() && "Cannot emit definite definitions here!");
920 
921   if (MayDeferGeneration(D)) {
922     // If we have not seen a reference to this variable yet, place it
923     // into the deferred declarations table to be emitted if needed
924     // later.
925     const char *MangledName = getMangledName(D);
926     if (GlobalDeclMap.count(MangledName) == 0) {
927       DeferredDecls[MangledName] = D;
928       return;
929     }
930   }
931 
932   // The tentative definition is the only definition.
933   EmitGlobalVarDefinition(D);
934 }
935 
936 static CodeGenModule::GVALinkage
937 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
938   // Everything located semantically within an anonymous namespace is
939   // always internal.
940   if (VD->isInAnonymousNamespace())
941     return CodeGenModule::GVA_Internal;
942 
943   // Handle linkage for static data members.
944   if (VD->isStaticDataMember()) {
945     switch (VD->getTemplateSpecializationKind()) {
946     case TSK_Undeclared:
947     case TSK_ExplicitSpecialization:
948     case TSK_ExplicitInstantiationDefinition:
949       return CodeGenModule::GVA_StrongExternal;
950 
951     case TSK_ExplicitInstantiationDeclaration:
952       assert(false && "Variable should not be instantiated");
953       // Fall through to treat this like any other instantiation.
954 
955     case TSK_ImplicitInstantiation:
956       return CodeGenModule::GVA_TemplateInstantiation;
957     }
958   }
959 
960   // Static variables get internal linkage.
961   if (VD->getStorageClass() == VarDecl::Static)
962     return CodeGenModule::GVA_Internal;
963 
964   return CodeGenModule::GVA_StrongExternal;
965 }
966 
967 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
968   llvm::Constant *Init = 0;
969   QualType ASTTy = D->getType();
970 
971   if (D->getInit() == 0) {
972     // This is a tentative definition; tentative definitions are
973     // implicitly initialized with { 0 }.
974     //
975     // Note that tentative definitions are only emitted at the end of
976     // a translation unit, so they should never have incomplete
977     // type. In addition, EmitTentativeDefinition makes sure that we
978     // never attempt to emit a tentative definition if a real one
979     // exists. A use may still exists, however, so we still may need
980     // to do a RAUW.
981     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
982     Init = EmitNullConstant(D->getType());
983   } else {
984     Init = EmitConstantExpr(D->getInit(), D->getType());
985 
986     if (!Init) {
987       QualType T = D->getInit()->getType();
988       if (getLangOptions().CPlusPlus) {
989         CXXGlobalInits.push_back(D);
990         Init = EmitNullConstant(T);
991       } else {
992         ErrorUnsupported(D, "static initializer");
993         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
994       }
995     }
996   }
997 
998   const llvm::Type* InitType = Init->getType();
999   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1000 
1001   // Strip off a bitcast if we got one back.
1002   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1003     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1004            // all zero index gep.
1005            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1006     Entry = CE->getOperand(0);
1007   }
1008 
1009   // Entry is now either a Function or GlobalVariable.
1010   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1011 
1012   // We have a definition after a declaration with the wrong type.
1013   // We must make a new GlobalVariable* and update everything that used OldGV
1014   // (a declaration or tentative definition) with the new GlobalVariable*
1015   // (which will be a definition).
1016   //
1017   // This happens if there is a prototype for a global (e.g.
1018   // "extern int x[];") and then a definition of a different type (e.g.
1019   // "int x[10];"). This also happens when an initializer has a different type
1020   // from the type of the global (this happens with unions).
1021   if (GV == 0 ||
1022       GV->getType()->getElementType() != InitType ||
1023       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1024 
1025     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1026     GlobalDeclMap.erase(getMangledName(D));
1027 
1028     // Make a new global with the correct type, this is now guaranteed to work.
1029     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1030     GV->takeName(cast<llvm::GlobalValue>(Entry));
1031 
1032     // Replace all uses of the old global with the new global
1033     llvm::Constant *NewPtrForOldDecl =
1034         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1035     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1036 
1037     // Erase the old global, since it is no longer used.
1038     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1039   }
1040 
1041   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1042     SourceManager &SM = Context.getSourceManager();
1043     AddAnnotation(EmitAnnotateAttr(GV, AA,
1044                               SM.getInstantiationLineNumber(D->getLocation())));
1045   }
1046 
1047   GV->setInitializer(Init);
1048 
1049   // If it is safe to mark the global 'constant', do so now.
1050   GV->setConstant(false);
1051   if (D->getType().isConstant(Context)) {
1052     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1053     // members, it cannot be declared "LLVM const".
1054     GV->setConstant(true);
1055   }
1056 
1057   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1058 
1059   // Set the llvm linkage type as appropriate.
1060   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1061   if (Linkage == GVA_Internal)
1062     GV->setLinkage(llvm::Function::InternalLinkage);
1063   else if (D->hasAttr<DLLImportAttr>())
1064     GV->setLinkage(llvm::Function::DLLImportLinkage);
1065   else if (D->hasAttr<DLLExportAttr>())
1066     GV->setLinkage(llvm::Function::DLLExportLinkage);
1067   else if (D->hasAttr<WeakAttr>()) {
1068     if (GV->isConstant())
1069       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1070     else
1071       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1072   } else if (Linkage == GVA_TemplateInstantiation)
1073     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1074   else if (!CompileOpts.NoCommon &&
1075            !D->hasExternalStorage() && !D->getInit() &&
1076            !D->getAttr<SectionAttr>()) {
1077     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1078     // common vars aren't constant even if declared const.
1079     GV->setConstant(false);
1080   } else
1081     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1082 
1083   SetCommonAttributes(D, GV);
1084 
1085   // Emit global variable debug information.
1086   if (CGDebugInfo *DI = getDebugInfo()) {
1087     DI->setLocation(D->getLocation());
1088     DI->EmitGlobalVariable(GV, D);
1089   }
1090 }
1091 
1092 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1093 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1094 /// existing call uses of the old function in the module, this adjusts them to
1095 /// call the new function directly.
1096 ///
1097 /// This is not just a cleanup: the always_inline pass requires direct calls to
1098 /// functions to be able to inline them.  If there is a bitcast in the way, it
1099 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1100 /// run at -O0.
1101 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1102                                                       llvm::Function *NewFn) {
1103   // If we're redefining a global as a function, don't transform it.
1104   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1105   if (OldFn == 0) return;
1106 
1107   const llvm::Type *NewRetTy = NewFn->getReturnType();
1108   llvm::SmallVector<llvm::Value*, 4> ArgList;
1109 
1110   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1111        UI != E; ) {
1112     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1113     unsigned OpNo = UI.getOperandNo();
1114     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1115     if (!CI || OpNo != 0) continue;
1116 
1117     // If the return types don't match exactly, and if the call isn't dead, then
1118     // we can't transform this call.
1119     if (CI->getType() != NewRetTy && !CI->use_empty())
1120       continue;
1121 
1122     // If the function was passed too few arguments, don't transform.  If extra
1123     // arguments were passed, we silently drop them.  If any of the types
1124     // mismatch, we don't transform.
1125     unsigned ArgNo = 0;
1126     bool DontTransform = false;
1127     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1128          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1129       if (CI->getNumOperands()-1 == ArgNo ||
1130           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1131         DontTransform = true;
1132         break;
1133       }
1134     }
1135     if (DontTransform)
1136       continue;
1137 
1138     // Okay, we can transform this.  Create the new call instruction and copy
1139     // over the required information.
1140     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1141     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1142                                                      ArgList.end(), "", CI);
1143     ArgList.clear();
1144     if (!NewCall->getType()->isVoidTy())
1145       NewCall->takeName(CI);
1146     NewCall->setAttributes(CI->getAttributes());
1147     NewCall->setCallingConv(CI->getCallingConv());
1148 
1149     // Finally, remove the old call, replacing any uses with the new one.
1150     if (!CI->use_empty())
1151       CI->replaceAllUsesWith(NewCall);
1152 
1153     // Copy any custom metadata attached with CI.
1154     llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata();
1155     TheMetadata.copyMD(CI, NewCall);
1156 
1157     CI->eraseFromParent();
1158   }
1159 }
1160 
1161 
1162 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1163   const llvm::FunctionType *Ty;
1164   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1165 
1166   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1167     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1168 
1169     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1170   } else {
1171     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1172 
1173     // As a special case, make sure that definitions of K&R function
1174     // "type foo()" aren't declared as varargs (which forces the backend
1175     // to do unnecessary work).
1176     if (D->getType()->isFunctionNoProtoType()) {
1177       assert(Ty->isVarArg() && "Didn't lower type as expected");
1178       // Due to stret, the lowered function could have arguments.
1179       // Just create the same type as was lowered by ConvertType
1180       // but strip off the varargs bit.
1181       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1182       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1183     }
1184   }
1185 
1186   // Get or create the prototype for the function.
1187   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1188 
1189   // Strip off a bitcast if we got one back.
1190   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1191     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1192     Entry = CE->getOperand(0);
1193   }
1194 
1195 
1196   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1197     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1198 
1199     // If the types mismatch then we have to rewrite the definition.
1200     assert(OldFn->isDeclaration() &&
1201            "Shouldn't replace non-declaration");
1202 
1203     // F is the Function* for the one with the wrong type, we must make a new
1204     // Function* and update everything that used F (a declaration) with the new
1205     // Function* (which will be a definition).
1206     //
1207     // This happens if there is a prototype for a function
1208     // (e.g. "int f()") and then a definition of a different type
1209     // (e.g. "int f(int x)").  Start by making a new function of the
1210     // correct type, RAUW, then steal the name.
1211     GlobalDeclMap.erase(getMangledName(D));
1212     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1213     NewFn->takeName(OldFn);
1214 
1215     // If this is an implementation of a function without a prototype, try to
1216     // replace any existing uses of the function (which may be calls) with uses
1217     // of the new function
1218     if (D->getType()->isFunctionNoProtoType()) {
1219       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1220       OldFn->removeDeadConstantUsers();
1221     }
1222 
1223     // Replace uses of F with the Function we will endow with a body.
1224     if (!Entry->use_empty()) {
1225       llvm::Constant *NewPtrForOldDecl =
1226         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1227       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1228     }
1229 
1230     // Ok, delete the old function now, which is dead.
1231     OldFn->eraseFromParent();
1232 
1233     Entry = NewFn;
1234   }
1235 
1236   llvm::Function *Fn = cast<llvm::Function>(Entry);
1237 
1238   CodeGenFunction(*this).GenerateCode(D, Fn);
1239 
1240   SetFunctionDefinitionAttributes(D, Fn);
1241   SetLLVMFunctionAttributesForDefinition(D, Fn);
1242 
1243   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1244     AddGlobalCtor(Fn, CA->getPriority());
1245   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1246     AddGlobalDtor(Fn, DA->getPriority());
1247 }
1248 
1249 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1250   const AliasAttr *AA = D->getAttr<AliasAttr>();
1251   assert(AA && "Not an alias?");
1252 
1253   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1254 
1255   // Unique the name through the identifier table.
1256   const char *AliaseeName = AA->getAliasee().c_str();
1257   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1258 
1259   // Create a reference to the named value.  This ensures that it is emitted
1260   // if a deferred decl.
1261   llvm::Constant *Aliasee;
1262   if (isa<llvm::FunctionType>(DeclTy))
1263     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1264   else
1265     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1266                                     llvm::PointerType::getUnqual(DeclTy), 0);
1267 
1268   // Create the new alias itself, but don't set a name yet.
1269   llvm::GlobalValue *GA =
1270     new llvm::GlobalAlias(Aliasee->getType(),
1271                           llvm::Function::ExternalLinkage,
1272                           "", Aliasee, &getModule());
1273 
1274   // See if there is already something with the alias' name in the module.
1275   const char *MangledName = getMangledName(D);
1276   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1277 
1278   if (Entry && !Entry->isDeclaration()) {
1279     // If there is a definition in the module, then it wins over the alias.
1280     // This is dubious, but allow it to be safe.  Just ignore the alias.
1281     GA->eraseFromParent();
1282     return;
1283   }
1284 
1285   if (Entry) {
1286     // If there is a declaration in the module, then we had an extern followed
1287     // by the alias, as in:
1288     //   extern int test6();
1289     //   ...
1290     //   int test6() __attribute__((alias("test7")));
1291     //
1292     // Remove it and replace uses of it with the alias.
1293 
1294     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1295                                                           Entry->getType()));
1296     Entry->eraseFromParent();
1297   }
1298 
1299   // Now we know that there is no conflict, set the name.
1300   Entry = GA;
1301   GA->setName(MangledName);
1302 
1303   // Set attributes which are particular to an alias; this is a
1304   // specialization of the attributes which may be set on a global
1305   // variable/function.
1306   if (D->hasAttr<DLLExportAttr>()) {
1307     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1308       // The dllexport attribute is ignored for undefined symbols.
1309       if (FD->getBody())
1310         GA->setLinkage(llvm::Function::DLLExportLinkage);
1311     } else {
1312       GA->setLinkage(llvm::Function::DLLExportLinkage);
1313     }
1314   } else if (D->hasAttr<WeakAttr>() ||
1315              D->hasAttr<WeakImportAttr>()) {
1316     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1317   }
1318 
1319   SetCommonAttributes(D, GA);
1320 }
1321 
1322 /// getBuiltinLibFunction - Given a builtin id for a function like
1323 /// "__builtin_fabsf", return a Function* for "fabsf".
1324 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1325                                                   unsigned BuiltinID) {
1326   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1327           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1328          "isn't a lib fn");
1329 
1330   // Get the name, skip over the __builtin_ prefix (if necessary).
1331   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1332   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1333     Name += 10;
1334 
1335   // Get the type for the builtin.
1336   ASTContext::GetBuiltinTypeError Error;
1337   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1338   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1339 
1340   const llvm::FunctionType *Ty =
1341     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1342 
1343   // Unique the name through the identifier table.
1344   Name = getContext().Idents.get(Name).getName();
1345   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1346 }
1347 
1348 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1349                                             unsigned NumTys) {
1350   return llvm::Intrinsic::getDeclaration(&getModule(),
1351                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1352 }
1353 
1354 llvm::Function *CodeGenModule::getMemCpyFn() {
1355   if (MemCpyFn) return MemCpyFn;
1356   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1357   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1358 }
1359 
1360 llvm::Function *CodeGenModule::getMemMoveFn() {
1361   if (MemMoveFn) return MemMoveFn;
1362   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1363   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1364 }
1365 
1366 llvm::Function *CodeGenModule::getMemSetFn() {
1367   if (MemSetFn) return MemSetFn;
1368   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1369   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1370 }
1371 
1372 static llvm::StringMapEntry<llvm::Constant*> &
1373 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1374                          const StringLiteral *Literal,
1375                          bool TargetIsLSB,
1376                          bool &IsUTF16,
1377                          unsigned &StringLength) {
1378   unsigned NumBytes = Literal->getByteLength();
1379 
1380   // Check for simple case.
1381   if (!Literal->containsNonAsciiOrNull()) {
1382     StringLength = NumBytes;
1383     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1384                                                 StringLength));
1385   }
1386 
1387   // Otherwise, convert the UTF8 literals into a byte string.
1388   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1389   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1390   UTF16 *ToPtr = &ToBuf[0];
1391 
1392   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1393                                                &ToPtr, ToPtr + NumBytes,
1394                                                strictConversion);
1395 
1396   // Check for conversion failure.
1397   if (Result != conversionOK) {
1398     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1399     // this duplicate code.
1400     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1401     StringLength = NumBytes;
1402     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1403                                                 StringLength));
1404   }
1405 
1406   // ConvertUTF8toUTF16 returns the length in ToPtr.
1407   StringLength = ToPtr - &ToBuf[0];
1408 
1409   // Render the UTF-16 string into a byte array and convert to the target byte
1410   // order.
1411   //
1412   // FIXME: This isn't something we should need to do here.
1413   llvm::SmallString<128> AsBytes;
1414   AsBytes.reserve(StringLength * 2);
1415   for (unsigned i = 0; i != StringLength; ++i) {
1416     unsigned short Val = ToBuf[i];
1417     if (TargetIsLSB) {
1418       AsBytes.push_back(Val & 0xFF);
1419       AsBytes.push_back(Val >> 8);
1420     } else {
1421       AsBytes.push_back(Val >> 8);
1422       AsBytes.push_back(Val & 0xFF);
1423     }
1424   }
1425   // Append one extra null character, the second is automatically added by our
1426   // caller.
1427   AsBytes.push_back(0);
1428 
1429   IsUTF16 = true;
1430   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1431 }
1432 
1433 llvm::Constant *
1434 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1435   unsigned StringLength = 0;
1436   bool isUTF16 = false;
1437   llvm::StringMapEntry<llvm::Constant*> &Entry =
1438     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1439                              getTargetData().isLittleEndian(),
1440                              isUTF16, StringLength);
1441 
1442   if (llvm::Constant *C = Entry.getValue())
1443     return C;
1444 
1445   llvm::Constant *Zero =
1446       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1447   llvm::Constant *Zeros[] = { Zero, Zero };
1448 
1449   // If we don't already have it, get __CFConstantStringClassReference.
1450   if (!CFConstantStringClassRef) {
1451     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1452     Ty = llvm::ArrayType::get(Ty, 0);
1453     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1454                                            "__CFConstantStringClassReference");
1455     // Decay array -> ptr
1456     CFConstantStringClassRef =
1457       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1458   }
1459 
1460   QualType CFTy = getContext().getCFConstantStringType();
1461 
1462   const llvm::StructType *STy =
1463     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1464 
1465   std::vector<llvm::Constant*> Fields(4);
1466 
1467   // Class pointer.
1468   Fields[0] = CFConstantStringClassRef;
1469 
1470   // Flags.
1471   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1472   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1473     llvm::ConstantInt::get(Ty, 0x07C8);
1474 
1475   // String pointer.
1476   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1477 
1478   const char *Sect = 0;
1479   llvm::GlobalValue::LinkageTypes Linkage;
1480   bool isConstant;
1481   if (isUTF16) {
1482     Sect = getContext().Target.getUnicodeStringSection();
1483     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1484     Linkage = llvm::GlobalValue::InternalLinkage;
1485     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1486     // does make plain ascii ones writable.
1487     isConstant = true;
1488   } else {
1489     Linkage = llvm::GlobalValue::PrivateLinkage;
1490     isConstant = !Features.WritableStrings;
1491   }
1492 
1493   llvm::GlobalVariable *GV =
1494     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1495                              ".str");
1496   if (Sect)
1497     GV->setSection(Sect);
1498   if (isUTF16) {
1499     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1500     GV->setAlignment(Align);
1501   }
1502   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1503 
1504   // String length.
1505   Ty = getTypes().ConvertType(getContext().LongTy);
1506   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1507 
1508   // The struct.
1509   C = llvm::ConstantStruct::get(STy, Fields);
1510   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1511                                 llvm::GlobalVariable::PrivateLinkage, C,
1512                                 "_unnamed_cfstring_");
1513   if (const char *Sect = getContext().Target.getCFStringSection())
1514     GV->setSection(Sect);
1515   Entry.setValue(GV);
1516 
1517   return GV;
1518 }
1519 
1520 /// GetStringForStringLiteral - Return the appropriate bytes for a
1521 /// string literal, properly padded to match the literal type.
1522 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1523   const char *StrData = E->getStrData();
1524   unsigned Len = E->getByteLength();
1525 
1526   const ConstantArrayType *CAT =
1527     getContext().getAsConstantArrayType(E->getType());
1528   assert(CAT && "String isn't pointer or array!");
1529 
1530   // Resize the string to the right size.
1531   std::string Str(StrData, StrData+Len);
1532   uint64_t RealLen = CAT->getSize().getZExtValue();
1533 
1534   if (E->isWide())
1535     RealLen *= getContext().Target.getWCharWidth()/8;
1536 
1537   Str.resize(RealLen, '\0');
1538 
1539   return Str;
1540 }
1541 
1542 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1543 /// constant array for the given string literal.
1544 llvm::Constant *
1545 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1546   // FIXME: This can be more efficient.
1547   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1548 }
1549 
1550 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1551 /// array for the given ObjCEncodeExpr node.
1552 llvm::Constant *
1553 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1554   std::string Str;
1555   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1556 
1557   return GetAddrOfConstantCString(Str);
1558 }
1559 
1560 
1561 /// GenerateWritableString -- Creates storage for a string literal.
1562 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1563                                              bool constant,
1564                                              CodeGenModule &CGM,
1565                                              const char *GlobalName) {
1566   // Create Constant for this string literal. Don't add a '\0'.
1567   llvm::Constant *C =
1568       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1569 
1570   // Create a global variable for this string
1571   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1572                                   llvm::GlobalValue::PrivateLinkage,
1573                                   C, GlobalName);
1574 }
1575 
1576 /// GetAddrOfConstantString - Returns a pointer to a character array
1577 /// containing the literal. This contents are exactly that of the
1578 /// given string, i.e. it will not be null terminated automatically;
1579 /// see GetAddrOfConstantCString. Note that whether the result is
1580 /// actually a pointer to an LLVM constant depends on
1581 /// Feature.WriteableStrings.
1582 ///
1583 /// The result has pointer to array type.
1584 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1585                                                        const char *GlobalName) {
1586   bool IsConstant = !Features.WritableStrings;
1587 
1588   // Get the default prefix if a name wasn't specified.
1589   if (!GlobalName)
1590     GlobalName = ".str";
1591 
1592   // Don't share any string literals if strings aren't constant.
1593   if (!IsConstant)
1594     return GenerateStringLiteral(str, false, *this, GlobalName);
1595 
1596   llvm::StringMapEntry<llvm::Constant *> &Entry =
1597     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1598 
1599   if (Entry.getValue())
1600     return Entry.getValue();
1601 
1602   // Create a global variable for this.
1603   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1604   Entry.setValue(C);
1605   return C;
1606 }
1607 
1608 /// GetAddrOfConstantCString - Returns a pointer to a character
1609 /// array containing the literal and a terminating '\-'
1610 /// character. The result has pointer to array type.
1611 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1612                                                         const char *GlobalName){
1613   return GetAddrOfConstantString(str + '\0', GlobalName);
1614 }
1615 
1616 /// EmitObjCPropertyImplementations - Emit information for synthesized
1617 /// properties for an implementation.
1618 void CodeGenModule::EmitObjCPropertyImplementations(const
1619                                                     ObjCImplementationDecl *D) {
1620   for (ObjCImplementationDecl::propimpl_iterator
1621          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1622     ObjCPropertyImplDecl *PID = *i;
1623 
1624     // Dynamic is just for type-checking.
1625     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1626       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1627 
1628       // Determine which methods need to be implemented, some may have
1629       // been overridden. Note that ::isSynthesized is not the method
1630       // we want, that just indicates if the decl came from a
1631       // property. What we want to know is if the method is defined in
1632       // this implementation.
1633       if (!D->getInstanceMethod(PD->getGetterName()))
1634         CodeGenFunction(*this).GenerateObjCGetter(
1635                                  const_cast<ObjCImplementationDecl *>(D), PID);
1636       if (!PD->isReadOnly() &&
1637           !D->getInstanceMethod(PD->getSetterName()))
1638         CodeGenFunction(*this).GenerateObjCSetter(
1639                                  const_cast<ObjCImplementationDecl *>(D), PID);
1640     }
1641   }
1642 }
1643 
1644 /// EmitNamespace - Emit all declarations in a namespace.
1645 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1646   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1647        I != E; ++I)
1648     EmitTopLevelDecl(*I);
1649 }
1650 
1651 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1652 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1653   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1654       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1655     ErrorUnsupported(LSD, "linkage spec");
1656     return;
1657   }
1658 
1659   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1660        I != E; ++I)
1661     EmitTopLevelDecl(*I);
1662 }
1663 
1664 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1665 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1666   // If an error has occurred, stop code generation, but continue
1667   // parsing and semantic analysis (to ensure all warnings and errors
1668   // are emitted).
1669   if (Diags.hasErrorOccurred())
1670     return;
1671 
1672   // Ignore dependent declarations.
1673   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1674     return;
1675 
1676   switch (D->getKind()) {
1677   case Decl::CXXConversion:
1678   case Decl::CXXMethod:
1679   case Decl::Function:
1680     // Skip function templates
1681     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1682       return;
1683 
1684     EmitGlobal(cast<FunctionDecl>(D));
1685     break;
1686 
1687   case Decl::Var:
1688     EmitGlobal(cast<VarDecl>(D));
1689     break;
1690 
1691   // C++ Decls
1692   case Decl::Namespace:
1693     EmitNamespace(cast<NamespaceDecl>(D));
1694     break;
1695     // No code generation needed.
1696   case Decl::Using:
1697   case Decl::UsingDirective:
1698   case Decl::ClassTemplate:
1699   case Decl::FunctionTemplate:
1700   case Decl::NamespaceAlias:
1701     break;
1702   case Decl::CXXConstructor:
1703     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1704     break;
1705   case Decl::CXXDestructor:
1706     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1707     break;
1708 
1709   case Decl::StaticAssert:
1710     // Nothing to do.
1711     break;
1712 
1713   // Objective-C Decls
1714 
1715   // Forward declarations, no (immediate) code generation.
1716   case Decl::ObjCClass:
1717   case Decl::ObjCForwardProtocol:
1718   case Decl::ObjCCategory:
1719   case Decl::ObjCInterface:
1720     break;
1721 
1722   case Decl::ObjCProtocol:
1723     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1724     break;
1725 
1726   case Decl::ObjCCategoryImpl:
1727     // Categories have properties but don't support synthesize so we
1728     // can ignore them here.
1729     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1730     break;
1731 
1732   case Decl::ObjCImplementation: {
1733     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1734     EmitObjCPropertyImplementations(OMD);
1735     Runtime->GenerateClass(OMD);
1736     break;
1737   }
1738   case Decl::ObjCMethod: {
1739     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1740     // If this is not a prototype, emit the body.
1741     if (OMD->getBody())
1742       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1743     break;
1744   }
1745   case Decl::ObjCCompatibleAlias:
1746     // compatibility-alias is a directive and has no code gen.
1747     break;
1748 
1749   case Decl::LinkageSpec:
1750     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1751     break;
1752 
1753   case Decl::FileScopeAsm: {
1754     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1755     std::string AsmString(AD->getAsmString()->getStrData(),
1756                           AD->getAsmString()->getByteLength());
1757 
1758     const std::string &S = getModule().getModuleInlineAsm();
1759     if (S.empty())
1760       getModule().setModuleInlineAsm(AsmString);
1761     else
1762       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1763     break;
1764   }
1765 
1766   default:
1767     // Make sure we handled everything we should, every other kind is a
1768     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1769     // function. Need to recode Decl::Kind to do that easily.
1770     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1771   }
1772 }
1773