1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGHLSLRuntime.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeGPU.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/StringSwitch.h" 51 #include "llvm/ADT/Triple.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/Intrinsics.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ProfileSummary.h" 60 #include "llvm/ProfileData/InstrProfReader.h" 61 #include "llvm/Support/CodeGen.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/ConvertUTF.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/MD5.h" 66 #include "llvm/Support/TimeProfiler.h" 67 #include "llvm/Support/X86TargetParser.h" 68 69 using namespace clang; 70 using namespace CodeGen; 71 72 static llvm::cl::opt<bool> LimitedCoverage( 73 "limited-coverage-experimental", llvm::cl::Hidden, 74 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 75 76 static const char AnnotationSection[] = "llvm.metadata"; 77 78 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 79 switch (CGM.getContext().getCXXABIKind()) { 80 case TargetCXXABI::AppleARM64: 81 case TargetCXXABI::Fuchsia: 82 case TargetCXXABI::GenericAArch64: 83 case TargetCXXABI::GenericARM: 84 case TargetCXXABI::iOS: 85 case TargetCXXABI::WatchOS: 86 case TargetCXXABI::GenericMIPS: 87 case TargetCXXABI::GenericItanium: 88 case TargetCXXABI::WebAssembly: 89 case TargetCXXABI::XL: 90 return CreateItaniumCXXABI(CGM); 91 case TargetCXXABI::Microsoft: 92 return CreateMicrosoftCXXABI(CGM); 93 } 94 95 llvm_unreachable("invalid C++ ABI kind"); 96 } 97 98 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 99 const PreprocessorOptions &PPO, 100 const CodeGenOptions &CGO, llvm::Module &M, 101 DiagnosticsEngine &diags, 102 CoverageSourceInfo *CoverageInfo) 103 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 104 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 105 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 106 VMContext(M.getContext()), Types(*this), VTables(*this), 107 SanitizerMD(new SanitizerMetadata(*this)) { 108 109 // Initialize the type cache. 110 llvm::LLVMContext &LLVMContext = M.getContext(); 111 VoidTy = llvm::Type::getVoidTy(LLVMContext); 112 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 113 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 114 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 115 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 116 HalfTy = llvm::Type::getHalfTy(LLVMContext); 117 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 118 FloatTy = llvm::Type::getFloatTy(LLVMContext); 119 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 120 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 121 PointerAlignInBytes = 122 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 123 SizeSizeInBytes = 124 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 125 IntAlignInBytes = 126 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 127 CharTy = 128 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 129 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 130 IntPtrTy = llvm::IntegerType::get(LLVMContext, 131 C.getTargetInfo().getMaxPointerWidth()); 132 Int8PtrTy = Int8Ty->getPointerTo(0); 133 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 134 const llvm::DataLayout &DL = M.getDataLayout(); 135 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 136 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 137 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 138 139 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 140 141 if (LangOpts.ObjC) 142 createObjCRuntime(); 143 if (LangOpts.OpenCL) 144 createOpenCLRuntime(); 145 if (LangOpts.OpenMP) 146 createOpenMPRuntime(); 147 if (LangOpts.CUDA) 148 createCUDARuntime(); 149 if (LangOpts.HLSL) 150 createHLSLRuntime(); 151 152 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 153 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 154 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 155 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 156 getCXXABI().getMangleContext())); 157 158 // If debug info or coverage generation is enabled, create the CGDebugInfo 159 // object. 160 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 161 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 162 DebugInfo.reset(new CGDebugInfo(*this)); 163 164 Block.GlobalUniqueCount = 0; 165 166 if (C.getLangOpts().ObjC) 167 ObjCData.reset(new ObjCEntrypoints()); 168 169 if (CodeGenOpts.hasProfileClangUse()) { 170 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 171 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 172 if (auto E = ReaderOrErr.takeError()) { 173 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 174 "Could not read profile %0: %1"); 175 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 176 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 177 << EI.message(); 178 }); 179 } else 180 PGOReader = std::move(ReaderOrErr.get()); 181 } 182 183 // If coverage mapping generation is enabled, create the 184 // CoverageMappingModuleGen object. 185 if (CodeGenOpts.CoverageMapping) 186 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 187 188 // Generate the module name hash here if needed. 189 if (CodeGenOpts.UniqueInternalLinkageNames && 190 !getModule().getSourceFileName().empty()) { 191 std::string Path = getModule().getSourceFileName(); 192 // Check if a path substitution is needed from the MacroPrefixMap. 193 for (const auto &Entry : LangOpts.MacroPrefixMap) 194 if (Path.rfind(Entry.first, 0) != std::string::npos) { 195 Path = Entry.second + Path.substr(Entry.first.size()); 196 break; 197 } 198 llvm::MD5 Md5; 199 Md5.update(Path); 200 llvm::MD5::MD5Result R; 201 Md5.final(R); 202 SmallString<32> Str; 203 llvm::MD5::stringifyResult(R, Str); 204 // Convert MD5hash to Decimal. Demangler suffixes can either contain 205 // numbers or characters but not both. 206 llvm::APInt IntHash(128, Str.str(), 16); 207 // Prepend "__uniq" before the hash for tools like profilers to understand 208 // that this symbol is of internal linkage type. The "__uniq" is the 209 // pre-determined prefix that is used to tell tools that this symbol was 210 // created with -funique-internal-linakge-symbols and the tools can strip or 211 // keep the prefix as needed. 212 ModuleNameHash = (Twine(".__uniq.") + 213 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str(); 214 } 215 } 216 217 CodeGenModule::~CodeGenModule() {} 218 219 void CodeGenModule::createObjCRuntime() { 220 // This is just isGNUFamily(), but we want to force implementors of 221 // new ABIs to decide how best to do this. 222 switch (LangOpts.ObjCRuntime.getKind()) { 223 case ObjCRuntime::GNUstep: 224 case ObjCRuntime::GCC: 225 case ObjCRuntime::ObjFW: 226 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 227 return; 228 229 case ObjCRuntime::FragileMacOSX: 230 case ObjCRuntime::MacOSX: 231 case ObjCRuntime::iOS: 232 case ObjCRuntime::WatchOS: 233 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 234 return; 235 } 236 llvm_unreachable("bad runtime kind"); 237 } 238 239 void CodeGenModule::createOpenCLRuntime() { 240 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 241 } 242 243 void CodeGenModule::createOpenMPRuntime() { 244 // Select a specialized code generation class based on the target, if any. 245 // If it does not exist use the default implementation. 246 switch (getTriple().getArch()) { 247 case llvm::Triple::nvptx: 248 case llvm::Triple::nvptx64: 249 case llvm::Triple::amdgcn: 250 assert(getLangOpts().OpenMPIsDevice && 251 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 252 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 253 break; 254 default: 255 if (LangOpts.OpenMPSimd) 256 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 257 else 258 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 259 break; 260 } 261 } 262 263 void CodeGenModule::createCUDARuntime() { 264 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 265 } 266 267 void CodeGenModule::createHLSLRuntime() { 268 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 269 } 270 271 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 272 Replacements[Name] = C; 273 } 274 275 void CodeGenModule::applyReplacements() { 276 for (auto &I : Replacements) { 277 StringRef MangledName = I.first(); 278 llvm::Constant *Replacement = I.second; 279 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 280 if (!Entry) 281 continue; 282 auto *OldF = cast<llvm::Function>(Entry); 283 auto *NewF = dyn_cast<llvm::Function>(Replacement); 284 if (!NewF) { 285 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 286 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 287 } else { 288 auto *CE = cast<llvm::ConstantExpr>(Replacement); 289 assert(CE->getOpcode() == llvm::Instruction::BitCast || 290 CE->getOpcode() == llvm::Instruction::GetElementPtr); 291 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 292 } 293 } 294 295 // Replace old with new, but keep the old order. 296 OldF->replaceAllUsesWith(Replacement); 297 if (NewF) { 298 NewF->removeFromParent(); 299 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 300 NewF); 301 } 302 OldF->eraseFromParent(); 303 } 304 } 305 306 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 307 GlobalValReplacements.push_back(std::make_pair(GV, C)); 308 } 309 310 void CodeGenModule::applyGlobalValReplacements() { 311 for (auto &I : GlobalValReplacements) { 312 llvm::GlobalValue *GV = I.first; 313 llvm::Constant *C = I.second; 314 315 GV->replaceAllUsesWith(C); 316 GV->eraseFromParent(); 317 } 318 } 319 320 // This is only used in aliases that we created and we know they have a 321 // linear structure. 322 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 323 const llvm::Constant *C; 324 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 325 C = GA->getAliasee(); 326 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 327 C = GI->getResolver(); 328 else 329 return GV; 330 331 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 332 if (!AliaseeGV) 333 return nullptr; 334 335 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 336 if (FinalGV == GV) 337 return nullptr; 338 339 return FinalGV; 340 } 341 342 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 343 SourceLocation Location, bool IsIFunc, 344 const llvm::GlobalValue *Alias, 345 const llvm::GlobalValue *&GV) { 346 GV = getAliasedGlobal(Alias); 347 if (!GV) { 348 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 349 return false; 350 } 351 352 if (GV->isDeclaration()) { 353 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 354 return false; 355 } 356 357 if (IsIFunc) { 358 // Check resolver function type. 359 const auto *F = dyn_cast<llvm::Function>(GV); 360 if (!F) { 361 Diags.Report(Location, diag::err_alias_to_undefined) 362 << IsIFunc << IsIFunc; 363 return false; 364 } 365 366 llvm::FunctionType *FTy = F->getFunctionType(); 367 if (!FTy->getReturnType()->isPointerTy()) { 368 Diags.Report(Location, diag::err_ifunc_resolver_return); 369 return false; 370 } 371 } 372 373 return true; 374 } 375 376 void CodeGenModule::checkAliases() { 377 // Check if the constructed aliases are well formed. It is really unfortunate 378 // that we have to do this in CodeGen, but we only construct mangled names 379 // and aliases during codegen. 380 bool Error = false; 381 DiagnosticsEngine &Diags = getDiags(); 382 for (const GlobalDecl &GD : Aliases) { 383 const auto *D = cast<ValueDecl>(GD.getDecl()); 384 SourceLocation Location; 385 bool IsIFunc = D->hasAttr<IFuncAttr>(); 386 if (const Attr *A = D->getDefiningAttr()) 387 Location = A->getLocation(); 388 else 389 llvm_unreachable("Not an alias or ifunc?"); 390 391 StringRef MangledName = getMangledName(GD); 392 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 393 const llvm::GlobalValue *GV = nullptr; 394 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 395 Error = true; 396 continue; 397 } 398 399 llvm::Constant *Aliasee = 400 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 401 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 402 403 llvm::GlobalValue *AliaseeGV; 404 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 405 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 406 else 407 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 408 409 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 410 StringRef AliasSection = SA->getName(); 411 if (AliasSection != AliaseeGV->getSection()) 412 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 413 << AliasSection << IsIFunc << IsIFunc; 414 } 415 416 // We have to handle alias to weak aliases in here. LLVM itself disallows 417 // this since the object semantics would not match the IL one. For 418 // compatibility with gcc we implement it by just pointing the alias 419 // to its aliasee's aliasee. We also warn, since the user is probably 420 // expecting the link to be weak. 421 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 422 if (GA->isInterposable()) { 423 Diags.Report(Location, diag::warn_alias_to_weak_alias) 424 << GV->getName() << GA->getName() << IsIFunc; 425 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 426 GA->getAliasee(), Alias->getType()); 427 428 if (IsIFunc) 429 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 430 else 431 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 432 } 433 } 434 } 435 if (!Error) 436 return; 437 438 for (const GlobalDecl &GD : Aliases) { 439 StringRef MangledName = getMangledName(GD); 440 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 441 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 442 Alias->eraseFromParent(); 443 } 444 } 445 446 void CodeGenModule::clear() { 447 DeferredDeclsToEmit.clear(); 448 if (OpenMPRuntime) 449 OpenMPRuntime->clear(); 450 } 451 452 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 453 StringRef MainFile) { 454 if (!hasDiagnostics()) 455 return; 456 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 457 if (MainFile.empty()) 458 MainFile = "<stdin>"; 459 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 460 } else { 461 if (Mismatched > 0) 462 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 463 464 if (Missing > 0) 465 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 466 } 467 } 468 469 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 470 llvm::Module &M) { 471 if (!LO.VisibilityFromDLLStorageClass) 472 return; 473 474 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 476 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 478 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 479 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 480 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 481 CodeGenModule::GetLLVMVisibility( 482 LO.getExternDeclNoDLLStorageClassVisibility()); 483 484 for (llvm::GlobalValue &GV : M.global_values()) { 485 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 486 continue; 487 488 // Reset DSO locality before setting the visibility. This removes 489 // any effects that visibility options and annotations may have 490 // had on the DSO locality. Setting the visibility will implicitly set 491 // appropriate globals to DSO Local; however, this will be pessimistic 492 // w.r.t. to the normal compiler IRGen. 493 GV.setDSOLocal(false); 494 495 if (GV.isDeclarationForLinker()) { 496 GV.setVisibility(GV.getDLLStorageClass() == 497 llvm::GlobalValue::DLLImportStorageClass 498 ? ExternDeclDLLImportVisibility 499 : ExternDeclNoDLLStorageClassVisibility); 500 } else { 501 GV.setVisibility(GV.getDLLStorageClass() == 502 llvm::GlobalValue::DLLExportStorageClass 503 ? DLLExportVisibility 504 : NoDLLStorageClassVisibility); 505 } 506 507 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 508 } 509 } 510 511 void CodeGenModule::Release() { 512 EmitDeferred(); 513 EmitVTablesOpportunistically(); 514 applyGlobalValReplacements(); 515 applyReplacements(); 516 emitMultiVersionFunctions(); 517 EmitCXXGlobalInitFunc(); 518 EmitCXXGlobalCleanUpFunc(); 519 registerGlobalDtorsWithAtExit(); 520 EmitCXXThreadLocalInitFunc(); 521 if (ObjCRuntime) 522 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 523 AddGlobalCtor(ObjCInitFunction); 524 if (Context.getLangOpts().CUDA && CUDARuntime) { 525 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 526 AddGlobalCtor(CudaCtorFunction); 527 } 528 if (OpenMPRuntime) { 529 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 530 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 531 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 532 } 533 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 534 OpenMPRuntime->clear(); 535 } 536 if (PGOReader) { 537 getModule().setProfileSummary( 538 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 539 llvm::ProfileSummary::PSK_Instr); 540 if (PGOStats.hasDiagnostics()) 541 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 542 } 543 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 544 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 545 EmitGlobalAnnotations(); 546 EmitStaticExternCAliases(); 547 checkAliases(); 548 EmitDeferredUnusedCoverageMappings(); 549 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 550 if (CoverageMapping) 551 CoverageMapping->emit(); 552 if (CodeGenOpts.SanitizeCfiCrossDso) { 553 CodeGenFunction(*this).EmitCfiCheckFail(); 554 CodeGenFunction(*this).EmitCfiCheckStub(); 555 } 556 emitAtAvailableLinkGuard(); 557 if (Context.getTargetInfo().getTriple().isWasm()) 558 EmitMainVoidAlias(); 559 560 if (getTriple().isAMDGPU()) { 561 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 562 // preserve ASAN functions in bitcode libraries. 563 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 564 auto *FT = llvm::FunctionType::get(VoidTy, {}); 565 auto *F = llvm::Function::Create( 566 FT, llvm::GlobalValue::ExternalLinkage, 567 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 568 auto *Var = new llvm::GlobalVariable( 569 getModule(), FT->getPointerTo(), 570 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 571 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 572 llvm::GlobalVariable::NotThreadLocal); 573 addCompilerUsedGlobal(Var); 574 } 575 // Emit amdgpu_code_object_version module flag, which is code object version 576 // times 100. 577 // ToDo: Enable module flag for all code object version when ROCm device 578 // library is ready. 579 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) { 580 getModule().addModuleFlag(llvm::Module::Error, 581 "amdgpu_code_object_version", 582 getTarget().getTargetOpts().CodeObjectVersion); 583 } 584 } 585 586 // Emit a global array containing all external kernels or device variables 587 // used by host functions and mark it as used for CUDA/HIP. This is necessary 588 // to get kernels or device variables in archives linked in even if these 589 // kernels or device variables are only used in host functions. 590 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 591 SmallVector<llvm::Constant *, 8> UsedArray; 592 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 593 GlobalDecl GD; 594 if (auto *FD = dyn_cast<FunctionDecl>(D)) 595 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 596 else 597 GD = GlobalDecl(D); 598 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 599 GetAddrOfGlobal(GD), Int8PtrTy)); 600 } 601 602 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 603 604 auto *GV = new llvm::GlobalVariable( 605 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 606 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 607 addCompilerUsedGlobal(GV); 608 } 609 610 emitLLVMUsed(); 611 if (SanStats) 612 SanStats->finish(); 613 614 if (CodeGenOpts.Autolink && 615 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 616 EmitModuleLinkOptions(); 617 } 618 619 // On ELF we pass the dependent library specifiers directly to the linker 620 // without manipulating them. This is in contrast to other platforms where 621 // they are mapped to a specific linker option by the compiler. This 622 // difference is a result of the greater variety of ELF linkers and the fact 623 // that ELF linkers tend to handle libraries in a more complicated fashion 624 // than on other platforms. This forces us to defer handling the dependent 625 // libs to the linker. 626 // 627 // CUDA/HIP device and host libraries are different. Currently there is no 628 // way to differentiate dependent libraries for host or device. Existing 629 // usage of #pragma comment(lib, *) is intended for host libraries on 630 // Windows. Therefore emit llvm.dependent-libraries only for host. 631 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 632 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 633 for (auto *MD : ELFDependentLibraries) 634 NMD->addOperand(MD); 635 } 636 637 // Record mregparm value now so it is visible through rest of codegen. 638 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 639 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 640 CodeGenOpts.NumRegisterParameters); 641 642 if (CodeGenOpts.DwarfVersion) { 643 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 644 CodeGenOpts.DwarfVersion); 645 } 646 647 if (CodeGenOpts.Dwarf64) 648 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 649 650 if (Context.getLangOpts().SemanticInterposition) 651 // Require various optimization to respect semantic interposition. 652 getModule().setSemanticInterposition(true); 653 654 if (CodeGenOpts.EmitCodeView) { 655 // Indicate that we want CodeView in the metadata. 656 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 657 } 658 if (CodeGenOpts.CodeViewGHash) { 659 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 660 } 661 if (CodeGenOpts.ControlFlowGuard) { 662 // Function ID tables and checks for Control Flow Guard (cfguard=2). 663 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 664 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 665 // Function ID tables for Control Flow Guard (cfguard=1). 666 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 667 } 668 if (CodeGenOpts.EHContGuard) { 669 // Function ID tables for EH Continuation Guard. 670 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 671 } 672 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 673 // We don't support LTO with 2 with different StrictVTablePointers 674 // FIXME: we could support it by stripping all the information introduced 675 // by StrictVTablePointers. 676 677 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 678 679 llvm::Metadata *Ops[2] = { 680 llvm::MDString::get(VMContext, "StrictVTablePointers"), 681 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 682 llvm::Type::getInt32Ty(VMContext), 1))}; 683 684 getModule().addModuleFlag(llvm::Module::Require, 685 "StrictVTablePointersRequirement", 686 llvm::MDNode::get(VMContext, Ops)); 687 } 688 if (getModuleDebugInfo()) 689 // We support a single version in the linked module. The LLVM 690 // parser will drop debug info with a different version number 691 // (and warn about it, too). 692 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 693 llvm::DEBUG_METADATA_VERSION); 694 695 // We need to record the widths of enums and wchar_t, so that we can generate 696 // the correct build attributes in the ARM backend. wchar_size is also used by 697 // TargetLibraryInfo. 698 uint64_t WCharWidth = 699 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 700 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 701 702 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 703 if ( Arch == llvm::Triple::arm 704 || Arch == llvm::Triple::armeb 705 || Arch == llvm::Triple::thumb 706 || Arch == llvm::Triple::thumbeb) { 707 // The minimum width of an enum in bytes 708 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 709 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 710 } 711 712 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 713 StringRef ABIStr = Target.getABI(); 714 llvm::LLVMContext &Ctx = TheModule.getContext(); 715 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 716 llvm::MDString::get(Ctx, ABIStr)); 717 } 718 719 if (CodeGenOpts.SanitizeCfiCrossDso) { 720 // Indicate that we want cross-DSO control flow integrity checks. 721 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 722 } 723 724 if (CodeGenOpts.WholeProgramVTables) { 725 // Indicate whether VFE was enabled for this module, so that the 726 // vcall_visibility metadata added under whole program vtables is handled 727 // appropriately in the optimizer. 728 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 729 CodeGenOpts.VirtualFunctionElimination); 730 } 731 732 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 733 getModule().addModuleFlag(llvm::Module::Override, 734 "CFI Canonical Jump Tables", 735 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 736 } 737 738 if (CodeGenOpts.CFProtectionReturn && 739 Target.checkCFProtectionReturnSupported(getDiags())) { 740 // Indicate that we want to instrument return control flow protection. 741 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 742 1); 743 } 744 745 if (CodeGenOpts.CFProtectionBranch && 746 Target.checkCFProtectionBranchSupported(getDiags())) { 747 // Indicate that we want to instrument branch control flow protection. 748 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 749 1); 750 } 751 752 if (CodeGenOpts.IBTSeal) 753 getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1); 754 755 // Add module metadata for return address signing (ignoring 756 // non-leaf/all) and stack tagging. These are actually turned on by function 757 // attributes, but we use module metadata to emit build attributes. This is 758 // needed for LTO, where the function attributes are inside bitcode 759 // serialised into a global variable by the time build attributes are 760 // emitted, so we can't access them. LTO objects could be compiled with 761 // different flags therefore module flags are set to "Min" behavior to achieve 762 // the same end result of the normal build where e.g BTI is off if any object 763 // doesn't support it. 764 if (Context.getTargetInfo().hasFeature("ptrauth") && 765 LangOpts.getSignReturnAddressScope() != 766 LangOptions::SignReturnAddressScopeKind::None) 767 getModule().addModuleFlag(llvm::Module::Override, 768 "sign-return-address-buildattr", 1); 769 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 770 getModule().addModuleFlag(llvm::Module::Override, 771 "tag-stack-memory-buildattr", 1); 772 773 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 774 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 775 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 776 Arch == llvm::Triple::aarch64_be) { 777 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 778 LangOpts.BranchTargetEnforcement); 779 780 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 781 LangOpts.hasSignReturnAddress()); 782 783 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 784 LangOpts.isSignReturnAddressScopeAll()); 785 786 getModule().addModuleFlag(llvm::Module::Min, 787 "sign-return-address-with-bkey", 788 !LangOpts.isSignReturnAddressWithAKey()); 789 } 790 791 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 792 llvm::LLVMContext &Ctx = TheModule.getContext(); 793 getModule().addModuleFlag( 794 llvm::Module::Error, "MemProfProfileFilename", 795 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 796 } 797 798 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 799 // Indicate whether __nvvm_reflect should be configured to flush denormal 800 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 801 // property.) 802 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 803 CodeGenOpts.FP32DenormalMode.Output != 804 llvm::DenormalMode::IEEE); 805 } 806 807 if (LangOpts.EHAsynch) 808 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 809 810 // Indicate whether this Module was compiled with -fopenmp 811 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 812 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 813 if (getLangOpts().OpenMPIsDevice) 814 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 815 LangOpts.OpenMP); 816 817 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 818 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 819 EmitOpenCLMetadata(); 820 // Emit SPIR version. 821 if (getTriple().isSPIR()) { 822 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 823 // opencl.spir.version named metadata. 824 // C++ for OpenCL has a distinct mapping for version compatibility with 825 // OpenCL. 826 auto Version = LangOpts.getOpenCLCompatibleVersion(); 827 llvm::Metadata *SPIRVerElts[] = { 828 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 829 Int32Ty, Version / 100)), 830 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 831 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 832 llvm::NamedMDNode *SPIRVerMD = 833 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 834 llvm::LLVMContext &Ctx = TheModule.getContext(); 835 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 836 } 837 } 838 839 // HLSL related end of code gen work items. 840 if (LangOpts.HLSL) 841 getHLSLRuntime().finishCodeGen(); 842 843 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 844 assert(PLevel < 3 && "Invalid PIC Level"); 845 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 846 if (Context.getLangOpts().PIE) 847 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 848 } 849 850 if (getCodeGenOpts().CodeModel.size() > 0) { 851 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 852 .Case("tiny", llvm::CodeModel::Tiny) 853 .Case("small", llvm::CodeModel::Small) 854 .Case("kernel", llvm::CodeModel::Kernel) 855 .Case("medium", llvm::CodeModel::Medium) 856 .Case("large", llvm::CodeModel::Large) 857 .Default(~0u); 858 if (CM != ~0u) { 859 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 860 getModule().setCodeModel(codeModel); 861 } 862 } 863 864 if (CodeGenOpts.NoPLT) 865 getModule().setRtLibUseGOT(); 866 if (CodeGenOpts.UnwindTables) 867 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 868 869 switch (CodeGenOpts.getFramePointer()) { 870 case CodeGenOptions::FramePointerKind::None: 871 // 0 ("none") is the default. 872 break; 873 case CodeGenOptions::FramePointerKind::NonLeaf: 874 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 875 break; 876 case CodeGenOptions::FramePointerKind::All: 877 getModule().setFramePointer(llvm::FramePointerKind::All); 878 break; 879 } 880 881 SimplifyPersonality(); 882 883 if (getCodeGenOpts().EmitDeclMetadata) 884 EmitDeclMetadata(); 885 886 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 887 EmitCoverageFile(); 888 889 if (CGDebugInfo *DI = getModuleDebugInfo()) 890 DI->finalize(); 891 892 if (getCodeGenOpts().EmitVersionIdentMetadata) 893 EmitVersionIdentMetadata(); 894 895 if (!getCodeGenOpts().RecordCommandLine.empty()) 896 EmitCommandLineMetadata(); 897 898 if (!getCodeGenOpts().StackProtectorGuard.empty()) 899 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 900 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 901 getModule().setStackProtectorGuardReg( 902 getCodeGenOpts().StackProtectorGuardReg); 903 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 904 getModule().setStackProtectorGuardOffset( 905 getCodeGenOpts().StackProtectorGuardOffset); 906 if (getCodeGenOpts().StackAlignment) 907 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 908 if (getCodeGenOpts().SkipRaxSetup) 909 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 910 911 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 912 913 EmitBackendOptionsMetadata(getCodeGenOpts()); 914 915 // If there is device offloading code embed it in the host now. 916 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 917 918 // Set visibility from DLL storage class 919 // We do this at the end of LLVM IR generation; after any operation 920 // that might affect the DLL storage class or the visibility, and 921 // before anything that might act on these. 922 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 923 } 924 925 void CodeGenModule::EmitOpenCLMetadata() { 926 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 927 // opencl.ocl.version named metadata node. 928 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 929 auto Version = LangOpts.getOpenCLCompatibleVersion(); 930 llvm::Metadata *OCLVerElts[] = { 931 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 932 Int32Ty, Version / 100)), 933 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 934 Int32Ty, (Version % 100) / 10))}; 935 llvm::NamedMDNode *OCLVerMD = 936 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 937 llvm::LLVMContext &Ctx = TheModule.getContext(); 938 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 939 } 940 941 void CodeGenModule::EmitBackendOptionsMetadata( 942 const CodeGenOptions CodeGenOpts) { 943 switch (getTriple().getArch()) { 944 default: 945 break; 946 case llvm::Triple::riscv32: 947 case llvm::Triple::riscv64: 948 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 949 CodeGenOpts.SmallDataLimit); 950 break; 951 } 952 } 953 954 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 955 // Make sure that this type is translated. 956 Types.UpdateCompletedType(TD); 957 } 958 959 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 960 // Make sure that this type is translated. 961 Types.RefreshTypeCacheForClass(RD); 962 } 963 964 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 965 if (!TBAA) 966 return nullptr; 967 return TBAA->getTypeInfo(QTy); 968 } 969 970 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 971 if (!TBAA) 972 return TBAAAccessInfo(); 973 if (getLangOpts().CUDAIsDevice) { 974 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 975 // access info. 976 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 977 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 978 nullptr) 979 return TBAAAccessInfo(); 980 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 981 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 982 nullptr) 983 return TBAAAccessInfo(); 984 } 985 } 986 return TBAA->getAccessInfo(AccessType); 987 } 988 989 TBAAAccessInfo 990 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 991 if (!TBAA) 992 return TBAAAccessInfo(); 993 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 994 } 995 996 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 997 if (!TBAA) 998 return nullptr; 999 return TBAA->getTBAAStructInfo(QTy); 1000 } 1001 1002 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1003 if (!TBAA) 1004 return nullptr; 1005 return TBAA->getBaseTypeInfo(QTy); 1006 } 1007 1008 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1009 if (!TBAA) 1010 return nullptr; 1011 return TBAA->getAccessTagInfo(Info); 1012 } 1013 1014 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1015 TBAAAccessInfo TargetInfo) { 1016 if (!TBAA) 1017 return TBAAAccessInfo(); 1018 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1019 } 1020 1021 TBAAAccessInfo 1022 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1023 TBAAAccessInfo InfoB) { 1024 if (!TBAA) 1025 return TBAAAccessInfo(); 1026 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1027 } 1028 1029 TBAAAccessInfo 1030 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1031 TBAAAccessInfo SrcInfo) { 1032 if (!TBAA) 1033 return TBAAAccessInfo(); 1034 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1035 } 1036 1037 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1038 TBAAAccessInfo TBAAInfo) { 1039 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1040 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1041 } 1042 1043 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1044 llvm::Instruction *I, const CXXRecordDecl *RD) { 1045 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1046 llvm::MDNode::get(getLLVMContext(), {})); 1047 } 1048 1049 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1050 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1051 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1052 } 1053 1054 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1055 /// specified stmt yet. 1056 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1057 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1058 "cannot compile this %0 yet"); 1059 std::string Msg = Type; 1060 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1061 << Msg << S->getSourceRange(); 1062 } 1063 1064 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1065 /// specified decl yet. 1066 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1067 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1068 "cannot compile this %0 yet"); 1069 std::string Msg = Type; 1070 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1071 } 1072 1073 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1074 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1075 } 1076 1077 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1078 const NamedDecl *D) const { 1079 if (GV->hasDLLImportStorageClass()) 1080 return; 1081 // Internal definitions always have default visibility. 1082 if (GV->hasLocalLinkage()) { 1083 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1084 return; 1085 } 1086 if (!D) 1087 return; 1088 // Set visibility for definitions, and for declarations if requested globally 1089 // or set explicitly. 1090 LinkageInfo LV = D->getLinkageAndVisibility(); 1091 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1092 !GV->isDeclarationForLinker()) 1093 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1094 } 1095 1096 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1097 llvm::GlobalValue *GV) { 1098 if (GV->hasLocalLinkage()) 1099 return true; 1100 1101 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1102 return true; 1103 1104 // DLLImport explicitly marks the GV as external. 1105 if (GV->hasDLLImportStorageClass()) 1106 return false; 1107 1108 const llvm::Triple &TT = CGM.getTriple(); 1109 if (TT.isWindowsGNUEnvironment()) { 1110 // In MinGW, variables without DLLImport can still be automatically 1111 // imported from a DLL by the linker; don't mark variables that 1112 // potentially could come from another DLL as DSO local. 1113 1114 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1115 // (and this actually happens in the public interface of libstdc++), so 1116 // such variables can't be marked as DSO local. (Native TLS variables 1117 // can't be dllimported at all, though.) 1118 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1119 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1120 return false; 1121 } 1122 1123 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1124 // remain unresolved in the link, they can be resolved to zero, which is 1125 // outside the current DSO. 1126 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1127 return false; 1128 1129 // Every other GV is local on COFF. 1130 // Make an exception for windows OS in the triple: Some firmware builds use 1131 // *-win32-macho triples. This (accidentally?) produced windows relocations 1132 // without GOT tables in older clang versions; Keep this behaviour. 1133 // FIXME: even thread local variables? 1134 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1135 return true; 1136 1137 // Only handle COFF and ELF for now. 1138 if (!TT.isOSBinFormatELF()) 1139 return false; 1140 1141 // If this is not an executable, don't assume anything is local. 1142 const auto &CGOpts = CGM.getCodeGenOpts(); 1143 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1144 const auto &LOpts = CGM.getLangOpts(); 1145 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1146 // On ELF, if -fno-semantic-interposition is specified and the target 1147 // supports local aliases, there will be neither CC1 1148 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1149 // dso_local on the function if using a local alias is preferable (can avoid 1150 // PLT indirection). 1151 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1152 return false; 1153 return !(CGM.getLangOpts().SemanticInterposition || 1154 CGM.getLangOpts().HalfNoSemanticInterposition); 1155 } 1156 1157 // A definition cannot be preempted from an executable. 1158 if (!GV->isDeclarationForLinker()) 1159 return true; 1160 1161 // Most PIC code sequences that assume that a symbol is local cannot produce a 1162 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1163 // depended, it seems worth it to handle it here. 1164 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1165 return false; 1166 1167 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1168 if (TT.isPPC64()) 1169 return false; 1170 1171 if (CGOpts.DirectAccessExternalData) { 1172 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1173 // for non-thread-local variables. If the symbol is not defined in the 1174 // executable, a copy relocation will be needed at link time. dso_local is 1175 // excluded for thread-local variables because they generally don't support 1176 // copy relocations. 1177 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1178 if (!Var->isThreadLocal()) 1179 return true; 1180 1181 // -fno-pic sets dso_local on a function declaration to allow direct 1182 // accesses when taking its address (similar to a data symbol). If the 1183 // function is not defined in the executable, a canonical PLT entry will be 1184 // needed at link time. -fno-direct-access-external-data can avoid the 1185 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1186 // it could just cause trouble without providing perceptible benefits. 1187 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1188 return true; 1189 } 1190 1191 // If we can use copy relocations we can assume it is local. 1192 1193 // Otherwise don't assume it is local. 1194 return false; 1195 } 1196 1197 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1198 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1199 } 1200 1201 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1202 GlobalDecl GD) const { 1203 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1204 // C++ destructors have a few C++ ABI specific special cases. 1205 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1206 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1207 return; 1208 } 1209 setDLLImportDLLExport(GV, D); 1210 } 1211 1212 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1213 const NamedDecl *D) const { 1214 if (D && D->isExternallyVisible()) { 1215 if (D->hasAttr<DLLImportAttr>()) 1216 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1217 else if ((D->hasAttr<DLLExportAttr>() || 1218 shouldMapVisibilityToDLLExport(D)) && 1219 !GV->isDeclarationForLinker()) 1220 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1221 } 1222 } 1223 1224 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1225 GlobalDecl GD) const { 1226 setDLLImportDLLExport(GV, GD); 1227 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1228 } 1229 1230 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1231 const NamedDecl *D) const { 1232 setDLLImportDLLExport(GV, D); 1233 setGVPropertiesAux(GV, D); 1234 } 1235 1236 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1237 const NamedDecl *D) const { 1238 setGlobalVisibility(GV, D); 1239 setDSOLocal(GV); 1240 GV->setPartition(CodeGenOpts.SymbolPartition); 1241 } 1242 1243 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1244 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1245 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1246 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1247 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1248 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1249 } 1250 1251 llvm::GlobalVariable::ThreadLocalMode 1252 CodeGenModule::GetDefaultLLVMTLSModel() const { 1253 switch (CodeGenOpts.getDefaultTLSModel()) { 1254 case CodeGenOptions::GeneralDynamicTLSModel: 1255 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1256 case CodeGenOptions::LocalDynamicTLSModel: 1257 return llvm::GlobalVariable::LocalDynamicTLSModel; 1258 case CodeGenOptions::InitialExecTLSModel: 1259 return llvm::GlobalVariable::InitialExecTLSModel; 1260 case CodeGenOptions::LocalExecTLSModel: 1261 return llvm::GlobalVariable::LocalExecTLSModel; 1262 } 1263 llvm_unreachable("Invalid TLS model!"); 1264 } 1265 1266 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1267 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1268 1269 llvm::GlobalValue::ThreadLocalMode TLM; 1270 TLM = GetDefaultLLVMTLSModel(); 1271 1272 // Override the TLS model if it is explicitly specified. 1273 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1274 TLM = GetLLVMTLSModel(Attr->getModel()); 1275 } 1276 1277 GV->setThreadLocalMode(TLM); 1278 } 1279 1280 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1281 StringRef Name) { 1282 const TargetInfo &Target = CGM.getTarget(); 1283 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1284 } 1285 1286 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1287 const CPUSpecificAttr *Attr, 1288 unsigned CPUIndex, 1289 raw_ostream &Out) { 1290 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1291 // supported. 1292 if (Attr) 1293 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1294 else if (CGM.getTarget().supportsIFunc()) 1295 Out << ".resolver"; 1296 } 1297 1298 static void AppendTargetMangling(const CodeGenModule &CGM, 1299 const TargetAttr *Attr, raw_ostream &Out) { 1300 if (Attr->isDefaultVersion()) 1301 return; 1302 1303 Out << '.'; 1304 const TargetInfo &Target = CGM.getTarget(); 1305 ParsedTargetAttr Info = 1306 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1307 // Multiversioning doesn't allow "no-${feature}", so we can 1308 // only have "+" prefixes here. 1309 assert(LHS.startswith("+") && RHS.startswith("+") && 1310 "Features should always have a prefix."); 1311 return Target.multiVersionSortPriority(LHS.substr(1)) > 1312 Target.multiVersionSortPriority(RHS.substr(1)); 1313 }); 1314 1315 bool IsFirst = true; 1316 1317 if (!Info.Architecture.empty()) { 1318 IsFirst = false; 1319 Out << "arch_" << Info.Architecture; 1320 } 1321 1322 for (StringRef Feat : Info.Features) { 1323 if (!IsFirst) 1324 Out << '_'; 1325 IsFirst = false; 1326 Out << Feat.substr(1); 1327 } 1328 } 1329 1330 // Returns true if GD is a function decl with internal linkage and 1331 // needs a unique suffix after the mangled name. 1332 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1333 CodeGenModule &CGM) { 1334 const Decl *D = GD.getDecl(); 1335 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1336 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1337 } 1338 1339 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1340 const TargetClonesAttr *Attr, 1341 unsigned VersionIndex, 1342 raw_ostream &Out) { 1343 Out << '.'; 1344 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1345 if (FeatureStr.startswith("arch=")) 1346 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1347 else 1348 Out << FeatureStr; 1349 1350 Out << '.' << Attr->getMangledIndex(VersionIndex); 1351 } 1352 1353 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1354 const NamedDecl *ND, 1355 bool OmitMultiVersionMangling = false) { 1356 SmallString<256> Buffer; 1357 llvm::raw_svector_ostream Out(Buffer); 1358 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1359 if (!CGM.getModuleNameHash().empty()) 1360 MC.needsUniqueInternalLinkageNames(); 1361 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1362 if (ShouldMangle) 1363 MC.mangleName(GD.getWithDecl(ND), Out); 1364 else { 1365 IdentifierInfo *II = ND->getIdentifier(); 1366 assert(II && "Attempt to mangle unnamed decl."); 1367 const auto *FD = dyn_cast<FunctionDecl>(ND); 1368 1369 if (FD && 1370 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1371 Out << "__regcall3__" << II->getName(); 1372 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1373 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1374 Out << "__device_stub__" << II->getName(); 1375 } else { 1376 Out << II->getName(); 1377 } 1378 } 1379 1380 // Check if the module name hash should be appended for internal linkage 1381 // symbols. This should come before multi-version target suffixes are 1382 // appended. This is to keep the name and module hash suffix of the 1383 // internal linkage function together. The unique suffix should only be 1384 // added when name mangling is done to make sure that the final name can 1385 // be properly demangled. For example, for C functions without prototypes, 1386 // name mangling is not done and the unique suffix should not be appeneded 1387 // then. 1388 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1389 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1390 "Hash computed when not explicitly requested"); 1391 Out << CGM.getModuleNameHash(); 1392 } 1393 1394 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1395 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1396 switch (FD->getMultiVersionKind()) { 1397 case MultiVersionKind::CPUDispatch: 1398 case MultiVersionKind::CPUSpecific: 1399 AppendCPUSpecificCPUDispatchMangling(CGM, 1400 FD->getAttr<CPUSpecificAttr>(), 1401 GD.getMultiVersionIndex(), Out); 1402 break; 1403 case MultiVersionKind::Target: 1404 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1405 break; 1406 case MultiVersionKind::TargetClones: 1407 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1408 GD.getMultiVersionIndex(), Out); 1409 break; 1410 case MultiVersionKind::None: 1411 llvm_unreachable("None multiversion type isn't valid here"); 1412 } 1413 } 1414 1415 // Make unique name for device side static file-scope variable for HIP. 1416 if (CGM.getContext().shouldExternalize(ND) && 1417 CGM.getLangOpts().GPURelocatableDeviceCode && 1418 CGM.getLangOpts().CUDAIsDevice) 1419 CGM.printPostfixForExternalizedDecl(Out, ND); 1420 1421 return std::string(Out.str()); 1422 } 1423 1424 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1425 const FunctionDecl *FD, 1426 StringRef &CurName) { 1427 if (!FD->isMultiVersion()) 1428 return; 1429 1430 // Get the name of what this would be without the 'target' attribute. This 1431 // allows us to lookup the version that was emitted when this wasn't a 1432 // multiversion function. 1433 std::string NonTargetName = 1434 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1435 GlobalDecl OtherGD; 1436 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1437 assert(OtherGD.getCanonicalDecl() 1438 .getDecl() 1439 ->getAsFunction() 1440 ->isMultiVersion() && 1441 "Other GD should now be a multiversioned function"); 1442 // OtherFD is the version of this function that was mangled BEFORE 1443 // becoming a MultiVersion function. It potentially needs to be updated. 1444 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1445 .getDecl() 1446 ->getAsFunction() 1447 ->getMostRecentDecl(); 1448 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1449 // This is so that if the initial version was already the 'default' 1450 // version, we don't try to update it. 1451 if (OtherName != NonTargetName) { 1452 // Remove instead of erase, since others may have stored the StringRef 1453 // to this. 1454 const auto ExistingRecord = Manglings.find(NonTargetName); 1455 if (ExistingRecord != std::end(Manglings)) 1456 Manglings.remove(&(*ExistingRecord)); 1457 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1458 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1459 Result.first->first(); 1460 // If this is the current decl is being created, make sure we update the name. 1461 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1462 CurName = OtherNameRef; 1463 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1464 Entry->setName(OtherName); 1465 } 1466 } 1467 } 1468 1469 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1470 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1471 1472 // Some ABIs don't have constructor variants. Make sure that base and 1473 // complete constructors get mangled the same. 1474 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1475 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1476 CXXCtorType OrigCtorType = GD.getCtorType(); 1477 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1478 if (OrigCtorType == Ctor_Base) 1479 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1480 } 1481 } 1482 1483 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1484 // static device variable depends on whether the variable is referenced by 1485 // a host or device host function. Therefore the mangled name cannot be 1486 // cached. 1487 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1488 auto FoundName = MangledDeclNames.find(CanonicalGD); 1489 if (FoundName != MangledDeclNames.end()) 1490 return FoundName->second; 1491 } 1492 1493 // Keep the first result in the case of a mangling collision. 1494 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1495 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1496 1497 // Ensure either we have different ABIs between host and device compilations, 1498 // says host compilation following MSVC ABI but device compilation follows 1499 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1500 // mangling should be the same after name stubbing. The later checking is 1501 // very important as the device kernel name being mangled in host-compilation 1502 // is used to resolve the device binaries to be executed. Inconsistent naming 1503 // result in undefined behavior. Even though we cannot check that naming 1504 // directly between host- and device-compilations, the host- and 1505 // device-mangling in host compilation could help catching certain ones. 1506 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1507 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1508 (getContext().getAuxTargetInfo() && 1509 (getContext().getAuxTargetInfo()->getCXXABI() != 1510 getContext().getTargetInfo().getCXXABI())) || 1511 getCUDARuntime().getDeviceSideName(ND) == 1512 getMangledNameImpl( 1513 *this, 1514 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1515 ND)); 1516 1517 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1518 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1519 } 1520 1521 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1522 const BlockDecl *BD) { 1523 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1524 const Decl *D = GD.getDecl(); 1525 1526 SmallString<256> Buffer; 1527 llvm::raw_svector_ostream Out(Buffer); 1528 if (!D) 1529 MangleCtx.mangleGlobalBlock(BD, 1530 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1531 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1532 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1533 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1534 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1535 else 1536 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1537 1538 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1539 return Result.first->first(); 1540 } 1541 1542 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1543 auto it = MangledDeclNames.begin(); 1544 while (it != MangledDeclNames.end()) { 1545 if (it->second == Name) 1546 return it->first; 1547 it++; 1548 } 1549 return GlobalDecl(); 1550 } 1551 1552 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1553 return getModule().getNamedValue(Name); 1554 } 1555 1556 /// AddGlobalCtor - Add a function to the list that will be called before 1557 /// main() runs. 1558 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1559 llvm::Constant *AssociatedData) { 1560 // FIXME: Type coercion of void()* types. 1561 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1562 } 1563 1564 /// AddGlobalDtor - Add a function to the list that will be called 1565 /// when the module is unloaded. 1566 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1567 bool IsDtorAttrFunc) { 1568 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1569 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1570 DtorsUsingAtExit[Priority].push_back(Dtor); 1571 return; 1572 } 1573 1574 // FIXME: Type coercion of void()* types. 1575 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1576 } 1577 1578 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1579 if (Fns.empty()) return; 1580 1581 // Ctor function type is void()*. 1582 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1583 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1584 TheModule.getDataLayout().getProgramAddressSpace()); 1585 1586 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1587 llvm::StructType *CtorStructTy = llvm::StructType::get( 1588 Int32Ty, CtorPFTy, VoidPtrTy); 1589 1590 // Construct the constructor and destructor arrays. 1591 ConstantInitBuilder builder(*this); 1592 auto ctors = builder.beginArray(CtorStructTy); 1593 for (const auto &I : Fns) { 1594 auto ctor = ctors.beginStruct(CtorStructTy); 1595 ctor.addInt(Int32Ty, I.Priority); 1596 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1597 if (I.AssociatedData) 1598 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1599 else 1600 ctor.addNullPointer(VoidPtrTy); 1601 ctor.finishAndAddTo(ctors); 1602 } 1603 1604 auto list = 1605 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1606 /*constant*/ false, 1607 llvm::GlobalValue::AppendingLinkage); 1608 1609 // The LTO linker doesn't seem to like it when we set an alignment 1610 // on appending variables. Take it off as a workaround. 1611 list->setAlignment(llvm::None); 1612 1613 Fns.clear(); 1614 } 1615 1616 llvm::GlobalValue::LinkageTypes 1617 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1618 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1619 1620 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1621 1622 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1623 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1624 1625 if (isa<CXXConstructorDecl>(D) && 1626 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1627 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1628 // Our approach to inheriting constructors is fundamentally different from 1629 // that used by the MS ABI, so keep our inheriting constructor thunks 1630 // internal rather than trying to pick an unambiguous mangling for them. 1631 return llvm::GlobalValue::InternalLinkage; 1632 } 1633 1634 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1635 } 1636 1637 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1638 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1639 if (!MDS) return nullptr; 1640 1641 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1642 } 1643 1644 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1645 const CGFunctionInfo &Info, 1646 llvm::Function *F, bool IsThunk) { 1647 unsigned CallingConv; 1648 llvm::AttributeList PAL; 1649 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1650 /*AttrOnCallSite=*/false, IsThunk); 1651 F->setAttributes(PAL); 1652 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1653 } 1654 1655 static void removeImageAccessQualifier(std::string& TyName) { 1656 std::string ReadOnlyQual("__read_only"); 1657 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1658 if (ReadOnlyPos != std::string::npos) 1659 // "+ 1" for the space after access qualifier. 1660 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1661 else { 1662 std::string WriteOnlyQual("__write_only"); 1663 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1664 if (WriteOnlyPos != std::string::npos) 1665 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1666 else { 1667 std::string ReadWriteQual("__read_write"); 1668 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1669 if (ReadWritePos != std::string::npos) 1670 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1671 } 1672 } 1673 } 1674 1675 // Returns the address space id that should be produced to the 1676 // kernel_arg_addr_space metadata. This is always fixed to the ids 1677 // as specified in the SPIR 2.0 specification in order to differentiate 1678 // for example in clGetKernelArgInfo() implementation between the address 1679 // spaces with targets without unique mapping to the OpenCL address spaces 1680 // (basically all single AS CPUs). 1681 static unsigned ArgInfoAddressSpace(LangAS AS) { 1682 switch (AS) { 1683 case LangAS::opencl_global: 1684 return 1; 1685 case LangAS::opencl_constant: 1686 return 2; 1687 case LangAS::opencl_local: 1688 return 3; 1689 case LangAS::opencl_generic: 1690 return 4; // Not in SPIR 2.0 specs. 1691 case LangAS::opencl_global_device: 1692 return 5; 1693 case LangAS::opencl_global_host: 1694 return 6; 1695 default: 1696 return 0; // Assume private. 1697 } 1698 } 1699 1700 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1701 const FunctionDecl *FD, 1702 CodeGenFunction *CGF) { 1703 assert(((FD && CGF) || (!FD && !CGF)) && 1704 "Incorrect use - FD and CGF should either be both null or not!"); 1705 // Create MDNodes that represent the kernel arg metadata. 1706 // Each MDNode is a list in the form of "key", N number of values which is 1707 // the same number of values as their are kernel arguments. 1708 1709 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1710 1711 // MDNode for the kernel argument address space qualifiers. 1712 SmallVector<llvm::Metadata *, 8> addressQuals; 1713 1714 // MDNode for the kernel argument access qualifiers (images only). 1715 SmallVector<llvm::Metadata *, 8> accessQuals; 1716 1717 // MDNode for the kernel argument type names. 1718 SmallVector<llvm::Metadata *, 8> argTypeNames; 1719 1720 // MDNode for the kernel argument base type names. 1721 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1722 1723 // MDNode for the kernel argument type qualifiers. 1724 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1725 1726 // MDNode for the kernel argument names. 1727 SmallVector<llvm::Metadata *, 8> argNames; 1728 1729 if (FD && CGF) 1730 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1731 const ParmVarDecl *parm = FD->getParamDecl(i); 1732 QualType ty = parm->getType(); 1733 std::string typeQuals; 1734 1735 // Get image and pipe access qualifier: 1736 if (ty->isImageType() || ty->isPipeType()) { 1737 const Decl *PDecl = parm; 1738 if (auto *TD = dyn_cast<TypedefType>(ty)) 1739 PDecl = TD->getDecl(); 1740 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1741 if (A && A->isWriteOnly()) 1742 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1743 else if (A && A->isReadWrite()) 1744 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1745 else 1746 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1747 } else 1748 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1749 1750 // Get argument name. 1751 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1752 1753 auto getTypeSpelling = [&](QualType Ty) { 1754 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1755 1756 if (Ty.isCanonical()) { 1757 StringRef typeNameRef = typeName; 1758 // Turn "unsigned type" to "utype" 1759 if (typeNameRef.consume_front("unsigned ")) 1760 return std::string("u") + typeNameRef.str(); 1761 if (typeNameRef.consume_front("signed ")) 1762 return typeNameRef.str(); 1763 } 1764 1765 return typeName; 1766 }; 1767 1768 if (ty->isPointerType()) { 1769 QualType pointeeTy = ty->getPointeeType(); 1770 1771 // Get address qualifier. 1772 addressQuals.push_back( 1773 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1774 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1775 1776 // Get argument type name. 1777 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1778 std::string baseTypeName = 1779 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1780 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1781 argBaseTypeNames.push_back( 1782 llvm::MDString::get(VMContext, baseTypeName)); 1783 1784 // Get argument type qualifiers: 1785 if (ty.isRestrictQualified()) 1786 typeQuals = "restrict"; 1787 if (pointeeTy.isConstQualified() || 1788 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1789 typeQuals += typeQuals.empty() ? "const" : " const"; 1790 if (pointeeTy.isVolatileQualified()) 1791 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1792 } else { 1793 uint32_t AddrSpc = 0; 1794 bool isPipe = ty->isPipeType(); 1795 if (ty->isImageType() || isPipe) 1796 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1797 1798 addressQuals.push_back( 1799 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1800 1801 // Get argument type name. 1802 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1803 std::string typeName = getTypeSpelling(ty); 1804 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1805 1806 // Remove access qualifiers on images 1807 // (as they are inseparable from type in clang implementation, 1808 // but OpenCL spec provides a special query to get access qualifier 1809 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1810 if (ty->isImageType()) { 1811 removeImageAccessQualifier(typeName); 1812 removeImageAccessQualifier(baseTypeName); 1813 } 1814 1815 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1816 argBaseTypeNames.push_back( 1817 llvm::MDString::get(VMContext, baseTypeName)); 1818 1819 if (isPipe) 1820 typeQuals = "pipe"; 1821 } 1822 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1823 } 1824 1825 Fn->setMetadata("kernel_arg_addr_space", 1826 llvm::MDNode::get(VMContext, addressQuals)); 1827 Fn->setMetadata("kernel_arg_access_qual", 1828 llvm::MDNode::get(VMContext, accessQuals)); 1829 Fn->setMetadata("kernel_arg_type", 1830 llvm::MDNode::get(VMContext, argTypeNames)); 1831 Fn->setMetadata("kernel_arg_base_type", 1832 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1833 Fn->setMetadata("kernel_arg_type_qual", 1834 llvm::MDNode::get(VMContext, argTypeQuals)); 1835 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1836 Fn->setMetadata("kernel_arg_name", 1837 llvm::MDNode::get(VMContext, argNames)); 1838 } 1839 1840 /// Determines whether the language options require us to model 1841 /// unwind exceptions. We treat -fexceptions as mandating this 1842 /// except under the fragile ObjC ABI with only ObjC exceptions 1843 /// enabled. This means, for example, that C with -fexceptions 1844 /// enables this. 1845 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1846 // If exceptions are completely disabled, obviously this is false. 1847 if (!LangOpts.Exceptions) return false; 1848 1849 // If C++ exceptions are enabled, this is true. 1850 if (LangOpts.CXXExceptions) return true; 1851 1852 // If ObjC exceptions are enabled, this depends on the ABI. 1853 if (LangOpts.ObjCExceptions) { 1854 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1855 } 1856 1857 return true; 1858 } 1859 1860 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1861 const CXXMethodDecl *MD) { 1862 // Check that the type metadata can ever actually be used by a call. 1863 if (!CGM.getCodeGenOpts().LTOUnit || 1864 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1865 return false; 1866 1867 // Only functions whose address can be taken with a member function pointer 1868 // need this sort of type metadata. 1869 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1870 !isa<CXXDestructorDecl>(MD); 1871 } 1872 1873 std::vector<const CXXRecordDecl *> 1874 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1875 llvm::SetVector<const CXXRecordDecl *> MostBases; 1876 1877 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1878 CollectMostBases = [&](const CXXRecordDecl *RD) { 1879 if (RD->getNumBases() == 0) 1880 MostBases.insert(RD); 1881 for (const CXXBaseSpecifier &B : RD->bases()) 1882 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1883 }; 1884 CollectMostBases(RD); 1885 return MostBases.takeVector(); 1886 } 1887 1888 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1889 llvm::Function *F) { 1890 llvm::AttrBuilder B(F->getContext()); 1891 1892 if (CodeGenOpts.UnwindTables) 1893 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1894 1895 if (CodeGenOpts.StackClashProtector) 1896 B.addAttribute("probe-stack", "inline-asm"); 1897 1898 if (!hasUnwindExceptions(LangOpts)) 1899 B.addAttribute(llvm::Attribute::NoUnwind); 1900 1901 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1902 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1903 B.addAttribute(llvm::Attribute::StackProtect); 1904 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1905 B.addAttribute(llvm::Attribute::StackProtectStrong); 1906 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1907 B.addAttribute(llvm::Attribute::StackProtectReq); 1908 } 1909 1910 if (!D) { 1911 // If we don't have a declaration to control inlining, the function isn't 1912 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1913 // disabled, mark the function as noinline. 1914 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1915 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1916 B.addAttribute(llvm::Attribute::NoInline); 1917 1918 F->addFnAttrs(B); 1919 return; 1920 } 1921 1922 // Track whether we need to add the optnone LLVM attribute, 1923 // starting with the default for this optimization level. 1924 bool ShouldAddOptNone = 1925 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1926 // We can't add optnone in the following cases, it won't pass the verifier. 1927 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1928 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1929 1930 // Add optnone, but do so only if the function isn't always_inline. 1931 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1932 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1933 B.addAttribute(llvm::Attribute::OptimizeNone); 1934 1935 // OptimizeNone implies noinline; we should not be inlining such functions. 1936 B.addAttribute(llvm::Attribute::NoInline); 1937 1938 // We still need to handle naked functions even though optnone subsumes 1939 // much of their semantics. 1940 if (D->hasAttr<NakedAttr>()) 1941 B.addAttribute(llvm::Attribute::Naked); 1942 1943 // OptimizeNone wins over OptimizeForSize and MinSize. 1944 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1945 F->removeFnAttr(llvm::Attribute::MinSize); 1946 } else if (D->hasAttr<NakedAttr>()) { 1947 // Naked implies noinline: we should not be inlining such functions. 1948 B.addAttribute(llvm::Attribute::Naked); 1949 B.addAttribute(llvm::Attribute::NoInline); 1950 } else if (D->hasAttr<NoDuplicateAttr>()) { 1951 B.addAttribute(llvm::Attribute::NoDuplicate); 1952 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1953 // Add noinline if the function isn't always_inline. 1954 B.addAttribute(llvm::Attribute::NoInline); 1955 } else if (D->hasAttr<AlwaysInlineAttr>() && 1956 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1957 // (noinline wins over always_inline, and we can't specify both in IR) 1958 B.addAttribute(llvm::Attribute::AlwaysInline); 1959 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1960 // If we're not inlining, then force everything that isn't always_inline to 1961 // carry an explicit noinline attribute. 1962 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1963 B.addAttribute(llvm::Attribute::NoInline); 1964 } else { 1965 // Otherwise, propagate the inline hint attribute and potentially use its 1966 // absence to mark things as noinline. 1967 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1968 // Search function and template pattern redeclarations for inline. 1969 auto CheckForInline = [](const FunctionDecl *FD) { 1970 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1971 return Redecl->isInlineSpecified(); 1972 }; 1973 if (any_of(FD->redecls(), CheckRedeclForInline)) 1974 return true; 1975 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1976 if (!Pattern) 1977 return false; 1978 return any_of(Pattern->redecls(), CheckRedeclForInline); 1979 }; 1980 if (CheckForInline(FD)) { 1981 B.addAttribute(llvm::Attribute::InlineHint); 1982 } else if (CodeGenOpts.getInlining() == 1983 CodeGenOptions::OnlyHintInlining && 1984 !FD->isInlined() && 1985 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1986 B.addAttribute(llvm::Attribute::NoInline); 1987 } 1988 } 1989 } 1990 1991 // Add other optimization related attributes if we are optimizing this 1992 // function. 1993 if (!D->hasAttr<OptimizeNoneAttr>()) { 1994 if (D->hasAttr<ColdAttr>()) { 1995 if (!ShouldAddOptNone) 1996 B.addAttribute(llvm::Attribute::OptimizeForSize); 1997 B.addAttribute(llvm::Attribute::Cold); 1998 } 1999 if (D->hasAttr<HotAttr>()) 2000 B.addAttribute(llvm::Attribute::Hot); 2001 if (D->hasAttr<MinSizeAttr>()) 2002 B.addAttribute(llvm::Attribute::MinSize); 2003 } 2004 2005 F->addFnAttrs(B); 2006 2007 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2008 if (alignment) 2009 F->setAlignment(llvm::Align(alignment)); 2010 2011 if (!D->hasAttr<AlignedAttr>()) 2012 if (LangOpts.FunctionAlignment) 2013 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2014 2015 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2016 // reserve a bit for differentiating between virtual and non-virtual member 2017 // functions. If the current target's C++ ABI requires this and this is a 2018 // member function, set its alignment accordingly. 2019 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2020 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2021 F->setAlignment(llvm::Align(2)); 2022 } 2023 2024 // In the cross-dso CFI mode with canonical jump tables, we want !type 2025 // attributes on definitions only. 2026 if (CodeGenOpts.SanitizeCfiCrossDso && 2027 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2028 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2029 // Skip available_externally functions. They won't be codegen'ed in the 2030 // current module anyway. 2031 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2032 CreateFunctionTypeMetadataForIcall(FD, F); 2033 } 2034 } 2035 2036 // Emit type metadata on member functions for member function pointer checks. 2037 // These are only ever necessary on definitions; we're guaranteed that the 2038 // definition will be present in the LTO unit as a result of LTO visibility. 2039 auto *MD = dyn_cast<CXXMethodDecl>(D); 2040 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2041 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2042 llvm::Metadata *Id = 2043 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2044 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2045 F->addTypeMetadata(0, Id); 2046 } 2047 } 2048 } 2049 2050 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2051 llvm::Function *F) { 2052 if (D->hasAttr<StrictFPAttr>()) { 2053 llvm::AttrBuilder FuncAttrs(F->getContext()); 2054 FuncAttrs.addAttribute("strictfp"); 2055 F->addFnAttrs(FuncAttrs); 2056 } 2057 } 2058 2059 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2060 const Decl *D = GD.getDecl(); 2061 if (isa_and_nonnull<NamedDecl>(D)) 2062 setGVProperties(GV, GD); 2063 else 2064 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2065 2066 if (D && D->hasAttr<UsedAttr>()) 2067 addUsedOrCompilerUsedGlobal(GV); 2068 2069 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2070 const auto *VD = cast<VarDecl>(D); 2071 if (VD->getType().isConstQualified() && 2072 VD->getStorageDuration() == SD_Static) 2073 addUsedOrCompilerUsedGlobal(GV); 2074 } 2075 } 2076 2077 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2078 llvm::AttrBuilder &Attrs) { 2079 // Add target-cpu and target-features attributes to functions. If 2080 // we have a decl for the function and it has a target attribute then 2081 // parse that and add it to the feature set. 2082 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2083 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2084 std::vector<std::string> Features; 2085 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2086 FD = FD ? FD->getMostRecentDecl() : FD; 2087 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2088 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2089 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2090 bool AddedAttr = false; 2091 if (TD || SD || TC) { 2092 llvm::StringMap<bool> FeatureMap; 2093 getContext().getFunctionFeatureMap(FeatureMap, GD); 2094 2095 // Produce the canonical string for this set of features. 2096 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2097 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2098 2099 // Now add the target-cpu and target-features to the function. 2100 // While we populated the feature map above, we still need to 2101 // get and parse the target attribute so we can get the cpu for 2102 // the function. 2103 if (TD) { 2104 ParsedTargetAttr ParsedAttr = TD->parse(); 2105 if (!ParsedAttr.Architecture.empty() && 2106 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 2107 TargetCPU = ParsedAttr.Architecture; 2108 TuneCPU = ""; // Clear the tune CPU. 2109 } 2110 if (!ParsedAttr.Tune.empty() && 2111 getTarget().isValidCPUName(ParsedAttr.Tune)) 2112 TuneCPU = ParsedAttr.Tune; 2113 } 2114 2115 if (SD) { 2116 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2117 // favor this processor. 2118 TuneCPU = getTarget().getCPUSpecificTuneName( 2119 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2120 } 2121 } else { 2122 // Otherwise just add the existing target cpu and target features to the 2123 // function. 2124 Features = getTarget().getTargetOpts().Features; 2125 } 2126 2127 if (!TargetCPU.empty()) { 2128 Attrs.addAttribute("target-cpu", TargetCPU); 2129 AddedAttr = true; 2130 } 2131 if (!TuneCPU.empty()) { 2132 Attrs.addAttribute("tune-cpu", TuneCPU); 2133 AddedAttr = true; 2134 } 2135 if (!Features.empty()) { 2136 llvm::sort(Features); 2137 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2138 AddedAttr = true; 2139 } 2140 2141 return AddedAttr; 2142 } 2143 2144 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2145 llvm::GlobalObject *GO) { 2146 const Decl *D = GD.getDecl(); 2147 SetCommonAttributes(GD, GO); 2148 2149 if (D) { 2150 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2151 if (D->hasAttr<RetainAttr>()) 2152 addUsedGlobal(GV); 2153 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2154 GV->addAttribute("bss-section", SA->getName()); 2155 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2156 GV->addAttribute("data-section", SA->getName()); 2157 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2158 GV->addAttribute("rodata-section", SA->getName()); 2159 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2160 GV->addAttribute("relro-section", SA->getName()); 2161 } 2162 2163 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2164 if (D->hasAttr<RetainAttr>()) 2165 addUsedGlobal(F); 2166 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2167 if (!D->getAttr<SectionAttr>()) 2168 F->addFnAttr("implicit-section-name", SA->getName()); 2169 2170 llvm::AttrBuilder Attrs(F->getContext()); 2171 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2172 // We know that GetCPUAndFeaturesAttributes will always have the 2173 // newest set, since it has the newest possible FunctionDecl, so the 2174 // new ones should replace the old. 2175 llvm::AttributeMask RemoveAttrs; 2176 RemoveAttrs.addAttribute("target-cpu"); 2177 RemoveAttrs.addAttribute("target-features"); 2178 RemoveAttrs.addAttribute("tune-cpu"); 2179 F->removeFnAttrs(RemoveAttrs); 2180 F->addFnAttrs(Attrs); 2181 } 2182 } 2183 2184 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2185 GO->setSection(CSA->getName()); 2186 else if (const auto *SA = D->getAttr<SectionAttr>()) 2187 GO->setSection(SA->getName()); 2188 } 2189 2190 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2191 } 2192 2193 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2194 llvm::Function *F, 2195 const CGFunctionInfo &FI) { 2196 const Decl *D = GD.getDecl(); 2197 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2198 SetLLVMFunctionAttributesForDefinition(D, F); 2199 2200 F->setLinkage(llvm::Function::InternalLinkage); 2201 2202 setNonAliasAttributes(GD, F); 2203 } 2204 2205 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2206 // Set linkage and visibility in case we never see a definition. 2207 LinkageInfo LV = ND->getLinkageAndVisibility(); 2208 // Don't set internal linkage on declarations. 2209 // "extern_weak" is overloaded in LLVM; we probably should have 2210 // separate linkage types for this. 2211 if (isExternallyVisible(LV.getLinkage()) && 2212 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2213 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2214 } 2215 2216 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2217 llvm::Function *F) { 2218 // Only if we are checking indirect calls. 2219 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2220 return; 2221 2222 // Non-static class methods are handled via vtable or member function pointer 2223 // checks elsewhere. 2224 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2225 return; 2226 2227 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2228 F->addTypeMetadata(0, MD); 2229 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2230 2231 // Emit a hash-based bit set entry for cross-DSO calls. 2232 if (CodeGenOpts.SanitizeCfiCrossDso) 2233 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2234 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2235 } 2236 2237 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2238 bool IsIncompleteFunction, 2239 bool IsThunk) { 2240 2241 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2242 // If this is an intrinsic function, set the function's attributes 2243 // to the intrinsic's attributes. 2244 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2245 return; 2246 } 2247 2248 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2249 2250 if (!IsIncompleteFunction) 2251 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2252 IsThunk); 2253 2254 // Add the Returned attribute for "this", except for iOS 5 and earlier 2255 // where substantial code, including the libstdc++ dylib, was compiled with 2256 // GCC and does not actually return "this". 2257 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2258 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2259 assert(!F->arg_empty() && 2260 F->arg_begin()->getType() 2261 ->canLosslesslyBitCastTo(F->getReturnType()) && 2262 "unexpected this return"); 2263 F->addParamAttr(0, llvm::Attribute::Returned); 2264 } 2265 2266 // Only a few attributes are set on declarations; these may later be 2267 // overridden by a definition. 2268 2269 setLinkageForGV(F, FD); 2270 setGVProperties(F, FD); 2271 2272 // Setup target-specific attributes. 2273 if (!IsIncompleteFunction && F->isDeclaration()) 2274 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2275 2276 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2277 F->setSection(CSA->getName()); 2278 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2279 F->setSection(SA->getName()); 2280 2281 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2282 if (EA->isError()) 2283 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2284 else if (EA->isWarning()) 2285 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2286 } 2287 2288 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2289 if (FD->isInlineBuiltinDeclaration()) { 2290 const FunctionDecl *FDBody; 2291 bool HasBody = FD->hasBody(FDBody); 2292 (void)HasBody; 2293 assert(HasBody && "Inline builtin declarations should always have an " 2294 "available body!"); 2295 if (shouldEmitFunction(FDBody)) 2296 F->addFnAttr(llvm::Attribute::NoBuiltin); 2297 } 2298 2299 if (FD->isReplaceableGlobalAllocationFunction()) { 2300 // A replaceable global allocation function does not act like a builtin by 2301 // default, only if it is invoked by a new-expression or delete-expression. 2302 F->addFnAttr(llvm::Attribute::NoBuiltin); 2303 } 2304 2305 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2306 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2307 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2308 if (MD->isVirtual()) 2309 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2310 2311 // Don't emit entries for function declarations in the cross-DSO mode. This 2312 // is handled with better precision by the receiving DSO. But if jump tables 2313 // are non-canonical then we need type metadata in order to produce the local 2314 // jump table. 2315 if (!CodeGenOpts.SanitizeCfiCrossDso || 2316 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2317 CreateFunctionTypeMetadataForIcall(FD, F); 2318 2319 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2320 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2321 2322 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2323 // Annotate the callback behavior as metadata: 2324 // - The callback callee (as argument number). 2325 // - The callback payloads (as argument numbers). 2326 llvm::LLVMContext &Ctx = F->getContext(); 2327 llvm::MDBuilder MDB(Ctx); 2328 2329 // The payload indices are all but the first one in the encoding. The first 2330 // identifies the callback callee. 2331 int CalleeIdx = *CB->encoding_begin(); 2332 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2333 F->addMetadata(llvm::LLVMContext::MD_callback, 2334 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2335 CalleeIdx, PayloadIndices, 2336 /* VarArgsArePassed */ false)})); 2337 } 2338 } 2339 2340 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2341 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2342 "Only globals with definition can force usage."); 2343 LLVMUsed.emplace_back(GV); 2344 } 2345 2346 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2347 assert(!GV->isDeclaration() && 2348 "Only globals with definition can force usage."); 2349 LLVMCompilerUsed.emplace_back(GV); 2350 } 2351 2352 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2353 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2354 "Only globals with definition can force usage."); 2355 if (getTriple().isOSBinFormatELF()) 2356 LLVMCompilerUsed.emplace_back(GV); 2357 else 2358 LLVMUsed.emplace_back(GV); 2359 } 2360 2361 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2362 std::vector<llvm::WeakTrackingVH> &List) { 2363 // Don't create llvm.used if there is no need. 2364 if (List.empty()) 2365 return; 2366 2367 // Convert List to what ConstantArray needs. 2368 SmallVector<llvm::Constant*, 8> UsedArray; 2369 UsedArray.resize(List.size()); 2370 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2371 UsedArray[i] = 2372 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2373 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2374 } 2375 2376 if (UsedArray.empty()) 2377 return; 2378 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2379 2380 auto *GV = new llvm::GlobalVariable( 2381 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2382 llvm::ConstantArray::get(ATy, UsedArray), Name); 2383 2384 GV->setSection("llvm.metadata"); 2385 } 2386 2387 void CodeGenModule::emitLLVMUsed() { 2388 emitUsed(*this, "llvm.used", LLVMUsed); 2389 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2390 } 2391 2392 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2393 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2394 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2395 } 2396 2397 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2398 llvm::SmallString<32> Opt; 2399 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2400 if (Opt.empty()) 2401 return; 2402 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2403 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2404 } 2405 2406 void CodeGenModule::AddDependentLib(StringRef Lib) { 2407 auto &C = getLLVMContext(); 2408 if (getTarget().getTriple().isOSBinFormatELF()) { 2409 ELFDependentLibraries.push_back( 2410 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2411 return; 2412 } 2413 2414 llvm::SmallString<24> Opt; 2415 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2416 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2417 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2418 } 2419 2420 /// Add link options implied by the given module, including modules 2421 /// it depends on, using a postorder walk. 2422 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2423 SmallVectorImpl<llvm::MDNode *> &Metadata, 2424 llvm::SmallPtrSet<Module *, 16> &Visited) { 2425 // Import this module's parent. 2426 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2427 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2428 } 2429 2430 // Import this module's dependencies. 2431 for (Module *Import : llvm::reverse(Mod->Imports)) { 2432 if (Visited.insert(Import).second) 2433 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2434 } 2435 2436 // Add linker options to link against the libraries/frameworks 2437 // described by this module. 2438 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2439 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2440 2441 // For modules that use export_as for linking, use that module 2442 // name instead. 2443 if (Mod->UseExportAsModuleLinkName) 2444 return; 2445 2446 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2447 // Link against a framework. Frameworks are currently Darwin only, so we 2448 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2449 if (LL.IsFramework) { 2450 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2451 llvm::MDString::get(Context, LL.Library)}; 2452 2453 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2454 continue; 2455 } 2456 2457 // Link against a library. 2458 if (IsELF) { 2459 llvm::Metadata *Args[2] = { 2460 llvm::MDString::get(Context, "lib"), 2461 llvm::MDString::get(Context, LL.Library), 2462 }; 2463 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2464 } else { 2465 llvm::SmallString<24> Opt; 2466 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2467 auto *OptString = llvm::MDString::get(Context, Opt); 2468 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2469 } 2470 } 2471 } 2472 2473 void CodeGenModule::EmitModuleLinkOptions() { 2474 // Collect the set of all of the modules we want to visit to emit link 2475 // options, which is essentially the imported modules and all of their 2476 // non-explicit child modules. 2477 llvm::SetVector<clang::Module *> LinkModules; 2478 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2479 SmallVector<clang::Module *, 16> Stack; 2480 2481 // Seed the stack with imported modules. 2482 for (Module *M : ImportedModules) { 2483 // Do not add any link flags when an implementation TU of a module imports 2484 // a header of that same module. 2485 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2486 !getLangOpts().isCompilingModule()) 2487 continue; 2488 if (Visited.insert(M).second) 2489 Stack.push_back(M); 2490 } 2491 2492 // Find all of the modules to import, making a little effort to prune 2493 // non-leaf modules. 2494 while (!Stack.empty()) { 2495 clang::Module *Mod = Stack.pop_back_val(); 2496 2497 bool AnyChildren = false; 2498 2499 // Visit the submodules of this module. 2500 for (const auto &SM : Mod->submodules()) { 2501 // Skip explicit children; they need to be explicitly imported to be 2502 // linked against. 2503 if (SM->IsExplicit) 2504 continue; 2505 2506 if (Visited.insert(SM).second) { 2507 Stack.push_back(SM); 2508 AnyChildren = true; 2509 } 2510 } 2511 2512 // We didn't find any children, so add this module to the list of 2513 // modules to link against. 2514 if (!AnyChildren) { 2515 LinkModules.insert(Mod); 2516 } 2517 } 2518 2519 // Add link options for all of the imported modules in reverse topological 2520 // order. We don't do anything to try to order import link flags with respect 2521 // to linker options inserted by things like #pragma comment(). 2522 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2523 Visited.clear(); 2524 for (Module *M : LinkModules) 2525 if (Visited.insert(M).second) 2526 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2527 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2528 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2529 2530 // Add the linker options metadata flag. 2531 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2532 for (auto *MD : LinkerOptionsMetadata) 2533 NMD->addOperand(MD); 2534 } 2535 2536 void CodeGenModule::EmitDeferred() { 2537 // Emit deferred declare target declarations. 2538 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2539 getOpenMPRuntime().emitDeferredTargetDecls(); 2540 2541 // Emit code for any potentially referenced deferred decls. Since a 2542 // previously unused static decl may become used during the generation of code 2543 // for a static function, iterate until no changes are made. 2544 2545 if (!DeferredVTables.empty()) { 2546 EmitDeferredVTables(); 2547 2548 // Emitting a vtable doesn't directly cause more vtables to 2549 // become deferred, although it can cause functions to be 2550 // emitted that then need those vtables. 2551 assert(DeferredVTables.empty()); 2552 } 2553 2554 // Emit CUDA/HIP static device variables referenced by host code only. 2555 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2556 // needed for further handling. 2557 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2558 llvm::append_range(DeferredDeclsToEmit, 2559 getContext().CUDADeviceVarODRUsedByHost); 2560 2561 // Stop if we're out of both deferred vtables and deferred declarations. 2562 if (DeferredDeclsToEmit.empty()) 2563 return; 2564 2565 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2566 // work, it will not interfere with this. 2567 std::vector<GlobalDecl> CurDeclsToEmit; 2568 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2569 2570 for (GlobalDecl &D : CurDeclsToEmit) { 2571 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2572 // to get GlobalValue with exactly the type we need, not something that 2573 // might had been created for another decl with the same mangled name but 2574 // different type. 2575 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2576 GetAddrOfGlobal(D, ForDefinition)); 2577 2578 // In case of different address spaces, we may still get a cast, even with 2579 // IsForDefinition equal to true. Query mangled names table to get 2580 // GlobalValue. 2581 if (!GV) 2582 GV = GetGlobalValue(getMangledName(D)); 2583 2584 // Make sure GetGlobalValue returned non-null. 2585 assert(GV); 2586 2587 // Check to see if we've already emitted this. This is necessary 2588 // for a couple of reasons: first, decls can end up in the 2589 // deferred-decls queue multiple times, and second, decls can end 2590 // up with definitions in unusual ways (e.g. by an extern inline 2591 // function acquiring a strong function redefinition). Just 2592 // ignore these cases. 2593 if (!GV->isDeclaration()) 2594 continue; 2595 2596 // If this is OpenMP, check if it is legal to emit this global normally. 2597 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2598 continue; 2599 2600 // Otherwise, emit the definition and move on to the next one. 2601 EmitGlobalDefinition(D, GV); 2602 2603 // If we found out that we need to emit more decls, do that recursively. 2604 // This has the advantage that the decls are emitted in a DFS and related 2605 // ones are close together, which is convenient for testing. 2606 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2607 EmitDeferred(); 2608 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2609 } 2610 } 2611 } 2612 2613 void CodeGenModule::EmitVTablesOpportunistically() { 2614 // Try to emit external vtables as available_externally if they have emitted 2615 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2616 // is not allowed to create new references to things that need to be emitted 2617 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2618 2619 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2620 && "Only emit opportunistic vtables with optimizations"); 2621 2622 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2623 assert(getVTables().isVTableExternal(RD) && 2624 "This queue should only contain external vtables"); 2625 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2626 VTables.GenerateClassData(RD); 2627 } 2628 OpportunisticVTables.clear(); 2629 } 2630 2631 void CodeGenModule::EmitGlobalAnnotations() { 2632 if (Annotations.empty()) 2633 return; 2634 2635 // Create a new global variable for the ConstantStruct in the Module. 2636 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2637 Annotations[0]->getType(), Annotations.size()), Annotations); 2638 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2639 llvm::GlobalValue::AppendingLinkage, 2640 Array, "llvm.global.annotations"); 2641 gv->setSection(AnnotationSection); 2642 } 2643 2644 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2645 llvm::Constant *&AStr = AnnotationStrings[Str]; 2646 if (AStr) 2647 return AStr; 2648 2649 // Not found yet, create a new global. 2650 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2651 auto *gv = 2652 new llvm::GlobalVariable(getModule(), s->getType(), true, 2653 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2654 gv->setSection(AnnotationSection); 2655 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2656 AStr = gv; 2657 return gv; 2658 } 2659 2660 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2661 SourceManager &SM = getContext().getSourceManager(); 2662 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2663 if (PLoc.isValid()) 2664 return EmitAnnotationString(PLoc.getFilename()); 2665 return EmitAnnotationString(SM.getBufferName(Loc)); 2666 } 2667 2668 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2669 SourceManager &SM = getContext().getSourceManager(); 2670 PresumedLoc PLoc = SM.getPresumedLoc(L); 2671 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2672 SM.getExpansionLineNumber(L); 2673 return llvm::ConstantInt::get(Int32Ty, LineNo); 2674 } 2675 2676 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2677 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2678 if (Exprs.empty()) 2679 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy); 2680 2681 llvm::FoldingSetNodeID ID; 2682 for (Expr *E : Exprs) { 2683 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2684 } 2685 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2686 if (Lookup) 2687 return Lookup; 2688 2689 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2690 LLVMArgs.reserve(Exprs.size()); 2691 ConstantEmitter ConstEmiter(*this); 2692 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2693 const auto *CE = cast<clang::ConstantExpr>(E); 2694 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2695 CE->getType()); 2696 }); 2697 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2698 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2699 llvm::GlobalValue::PrivateLinkage, Struct, 2700 ".args"); 2701 GV->setSection(AnnotationSection); 2702 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2703 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2704 2705 Lookup = Bitcasted; 2706 return Bitcasted; 2707 } 2708 2709 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2710 const AnnotateAttr *AA, 2711 SourceLocation L) { 2712 // Get the globals for file name, annotation, and the line number. 2713 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2714 *UnitGV = EmitAnnotationUnit(L), 2715 *LineNoCst = EmitAnnotationLineNo(L), 2716 *Args = EmitAnnotationArgs(AA); 2717 2718 llvm::Constant *GVInGlobalsAS = GV; 2719 if (GV->getAddressSpace() != 2720 getDataLayout().getDefaultGlobalsAddressSpace()) { 2721 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2722 GV, GV->getValueType()->getPointerTo( 2723 getDataLayout().getDefaultGlobalsAddressSpace())); 2724 } 2725 2726 // Create the ConstantStruct for the global annotation. 2727 llvm::Constant *Fields[] = { 2728 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2729 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy), 2730 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy), 2731 LineNoCst, 2732 Args, 2733 }; 2734 return llvm::ConstantStruct::getAnon(Fields); 2735 } 2736 2737 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2738 llvm::GlobalValue *GV) { 2739 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2740 // Get the struct elements for these annotations. 2741 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2742 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2743 } 2744 2745 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2746 SourceLocation Loc) const { 2747 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2748 // NoSanitize by function name. 2749 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2750 return true; 2751 // NoSanitize by location. 2752 if (Loc.isValid()) 2753 return NoSanitizeL.containsLocation(Kind, Loc); 2754 // If location is unknown, this may be a compiler-generated function. Assume 2755 // it's located in the main file. 2756 auto &SM = Context.getSourceManager(); 2757 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2758 return NoSanitizeL.containsFile(Kind, MainFile->getName()); 2759 } 2760 return false; 2761 } 2762 2763 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2764 llvm::GlobalVariable *GV, 2765 SourceLocation Loc, QualType Ty, 2766 StringRef Category) const { 2767 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2768 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2769 return true; 2770 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2771 return true; 2772 // Check global type. 2773 if (!Ty.isNull()) { 2774 // Drill down the array types: if global variable of a fixed type is 2775 // not sanitized, we also don't instrument arrays of them. 2776 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2777 Ty = AT->getElementType(); 2778 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2779 // Only record types (classes, structs etc.) are ignored. 2780 if (Ty->isRecordType()) { 2781 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2782 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2783 return true; 2784 } 2785 } 2786 return false; 2787 } 2788 2789 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2790 StringRef Category) const { 2791 const auto &XRayFilter = getContext().getXRayFilter(); 2792 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2793 auto Attr = ImbueAttr::NONE; 2794 if (Loc.isValid()) 2795 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2796 if (Attr == ImbueAttr::NONE) 2797 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2798 switch (Attr) { 2799 case ImbueAttr::NONE: 2800 return false; 2801 case ImbueAttr::ALWAYS: 2802 Fn->addFnAttr("function-instrument", "xray-always"); 2803 break; 2804 case ImbueAttr::ALWAYS_ARG1: 2805 Fn->addFnAttr("function-instrument", "xray-always"); 2806 Fn->addFnAttr("xray-log-args", "1"); 2807 break; 2808 case ImbueAttr::NEVER: 2809 Fn->addFnAttr("function-instrument", "xray-never"); 2810 break; 2811 } 2812 return true; 2813 } 2814 2815 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn, 2816 SourceLocation Loc) const { 2817 const auto &ProfileList = getContext().getProfileList(); 2818 // If the profile list is empty, then instrument everything. 2819 if (ProfileList.isEmpty()) 2820 return false; 2821 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 2822 // First, check the function name. 2823 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind); 2824 if (V.hasValue()) 2825 return *V; 2826 // Next, check the source location. 2827 if (Loc.isValid()) { 2828 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind); 2829 if (V.hasValue()) 2830 return *V; 2831 } 2832 // If location is unknown, this may be a compiler-generated function. Assume 2833 // it's located in the main file. 2834 auto &SM = Context.getSourceManager(); 2835 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2836 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind); 2837 if (V.hasValue()) 2838 return *V; 2839 } 2840 return ProfileList.getDefault(); 2841 } 2842 2843 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2844 // Never defer when EmitAllDecls is specified. 2845 if (LangOpts.EmitAllDecls) 2846 return true; 2847 2848 if (CodeGenOpts.KeepStaticConsts) { 2849 const auto *VD = dyn_cast<VarDecl>(Global); 2850 if (VD && VD->getType().isConstQualified() && 2851 VD->getStorageDuration() == SD_Static) 2852 return true; 2853 } 2854 2855 return getContext().DeclMustBeEmitted(Global); 2856 } 2857 2858 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2859 // In OpenMP 5.0 variables and function may be marked as 2860 // device_type(host/nohost) and we should not emit them eagerly unless we sure 2861 // that they must be emitted on the host/device. To be sure we need to have 2862 // seen a declare target with an explicit mentioning of the function, we know 2863 // we have if the level of the declare target attribute is -1. Note that we 2864 // check somewhere else if we should emit this at all. 2865 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 2866 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 2867 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 2868 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 2869 return false; 2870 } 2871 2872 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2873 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2874 // Implicit template instantiations may change linkage if they are later 2875 // explicitly instantiated, so they should not be emitted eagerly. 2876 return false; 2877 } 2878 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2879 if (Context.getInlineVariableDefinitionKind(VD) == 2880 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2881 // A definition of an inline constexpr static data member may change 2882 // linkage later if it's redeclared outside the class. 2883 return false; 2884 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2885 // codegen for global variables, because they may be marked as threadprivate. 2886 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2887 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2888 !isTypeConstant(Global->getType(), false) && 2889 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2890 return false; 2891 2892 return true; 2893 } 2894 2895 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2896 StringRef Name = getMangledName(GD); 2897 2898 // The UUID descriptor should be pointer aligned. 2899 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2900 2901 // Look for an existing global. 2902 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2903 return ConstantAddress(GV, GV->getValueType(), Alignment); 2904 2905 ConstantEmitter Emitter(*this); 2906 llvm::Constant *Init; 2907 2908 APValue &V = GD->getAsAPValue(); 2909 if (!V.isAbsent()) { 2910 // If possible, emit the APValue version of the initializer. In particular, 2911 // this gets the type of the constant right. 2912 Init = Emitter.emitForInitializer( 2913 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2914 } else { 2915 // As a fallback, directly construct the constant. 2916 // FIXME: This may get padding wrong under esoteric struct layout rules. 2917 // MSVC appears to create a complete type 'struct __s_GUID' that it 2918 // presumably uses to represent these constants. 2919 MSGuidDecl::Parts Parts = GD->getParts(); 2920 llvm::Constant *Fields[4] = { 2921 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2922 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2923 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2924 llvm::ConstantDataArray::getRaw( 2925 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2926 Int8Ty)}; 2927 Init = llvm::ConstantStruct::getAnon(Fields); 2928 } 2929 2930 auto *GV = new llvm::GlobalVariable( 2931 getModule(), Init->getType(), 2932 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2933 if (supportsCOMDAT()) 2934 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2935 setDSOLocal(GV); 2936 2937 if (!V.isAbsent()) { 2938 Emitter.finalize(GV); 2939 return ConstantAddress(GV, GV->getValueType(), Alignment); 2940 } 2941 2942 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2943 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 2944 GV, Ty->getPointerTo(GV->getAddressSpace())); 2945 return ConstantAddress(Addr, Ty, Alignment); 2946 } 2947 2948 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 2949 const UnnamedGlobalConstantDecl *GCD) { 2950 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 2951 2952 llvm::GlobalVariable **Entry = nullptr; 2953 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 2954 if (*Entry) 2955 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 2956 2957 ConstantEmitter Emitter(*this); 2958 llvm::Constant *Init; 2959 2960 const APValue &V = GCD->getValue(); 2961 2962 assert(!V.isAbsent()); 2963 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 2964 GCD->getType()); 2965 2966 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 2967 /*isConstant=*/true, 2968 llvm::GlobalValue::PrivateLinkage, Init, 2969 ".constant"); 2970 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2971 GV->setAlignment(Alignment.getAsAlign()); 2972 2973 Emitter.finalize(GV); 2974 2975 *Entry = GV; 2976 return ConstantAddress(GV, GV->getValueType(), Alignment); 2977 } 2978 2979 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2980 const TemplateParamObjectDecl *TPO) { 2981 StringRef Name = getMangledName(TPO); 2982 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2983 2984 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2985 return ConstantAddress(GV, GV->getValueType(), Alignment); 2986 2987 ConstantEmitter Emitter(*this); 2988 llvm::Constant *Init = Emitter.emitForInitializer( 2989 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2990 2991 if (!Init) { 2992 ErrorUnsupported(TPO, "template parameter object"); 2993 return ConstantAddress::invalid(); 2994 } 2995 2996 auto *GV = new llvm::GlobalVariable( 2997 getModule(), Init->getType(), 2998 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2999 if (supportsCOMDAT()) 3000 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3001 Emitter.finalize(GV); 3002 3003 return ConstantAddress(GV, GV->getValueType(), Alignment); 3004 } 3005 3006 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3007 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3008 assert(AA && "No alias?"); 3009 3010 CharUnits Alignment = getContext().getDeclAlign(VD); 3011 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3012 3013 // See if there is already something with the target's name in the module. 3014 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3015 if (Entry) { 3016 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 3017 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3018 return ConstantAddress(Ptr, DeclTy, Alignment); 3019 } 3020 3021 llvm::Constant *Aliasee; 3022 if (isa<llvm::FunctionType>(DeclTy)) 3023 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3024 GlobalDecl(cast<FunctionDecl>(VD)), 3025 /*ForVTable=*/false); 3026 else 3027 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3028 nullptr); 3029 3030 auto *F = cast<llvm::GlobalValue>(Aliasee); 3031 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3032 WeakRefReferences.insert(F); 3033 3034 return ConstantAddress(Aliasee, DeclTy, Alignment); 3035 } 3036 3037 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3038 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3039 3040 // Weak references don't produce any output by themselves. 3041 if (Global->hasAttr<WeakRefAttr>()) 3042 return; 3043 3044 // If this is an alias definition (which otherwise looks like a declaration) 3045 // emit it now. 3046 if (Global->hasAttr<AliasAttr>()) 3047 return EmitAliasDefinition(GD); 3048 3049 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3050 if (Global->hasAttr<IFuncAttr>()) 3051 return emitIFuncDefinition(GD); 3052 3053 // If this is a cpu_dispatch multiversion function, emit the resolver. 3054 if (Global->hasAttr<CPUDispatchAttr>()) 3055 return emitCPUDispatchDefinition(GD); 3056 3057 // If this is CUDA, be selective about which declarations we emit. 3058 if (LangOpts.CUDA) { 3059 if (LangOpts.CUDAIsDevice) { 3060 if (!Global->hasAttr<CUDADeviceAttr>() && 3061 !Global->hasAttr<CUDAGlobalAttr>() && 3062 !Global->hasAttr<CUDAConstantAttr>() && 3063 !Global->hasAttr<CUDASharedAttr>() && 3064 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3065 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3066 return; 3067 } else { 3068 // We need to emit host-side 'shadows' for all global 3069 // device-side variables because the CUDA runtime needs their 3070 // size and host-side address in order to provide access to 3071 // their device-side incarnations. 3072 3073 // So device-only functions are the only things we skip. 3074 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3075 Global->hasAttr<CUDADeviceAttr>()) 3076 return; 3077 3078 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3079 "Expected Variable or Function"); 3080 } 3081 } 3082 3083 if (LangOpts.OpenMP) { 3084 // If this is OpenMP, check if it is legal to emit this global normally. 3085 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3086 return; 3087 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3088 if (MustBeEmitted(Global)) 3089 EmitOMPDeclareReduction(DRD); 3090 return; 3091 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3092 if (MustBeEmitted(Global)) 3093 EmitOMPDeclareMapper(DMD); 3094 return; 3095 } 3096 } 3097 3098 // Ignore declarations, they will be emitted on their first use. 3099 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3100 // Forward declarations are emitted lazily on first use. 3101 if (!FD->doesThisDeclarationHaveABody()) { 3102 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3103 return; 3104 3105 StringRef MangledName = getMangledName(GD); 3106 3107 // Compute the function info and LLVM type. 3108 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3109 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3110 3111 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3112 /*DontDefer=*/false); 3113 return; 3114 } 3115 } else { 3116 const auto *VD = cast<VarDecl>(Global); 3117 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3118 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3119 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3120 if (LangOpts.OpenMP) { 3121 // Emit declaration of the must-be-emitted declare target variable. 3122 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3123 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3124 bool UnifiedMemoryEnabled = 3125 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3126 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 3127 !UnifiedMemoryEnabled) { 3128 (void)GetAddrOfGlobalVar(VD); 3129 } else { 3130 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3131 (*Res == OMPDeclareTargetDeclAttr::MT_To && 3132 UnifiedMemoryEnabled)) && 3133 "Link clause or to clause with unified memory expected."); 3134 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3135 } 3136 3137 return; 3138 } 3139 } 3140 // If this declaration may have caused an inline variable definition to 3141 // change linkage, make sure that it's emitted. 3142 if (Context.getInlineVariableDefinitionKind(VD) == 3143 ASTContext::InlineVariableDefinitionKind::Strong) 3144 GetAddrOfGlobalVar(VD); 3145 return; 3146 } 3147 } 3148 3149 // Defer code generation to first use when possible, e.g. if this is an inline 3150 // function. If the global must always be emitted, do it eagerly if possible 3151 // to benefit from cache locality. 3152 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3153 // Emit the definition if it can't be deferred. 3154 EmitGlobalDefinition(GD); 3155 return; 3156 } 3157 3158 // If we're deferring emission of a C++ variable with an 3159 // initializer, remember the order in which it appeared in the file. 3160 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3161 cast<VarDecl>(Global)->hasInit()) { 3162 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3163 CXXGlobalInits.push_back(nullptr); 3164 } 3165 3166 StringRef MangledName = getMangledName(GD); 3167 if (GetGlobalValue(MangledName) != nullptr) { 3168 // The value has already been used and should therefore be emitted. 3169 addDeferredDeclToEmit(GD); 3170 } else if (MustBeEmitted(Global)) { 3171 // The value must be emitted, but cannot be emitted eagerly. 3172 assert(!MayBeEmittedEagerly(Global)); 3173 addDeferredDeclToEmit(GD); 3174 } else { 3175 // Otherwise, remember that we saw a deferred decl with this name. The 3176 // first use of the mangled name will cause it to move into 3177 // DeferredDeclsToEmit. 3178 DeferredDecls[MangledName] = GD; 3179 } 3180 } 3181 3182 // Check if T is a class type with a destructor that's not dllimport. 3183 static bool HasNonDllImportDtor(QualType T) { 3184 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3185 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3186 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3187 return true; 3188 3189 return false; 3190 } 3191 3192 namespace { 3193 struct FunctionIsDirectlyRecursive 3194 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3195 const StringRef Name; 3196 const Builtin::Context &BI; 3197 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3198 : Name(N), BI(C) {} 3199 3200 bool VisitCallExpr(const CallExpr *E) { 3201 const FunctionDecl *FD = E->getDirectCallee(); 3202 if (!FD) 3203 return false; 3204 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3205 if (Attr && Name == Attr->getLabel()) 3206 return true; 3207 unsigned BuiltinID = FD->getBuiltinID(); 3208 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3209 return false; 3210 StringRef BuiltinName = BI.getName(BuiltinID); 3211 if (BuiltinName.startswith("__builtin_") && 3212 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3213 return true; 3214 } 3215 return false; 3216 } 3217 3218 bool VisitStmt(const Stmt *S) { 3219 for (const Stmt *Child : S->children()) 3220 if (Child && this->Visit(Child)) 3221 return true; 3222 return false; 3223 } 3224 }; 3225 3226 // Make sure we're not referencing non-imported vars or functions. 3227 struct DLLImportFunctionVisitor 3228 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3229 bool SafeToInline = true; 3230 3231 bool shouldVisitImplicitCode() const { return true; } 3232 3233 bool VisitVarDecl(VarDecl *VD) { 3234 if (VD->getTLSKind()) { 3235 // A thread-local variable cannot be imported. 3236 SafeToInline = false; 3237 return SafeToInline; 3238 } 3239 3240 // A variable definition might imply a destructor call. 3241 if (VD->isThisDeclarationADefinition()) 3242 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3243 3244 return SafeToInline; 3245 } 3246 3247 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3248 if (const auto *D = E->getTemporary()->getDestructor()) 3249 SafeToInline = D->hasAttr<DLLImportAttr>(); 3250 return SafeToInline; 3251 } 3252 3253 bool VisitDeclRefExpr(DeclRefExpr *E) { 3254 ValueDecl *VD = E->getDecl(); 3255 if (isa<FunctionDecl>(VD)) 3256 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3257 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3258 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3259 return SafeToInline; 3260 } 3261 3262 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3263 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3264 return SafeToInline; 3265 } 3266 3267 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3268 CXXMethodDecl *M = E->getMethodDecl(); 3269 if (!M) { 3270 // Call through a pointer to member function. This is safe to inline. 3271 SafeToInline = true; 3272 } else { 3273 SafeToInline = M->hasAttr<DLLImportAttr>(); 3274 } 3275 return SafeToInline; 3276 } 3277 3278 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3279 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3280 return SafeToInline; 3281 } 3282 3283 bool VisitCXXNewExpr(CXXNewExpr *E) { 3284 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3285 return SafeToInline; 3286 } 3287 }; 3288 } 3289 3290 // isTriviallyRecursive - Check if this function calls another 3291 // decl that, because of the asm attribute or the other decl being a builtin, 3292 // ends up pointing to itself. 3293 bool 3294 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3295 StringRef Name; 3296 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3297 // asm labels are a special kind of mangling we have to support. 3298 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3299 if (!Attr) 3300 return false; 3301 Name = Attr->getLabel(); 3302 } else { 3303 Name = FD->getName(); 3304 } 3305 3306 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3307 const Stmt *Body = FD->getBody(); 3308 return Body ? Walker.Visit(Body) : false; 3309 } 3310 3311 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3312 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3313 return true; 3314 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3315 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3316 return false; 3317 3318 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3319 // Check whether it would be safe to inline this dllimport function. 3320 DLLImportFunctionVisitor Visitor; 3321 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3322 if (!Visitor.SafeToInline) 3323 return false; 3324 3325 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3326 // Implicit destructor invocations aren't captured in the AST, so the 3327 // check above can't see them. Check for them manually here. 3328 for (const Decl *Member : Dtor->getParent()->decls()) 3329 if (isa<FieldDecl>(Member)) 3330 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3331 return false; 3332 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3333 if (HasNonDllImportDtor(B.getType())) 3334 return false; 3335 } 3336 } 3337 3338 // Inline builtins declaration must be emitted. They often are fortified 3339 // functions. 3340 if (F->isInlineBuiltinDeclaration()) 3341 return true; 3342 3343 // PR9614. Avoid cases where the source code is lying to us. An available 3344 // externally function should have an equivalent function somewhere else, 3345 // but a function that calls itself through asm label/`__builtin_` trickery is 3346 // clearly not equivalent to the real implementation. 3347 // This happens in glibc's btowc and in some configure checks. 3348 return !isTriviallyRecursive(F); 3349 } 3350 3351 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3352 return CodeGenOpts.OptimizationLevel > 0; 3353 } 3354 3355 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3356 llvm::GlobalValue *GV) { 3357 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3358 3359 if (FD->isCPUSpecificMultiVersion()) { 3360 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3361 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3362 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3363 } else if (FD->isTargetClonesMultiVersion()) { 3364 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3365 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3366 if (Clone->isFirstOfVersion(I)) 3367 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3368 // Ensure that the resolver function is also emitted. 3369 GetOrCreateMultiVersionResolver(GD); 3370 } else 3371 EmitGlobalFunctionDefinition(GD, GV); 3372 } 3373 3374 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3375 const auto *D = cast<ValueDecl>(GD.getDecl()); 3376 3377 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3378 Context.getSourceManager(), 3379 "Generating code for declaration"); 3380 3381 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3382 // At -O0, don't generate IR for functions with available_externally 3383 // linkage. 3384 if (!shouldEmitFunction(GD)) 3385 return; 3386 3387 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3388 std::string Name; 3389 llvm::raw_string_ostream OS(Name); 3390 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3391 /*Qualified=*/true); 3392 return Name; 3393 }); 3394 3395 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3396 // Make sure to emit the definition(s) before we emit the thunks. 3397 // This is necessary for the generation of certain thunks. 3398 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3399 ABI->emitCXXStructor(GD); 3400 else if (FD->isMultiVersion()) 3401 EmitMultiVersionFunctionDefinition(GD, GV); 3402 else 3403 EmitGlobalFunctionDefinition(GD, GV); 3404 3405 if (Method->isVirtual()) 3406 getVTables().EmitThunks(GD); 3407 3408 return; 3409 } 3410 3411 if (FD->isMultiVersion()) 3412 return EmitMultiVersionFunctionDefinition(GD, GV); 3413 return EmitGlobalFunctionDefinition(GD, GV); 3414 } 3415 3416 if (const auto *VD = dyn_cast<VarDecl>(D)) 3417 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3418 3419 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3420 } 3421 3422 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3423 llvm::Function *NewFn); 3424 3425 static unsigned 3426 TargetMVPriority(const TargetInfo &TI, 3427 const CodeGenFunction::MultiVersionResolverOption &RO) { 3428 unsigned Priority = 0; 3429 for (StringRef Feat : RO.Conditions.Features) 3430 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3431 3432 if (!RO.Conditions.Architecture.empty()) 3433 Priority = std::max( 3434 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3435 return Priority; 3436 } 3437 3438 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3439 // TU can forward declare the function without causing problems. Particularly 3440 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3441 // work with internal linkage functions, so that the same function name can be 3442 // used with internal linkage in multiple TUs. 3443 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3444 GlobalDecl GD) { 3445 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3446 if (FD->getFormalLinkage() == InternalLinkage) 3447 return llvm::GlobalValue::InternalLinkage; 3448 return llvm::GlobalValue::WeakODRLinkage; 3449 } 3450 3451 void CodeGenModule::emitMultiVersionFunctions() { 3452 std::vector<GlobalDecl> MVFuncsToEmit; 3453 MultiVersionFuncs.swap(MVFuncsToEmit); 3454 for (GlobalDecl GD : MVFuncsToEmit) { 3455 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3456 assert(FD && "Expected a FunctionDecl"); 3457 3458 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3459 if (FD->isTargetMultiVersion()) { 3460 getContext().forEachMultiversionedFunctionVersion( 3461 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3462 GlobalDecl CurGD{ 3463 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3464 StringRef MangledName = getMangledName(CurGD); 3465 llvm::Constant *Func = GetGlobalValue(MangledName); 3466 if (!Func) { 3467 if (CurFD->isDefined()) { 3468 EmitGlobalFunctionDefinition(CurGD, nullptr); 3469 Func = GetGlobalValue(MangledName); 3470 } else { 3471 const CGFunctionInfo &FI = 3472 getTypes().arrangeGlobalDeclaration(GD); 3473 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3474 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3475 /*DontDefer=*/false, ForDefinition); 3476 } 3477 assert(Func && "This should have just been created"); 3478 } 3479 3480 const auto *TA = CurFD->getAttr<TargetAttr>(); 3481 llvm::SmallVector<StringRef, 8> Feats; 3482 TA->getAddedFeatures(Feats); 3483 3484 Options.emplace_back(cast<llvm::Function>(Func), 3485 TA->getArchitecture(), Feats); 3486 }); 3487 } else if (FD->isTargetClonesMultiVersion()) { 3488 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3489 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3490 ++VersionIndex) { 3491 if (!TC->isFirstOfVersion(VersionIndex)) 3492 continue; 3493 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3494 VersionIndex}; 3495 StringRef Version = TC->getFeatureStr(VersionIndex); 3496 StringRef MangledName = getMangledName(CurGD); 3497 llvm::Constant *Func = GetGlobalValue(MangledName); 3498 if (!Func) { 3499 if (FD->isDefined()) { 3500 EmitGlobalFunctionDefinition(CurGD, nullptr); 3501 Func = GetGlobalValue(MangledName); 3502 } else { 3503 const CGFunctionInfo &FI = 3504 getTypes().arrangeGlobalDeclaration(CurGD); 3505 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3506 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3507 /*DontDefer=*/false, ForDefinition); 3508 } 3509 assert(Func && "This should have just been created"); 3510 } 3511 3512 StringRef Architecture; 3513 llvm::SmallVector<StringRef, 1> Feature; 3514 3515 if (Version.startswith("arch=")) 3516 Architecture = Version.drop_front(sizeof("arch=") - 1); 3517 else if (Version != "default") 3518 Feature.push_back(Version); 3519 3520 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3521 } 3522 } else { 3523 assert(0 && "Expected a target or target_clones multiversion function"); 3524 continue; 3525 } 3526 3527 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3528 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3529 ResolverConstant = IFunc->getResolver(); 3530 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3531 3532 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3533 3534 if (supportsCOMDAT()) 3535 ResolverFunc->setComdat( 3536 getModule().getOrInsertComdat(ResolverFunc->getName())); 3537 3538 const TargetInfo &TI = getTarget(); 3539 llvm::stable_sort( 3540 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3541 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3542 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3543 }); 3544 CodeGenFunction CGF(*this); 3545 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3546 } 3547 3548 // Ensure that any additions to the deferred decls list caused by emitting a 3549 // variant are emitted. This can happen when the variant itself is inline and 3550 // calls a function without linkage. 3551 if (!MVFuncsToEmit.empty()) 3552 EmitDeferred(); 3553 3554 // Ensure that any additions to the multiversion funcs list from either the 3555 // deferred decls or the multiversion functions themselves are emitted. 3556 if (!MultiVersionFuncs.empty()) 3557 emitMultiVersionFunctions(); 3558 } 3559 3560 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3561 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3562 assert(FD && "Not a FunctionDecl?"); 3563 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3564 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3565 assert(DD && "Not a cpu_dispatch Function?"); 3566 3567 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3568 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3569 3570 StringRef ResolverName = getMangledName(GD); 3571 UpdateMultiVersionNames(GD, FD, ResolverName); 3572 3573 llvm::Type *ResolverType; 3574 GlobalDecl ResolverGD; 3575 if (getTarget().supportsIFunc()) { 3576 ResolverType = llvm::FunctionType::get( 3577 llvm::PointerType::get(DeclTy, 3578 Context.getTargetAddressSpace(FD->getType())), 3579 false); 3580 } 3581 else { 3582 ResolverType = DeclTy; 3583 ResolverGD = GD; 3584 } 3585 3586 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3587 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3588 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3589 if (supportsCOMDAT()) 3590 ResolverFunc->setComdat( 3591 getModule().getOrInsertComdat(ResolverFunc->getName())); 3592 3593 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3594 const TargetInfo &Target = getTarget(); 3595 unsigned Index = 0; 3596 for (const IdentifierInfo *II : DD->cpus()) { 3597 // Get the name of the target function so we can look it up/create it. 3598 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3599 getCPUSpecificMangling(*this, II->getName()); 3600 3601 llvm::Constant *Func = GetGlobalValue(MangledName); 3602 3603 if (!Func) { 3604 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3605 if (ExistingDecl.getDecl() && 3606 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3607 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3608 Func = GetGlobalValue(MangledName); 3609 } else { 3610 if (!ExistingDecl.getDecl()) 3611 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3612 3613 Func = GetOrCreateLLVMFunction( 3614 MangledName, DeclTy, ExistingDecl, 3615 /*ForVTable=*/false, /*DontDefer=*/true, 3616 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3617 } 3618 } 3619 3620 llvm::SmallVector<StringRef, 32> Features; 3621 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3622 llvm::transform(Features, Features.begin(), 3623 [](StringRef Str) { return Str.substr(1); }); 3624 llvm::erase_if(Features, [&Target](StringRef Feat) { 3625 return !Target.validateCpuSupports(Feat); 3626 }); 3627 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3628 ++Index; 3629 } 3630 3631 llvm::stable_sort( 3632 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3633 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3634 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3635 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3636 }); 3637 3638 // If the list contains multiple 'default' versions, such as when it contains 3639 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3640 // always run on at least a 'pentium'). We do this by deleting the 'least 3641 // advanced' (read, lowest mangling letter). 3642 while (Options.size() > 1 && 3643 llvm::X86::getCpuSupportsMask( 3644 (Options.end() - 2)->Conditions.Features) == 0) { 3645 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3646 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3647 if (LHSName.compare(RHSName) < 0) 3648 Options.erase(Options.end() - 2); 3649 else 3650 Options.erase(Options.end() - 1); 3651 } 3652 3653 CodeGenFunction CGF(*this); 3654 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3655 3656 if (getTarget().supportsIFunc()) { 3657 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3658 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3659 3660 // Fix up function declarations that were created for cpu_specific before 3661 // cpu_dispatch was known 3662 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3663 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3664 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3665 &getModule()); 3666 GI->takeName(IFunc); 3667 IFunc->replaceAllUsesWith(GI); 3668 IFunc->eraseFromParent(); 3669 IFunc = GI; 3670 } 3671 3672 std::string AliasName = getMangledNameImpl( 3673 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3674 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3675 if (!AliasFunc) { 3676 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3677 &getModule()); 3678 SetCommonAttributes(GD, GA); 3679 } 3680 } 3681 } 3682 3683 /// If a dispatcher for the specified mangled name is not in the module, create 3684 /// and return an llvm Function with the specified type. 3685 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3686 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3687 assert(FD && "Not a FunctionDecl?"); 3688 3689 std::string MangledName = 3690 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3691 3692 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3693 // a separate resolver). 3694 std::string ResolverName = MangledName; 3695 if (getTarget().supportsIFunc()) 3696 ResolverName += ".ifunc"; 3697 else if (FD->isTargetMultiVersion()) 3698 ResolverName += ".resolver"; 3699 3700 // If the resolver has already been created, just return it. 3701 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3702 return ResolverGV; 3703 3704 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3705 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3706 3707 // The resolver needs to be created. For target and target_clones, defer 3708 // creation until the end of the TU. 3709 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3710 MultiVersionFuncs.push_back(GD); 3711 3712 // For cpu_specific, don't create an ifunc yet because we don't know if the 3713 // cpu_dispatch will be emitted in this translation unit. 3714 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3715 llvm::Type *ResolverType = llvm::FunctionType::get( 3716 llvm::PointerType::get( 3717 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3718 false); 3719 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3720 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3721 /*ForVTable=*/false); 3722 llvm::GlobalIFunc *GIF = 3723 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3724 "", Resolver, &getModule()); 3725 GIF->setName(ResolverName); 3726 SetCommonAttributes(FD, GIF); 3727 3728 return GIF; 3729 } 3730 3731 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3732 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3733 assert(isa<llvm::GlobalValue>(Resolver) && 3734 "Resolver should be created for the first time"); 3735 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3736 return Resolver; 3737 } 3738 3739 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3740 /// module, create and return an llvm Function with the specified type. If there 3741 /// is something in the module with the specified name, return it potentially 3742 /// bitcasted to the right type. 3743 /// 3744 /// If D is non-null, it specifies a decl that correspond to this. This is used 3745 /// to set the attributes on the function when it is first created. 3746 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3747 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3748 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3749 ForDefinition_t IsForDefinition) { 3750 const Decl *D = GD.getDecl(); 3751 3752 // Any attempts to use a MultiVersion function should result in retrieving 3753 // the iFunc instead. Name Mangling will handle the rest of the changes. 3754 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3755 // For the device mark the function as one that should be emitted. 3756 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3757 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3758 !DontDefer && !IsForDefinition) { 3759 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3760 GlobalDecl GDDef; 3761 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3762 GDDef = GlobalDecl(CD, GD.getCtorType()); 3763 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3764 GDDef = GlobalDecl(DD, GD.getDtorType()); 3765 else 3766 GDDef = GlobalDecl(FDDef); 3767 EmitGlobal(GDDef); 3768 } 3769 } 3770 3771 if (FD->isMultiVersion()) { 3772 UpdateMultiVersionNames(GD, FD, MangledName); 3773 if (!IsForDefinition) 3774 return GetOrCreateMultiVersionResolver(GD); 3775 } 3776 } 3777 3778 // Lookup the entry, lazily creating it if necessary. 3779 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3780 if (Entry) { 3781 if (WeakRefReferences.erase(Entry)) { 3782 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3783 if (FD && !FD->hasAttr<WeakAttr>()) 3784 Entry->setLinkage(llvm::Function::ExternalLinkage); 3785 } 3786 3787 // Handle dropped DLL attributes. 3788 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 3789 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 3790 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3791 setDSOLocal(Entry); 3792 } 3793 3794 // If there are two attempts to define the same mangled name, issue an 3795 // error. 3796 if (IsForDefinition && !Entry->isDeclaration()) { 3797 GlobalDecl OtherGD; 3798 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3799 // to make sure that we issue an error only once. 3800 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3801 (GD.getCanonicalDecl().getDecl() != 3802 OtherGD.getCanonicalDecl().getDecl()) && 3803 DiagnosedConflictingDefinitions.insert(GD).second) { 3804 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3805 << MangledName; 3806 getDiags().Report(OtherGD.getDecl()->getLocation(), 3807 diag::note_previous_definition); 3808 } 3809 } 3810 3811 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3812 (Entry->getValueType() == Ty)) { 3813 return Entry; 3814 } 3815 3816 // Make sure the result is of the correct type. 3817 // (If function is requested for a definition, we always need to create a new 3818 // function, not just return a bitcast.) 3819 if (!IsForDefinition) 3820 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3821 } 3822 3823 // This function doesn't have a complete type (for example, the return 3824 // type is an incomplete struct). Use a fake type instead, and make 3825 // sure not to try to set attributes. 3826 bool IsIncompleteFunction = false; 3827 3828 llvm::FunctionType *FTy; 3829 if (isa<llvm::FunctionType>(Ty)) { 3830 FTy = cast<llvm::FunctionType>(Ty); 3831 } else { 3832 FTy = llvm::FunctionType::get(VoidTy, false); 3833 IsIncompleteFunction = true; 3834 } 3835 3836 llvm::Function *F = 3837 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3838 Entry ? StringRef() : MangledName, &getModule()); 3839 3840 // If we already created a function with the same mangled name (but different 3841 // type) before, take its name and add it to the list of functions to be 3842 // replaced with F at the end of CodeGen. 3843 // 3844 // This happens if there is a prototype for a function (e.g. "int f()") and 3845 // then a definition of a different type (e.g. "int f(int x)"). 3846 if (Entry) { 3847 F->takeName(Entry); 3848 3849 // This might be an implementation of a function without a prototype, in 3850 // which case, try to do special replacement of calls which match the new 3851 // prototype. The really key thing here is that we also potentially drop 3852 // arguments from the call site so as to make a direct call, which makes the 3853 // inliner happier and suppresses a number of optimizer warnings (!) about 3854 // dropping arguments. 3855 if (!Entry->use_empty()) { 3856 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3857 Entry->removeDeadConstantUsers(); 3858 } 3859 3860 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3861 F, Entry->getValueType()->getPointerTo()); 3862 addGlobalValReplacement(Entry, BC); 3863 } 3864 3865 assert(F->getName() == MangledName && "name was uniqued!"); 3866 if (D) 3867 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3868 if (ExtraAttrs.hasFnAttrs()) { 3869 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 3870 F->addFnAttrs(B); 3871 } 3872 3873 if (!DontDefer) { 3874 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3875 // each other bottoming out with the base dtor. Therefore we emit non-base 3876 // dtors on usage, even if there is no dtor definition in the TU. 3877 if (D && isa<CXXDestructorDecl>(D) && 3878 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3879 GD.getDtorType())) 3880 addDeferredDeclToEmit(GD); 3881 3882 // This is the first use or definition of a mangled name. If there is a 3883 // deferred decl with this name, remember that we need to emit it at the end 3884 // of the file. 3885 auto DDI = DeferredDecls.find(MangledName); 3886 if (DDI != DeferredDecls.end()) { 3887 // Move the potentially referenced deferred decl to the 3888 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3889 // don't need it anymore). 3890 addDeferredDeclToEmit(DDI->second); 3891 DeferredDecls.erase(DDI); 3892 3893 // Otherwise, there are cases we have to worry about where we're 3894 // using a declaration for which we must emit a definition but where 3895 // we might not find a top-level definition: 3896 // - member functions defined inline in their classes 3897 // - friend functions defined inline in some class 3898 // - special member functions with implicit definitions 3899 // If we ever change our AST traversal to walk into class methods, 3900 // this will be unnecessary. 3901 // 3902 // We also don't emit a definition for a function if it's going to be an 3903 // entry in a vtable, unless it's already marked as used. 3904 } else if (getLangOpts().CPlusPlus && D) { 3905 // Look for a declaration that's lexically in a record. 3906 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3907 FD = FD->getPreviousDecl()) { 3908 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3909 if (FD->doesThisDeclarationHaveABody()) { 3910 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3911 break; 3912 } 3913 } 3914 } 3915 } 3916 } 3917 3918 // Make sure the result is of the requested type. 3919 if (!IsIncompleteFunction) { 3920 assert(F->getFunctionType() == Ty); 3921 return F; 3922 } 3923 3924 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3925 return llvm::ConstantExpr::getBitCast(F, PTy); 3926 } 3927 3928 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3929 /// non-null, then this function will use the specified type if it has to 3930 /// create it (this occurs when we see a definition of the function). 3931 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3932 llvm::Type *Ty, 3933 bool ForVTable, 3934 bool DontDefer, 3935 ForDefinition_t IsForDefinition) { 3936 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3937 "consteval function should never be emitted"); 3938 // If there was no specific requested type, just convert it now. 3939 if (!Ty) { 3940 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3941 Ty = getTypes().ConvertType(FD->getType()); 3942 } 3943 3944 // Devirtualized destructor calls may come through here instead of via 3945 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3946 // of the complete destructor when necessary. 3947 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3948 if (getTarget().getCXXABI().isMicrosoft() && 3949 GD.getDtorType() == Dtor_Complete && 3950 DD->getParent()->getNumVBases() == 0) 3951 GD = GlobalDecl(DD, Dtor_Base); 3952 } 3953 3954 StringRef MangledName = getMangledName(GD); 3955 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3956 /*IsThunk=*/false, llvm::AttributeList(), 3957 IsForDefinition); 3958 // Returns kernel handle for HIP kernel stub function. 3959 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 3960 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 3961 auto *Handle = getCUDARuntime().getKernelHandle( 3962 cast<llvm::Function>(F->stripPointerCasts()), GD); 3963 if (IsForDefinition) 3964 return F; 3965 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 3966 } 3967 return F; 3968 } 3969 3970 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 3971 llvm::GlobalValue *F = 3972 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 3973 3974 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 3975 llvm::Type::getInt8PtrTy(VMContext)); 3976 } 3977 3978 static const FunctionDecl * 3979 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3980 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3981 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3982 3983 IdentifierInfo &CII = C.Idents.get(Name); 3984 for (const auto *Result : DC->lookup(&CII)) 3985 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3986 return FD; 3987 3988 if (!C.getLangOpts().CPlusPlus) 3989 return nullptr; 3990 3991 // Demangle the premangled name from getTerminateFn() 3992 IdentifierInfo &CXXII = 3993 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3994 ? C.Idents.get("terminate") 3995 : C.Idents.get(Name); 3996 3997 for (const auto &N : {"__cxxabiv1", "std"}) { 3998 IdentifierInfo &NS = C.Idents.get(N); 3999 for (const auto *Result : DC->lookup(&NS)) { 4000 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4001 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4002 for (const auto *Result : LSD->lookup(&NS)) 4003 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4004 break; 4005 4006 if (ND) 4007 for (const auto *Result : ND->lookup(&CXXII)) 4008 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4009 return FD; 4010 } 4011 } 4012 4013 return nullptr; 4014 } 4015 4016 /// CreateRuntimeFunction - Create a new runtime function with the specified 4017 /// type and name. 4018 llvm::FunctionCallee 4019 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4020 llvm::AttributeList ExtraAttrs, bool Local, 4021 bool AssumeConvergent) { 4022 if (AssumeConvergent) { 4023 ExtraAttrs = 4024 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4025 } 4026 4027 llvm::Constant *C = 4028 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4029 /*DontDefer=*/false, /*IsThunk=*/false, 4030 ExtraAttrs); 4031 4032 if (auto *F = dyn_cast<llvm::Function>(C)) { 4033 if (F->empty()) { 4034 F->setCallingConv(getRuntimeCC()); 4035 4036 // In Windows Itanium environments, try to mark runtime functions 4037 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4038 // will link their standard library statically or dynamically. Marking 4039 // functions imported when they are not imported can cause linker errors 4040 // and warnings. 4041 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4042 !getCodeGenOpts().LTOVisibilityPublicStd) { 4043 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4044 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4045 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4046 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4047 } 4048 } 4049 setDSOLocal(F); 4050 } 4051 } 4052 4053 return {FTy, C}; 4054 } 4055 4056 /// isTypeConstant - Determine whether an object of this type can be emitted 4057 /// as a constant. 4058 /// 4059 /// If ExcludeCtor is true, the duration when the object's constructor runs 4060 /// will not be considered. The caller will need to verify that the object is 4061 /// not written to during its construction. 4062 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4063 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4064 return false; 4065 4066 if (Context.getLangOpts().CPlusPlus) { 4067 if (const CXXRecordDecl *Record 4068 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4069 return ExcludeCtor && !Record->hasMutableFields() && 4070 Record->hasTrivialDestructor(); 4071 } 4072 4073 return true; 4074 } 4075 4076 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4077 /// create and return an llvm GlobalVariable with the specified type and address 4078 /// space. If there is something in the module with the specified name, return 4079 /// it potentially bitcasted to the right type. 4080 /// 4081 /// If D is non-null, it specifies a decl that correspond to this. This is used 4082 /// to set the attributes on the global when it is first created. 4083 /// 4084 /// If IsForDefinition is true, it is guaranteed that an actual global with 4085 /// type Ty will be returned, not conversion of a variable with the same 4086 /// mangled name but some other type. 4087 llvm::Constant * 4088 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4089 LangAS AddrSpace, const VarDecl *D, 4090 ForDefinition_t IsForDefinition) { 4091 // Lookup the entry, lazily creating it if necessary. 4092 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4093 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4094 if (Entry) { 4095 if (WeakRefReferences.erase(Entry)) { 4096 if (D && !D->hasAttr<WeakAttr>()) 4097 Entry->setLinkage(llvm::Function::ExternalLinkage); 4098 } 4099 4100 // Handle dropped DLL attributes. 4101 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4102 !shouldMapVisibilityToDLLExport(D)) 4103 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4104 4105 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4106 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4107 4108 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4109 return Entry; 4110 4111 // If there are two attempts to define the same mangled name, issue an 4112 // error. 4113 if (IsForDefinition && !Entry->isDeclaration()) { 4114 GlobalDecl OtherGD; 4115 const VarDecl *OtherD; 4116 4117 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4118 // to make sure that we issue an error only once. 4119 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4120 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4121 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4122 OtherD->hasInit() && 4123 DiagnosedConflictingDefinitions.insert(D).second) { 4124 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4125 << MangledName; 4126 getDiags().Report(OtherGD.getDecl()->getLocation(), 4127 diag::note_previous_definition); 4128 } 4129 } 4130 4131 // Make sure the result is of the correct type. 4132 if (Entry->getType()->getAddressSpace() != TargetAS) { 4133 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4134 Ty->getPointerTo(TargetAS)); 4135 } 4136 4137 // (If global is requested for a definition, we always need to create a new 4138 // global, not just return a bitcast.) 4139 if (!IsForDefinition) 4140 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4141 } 4142 4143 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4144 4145 auto *GV = new llvm::GlobalVariable( 4146 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4147 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4148 getContext().getTargetAddressSpace(DAddrSpace)); 4149 4150 // If we already created a global with the same mangled name (but different 4151 // type) before, take its name and remove it from its parent. 4152 if (Entry) { 4153 GV->takeName(Entry); 4154 4155 if (!Entry->use_empty()) { 4156 llvm::Constant *NewPtrForOldDecl = 4157 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4158 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4159 } 4160 4161 Entry->eraseFromParent(); 4162 } 4163 4164 // This is the first use or definition of a mangled name. If there is a 4165 // deferred decl with this name, remember that we need to emit it at the end 4166 // of the file. 4167 auto DDI = DeferredDecls.find(MangledName); 4168 if (DDI != DeferredDecls.end()) { 4169 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4170 // list, and remove it from DeferredDecls (since we don't need it anymore). 4171 addDeferredDeclToEmit(DDI->second); 4172 DeferredDecls.erase(DDI); 4173 } 4174 4175 // Handle things which are present even on external declarations. 4176 if (D) { 4177 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4178 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4179 4180 // FIXME: This code is overly simple and should be merged with other global 4181 // handling. 4182 GV->setConstant(isTypeConstant(D->getType(), false)); 4183 4184 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4185 4186 setLinkageForGV(GV, D); 4187 4188 if (D->getTLSKind()) { 4189 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4190 CXXThreadLocals.push_back(D); 4191 setTLSMode(GV, *D); 4192 } 4193 4194 setGVProperties(GV, D); 4195 4196 // If required by the ABI, treat declarations of static data members with 4197 // inline initializers as definitions. 4198 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4199 EmitGlobalVarDefinition(D); 4200 } 4201 4202 // Emit section information for extern variables. 4203 if (D->hasExternalStorage()) { 4204 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4205 GV->setSection(SA->getName()); 4206 } 4207 4208 // Handle XCore specific ABI requirements. 4209 if (getTriple().getArch() == llvm::Triple::xcore && 4210 D->getLanguageLinkage() == CLanguageLinkage && 4211 D->getType().isConstant(Context) && 4212 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4213 GV->setSection(".cp.rodata"); 4214 4215 // Check if we a have a const declaration with an initializer, we may be 4216 // able to emit it as available_externally to expose it's value to the 4217 // optimizer. 4218 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4219 D->getType().isConstQualified() && !GV->hasInitializer() && 4220 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4221 const auto *Record = 4222 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4223 bool HasMutableFields = Record && Record->hasMutableFields(); 4224 if (!HasMutableFields) { 4225 const VarDecl *InitDecl; 4226 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4227 if (InitExpr) { 4228 ConstantEmitter emitter(*this); 4229 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4230 if (Init) { 4231 auto *InitType = Init->getType(); 4232 if (GV->getValueType() != InitType) { 4233 // The type of the initializer does not match the definition. 4234 // This happens when an initializer has a different type from 4235 // the type of the global (because of padding at the end of a 4236 // structure for instance). 4237 GV->setName(StringRef()); 4238 // Make a new global with the correct type, this is now guaranteed 4239 // to work. 4240 auto *NewGV = cast<llvm::GlobalVariable>( 4241 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4242 ->stripPointerCasts()); 4243 4244 // Erase the old global, since it is no longer used. 4245 GV->eraseFromParent(); 4246 GV = NewGV; 4247 } else { 4248 GV->setInitializer(Init); 4249 GV->setConstant(true); 4250 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4251 } 4252 emitter.finalize(GV); 4253 } 4254 } 4255 } 4256 } 4257 } 4258 4259 if (GV->isDeclaration()) { 4260 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4261 // External HIP managed variables needed to be recorded for transformation 4262 // in both device and host compilations. 4263 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4264 D->hasExternalStorage()) 4265 getCUDARuntime().handleVarRegistration(D, *GV); 4266 } 4267 4268 LangAS ExpectedAS = 4269 D ? D->getType().getAddressSpace() 4270 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4271 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4272 if (DAddrSpace != ExpectedAS) { 4273 return getTargetCodeGenInfo().performAddrSpaceCast( 4274 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4275 } 4276 4277 return GV; 4278 } 4279 4280 llvm::Constant * 4281 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4282 const Decl *D = GD.getDecl(); 4283 4284 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4285 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4286 /*DontDefer=*/false, IsForDefinition); 4287 4288 if (isa<CXXMethodDecl>(D)) { 4289 auto FInfo = 4290 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4291 auto Ty = getTypes().GetFunctionType(*FInfo); 4292 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4293 IsForDefinition); 4294 } 4295 4296 if (isa<FunctionDecl>(D)) { 4297 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4298 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4299 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4300 IsForDefinition); 4301 } 4302 4303 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4304 } 4305 4306 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4307 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4308 unsigned Alignment) { 4309 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4310 llvm::GlobalVariable *OldGV = nullptr; 4311 4312 if (GV) { 4313 // Check if the variable has the right type. 4314 if (GV->getValueType() == Ty) 4315 return GV; 4316 4317 // Because C++ name mangling, the only way we can end up with an already 4318 // existing global with the same name is if it has been declared extern "C". 4319 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4320 OldGV = GV; 4321 } 4322 4323 // Create a new variable. 4324 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4325 Linkage, nullptr, Name); 4326 4327 if (OldGV) { 4328 // Replace occurrences of the old variable if needed. 4329 GV->takeName(OldGV); 4330 4331 if (!OldGV->use_empty()) { 4332 llvm::Constant *NewPtrForOldDecl = 4333 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4334 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4335 } 4336 4337 OldGV->eraseFromParent(); 4338 } 4339 4340 if (supportsCOMDAT() && GV->isWeakForLinker() && 4341 !GV->hasAvailableExternallyLinkage()) 4342 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4343 4344 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4345 4346 return GV; 4347 } 4348 4349 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4350 /// given global variable. If Ty is non-null and if the global doesn't exist, 4351 /// then it will be created with the specified type instead of whatever the 4352 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4353 /// that an actual global with type Ty will be returned, not conversion of a 4354 /// variable with the same mangled name but some other type. 4355 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4356 llvm::Type *Ty, 4357 ForDefinition_t IsForDefinition) { 4358 assert(D->hasGlobalStorage() && "Not a global variable"); 4359 QualType ASTTy = D->getType(); 4360 if (!Ty) 4361 Ty = getTypes().ConvertTypeForMem(ASTTy); 4362 4363 StringRef MangledName = getMangledName(D); 4364 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4365 IsForDefinition); 4366 } 4367 4368 /// CreateRuntimeVariable - Create a new runtime global variable with the 4369 /// specified type and name. 4370 llvm::Constant * 4371 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4372 StringRef Name) { 4373 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4374 : LangAS::Default; 4375 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4376 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4377 return Ret; 4378 } 4379 4380 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4381 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4382 4383 StringRef MangledName = getMangledName(D); 4384 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4385 4386 // We already have a definition, not declaration, with the same mangled name. 4387 // Emitting of declaration is not required (and actually overwrites emitted 4388 // definition). 4389 if (GV && !GV->isDeclaration()) 4390 return; 4391 4392 // If we have not seen a reference to this variable yet, place it into the 4393 // deferred declarations table to be emitted if needed later. 4394 if (!MustBeEmitted(D) && !GV) { 4395 DeferredDecls[MangledName] = D; 4396 return; 4397 } 4398 4399 // The tentative definition is the only definition. 4400 EmitGlobalVarDefinition(D); 4401 } 4402 4403 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4404 EmitExternalVarDeclaration(D); 4405 } 4406 4407 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4408 return Context.toCharUnitsFromBits( 4409 getDataLayout().getTypeStoreSizeInBits(Ty)); 4410 } 4411 4412 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4413 if (LangOpts.OpenCL) { 4414 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4415 assert(AS == LangAS::opencl_global || 4416 AS == LangAS::opencl_global_device || 4417 AS == LangAS::opencl_global_host || 4418 AS == LangAS::opencl_constant || 4419 AS == LangAS::opencl_local || 4420 AS >= LangAS::FirstTargetAddressSpace); 4421 return AS; 4422 } 4423 4424 if (LangOpts.SYCLIsDevice && 4425 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4426 return LangAS::sycl_global; 4427 4428 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4429 if (D && D->hasAttr<CUDAConstantAttr>()) 4430 return LangAS::cuda_constant; 4431 else if (D && D->hasAttr<CUDASharedAttr>()) 4432 return LangAS::cuda_shared; 4433 else if (D && D->hasAttr<CUDADeviceAttr>()) 4434 return LangAS::cuda_device; 4435 else if (D && D->getType().isConstQualified()) 4436 return LangAS::cuda_constant; 4437 else 4438 return LangAS::cuda_device; 4439 } 4440 4441 if (LangOpts.OpenMP) { 4442 LangAS AS; 4443 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4444 return AS; 4445 } 4446 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4447 } 4448 4449 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4450 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4451 if (LangOpts.OpenCL) 4452 return LangAS::opencl_constant; 4453 if (LangOpts.SYCLIsDevice) 4454 return LangAS::sycl_global; 4455 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4456 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4457 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4458 // with OpVariable instructions with Generic storage class which is not 4459 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4460 // UniformConstant storage class is not viable as pointers to it may not be 4461 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4462 return LangAS::cuda_device; 4463 if (auto AS = getTarget().getConstantAddressSpace()) 4464 return AS.getValue(); 4465 return LangAS::Default; 4466 } 4467 4468 // In address space agnostic languages, string literals are in default address 4469 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4470 // emitted in constant address space in LLVM IR. To be consistent with other 4471 // parts of AST, string literal global variables in constant address space 4472 // need to be casted to default address space before being put into address 4473 // map and referenced by other part of CodeGen. 4474 // In OpenCL, string literals are in constant address space in AST, therefore 4475 // they should not be casted to default address space. 4476 static llvm::Constant * 4477 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4478 llvm::GlobalVariable *GV) { 4479 llvm::Constant *Cast = GV; 4480 if (!CGM.getLangOpts().OpenCL) { 4481 auto AS = CGM.GetGlobalConstantAddressSpace(); 4482 if (AS != LangAS::Default) 4483 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4484 CGM, GV, AS, LangAS::Default, 4485 GV->getValueType()->getPointerTo( 4486 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4487 } 4488 return Cast; 4489 } 4490 4491 template<typename SomeDecl> 4492 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4493 llvm::GlobalValue *GV) { 4494 if (!getLangOpts().CPlusPlus) 4495 return; 4496 4497 // Must have 'used' attribute, or else inline assembly can't rely on 4498 // the name existing. 4499 if (!D->template hasAttr<UsedAttr>()) 4500 return; 4501 4502 // Must have internal linkage and an ordinary name. 4503 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4504 return; 4505 4506 // Must be in an extern "C" context. Entities declared directly within 4507 // a record are not extern "C" even if the record is in such a context. 4508 const SomeDecl *First = D->getFirstDecl(); 4509 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4510 return; 4511 4512 // OK, this is an internal linkage entity inside an extern "C" linkage 4513 // specification. Make a note of that so we can give it the "expected" 4514 // mangled name if nothing else is using that name. 4515 std::pair<StaticExternCMap::iterator, bool> R = 4516 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4517 4518 // If we have multiple internal linkage entities with the same name 4519 // in extern "C" regions, none of them gets that name. 4520 if (!R.second) 4521 R.first->second = nullptr; 4522 } 4523 4524 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4525 if (!CGM.supportsCOMDAT()) 4526 return false; 4527 4528 if (D.hasAttr<SelectAnyAttr>()) 4529 return true; 4530 4531 GVALinkage Linkage; 4532 if (auto *VD = dyn_cast<VarDecl>(&D)) 4533 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4534 else 4535 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4536 4537 switch (Linkage) { 4538 case GVA_Internal: 4539 case GVA_AvailableExternally: 4540 case GVA_StrongExternal: 4541 return false; 4542 case GVA_DiscardableODR: 4543 case GVA_StrongODR: 4544 return true; 4545 } 4546 llvm_unreachable("No such linkage"); 4547 } 4548 4549 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4550 llvm::GlobalObject &GO) { 4551 if (!shouldBeInCOMDAT(*this, D)) 4552 return; 4553 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4554 } 4555 4556 /// Pass IsTentative as true if you want to create a tentative definition. 4557 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4558 bool IsTentative) { 4559 // OpenCL global variables of sampler type are translated to function calls, 4560 // therefore no need to be translated. 4561 QualType ASTTy = D->getType(); 4562 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4563 return; 4564 4565 // If this is OpenMP device, check if it is legal to emit this global 4566 // normally. 4567 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4568 OpenMPRuntime->emitTargetGlobalVariable(D)) 4569 return; 4570 4571 llvm::TrackingVH<llvm::Constant> Init; 4572 bool NeedsGlobalCtor = false; 4573 bool NeedsGlobalDtor = 4574 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4575 4576 const VarDecl *InitDecl; 4577 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4578 4579 Optional<ConstantEmitter> emitter; 4580 4581 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4582 // as part of their declaration." Sema has already checked for 4583 // error cases, so we just need to set Init to UndefValue. 4584 bool IsCUDASharedVar = 4585 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4586 // Shadows of initialized device-side global variables are also left 4587 // undefined. 4588 // Managed Variables should be initialized on both host side and device side. 4589 bool IsCUDAShadowVar = 4590 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4591 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4592 D->hasAttr<CUDASharedAttr>()); 4593 bool IsCUDADeviceShadowVar = 4594 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4595 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4596 D->getType()->isCUDADeviceBuiltinTextureType()); 4597 if (getLangOpts().CUDA && 4598 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4599 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4600 else if (D->hasAttr<LoaderUninitializedAttr>()) 4601 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4602 else if (!InitExpr) { 4603 // This is a tentative definition; tentative definitions are 4604 // implicitly initialized with { 0 }. 4605 // 4606 // Note that tentative definitions are only emitted at the end of 4607 // a translation unit, so they should never have incomplete 4608 // type. In addition, EmitTentativeDefinition makes sure that we 4609 // never attempt to emit a tentative definition if a real one 4610 // exists. A use may still exists, however, so we still may need 4611 // to do a RAUW. 4612 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4613 Init = EmitNullConstant(D->getType()); 4614 } else { 4615 initializedGlobalDecl = GlobalDecl(D); 4616 emitter.emplace(*this); 4617 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4618 if (!Initializer) { 4619 QualType T = InitExpr->getType(); 4620 if (D->getType()->isReferenceType()) 4621 T = D->getType(); 4622 4623 if (getLangOpts().CPlusPlus) { 4624 if (InitDecl->hasFlexibleArrayInit(getContext())) 4625 ErrorUnsupported(D, "flexible array initializer"); 4626 Init = EmitNullConstant(T); 4627 NeedsGlobalCtor = true; 4628 } else { 4629 ErrorUnsupported(D, "static initializer"); 4630 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4631 } 4632 } else { 4633 Init = Initializer; 4634 // We don't need an initializer, so remove the entry for the delayed 4635 // initializer position (just in case this entry was delayed) if we 4636 // also don't need to register a destructor. 4637 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4638 DelayedCXXInitPosition.erase(D); 4639 4640 #ifndef NDEBUG 4641 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4642 InitDecl->getFlexibleArrayInitChars(getContext()); 4643 CharUnits CstSize = CharUnits::fromQuantity( 4644 getDataLayout().getTypeAllocSize(Init->getType())); 4645 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4646 #endif 4647 } 4648 } 4649 4650 llvm::Type* InitType = Init->getType(); 4651 llvm::Constant *Entry = 4652 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4653 4654 // Strip off pointer casts if we got them. 4655 Entry = Entry->stripPointerCasts(); 4656 4657 // Entry is now either a Function or GlobalVariable. 4658 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4659 4660 // We have a definition after a declaration with the wrong type. 4661 // We must make a new GlobalVariable* and update everything that used OldGV 4662 // (a declaration or tentative definition) with the new GlobalVariable* 4663 // (which will be a definition). 4664 // 4665 // This happens if there is a prototype for a global (e.g. 4666 // "extern int x[];") and then a definition of a different type (e.g. 4667 // "int x[10];"). This also happens when an initializer has a different type 4668 // from the type of the global (this happens with unions). 4669 if (!GV || GV->getValueType() != InitType || 4670 GV->getType()->getAddressSpace() != 4671 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4672 4673 // Move the old entry aside so that we'll create a new one. 4674 Entry->setName(StringRef()); 4675 4676 // Make a new global with the correct type, this is now guaranteed to work. 4677 GV = cast<llvm::GlobalVariable>( 4678 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4679 ->stripPointerCasts()); 4680 4681 // Replace all uses of the old global with the new global 4682 llvm::Constant *NewPtrForOldDecl = 4683 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4684 Entry->getType()); 4685 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4686 4687 // Erase the old global, since it is no longer used. 4688 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4689 } 4690 4691 MaybeHandleStaticInExternC(D, GV); 4692 4693 if (D->hasAttr<AnnotateAttr>()) 4694 AddGlobalAnnotations(D, GV); 4695 4696 // Set the llvm linkage type as appropriate. 4697 llvm::GlobalValue::LinkageTypes Linkage = 4698 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4699 4700 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4701 // the device. [...]" 4702 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4703 // __device__, declares a variable that: [...] 4704 // Is accessible from all the threads within the grid and from the host 4705 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4706 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4707 if (GV && LangOpts.CUDA) { 4708 if (LangOpts.CUDAIsDevice) { 4709 if (Linkage != llvm::GlobalValue::InternalLinkage && 4710 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4711 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4712 D->getType()->isCUDADeviceBuiltinTextureType())) 4713 GV->setExternallyInitialized(true); 4714 } else { 4715 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4716 } 4717 getCUDARuntime().handleVarRegistration(D, *GV); 4718 } 4719 4720 GV->setInitializer(Init); 4721 if (emitter) 4722 emitter->finalize(GV); 4723 4724 // If it is safe to mark the global 'constant', do so now. 4725 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4726 isTypeConstant(D->getType(), true)); 4727 4728 // If it is in a read-only section, mark it 'constant'. 4729 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4730 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4731 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4732 GV->setConstant(true); 4733 } 4734 4735 CharUnits AlignVal = getContext().getDeclAlign(D); 4736 // Check for alignment specifed in an 'omp allocate' directive. 4737 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4738 getOMPAllocateAlignment(D)) 4739 AlignVal = AlignValFromAllocate.getValue(); 4740 GV->setAlignment(AlignVal.getAsAlign()); 4741 4742 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4743 // function is only defined alongside the variable, not also alongside 4744 // callers. Normally, all accesses to a thread_local go through the 4745 // thread-wrapper in order to ensure initialization has occurred, underlying 4746 // variable will never be used other than the thread-wrapper, so it can be 4747 // converted to internal linkage. 4748 // 4749 // However, if the variable has the 'constinit' attribute, it _can_ be 4750 // referenced directly, without calling the thread-wrapper, so the linkage 4751 // must not be changed. 4752 // 4753 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4754 // weak or linkonce, the de-duplication semantics are important to preserve, 4755 // so we don't change the linkage. 4756 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4757 Linkage == llvm::GlobalValue::ExternalLinkage && 4758 Context.getTargetInfo().getTriple().isOSDarwin() && 4759 !D->hasAttr<ConstInitAttr>()) 4760 Linkage = llvm::GlobalValue::InternalLinkage; 4761 4762 GV->setLinkage(Linkage); 4763 if (D->hasAttr<DLLImportAttr>()) 4764 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4765 else if (D->hasAttr<DLLExportAttr>()) 4766 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4767 else 4768 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4769 4770 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4771 // common vars aren't constant even if declared const. 4772 GV->setConstant(false); 4773 // Tentative definition of global variables may be initialized with 4774 // non-zero null pointers. In this case they should have weak linkage 4775 // since common linkage must have zero initializer and must not have 4776 // explicit section therefore cannot have non-zero initial value. 4777 if (!GV->getInitializer()->isNullValue()) 4778 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4779 } 4780 4781 setNonAliasAttributes(D, GV); 4782 4783 if (D->getTLSKind() && !GV->isThreadLocal()) { 4784 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4785 CXXThreadLocals.push_back(D); 4786 setTLSMode(GV, *D); 4787 } 4788 4789 maybeSetTrivialComdat(*D, *GV); 4790 4791 // Emit the initializer function if necessary. 4792 if (NeedsGlobalCtor || NeedsGlobalDtor) 4793 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4794 4795 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 4796 4797 // Emit global variable debug information. 4798 if (CGDebugInfo *DI = getModuleDebugInfo()) 4799 if (getCodeGenOpts().hasReducedDebugInfo()) 4800 DI->EmitGlobalVariable(GV, D); 4801 } 4802 4803 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4804 if (CGDebugInfo *DI = getModuleDebugInfo()) 4805 if (getCodeGenOpts().hasReducedDebugInfo()) { 4806 QualType ASTTy = D->getType(); 4807 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4808 llvm::Constant *GV = 4809 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 4810 DI->EmitExternalVariable( 4811 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4812 } 4813 } 4814 4815 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4816 CodeGenModule &CGM, const VarDecl *D, 4817 bool NoCommon) { 4818 // Don't give variables common linkage if -fno-common was specified unless it 4819 // was overridden by a NoCommon attribute. 4820 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4821 return true; 4822 4823 // C11 6.9.2/2: 4824 // A declaration of an identifier for an object that has file scope without 4825 // an initializer, and without a storage-class specifier or with the 4826 // storage-class specifier static, constitutes a tentative definition. 4827 if (D->getInit() || D->hasExternalStorage()) 4828 return true; 4829 4830 // A variable cannot be both common and exist in a section. 4831 if (D->hasAttr<SectionAttr>()) 4832 return true; 4833 4834 // A variable cannot be both common and exist in a section. 4835 // We don't try to determine which is the right section in the front-end. 4836 // If no specialized section name is applicable, it will resort to default. 4837 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4838 D->hasAttr<PragmaClangDataSectionAttr>() || 4839 D->hasAttr<PragmaClangRelroSectionAttr>() || 4840 D->hasAttr<PragmaClangRodataSectionAttr>()) 4841 return true; 4842 4843 // Thread local vars aren't considered common linkage. 4844 if (D->getTLSKind()) 4845 return true; 4846 4847 // Tentative definitions marked with WeakImportAttr are true definitions. 4848 if (D->hasAttr<WeakImportAttr>()) 4849 return true; 4850 4851 // A variable cannot be both common and exist in a comdat. 4852 if (shouldBeInCOMDAT(CGM, *D)) 4853 return true; 4854 4855 // Declarations with a required alignment do not have common linkage in MSVC 4856 // mode. 4857 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4858 if (D->hasAttr<AlignedAttr>()) 4859 return true; 4860 QualType VarType = D->getType(); 4861 if (Context.isAlignmentRequired(VarType)) 4862 return true; 4863 4864 if (const auto *RT = VarType->getAs<RecordType>()) { 4865 const RecordDecl *RD = RT->getDecl(); 4866 for (const FieldDecl *FD : RD->fields()) { 4867 if (FD->isBitField()) 4868 continue; 4869 if (FD->hasAttr<AlignedAttr>()) 4870 return true; 4871 if (Context.isAlignmentRequired(FD->getType())) 4872 return true; 4873 } 4874 } 4875 } 4876 4877 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4878 // common symbols, so symbols with greater alignment requirements cannot be 4879 // common. 4880 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4881 // alignments for common symbols via the aligncomm directive, so this 4882 // restriction only applies to MSVC environments. 4883 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4884 Context.getTypeAlignIfKnown(D->getType()) > 4885 Context.toBits(CharUnits::fromQuantity(32))) 4886 return true; 4887 4888 return false; 4889 } 4890 4891 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4892 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4893 if (Linkage == GVA_Internal) 4894 return llvm::Function::InternalLinkage; 4895 4896 if (D->hasAttr<WeakAttr>()) 4897 return llvm::GlobalVariable::WeakAnyLinkage; 4898 4899 if (const auto *FD = D->getAsFunction()) 4900 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4901 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4902 4903 // We are guaranteed to have a strong definition somewhere else, 4904 // so we can use available_externally linkage. 4905 if (Linkage == GVA_AvailableExternally) 4906 return llvm::GlobalValue::AvailableExternallyLinkage; 4907 4908 // Note that Apple's kernel linker doesn't support symbol 4909 // coalescing, so we need to avoid linkonce and weak linkages there. 4910 // Normally, this means we just map to internal, but for explicit 4911 // instantiations we'll map to external. 4912 4913 // In C++, the compiler has to emit a definition in every translation unit 4914 // that references the function. We should use linkonce_odr because 4915 // a) if all references in this translation unit are optimized away, we 4916 // don't need to codegen it. b) if the function persists, it needs to be 4917 // merged with other definitions. c) C++ has the ODR, so we know the 4918 // definition is dependable. 4919 if (Linkage == GVA_DiscardableODR) 4920 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4921 : llvm::Function::InternalLinkage; 4922 4923 // An explicit instantiation of a template has weak linkage, since 4924 // explicit instantiations can occur in multiple translation units 4925 // and must all be equivalent. However, we are not allowed to 4926 // throw away these explicit instantiations. 4927 // 4928 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4929 // so say that CUDA templates are either external (for kernels) or internal. 4930 // This lets llvm perform aggressive inter-procedural optimizations. For 4931 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4932 // therefore we need to follow the normal linkage paradigm. 4933 if (Linkage == GVA_StrongODR) { 4934 if (getLangOpts().AppleKext) 4935 return llvm::Function::ExternalLinkage; 4936 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4937 !getLangOpts().GPURelocatableDeviceCode) 4938 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4939 : llvm::Function::InternalLinkage; 4940 return llvm::Function::WeakODRLinkage; 4941 } 4942 4943 // C++ doesn't have tentative definitions and thus cannot have common 4944 // linkage. 4945 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4946 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4947 CodeGenOpts.NoCommon)) 4948 return llvm::GlobalVariable::CommonLinkage; 4949 4950 // selectany symbols are externally visible, so use weak instead of 4951 // linkonce. MSVC optimizes away references to const selectany globals, so 4952 // all definitions should be the same and ODR linkage should be used. 4953 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4954 if (D->hasAttr<SelectAnyAttr>()) 4955 return llvm::GlobalVariable::WeakODRLinkage; 4956 4957 // Otherwise, we have strong external linkage. 4958 assert(Linkage == GVA_StrongExternal); 4959 return llvm::GlobalVariable::ExternalLinkage; 4960 } 4961 4962 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4963 const VarDecl *VD, bool IsConstant) { 4964 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4965 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4966 } 4967 4968 /// Replace the uses of a function that was declared with a non-proto type. 4969 /// We want to silently drop extra arguments from call sites 4970 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4971 llvm::Function *newFn) { 4972 // Fast path. 4973 if (old->use_empty()) return; 4974 4975 llvm::Type *newRetTy = newFn->getReturnType(); 4976 SmallVector<llvm::Value*, 4> newArgs; 4977 4978 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4979 ui != ue; ) { 4980 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4981 llvm::User *user = use->getUser(); 4982 4983 // Recognize and replace uses of bitcasts. Most calls to 4984 // unprototyped functions will use bitcasts. 4985 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4986 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4987 replaceUsesOfNonProtoConstant(bitcast, newFn); 4988 continue; 4989 } 4990 4991 // Recognize calls to the function. 4992 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4993 if (!callSite) continue; 4994 if (!callSite->isCallee(&*use)) 4995 continue; 4996 4997 // If the return types don't match exactly, then we can't 4998 // transform this call unless it's dead. 4999 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5000 continue; 5001 5002 // Get the call site's attribute list. 5003 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5004 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5005 5006 // If the function was passed too few arguments, don't transform. 5007 unsigned newNumArgs = newFn->arg_size(); 5008 if (callSite->arg_size() < newNumArgs) 5009 continue; 5010 5011 // If extra arguments were passed, we silently drop them. 5012 // If any of the types mismatch, we don't transform. 5013 unsigned argNo = 0; 5014 bool dontTransform = false; 5015 for (llvm::Argument &A : newFn->args()) { 5016 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5017 dontTransform = true; 5018 break; 5019 } 5020 5021 // Add any parameter attributes. 5022 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5023 argNo++; 5024 } 5025 if (dontTransform) 5026 continue; 5027 5028 // Okay, we can transform this. Create the new call instruction and copy 5029 // over the required information. 5030 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5031 5032 // Copy over any operand bundles. 5033 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5034 callSite->getOperandBundlesAsDefs(newBundles); 5035 5036 llvm::CallBase *newCall; 5037 if (isa<llvm::CallInst>(callSite)) { 5038 newCall = 5039 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5040 } else { 5041 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5042 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5043 oldInvoke->getUnwindDest(), newArgs, 5044 newBundles, "", callSite); 5045 } 5046 newArgs.clear(); // for the next iteration 5047 5048 if (!newCall->getType()->isVoidTy()) 5049 newCall->takeName(callSite); 5050 newCall->setAttributes( 5051 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5052 oldAttrs.getRetAttrs(), newArgAttrs)); 5053 newCall->setCallingConv(callSite->getCallingConv()); 5054 5055 // Finally, remove the old call, replacing any uses with the new one. 5056 if (!callSite->use_empty()) 5057 callSite->replaceAllUsesWith(newCall); 5058 5059 // Copy debug location attached to CI. 5060 if (callSite->getDebugLoc()) 5061 newCall->setDebugLoc(callSite->getDebugLoc()); 5062 5063 callSite->eraseFromParent(); 5064 } 5065 } 5066 5067 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5068 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5069 /// existing call uses of the old function in the module, this adjusts them to 5070 /// call the new function directly. 5071 /// 5072 /// This is not just a cleanup: the always_inline pass requires direct calls to 5073 /// functions to be able to inline them. If there is a bitcast in the way, it 5074 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5075 /// run at -O0. 5076 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5077 llvm::Function *NewFn) { 5078 // If we're redefining a global as a function, don't transform it. 5079 if (!isa<llvm::Function>(Old)) return; 5080 5081 replaceUsesOfNonProtoConstant(Old, NewFn); 5082 } 5083 5084 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5085 auto DK = VD->isThisDeclarationADefinition(); 5086 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5087 return; 5088 5089 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5090 // If we have a definition, this might be a deferred decl. If the 5091 // instantiation is explicit, make sure we emit it at the end. 5092 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5093 GetAddrOfGlobalVar(VD); 5094 5095 EmitTopLevelDecl(VD); 5096 } 5097 5098 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5099 llvm::GlobalValue *GV) { 5100 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5101 5102 // Compute the function info and LLVM type. 5103 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5104 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5105 5106 // Get or create the prototype for the function. 5107 if (!GV || (GV->getValueType() != Ty)) 5108 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5109 /*DontDefer=*/true, 5110 ForDefinition)); 5111 5112 // Already emitted. 5113 if (!GV->isDeclaration()) 5114 return; 5115 5116 // We need to set linkage and visibility on the function before 5117 // generating code for it because various parts of IR generation 5118 // want to propagate this information down (e.g. to local static 5119 // declarations). 5120 auto *Fn = cast<llvm::Function>(GV); 5121 setFunctionLinkage(GD, Fn); 5122 5123 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5124 setGVProperties(Fn, GD); 5125 5126 MaybeHandleStaticInExternC(D, Fn); 5127 5128 maybeSetTrivialComdat(*D, *Fn); 5129 5130 // Set CodeGen attributes that represent floating point environment. 5131 setLLVMFunctionFEnvAttributes(D, Fn); 5132 5133 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5134 5135 setNonAliasAttributes(GD, Fn); 5136 SetLLVMFunctionAttributesForDefinition(D, Fn); 5137 5138 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5139 AddGlobalCtor(Fn, CA->getPriority()); 5140 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5141 AddGlobalDtor(Fn, DA->getPriority(), true); 5142 if (D->hasAttr<AnnotateAttr>()) 5143 AddGlobalAnnotations(D, Fn); 5144 } 5145 5146 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5147 const auto *D = cast<ValueDecl>(GD.getDecl()); 5148 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5149 assert(AA && "Not an alias?"); 5150 5151 StringRef MangledName = getMangledName(GD); 5152 5153 if (AA->getAliasee() == MangledName) { 5154 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5155 return; 5156 } 5157 5158 // If there is a definition in the module, then it wins over the alias. 5159 // This is dubious, but allow it to be safe. Just ignore the alias. 5160 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5161 if (Entry && !Entry->isDeclaration()) 5162 return; 5163 5164 Aliases.push_back(GD); 5165 5166 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5167 5168 // Create a reference to the named value. This ensures that it is emitted 5169 // if a deferred decl. 5170 llvm::Constant *Aliasee; 5171 llvm::GlobalValue::LinkageTypes LT; 5172 if (isa<llvm::FunctionType>(DeclTy)) { 5173 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5174 /*ForVTable=*/false); 5175 LT = getFunctionLinkage(GD); 5176 } else { 5177 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5178 /*D=*/nullptr); 5179 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5180 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5181 else 5182 LT = getFunctionLinkage(GD); 5183 } 5184 5185 // Create the new alias itself, but don't set a name yet. 5186 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5187 auto *GA = 5188 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5189 5190 if (Entry) { 5191 if (GA->getAliasee() == Entry) { 5192 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5193 return; 5194 } 5195 5196 assert(Entry->isDeclaration()); 5197 5198 // If there is a declaration in the module, then we had an extern followed 5199 // by the alias, as in: 5200 // extern int test6(); 5201 // ... 5202 // int test6() __attribute__((alias("test7"))); 5203 // 5204 // Remove it and replace uses of it with the alias. 5205 GA->takeName(Entry); 5206 5207 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5208 Entry->getType())); 5209 Entry->eraseFromParent(); 5210 } else { 5211 GA->setName(MangledName); 5212 } 5213 5214 // Set attributes which are particular to an alias; this is a 5215 // specialization of the attributes which may be set on a global 5216 // variable/function. 5217 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5218 D->isWeakImported()) { 5219 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5220 } 5221 5222 if (const auto *VD = dyn_cast<VarDecl>(D)) 5223 if (VD->getTLSKind()) 5224 setTLSMode(GA, *VD); 5225 5226 SetCommonAttributes(GD, GA); 5227 5228 // Emit global alias debug information. 5229 if (isa<VarDecl>(D)) 5230 if (CGDebugInfo *DI = getModuleDebugInfo()) 5231 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD); 5232 } 5233 5234 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5235 const auto *D = cast<ValueDecl>(GD.getDecl()); 5236 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5237 assert(IFA && "Not an ifunc?"); 5238 5239 StringRef MangledName = getMangledName(GD); 5240 5241 if (IFA->getResolver() == MangledName) { 5242 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5243 return; 5244 } 5245 5246 // Report an error if some definition overrides ifunc. 5247 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5248 if (Entry && !Entry->isDeclaration()) { 5249 GlobalDecl OtherGD; 5250 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5251 DiagnosedConflictingDefinitions.insert(GD).second) { 5252 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5253 << MangledName; 5254 Diags.Report(OtherGD.getDecl()->getLocation(), 5255 diag::note_previous_definition); 5256 } 5257 return; 5258 } 5259 5260 Aliases.push_back(GD); 5261 5262 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5263 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5264 llvm::Constant *Resolver = 5265 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5266 /*ForVTable=*/false); 5267 llvm::GlobalIFunc *GIF = 5268 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5269 "", Resolver, &getModule()); 5270 if (Entry) { 5271 if (GIF->getResolver() == Entry) { 5272 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5273 return; 5274 } 5275 assert(Entry->isDeclaration()); 5276 5277 // If there is a declaration in the module, then we had an extern followed 5278 // by the ifunc, as in: 5279 // extern int test(); 5280 // ... 5281 // int test() __attribute__((ifunc("resolver"))); 5282 // 5283 // Remove it and replace uses of it with the ifunc. 5284 GIF->takeName(Entry); 5285 5286 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5287 Entry->getType())); 5288 Entry->eraseFromParent(); 5289 } else 5290 GIF->setName(MangledName); 5291 5292 SetCommonAttributes(GD, GIF); 5293 } 5294 5295 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5296 ArrayRef<llvm::Type*> Tys) { 5297 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5298 Tys); 5299 } 5300 5301 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5302 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5303 const StringLiteral *Literal, bool TargetIsLSB, 5304 bool &IsUTF16, unsigned &StringLength) { 5305 StringRef String = Literal->getString(); 5306 unsigned NumBytes = String.size(); 5307 5308 // Check for simple case. 5309 if (!Literal->containsNonAsciiOrNull()) { 5310 StringLength = NumBytes; 5311 return *Map.insert(std::make_pair(String, nullptr)).first; 5312 } 5313 5314 // Otherwise, convert the UTF8 literals into a string of shorts. 5315 IsUTF16 = true; 5316 5317 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5318 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5319 llvm::UTF16 *ToPtr = &ToBuf[0]; 5320 5321 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5322 ToPtr + NumBytes, llvm::strictConversion); 5323 5324 // ConvertUTF8toUTF16 returns the length in ToPtr. 5325 StringLength = ToPtr - &ToBuf[0]; 5326 5327 // Add an explicit null. 5328 *ToPtr = 0; 5329 return *Map.insert(std::make_pair( 5330 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5331 (StringLength + 1) * 2), 5332 nullptr)).first; 5333 } 5334 5335 ConstantAddress 5336 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5337 unsigned StringLength = 0; 5338 bool isUTF16 = false; 5339 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5340 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5341 getDataLayout().isLittleEndian(), isUTF16, 5342 StringLength); 5343 5344 if (auto *C = Entry.second) 5345 return ConstantAddress( 5346 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5347 5348 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5349 llvm::Constant *Zeros[] = { Zero, Zero }; 5350 5351 const ASTContext &Context = getContext(); 5352 const llvm::Triple &Triple = getTriple(); 5353 5354 const auto CFRuntime = getLangOpts().CFRuntime; 5355 const bool IsSwiftABI = 5356 static_cast<unsigned>(CFRuntime) >= 5357 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5358 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5359 5360 // If we don't already have it, get __CFConstantStringClassReference. 5361 if (!CFConstantStringClassRef) { 5362 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5363 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5364 Ty = llvm::ArrayType::get(Ty, 0); 5365 5366 switch (CFRuntime) { 5367 default: break; 5368 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 5369 case LangOptions::CoreFoundationABI::Swift5_0: 5370 CFConstantStringClassName = 5371 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5372 : "$s10Foundation19_NSCFConstantStringCN"; 5373 Ty = IntPtrTy; 5374 break; 5375 case LangOptions::CoreFoundationABI::Swift4_2: 5376 CFConstantStringClassName = 5377 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5378 : "$S10Foundation19_NSCFConstantStringCN"; 5379 Ty = IntPtrTy; 5380 break; 5381 case LangOptions::CoreFoundationABI::Swift4_1: 5382 CFConstantStringClassName = 5383 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5384 : "__T010Foundation19_NSCFConstantStringCN"; 5385 Ty = IntPtrTy; 5386 break; 5387 } 5388 5389 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5390 5391 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5392 llvm::GlobalValue *GV = nullptr; 5393 5394 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5395 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5396 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5397 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5398 5399 const VarDecl *VD = nullptr; 5400 for (const auto *Result : DC->lookup(&II)) 5401 if ((VD = dyn_cast<VarDecl>(Result))) 5402 break; 5403 5404 if (Triple.isOSBinFormatELF()) { 5405 if (!VD) 5406 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5407 } else { 5408 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5409 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5410 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5411 else 5412 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5413 } 5414 5415 setDSOLocal(GV); 5416 } 5417 } 5418 5419 // Decay array -> ptr 5420 CFConstantStringClassRef = 5421 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5422 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5423 } 5424 5425 QualType CFTy = Context.getCFConstantStringType(); 5426 5427 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5428 5429 ConstantInitBuilder Builder(*this); 5430 auto Fields = Builder.beginStruct(STy); 5431 5432 // Class pointer. 5433 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5434 5435 // Flags. 5436 if (IsSwiftABI) { 5437 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5438 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5439 } else { 5440 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5441 } 5442 5443 // String pointer. 5444 llvm::Constant *C = nullptr; 5445 if (isUTF16) { 5446 auto Arr = llvm::makeArrayRef( 5447 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5448 Entry.first().size() / 2); 5449 C = llvm::ConstantDataArray::get(VMContext, Arr); 5450 } else { 5451 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5452 } 5453 5454 // Note: -fwritable-strings doesn't make the backing store strings of 5455 // CFStrings writable. (See <rdar://problem/10657500>) 5456 auto *GV = 5457 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5458 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5459 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5460 // Don't enforce the target's minimum global alignment, since the only use 5461 // of the string is via this class initializer. 5462 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5463 : Context.getTypeAlignInChars(Context.CharTy); 5464 GV->setAlignment(Align.getAsAlign()); 5465 5466 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5467 // Without it LLVM can merge the string with a non unnamed_addr one during 5468 // LTO. Doing that changes the section it ends in, which surprises ld64. 5469 if (Triple.isOSBinFormatMachO()) 5470 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5471 : "__TEXT,__cstring,cstring_literals"); 5472 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5473 // the static linker to adjust permissions to read-only later on. 5474 else if (Triple.isOSBinFormatELF()) 5475 GV->setSection(".rodata"); 5476 5477 // String. 5478 llvm::Constant *Str = 5479 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5480 5481 if (isUTF16) 5482 // Cast the UTF16 string to the correct type. 5483 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5484 Fields.add(Str); 5485 5486 // String length. 5487 llvm::IntegerType *LengthTy = 5488 llvm::IntegerType::get(getModule().getContext(), 5489 Context.getTargetInfo().getLongWidth()); 5490 if (IsSwiftABI) { 5491 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5492 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5493 LengthTy = Int32Ty; 5494 else 5495 LengthTy = IntPtrTy; 5496 } 5497 Fields.addInt(LengthTy, StringLength); 5498 5499 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5500 // properly aligned on 32-bit platforms. 5501 CharUnits Alignment = 5502 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5503 5504 // The struct. 5505 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5506 /*isConstant=*/false, 5507 llvm::GlobalVariable::PrivateLinkage); 5508 GV->addAttribute("objc_arc_inert"); 5509 switch (Triple.getObjectFormat()) { 5510 case llvm::Triple::UnknownObjectFormat: 5511 llvm_unreachable("unknown file format"); 5512 case llvm::Triple::DXContainer: 5513 case llvm::Triple::GOFF: 5514 case llvm::Triple::SPIRV: 5515 case llvm::Triple::XCOFF: 5516 llvm_unreachable("unimplemented"); 5517 case llvm::Triple::COFF: 5518 case llvm::Triple::ELF: 5519 case llvm::Triple::Wasm: 5520 GV->setSection("cfstring"); 5521 break; 5522 case llvm::Triple::MachO: 5523 GV->setSection("__DATA,__cfstring"); 5524 break; 5525 } 5526 Entry.second = GV; 5527 5528 return ConstantAddress(GV, GV->getValueType(), Alignment); 5529 } 5530 5531 bool CodeGenModule::getExpressionLocationsEnabled() const { 5532 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5533 } 5534 5535 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5536 if (ObjCFastEnumerationStateType.isNull()) { 5537 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5538 D->startDefinition(); 5539 5540 QualType FieldTypes[] = { 5541 Context.UnsignedLongTy, 5542 Context.getPointerType(Context.getObjCIdType()), 5543 Context.getPointerType(Context.UnsignedLongTy), 5544 Context.getConstantArrayType(Context.UnsignedLongTy, 5545 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5546 }; 5547 5548 for (size_t i = 0; i < 4; ++i) { 5549 FieldDecl *Field = FieldDecl::Create(Context, 5550 D, 5551 SourceLocation(), 5552 SourceLocation(), nullptr, 5553 FieldTypes[i], /*TInfo=*/nullptr, 5554 /*BitWidth=*/nullptr, 5555 /*Mutable=*/false, 5556 ICIS_NoInit); 5557 Field->setAccess(AS_public); 5558 D->addDecl(Field); 5559 } 5560 5561 D->completeDefinition(); 5562 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5563 } 5564 5565 return ObjCFastEnumerationStateType; 5566 } 5567 5568 llvm::Constant * 5569 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5570 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5571 5572 // Don't emit it as the address of the string, emit the string data itself 5573 // as an inline array. 5574 if (E->getCharByteWidth() == 1) { 5575 SmallString<64> Str(E->getString()); 5576 5577 // Resize the string to the right size, which is indicated by its type. 5578 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5579 Str.resize(CAT->getSize().getZExtValue()); 5580 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5581 } 5582 5583 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5584 llvm::Type *ElemTy = AType->getElementType(); 5585 unsigned NumElements = AType->getNumElements(); 5586 5587 // Wide strings have either 2-byte or 4-byte elements. 5588 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5589 SmallVector<uint16_t, 32> Elements; 5590 Elements.reserve(NumElements); 5591 5592 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5593 Elements.push_back(E->getCodeUnit(i)); 5594 Elements.resize(NumElements); 5595 return llvm::ConstantDataArray::get(VMContext, Elements); 5596 } 5597 5598 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5599 SmallVector<uint32_t, 32> Elements; 5600 Elements.reserve(NumElements); 5601 5602 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5603 Elements.push_back(E->getCodeUnit(i)); 5604 Elements.resize(NumElements); 5605 return llvm::ConstantDataArray::get(VMContext, Elements); 5606 } 5607 5608 static llvm::GlobalVariable * 5609 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5610 CodeGenModule &CGM, StringRef GlobalName, 5611 CharUnits Alignment) { 5612 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5613 CGM.GetGlobalConstantAddressSpace()); 5614 5615 llvm::Module &M = CGM.getModule(); 5616 // Create a global variable for this string 5617 auto *GV = new llvm::GlobalVariable( 5618 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5619 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5620 GV->setAlignment(Alignment.getAsAlign()); 5621 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5622 if (GV->isWeakForLinker()) { 5623 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5624 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5625 } 5626 CGM.setDSOLocal(GV); 5627 5628 return GV; 5629 } 5630 5631 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5632 /// constant array for the given string literal. 5633 ConstantAddress 5634 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5635 StringRef Name) { 5636 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5637 5638 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5639 llvm::GlobalVariable **Entry = nullptr; 5640 if (!LangOpts.WritableStrings) { 5641 Entry = &ConstantStringMap[C]; 5642 if (auto GV = *Entry) { 5643 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5644 GV->setAlignment(Alignment.getAsAlign()); 5645 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5646 GV->getValueType(), Alignment); 5647 } 5648 } 5649 5650 SmallString<256> MangledNameBuffer; 5651 StringRef GlobalVariableName; 5652 llvm::GlobalValue::LinkageTypes LT; 5653 5654 // Mangle the string literal if that's how the ABI merges duplicate strings. 5655 // Don't do it if they are writable, since we don't want writes in one TU to 5656 // affect strings in another. 5657 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5658 !LangOpts.WritableStrings) { 5659 llvm::raw_svector_ostream Out(MangledNameBuffer); 5660 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5661 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5662 GlobalVariableName = MangledNameBuffer; 5663 } else { 5664 LT = llvm::GlobalValue::PrivateLinkage; 5665 GlobalVariableName = Name; 5666 } 5667 5668 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5669 5670 CGDebugInfo *DI = getModuleDebugInfo(); 5671 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5672 DI->AddStringLiteralDebugInfo(GV, S); 5673 5674 if (Entry) 5675 *Entry = GV; 5676 5677 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5678 5679 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5680 GV->getValueType(), Alignment); 5681 } 5682 5683 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5684 /// array for the given ObjCEncodeExpr node. 5685 ConstantAddress 5686 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5687 std::string Str; 5688 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5689 5690 return GetAddrOfConstantCString(Str); 5691 } 5692 5693 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5694 /// the literal and a terminating '\0' character. 5695 /// The result has pointer to array type. 5696 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5697 const std::string &Str, const char *GlobalName) { 5698 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5699 CharUnits Alignment = 5700 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5701 5702 llvm::Constant *C = 5703 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5704 5705 // Don't share any string literals if strings aren't constant. 5706 llvm::GlobalVariable **Entry = nullptr; 5707 if (!LangOpts.WritableStrings) { 5708 Entry = &ConstantStringMap[C]; 5709 if (auto GV = *Entry) { 5710 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5711 GV->setAlignment(Alignment.getAsAlign()); 5712 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5713 GV->getValueType(), Alignment); 5714 } 5715 } 5716 5717 // Get the default prefix if a name wasn't specified. 5718 if (!GlobalName) 5719 GlobalName = ".str"; 5720 // Create a global variable for this. 5721 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5722 GlobalName, Alignment); 5723 if (Entry) 5724 *Entry = GV; 5725 5726 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5727 GV->getValueType(), Alignment); 5728 } 5729 5730 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5731 const MaterializeTemporaryExpr *E, const Expr *Init) { 5732 assert((E->getStorageDuration() == SD_Static || 5733 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5734 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5735 5736 // If we're not materializing a subobject of the temporary, keep the 5737 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5738 QualType MaterializedType = Init->getType(); 5739 if (Init == E->getSubExpr()) 5740 MaterializedType = E->getType(); 5741 5742 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5743 5744 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 5745 if (!InsertResult.second) { 5746 // We've seen this before: either we already created it or we're in the 5747 // process of doing so. 5748 if (!InsertResult.first->second) { 5749 // We recursively re-entered this function, probably during emission of 5750 // the initializer. Create a placeholder. We'll clean this up in the 5751 // outer call, at the end of this function. 5752 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 5753 InsertResult.first->second = new llvm::GlobalVariable( 5754 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 5755 nullptr); 5756 } 5757 return ConstantAddress(InsertResult.first->second, 5758 llvm::cast<llvm::GlobalVariable>( 5759 InsertResult.first->second->stripPointerCasts()) 5760 ->getValueType(), 5761 Align); 5762 } 5763 5764 // FIXME: If an externally-visible declaration extends multiple temporaries, 5765 // we need to give each temporary the same name in every translation unit (and 5766 // we also need to make the temporaries externally-visible). 5767 SmallString<256> Name; 5768 llvm::raw_svector_ostream Out(Name); 5769 getCXXABI().getMangleContext().mangleReferenceTemporary( 5770 VD, E->getManglingNumber(), Out); 5771 5772 APValue *Value = nullptr; 5773 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5774 // If the initializer of the extending declaration is a constant 5775 // initializer, we should have a cached constant initializer for this 5776 // temporary. Note that this might have a different value from the value 5777 // computed by evaluating the initializer if the surrounding constant 5778 // expression modifies the temporary. 5779 Value = E->getOrCreateValue(false); 5780 } 5781 5782 // Try evaluating it now, it might have a constant initializer. 5783 Expr::EvalResult EvalResult; 5784 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5785 !EvalResult.hasSideEffects()) 5786 Value = &EvalResult.Val; 5787 5788 LangAS AddrSpace = 5789 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5790 5791 Optional<ConstantEmitter> emitter; 5792 llvm::Constant *InitialValue = nullptr; 5793 bool Constant = false; 5794 llvm::Type *Type; 5795 if (Value) { 5796 // The temporary has a constant initializer, use it. 5797 emitter.emplace(*this); 5798 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5799 MaterializedType); 5800 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5801 Type = InitialValue->getType(); 5802 } else { 5803 // No initializer, the initialization will be provided when we 5804 // initialize the declaration which performed lifetime extension. 5805 Type = getTypes().ConvertTypeForMem(MaterializedType); 5806 } 5807 5808 // Create a global variable for this lifetime-extended temporary. 5809 llvm::GlobalValue::LinkageTypes Linkage = 5810 getLLVMLinkageVarDefinition(VD, Constant); 5811 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5812 const VarDecl *InitVD; 5813 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5814 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5815 // Temporaries defined inside a class get linkonce_odr linkage because the 5816 // class can be defined in multiple translation units. 5817 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5818 } else { 5819 // There is no need for this temporary to have external linkage if the 5820 // VarDecl has external linkage. 5821 Linkage = llvm::GlobalVariable::InternalLinkage; 5822 } 5823 } 5824 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5825 auto *GV = new llvm::GlobalVariable( 5826 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5827 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5828 if (emitter) emitter->finalize(GV); 5829 setGVProperties(GV, VD); 5830 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 5831 // The reference temporary should never be dllexport. 5832 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5833 GV->setAlignment(Align.getAsAlign()); 5834 if (supportsCOMDAT() && GV->isWeakForLinker()) 5835 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5836 if (VD->getTLSKind()) 5837 setTLSMode(GV, *VD); 5838 llvm::Constant *CV = GV; 5839 if (AddrSpace != LangAS::Default) 5840 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5841 *this, GV, AddrSpace, LangAS::Default, 5842 Type->getPointerTo( 5843 getContext().getTargetAddressSpace(LangAS::Default))); 5844 5845 // Update the map with the new temporary. If we created a placeholder above, 5846 // replace it with the new global now. 5847 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 5848 if (Entry) { 5849 Entry->replaceAllUsesWith( 5850 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 5851 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 5852 } 5853 Entry = CV; 5854 5855 return ConstantAddress(CV, Type, Align); 5856 } 5857 5858 /// EmitObjCPropertyImplementations - Emit information for synthesized 5859 /// properties for an implementation. 5860 void CodeGenModule::EmitObjCPropertyImplementations(const 5861 ObjCImplementationDecl *D) { 5862 for (const auto *PID : D->property_impls()) { 5863 // Dynamic is just for type-checking. 5864 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5865 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5866 5867 // Determine which methods need to be implemented, some may have 5868 // been overridden. Note that ::isPropertyAccessor is not the method 5869 // we want, that just indicates if the decl came from a 5870 // property. What we want to know is if the method is defined in 5871 // this implementation. 5872 auto *Getter = PID->getGetterMethodDecl(); 5873 if (!Getter || Getter->isSynthesizedAccessorStub()) 5874 CodeGenFunction(*this).GenerateObjCGetter( 5875 const_cast<ObjCImplementationDecl *>(D), PID); 5876 auto *Setter = PID->getSetterMethodDecl(); 5877 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5878 CodeGenFunction(*this).GenerateObjCSetter( 5879 const_cast<ObjCImplementationDecl *>(D), PID); 5880 } 5881 } 5882 } 5883 5884 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5885 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5886 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5887 ivar; ivar = ivar->getNextIvar()) 5888 if (ivar->getType().isDestructedType()) 5889 return true; 5890 5891 return false; 5892 } 5893 5894 static bool AllTrivialInitializers(CodeGenModule &CGM, 5895 ObjCImplementationDecl *D) { 5896 CodeGenFunction CGF(CGM); 5897 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5898 E = D->init_end(); B != E; ++B) { 5899 CXXCtorInitializer *CtorInitExp = *B; 5900 Expr *Init = CtorInitExp->getInit(); 5901 if (!CGF.isTrivialInitializer(Init)) 5902 return false; 5903 } 5904 return true; 5905 } 5906 5907 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5908 /// for an implementation. 5909 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5910 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5911 if (needsDestructMethod(D)) { 5912 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5913 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5914 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5915 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5916 getContext().VoidTy, nullptr, D, 5917 /*isInstance=*/true, /*isVariadic=*/false, 5918 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5919 /*isImplicitlyDeclared=*/true, 5920 /*isDefined=*/false, ObjCMethodDecl::Required); 5921 D->addInstanceMethod(DTORMethod); 5922 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5923 D->setHasDestructors(true); 5924 } 5925 5926 // If the implementation doesn't have any ivar initializers, we don't need 5927 // a .cxx_construct. 5928 if (D->getNumIvarInitializers() == 0 || 5929 AllTrivialInitializers(*this, D)) 5930 return; 5931 5932 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5933 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5934 // The constructor returns 'self'. 5935 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5936 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5937 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5938 /*isVariadic=*/false, 5939 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5940 /*isImplicitlyDeclared=*/true, 5941 /*isDefined=*/false, ObjCMethodDecl::Required); 5942 D->addInstanceMethod(CTORMethod); 5943 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5944 D->setHasNonZeroConstructors(true); 5945 } 5946 5947 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5948 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5949 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5950 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5951 ErrorUnsupported(LSD, "linkage spec"); 5952 return; 5953 } 5954 5955 EmitDeclContext(LSD); 5956 } 5957 5958 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5959 for (auto *I : DC->decls()) { 5960 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5961 // are themselves considered "top-level", so EmitTopLevelDecl on an 5962 // ObjCImplDecl does not recursively visit them. We need to do that in 5963 // case they're nested inside another construct (LinkageSpecDecl / 5964 // ExportDecl) that does stop them from being considered "top-level". 5965 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5966 for (auto *M : OID->methods()) 5967 EmitTopLevelDecl(M); 5968 } 5969 5970 EmitTopLevelDecl(I); 5971 } 5972 } 5973 5974 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5975 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5976 // Ignore dependent declarations. 5977 if (D->isTemplated()) 5978 return; 5979 5980 // Consteval function shouldn't be emitted. 5981 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5982 if (FD->isConsteval()) 5983 return; 5984 5985 switch (D->getKind()) { 5986 case Decl::CXXConversion: 5987 case Decl::CXXMethod: 5988 case Decl::Function: 5989 EmitGlobal(cast<FunctionDecl>(D)); 5990 // Always provide some coverage mapping 5991 // even for the functions that aren't emitted. 5992 AddDeferredUnusedCoverageMapping(D); 5993 break; 5994 5995 case Decl::CXXDeductionGuide: 5996 // Function-like, but does not result in code emission. 5997 break; 5998 5999 case Decl::Var: 6000 case Decl::Decomposition: 6001 case Decl::VarTemplateSpecialization: 6002 EmitGlobal(cast<VarDecl>(D)); 6003 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6004 for (auto *B : DD->bindings()) 6005 if (auto *HD = B->getHoldingVar()) 6006 EmitGlobal(HD); 6007 break; 6008 6009 // Indirect fields from global anonymous structs and unions can be 6010 // ignored; only the actual variable requires IR gen support. 6011 case Decl::IndirectField: 6012 break; 6013 6014 // C++ Decls 6015 case Decl::Namespace: 6016 EmitDeclContext(cast<NamespaceDecl>(D)); 6017 break; 6018 case Decl::ClassTemplateSpecialization: { 6019 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6020 if (CGDebugInfo *DI = getModuleDebugInfo()) 6021 if (Spec->getSpecializationKind() == 6022 TSK_ExplicitInstantiationDefinition && 6023 Spec->hasDefinition()) 6024 DI->completeTemplateDefinition(*Spec); 6025 } LLVM_FALLTHROUGH; 6026 case Decl::CXXRecord: { 6027 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6028 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6029 if (CRD->hasDefinition()) 6030 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6031 if (auto *ES = D->getASTContext().getExternalSource()) 6032 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6033 DI->completeUnusedClass(*CRD); 6034 } 6035 // Emit any static data members, they may be definitions. 6036 for (auto *I : CRD->decls()) 6037 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6038 EmitTopLevelDecl(I); 6039 break; 6040 } 6041 // No code generation needed. 6042 case Decl::UsingShadow: 6043 case Decl::ClassTemplate: 6044 case Decl::VarTemplate: 6045 case Decl::Concept: 6046 case Decl::VarTemplatePartialSpecialization: 6047 case Decl::FunctionTemplate: 6048 case Decl::TypeAliasTemplate: 6049 case Decl::Block: 6050 case Decl::Empty: 6051 case Decl::Binding: 6052 break; 6053 case Decl::Using: // using X; [C++] 6054 if (CGDebugInfo *DI = getModuleDebugInfo()) 6055 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6056 break; 6057 case Decl::UsingEnum: // using enum X; [C++] 6058 if (CGDebugInfo *DI = getModuleDebugInfo()) 6059 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6060 break; 6061 case Decl::NamespaceAlias: 6062 if (CGDebugInfo *DI = getModuleDebugInfo()) 6063 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6064 break; 6065 case Decl::UsingDirective: // using namespace X; [C++] 6066 if (CGDebugInfo *DI = getModuleDebugInfo()) 6067 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6068 break; 6069 case Decl::CXXConstructor: 6070 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6071 break; 6072 case Decl::CXXDestructor: 6073 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6074 break; 6075 6076 case Decl::StaticAssert: 6077 // Nothing to do. 6078 break; 6079 6080 // Objective-C Decls 6081 6082 // Forward declarations, no (immediate) code generation. 6083 case Decl::ObjCInterface: 6084 case Decl::ObjCCategory: 6085 break; 6086 6087 case Decl::ObjCProtocol: { 6088 auto *Proto = cast<ObjCProtocolDecl>(D); 6089 if (Proto->isThisDeclarationADefinition()) 6090 ObjCRuntime->GenerateProtocol(Proto); 6091 break; 6092 } 6093 6094 case Decl::ObjCCategoryImpl: 6095 // Categories have properties but don't support synthesize so we 6096 // can ignore them here. 6097 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6098 break; 6099 6100 case Decl::ObjCImplementation: { 6101 auto *OMD = cast<ObjCImplementationDecl>(D); 6102 EmitObjCPropertyImplementations(OMD); 6103 EmitObjCIvarInitializations(OMD); 6104 ObjCRuntime->GenerateClass(OMD); 6105 // Emit global variable debug information. 6106 if (CGDebugInfo *DI = getModuleDebugInfo()) 6107 if (getCodeGenOpts().hasReducedDebugInfo()) 6108 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6109 OMD->getClassInterface()), OMD->getLocation()); 6110 break; 6111 } 6112 case Decl::ObjCMethod: { 6113 auto *OMD = cast<ObjCMethodDecl>(D); 6114 // If this is not a prototype, emit the body. 6115 if (OMD->getBody()) 6116 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6117 break; 6118 } 6119 case Decl::ObjCCompatibleAlias: 6120 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6121 break; 6122 6123 case Decl::PragmaComment: { 6124 const auto *PCD = cast<PragmaCommentDecl>(D); 6125 switch (PCD->getCommentKind()) { 6126 case PCK_Unknown: 6127 llvm_unreachable("unexpected pragma comment kind"); 6128 case PCK_Linker: 6129 AppendLinkerOptions(PCD->getArg()); 6130 break; 6131 case PCK_Lib: 6132 AddDependentLib(PCD->getArg()); 6133 break; 6134 case PCK_Compiler: 6135 case PCK_ExeStr: 6136 case PCK_User: 6137 break; // We ignore all of these. 6138 } 6139 break; 6140 } 6141 6142 case Decl::PragmaDetectMismatch: { 6143 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6144 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6145 break; 6146 } 6147 6148 case Decl::LinkageSpec: 6149 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6150 break; 6151 6152 case Decl::FileScopeAsm: { 6153 // File-scope asm is ignored during device-side CUDA compilation. 6154 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6155 break; 6156 // File-scope asm is ignored during device-side OpenMP compilation. 6157 if (LangOpts.OpenMPIsDevice) 6158 break; 6159 // File-scope asm is ignored during device-side SYCL compilation. 6160 if (LangOpts.SYCLIsDevice) 6161 break; 6162 auto *AD = cast<FileScopeAsmDecl>(D); 6163 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6164 break; 6165 } 6166 6167 case Decl::Import: { 6168 auto *Import = cast<ImportDecl>(D); 6169 6170 // If we've already imported this module, we're done. 6171 if (!ImportedModules.insert(Import->getImportedModule())) 6172 break; 6173 6174 // Emit debug information for direct imports. 6175 if (!Import->getImportedOwningModule()) { 6176 if (CGDebugInfo *DI = getModuleDebugInfo()) 6177 DI->EmitImportDecl(*Import); 6178 } 6179 6180 // Find all of the submodules and emit the module initializers. 6181 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6182 SmallVector<clang::Module *, 16> Stack; 6183 Visited.insert(Import->getImportedModule()); 6184 Stack.push_back(Import->getImportedModule()); 6185 6186 while (!Stack.empty()) { 6187 clang::Module *Mod = Stack.pop_back_val(); 6188 if (!EmittedModuleInitializers.insert(Mod).second) 6189 continue; 6190 6191 for (auto *D : Context.getModuleInitializers(Mod)) 6192 EmitTopLevelDecl(D); 6193 6194 // Visit the submodules of this module. 6195 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6196 SubEnd = Mod->submodule_end(); 6197 Sub != SubEnd; ++Sub) { 6198 // Skip explicit children; they need to be explicitly imported to emit 6199 // the initializers. 6200 if ((*Sub)->IsExplicit) 6201 continue; 6202 6203 if (Visited.insert(*Sub).second) 6204 Stack.push_back(*Sub); 6205 } 6206 } 6207 break; 6208 } 6209 6210 case Decl::Export: 6211 EmitDeclContext(cast<ExportDecl>(D)); 6212 break; 6213 6214 case Decl::OMPThreadPrivate: 6215 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6216 break; 6217 6218 case Decl::OMPAllocate: 6219 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6220 break; 6221 6222 case Decl::OMPDeclareReduction: 6223 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6224 break; 6225 6226 case Decl::OMPDeclareMapper: 6227 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6228 break; 6229 6230 case Decl::OMPRequires: 6231 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6232 break; 6233 6234 case Decl::Typedef: 6235 case Decl::TypeAlias: // using foo = bar; [C++11] 6236 if (CGDebugInfo *DI = getModuleDebugInfo()) 6237 DI->EmitAndRetainType( 6238 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6239 break; 6240 6241 case Decl::Record: 6242 if (CGDebugInfo *DI = getModuleDebugInfo()) 6243 if (cast<RecordDecl>(D)->getDefinition()) 6244 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6245 break; 6246 6247 case Decl::Enum: 6248 if (CGDebugInfo *DI = getModuleDebugInfo()) 6249 if (cast<EnumDecl>(D)->getDefinition()) 6250 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6251 break; 6252 6253 default: 6254 // Make sure we handled everything we should, every other kind is a 6255 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6256 // function. Need to recode Decl::Kind to do that easily. 6257 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6258 break; 6259 } 6260 } 6261 6262 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6263 // Do we need to generate coverage mapping? 6264 if (!CodeGenOpts.CoverageMapping) 6265 return; 6266 switch (D->getKind()) { 6267 case Decl::CXXConversion: 6268 case Decl::CXXMethod: 6269 case Decl::Function: 6270 case Decl::ObjCMethod: 6271 case Decl::CXXConstructor: 6272 case Decl::CXXDestructor: { 6273 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6274 break; 6275 SourceManager &SM = getContext().getSourceManager(); 6276 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6277 break; 6278 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6279 if (I == DeferredEmptyCoverageMappingDecls.end()) 6280 DeferredEmptyCoverageMappingDecls[D] = true; 6281 break; 6282 } 6283 default: 6284 break; 6285 }; 6286 } 6287 6288 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6289 // Do we need to generate coverage mapping? 6290 if (!CodeGenOpts.CoverageMapping) 6291 return; 6292 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6293 if (Fn->isTemplateInstantiation()) 6294 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6295 } 6296 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6297 if (I == DeferredEmptyCoverageMappingDecls.end()) 6298 DeferredEmptyCoverageMappingDecls[D] = false; 6299 else 6300 I->second = false; 6301 } 6302 6303 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6304 // We call takeVector() here to avoid use-after-free. 6305 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6306 // we deserialize function bodies to emit coverage info for them, and that 6307 // deserializes more declarations. How should we handle that case? 6308 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6309 if (!Entry.second) 6310 continue; 6311 const Decl *D = Entry.first; 6312 switch (D->getKind()) { 6313 case Decl::CXXConversion: 6314 case Decl::CXXMethod: 6315 case Decl::Function: 6316 case Decl::ObjCMethod: { 6317 CodeGenPGO PGO(*this); 6318 GlobalDecl GD(cast<FunctionDecl>(D)); 6319 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6320 getFunctionLinkage(GD)); 6321 break; 6322 } 6323 case Decl::CXXConstructor: { 6324 CodeGenPGO PGO(*this); 6325 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6326 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6327 getFunctionLinkage(GD)); 6328 break; 6329 } 6330 case Decl::CXXDestructor: { 6331 CodeGenPGO PGO(*this); 6332 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6333 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6334 getFunctionLinkage(GD)); 6335 break; 6336 } 6337 default: 6338 break; 6339 }; 6340 } 6341 } 6342 6343 void CodeGenModule::EmitMainVoidAlias() { 6344 // In order to transition away from "__original_main" gracefully, emit an 6345 // alias for "main" in the no-argument case so that libc can detect when 6346 // new-style no-argument main is in used. 6347 if (llvm::Function *F = getModule().getFunction("main")) { 6348 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6349 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6350 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6351 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6352 } 6353 } 6354 } 6355 6356 /// Turns the given pointer into a constant. 6357 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6358 const void *Ptr) { 6359 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6360 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6361 return llvm::ConstantInt::get(i64, PtrInt); 6362 } 6363 6364 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6365 llvm::NamedMDNode *&GlobalMetadata, 6366 GlobalDecl D, 6367 llvm::GlobalValue *Addr) { 6368 if (!GlobalMetadata) 6369 GlobalMetadata = 6370 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6371 6372 // TODO: should we report variant information for ctors/dtors? 6373 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6374 llvm::ConstantAsMetadata::get(GetPointerConstant( 6375 CGM.getLLVMContext(), D.getDecl()))}; 6376 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6377 } 6378 6379 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6380 llvm::GlobalValue *CppFunc) { 6381 // Store the list of ifuncs we need to replace uses in. 6382 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6383 // List of ConstantExprs that we should be able to delete when we're done 6384 // here. 6385 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6386 6387 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6388 if (Elem == CppFunc) 6389 return false; 6390 6391 // First make sure that all users of this are ifuncs (or ifuncs via a 6392 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6393 // later. 6394 for (llvm::User *User : Elem->users()) { 6395 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6396 // ifunc directly. In any other case, just give up, as we don't know what we 6397 // could break by changing those. 6398 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6399 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6400 return false; 6401 6402 for (llvm::User *CEUser : ConstExpr->users()) { 6403 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6404 IFuncs.push_back(IFunc); 6405 } else { 6406 return false; 6407 } 6408 } 6409 CEs.push_back(ConstExpr); 6410 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6411 IFuncs.push_back(IFunc); 6412 } else { 6413 // This user is one we don't know how to handle, so fail redirection. This 6414 // will result in an ifunc retaining a resolver name that will ultimately 6415 // fail to be resolved to a defined function. 6416 return false; 6417 } 6418 } 6419 6420 // Now we know this is a valid case where we can do this alias replacement, we 6421 // need to remove all of the references to Elem (and the bitcasts!) so we can 6422 // delete it. 6423 for (llvm::GlobalIFunc *IFunc : IFuncs) 6424 IFunc->setResolver(nullptr); 6425 for (llvm::ConstantExpr *ConstExpr : CEs) 6426 ConstExpr->destroyConstant(); 6427 6428 // We should now be out of uses for the 'old' version of this function, so we 6429 // can erase it as well. 6430 Elem->eraseFromParent(); 6431 6432 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6433 // The type of the resolver is always just a function-type that returns the 6434 // type of the IFunc, so create that here. If the type of the actual 6435 // resolver doesn't match, it just gets bitcast to the right thing. 6436 auto *ResolverTy = 6437 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6438 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6439 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6440 IFunc->setResolver(Resolver); 6441 } 6442 return true; 6443 } 6444 6445 /// For each function which is declared within an extern "C" region and marked 6446 /// as 'used', but has internal linkage, create an alias from the unmangled 6447 /// name to the mangled name if possible. People expect to be able to refer 6448 /// to such functions with an unmangled name from inline assembly within the 6449 /// same translation unit. 6450 void CodeGenModule::EmitStaticExternCAliases() { 6451 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6452 return; 6453 for (auto &I : StaticExternCValues) { 6454 IdentifierInfo *Name = I.first; 6455 llvm::GlobalValue *Val = I.second; 6456 6457 // If Val is null, that implies there were multiple declarations that each 6458 // had a claim to the unmangled name. In this case, generation of the alias 6459 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6460 if (!Val) 6461 break; 6462 6463 llvm::GlobalValue *ExistingElem = 6464 getModule().getNamedValue(Name->getName()); 6465 6466 // If there is either not something already by this name, or we were able to 6467 // replace all uses from IFuncs, create the alias. 6468 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6469 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6470 } 6471 } 6472 6473 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6474 GlobalDecl &Result) const { 6475 auto Res = Manglings.find(MangledName); 6476 if (Res == Manglings.end()) 6477 return false; 6478 Result = Res->getValue(); 6479 return true; 6480 } 6481 6482 /// Emits metadata nodes associating all the global values in the 6483 /// current module with the Decls they came from. This is useful for 6484 /// projects using IR gen as a subroutine. 6485 /// 6486 /// Since there's currently no way to associate an MDNode directly 6487 /// with an llvm::GlobalValue, we create a global named metadata 6488 /// with the name 'clang.global.decl.ptrs'. 6489 void CodeGenModule::EmitDeclMetadata() { 6490 llvm::NamedMDNode *GlobalMetadata = nullptr; 6491 6492 for (auto &I : MangledDeclNames) { 6493 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6494 // Some mangled names don't necessarily have an associated GlobalValue 6495 // in this module, e.g. if we mangled it for DebugInfo. 6496 if (Addr) 6497 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6498 } 6499 } 6500 6501 /// Emits metadata nodes for all the local variables in the current 6502 /// function. 6503 void CodeGenFunction::EmitDeclMetadata() { 6504 if (LocalDeclMap.empty()) return; 6505 6506 llvm::LLVMContext &Context = getLLVMContext(); 6507 6508 // Find the unique metadata ID for this name. 6509 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6510 6511 llvm::NamedMDNode *GlobalMetadata = nullptr; 6512 6513 for (auto &I : LocalDeclMap) { 6514 const Decl *D = I.first; 6515 llvm::Value *Addr = I.second.getPointer(); 6516 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6517 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6518 Alloca->setMetadata( 6519 DeclPtrKind, llvm::MDNode::get( 6520 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6521 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6522 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6523 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6524 } 6525 } 6526 } 6527 6528 void CodeGenModule::EmitVersionIdentMetadata() { 6529 llvm::NamedMDNode *IdentMetadata = 6530 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6531 std::string Version = getClangFullVersion(); 6532 llvm::LLVMContext &Ctx = TheModule.getContext(); 6533 6534 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6535 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6536 } 6537 6538 void CodeGenModule::EmitCommandLineMetadata() { 6539 llvm::NamedMDNode *CommandLineMetadata = 6540 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6541 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6542 llvm::LLVMContext &Ctx = TheModule.getContext(); 6543 6544 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6545 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6546 } 6547 6548 void CodeGenModule::EmitCoverageFile() { 6549 if (getCodeGenOpts().CoverageDataFile.empty() && 6550 getCodeGenOpts().CoverageNotesFile.empty()) 6551 return; 6552 6553 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6554 if (!CUNode) 6555 return; 6556 6557 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6558 llvm::LLVMContext &Ctx = TheModule.getContext(); 6559 auto *CoverageDataFile = 6560 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6561 auto *CoverageNotesFile = 6562 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6563 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6564 llvm::MDNode *CU = CUNode->getOperand(i); 6565 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6566 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6567 } 6568 } 6569 6570 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6571 bool ForEH) { 6572 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6573 // FIXME: should we even be calling this method if RTTI is disabled 6574 // and it's not for EH? 6575 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6576 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6577 getTriple().isNVPTX())) 6578 return llvm::Constant::getNullValue(Int8PtrTy); 6579 6580 if (ForEH && Ty->isObjCObjectPointerType() && 6581 LangOpts.ObjCRuntime.isGNUFamily()) 6582 return ObjCRuntime->GetEHType(Ty); 6583 6584 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6585 } 6586 6587 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6588 // Do not emit threadprivates in simd-only mode. 6589 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6590 return; 6591 for (auto RefExpr : D->varlists()) { 6592 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6593 bool PerformInit = 6594 VD->getAnyInitializer() && 6595 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6596 /*ForRef=*/false); 6597 6598 Address Addr(GetAddrOfGlobalVar(VD), 6599 getTypes().ConvertTypeForMem(VD->getType()), 6600 getContext().getDeclAlign(VD)); 6601 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6602 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6603 CXXGlobalInits.push_back(InitFunction); 6604 } 6605 } 6606 6607 llvm::Metadata * 6608 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6609 StringRef Suffix) { 6610 if (auto *FnType = T->getAs<FunctionProtoType>()) 6611 T = getContext().getFunctionType( 6612 FnType->getReturnType(), FnType->getParamTypes(), 6613 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6614 6615 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6616 if (InternalId) 6617 return InternalId; 6618 6619 if (isExternallyVisible(T->getLinkage())) { 6620 std::string OutName; 6621 llvm::raw_string_ostream Out(OutName); 6622 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6623 Out << Suffix; 6624 6625 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6626 } else { 6627 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6628 llvm::ArrayRef<llvm::Metadata *>()); 6629 } 6630 6631 return InternalId; 6632 } 6633 6634 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6635 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6636 } 6637 6638 llvm::Metadata * 6639 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6640 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6641 } 6642 6643 // Generalize pointer types to a void pointer with the qualifiers of the 6644 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6645 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6646 // 'void *'. 6647 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6648 if (!Ty->isPointerType()) 6649 return Ty; 6650 6651 return Ctx.getPointerType( 6652 QualType(Ctx.VoidTy).withCVRQualifiers( 6653 Ty->getPointeeType().getCVRQualifiers())); 6654 } 6655 6656 // Apply type generalization to a FunctionType's return and argument types 6657 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6658 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6659 SmallVector<QualType, 8> GeneralizedParams; 6660 for (auto &Param : FnType->param_types()) 6661 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6662 6663 return Ctx.getFunctionType( 6664 GeneralizeType(Ctx, FnType->getReturnType()), 6665 GeneralizedParams, FnType->getExtProtoInfo()); 6666 } 6667 6668 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6669 return Ctx.getFunctionNoProtoType( 6670 GeneralizeType(Ctx, FnType->getReturnType())); 6671 6672 llvm_unreachable("Encountered unknown FunctionType"); 6673 } 6674 6675 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6676 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6677 GeneralizedMetadataIdMap, ".generalized"); 6678 } 6679 6680 /// Returns whether this module needs the "all-vtables" type identifier. 6681 bool CodeGenModule::NeedAllVtablesTypeId() const { 6682 // Returns true if at least one of vtable-based CFI checkers is enabled and 6683 // is not in the trapping mode. 6684 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6685 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6686 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6687 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6688 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6689 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6690 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6691 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6692 } 6693 6694 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6695 CharUnits Offset, 6696 const CXXRecordDecl *RD) { 6697 llvm::Metadata *MD = 6698 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6699 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6700 6701 if (CodeGenOpts.SanitizeCfiCrossDso) 6702 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6703 VTable->addTypeMetadata(Offset.getQuantity(), 6704 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6705 6706 if (NeedAllVtablesTypeId()) { 6707 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6708 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6709 } 6710 } 6711 6712 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6713 if (!SanStats) 6714 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6715 6716 return *SanStats; 6717 } 6718 6719 llvm::Value * 6720 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6721 CodeGenFunction &CGF) { 6722 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6723 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6724 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6725 auto *Call = CGF.EmitRuntimeCall( 6726 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 6727 return Call; 6728 } 6729 6730 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6731 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6732 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6733 /* forPointeeType= */ true); 6734 } 6735 6736 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6737 LValueBaseInfo *BaseInfo, 6738 TBAAAccessInfo *TBAAInfo, 6739 bool forPointeeType) { 6740 if (TBAAInfo) 6741 *TBAAInfo = getTBAAAccessInfo(T); 6742 6743 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6744 // that doesn't return the information we need to compute BaseInfo. 6745 6746 // Honor alignment typedef attributes even on incomplete types. 6747 // We also honor them straight for C++ class types, even as pointees; 6748 // there's an expressivity gap here. 6749 if (auto TT = T->getAs<TypedefType>()) { 6750 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6751 if (BaseInfo) 6752 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6753 return getContext().toCharUnitsFromBits(Align); 6754 } 6755 } 6756 6757 bool AlignForArray = T->isArrayType(); 6758 6759 // Analyze the base element type, so we don't get confused by incomplete 6760 // array types. 6761 T = getContext().getBaseElementType(T); 6762 6763 if (T->isIncompleteType()) { 6764 // We could try to replicate the logic from 6765 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6766 // type is incomplete, so it's impossible to test. We could try to reuse 6767 // getTypeAlignIfKnown, but that doesn't return the information we need 6768 // to set BaseInfo. So just ignore the possibility that the alignment is 6769 // greater than one. 6770 if (BaseInfo) 6771 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6772 return CharUnits::One(); 6773 } 6774 6775 if (BaseInfo) 6776 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6777 6778 CharUnits Alignment; 6779 const CXXRecordDecl *RD; 6780 if (T.getQualifiers().hasUnaligned()) { 6781 Alignment = CharUnits::One(); 6782 } else if (forPointeeType && !AlignForArray && 6783 (RD = T->getAsCXXRecordDecl())) { 6784 // For C++ class pointees, we don't know whether we're pointing at a 6785 // base or a complete object, so we generally need to use the 6786 // non-virtual alignment. 6787 Alignment = getClassPointerAlignment(RD); 6788 } else { 6789 Alignment = getContext().getTypeAlignInChars(T); 6790 } 6791 6792 // Cap to the global maximum type alignment unless the alignment 6793 // was somehow explicit on the type. 6794 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6795 if (Alignment.getQuantity() > MaxAlign && 6796 !getContext().isAlignmentRequired(T)) 6797 Alignment = CharUnits::fromQuantity(MaxAlign); 6798 } 6799 return Alignment; 6800 } 6801 6802 bool CodeGenModule::stopAutoInit() { 6803 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6804 if (StopAfter) { 6805 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6806 // used 6807 if (NumAutoVarInit >= StopAfter) { 6808 return true; 6809 } 6810 if (!NumAutoVarInit) { 6811 unsigned DiagID = getDiags().getCustomDiagID( 6812 DiagnosticsEngine::Warning, 6813 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6814 "number of times ftrivial-auto-var-init=%1 gets applied."); 6815 getDiags().Report(DiagID) 6816 << StopAfter 6817 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6818 LangOptions::TrivialAutoVarInitKind::Zero 6819 ? "zero" 6820 : "pattern"); 6821 } 6822 ++NumAutoVarInit; 6823 } 6824 return false; 6825 } 6826 6827 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 6828 const Decl *D) const { 6829 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 6830 // postfix beginning with '.' since the symbol name can be demangled. 6831 if (LangOpts.HIP) 6832 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 6833 else 6834 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 6835 6836 // If the CUID is not specified we try to generate a unique postfix. 6837 if (getLangOpts().CUID.empty()) { 6838 SourceManager &SM = getContext().getSourceManager(); 6839 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 6840 assert(PLoc.isValid() && "Source location is expected to be valid."); 6841 6842 // Get the hash of the user defined macros. 6843 llvm::MD5 Hash; 6844 llvm::MD5::MD5Result Result; 6845 for (const auto &Arg : PreprocessorOpts.Macros) 6846 Hash.update(Arg.first); 6847 Hash.final(Result); 6848 6849 // Get the UniqueID for the file containing the decl. 6850 llvm::sys::fs::UniqueID ID; 6851 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 6852 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 6853 assert(PLoc.isValid() && "Source location is expected to be valid."); 6854 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 6855 SM.getDiagnostics().Report(diag::err_cannot_open_file) 6856 << PLoc.getFilename() << EC.message(); 6857 } 6858 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 6859 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 6860 } else { 6861 OS << getContext().getCUIDHash(); 6862 } 6863 } 6864