xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision 758428f4e373a3ed39340063926e44a9a5a3385a)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44     VMContext(M.getContext()) {
45 
46   if (!Features.ObjC1)
47     Runtime = 0;
48   else if (!Features.NeXTRuntime)
49     Runtime = CreateGNUObjCRuntime(*this);
50   else if (Features.ObjCNonFragileABI)
51     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52   else
53     Runtime = CreateMacObjCRuntime(*this);
54 
55   // If debug info generation is enabled, create the CGDebugInfo object.
56   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57 }
58 
59 CodeGenModule::~CodeGenModule() {
60   delete Runtime;
61   delete DebugInfo;
62 }
63 
64 void CodeGenModule::Release() {
65   EmitDeferred();
66   if (Runtime)
67     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
68       AddGlobalCtor(ObjCInitFunction);
69   EmitCtorList(GlobalCtors, "llvm.global_ctors");
70   EmitCtorList(GlobalDtors, "llvm.global_dtors");
71   EmitAnnotations();
72   EmitLLVMUsed();
73 }
74 
75 /// ErrorUnsupported - Print out an error that codegen doesn't support the
76 /// specified stmt yet.
77 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
78                                      bool OmitOnError) {
79   if (OmitOnError && getDiags().hasErrorOccurred())
80     return;
81   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
82                                                "cannot compile this %0 yet");
83   std::string Msg = Type;
84   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
85     << Msg << S->getSourceRange();
86 }
87 
88 /// ErrorUnsupported - Print out an error that codegen doesn't support the
89 /// specified decl yet.
90 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
91                                      bool OmitOnError) {
92   if (OmitOnError && getDiags().hasErrorOccurred())
93     return;
94   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
95                                                "cannot compile this %0 yet");
96   std::string Msg = Type;
97   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
98 }
99 
100 LangOptions::VisibilityMode
101 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
102   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
103     if (VD->getStorageClass() == VarDecl::PrivateExtern)
104       return LangOptions::Hidden;
105 
106   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
107     switch (attr->getVisibility()) {
108     default: assert(0 && "Unknown visibility!");
109     case VisibilityAttr::DefaultVisibility:
110       return LangOptions::Default;
111     case VisibilityAttr::HiddenVisibility:
112       return LangOptions::Hidden;
113     case VisibilityAttr::ProtectedVisibility:
114       return LangOptions::Protected;
115     }
116   }
117 
118   return getLangOptions().getVisibilityMode();
119 }
120 
121 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
122                                         const Decl *D) const {
123   // Internal definitions always have default visibility.
124   if (GV->hasLocalLinkage()) {
125     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
126     return;
127   }
128 
129   switch (getDeclVisibilityMode(D)) {
130   default: assert(0 && "Unknown visibility!");
131   case LangOptions::Default:
132     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
133   case LangOptions::Hidden:
134     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
135   case LangOptions::Protected:
136     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
137   }
138 }
139 
140 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
141   const NamedDecl *ND = GD.getDecl();
142 
143   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
144     return getMangledCXXCtorName(D, GD.getCtorType());
145   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
146     return getMangledCXXDtorName(D, GD.getDtorType());
147 
148   return getMangledName(ND);
149 }
150 
151 /// \brief Retrieves the mangled name for the given declaration.
152 ///
153 /// If the given declaration requires a mangled name, returns an
154 /// const char* containing the mangled name.  Otherwise, returns
155 /// the unmangled name.
156 ///
157 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
158   // In C, functions with no attributes never need to be mangled. Fastpath them.
159   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
160     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
161     return ND->getNameAsCString();
162   }
163 
164   llvm::SmallString<256> Name;
165   llvm::raw_svector_ostream Out(Name);
166   if (!mangleName(ND, Context, Out)) {
167     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
168     return ND->getNameAsCString();
169   }
170 
171   Name += '\0';
172   return UniqueMangledName(Name.begin(), Name.end());
173 }
174 
175 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
176                                              const char *NameEnd) {
177   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
178 
179   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
180 }
181 
182 /// AddGlobalCtor - Add a function to the list that will be called before
183 /// main() runs.
184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
185   // FIXME: Type coercion of void()* types.
186   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
187 }
188 
189 /// AddGlobalDtor - Add a function to the list that will be called
190 /// when the module is unloaded.
191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
192   // FIXME: Type coercion of void()* types.
193   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
194 }
195 
196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
197   // Ctor function type is void()*.
198   llvm::FunctionType* CtorFTy =
199     llvm::FunctionType::get(llvm::Type::VoidTy,
200                             std::vector<const llvm::Type*>(),
201                             false);
202   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
203 
204   // Get the type of a ctor entry, { i32, void ()* }.
205   llvm::StructType* CtorStructTy =
206     llvm::StructType::get(VMContext, llvm::Type::Int32Ty,
207                           llvm::PointerType::getUnqual(CtorFTy), NULL);
208 
209   // Construct the constructor and destructor arrays.
210   std::vector<llvm::Constant*> Ctors;
211   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
212     std::vector<llvm::Constant*> S;
213     S.push_back(
214       llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
215     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
216     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
217   }
218 
219   if (!Ctors.empty()) {
220     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
221     new llvm::GlobalVariable(TheModule, AT, false,
222                              llvm::GlobalValue::AppendingLinkage,
223                              llvm::ConstantArray::get(AT, Ctors),
224                              GlobalName);
225   }
226 }
227 
228 void CodeGenModule::EmitAnnotations() {
229   if (Annotations.empty())
230     return;
231 
232   // Create a new global variable for the ConstantStruct in the Module.
233   llvm::Constant *Array =
234   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
235                                                 Annotations.size()),
236                            Annotations);
237   llvm::GlobalValue *gv =
238   new llvm::GlobalVariable(TheModule, Array->getType(), false,
239                            llvm::GlobalValue::AppendingLinkage, Array,
240                            "llvm.global.annotations");
241   gv->setSection("llvm.metadata");
242 }
243 
244 static CodeGenModule::GVALinkage
245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
246                       const LangOptions &Features) {
247   // The kind of external linkage this function will have, if it is not
248   // inline or static.
249   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
250   if (Context.getLangOptions().CPlusPlus &&
251       (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
252       !FD->isExplicitSpecialization())
253     External = CodeGenModule::GVA_TemplateInstantiation;
254 
255   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
256     // C++ member functions defined inside the class are always inline.
257     if (MD->isInline() || !MD->isOutOfLine())
258       return CodeGenModule::GVA_CXXInline;
259 
260     return External;
261   }
262 
263   // "static" functions get internal linkage.
264   if (FD->getStorageClass() == FunctionDecl::Static)
265     return CodeGenModule::GVA_Internal;
266 
267   if (!FD->isInline())
268     return External;
269 
270   // If the inline function explicitly has the GNU inline attribute on it, or if
271   // this is C89 mode, we use to GNU semantics.
272   if (!Features.C99 && !Features.CPlusPlus) {
273     // extern inline in GNU mode is like C99 inline.
274     if (FD->getStorageClass() == FunctionDecl::Extern)
275       return CodeGenModule::GVA_C99Inline;
276     // Normal inline is a strong symbol.
277     return CodeGenModule::GVA_StrongExternal;
278   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
279     // GCC in C99 mode seems to use a different decision-making
280     // process for extern inline, which factors in previous
281     // declarations.
282     if (FD->isExternGNUInline(Context))
283       return CodeGenModule::GVA_C99Inline;
284     // Normal inline is a strong symbol.
285     return External;
286   }
287 
288   // The definition of inline changes based on the language.  Note that we
289   // have already handled "static inline" above, with the GVA_Internal case.
290   if (Features.CPlusPlus)  // inline and extern inline.
291     return CodeGenModule::GVA_CXXInline;
292 
293   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
294   if (FD->isC99InlineDefinition())
295     return CodeGenModule::GVA_C99Inline;
296 
297   return CodeGenModule::GVA_StrongExternal;
298 }
299 
300 /// SetFunctionDefinitionAttributes - Set attributes for a global.
301 ///
302 /// FIXME: This is currently only done for aliases and functions, but not for
303 /// variables (these details are set in EmitGlobalVarDefinition for variables).
304 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
305                                                     llvm::GlobalValue *GV) {
306   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
307 
308   if (Linkage == GVA_Internal) {
309     GV->setLinkage(llvm::Function::InternalLinkage);
310   } else if (D->hasAttr<DLLExportAttr>()) {
311     GV->setLinkage(llvm::Function::DLLExportLinkage);
312   } else if (D->hasAttr<WeakAttr>()) {
313     GV->setLinkage(llvm::Function::WeakAnyLinkage);
314   } else if (Linkage == GVA_C99Inline) {
315     // In C99 mode, 'inline' functions are guaranteed to have a strong
316     // definition somewhere else, so we can use available_externally linkage.
317     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
318   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
319     // In C++, the compiler has to emit a definition in every translation unit
320     // that references the function.  We should use linkonce_odr because
321     // a) if all references in this translation unit are optimized away, we
322     // don't need to codegen it.  b) if the function persists, it needs to be
323     // merged with other definitions. c) C++ has the ODR, so we know the
324     // definition is dependable.
325     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
326   } else {
327     assert(Linkage == GVA_StrongExternal);
328     // Otherwise, we have strong external linkage.
329     GV->setLinkage(llvm::Function::ExternalLinkage);
330   }
331 
332   SetCommonAttributes(D, GV);
333 }
334 
335 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
336                                               const CGFunctionInfo &Info,
337                                               llvm::Function *F) {
338   AttributeListType AttributeList;
339   ConstructAttributeList(Info, D, AttributeList);
340 
341   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
342                                         AttributeList.size()));
343 
344   // Set the appropriate calling convention for the Function.
345   if (D->hasAttr<FastCallAttr>())
346     F->setCallingConv(llvm::CallingConv::X86_FastCall);
347 
348   if (D->hasAttr<StdCallAttr>())
349     F->setCallingConv(llvm::CallingConv::X86_StdCall);
350 }
351 
352 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
353                                                            llvm::Function *F) {
354   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
355     F->addFnAttr(llvm::Attribute::NoUnwind);
356 
357   if (D->hasAttr<AlwaysInlineAttr>())
358     F->addFnAttr(llvm::Attribute::AlwaysInline);
359 
360   if (D->hasAttr<NoinlineAttr>())
361     F->addFnAttr(llvm::Attribute::NoInline);
362 }
363 
364 void CodeGenModule::SetCommonAttributes(const Decl *D,
365                                         llvm::GlobalValue *GV) {
366   setGlobalVisibility(GV, D);
367 
368   if (D->hasAttr<UsedAttr>())
369     AddUsedGlobal(GV);
370 
371   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
372     GV->setSection(SA->getName());
373 }
374 
375 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
376                                                   llvm::Function *F,
377                                                   const CGFunctionInfo &FI) {
378   SetLLVMFunctionAttributes(D, FI, F);
379   SetLLVMFunctionAttributesForDefinition(D, F);
380 
381   F->setLinkage(llvm::Function::InternalLinkage);
382 
383   SetCommonAttributes(D, F);
384 }
385 
386 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
387                                           llvm::Function *F,
388                                           bool IsIncompleteFunction) {
389   if (!IsIncompleteFunction)
390     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
391 
392   // Only a few attributes are set on declarations; these may later be
393   // overridden by a definition.
394 
395   if (FD->hasAttr<DLLImportAttr>()) {
396     F->setLinkage(llvm::Function::DLLImportLinkage);
397   } else if (FD->hasAttr<WeakAttr>() ||
398              FD->hasAttr<WeakImportAttr>()) {
399     // "extern_weak" is overloaded in LLVM; we probably should have
400     // separate linkage types for this.
401     F->setLinkage(llvm::Function::ExternalWeakLinkage);
402   } else {
403     F->setLinkage(llvm::Function::ExternalLinkage);
404   }
405 
406   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
407     F->setSection(SA->getName());
408 }
409 
410 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
411   assert(!GV->isDeclaration() &&
412          "Only globals with definition can force usage.");
413   LLVMUsed.push_back(GV);
414 }
415 
416 void CodeGenModule::EmitLLVMUsed() {
417   // Don't create llvm.used if there is no need.
418   if (LLVMUsed.empty())
419     return;
420 
421   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
422 
423   // Convert LLVMUsed to what ConstantArray needs.
424   std::vector<llvm::Constant*> UsedArray;
425   UsedArray.resize(LLVMUsed.size());
426   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
427     UsedArray[i] =
428      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
429                                       i8PTy);
430   }
431 
432   if (UsedArray.empty())
433     return;
434   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
435 
436   llvm::GlobalVariable *GV =
437     new llvm::GlobalVariable(getModule(), ATy, false,
438                              llvm::GlobalValue::AppendingLinkage,
439                              llvm::ConstantArray::get(ATy, UsedArray),
440                              "llvm.used");
441 
442   GV->setSection("llvm.metadata");
443 }
444 
445 void CodeGenModule::EmitDeferred() {
446   // Emit code for any potentially referenced deferred decls.  Since a
447   // previously unused static decl may become used during the generation of code
448   // for a static function, iterate until no  changes are made.
449   while (!DeferredDeclsToEmit.empty()) {
450     GlobalDecl D = DeferredDeclsToEmit.back();
451     DeferredDeclsToEmit.pop_back();
452 
453     // The mangled name for the decl must have been emitted in GlobalDeclMap.
454     // Look it up to see if it was defined with a stronger definition (e.g. an
455     // extern inline function with a strong function redefinition).  If so,
456     // just ignore the deferred decl.
457     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
458     assert(CGRef && "Deferred decl wasn't referenced?");
459 
460     if (!CGRef->isDeclaration())
461       continue;
462 
463     // Otherwise, emit the definition and move on to the next one.
464     EmitGlobalDefinition(D);
465   }
466 }
467 
468 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
469 /// annotation information for a given GlobalValue.  The annotation struct is
470 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
471 /// GlobalValue being annotated.  The second field is the constant string
472 /// created from the AnnotateAttr's annotation.  The third field is a constant
473 /// string containing the name of the translation unit.  The fourth field is
474 /// the line number in the file of the annotated value declaration.
475 ///
476 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
477 ///        appears to.
478 ///
479 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
480                                                 const AnnotateAttr *AA,
481                                                 unsigned LineNo) {
482   llvm::Module *M = &getModule();
483 
484   // get [N x i8] constants for the annotation string, and the filename string
485   // which are the 2nd and 3rd elements of the global annotation structure.
486   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
487   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
488   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
489                                                   true);
490 
491   // Get the two global values corresponding to the ConstantArrays we just
492   // created to hold the bytes of the strings.
493   llvm::GlobalValue *annoGV =
494     new llvm::GlobalVariable(*M, anno->getType(), false,
495                              llvm::GlobalValue::PrivateLinkage, anno,
496                              GV->getName());
497   // translation unit name string, emitted into the llvm.metadata section.
498   llvm::GlobalValue *unitGV =
499     new llvm::GlobalVariable(*M, unit->getType(), false,
500                              llvm::GlobalValue::PrivateLinkage, unit,
501                              ".str");
502 
503   // Create the ConstantStruct for the global annotation.
504   llvm::Constant *Fields[4] = {
505     llvm::ConstantExpr::getBitCast(GV, SBP),
506     llvm::ConstantExpr::getBitCast(annoGV, SBP),
507     llvm::ConstantExpr::getBitCast(unitGV, SBP),
508     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
509   };
510   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
511 }
512 
513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
514   // Never defer when EmitAllDecls is specified or the decl has
515   // attribute used.
516   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
517     return false;
518 
519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
520     // Constructors and destructors should never be deferred.
521     if (FD->hasAttr<ConstructorAttr>() ||
522         FD->hasAttr<DestructorAttr>())
523       return false;
524 
525     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
526 
527     // static, static inline, always_inline, and extern inline functions can
528     // always be deferred.  Normal inline functions can be deferred in C99/C++.
529     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
530         Linkage == GVA_CXXInline)
531       return true;
532     return false;
533   }
534 
535   const VarDecl *VD = cast<VarDecl>(Global);
536   assert(VD->isFileVarDecl() && "Invalid decl");
537 
538   return VD->getStorageClass() == VarDecl::Static;
539 }
540 
541 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
542   const ValueDecl *Global = GD.getDecl();
543 
544   // If this is an alias definition (which otherwise looks like a declaration)
545   // emit it now.
546   if (Global->hasAttr<AliasAttr>())
547     return EmitAliasDefinition(Global);
548 
549   // Ignore declarations, they will be emitted on their first use.
550   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
551     // Forward declarations are emitted lazily on first use.
552     if (!FD->isThisDeclarationADefinition())
553       return;
554   } else {
555     const VarDecl *VD = cast<VarDecl>(Global);
556     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
557 
558     // In C++, if this is marked "extern", defer code generation.
559     if (getLangOptions().CPlusPlus && !VD->getInit() &&
560         (VD->getStorageClass() == VarDecl::Extern ||
561          VD->isExternC(getContext())))
562       return;
563 
564     // In C, if this isn't a definition, defer code generation.
565     if (!getLangOptions().CPlusPlus && !VD->getInit())
566       return;
567   }
568 
569   // Defer code generation when possible if this is a static definition, inline
570   // function etc.  These we only want to emit if they are used.
571   if (MayDeferGeneration(Global)) {
572     // If the value has already been used, add it directly to the
573     // DeferredDeclsToEmit list.
574     const char *MangledName = getMangledName(GD);
575     if (GlobalDeclMap.count(MangledName))
576       DeferredDeclsToEmit.push_back(GD);
577     else {
578       // Otherwise, remember that we saw a deferred decl with this name.  The
579       // first use of the mangled name will cause it to move into
580       // DeferredDeclsToEmit.
581       DeferredDecls[MangledName] = GD;
582     }
583     return;
584   }
585 
586   // Otherwise emit the definition.
587   EmitGlobalDefinition(GD);
588 }
589 
590 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
591   const ValueDecl *D = GD.getDecl();
592 
593   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
594     EmitCXXConstructor(CD, GD.getCtorType());
595   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
596     EmitCXXDestructor(DD, GD.getDtorType());
597   else if (isa<FunctionDecl>(D))
598     EmitGlobalFunctionDefinition(GD);
599   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
600     EmitGlobalVarDefinition(VD);
601   else {
602     assert(0 && "Invalid argument to EmitGlobalDefinition()");
603   }
604 }
605 
606 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
607 /// module, create and return an llvm Function with the specified type. If there
608 /// is something in the module with the specified name, return it potentially
609 /// bitcasted to the right type.
610 ///
611 /// If D is non-null, it specifies a decl that correspond to this.  This is used
612 /// to set the attributes on the function when it is first created.
613 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
614                                                        const llvm::Type *Ty,
615                                                        GlobalDecl D) {
616   // Lookup the entry, lazily creating it if necessary.
617   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
618   if (Entry) {
619     if (Entry->getType()->getElementType() == Ty)
620       return Entry;
621 
622     // Make sure the result is of the correct type.
623     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
624     return llvm::ConstantExpr::getBitCast(Entry, PTy);
625   }
626 
627   // This is the first use or definition of a mangled name.  If there is a
628   // deferred decl with this name, remember that we need to emit it at the end
629   // of the file.
630   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
631     DeferredDecls.find(MangledName);
632   if (DDI != DeferredDecls.end()) {
633     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
634     // list, and remove it from DeferredDecls (since we don't need it anymore).
635     DeferredDeclsToEmit.push_back(DDI->second);
636     DeferredDecls.erase(DDI);
637   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
638     // If this the first reference to a C++ inline function in a class, queue up
639     // the deferred function body for emission.  These are not seen as
640     // top-level declarations.
641     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
642       DeferredDeclsToEmit.push_back(D);
643     // A called constructor which has no definition or declaration need be
644     // synthesized.
645     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
646       const CXXRecordDecl *ClassDecl =
647         cast<CXXRecordDecl>(CD->getDeclContext());
648       if (!ClassDecl->hasUserDeclaredConstructor())
649         DeferredDeclsToEmit.push_back(D);
650     }
651   }
652 
653   // This function doesn't have a complete type (for example, the return
654   // type is an incomplete struct). Use a fake type instead, and make
655   // sure not to try to set attributes.
656   bool IsIncompleteFunction = false;
657   if (!isa<llvm::FunctionType>(Ty)) {
658     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
659                                  std::vector<const llvm::Type*>(), false);
660     IsIncompleteFunction = true;
661   }
662   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
663                                              llvm::Function::ExternalLinkage,
664                                              "", &getModule());
665   F->setName(MangledName);
666   if (D.getDecl())
667     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
668                           IsIncompleteFunction);
669   Entry = F;
670   return F;
671 }
672 
673 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
674 /// non-null, then this function will use the specified type if it has to
675 /// create it (this occurs when we see a definition of the function).
676 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
677                                                  const llvm::Type *Ty) {
678   // If there was no specific requested type, just convert it now.
679   if (!Ty)
680     Ty = getTypes().ConvertType(GD.getDecl()->getType());
681   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
682 }
683 
684 /// CreateRuntimeFunction - Create a new runtime function with the specified
685 /// type and name.
686 llvm::Constant *
687 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
688                                      const char *Name) {
689   // Convert Name to be a uniqued string from the IdentifierInfo table.
690   Name = getContext().Idents.get(Name).getName();
691   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
692 }
693 
694 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
695 /// create and return an llvm GlobalVariable with the specified type.  If there
696 /// is something in the module with the specified name, return it potentially
697 /// bitcasted to the right type.
698 ///
699 /// If D is non-null, it specifies a decl that correspond to this.  This is used
700 /// to set the attributes on the global when it is first created.
701 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
702                                                      const llvm::PointerType*Ty,
703                                                      const VarDecl *D) {
704   // Lookup the entry, lazily creating it if necessary.
705   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
706   if (Entry) {
707     if (Entry->getType() == Ty)
708       return Entry;
709 
710     // Make sure the result is of the correct type.
711     return llvm::ConstantExpr::getBitCast(Entry, Ty);
712   }
713 
714   // This is the first use or definition of a mangled name.  If there is a
715   // deferred decl with this name, remember that we need to emit it at the end
716   // of the file.
717   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
718     DeferredDecls.find(MangledName);
719   if (DDI != DeferredDecls.end()) {
720     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
721     // list, and remove it from DeferredDecls (since we don't need it anymore).
722     DeferredDeclsToEmit.push_back(DDI->second);
723     DeferredDecls.erase(DDI);
724   }
725 
726   llvm::GlobalVariable *GV =
727     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
728                              llvm::GlobalValue::ExternalLinkage,
729                              0, "", 0,
730                              false, Ty->getAddressSpace());
731   GV->setName(MangledName);
732 
733   // Handle things which are present even on external declarations.
734   if (D) {
735     // FIXME: This code is overly simple and should be merged with other global
736     // handling.
737     GV->setConstant(D->getType().isConstant(Context));
738 
739     // FIXME: Merge with other attribute handling code.
740     if (D->getStorageClass() == VarDecl::PrivateExtern)
741       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
742 
743     if (D->hasAttr<WeakAttr>() ||
744         D->hasAttr<WeakImportAttr>())
745       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
746 
747     GV->setThreadLocal(D->isThreadSpecified());
748   }
749 
750   return Entry = GV;
751 }
752 
753 
754 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
755 /// given global variable.  If Ty is non-null and if the global doesn't exist,
756 /// then it will be greated with the specified type instead of whatever the
757 /// normal requested type would be.
758 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
759                                                   const llvm::Type *Ty) {
760   assert(D->hasGlobalStorage() && "Not a global variable");
761   QualType ASTTy = D->getType();
762   if (Ty == 0)
763     Ty = getTypes().ConvertTypeForMem(ASTTy);
764 
765   const llvm::PointerType *PTy =
766     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
767   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
768 }
769 
770 /// CreateRuntimeVariable - Create a new runtime global variable with the
771 /// specified type and name.
772 llvm::Constant *
773 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
774                                      const char *Name) {
775   // Convert Name to be a uniqued string from the IdentifierInfo table.
776   Name = getContext().Idents.get(Name).getName();
777   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
778 }
779 
780 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
781   assert(!D->getInit() && "Cannot emit definite definitions here!");
782 
783   if (MayDeferGeneration(D)) {
784     // If we have not seen a reference to this variable yet, place it
785     // into the deferred declarations table to be emitted if needed
786     // later.
787     const char *MangledName = getMangledName(D);
788     if (GlobalDeclMap.count(MangledName) == 0) {
789       DeferredDecls[MangledName] = GlobalDecl(D);
790       return;
791     }
792   }
793 
794   // The tentative definition is the only definition.
795   EmitGlobalVarDefinition(D);
796 }
797 
798 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
799   llvm::Constant *Init = 0;
800   QualType ASTTy = D->getType();
801 
802   if (D->getInit() == 0) {
803     // This is a tentative definition; tentative definitions are
804     // implicitly initialized with { 0 }.
805     //
806     // Note that tentative definitions are only emitted at the end of
807     // a translation unit, so they should never have incomplete
808     // type. In addition, EmitTentativeDefinition makes sure that we
809     // never attempt to emit a tentative definition if a real one
810     // exists. A use may still exists, however, so we still may need
811     // to do a RAUW.
812     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
813     Init = EmitNullConstant(D->getType());
814   } else {
815     Init = EmitConstantExpr(D->getInit(), D->getType());
816     if (!Init) {
817       ErrorUnsupported(D, "static initializer");
818       QualType T = D->getInit()->getType();
819       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
820     }
821   }
822 
823   const llvm::Type* InitType = Init->getType();
824   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
825 
826   // Strip off a bitcast if we got one back.
827   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
828     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
829            // all zero index gep.
830            CE->getOpcode() == llvm::Instruction::GetElementPtr);
831     Entry = CE->getOperand(0);
832   }
833 
834   // Entry is now either a Function or GlobalVariable.
835   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
836 
837   // We have a definition after a declaration with the wrong type.
838   // We must make a new GlobalVariable* and update everything that used OldGV
839   // (a declaration or tentative definition) with the new GlobalVariable*
840   // (which will be a definition).
841   //
842   // This happens if there is a prototype for a global (e.g.
843   // "extern int x[];") and then a definition of a different type (e.g.
844   // "int x[10];"). This also happens when an initializer has a different type
845   // from the type of the global (this happens with unions).
846   if (GV == 0 ||
847       GV->getType()->getElementType() != InitType ||
848       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
849 
850     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
851     GlobalDeclMap.erase(getMangledName(D));
852 
853     // Make a new global with the correct type, this is now guaranteed to work.
854     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
855     GV->takeName(cast<llvm::GlobalValue>(Entry));
856 
857     // Replace all uses of the old global with the new global
858     llvm::Constant *NewPtrForOldDecl =
859         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
860     Entry->replaceAllUsesWith(NewPtrForOldDecl);
861 
862     // Erase the old global, since it is no longer used.
863     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
864   }
865 
866   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
867     SourceManager &SM = Context.getSourceManager();
868     AddAnnotation(EmitAnnotateAttr(GV, AA,
869                               SM.getInstantiationLineNumber(D->getLocation())));
870   }
871 
872   GV->setInitializer(Init);
873 
874   // If it is safe to mark the global 'constant', do so now.
875   GV->setConstant(false);
876   if (D->getType().isConstant(Context)) {
877     // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
878     // members, it cannot be declared "LLVM const".
879     GV->setConstant(true);
880   }
881 
882   GV->setAlignment(getContext().getDeclAlignInBytes(D));
883 
884   // Set the llvm linkage type as appropriate.
885   if (D->getStorageClass() == VarDecl::Static)
886     GV->setLinkage(llvm::Function::InternalLinkage);
887   else if (D->hasAttr<DLLImportAttr>())
888     GV->setLinkage(llvm::Function::DLLImportLinkage);
889   else if (D->hasAttr<DLLExportAttr>())
890     GV->setLinkage(llvm::Function::DLLExportLinkage);
891   else if (D->hasAttr<WeakAttr>()) {
892     if (GV->isConstant())
893       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
894     else
895       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
896   } else if (!CompileOpts.NoCommon &&
897            !D->hasExternalStorage() && !D->getInit() &&
898            !D->getAttr<SectionAttr>()) {
899     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
900     // common vars aren't constant even if declared const.
901     GV->setConstant(false);
902   } else
903     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
904 
905   SetCommonAttributes(D, GV);
906 
907   // Emit global variable debug information.
908   if (CGDebugInfo *DI = getDebugInfo()) {
909     DI->setLocation(D->getLocation());
910     DI->EmitGlobalVariable(GV, D);
911   }
912 }
913 
914 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
915 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
916 /// existing call uses of the old function in the module, this adjusts them to
917 /// call the new function directly.
918 ///
919 /// This is not just a cleanup: the always_inline pass requires direct calls to
920 /// functions to be able to inline them.  If there is a bitcast in the way, it
921 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
922 /// run at -O0.
923 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
924                                                       llvm::Function *NewFn) {
925   // If we're redefining a global as a function, don't transform it.
926   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
927   if (OldFn == 0) return;
928 
929   const llvm::Type *NewRetTy = NewFn->getReturnType();
930   llvm::SmallVector<llvm::Value*, 4> ArgList;
931 
932   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
933        UI != E; ) {
934     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
935     unsigned OpNo = UI.getOperandNo();
936     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
937     if (!CI || OpNo != 0) continue;
938 
939     // If the return types don't match exactly, and if the call isn't dead, then
940     // we can't transform this call.
941     if (CI->getType() != NewRetTy && !CI->use_empty())
942       continue;
943 
944     // If the function was passed too few arguments, don't transform.  If extra
945     // arguments were passed, we silently drop them.  If any of the types
946     // mismatch, we don't transform.
947     unsigned ArgNo = 0;
948     bool DontTransform = false;
949     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
950          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
951       if (CI->getNumOperands()-1 == ArgNo ||
952           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
953         DontTransform = true;
954         break;
955       }
956     }
957     if (DontTransform)
958       continue;
959 
960     // Okay, we can transform this.  Create the new call instruction and copy
961     // over the required information.
962     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
963     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
964                                                      ArgList.end(), "", CI);
965     ArgList.clear();
966     if (NewCall->getType() != llvm::Type::VoidTy)
967       NewCall->takeName(CI);
968     NewCall->setCallingConv(CI->getCallingConv());
969     NewCall->setAttributes(CI->getAttributes());
970 
971     // Finally, remove the old call, replacing any uses with the new one.
972     if (!CI->use_empty())
973       CI->replaceAllUsesWith(NewCall);
974     CI->eraseFromParent();
975   }
976 }
977 
978 
979 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
980   const llvm::FunctionType *Ty;
981   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
982 
983   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
984     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
985 
986     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
987   } else {
988     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
989 
990     // As a special case, make sure that definitions of K&R function
991     // "type foo()" aren't declared as varargs (which forces the backend
992     // to do unnecessary work).
993     if (D->getType()->isFunctionNoProtoType()) {
994       assert(Ty->isVarArg() && "Didn't lower type as expected");
995       // Due to stret, the lowered function could have arguments.
996       // Just create the same type as was lowered by ConvertType
997       // but strip off the varargs bit.
998       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
999       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1000     }
1001   }
1002 
1003   // Get or create the prototype for the function.
1004   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1005 
1006   // Strip off a bitcast if we got one back.
1007   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1008     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1009     Entry = CE->getOperand(0);
1010   }
1011 
1012 
1013   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1014     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1015 
1016     // If the types mismatch then we have to rewrite the definition.
1017     assert(OldFn->isDeclaration() &&
1018            "Shouldn't replace non-declaration");
1019 
1020     // F is the Function* for the one with the wrong type, we must make a new
1021     // Function* and update everything that used F (a declaration) with the new
1022     // Function* (which will be a definition).
1023     //
1024     // This happens if there is a prototype for a function
1025     // (e.g. "int f()") and then a definition of a different type
1026     // (e.g. "int f(int x)").  Start by making a new function of the
1027     // correct type, RAUW, then steal the name.
1028     GlobalDeclMap.erase(getMangledName(D));
1029     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1030     NewFn->takeName(OldFn);
1031 
1032     // If this is an implementation of a function without a prototype, try to
1033     // replace any existing uses of the function (which may be calls) with uses
1034     // of the new function
1035     if (D->getType()->isFunctionNoProtoType()) {
1036       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1037       OldFn->removeDeadConstantUsers();
1038     }
1039 
1040     // Replace uses of F with the Function we will endow with a body.
1041     if (!Entry->use_empty()) {
1042       llvm::Constant *NewPtrForOldDecl =
1043         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1044       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1045     }
1046 
1047     // Ok, delete the old function now, which is dead.
1048     OldFn->eraseFromParent();
1049 
1050     Entry = NewFn;
1051   }
1052 
1053   llvm::Function *Fn = cast<llvm::Function>(Entry);
1054 
1055   CodeGenFunction(*this).GenerateCode(D, Fn);
1056 
1057   SetFunctionDefinitionAttributes(D, Fn);
1058   SetLLVMFunctionAttributesForDefinition(D, Fn);
1059 
1060   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1061     AddGlobalCtor(Fn, CA->getPriority());
1062   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1063     AddGlobalDtor(Fn, DA->getPriority());
1064 }
1065 
1066 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1067   const AliasAttr *AA = D->getAttr<AliasAttr>();
1068   assert(AA && "Not an alias?");
1069 
1070   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1071 
1072   // Unique the name through the identifier table.
1073   const char *AliaseeName = AA->getAliasee().c_str();
1074   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1075 
1076   // Create a reference to the named value.  This ensures that it is emitted
1077   // if a deferred decl.
1078   llvm::Constant *Aliasee;
1079   if (isa<llvm::FunctionType>(DeclTy))
1080     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1081   else
1082     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1083                                     llvm::PointerType::getUnqual(DeclTy), 0);
1084 
1085   // Create the new alias itself, but don't set a name yet.
1086   llvm::GlobalValue *GA =
1087     new llvm::GlobalAlias(Aliasee->getType(),
1088                           llvm::Function::ExternalLinkage,
1089                           "", Aliasee, &getModule());
1090 
1091   // See if there is already something with the alias' name in the module.
1092   const char *MangledName = getMangledName(D);
1093   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1094 
1095   if (Entry && !Entry->isDeclaration()) {
1096     // If there is a definition in the module, then it wins over the alias.
1097     // This is dubious, but allow it to be safe.  Just ignore the alias.
1098     GA->eraseFromParent();
1099     return;
1100   }
1101 
1102   if (Entry) {
1103     // If there is a declaration in the module, then we had an extern followed
1104     // by the alias, as in:
1105     //   extern int test6();
1106     //   ...
1107     //   int test6() __attribute__((alias("test7")));
1108     //
1109     // Remove it and replace uses of it with the alias.
1110 
1111     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1112                                                           Entry->getType()));
1113     Entry->eraseFromParent();
1114   }
1115 
1116   // Now we know that there is no conflict, set the name.
1117   Entry = GA;
1118   GA->setName(MangledName);
1119 
1120   // Set attributes which are particular to an alias; this is a
1121   // specialization of the attributes which may be set on a global
1122   // variable/function.
1123   if (D->hasAttr<DLLExportAttr>()) {
1124     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1125       // The dllexport attribute is ignored for undefined symbols.
1126       if (FD->getBody())
1127         GA->setLinkage(llvm::Function::DLLExportLinkage);
1128     } else {
1129       GA->setLinkage(llvm::Function::DLLExportLinkage);
1130     }
1131   } else if (D->hasAttr<WeakAttr>() ||
1132              D->hasAttr<WeakImportAttr>()) {
1133     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1134   }
1135 
1136   SetCommonAttributes(D, GA);
1137 }
1138 
1139 /// getBuiltinLibFunction - Given a builtin id for a function like
1140 /// "__builtin_fabsf", return a Function* for "fabsf".
1141 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1142   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1143           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1144          "isn't a lib fn");
1145 
1146   // Get the name, skip over the __builtin_ prefix (if necessary).
1147   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1148   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1149     Name += 10;
1150 
1151   // Get the type for the builtin.
1152   ASTContext::GetBuiltinTypeError Error;
1153   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1154   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1155 
1156   const llvm::FunctionType *Ty =
1157     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1158 
1159   // Unique the name through the identifier table.
1160   Name = getContext().Idents.get(Name).getName();
1161   // FIXME: param attributes for sext/zext etc.
1162   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1163 }
1164 
1165 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1166                                             unsigned NumTys) {
1167   return llvm::Intrinsic::getDeclaration(&getModule(),
1168                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1169 }
1170 
1171 llvm::Function *CodeGenModule::getMemCpyFn() {
1172   if (MemCpyFn) return MemCpyFn;
1173   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1174   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1175 }
1176 
1177 llvm::Function *CodeGenModule::getMemMoveFn() {
1178   if (MemMoveFn) return MemMoveFn;
1179   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1180   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1181 }
1182 
1183 llvm::Function *CodeGenModule::getMemSetFn() {
1184   if (MemSetFn) return MemSetFn;
1185   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1186   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1187 }
1188 
1189 static void appendFieldAndPadding(CodeGenModule &CGM,
1190                                   std::vector<llvm::Constant*>& Fields,
1191                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1192                                   llvm::Constant* Field,
1193                                   RecordDecl* RD, const llvm::StructType *STy) {
1194   // Append the field.
1195   Fields.push_back(Field);
1196 
1197   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1198 
1199   int NextStructFieldNo;
1200   if (!NextFieldD) {
1201     NextStructFieldNo = STy->getNumElements();
1202   } else {
1203     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1204   }
1205 
1206   // Append padding
1207   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1208     llvm::Constant *C =
1209       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1210 
1211     Fields.push_back(C);
1212   }
1213 }
1214 
1215 static llvm::StringMapEntry<llvm::Constant*> &
1216 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1217                          const StringLiteral *Literal,
1218                          bool TargetIsLSB,
1219                          bool &IsUTF16,
1220                          unsigned &StringLength) {
1221   unsigned NumBytes = Literal->getByteLength();
1222 
1223   // Check for simple case.
1224   if (!Literal->containsNonAsciiOrNull()) {
1225     StringLength = NumBytes;
1226     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1227                                                 StringLength));
1228   }
1229 
1230   // Otherwise, convert the UTF8 literals into a byte string.
1231   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1232   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1233   UTF16 *ToPtr = &ToBuf[0];
1234 
1235   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1236                                                &ToPtr, ToPtr + NumBytes,
1237                                                strictConversion);
1238 
1239   // Check for conversion failure.
1240   if (Result != conversionOK) {
1241     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1242     // this duplicate code.
1243     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1244     StringLength = NumBytes;
1245     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1246                                                 StringLength));
1247   }
1248 
1249   // ConvertUTF8toUTF16 returns the length in ToPtr.
1250   StringLength = ToPtr - &ToBuf[0];
1251 
1252   // Render the UTF-16 string into a byte array and convert to the target byte
1253   // order.
1254   //
1255   // FIXME: This isn't something we should need to do here.
1256   llvm::SmallString<128> AsBytes;
1257   AsBytes.reserve(StringLength * 2);
1258   for (unsigned i = 0; i != StringLength; ++i) {
1259     unsigned short Val = ToBuf[i];
1260     if (TargetIsLSB) {
1261       AsBytes.push_back(Val & 0xFF);
1262       AsBytes.push_back(Val >> 8);
1263     } else {
1264       AsBytes.push_back(Val >> 8);
1265       AsBytes.push_back(Val & 0xFF);
1266     }
1267   }
1268   // Append one extra null character, the second is automatically added by our
1269   // caller.
1270   AsBytes.push_back(0);
1271 
1272   IsUTF16 = true;
1273   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1274 }
1275 
1276 llvm::Constant *
1277 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1278   unsigned StringLength = 0;
1279   bool isUTF16 = false;
1280   llvm::StringMapEntry<llvm::Constant*> &Entry =
1281     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1282                              getTargetData().isLittleEndian(),
1283                              isUTF16, StringLength);
1284 
1285   if (llvm::Constant *C = Entry.getValue())
1286     return C;
1287 
1288   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1289   llvm::Constant *Zeros[] = { Zero, Zero };
1290 
1291   // If we don't already have it, get __CFConstantStringClassReference.
1292   if (!CFConstantStringClassRef) {
1293     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1294     Ty = llvm::ArrayType::get(Ty, 0);
1295     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1296                                            "__CFConstantStringClassReference");
1297     // Decay array -> ptr
1298     CFConstantStringClassRef =
1299       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1300   }
1301 
1302   QualType CFTy = getContext().getCFConstantStringType();
1303   RecordDecl *CFRD = CFTy->getAs<RecordType>()->getDecl();
1304 
1305   const llvm::StructType *STy =
1306     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1307 
1308   std::vector<llvm::Constant*> Fields;
1309   RecordDecl::field_iterator Field = CFRD->field_begin();
1310 
1311   // Class pointer.
1312   FieldDecl *CurField = *Field++;
1313   FieldDecl *NextField = *Field++;
1314   appendFieldAndPadding(*this, Fields, CurField, NextField,
1315                         CFConstantStringClassRef, CFRD, STy);
1316 
1317   // Flags.
1318   CurField = NextField;
1319   NextField = *Field++;
1320   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1321   appendFieldAndPadding(*this, Fields, CurField, NextField,
1322                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1323                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1324                         CFRD, STy);
1325 
1326   // String pointer.
1327   CurField = NextField;
1328   NextField = *Field++;
1329   llvm::Constant *C = llvm::ConstantArray::get(Entry.getKey().str());
1330 
1331   const char *Sect, *Prefix;
1332   bool isConstant;
1333   llvm::GlobalValue::LinkageTypes Linkage;
1334   if (isUTF16) {
1335     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1336     Sect = getContext().Target.getUnicodeStringSection();
1337     // FIXME: why do utf strings get "l" labels instead of "L" labels?
1338     Linkage = llvm::GlobalValue::InternalLinkage;
1339     // FIXME: Why does GCC not set constant here?
1340     isConstant = false;
1341   } else {
1342     Prefix = ".str";
1343     Sect = getContext().Target.getCFStringDataSection();
1344     Linkage = llvm::GlobalValue::PrivateLinkage;
1345     // FIXME: -fwritable-strings should probably affect this, but we
1346     // are following gcc here.
1347     isConstant = true;
1348   }
1349   llvm::GlobalVariable *GV =
1350     new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1351                              Linkage, C, Prefix);
1352   if (Sect)
1353     GV->setSection(Sect);
1354   if (isUTF16) {
1355     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1356     GV->setAlignment(Align);
1357   }
1358   appendFieldAndPadding(*this, Fields, CurField, NextField,
1359                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1360                         CFRD, STy);
1361 
1362   // String length.
1363   CurField = NextField;
1364   NextField = 0;
1365   Ty = getTypes().ConvertType(getContext().LongTy);
1366   appendFieldAndPadding(*this, Fields, CurField, NextField,
1367                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1368 
1369   // The struct.
1370   C = llvm::ConstantStruct::get(STy, Fields);
1371   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1372                                 llvm::GlobalVariable::PrivateLinkage, C,
1373                                 "_unnamed_cfstring_");
1374   if (const char *Sect = getContext().Target.getCFStringSection())
1375     GV->setSection(Sect);
1376   Entry.setValue(GV);
1377 
1378   return GV;
1379 }
1380 
1381 /// GetStringForStringLiteral - Return the appropriate bytes for a
1382 /// string literal, properly padded to match the literal type.
1383 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1384   const char *StrData = E->getStrData();
1385   unsigned Len = E->getByteLength();
1386 
1387   const ConstantArrayType *CAT =
1388     getContext().getAsConstantArrayType(E->getType());
1389   assert(CAT && "String isn't pointer or array!");
1390 
1391   // Resize the string to the right size.
1392   std::string Str(StrData, StrData+Len);
1393   uint64_t RealLen = CAT->getSize().getZExtValue();
1394 
1395   if (E->isWide())
1396     RealLen *= getContext().Target.getWCharWidth()/8;
1397 
1398   Str.resize(RealLen, '\0');
1399 
1400   return Str;
1401 }
1402 
1403 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1404 /// constant array for the given string literal.
1405 llvm::Constant *
1406 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1407   // FIXME: This can be more efficient.
1408   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1409 }
1410 
1411 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1412 /// array for the given ObjCEncodeExpr node.
1413 llvm::Constant *
1414 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1415   std::string Str;
1416   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1417 
1418   return GetAddrOfConstantCString(Str);
1419 }
1420 
1421 
1422 /// GenerateWritableString -- Creates storage for a string literal.
1423 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1424                                              bool constant,
1425                                              CodeGenModule &CGM,
1426                                              const char *GlobalName) {
1427   // Create Constant for this string literal. Don't add a '\0'.
1428   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1429 
1430   // Create a global variable for this string
1431   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1432                                   llvm::GlobalValue::PrivateLinkage,
1433                                   C, GlobalName);
1434 }
1435 
1436 /// GetAddrOfConstantString - Returns a pointer to a character array
1437 /// containing the literal. This contents are exactly that of the
1438 /// given string, i.e. it will not be null terminated automatically;
1439 /// see GetAddrOfConstantCString. Note that whether the result is
1440 /// actually a pointer to an LLVM constant depends on
1441 /// Feature.WriteableStrings.
1442 ///
1443 /// The result has pointer to array type.
1444 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1445                                                        const char *GlobalName) {
1446   bool IsConstant = !Features.WritableStrings;
1447 
1448   // Get the default prefix if a name wasn't specified.
1449   if (!GlobalName)
1450     GlobalName = ".str";
1451 
1452   // Don't share any string literals if strings aren't constant.
1453   if (!IsConstant)
1454     return GenerateStringLiteral(str, false, *this, GlobalName);
1455 
1456   llvm::StringMapEntry<llvm::Constant *> &Entry =
1457     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1458 
1459   if (Entry.getValue())
1460     return Entry.getValue();
1461 
1462   // Create a global variable for this.
1463   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1464   Entry.setValue(C);
1465   return C;
1466 }
1467 
1468 /// GetAddrOfConstantCString - Returns a pointer to a character
1469 /// array containing the literal and a terminating '\-'
1470 /// character. The result has pointer to array type.
1471 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1472                                                         const char *GlobalName){
1473   return GetAddrOfConstantString(str + '\0', GlobalName);
1474 }
1475 
1476 /// EmitObjCPropertyImplementations - Emit information for synthesized
1477 /// properties for an implementation.
1478 void CodeGenModule::EmitObjCPropertyImplementations(const
1479                                                     ObjCImplementationDecl *D) {
1480   for (ObjCImplementationDecl::propimpl_iterator
1481          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1482     ObjCPropertyImplDecl *PID = *i;
1483 
1484     // Dynamic is just for type-checking.
1485     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1486       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1487 
1488       // Determine which methods need to be implemented, some may have
1489       // been overridden. Note that ::isSynthesized is not the method
1490       // we want, that just indicates if the decl came from a
1491       // property. What we want to know is if the method is defined in
1492       // this implementation.
1493       if (!D->getInstanceMethod(PD->getGetterName()))
1494         CodeGenFunction(*this).GenerateObjCGetter(
1495                                  const_cast<ObjCImplementationDecl *>(D), PID);
1496       if (!PD->isReadOnly() &&
1497           !D->getInstanceMethod(PD->getSetterName()))
1498         CodeGenFunction(*this).GenerateObjCSetter(
1499                                  const_cast<ObjCImplementationDecl *>(D), PID);
1500     }
1501   }
1502 }
1503 
1504 /// EmitNamespace - Emit all declarations in a namespace.
1505 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1506   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1507        I != E; ++I)
1508     EmitTopLevelDecl(*I);
1509 }
1510 
1511 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1512 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1513   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1514       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1515     ErrorUnsupported(LSD, "linkage spec");
1516     return;
1517   }
1518 
1519   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1520        I != E; ++I)
1521     EmitTopLevelDecl(*I);
1522 }
1523 
1524 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1525 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1526   // If an error has occurred, stop code generation, but continue
1527   // parsing and semantic analysis (to ensure all warnings and errors
1528   // are emitted).
1529   if (Diags.hasErrorOccurred())
1530     return;
1531 
1532   // Ignore dependent declarations.
1533   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1534     return;
1535 
1536   switch (D->getKind()) {
1537   case Decl::CXXMethod:
1538   case Decl::Function:
1539     // Skip function templates
1540     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1541       return;
1542 
1543     // Fall through
1544 
1545   case Decl::Var:
1546     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1547     break;
1548 
1549   // C++ Decls
1550   case Decl::Namespace:
1551     EmitNamespace(cast<NamespaceDecl>(D));
1552     break;
1553     // No code generation needed.
1554   case Decl::Using:
1555   case Decl::ClassTemplate:
1556   case Decl::FunctionTemplate:
1557     break;
1558   case Decl::CXXConstructor:
1559     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1560     break;
1561   case Decl::CXXDestructor:
1562     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1563     break;
1564 
1565   case Decl::StaticAssert:
1566     // Nothing to do.
1567     break;
1568 
1569   // Objective-C Decls
1570 
1571   // Forward declarations, no (immediate) code generation.
1572   case Decl::ObjCClass:
1573   case Decl::ObjCForwardProtocol:
1574   case Decl::ObjCCategory:
1575   case Decl::ObjCInterface:
1576     break;
1577 
1578   case Decl::ObjCProtocol:
1579     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1580     break;
1581 
1582   case Decl::ObjCCategoryImpl:
1583     // Categories have properties but don't support synthesize so we
1584     // can ignore them here.
1585     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1586     break;
1587 
1588   case Decl::ObjCImplementation: {
1589     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1590     EmitObjCPropertyImplementations(OMD);
1591     Runtime->GenerateClass(OMD);
1592     break;
1593   }
1594   case Decl::ObjCMethod: {
1595     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1596     // If this is not a prototype, emit the body.
1597     if (OMD->getBody())
1598       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1599     break;
1600   }
1601   case Decl::ObjCCompatibleAlias:
1602     // compatibility-alias is a directive and has no code gen.
1603     break;
1604 
1605   case Decl::LinkageSpec:
1606     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1607     break;
1608 
1609   case Decl::FileScopeAsm: {
1610     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1611     std::string AsmString(AD->getAsmString()->getStrData(),
1612                           AD->getAsmString()->getByteLength());
1613 
1614     const std::string &S = getModule().getModuleInlineAsm();
1615     if (S.empty())
1616       getModule().setModuleInlineAsm(AsmString);
1617     else
1618       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1619     break;
1620   }
1621 
1622   default:
1623     // Make sure we handled everything we should, every other kind is a
1624     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1625     // function. Need to recode Decl::Kind to do that easily.
1626     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1627   }
1628 }
1629